Framework Programming Guide

Tools > Xcode

¢

2006-11-07

.

[

Apple Inc.

© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, eMac,
Mac, Mac OS, Objective-C, Quartz, and Xcode
are trademarks of Apple Inc,, registered in the
United States and other countries.

Finder and Numbers are trademarks of Apple
Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.
Even though Apple has reviewed this document,

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Framework Programming Guide 9

Organization of This Document 9

What are Frameworks? 11

Anatomy of Framework Bundles 13

Framework Bundle Structure 13
Framework Versions 13
Additional Directories 15
Framework Configuration 16

Umbrella Framework Bundle Structure 16
The Purpose of Umbrella Frameworks 16
The Umbrella Framework Bundle 17

Framework Versions 19

Major Versions 19
Major Version Numbering Scheme 19
When to Use Major Versions 19
Avoiding Major Version Changes 20
Creating a Major Version of a Framework 20
Minor Versions 21
Minor Version Numbering Scheme 21
When to Use Minor Versions 22
Compatibility Version Numbers at Runtime 22
Creating a Minor Version of a Framework 22
Versioning Guidelines 23

Frameworks and Binding 25

Dynamic Shared Libraries 25

Symbol Binding 25

Organizing Your Framework Code 26

Library Dependencies 27

Standalone Dynamic Shared Libraries 27
Frameworks and Prebinding 27

Prebinding Your Framework 28

Caveats for Prebinding 28

Finding the Preferred Address of a Framework 29

Apple Frameworks and Prebinding 29

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Weak Linking 31

Weak Linking and Apple Frameworks 31
Marking Symbols for Weak Linking 32
Using Weakly Linked Symbols 32

Weak Linking to Entire Frameworks 33

Guidelines for Creating Frameworks 35

API Naming Guidelines 35

Performance Impacts of Frameworks 35
What to Include in Your Framework 36
Using C++ in Framework Code 36
Don't Create Umbrella Frameworks 36
Where to Install Your Framework 37

Creating a Framework 39

Creating Your Framework 39
Configuring Your Framework Project 39
Testing Your Framework in Place 40
Embedding a Private Framework in Your Application Bundle 41
Using a Single Xcode Project For Both Targets 41
Using Separate Xcode Projects For Each Target 42
Building Multiple Versions of a Framework 43
Updating the Minor Version 43
Updating the Major Version 43

Initializing a Framework at Runtime 45

Initialization Routines and Performance 45
Defining Module Initializers and Finalizers 45
Using Initialization Routines 46

Exporting Your Framework Interface 49

Creating Your Exports File 49
Specifying Your Exports File 50

Installing Your Framework 51

Locations for Public Frameworks 51
Locations for Private Frameworks 52
Installing Frameworks 52

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Including Frameworks 53

Including Frameworks in Your Project 53

Locating Frameworks in Non-Standard Directories 54
Headers and Performance 54

Including the Flat Carbon Headers 54

Restrictions on Subframework Linking 55

Document Revision History 57

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Anatomy of Framework Bundles 13

Table 1 Standard directories for frameworks 15

Table 2 Framework configuration keys 16

Listing 1 A simple framework bundle 13

Listing 2 A framework with multiple versions 14

Listing 3 A framework with additional resource types 15
Listing 4 Structure of the Core Services umbrella framework 17

Framework Versions 19

Table 1 Making changes to a framework 23

Frameworks and Binding 25

Figure 1 Lazy linking of dynamic shared library modules 26

Creating a Framework 39

Table 1 Framework configuration options 39

Initializing a Framework at Runtime 45

Listing 1 Module initializer for a framework 45
Listing 2 Module initializer with launch arguments 46
Listing 3 Module finalizer function 46

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Framework Programming
Guide

Mac OS X makes extensive use of frameworks to distribute shared code and resources, such as the interfaces
to the system itself. You can create frameworks of your own to provide shared code and resources to one or
more of your company'’s applications. You can also create frameworks containing class libraries or add-on
modules with the intention of distributing them to other developers.

The information in this document provides the background you need to create frameworks and the steps
needed to create them in Xcode. Although creating frameworks is not difficult, there are some guidelines
you should follow when doing so. Xcode simplifies the creation process by helping you create the framework
bundle and manage the information and placement of files in that bundle. However, this document also
provides additional information about how to perform many less obvious tasks.

Organization of This Document

This document contains the following articles:
= “What are Frameworks?” (page 11) provides background information about what frameworks are and
how they're used.

= “Anatomy of Framework Bundles” (page 13) describes the basic structure of frameworks, including
umbrella frameworks.

= “Framework Versions” (page 19) describes the system used to manage different framework versions
and how you specify version information when you create a framework.

= “Frameworks and Binding” (page 25) explains how framework symbols are bound to an application at
runtime. It also explains how to improve the load time of your framework through the use of prebinding.

= “Frameworks and Weak Linking” (page 31) explains the concept of “weak-linking” for framework symbols
and shows you how to use this feature with both your own frameworks and third-party frameworks.

= “Guidelines for Creating Frameworks” (page 35) provides guidelines on the best practices to use for
creating frameworks.

= “Creating a Framework” (page 39) shows how to create public frameworks and private embedded
frameworks using Xcode.

= “Initializing a Framework at Runtime” (page 45) shows how to create a load-time initialization routine
for your framework.

m “Exporting Your Framework Interface” (page 49) shows how to limit the symbols exported by your
framework to the exact set you want.

= “Installing Your Framework” (page 51) explains the conventions for where to install your custom
frameworks.

= “Including Frameworks” (page 53) shows the basic ways to use frameworks in applications.

Organization of This Document 9
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Framework Programming Guide

10 Organization of This Document
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

What are Frameworks?

A framework is a hierarchical directory that encapsulates shared resources, such as a dynamic shared library,
nib files, image files, localized strings, header files, and reference documentation in a single package. Multiple
applications can use all of these resources simultaneously. The system loads them into memory as needed
and shares the one copy of the resource among all applications whenever possible.

A framework is also a bundle and its contents can be accessed using Core Foundation Bundle Services or the
Cocoa NSBundle class. However, unlike most bundles, a framework bundle does not appear in the Finder as
an opaque file. A framework bundle is a standard directory that the user can navigate. This makes it easier
for developers to browse the framework contents and view any included documentation and header files.

Frameworks serve the same purpose as static and dynamic shared libraries, that is, they provide a library of
routines that can be called by an application to perform a specific task. For example, the Application Kit and
Foundation frameworks provide the programmatic interfaces for the Cocoa classes and methods. Frameworks
offer the following advantages over static-linked libraries and other types of dynamic shared libraries:

= Frameworks group related, but separate, resources together. This grouping makes it easier to install,
uninstall, and locate those resources.

= Frameworks can include a wider variety of resource types than libraries. For example, a framework can
include any relevant header files and documentation.

= Multiple versions of a framework can be included in the same bundle. This makes it possible to be
backward compatible with older programs.

= Only one copy of a framework’s read-only resources reside physically in-memory at any given time,
regardless of how many processes are using those resources. This sharing of resources reduces the
memory footprint of the system and helps improve performance.

Note: Frameworks are not required to provide a programmatic interface and can include only resource files.
However, such a use is not common.

The Darwin layer contains many static and dynamic libraries but otherwise, most Mac OS X interfaces are
packaged as frameworks. Some key frameworks—including Carbon, Cocoa, Application Services, and Core
Services—provide convenient groupings of several smaller but related frameworks. These framework groups
are called umbrella frameworks and they act as an abstraction layer between a technology and the
subframeworks that implement that technology.

In addition to using the system frameworks, you can create your own frameworks and use them privately
for your own applications or make them publicly available to other developers. Private frameworks are
appropriate for code modules you want to use in your own applications but do not want other developers
to use. Public frameworks are intended for use by other developers and usually include headers and
documentation defining the framework’s public interface.

n
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

12

What are Frameworks?

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of Framework Bundles

In Mac OS X, shared resources are packaged using standard frameworks and umbrella frameworks. Both
types of framework feature the same basic structure and can contain resources such as a shared library, nib
files, image files, strings files, information property lists, documentation, header files, and so on. Umbrella
frameworks add minor refinements to the standard framework structure, such as the ability to encompass
other frameworks.

Frameworks are packaged in a bundle structure. The framework bundle directory ends with the . framework
extension, and unlike most other bundle types, a framework bundle is presented to the user as a directory
and not as a file. This openness makes it easy for developers to browse any header files and documentation
included with the framework.

Framework Bundle Structure

Framework bundles use a bundle structure different from the bundle structure used by applications. The
structure for frameworks is based on an earlier bundle format, and allows for multiple versions of the framework
code and header files to be stored inside the bundle. This type of bundle is known as a versioned bundle.
Supporting multiple versions of a framework allows older applications to continue running even as the
framework binary continues to evolve.

The system identifies a framework by the . f ramework extension on its directory name and by the Resources
directory at the top level of the framework bundle. Inside the Resources directory is the Info.plist file
that contains the bundle’s identifying information. The actual Resources directory does not have to reside
physically at the top-level of the bundle. In fact, the system frameworks that come with Mac OS X have a
symbolic link to the framework’s Resources directory in this location. The link points to the most current
version of the Resources directory, buried somewhere inside the bundle.

The contents of the Resources directory are similar to those for application bundles. (See “Anatomy of a
Modern Bundle” in Bundle Programming Guide for more information.) Localized resources are put in
language-specific subdirectories that end with the . Tproj. extension. These subdirectories hold strings,
images, sounds, and interface definitions localized to the language and region represented by the directory.
Nonlocalized resources reside at the top level of the Resources directory.

Framework Versions

When you build a new framework project in Xcode, the build environment creates a versioned bundle
structure for you automatically. Listing 1 shows the basic directory structure of the resulting bundle.

Listing 1 A simple framework bundle

MyFramework. framework/
MyFramework -> Versions/Current/MyFramework
Resources -> Versions/Current/Resources

Framework Bundle Structure 13
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

14

Anatomy of Framework Bundles

Versions/
A/
MyFramework
Resources/

English.lproj/
InfoPlist.strings
Info.plist
Current -> A

In this listing, the Versions directory is the only real directory at the top level of the bundle. Both
MyFramework and Resources are symbolic links to itemsin Versions/A. The reason for the symbolic links
is that directory Versions/A contains the actual contents of the framework. It contains both the executable
and the resources used by the framework.

Listing 1 shows that the top-level symbolic links don’t point directly to items inside the Versions/A directory.
Instead, they point to itemsinthe Versions/Current directory, which itself is a symbolic link to Versions/A.
This additional level of indirection simplifies the process of changing the top-level links of frameworks with
many resource types to point to a specific major version of the framework, because only one link,
Versions/Current, needs to be updated.

Each real directory in Versions contains a specific major version of the framework. Earlier major versions
of the framework are needed by clients created when those versions were current at the time. New major
versions of a framework are required only when changes in the framework’s dynamic shared library would
prevent a program linked to it from running. Programs built using the earlier major version of the library
must continue to use it, but programs in development should link against the current version of the library.

Listing 2 shows the MyFramework framework after a adding major revision to it.

Listing 2 A framework with multiple versions

MyFramework. framework/
MyFramework -> Versions/Current/MyFramework
Resources -> Versions/Current/Resources
Versions/
A/
MyFramework
Resources/
English.lproj/
InfoPlist.strings
Info.plist
B/
MyFramework
Resources/
English.lproj/
InfoPlist.strings
Info.plist
Current -> B

Through the Versions/Current symbolic link, MyFramework. framework/MyFramework points to the
dynamic shared library of the now current version of the framework, Versions/B/MyFramework. Because
of the use of symbolic links, during a program’s link process, the linker finds the latest version of the
framework’s library. This arrangement ensures that new programs are linked against the latest major version
of the framework and that programs built with the earlier major version of the framework continue to work
unchanged. For more on major and minor framework versions, and on versioning in general, see “Framework
Versions” (page 13). For more information on using dynamic libraries, see Dynamic Library Programming
Topics.

Framework Bundle Structure
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of Framework Bundles

Important: For the linker to find and link the dynamic library, the name of the framework (without the
.framework extension), the symbolic link, and the dynamic library must be the same.

Additional Directories

Frameworks typically include more directories than just the Resources directory. For example, Headers,
Documentation,and Libraries. Thus, adding a Headers directory to the example in Listing 2 (page 14)

would result in a framework like the one shown in Listing 3.

Listing 3

A framework with additional resource types

MyFramework.framework/

Headers -> Versions/Current/Headers
MyFramework -> Versions/Current/MyFramework
Resources -> Versions/Current/Resources
Versions/
A/
Headers/
MyHeader.h
MyFramework
Resources/
English.lproj/
Documentation
InfoPTist.strings
Info.plist
B/
Headers/
MyHeader.h
MyFramework
Resources/

English.lproj/
Documentation
InfoPlist.strings

Info.plist

Current -> B

To create additional directories in your framework, you must add build phases to the appropriate target in
Xcode. The Copy Files build phase lets you create directories and copy selected files into those directories.

Table 1 lists some of the typical directories you might add to your framework.

Table 1 Standard directories for frameworks
Directory Description
Headers Contains any public headers you want to make available to external developers.

Documentation

Contains HTML or PDF files describing the framework interfaces. Typically, documentation
directories do not reside at the top level of your framework. Instead, they reside inside
your language-specific resource directories.

Libraries

Contains any secondary dynamic libraries your framework requires.

Framework Bundle Structure

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

15

Anatomy of Framework Bundles

Framework Configuration

Frameworks require the same sort of configuration as any other type of bundle. In the information property
list for your framework, you should include the keys listed in Table 2. Most of these keys are included
automatically when you set up the framework properties in Xcode, but you must add some manually.

Table 2 Framework configuration keys
Key Description
CFBundleName The framework display name
CFBundleldentifier The framework identifier (as a Java-style package name)
CFBundleVersion The framework version
CFBundleSignature The framework signature
CFBundlePackageType The framework package type (which is always ' FMWK")
NSHumanReadableCopyright | Copyright information for the framework
CFBundleGetInfoString A descriptive string for the Finder

Because frameworks are never associated with documents directly, you should never specify any document
types. You may include display name information if you wish.

For more information on configuration and information property lists, see Runtime Configuration Guidelines.

Umbrella Framework Bundle Structure

16

The structure of an umbrella framework is similar to that of a standard framework, and applications do not
distinguish between umbrella frameworks and standard frameworks when linking to them. However, two
factors distinguish umbrella frameworks from other frameworks. The first is the manner in which they include
header files. The second is the fact that they encapsulate subframeworks.

The Purpose of Umbrella Frameworks

The purpose of an umbrella framework is to provide all the necessary interfaces for programming in a particular
application environment. Umbrella frameworks hide the complex cross-dependencies among the many
different pieces of system software. Thus you do not need to know what set of frameworks and libraries you
must import to accomplish a particular task. Umbrella frameworks also make faster builds possible through
the use of precompiled headers.

An umbrella framework simply includes and links with constituent subframeworks and other public frameworks.
An umbrella framework encompasses all the technologies and APIs that define an application environment
or a layer of system software. It also provides a layer of abstraction between what outside developers link
their programs with and what Apple engineering provides as implementation.

Umbrella Framework Bundle Structure
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of Framework Bundles

A subframework is structurally a public framework that packages a specific Apple technology, such as Apple
events, Quartz, or Open Transport. However, a subframework is public with restrictions. Although the APIs
of subframeworks are public, Apple has put mechanisms in place to prevent developers from linking directly
with subframeworks (see “Restrictions on Subframework Linking” (page 55)). A subframework always resides
in an umbrella framework installed in /System/Library/Frameworks,and within this umbrella framework,
its header files are exposed.

Some umbrella frameworks include other umbrella frameworks; this is particularly the case with the umbrella
frameworks for the Carbon and Cocoa application environments. For example, both Carbon and Cocoa
(directly or indirectly) import and link with the Core Services umbrella framework
(CoreServices.framework). This umbrella framework, in turn, imports and links with subframeworks such
as Core Foundation.

The exact composition of the subframeworks within an umbrella framework is an internal implementation
detail subject to change. By providing a level of indirection, umbrella frameworks insulate developers from
these changes. Apple might restructure the subframeworks within an umbrella framework and might add,
rename, or remove the header files within subframeworks. If you include the master header file for the
subframework, these changes should not affect your programs.

The Umbrella Framework Bundle

Physically, umbrella frameworks have a similar structure to standard frameworks. One significant difference
is the addition of a Frameworks directory to contain the subframeworks that make up the umbrella framework.

Listing 4 (page 17) shows a partial listing of the Core Services framework. (The contents of the subframeworks
are not included since they are not referenced anyway.) As with standard frameworks, the top-level items
are symbolic links to items deeper within the framework directory structure. In this case, the linked libraries
and directories are located in folder A of the framework.

Listing 4 Structure of the Core Services umbrella framework

CoreServices.framework/

CoreServices -> Versions/Current/CoreServices
CoreServices_debug -> Versions/Current/CoreServices_debug
CoreServices_profile -> Versions/Current/CoreServices_profile
Frameworks -> Versions/Current/Frameworks
Headers -> Versions/Current/Headers
Resources -> Versions/Current/Resources
Versions/

A/

CoreServices
CoreServices_debug
CoreServices_profile
Frameworks/
CarbonCore.framework
CFNetwork.framework
0SServices.framework
SearchKit.framework
WebServicesCore.framework
Headers/
Components.k.h
CoreServices-gcc3.p
CoreServices-gcc3.pp
CoreServices.h

Umbrella Framework Bundle Structure 17
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of Framework Bundles

CoreServices.p
CoreServices.pp
CoreServices.r
Resources/
Info-macos.plist
version.plist
Current -> A

Unlike standard frameworks, the Headers directory of an umbrella framework contains a more limited set
of header files. It does not contain a collection of the headers in its subframeworks. Instead, it contains only
the master header file for the framework. When referring to an umbrella framework in your source files, you
should include only the master header file. See “Including Frameworks” (page 53) for more information.

18 Umbrella Framework Bundle Structure
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Framework Versions

You can create different versions of a framework based on the type of changes made to its dynamic shared
library. There are two types of versions: major (or incompatible) and minor (or compatible) versions. Both
have an impact on the programs linked to the framework, albeit in different ways.

Major Versions

A major version of a framework is also known as an incompatible version because it breaks compatibility
with programs linked to a previous version of the framework’s dynamic shared library. Any such program
running under the newer version of the framework is likely to experience runtime errors because of the
changes made to the framework.

The following sections describe how you designate major version information in your framework and how
the system uses that information to ensure applications can run.

Major Version Numbering Scheme

Because all major versions of a framework are kept within the framework bundle, a program that is
incompatible with the current version can still run against an older version if needed. The path of each major
version encodes the version (see “Framework Bundle Structure” (page 13)). For example, the letter “A” in
the path below indicates the major version of a hypothetical framework:

/System/Library/Frameworks/Boffo.framework/Versions/A/Boffo

When a program is built, the linker records this path in the program executable file. The dynamic link editor
uses the path at runtime to find the compatible version of the framework’s library. Thus the major versioning
scheme enables backward compatibility of a framework by including all major versions and recording the
major version for each executable to run against.

When to Use Major Versions

You should make a new major version of a framework or dynamic shared library whenever you make changes
that might break programs linked to it. The following changes might cause programs to break:

= Removing public interfaces, such as a class, function, method, or structure
= Renaming any public interfaces

= Changing the data layout of a structure

= Adding, changing, or reordering the instance variables of a class

m Adding virtual methods to a C++ class

Major Versions 19
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

20

Framework Versions

= Reordering the virtual methods of a C++ class
m Changing C++ compilers or compiler versions

= Changing the signature of a public function or method

Changes to the signature of a function include changing the order, type, or number of parameters. The
signature can also change by the addition or removal of const labels from the function or its parameters.

When you change the major version of a framework, you typically make the new version the “current” version.
Xcode automatically generates a network of symbolic links to point to the current major version of a framework.
See “Framework Bundle Structure” (page 13) for details.

Avoiding Major Version Changes

Creating a major version of a framework is something that you should avoid whenever possible. Each new
major version of a framework requires more storage space than a comparable minor version change. Adding
new major versions is unnecessary in many cases.

Before you find yourself needing to create a new major version of your framework, consider the implementation
of your framework carefully. The following list shows ways to incorporate features without requiring a new
major version:

m Pad classes and structures with reserved fields. Whenever you add an instance variable to a public class,
you must change the major version number because subclasses depend on the size of the superclass.
However, you can pad a class and a structure by defining unused (“reserved”) instance variables and
fields. Then, if you need to add instance variables to the class, you can instead define a whole new class
containing the storage you need and have your reserved instance variable point to it.

Keep in mind that padding the instance variables of frequently instantiated classes or the fields of
frequently allocated structures has a cost in memory.

= Don't publish class, function, or method names unless you want your clients to use them. You can freely
change private interfaces because you can be sure no programs are using them. Declare any interfaces
that may change in a private header.

= Don't delete interfaces. If a method or function no longer has any useful work to perform, leave it in for
compatibility purposes. Make sure it returns some reasonable value. Even if you add additional arguments
to a method or function, leave the old form around if at all possible.

m Remember that if you add interfaces rather than change or delete them, you don't have to change the
major version number because the old interfaces still exist. The exception to this rule is instance variables.

While many of the preceding changes do not require the creation of a major version of your framework, most
require changing the minor version information. See “Versioning Guidelines” (page 23) for more information.

Creating a Major Version of a Framework

When you create a major version of a framework, Xcode takes care of most of the implementation details
for you. All you need to do is specify the major-version designator. A popular convention for this designator
is the letters of the alphabet, with each new version designator “incremented” from the previous one. However,
you can use whatever convention is suitable for your needs, for example “2.0” or “Two”.

Major Versions
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Framework Versions

To set the major version information for a framework in Xcode, do the following:

1. Open your project in Xcode 2.4.

2. In the Groups & Files pane, select the target for your framework and open an inspector window.
3. Select the Build tab of the inspector window.

4. Inthe Packaging settings, set the value of the “Framework Version” setting to the designator for the new
major version of your framework, for example, B..

You can also make major versions of standalone dynamic shared libraries (that is, libraries not contained
within a framework bundle). The major version for a standalone library is encoded in the filename itself, as
shown in the following example:

1ibMyLib.B.dylib

To make it easier to change the major version, you can create a symbolic link with the name 1ibMyLib.dy11ib
to point to the new major version of your library. Programs that use the library can refer to the symbolic link.
When you need to change the major version, you can then update the link to point to a new library.

Minor Versions

Within a major version of a framework, you can also designate the current minor version. Minor versions are
also referred to as “compatible versions” because they retain compatibility with the applications linked to
the framework. Minor versions don’t change the existing public interfaces of the framework. Instead, they
add new interfaces or modify the implementation of the framework in ways that provide new behavior
without changing the old behavior.

Within any major version of the framework, only one minor version at a time exists. Subsequent minor versions
simply overwrite the previous one. This differs from the major version scheme, in which multiple major
versions coexist in the framework bundle.

The following sections describe how you designate minor version information in your framework and how
the system uses that information to ensure applications can run.

Minor Version Numbering Scheme

Frameworks employ two separate numbers to track minor version information. The current version number
tracks individual builds of your framework and is mostly for internal use by your team. You can use this
number to track a group of changes to your framework and you can increment it as often as seems appropriate.
A typical example would be to increment this number each time you build and distribute your framework
to your internal development and testing teams.

The compatibility version number of your framework is more important because it marks changes to your
framework’s public interfaces. When you make certain kinds of changes to public interfaces, you should set
the compatibility version to match the current version of your framework. Thus, the compatibility version
typically lags behind the current version. Only when your framework’s public interfaces change do the two
numbers match up.

Minor Versions 21
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

22

Framework Versions

Remember that not all changes to your framework’s public interfaces can be matched by incrementing the
compatibility version. Some changes may require that you release a new major version of your framework.
See “Versioning Guidelines” (page 23) for a summary of the changes you can make for each version.

When to Use Minor Versions

You should update the version information of your framework when you make any of the following changes:

m Addaclass

= Add methods to an Objective-C class

= Add non-virtual methods to a C++ class

= Add public structures

= Add public functions

= Fix bugs that do not change your public interfaces

= Make enhancements that do not change your public interfaces

Any time you change the public interfaces of your framework, you must update its compatibility version
number. If your changes are restricted to bug fixes or enhancements that do not affect the framework’s
public interfaces, you do not need to update the compatibility version number.

Compatibility Version Numbers at Runtime

When a program is linked with a framework during development, the linker records the compatibility version
of the development framework in the program’s executable file. At runtime, the dynamic link editor compares
that version against the compatibility version of the framework installed on the user’s system. If the value
recorded in the program file is greater than the value in the user’s framework, the user’s framework is too
old and cannot be used.

Cases where a framework is too old are uncommon, but not impossible. For example, it can happen when
the user is running a version of Mac OS X older than the version required by the software. When such an
incompatibility occurs, the dynamic link editor stops launching the application and reports an error to the
console.

To run an application on earlier versions of a framework, you must link the application against the earliest
version of the framework it supports. Xcode provides support for linking against earlier versions of the Mac
OS X frameworks. This feature lets you link against specific versions of Mac OS X version 10.1 and later. For
more information, see Cross-Development Programming Guide.

Creating a Minor Version of a Framework

If you are developing a framework, you need to increment your current version and compatibility version
numbers at appropriate times. You set both of these numbers from within Xcode. The linking options for
Xcode framework projects include options to specify the current and compatibility version of your framework.
To set these numbers for a specific target, do the following:

1. Open your project in Xcode 2.4.

Minor Versions
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Framework Versions

2. Inthe Groups & Files pane, select the target for your framework and open an inspector window.

3. Select the Build tab of the inspector window.

4. |In the Linking settings, set the value of the “Current Library Version” setting to the current version of

your framework.

5. Update the “Compatibility version” option as needed to reflect significant changes to your framework.
(See “Compatibility Version Numbers at Runtime” (page 22) for more information.)

Note: In Xcode, the current and compatibility version numbers should generally be associated with the
target, not the project.

Versioning Guidelines

Whenever you change the code in your framework, you should also modify the configuration information
in your framework project to reflect the changes. For simple changes, such as bug fixes and most new
interfaces, you may need to increment only the minor version numbers associated with your framework. For
more extensive changes, you must create a new major version of your framework.

Table 1 lists the types of changes you can make to your framework code and the corresponding configuration
changes you must make to your project file. Most changes that require a major or minor version update
occur because the changes affect public interfaces.

Table 1

Making changes to a framework

Version type

Changes Allowed

What to do

Major version

Remove interfaces (classes, functions, methods,
and so on). Rename interfaces. Change the
layout of a class or structure. Add, change, or
reorder instance variables of a class. Add or
reorder virtual methods in a C++ class. Change
the signature of a function or method. Changing
C++ compilers or compiler versions.

You must change the major version
designator for your project. Build
your framework and incorporate the
new version into your existing
framework directory structure.

Minor version
(public interface
changes)

Add a C++ or Objective-C class. Add methods
to an Objective-C class. Add non-virtual methods
to a C++ class. Add structures. Add functions.

Increment your current version
number and set your compatibility
version number to match. Build your
framework.

Minor version (no
public interface
changes)

Fix bugs that do not affect programmatic
interfaces. Make enhancements that do not
affect your programmatic interfaces. Change
interfaces used only internally to the framework.

Increment your current version
number. Do not change the
compatibility version number.

If you don't change the framework’s major version number when you need to, programs linked to it may fail
in unpredictable ways. Conversely, if you change the major version number when you didn’'t need to, you
clutter up the system with unnecessary framework versions.

Versioning Guidelines
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

23

Framework Versions

Because major versions can be very disruptive to development, it is best to avoid them if possible. “Avoiding
Major Version Changes” (page 20) describes techniques you can use to make major changes without releasing
a new major version of your framework.

24 Versioning Guidelines
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Binding

Dynamic binding of Mach-O libraries brings a considerable power and flexibility to Mac OS X. Through
dynamic binding, frameworks can be updated transparently without requiring applications to relink to them.
At runtime, a single copy of the library’s code is shared among all the processes using it, thus reducing
memory usage and improving system performance.

Note: For a more detailed explanation of binding and dynamic linking, see Mac OS X ABI Mach-O File Format
Reference.

Dynamic Shared Libraries

The executable code in a framework bundle is a dynamically linked, shared library—or, simply, a dynamic
shared library. This is a library whose code can be shared by multiple concurrently running programs.

Dynamic shared libraries bring several benefits. One benefit is that they enable memory to be used more
efficiently. Instead of programs retaining a copy of the code in memory, all programs share the same copy.
Dynamic shared libraries also make it easier for developers to fix bugs in library code. Because the library is
linked dynamically, the new library can be installed without rebuilding programs that rely on it.

Symbol Binding

Dynamic shared libraries have characteristics that set them apart from static linked shared libraries. For static
linked shared libraries, the symbols in the library are checked at link time to make sure they exist. If they
don't exist, link errors occur. With dynamic shared libraries, the binding of undefined symbols is delayed until
the execution of the program. More importantly the dynamic link editor resolves each undefined symbol
only when the symbol is referenced by the program. If a symbol is not referenced, it is not bound to the
program.

The ability to bind symbols at runtime is made possible by the internal structure of Mach-O dynamic shared
libraries. The object-code modules that make up the library are built to retain their individual boundaries;
that is, the code from the source modules is not merged into a single module. At runtime, the dynamic link
editor automatically loads and links modules only as they are needed. In other words, a module is linked
only when a program references a symbol in that module. If the symbols in a particular module are not
referenced, the module is not linked.

Figure 1 (page 26) illustrates this “lazy linking” behavior. In this example, module a . o is linked in the program’s
main routine when library function a is called. Module b . o is linked when library function b in program
function doThat is called. Module c . o is never linked because its function is never called.

Dynamic Shared Libraries 25
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

26

Frameworks and Binding

Figure 1 Lazy linking of dynamic shared library modules
MyApp.app Boffo.framework
main.c
#include <Boffo/Boffo.h>; ao .4 o I

#finclude "main.h"; #include "a.h";

#include "doThat.h"; _— void a() |
int main() { |inksg |

aO) i S| e

doThat(1l);
return 0;
b.o V4
} f#Hinclude "b.h";
void b() {
doThat.c ...
}
#include <Boffo/Boffo.h>; e
#include "doThat.h";
void doThat (int n) f links -0 T #include "c.h"
b();l

if (In); void c() {
c(); -

}

Organizing Your Framework Code

As a framework developer, you should design your dynamic shared library with this as-needed linking of
separate modules in mind. Because the dynamic link editor always attempts to bind unresolved symbols
within the same module before going on to other modules and other libraries, you should ensure that
interdependent code is put in its own module. For example, custom allocation and deallocation routines
should go in the same module. This technique prevents the wrong symbol definitions from being used. This
problem can occur when definitions of a symbol exist in more than one dynamic shared library and those
other symbol definitions override the correct one.

When you create a framework, you must ensure that each symbol is defined only once in a library. In addition,
“common” symbols are not allowed in the library; you must use a single true definition and precede all other
definitions with the extern keyword in C code.

When you build a program, linking it against a dynamic shared library, the installation path of the library is
recorded in the program. For the system frameworks supplied by Apple, the path is absolute. For third-party
frameworks, the path is relative to the application package that contains the framework. This capture of the
library path improves launching performance for the program. Instead of having to search the file system,
the dynamic link editor goes directly to the dynamic shared library and links it into the program. This means,
obviously, that for a program to run, any required library must be installed where the recorded path indicates
it can be found, or it must be installed in one of the standard fallback locations for frameworks and libraries.
See “Installing Your Framework” (page 51) for more information.

Dynamic Shared Libraries
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Binding

Library Dependencies

Clients of dynamic shared libraries do not need to be aware of any dependencies required by the library.
When a dynamic shared library is built, the static linker stores information about any dependent libraries
inside the dynamic shared library executable. At runtime, the dynamic link editor reads this information and
uses it to load the dependent libraries as needed.

Another important piece of information stored for each dependent library is the required version. Frameworks
and dynamic shared libraries have version information associated with them. At runtime, the stored version
information is compared against the actual version of the available library. If the available library is too old,
the dynamic link editor may terminate the program to prevent undesirable behavior. For more information
on library versioning, see “Framework Versions” (page 19).

Standalone Dynamic Shared Libraries

In addition to creating frameworks, you can create standalone dynamic shared libraries. By convention,
stand-alone dynamic shared libraries havea .dy1ib extension and are typically installed in /usr/11ib. The
library file contains all the code and resources needed by the library.

Creating standalone dynamic shared libraries is an uncommon approach for most developers. In most cases,
frameworks are a preferred approach. The bundle structure of frameworks makes it possible to include
complex resource types such as nib files, images, and localized strings.

Frameworks and Prebinding

Prior to Mac OS X v10.3.4, Mac OS X used a feature called prebinding to eliminate the load-time delays
incurred by executables linked to dynamic libraries. Prebinding involved the precalculation of symbol addresses
in each framework and library on the system. The goal of this precalculation was to avoid address-space
conflicts among the libraries and frameworks. Such conflicts incurred tremendous performance penalties at
load-time and would noticeably slow down the launch time of an application.

Improvements to the dynamic loader in Mac OS X v10.3.4 made prebinding largely unnecessary. The dynamic
loader itself was modified to handle load-time conflicts much more efficiently. Using the new dynamic loader,
an application that is not prebound now usually launches at least as fast (and sometimes faster) than it did
on earlier versions of the system when it was prebound.

In Mac OS X v10.4, another change was introduced to the prebinding behavior to reduce the amount of time
spent "optimizing" the system after installing new software. Instead of prebinding all frameworks and libraries,
now only select system frameworks are prebound. By selectively choosing which frameworks are prebound,
the prebinding tools are able to tightly pack the system's most frequently-used frameworks into a smaller
memory space than before. This step reduces the amount of space reserved for Apple frameworks and gives
it back to third-party applications and frameworks.

If you are developing frameworks to run on versions of Mac OS X prior to 10.4, you should still enable
prebinding and specify a preferred address. If you are developing frameworks for Mac OS X v10.4 or later,
prebinding is not required. Prebinding your framework on later versions of the system does not decrease
performance, but does require some additional configuration steps, which are described in the sections that
follow.

Frameworks and Prebinding 27
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

28

Frameworks and Binding

Note: Prebinding is supported only for Mach-O executables in versions of Mac OS X.

Prebinding Your Framework

If you are developing a framework that runs on Mac OS X 10.4 or earlier, you should specify your framework's
preferred binding address in your Xcode project.

The following steps show you how to configure prebinding for an Xcode framework project:
1. Open your project in Xcode.
2. In the Groups & Files pane, select your target, open its Info window, and click Build.

3. Make sure the Prebinding build setting is turned on (you can enter prebinding in the search field to
locate it).

4. To the Other Linker Flags build setting, add the -segladdr flag along with the preferred address for
your framework. For example, to set the preferred address of your framework to 0xb0000000, you would
enter:

-segladdr 0xb0000000

5. Build and link your framework as usual.

When prebinding frameworks, it is especially important to specify a preferred address using the -segladdr
option. If you enable prebinding but do not specify a preferred address, Xcode uses the default address
0x00000000. This is a problem because that address is also the preferred address for all applications. Instead,
you should set the initial address to a region of memory reserved for use by your application code and
frameworks. For a list of valid address ranges, see “Prebinding Your Application” in Launch Time Performance
Guidelines.

You can confirm the preferred address of your framework by examining the binary using the otoo1 command.
See “Finding the Preferred Address of a Framework” (page 29) for more information.

Caveats for Prebinding

If you are prebinding your framework so that it can run on versions of Mac OS X prior to 104, you should be
aware of the following caveats:

= The address range occupied by your framework should not overlap the address ranges of any other
libraries or frameworks you are developing. If your frameworks may have to coexist with other third-party
libraries or frameworks, you can use otoo1 to find the preferred addresses of those third-party products.

= Your framework must not contain references to any undefined symbols.

= Your framework must not override symbols defined in flat namespace libraries. For example, you cannot
define your own ma11oc routine and then prebind using flat namespace libraries.

= Two frameworks (or libraries) cannot have circular dependencies.

= Your frameworks should always use two-level namespaces to avoid name collisions with symbols in
other frameworks and libraries.

Frameworks and Prebinding
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Binding

= Keep in mind that for an application to be prebound, all of its dependent frameworks must also be built
prebound.

Choosing a unique preferred address for your framework can be tricky, especially if it must coexist with a
number of third-party frameworks. Apple provides a set of valid ranges for your frameworks and applications
to use. (See “Prebinding Your Application” in Launch Time Performance Guidelines.) However, you may still
run into areas of overlap with frameworks developed by other groups, either inside or outside your company.

Even if an overlap does occur among frameworks, your prebinding efforts are not in vain. The dynamic linker
corrects overlaps immediately at runtime, moving frameworks around as needed. In versions of Mac OS X
prior to 104, a daemon also runs in the background to recalculate prebinding information for applications
where that information is out-of-date.

Finding the Preferred Address of a Framework

To find the preferred address of a framework, use the otoo1 command with the -1 option to display the
load commands for the framework’s binary file. The load commands include the virtual memory address at
which to load each segment of the binary. Because most segments reside at an offset from the beginning
of the library, you need to look at the initial LC_SEGMENT command to find the library’s preferred base
address.

For example, suppose you create a library and assign it the preferred address 0xb0000000 in your Xcode
project. Running otool -1 on your library from a Terminal window would display an initial load command
similar to the following:

Load command 0
cmd LC_SEGMENT
cmdsize 328
segname __ TEXT
vmaddr 0xb0000000
vmsize 0x00002000
fileoff 0
filesize 8192
maxprot 0x00000007
initprot 0x00000005
nsects 4
flags 0x0

Notice the value of the vmaddr field. This field indicates that the preferred address of the binary matches
the address you specified in your Xcode project.

Apple Frameworks and Prebinding

In versions of Mac OS X prior to 10.4, Apple-provided frameworks are shipped prebound and are assigned
to reserved regions of memory. In Mac OS X v10.4 and later, Apple system frameworks are prebound
dynamically when you install the operating system. In both cases, the memory ranges reserved by Apple are
listed in “Prebinding Your Application” in Launch Time Performance Guidelines.

Frameworks and Prebinding 29
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Binding

30 Frameworks and Prebinding
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Weak Linking

One challenge faced by developers is that of taking advantage of new features introduced in new versions
of Mac OS X while still supporting older versions of the system. Normally, if an application uses a new feature
in a framework, it is unable to run on earlier versions of the framework that do not support that feature. Such
applications would either fail to launch or crash when an attempt to use the feature was made. Apple has
solved this problem by adding support for weakly-linked symbols.

When a symbol in a framework is defined as weakly linked, the symbol does not have to be present at runtime
for a process to continue running. The static linker identifies a weakly linked symbol as such in any code
module that references the symbol. The dynamic linker uses this same information at runtime to determine
whether a process can continue running. If a weakly linked symbol is not present in the framework, the code
module can continue to run as long as it does not reference the symbol. However, if the symbol is present,
the code can use it normally.

If you are updating your own frameworks, you should consider making new symbols weakly linked. Doing
so can make it easier for clients of your framework to support it. You should also make sure that your own
code checks for the existence of weakly-linked symbols before using them.

Note: Although the Code Fragment Manager supports its own form of weak linking, the information that
follows pertains solely to Mach-O executables.

For more information regarding weak linking, including additional examples, see Cross-Development
Programming Guide.

Weak Linking and Apple Frameworks

Apple frameworks use the availability macros to determine whether a symbol is weakly linked or strongly
linked. Apple wraps new interfaces in its frameworks with availability macros to indicate which version of
the operating system a feature first appeared. Macros are also used to indicate deprecated features and
interfaces.

The availability macros defined in /usr/include/AvailabilityMacros.h add weak linking information
to system interfaces based on the versions of Mac OS X your project supports. When you create a new project,
you tell the compiler which versions of Mac OS X your project supports by setting the deployment target
and target SDK in Xcode. The compiler uses these settings to assign appropriate values to the
MAC_OS_X_VERSTON_MIN_REQUIRED and MAC_0S_X_VERSTON_MAX_ALLOWED macros, respectively. For
information on how to modify these settings in Xcode, see “Setting Up Cross-Development in Xcode” in
Cross-Development Programming Guide or the Xcode help.

Weak Linking and Apple Frameworks 31
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Weak Linking

For example, suppose in Xcode you set the deployment target (minimum required version) to Mac OS X 10.2
and the target SDK (maximum allowed version) to Mac OS X 10.3. During compilation, the compiler would
weakly link any interfaces that were introduced in Mac OS X version 10.3 while strongly linking earlier
interfaces. This would allow your application to continue running on Mac OS X version 10.2 but still take
advantage of newer features when they are available.

Important: The deployment target setting in Xcode must be set to Mac OS X version 10.2 or later to take
advantage of weak linking. If you do not set this value (or set it to an earlier version of Mac OS X), you cannot
use weak linking in your project.

Before using any symbols that are introduced in a version of Mac OS X that is later than your minimum
required version, make sure you check to see that the symbol exists first. See “Using Weakly Linked
Symbols” (page 32) for more information.

Marking Symbols for Weak Linking

If you define your own frameworks, you can mark symbols as weakly linked using the weak_import attribute.
Weak linking is especially appropriate if you introduce new features to an existing framework. To mark
symbols as weakly linked, you must make sure your environment is configured to support weak linking:

= You must be using GCC version 3.1 or later. Weak linking is not supported in GCC version 2.95

= You must set the Mac OS X Deployment Target build option of your Xcode project to Mac OS X 10.2 or
later.

The linker marks symbols as strongly linked unless you explicitly tell it otherwise. To mark a function or
variable as weakly linked, add the weak_import attribute to the function prototype or variable declaration,
as shown in the following example:

extern int MyFunction() __attribute__((weak_import));
extern int MyVariable __attribute__((weak_import));

Using Weakly Linked Symbols

32

If your framework relies on weakly linked symbols in any Apple or third-party frameworks, you must check
for the existence of those symbols before using them. If you attempt to use a non-existent symbol without
first checking, the dynamic linker may generate a runtime binding error and terminate the corresponding
process.

If a weakly linked symbol is not available in a framework, the linker sets the address of the symbol to NULL.
You can check this address in your code using code similar to the following:

extern int MyWeakLinkedFunction() __attribute__((weak_import));
int main()

{
int result = 0;

Marking Symbols for Weak Linking
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Weak Linking

if (MyWeakLinkedFunction != NULL)
{

result = MyWeakLinkedFunction();
}

return result;

Note: When checking for the existence of a symbol, you must explicitly compare it to NULL or ni1 in your
code. You cannot use the negation operator (!) to negate the address of the symbol.

Weak Linking to Entire Frameworks

When you reference symbols in another framework, most of those symbols are linked strongly to your code.
In order to create a weak link to a symbol, the framework containing the symbol must explicitly add the
weak_import attribute to it (see “Marking Symbols for Weak Linking” (page 32)). However, if you do not
maintain a framework and need to link its symbols weakly, you can explicitly tell the compiler to mark all
symbols as weakly linked. To do this, you must open your project in Xcode and modify the way your targets
link to the framework as follows:

1. Select the target you want to modify and reveal its build phases.
2. Expand the Link Binary With Libraries build phase to view the frameworks currently linked by the target.

3. If the framework you want to weakly link to is listed in the Link Binary With Libraries build phase, select
it, and choose Edit > Delete to remove it.

Now you can tell the linker to use weak linking for that framework.
4. Select the target, open its Info window, and click Build.

5. To the Other Linker Flags build setting, add the following command-line option specification, where
<{framework_name> is the name of the framework you want to weakly link to:

-weak_framework <framework_name>
6. Build your product.
The -weak_framework option tells the linker to weakly link all symbols in the named framework. If you

need to link to a library instead of a framework, you can use the -weak_1ibrary linker command instead
of -weak_framework.

Weak Linking to Entire Frameworks 33
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Frameworks and Weak Linking

34 Weak Linking to Entire Frameworks
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Guidelines for Creating Frameworks

The following sections provide guidance on how best to implement custom frameworks.

API Naming Guidelines

Elements in the global namespace, such as classes, functions, and global variables should all have unique
names. While two-level namespaces help the dynamic-link editor find the correct symbols at runtime, the
feature does not prevent static link errors from occurring because of multiply-defined symbols. For example,
suppose two different frameworks define a symbol with the same name. If you were to create a project that
included both frameworks, you would encounter static linking errors if you referenced the symbol in question.
The static linker is responsible for selecting which framework to use and to then generate the two-level
namespace hint needed by the dynamic link editor. Because both frameworks define the symbol, the static
linker cannot choose and generates an error.

You should try to choose names that clearly associate each symbol with your framework. For example,
consider adding a short prefix to all external symbol names. Prefixes help differentiate the symbols in your
framework from those in other frameworks and libraries. They also make it clear to other developers which
framework is being used. Typical prefixes include the first couple of letters or an acronym of your framework
name. For example, functions in the Core Graphics framework use the prefix “CG"

If you are writing a category for an Objective-C class, you should also use some sort of unique prefix in your
method names. Because categories can be loaded dynamically from multiple sources, a unique prefix helps
ensure that the methods in your category don't conflict with those in other categories.

For detailed guidelines on Cocoa naming conventions, see Coding Guidelines for Cocoa.

Performance Impacts of Frameworks

Before you actually create a custom framework, you should carefully consider its intended use. There is a
certain amount of overhead associated with loading and using frameworks at runtime. While this overhead
is not high—especially if your framework and application are prebound—it may be unnecessary in some
situations.

Frameworks are most effective when their code is shared by multiple applications. If you are designing a
suite of applications, you may create a custom framework to store common code accessed by all applications
in the suite. Similarly, you may want to create a private framework internally to separate out generic, reusable
code from your application-specific code. Although you may embed this framework in each application you
create, you simplify your maintenance of the reusable code.

APl Naming Guidelines 35
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Guidelines for Creating Frameworks

What to Include in Your Framework

Frameworks provide shared resources for multiple applications. If you are defining a custom framework, you
should keep that goal in mind. As much as possible, your framework should not contain code that is tied to
a particular application. Instead, it should contain code that is reusable or that is common to multiple
applications.

In addition to code, you can include other types of resources in your frameworks. In the Resources directory
of your framework, you can include nib files, images, sound files, localized text, and any other type of resource
that you might find in an application. At runtime, applications load your framework’s resources using the
same bundle mechanism they use for their application-specific resources.

Using C++ in Framework Code

There are problems inherent with exporting C++ class interfaces from dynamic shared libraries. These problems
are the result of a lack of standardized calling conventions for the extensions that differentiate the C++
language from C.

In order to eliminate linking problems between libraries built with different compilers, compiler vendors
agreed to support a set standardized calling conventions for the C language. These standards required the
vendors to generate C code in a consistent way that guaranteed the code from one library could call code
from another library. While such a standard has been proposed for the C++ language extensions, it has yet
to be finalized. As a result, there is no guarantee that calls between two different C++ libraries would work.

If you are intent on using C++ code in your frameworks, the best way to avoid incompatibility issues is to
wrap the interface for your C++ classes with ANSI C functions. By using C++ for your implementation and
ANSI C for your interface, you can continue to develop in your preferred language while providing a compatible
interface for clients to call.

If you need to export class interfaces from your framework, Apple recommends you use Objective-C instead
of C++ to define your classes. The Objective-C language does have a standardized set of calling conventions
that enable you to expose class interfaces from your frameworks.

For additional information and guidance about using C++ in shared libraries, see C++ Runtime Environment
Programming Guide.

Don’t Create Umbrella Frameworks

36

While it is possible to create umbrella frameworks using Xcode, doing so is unnecessary for most developers
and is not recommended. Apple uses umbrella frameworks to mask some of the interdependencies between
libraries in the operating system. In nearly all cases, you should be able to include your code in a single,
standard framework bundle. Alternatively, if your code was sufficiently modular, you could create multiple
frameworks, but in that case, the dependencies between modules would be minimal or nonexistent and
should not warrant the creation of an umbrella for them.

What to Include in Your Framework
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Guidelines for Creating Frameworks

Where to Install Your Framework

Mac OS X looks for public frameworks in several fixed locations on the system. If you are creating a framework
for other developers to use, you should put it in one of these locations. If you are creating a private framework,
you can either embed it inside an application or put it in a custom location. In either case, you must do some
extra work to load your framework code and resources.

For details on where to install frameworks, see “Installing Your Framework” (page 51).

Where to Install Your Framework 37
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Guidelines for Creating Frameworks

38 Where to Install Your Framework
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Framework

Once you decide that you need to create a framework for your code, you can do so easily with Xcode. As you
add major versions to the framework, you also need to be able to maintain your projects. The following
sections show you how perform both of these tasks.

Creating Your Framework

From Xcode, choose File > New Project to create your project. Follow the prompts to select the type of
framework you want and where you want to put your project directory.

The default templates that come with Xcode let you specify whether you want to create a Carbon or Cocoa
framework. The type of framework you choose determines which default files are generated for you. If you

do not want to include Carbon or Cocoa headers in your framework, you can remove any references to them
after you create your project.

Configuring Your Framework Project

When you create a new framework, there are several configuration options you may want to modify. These
options make it easier to distribute your framework to customers and guarantee its compatibility after future
development cycles. Table 1 lists some of the options you should set for your framework.

Table 1 Framework configuration options

Option Description

Framework identifier | A Java-style package identifier that uniquely identifies the framework to the system.
You should always set this option. To set this option in Xcode 2.4, open an inspector
window for your framework target, select the Properties tab, and modify the Identifier
field.

Framework version | The current major revision of the framework. See “Major Versions” (page 19) for
more information. In Xcode 2.4, set this value for your framework target using the
Framework Version build setting.

Current version The current revision of the framework. In Xcode 2.4, set this value for your framework
target using the Current Library Version build setting. See “Minor Versions” (page
21) for more information.

Compatibility version | The most recent revision of the framework that includes changes to the public
interfaces. In Xcode 2.4, set this value for your framework target using the
Compeatibility Version build setting. See “Minor Versions” (page 21) for more
information.

Creating Your Framework 39
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

40

Creating a Framework

Option Description

Exported symbols The list of framework symbols you want to export to other programs. In Xcode 2.4,
specify a file containing your exported symbols for your framework target using the
Exported Symbols File build settings. To specify a file containing the symbols to
hide, use the Unexported Symbols File build setting instead. See “Exporting Your
Framework Interface” (page 49) for more information.

Installation path The directory name in which your framework should ultimately be installed. In Xcode
2.4, set this value for your framework target using the Installation Directory build
setting. See “Installing Your Framework” (page 51) for a list of standard locations.

Preferred address For frameworks being deployed in Mac OS X 10.3.9 and earlier, specify the preferred
memory address to use for prebinding operations. This value is not needed when
deploying a framework in 10.4 and later. See “Frameworks and Prebinding” (page
27) for information on how to set the preferred address of a framework.

Testing Your Framework in Place

When you build a framework, Xcode places it in the bui1d subdirectory of your project directory by default.
Although you can tell Xcode to install your framework in its final deployment location, during development
you may want to leave it where it is. If you do, you may need to tell test applications where to find your
framework.

If your framework project contains additional targets for test applications, then Xcode builds those applications
in the same folder as your framework. Test applications built alongside your framework find that framework
automatically because of their proximity to it. However, if you build your test applications into a different
build directory, those applications may be unable to find your framework unless you tell them where to find
it.

The usual way for an application to find a framework is to look in the standard locations (see “Installing Your
Framework” (page 51)). However, you may not want to reinstall your framework every time you make changes
to it. In that case, you can tell your test applications exactly where to find the framework using the
DYLD_FRAMEWORK_PATH environment variable. Adding this variable to your executable tells dy 1d where to
look for additional frameworks if it doesn't find what it needs in the standard locations. The following steps
show you how to set this variable in Xcode.

1. Open your application project in Xcode.

2. Inthe Groups & Files pane, open the Executables group, select the executable to configure, open its Info
window, and click Arguments.

3. Add an entry to the environment variables list.
4. Setthe name of the environment variable to DYLD_FRAMEWORK_PATH.
5. Set the value of the variable to the full pathname of the directory containing your framework.

To specify multiple framework directories, separate the pathnames with a colon. For example, you could
have a value such as the following value on this line:
/Users/lynn/MyFrameworks:/Volumes/Keylime/MyOtherFrameworks.

Creating Your Framework
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Framework

Embedding a Private Framework in Your Application Bundle

If you need to distribute a private framework with an application, the preferred solution is to embed the
framework in your application bundle. Embedding a framework inextricably links the framework to the
application and ensures that the application always has the correct version of the framework needed to
operate. Embedding the framework also makes it clear to other developers that they should not ever link to
that framework.

Note: If multiple applications must share a private framework, you should install the framework in one of
the available PrivateFrameworks directories on the system rather than embed it in one (or all) of the
applications. Sharing one framework allows for more efficient reuse of the framework’s dynamic library. For
information about where to put shared private frameworks, see “Locations for Private Frameworks” (page
52).

To embed a framework in an application, there are several steps you must take:

= You must configure the build phases of your application target to put the framework in the correct
location.

= You must configure the framework target’s installation directory, which tells the framework where it will
live.

= You must configure the application target so that it references the framework in its installation directory.

It is possible to build and embed a framework in an application using a single Xcode project or multiple
projects. Using a single Xcode project is somewhat easier because it requires less configuration to get both
the framework and application to build. For multi-project setups, however, once the two projects are configured
to build properly, the configuration steps for embedding the framework are essentially the same as those
for a single Xcode project.

Using a Single Xcode Project For Both Targets

Using a single Xcode project for both your application and framework target simplifies the required setup.
Once you create your project, you simply add two targets to it: one for your application and one for your
framework. (Because both targets reside in the same project, there are no problems finding source files from
either target at build time.) After that, you simply configure your framework and application targets with the
proper runtime information for embedding.

The configuration for your framework target involves telling it where it will be installed. The framework needs
this information so that it can find the resources it needs. Because frameworks are typically installed in fixed
locations, you normally specify the full path to the appropriate frameworks directory. When you embed a
framework inside a bundle, however, the location of the framework is not fixed, so you have to use the
@executable_path placeholder to let the framework know its location is relative to the current executable.

1. Open an inspector for your framework target and select the Build tab.
2. Set the value of the Installation Directory build setting to @executable_path/../Frameworks.

At build time, Xcode builds your framework and puts the results in the build directory. Before the application
can use the framework, however, you must configure the application target as follows:

Embedding a Private Framework in Your Application Bundle 1
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

42

Creating a Framework

= You need to copy the framework into the application’s bundle.
= You need to link the application against the framework.

= You need to create a build dependency between the framework and application.

The following steps show you how to configure your application target.
1. In the Group & Files pane, open your application target to view its current build phases.

2. Drag your framework product (located in the Products folder) to the existing Link Binary With Libraries
build phase of your application target. This causes the application to link against your framework.

3. Add a new Copy Files Build Phase to the application target. (This phase will be used to install the
framework in the application bundle.)

4, Select the new build phase and open an inspector window.

5. Inthe General tab of the inspector window, set the destination for the build phase to “Frameworks".
6. Drag your framework product to the new build phase.

7. Select the application target again and open the inspector window.

8. In the General tab of the inspector window, add your framework as a dependency for the application.
Adding this dependency causes Xcode to build the framework target before building the application
target.

The build dependency you establish in the application target causes the framework to be built before the
application. This is important because it guarantees that a built version of your framework will be available
to link against and to embed in the application. Because of this dependency, you can set the active target
of your Xcode project to your application and leave it there. Building the application now builds the framework
and copies it to the application bundle directory, creating the necessary linkage between the two.

Using Separate Xcode Projects For Each Target

If you already have separate Xcode projects for your framework and application, you can take advantage of
Xcode’s cross-project references to embed the framework in your application. Cross-project references are
a convenient way to create relationships between two separate Xcode projects. To set up a cross-project
reference between your application and framework, you would do the following:

1. In your application project, choose Project > Add to Project and select your framework’s . xcodeproj
file. Xcode adds the framework project and displays its products in the Groups & Files pane of your
application project.

2. Modify the Build Products Path setting for both the application and framework targets so that they use
the same build directory. You need to modify each target in their original Xcode project file.

3. Inyour application project, modify the Header Search Paths setting of the application target by adding
the directories containing any framework header files.

Embedding a Private Framework in Your Application Bundle
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Framework

Once you have configured your Xcode projects to build properly, you can proceed with the configuration
steps needed to embed the framework in your application. The remaining configuration steps for the
framework and application targets are identical to the ones described in “Using a Single Xcode Project For
Both Targets” (page 41). Your framework’s installation directory must be configured to be relative to the
executable path of the application. Similarly, the application target must copy the framework to its bundle
and set up the necessary linkage and dependencies. The only difference is that you must configure each
target in its own Xcode project.

Building Multiple Versions of a Framework

After the release of a framework, you should consider how to manage your Xcode project for future releases.
When you update an existing framework, the type of changes you make determines the best way to proceed
with your project files. For example, major changes may warrant the copying of your project files and the
maintenance of separate projects, one for each major version. On the other hand, minor changes can be
folded into your existing Xcode project.

Updating the Minor Version

If you are making minor changes to your framework, there is no need to create a new Xcode project for your
framework. However, you should always update the “current version” and “compatibility version” values
associated with your framework. These values make it possible for the dynamic linker to determine if linking
a program to your framework is possible.

For more information on how to update the minor version information of your framework and on the types
of changes that constitute a minor version update, see “Minor Versions” (page 21).

Updating the Major Version

The process for updating the major version of a framework is more difficult than the process for minor
versions. The recommended way to create a new major version is to make a duplicate version of your entire
Xcode project folder and continue developing from there. The old project files should be archived and used
to perform legacy builds. However, active development should continue with the new project.

Once you have a new project folder, you need to make several modifications to the Xcode project to identify
the project as a major version. Select your framework target and open the Inspector window. In the Build
pane, modify the following build options:

= Increment the value of the Framework Version build setting to the next sequential value.
= Increment the value of the Current Library Version build setting.
= Update the value of the Compatibility Version build setting to match the updated Current Library Version.

= Update any build settings whose path information includes the framework major version designator.
For example, if you have a Copy Files build phase based on the product directory, you may need to
update that path. Or make sure the paths are specified using the framework’s Current symbolic link.

= In the Properties pane of the framework target Info window, update the version number that gets stored
in your framework’s information property list.

Building Multiple Versions of a Framework 43
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

44

Creating a Framework

Once you make the changes to your code, you can build the framework target. What you get is a new
framework bundle containing only the new major version.

During installation, if a version of your framework does not already exist on the target system, have the
installer copy your framework bundle over as is. However, if an existing version of the framework is present,
have the installer copy the contents of your new framework directory to the old directory. Your installer script
must replace symbolic links in the old framework bundle with ones that point to the new version of the
framework. However, copying over the new major version should leave any old versions intact. This permits
existing applications to continue running while newer versions use the updated framework.

Warning: Do not attempt to build a new version of your framework over an existing framework bundle.
&2 Performing a clean build of your project deletes the entire contents of the bundle, including any legacy
versions. It is much safer to maintain separate projects and copy the files over during installation.

You may also want the installer to remove any header files or documentation for outdated versions of your
framework. This step is optional and is left to your discretion. However, it is recommended to prevent
developers from accidentally including an outdated set of header files, or viewing older documentation,
during development.

For more information on major versions of frameworks, see “Major Versions” (page 19).

Building Multiple Versions of a Framework
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Initializing a Framework at Runtime

When a framework is first loaded by a unique process, the system calls the framework’s initialization code.
Prior to Mac OS X v10.4, framework initialization typically consisted of a single routine that was called when
the framework was first loaded; however, in Mac OS X v10.4 and later, the use of module initializers and
finalizers became the preferred technique. The main advantage of module initializers is that they can be
called after the dynamic linker has a chance to load any other libraries on which the module initializer depends.
The same is not true of framework initialization routines, which are called immediately on load and may
occur before other important modules (like the C++ runtime) are loaded.

Initialization Routines and Performance

Because all types of initialization routines are called at framework load-time, they are often called while an
application is launching. Launch time is generally a bad time to perform large amounts of work because it
can make the corresponding application feel sluggish. When writing your initialization routines, try to do as
little work as possible to put your framework in a known state. For example, instead of allocating your
framework data structures immediately, consider lazily initializing your data structures as they are needed.
Also, avoid performing any operations that might cause a potential delay, such as accessing the network.

Remember that if your framework contains static data, that data must be initialized at load-time as well.
Minimizing the number of static variables your framework uses can also help reduce initialization performance.
For more information about improving the launch time of applications, see Launch Time Performance Guidelines.

Defining Module Initializers and Finalizers

Module initializers are the preferred way to initialize a framework. A module initializer is a static function that
takes no arguments and returns no value. It is declared using the constructor compiler attribute as shown
in Listing 1. As with any static initialization function, you should guard against the function being called twice
by placing a guard variable around your initialization code.

Listing 1 Module initializer for a framework

__attribute__((constructor))
static void MyModulelnitializer()
{
static initialized = 0;
if (linitialized)
{
// Initialization code.
initialized = 1;

Initialization Routines and Performance 45
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Initializing a Framework at Runtime

Frameworks can define multiple module initializer functions. The dynamic link editor calls any module
initializer functions after initializing any static variables but before calling any other functions or methods in
your framework. If the code in a module initializer function relies on other libraries, such as the C++ runtime,
the dynamic linker loads those libraries prior to calling the function. Each module initializer function is called
only once when the framework is loaded by a process. Module initializers are executed in the order they are
encountered by the compiler.

The symbols for any module initializer functions must not be exported by your framework. By default, Xcode
exports all symbols declared in your project’s header files. You can restrict the set of exported symbols by
explicitly exporting a list of symbols or by hiding specific symbols (and exporting everything else). For
information on how to configure your framework’s exports, see “Exporting Your Framework Interface” (page
49).

In Mac OS X v10.4 and later, module initializers can access the launch arguments for the current process, as
shown in Listing 2. A framework might use these arguments to get information about the launch configuration
of the application, such as any environment variables or flags passed in on the launch line.

Listing 2 Module initializer with launch arguments

__attribute__((constructor))
static void initializer(int argc, char** argv, char** envp)
{
// Initialization code.
}

In addition to module initializer functions, you can also define module finalizer functions, which implement
any clean up code for your framework. Module initializers are declared using the destructor compiler

attribute as shown in Listing 3. Like module initializers, the symbols for module finalizers must not be exported
by your framework. Module finalizers execute in the reverse order that they are encountered by the compiler.

Listing 3 Module finalizer function

__attribute__((destructor))
static void finalizer()
{
// Clean up code.
}

Using Initialization Routines

46

If your framework must run in versions of Mac OS X prior to 10.4, you can still use a framework initialization
function as needed to initialize your framework data structures. When implementing your initialization routine,
however, it is important to do as little work as possible. Because your initialization routine runs immediately
at load time, other code modules may not be loaded and available for use, so it is important that you do not
perform any complex initialization involving other libraries.

The signature of an initialization function is the same as that for a standard module initializer:
void MyFrameworkInit()

To load your routine, you must pass the name of your routine to the linker using the INIT_ROUTINE flag.
From the command line you set this flag using the -in1it option, followed by the name of your initialization
routine. In Xcode, you set this flag by doing the following:

Using Initialization Routines
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Initializing a Framework at Runtime

1. Select your framework target and open an inspector window.
2. In the Build pane, find the Initialization Routine build setting. It is with the Linking options.

3. Set the value of this setting to the symbol name of your initialization routine.

For ANSI C-based routines, the symbol name is simply the function name with a leading underscore character.
For example, the symbol name for the MyFrameworkInit functionis _MyFrameworkInit.You should not
use C++ routines for initialization functions.

If you have trouble building your framework with the specified initialization routine, there are a few things
you can try to fix the problem. Use the nm command-line tool to confirm the symbol name of your routine.
You can also use nm with the - g option to make sure that a global symbol for your routine is exported by
the library. If it isn't, check to see if you have an exports file and make sure your routine is included in it.

Important: In Mac OS X v10.3.9 and later, it is especially important not to use C++ code from a framework
initialization function. Prior to 10.3.9, the C++ runtime was packaged as a static library and linked into the
application executable. In Mac OS X v10.3.9 and later, the library is packaged as a dynamic shared library and
loaded only as needed, which might be after your framework is loaded. Framework initialization functions
that try to use C++ features may subsequently fail or cause the application to terminate.

Using Initialization Routines 47
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Initializing a Framework at Runtime

48 Using Initialization Routines
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Exporting Your Framework Interface

When you build a framework or application using Xcode, the linker exports all of the symbols defined in your
code by default. For a shipping framework with many symbols, this can lead to performance problems at
runtime. When a framework is loaded, the dynamic link editor loads the symbols associated with the framework.
If a framework contains a number of private functions, the symbols for those private functions are not going
to be used but are still loaded along with symbols for the public functions. Loading these extra symbols not
only wastes memory, it also requires more work to walk the list during a symbol lookup.

In Xcode, you can limit the symbols exported by your executable by specifying an exports file in your linker
options.

Creating Your Exports File

An exports file is a simple text file (. txt or other text file extension) that contains the list of symbols you
want to export. To create the file, add a new empty file to your Xcode project. To this file, add the list of
symbols you want to export, one symbol per line.

For ANSI C-based code, you can usually just prefix an underscore character to the name of a function or
variable to get the symbol name. For languages like C++, which uses mangled symbol names, you may need
to run the nm tool to get the list of existing symbol names. Run nm with the - g option to see the currently
exported symbols. You can then copy the output from the tool and paste it into your exports file, removing
any extraneous information. The following text shows some sample output for a Cocoa framework generated
by nm:

U .objc_class_name_NSDate
pb000ad54 T _InitCocoaFW
b000aea8 T _addNumbers
b000ade8 T _getInitDate

U _objc_msgSend

To export the framework functions specified in this output, you would create a text file with this text:

_InitCocoaFW
_addNumbers
_getInitDate

You can temporarily remove a symbol from your exports file by putting a pound sign at the beginning of
the line containing the symbol. For example, the following text temporarily removes the _getInitDate
function from the exports list:

_InitCocoaFW
_addNumbers
#_getInitDate

Creating Your Exports File 49
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Exporting Your Framework Interface

Specifying Your Exports File

50

To specify an exports file for your framework in Xcode, do the following:

1.

2.

Open your project in Xcode.

Add your exports file to the project, and place it in the Resources group.
Open the framework target’s Info window and click Build.

Set the Exported Symbols File build setting to the name of your exports file.

You can locate this build setting by choosing All from the Collections pop-up menu and entering its
name in the search field.

If you want to export all symbols except for a restricted subset, you can use the Unexported Symbol Files
build setting to do so. Create your symbols file as before, but this time include the list of symbols you do not
want to export. In the Linking build settings for the target, find the Unexported Symbol Files setting and set
its value to the name of your file.

If the Unexported Symbol Files build setting is not present, as it might not be on versions of Xcode prior to
v2.2, you can use the “Other linker flags” build setting instead. To hide a set of symbols, set the value of that
build setting to the following text, replacing exports_filename with the name of your exports file:

-unexported_symbols_11stexports_filename

Specifying Your Exports File
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Installing Your Framework

Once your framework is ready to go, you need to decide where to install it. Where you install a framework
also helps determine how to install the framework.

Locations for Public Frameworks

Third-party frameworks can go in a number of different file-system locations, depending on certain factors.

= Most public frameworks should be installed at the local level in /Library/Frameworks.

= If your framework should only be used by a single user, you caninstall itinthe~/Library/Frameworks
subdirectory of the current user; however, this option should be avoided if possible.

= If they are to be used across a local area network, they can be installed in
/Network/Library/Frameworks; however, this option should be avoided if possible.

For nearly all cases, installing your frameworks in /Library/Frameworks is the best choice. Frameworks
in this location are discovered automatically by the compiler at compile time and the dynamic linker at
runtime. Applications that link to frameworks in other directories, such as ~/Library/Frameworks or
/Network/Library/Frameworks, must specify the exact path to the framework at build time so that the
dynamic linker can find it. If the path changes (as it might for a user home directory), the dynamic linker may
be unable to find the framework.

Another reason to avoid installing frameworks in ~/Library/Frameworks or
/Network/Library/Frameworks is the potential performance penalties. Frameworks installed in network
directories or in network-based user home directories can cause significant delays in compilation times.
Loading the framework across the network can also slow down the launch of the target application.

Third-party frameworks should never be installed in the /System/Library/Frameworks directory. Access
to this directory is restricted and is reserved for Apple-provided frameworks only.

When you build an application or other executable, the compiler looks for frameworks
in/System/Library/Frameworks as well as any other location specified to the compiler. The compiler
writes path information for any required frameworks in the executable file itself, along with version information
for each framework. When the application is run, the dynamic link editor tries to find a suitable version of
each framework using the paths in the executable file. If it cannot find a suitable framework in the specified
location (perhaps because it was moved or deleted), it looks for frameworks in the following locations, in
this order:

1. The explicit path to the framework that was specified at link time.
2. The /Library/Frameworks directory.

3. The/System/Library/Frameworks directory.

Locations for Public Frameworks 51
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Installing Your Framework

If the dynamic link editor cannot locate a required framework, it generates a link edit error, which terminates
the application.

Locations for Private Frameworks

Custom frameworks intended for internal use should be installed inside the application that uses them.
Frameworks embedded in an application are stored in the Frameworks directory of the application bundle.
The advantage of embedding frameworks in this manner is that it guarantees the application always has the
correct version of the framework to run against. See “Embedding a Private Framework in Your Application
Bundle” (page 41) for information on how to embed a custom framework in your application.

The limitation of embedding frameworks is that you cannot share the framework among a suite of applications.
If your company develops a suite of applications that rely on the same framework, you might want to install
one copy of that framework that all of the applications can share. In such a situation, you should install the
frameworksinthe /Library/Frameworks directory and make sure the frameworks bundle does not contain
any public header information.

Installing Frameworks

52

How you install frameworks depends on your framework. If your framework is bundled inside of a particular
application, there is nothing special you need to do. The user can drag the application bundle to a local
system and use the application without any need for additional installation steps.

If your framework is external to an application, you should use an installation package to make sure it is put
in the proper location. You should also use an installation package in situations where an older version of
your framework might be in place. In that case, you might want to write some scripts to update an existing
framework bundle rather than replace it entirely. For example, you may want to install a new major version
of your framework without disturbing any other versions. Similarly, if you have multiple applications that
rely on the same framework, your installation package should check for the existence of the framework and
install it only as needed.

For more information on creating installation packages, see Software Delivery Guide.

Locations for Private Frameworks
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Including Frameworks

For Mac OS X software developers the guideline for including header files and linking with system software
is straightforward: add the framework to your project and include only the top-level header file in your source
files. For umbrella frameworks, include only the umbrella header file.

Including Frameworks in Your Project

To include a framework in your Xcode project, choose Project > Add to Project and select the framework
directory. Alternatively, you can control-click your project group and choose Add Files > Existing Frameworks
from the contextual menu. When you add an existing framework to your project, Xcode asks you to associate
it with one or more targets in your project. Once associated, Xcode automatically links the framework against
the resulting executable.

Note: If you are not using Xcode to build your project, you must use the - framework option of GCC and
Id to build and link against the specified framework. See the gcc and 1d man pages for more information.

You include framework header files in your code using the #inc1ude directive. If you are working in
Objective-C, you may use the #import directive instead of the #finc1ude directive. The two directives have
the same basic results. but the #fimport directive guarantees that the same header file is never included
more than once. There are two ways for including framework headers:

##include <Framework_name/Header_filename.h>
J#import <Framework_name/Header_filename.h>

In both cases, Framework_name is the name of the framework and Header_filename is the name of a
header file in that framework or in one of its subframeworks.

When including framework header files, it is traditional to include only the master framework header file.
The master header file is the header file whose name matches the name of the framework. For example, the
Address Book framework has a master header file with the name AddressBook. h. To include this header
in your source, you would use the following directive:

#include <AddressBook/AddressBook.h>
ffimport <AddressBook/AddressBook.h>

For most frameworks, you can include header files other than the master header file. You can include any
specific header file you want as long as it is available in the framework’s Headers directory. However, if you
are including an umbrella framework, you must include the master header file. Umbrella frameworks do not
allow you to include the headers of their constituent subframeworks directly. See “Restrictions on
Subframework Linking” (page 55) for more information.

Including Frameworks in Your Project 53
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Including Frameworks

Locating Frameworks in Non-Standard Directories

If your project links to frameworks that are not included in any of the standard locations, you must explicitly
specify the location of that framework before Xcode can locate its header files. To specify the location of
such a framework, add the directory containing the framework to the “Framework Search Paths” option of
your Xcode project. Xcode passes this list of directories to the compiler and linker, which both use the list to
search for the framework resources.

Note: The standard locations for frameworks are the /System/Library/Frameworks directory and the
/Library/Frameworks directory on the local system.

Headers and Performance

If you are worried that including a master header file may cause your program to bloat, don’t worry. Because
Mac OS X interfaces are implemented using frameworks, the code for those interfaces resides in a dynamic
shared library and not in your executable. In addition, only the code used by your program is ever loaded
into memory at runtime, so your in-memory footprint similarly stays small.

As for including a large number of header files during compilation, once again, don’t worry. Xcode provides
a precompiled header facility to speed up compile times. By compiling all the framework headers at once,
there is no need to recompile the headers unless you add a new framework. In the meantime, you can use
any interface from the included frameworks with little or no performance penalty.

Including the Flat Carbon Headers

54

For Carbon developers porting their source code from Mac OS 9 to Mac OS X, including only the Carbon.h
header file may require changes to many source files that might be difficult to make right away. For this
situation, Apple provides a “flat header” alternative that lets you continue to use your present #include
commands.

In /Developer/Headers/FlatCarbaon are stub files for all public Mac OS 9 header files. These stub files
redirect the compiler to the appropriate umbrella header file or contain warnings if the APl is not valid on
Mac OS X. To make use of the stub files, use the compiler’s - I flag (that is capital “I; not lowercase “I") to
include the files in the F1atCarbon directory, as shown here:

-I/Developer/Headers/FlatCarbon

When using this option, make sure that you include both MacWindows.h and MacTypes. h in your source
files.

Locating Frameworks in Non-Standard Directories
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Including Frameworks

Note: Apple provides scripts for converting a flat header project to one that uses the new framework headers.
These scripts are available in the /Developer/Headers/FlatHeaderConversion directory.

Once you are compiling code only for Mac OS X, you should use the native syntax for including framework
header files. The book Carbon Porting Guide in Carbon Porting Documentation contains a more detailed
discussion of the flat-header #inc1ude technique.

Restrictions on Subframework Linking

Mac OS X includes two mechanisms for ensuring that developers link only with umbrella frameworks. One
mechanism is an Xcode feature that prevents you from selecting subframeworks. The other mechanism is a
compile-time error that occurs when you attempt to include subframework header files.

In Xcode, the Add Frameworks command displays the available frameworks in
/System/Library/Frameworks. However, when you select one of these frameworks, the Open dialog
displays information about the framework and not a list of subdirectories.

If you try to include a header file that is in a subframework, Xcode generates a compile-time error message.
The umbrella header files and the subframework header files contain preprocessor variables and checks to
guard against the inclusion of subframework header files. If you compile your project with an improper
f#include statement, the compiler generates an error message.

Restrictions on Subframework Linking 55
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Including Frameworks

56 Restrictions on Subframework Linking
2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Framework Programming Guide.

Date Notes

2006-11-07 Updated framework initialization advice. Revised prebinding guidelines. Updated
steps for embedding private frameworks in an application bundle.

2006-03-08 Updated for Xcode 2.2 and added naming requirements for versioned
frameworks.
Updated “Framework Bundle Structure” (page 13) to specify the naming
requirements for versioned frameworks.

2005-07-07 Updated linking and binding information. Updated steps for Xcode 2.1. Changed
title from "Mac OS X Frameworks".

2004-11-02 Updated the list of recommended the guidelines and locations for installing
frameworks.

2004-04-15 Added information on how to test a framework in place without installing it in
its deployment location.
Added information relating to weak linking and frameworks.
Fixed minor bugs.

2003-12-08 First version of Mac OS X Frameworks. The information in this document replaces
information about frameworks that was previously published in System Overview.

57

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

58

Document Revision History

2006-11-07 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

	Framework Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	What are Frameworks?
	Anatomy of Framework Bundles
	Framework Bundle Structure
	Framework Versions
	Additional Directories
	Framework Configuration

	Umbrella Framework Bundle Structure
	The Purpose of Umbrella Frameworks
	The Umbrella Framework Bundle

	Framework Versions
	Major Versions
	Major Version Numbering Scheme
	When to Use Major Versions
	Avoiding Major Version Changes
	Creating a Major Version of a Framework

	Minor Versions
	Minor Version Numbering Scheme
	When to Use Minor Versions
	Compatibility Version Numbers at Runtime
	Creating a Minor Version of a Framework

	Versioning Guidelines

	Frameworks and Binding
	Dynamic Shared Libraries
	Symbol Binding
	Organizing Your Framework Code
	Library Dependencies
	Standalone Dynamic Shared Libraries

	Frameworks and Prebinding
	Prebinding Your Framework
	Caveats for Prebinding
	Finding the Preferred Address of a Framework
	Apple Frameworks and Prebinding

	Frameworks and Weak Linking
	Weak Linking and Apple Frameworks
	Marking Symbols for Weak Linking
	Using Weakly Linked Symbols
	Weak Linking to Entire Frameworks

	Guidelines for Creating Frameworks
	API Naming Guidelines
	Performance Impacts of Frameworks
	What to Include in Your Framework
	Using C++ in Framework Code
	Don’t Create Umbrella Frameworks
	Where to Install Your Framework

	Creating a Framework
	Creating Your Framework
	Configuring Your Framework Project
	Testing Your Framework in Place

	Embedding a Private Framework in Your Application Bundle
	Using a Single Xcode Project For Both Targets
	Using Separate Xcode Projects For Each Target

	Building Multiple Versions of a Framework
	Updating the Minor Version
	Updating the Major Version

	Initializing a Framework at Runtime
	Initialization Routines and Performance
	Defining Module Initializers and Finalizers
	Using Initialization Routines

	Exporting Your Framework Interface
	Creating Your Exports File
	Specifying Your Exports File

	Installing Your Framework
	Locations for Public Frameworks
	Locations for Private Frameworks
	Installing Frameworks

	Including Frameworks
	Including Frameworks in Your Project
	Locating Frameworks in Non-Standard Directories
	Headers and Performance
	Including the Flat Carbon Headers
	Restrictions on Subframework Linking

	Revision History

