
Runtime Configuration Guidelines
Mac OS X

2008-07-08

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Mac, Mac OS, Macintosh, Objective-C,
Quartz, Rosetta, Safari, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder and iPhone are trademarks of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 9

Organization of This Document 9

Information Property List Files 11

Standard Information Property List Files 11
Localizing Property List Values 12
Creating and Editing Property Lists 12
An Example of an Information Property List File 13
Putting Info.plist Files in a Flat Executable 15

Property List Key Reference 17

Key Summary 17
Key Descriptions 22

APInstallerURL 22
APFiles 22
ATSApplicationFontsPath 23
CFAppleHelpAnchor 23
CFBundleAllowMixedLocalizations 23
CFBundleDevelopmentRegion 23
CFBundleDisplayName 23
CFBundleDocumentTypes 24
CFBundleExecutable 26
CFBundleGetInfoString 26
CFBundleHelpBookFolder 26
CFBundleHelpBookName 26
CFBundleIconFile 26
CFBundleIdentifier 27
CFBundleInfoDictionaryVersion 27
CFBundleLocalizations 27
CFBundleName 27
CFBundlePackageType 27
CFBundleShortVersionString 28
CFBundleSignature 28
CFBundleURLTypes 28
CFBundleVersion 29
CFPlugInDynamicRegistration 29
CFPlugInDynamicRegisterFunction 29
CFPlugInFactories 29
CFPlugInTypes 29

3
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFPlugInUnloadFunction 30
CSResourcesFileMapped 30
LSArchitecturePriority 30
LSBackgroundOnly 30
LSEnvironment 31
LSFileQuarantineEnabled 31
LSGetAppDiedEvents 31
LSHasLocalizedDisplayName 31
LSMinimumSystemVersion 31
LSMinimumSystemVersionByArchitecture 32
LSMultipleInstancesProhibited 32
LSRequiresIPhoneOS 32
LSRequiresNativeExecution 32
LSUIElement 33
LSUIPresentationMode 33
LSVisibleInClassic 33
NSAppleScriptEnabled 34
NSHumanReadableCopyright 34
NSJavaNeeded 34
NSJavaPath 34
NSJavaRoot 34
NSMainNibFile 34
NSPersistentStoreTypeKey 35
NSPrefPaneIconFile 35
NSPrefPaneIconLabel 35
NSPrincipalClass 35
NSServices 35
UIInterfaceOrientation 36
UIPrerenderedIcon 36
UIRequiresPersistentWiFi 37
UIStatusBarHidden 37
UIStatusBarStyle 37
UTExportedTypeDeclarations 37
UTImportedTypeDeclarations 38

The Preferences System 39

How Preferences Are Stored 39
Preference Domains 40
The defaults Utility 41

Environment Variables 43

Environment Variable Scope 43
User Session Environment Variables 43
Application-Specific Environment Variables 44

4
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Guidelines for Configuring Applications 45

Information Property List Files 45
Required Properties 45
Recommended Properties 46
Localized Properties 47

Document Configuration 47
The PkgInfo File 47
Using a ‘plst’ Resource 48
Using Launch Arguments 48

Document Revision History 49

5
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

6
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Tables and Listings

Information Property List Files 11

Listing 1 The Info.plist file for the Sketch demo application 13

Property List Key Reference 17

Table 1 Summary of standard keys 17
Table 2 Keys for APFiles dictionary 22
Table 3 Keys for type-definition dictionaries 24
Table 4 Keys for CFBundleURLTypes dictionaries 28
Table 5 Execution architecture identifiers 30
Table 6 Keys for NSServices dictionaries 35
Table 7 UTI property list keys 38

The Preferences System 39

Table 1 Preference domains in search order 40

Guidelines for Configuring Applications 45

Table 1 Command-line arguments for Cocoa applications 48

7
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

8
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Dynamic configuration is a convenient way to adjust the properties of your executable without recompiling
your code. Rather than relying on hardcoded information, your application implements slightly different
behaviors based on external settings. There are several ways to record these settings, ranging from user
preferences to property lists stored with your bundle.

Bundles use property lists extensively to store information about the bundle and its contents. Mac OS X and
iPhone OS use the information in these property lists to determine an application properties such as its icon
and whether to show the status bar (for iPhone applications).

You should read this document to learn about the properties you can use to configure application behavior
and specify how Mac OS X or iPhone OS handle your application.

Organization of This Document

This document contains the following articles:

 ■ “Information Property List Files” (page 11) discusses information property list files and how you use
them to configure your bundled application.

 ■ “Property List Key Reference” (page 17) provides a reference for the keys that can go into an information
property list file.

 ■ “The Preferences System” (page 39) discusses the role and scope of user preferences and describes the
use of the defaults tool for accessing preferences.

 ■ “Environment Variables” (page 43) discusses the role of environment variables in configuring applications.
This section also covers some of the ways you can establish environment variables for a given user session
or process.

 ■ “Guidelines for Configuring Applications” (page 45) lists the required and recommended configuration
options for applications. This article also describes additional ways to configure both bundled and
non-bundled applications.

Organization of This Document 9
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction

10 Organization of This Document
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction

An information property list file contains essential configuration information for a bundled executable. Most
bundles have at least one file of this type (usually named Info.plist) containing most of the bundle’s
configuration information. Variants of this file may also be present depending on the platforms and languages
supported by the bundle.

The contents of an Information property list file are organized hierarchically, with each node in the hierarchy
containing an entity such as an array, dictionary, string, or other scalar type. Information property list files
are typically saved as XML files in a text file format that uses the Unicode UTF-8 encoding. Although you may
encounter versions of these files encoded using ASCII text and binary formats, the XML format is recommended
for any new files you save. Regardless of the format, you can open property list files saved in ASCII, XML, and
binary formats using the Property List Editor application.

Important: In the sections that follow, pay attention to the capitalization of files and directories that reside
inside a bundle. CFBundle and NSBundle consider case when searching for resources inside a bundle
directory. Case mismatches could prevent you from finding your resources at runtime.

Standard Information Property List Files

By convention, a bundle’s information property list file has the name Info.plist. This file resides in the
bundle’s Contents directory and contains configuration information for all supported platforms. However,
if you want to configure your application differently on different platforms, you can include platform-specific
versions of your information property list file. These files reside in your Contents directory. The name of
each file is of the form “Info-<platform>.plist.” The currently supported platforms are macos and
macosclassic, thus you can define the following platform-specific information property list files:

 ■ Info-macos.plist contains properties specific to a Mac OS X application.

 ■ Info-macosclassic.plist contains properties specific to an application run in the Classic compatibility
environment.

NSBundle and CFBundle load only one information property list file from your bundle, preferring the
platform-specific version over the generic version. Thus, if you provide platform-specific information property
list files for your bundle, make sure each of them contains all of the necessary keys to configure the application.
Otherwise, if you split the required keys between an Info-macos.plist file and a Info.plist file, the
keys in the Info.plist file are ignored.

You can create custom property lists as needed to store the values for application-specific configuration keys.
If you create custom property lists, put them in your Contents/Resources directory with the rest of your
application-specific resources. You can include your keys in your bundle’s information property list file if you
want all of your keys stored in one place.

Standard Information Property List Files 11
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

Localizing Property List Values

If your information property list file contains values that might be displayed to the user, you should provide
localized values for those properties. To deliver localized values, you create an InfoPlist.strings file in
each language-specific resource directory of your bundle. Inside this strings file, you specify the key for each
property you wish to localize along with the appropriate translated value.

At runtime, when your code retrieves the value of a property, the NSBundle and CFBundle routines check
to see if an InfoPlist.strings file of the appropriate language exists and if it contains the requested key.
If it does, the routines return the value from the strings file. If the key does not exist in any language files,
the routines return the default version of the key from your bundle’s Info.plist file.

For example, the TextEdit application has several keys that are displayed in the Finder and thus should be
localized. Suppose your information property list file defines the following keys:

<key>CFBundleDisplayName</key>
<string>TextEdit</string>
<key>NSHumanReadableCopyright</key>
<string>Copyright ¬© 1995-2002, Apple Computer, Inc.,All Rights Reserved.
</string>

The French localization for TextEdit then includes the following strings in the InfoPlist.strings file of
its Contents/Resources/French.lproj directory:

CFBundleDisplayName = "TextEdit";
NSHumanReadableCopyright = "Copyright © 1995-2002 Apple Computer Inc.\nTous
droits réservés.";

See Bundle Programming Guide for more about localizing bundles.

Creating and Editing Property Lists

The simplest way to create a new property list file or edit an existing file is to use the Property List Editor
application. This application comes with Xcode and is installed in the <Xcode>/Applications/Utilities
directory (where <Xcode> is the root directory of your Xcode installation). When you launch the application,
it automatically opens a new, empty property list for you to edit.

To create a basic property list, add a root element and one or more children. The root element is always a
dictionary. The children of the root can be any of the simple types (String, Number, Boolean, Date, or Data)
or one of the collection types (Array or Dictionary).

Once you save the property list, you can edit it either with the Property List Editor or with any text editor
that supports UTF-8 encoding. Although you can edit the file with an XML editor, make sure your editor saves
the file in the UTF-8 encoding.

12 Localizing Property List Values
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

Important: If you create an information property list file by hand, remember that the first letter of the
filename must be capitalized. CFBundle and NSBundle consider case when searching for resource files
(including the Info.plist file) in a bundle.

An Example of an Information Property List File

Listing 1 shows the Info.plist file of the Sketch sample application from Mac OS X v10.5. Sketch is a Cocoa
application so it includes the NSMainNibFile and NSPrincipalClass keys to identify the location of the
primary application resources. Sketch registers several supported document types (using both UTIs and the
file extensions) to make it easier to work with those types of files. UTIs are supported in Mac OS X v10.5 and
later and are the preferred way to register support for file types. For more information about the meaning
of each key, see “Property List Key Reference” (page 17). (Note, many of the comments in this XML file were
removed or edited for brevity.)

Listing 1 The Info.plist file for the Sketch demo application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>sketch2</string>
 </array>
 <key>CFBundleTypeIconFile</key>
 <string>Draw2File</string>
 <key>CFBundleTypeName</key>
 <string>Apple Sketch document</string>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <!-- The LSItemContentTypes key is ignored in Mac OS X v10.4 because it’s
introduced in 10.5. -->
 <key>LSItemContentTypes</key>
 <array>
 <string>com.apple.sketch2</string>
 </array>
 <key>NSDocumentClass</key>
 <string>SKTDrawDocument</string>
 <!-- This key is ignored in Mac OS X 10.5 because of the presence of the
LSItemContentTypes key. -->
 <key>NSExportableAs</key>
 <array>
 <string>NSPDFPboardType</string>
 <string>NSTIFFPboardType</string>
 </array>
 <!-- The NSExportableTypes key is ignored in Mac OS X 10.4 -->
 <key>NSExportableTypes</key>

An Example of an Information Property List File 13
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

 <array>
 <string>com.adobe.pdf</string>
 <string>public.tiff</string>
 </array>

 </dict>

 <!-- These keys are for compatibility with Mac OS X v10.4. -->
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>pdf</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>NSPDFPboardType</string>
 <key>CFBundleTypeRole</key>
 <string>None</string>
 </dict>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>tiff</string>
 <string>tif</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>NSTIFFPboardType</string>
 <key>CFBundleTypeRole</key>
 <string>None</string>
 </dict>

 </array>
 <key>CFBundleExecutable</key>
 <string>Sketch</string>
 <key>CFBundleIconFile</key>
 <string>Draw2App</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.CocoaExamples.Sketch</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleShortVersionString</key>
 <string>2.0</string>
 <key>CFBundleSignature</key>
 <string>sktc</string>
 <key>CFBundleVersion</key>
 <string>46.1</string>
 <key>NSAppleScriptEnabled</key>
 <string>YES</string>
 <key>NSMainNibFile</key>
 <string>Draw2</string>
 <key>NSPrincipalClass</key>
 <string>NSApplication</string>
 <key>OSAScriptingDefinition</key>
 <string>Sketch.sdef</string>

 <!-- UTI keys are for ignored in Mac OS X v10.4 but used in Mac OS X v10.5. -->
 <key>UTExportedTypeDeclarations</key>

14 An Example of an Information Property List File
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

 <array>
 <dict>
 <key>UTTypeDescription</key>
 <string>Apple Sketch document</string>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.data</string>
 </array>
 <key>UTTypeIconFile</key>
 <string>Draw2File</string>
 <key>UTTypeIdentifier</key>
 <string>com.apple.sketch2</string>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>public.filename-extension</key>
 <array>
 <string>sketch2</string>
 </array>
 </dict>
 </dict>
 </array>

</dict>
</plist>

Putting Info.plist Files in a Flat Executable

Even if your program does not use the bundle structure, it should still include an information property-list
file to identify key pieces of information to the system. For unbundled CFM executables, you can place the
contents of the program's Info.plist file in a 'plst' resource. For unbundled Mach-O executables, you
can create an __info_plist section in the executable's __TEXT segment and put the contents of your
information property-list file there. To create an __info_plist section, you would create an Info.plist
file as you would for a bundled program and then add the following linker options to your makefile or Xcode
project:

-sectcreate __TEXT __info_plist Info.plist

To retrieve the Info.plist information, your unbundled program can use many of the CFBundle functions
for accessing bundle properties. Although your program is not bundled, you can still get the "main bundle"
and pass that object to any functions you call.

Putting Info.plist Files in a Flat Executable 15
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

16 Putting Info.plist Files in a Flat Executable
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Information Property List Files

The following sections contain detailed information about the usage and behavior of property-list keys
available for use in an information property list file.

Key Summary

Table 1 contains an alphabetical list of the keys you can use in an information property list file, along with a
brief description and the platforms to which they apply (Mac OS X or iPhone). For detailed descriptions of
these keys, see “Key Descriptions ” (page 22).

Table 1 Summary of standard keys

PlatformsSummaryKey

Mac OS XA URL-based path to the files you want to install.
See “APInstallerURL” (page 22) for details.

APInstallerURL

Mac OS XAn array of dictionaries describing the files or
directories that can be installed. See “APFiles” (page
22) for details.

APFiles

Mac OS XThe path to a single font file or directory of font
files in the bundle’s Resources directory. See
“ATSApplicationFontsPath” (page 23) for details.

ATSApplicationFontsPath

Mac OS XThe bundle’s initial HTML help file. See
“CFAppleHelpAnchor” (page 23) for details.

CFAppleHelpAnchor

Mac OS X,
iPhone OS

Used by Foundation tools to retrieve localized
resources from frameworks. See
“CFBundleAllowMixedLocalizations” (page 23) for
details.

CFBundleAllowMixedLocalizations

Mac OS X,
iPhone OS

The native region for the bundle. Usually
corresponds to the native language of the author.
See “CFBundleDevelopmentRegion” (page 23) for
details.

CFBundleDevelopmentRegion

Mac OS X,
iPhone OS

The actual name of the bundle. See
“CFBundleDisplayName” (page 23) for details.

CFBundleDisplayName

Mac OS XAn array of dictionaries describing the document
types supported by the bundle. See
“CFBundleDocumentTypes” (page 24) for details.

CFBundleDocumentTypes

Key Summary 17
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

PlatformsSummaryKey

Mac OS X,
iPhone OS

Name of the bundle executable file. See
“CFBundleExecutable” (page 26) for details.

CFBundleExecutable

Mac OS XBrief description of the bundle. See
“CFBundleGetInfoString” (page 26) for details.

CFBundleGetInfoString

Mac OS XThe name of the folder containing the bundle’s
help files. See “CFBundleHelpBookFolder” (page
26) for details.

CFBundleHelpBookFolder

Mac OS XThe name of the help file to display when Help
Viewer is launched for the bundle. See
“CFBundleHelpBookName” (page 26) for details.

CFBundleHelpBookName

Mac OS X,
iPhone OS

File name for icon image file. See
“CFBundleIconFile” (page 26) for details.

CFBundleIconFile

Mac OS X,
iPhone OS

An identifier string that specifies the application
type of the bundle. This string should be a uniform
type identifier (UTI), for example
com.mycompany.MyApp. See
“CFBundleIdentifier” (page 27) for details.

CFBundleIdentifier

Mac OS X,
iPhone OS

Version information for the Info.plist format.
See “CFBundleInfoDictionaryVersion” (page 27)
for details.

CFBundleInfoDictionaryVersion

Mac OS X,
iPhone OS

Contains localization information for an application
that handles its own localized resources. See
“CFBundleLocalizations” (page 27) for details.

CFBundleLocalizations

Mac OS X,
iPhone OS

The short display name of the bundle. See
“CFBundleName” (page 27) for details.

CFBundleName

Mac OS XThe four-letter code identifying the bundle type.
See “CFBundlePackageType” (page 27) for details.

CFBundlePackageType

Mac OS X,
iPhone OS

The release-version-number string for the bundle.
See “CFBundleShortVersionString” (page 28) for
details.

CFBundleShortVersionString

Mac OS XThe four-letter code identifying the bundle creator.
See “CFBundleSignature” (page 28) for details.

CFBundleSignature

Mac OS X,
iPhone OS

An array of dictionaries describing the URL schemes
supported by the bundle. See
“CFBundleURLTypes” (page 28) for details.

CFBundleURLTypes

Mac OS X,
iPhone OS

The build-version-number string for the bundle.
See “CFBundleVersion” (page 29) for details.

CFBundleVersion

18 Key Summary
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

PlatformsSummaryKey

Mac OS XIf YES, register the plug-in dynamically; otherwise,
register it statically. See
“CFPlugInDynamicRegistration” (page 29) for
details.

CFPlugInDynamicRegistration

Mac OS XThe name of the custom, dynamic registration
function. See
“CFPlugInDynamicRegisterFunction” (page 29) for
details.

CFPlugInDynamicRegistrationFunction

Mac OS XFor static registration, this dictionary contains a list
of UUIDs with matching function names. See
“CFPlugInFactories” (page 29) for details.

CFPlugInFactories

Mac OS XFor static registration, the list of UUIDs
“CFPlugInTypes” (page 29) for details.

CFPlugInTypes

Mac OS XThe name of the custom function to call when it’s
time to unload the plug-in code from memory. See
“CFPlugInUnloadFunction” (page 30) for details.

CFPlugInUnloadFunction

Mac OS XIf true, Core Services routines map the bundle’s
resource files into memory instead of reading them.
See “CSResourcesFileMapped” (page 30) for details.

CSResourcesFileMapped

Mac OS XContains an array of strings identifying the
supported code architectures and their preferred
execution priority. See
“LSArchitecturePriority” (page 30) for details.

LSArchitecturePriority

Mac OS XSpecifies whether the application runs only in the
background. (Mach-O applications only). See
“LSBackgroundOnly” (page 30) for details.

LSBackgroundOnly

Mac OS XContains a list of key/value pairs, representing
environment variables and their values. See
“LSEnvironment” (page 31) for details.

LSEnvironment

Mac OS XSpecifies whether the files this application creates
are quarantined by default. See
“LSFileQuarantineEnabled” (page 31).

LSFileQuarantineEnabled

Mac OS XSpecifies whether the application is notified when
a child process dies. See
“LSGetAppDiedEvents” (page 31) for details.

LSGetAppDiedEvents

Mac OS XSpecifies whether the application supports a
localized display name. See
“LSHasLocalizedDisplayName” (page 31) for details.

LSHasLocalizedDisplayName

Key Summary 19
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

PlatformsSummaryKey

Mac OS XSpecifies the minimum version of Mac OS X
required for the application to run. See
“LSMinimumSystemVersion” (page 31) for details.

LSMinimumSystemVersion

Mac OS XSpecifies the minimum version of Mac OS X
required to run a given platform architecure. See
“LSMinimumSystemVersionByArchitecture” (page
32) for details.

LSMinimumSystemVersionByArchitecture

Mac OS XSpecifies whether one user or multiple users can
launch an application simultaneously. See
“LSMultipleInstancesProhibited” (page 32) for
details.

LSMultipleInstancesProhibited

Mac OS X,
iPhone OS

Specifies whether the application is an iPhone
application. See “LSRequiresIPhoneOS” (page 32)
for details.

LSRequiresIPhoneOS

Mac OS XSpecifies whether the application must run natively
on Intel-based Macintosh computers, as opposed
to under Rosetta emulation. See
“LSRequiresNativeExecution” (page 32) for details.

LSRequiresNativeExecution

Mac OS XSpecifies whether the application is an agent
application, that is, an application that should not
appear in the Dock or Force Quit window. See
“LSUIElement” (page 33) for details.

LSUIElement

Mac OS XSets the visibility of system UI elements when the
application launches. See
“LSUIPresentationMode” (page 33) for details.

LSUIPresentationMode

Mac OS XSpecifies whether an agent application or
background-only application is visible to other
applications in the Classic environment. See
“LSVisibleInClassic” (page 33) for details.

LSVisibleInClassic

Mac OS XSpecifies whether AppleScript is enabled. See
“NSAppleScriptEnabled” (page 34) for details.

NSAppleScriptEnabled

Mac OS XSpecifies the copyright notice for the bundle. See
“NSHumanReadableCopyright” (page 34) for
details.

NSHumanReadableCopyright

Mac OS XSpecifies whether the program requires a running
Java VM. See “NSJavaNeeded” (page 34) for details.

NSJavaNeeded

Mac OS XAn array of paths to classes whose components
are preceded by NSJavaRoot. See
“NSJavaPath” (page 34) for details.

NSJavaPath

20 Key Summary
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

PlatformsSummaryKey

Mac OS XThe root directory containing the java classes. See
“NSJavaRoot” (page 34) for details.

NSJavaRoot

Mac OS X,
iPhone OS

The name of an application’s main nib file. See
“NSMainNibFile” (page 34) for details.

NSMainNibFile

Mac OS XThe type of Core Data persistent store associated
with a persistent document type. See
“NSPersistentStoreTypeKey” (page 35) for details.

NSPersistentStoreTypeKey

Mac OS XThe name of an image file resource used to
represent a preference pane in the System
Preferences application. See
“NSPrefPaneIconFile” (page 35) for details.

NSPrefPaneIconFile

Mac OS XThe name of a preference pane displayed beneath
the preference pane icon in the System Preferences
application. See “NSPrefPaneIconLabel” (page 35)
for details.

NSPrefPaneIconLabel

Mac OS XThe name of the bundle’s main class. See
“NSPrincipalClass” (page 35) for details.

NSPrincipalClass

Mac OS XAn array of dictionaries specifying the services
provided by an application. See “NSServices” (page
35) for details.

NSServices

iPhone OSSpecifies the initial orientation of the application’s
user interface. See “UIInterfaceOrientation” (page
36) for details.

UIInterfaceOrientation

iPhone OSSpecifies whether the iPhone OS applies sheen and
bevel effects to the application icon. See
“UIPrerenderedIcon” (page 36) for details.

UIPrerenderedIcon

iPhone OSSpecifies whether this application requires a Wi-Fi
connection. See “UIRequiresPersistentWiFi” (page
37) for details.

UIRequiresPersistentWiFi

iPhone OSSpecifies whether the status bar is initially hidden
when the application launches. See
“UIStatusBarHidden” (page 37) for details.

UIStatusBarHidden

iPhone OSSpecifies the style of the status bar as the
application launches. See “UIStatusBarStyle” (page
37) for details.

UIStatusBarStyle

Mac OS XAn array of dictionaries specifying the UTI-based
types supported (and owned) by the application.
See “UTExportedTypeDeclarations” (page 37) for
details.

UTExportedTypeDeclarations

Key Summary 21
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

PlatformsSummaryKey

Mac OS XAn array of dictionaries specifying the UTI-based
types supported (but not owned) by the
application. See
“UTImportedTypeDeclarations” (page 38) for
details.

UTImportedTypeDeclarations

Key Descriptions

Mac OS X provides a set of core keys for specifying information about a bundle. Some of these keys are given
default values by the Xcode application depending on the type of project you create.

APInstallerURL

APInstallerURL (String) identifies the base path to the files you want to install. You must specify this
path using the form file://localhost/path/. All installed files must reside within this directory.

APFiles

APFiles (Array) specifies a file or directory you want to install. You specify this key as a dictionary, the
contents of which contains information about the file or directory you want to install. To specify multiple
items, nest the APFiles key inside itself to specify files inside of a directory. Table 2 lists the keys for specifying
information about a single file or directory.

Table 2 Keys for APFiles dictionary

DescriptionTypeKey

A short description of the item to display in the Finder’s Info windowStringAPFileDescriptionKey

If “Yes” the item is shown with a folder icon in the Info panel;
otherwise, it is shown with a document icon

StringAPDisplayedAsContainer

Where to install the component as a path relative to the application
bundle

StringAPFileDestinationPath

The name of the file or directoryStringAPFileName

The path to the component in the application package relative to
the APInstallerURL path.

StringAPFileSourcePath

The action to take with the component: “Copy” or “Open”StringAPInstallAction

22 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

ATSApplicationFontsPath

ATSApplicationFontsPath (String) identifies the location of a font file or directory of fonts in the bundle’s
Resources directory. If present, Mac OS X activates the fonts at the specified path for use by the bundled
application. The fonts are activated only for the bundled application and not for the system as a whole. The
path itself should be specified as a relative directory of the bundle’s Resources directory. For example, if a
directory of fonts was at the path /Applications/MyApp.app/Contents/Resources/Stuff/MyFonts/,
you should specify the string Stuff/MyFonts/ for the value of this key.

CFAppleHelpAnchor

CFAppleHelpAnchor (String) identifies the name of the bundle’s initial HTML help file, minus the .html
or .htm extension. This file must be located in the bundle’s localized resource directories or, if the help is
not localized, directly under the Resources directory.

CFBundleAllowMixedLocalizations

CFBundleAllowMixedLocalizations (Boolean) specifies whether the bundle supports the retrieval of
localized strings from frameworks. This key is used primarily by Foundation tools that link to other system
frameworks and want to retrieve localized resources from those frameworks.

CFBundleDevelopmentRegion

CFBundleDevelopmentRegion (String) specifies the native region for the bundle. This key contains a
string value that usually corresponds to the native language of the person who wrote the bundle. The
language specified by this value is used as the default language if a resource cannot be located for the user’s
preferred region or language.

CFBundleDisplayName

CFBundleDisplayName (String) specifies the display name of the bundle. If you support localized names
for your bundle, include this key in both your information property list file and in the InfoPlist.strings
files of your language subdirectories. If you localize this key, you should also include a localized version of
the CFBundleName key.

If you do not intend to localize your bundle, do not include this key in your Info.plist file. Inclusion of
this key does not affect the display of the bundle name but does incur a performance penalty to search for
localized versions of this key.

Before displaying a localized name for your bundle, the Finder compares the value of this key against the
actual name of your bundle in the file system. If the two names match, the Finder proceeds to display the
localized name from the appropriate InfoPlist.strings file of your bundle. If the names do not match,
the Finder displays the file-system name.

See File System Overview for more information on display names.

Key Descriptions 23
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFBundleDocumentTypes

CFBundleDocumentTypes (DictionaryArray) associates a document type with your application using a
set of dictionaries. Each dictionary is called a type-definition dictionary and contains keys used to define the
document type. Table 3 lists the keys that are supported in these dictionaries:

Table 3 Keys for type-definition dictionaries

DescriptionTypeKey

This key contains an array of strings. Each string contains a filename
extension (minus the leading period) to map to this document
type. To open documents with any extension, specify an extension
with a single asterisk “*”. (In Mac OS X v10.4, this key is ignored if
the LSItemContentTypes key is present.) Deprecated in Mac OS
X v10.5.

ArrayCFBundleTypeExtensions

This key specifies the name of the icon file to associate with this
document type. If you omit the extension, the system looks for
your file with the extension .icns.

StringCFBundleTypeIconFile

Contains an array of strings. Each string contains the MIME type
name you want to map to this document type. (In Mac OS X v10.4,
this key is ignored if the LSItemContentTypes key is present.)
Deprecated in Mac OS X v10.5.

ArrayCFBundleTypeMIMETypes

This key contains the abstract name for the document type and
is used to refer to the type. This key is required and can be localized
by including it in an InfoPlist.strings files. This value is the
main way to refer to a document type. If you are concerned about
this key being unique, you should consider using a uniform type
identifier (UTI) for this string instead. If the type is a common
Clipboard type supported by the system, you can use one of the
standard types listed in the NSPasteboard class description. See
Uniform Type Identifiers Overview for details on UTIs.

StringCFBundleTypeName

This key contains an array of strings. Each string contains a
four-letter type code that maps to this document type. To open
documents of any type, include four asterisk characters (****) as
the type code. These codes are equivalent to the legacy type codes
used by Mac OS 9. (In Mac OS X v10.4, this key is ignored if the
LSItemContentTypes key is present.) Deprecated in Mac OS X
v10.5.

ArrayCFBundleTypeOSTypes

This key specifies the application’s role with respect to the type.
The value can be Editor, Viewer, Shell, or None. See “Document
Configuration” (page 47) for descriptions of these values. This key
is required.

StringCFBundleTypeRole

24 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

DescriptionTypeKey

This key contains an array of strings. Each string contains a UTI
defining a supported file type. The UTI string must be spelled out
explicitly, as opposed to using one of the constants defined by
Launch Services. For example, to support PNG files, you would
include the string “public.png“ in the array. When using this
key, also add the NSExportableTypes key with the appropriate
entries. In Mac OS X v10.4 and later, this key (when present) takes
precedence these type identifier keys: CFBundleType-
Extensions, CFBundleTypeMIMETypes,
CFBundleTypeOSTypes.

ArrayLSItemContentTypes

Determines how Launch Services ranks this application among
the applications that declare themselves editors or viewers of files
of this type. The possible values are: Owner (this application is the
creator of files of this type), Alternate (this application is a
secondary viewer of files of this type), None (this application must
never be used to open files of this type, but it accepts drops of
files of this type), Default (default; this application doesn’t accept
drops of files of this type). Launch Services uses the value of
LSHandlerRank to determine the application to use to open files
of this type. The order of precedence is: Owner, Alternate, None.
This key is available in Mac OS X v10.5 and later.

StringLSHandlerRank

Specifies whether the document is distributed as a bundle. If set
to true, the bundle directory is treated as a file. (In Mac OS X v10.4
and later, this key is ignored if the LSItemContentTypes key is
present.)

BooleanLSTypeIsPackage

This key specifies the name of the NSDocument subclass used to
instantiate instances of this document. This key is used by Cocoa
applications only.

StringNSDocumentClass

This key specifies an array strings. Each string contains the name
of another document type, that is, the value of a
NSBundleTypeName property. This value represents another data
format to which this document can export its content. This key is
used by Cocoa applications only. Deprecated in Mac OS X v10.5.

ArrayNSExportableAs

This key specifies an array strings. Each string contains the name
of another document type, that is, the value of a
NSBundleTypeName property. This value represents another data
format to which this document can export its content. This key is
used by Cocoa applications only.

ArrayNSExportableTypes

When registering document types, you must specify at least one of the keys LSItemContentTypes,
CFBundleTypeExtensions, CFBundleTypeMIMETypes, or CFBundleTypeOSTypes along with the
appropriate data. If you do not specify at least one of these keys, no document types are bound to the
type-name specifier. You may use all three keys when binding your document type, if you so choose. In Mac
OS X v10.4 and later, if you specify the LSItemContentTypes key, the other keys are ignored.

Key Descriptions 25
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFBundleExecutable

CFBundleExecutable (String) identifies the name of the bundle’s main executable file. For an application,
this is the application executable. For a loadable bundle, it is the binary that will be loaded dynamically by
the bundle. For a framework, it is the shared library for the framework. Xcode automatically adds this key to
the information property list file of appropriate projects.

For frameworks, the value of this key is required to be the same as the framework name, minus the
.framework extension. If the keys are not the same, the target system may incur some launch-performance
penalties. for launch-performance reasons. The value should not include any extension on the name.

Important: You must include a valid CFBundleExecutable key in your bundle’s information property list
file. Mac OS X uses this key to locate the bundle’s executable or shared library in cases where the user renames
the application or bundle directory.

CFBundleGetInfoString

CFBundleGetInfoString (String) provides a brief description of the bundle. For an application bundle,
this key provides a short description of the application or the current release that the build or release version
number cannot convey; for example, the date of the release. This key can be localized.

CFBundleHelpBookFolder

CFBundleHelpBookFolder (String) identifies the folder containing the bundle’s help files. Help is usually
localized to a specific language, so the folder specified by this key represents the folder name inside the
.lproj directory for the selected language.

CFBundleHelpBookName

CFBundleHelpBookName (String) identifies the main help page for your application. This key identifies
the name of the Help page, which may not correspond to the name of the HTML file. The Help page name
is specified in the CONTENT attribute of the help file’s META tag.

CFBundleIconFile

CFBundleIconFile (String) identifies the file containing the icon for the bundle. The filename you specify
does not need to include the extension, although it may. The Finder looks for the icon file in the Resources
directory of the bundle.

If your bundle uses a custom icon, you must specify this property. If you do not specify this property, the
Finder (and other applications) display your bundle with a default icon.

26 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFBundleIdentifier

CFBundleIdentifier (String) identifies the type of the bundle. This identifier should be a uniform type
identifier (UTI) string, for example com.mycompany.MyApp. This key does not uniquely identify a specific
bundle in the file system, as multiple copies of an application with the same or different version may exist.
See Uniform Type Identifiers Overview for details on UTIs.

The preferences system uses this string to identify the application for which a given preference applies.
Launch Services uses the bundle identifier to locate an application capable of opening a particular file, using
the first application it finds with the given identifier.

CFBundleInfoDictionaryVersion

CFBundleInfoDictionaryVersion (String) identifies the current version of the property list structure.
This key exists to support future versioning of the information property list file format. Xcode generates this
key automatically when you build a bundle and you should not change it manually. The value for this key is
currently 6.0.

CFBundleLocalizations

CFBundleLocalizations (Array) identifies the localizations handled manually by your application. If your
executable is unbundled or does not use the existing bundle localization mechanism, you can include this
key to specify the localizations your application does handle.

Each entry in this property’s array is a string identifying the language name or ISO language designator of
the supported localization. See “Language Designations” in Internationalization Programming Topics in
Internationalization Documentation for information on how to specify language designators.

CFBundleName

CFBundleName (String) identifies the short name of the bundle. This name should be less than 16 characters
long and be suitable for displaying in the menu bar and the application’s Info window. You can include this
key in the InfoPlist.strings file of an appropriate .lproj subdirectory to provide localized values for
it. If you localize this key, you should also include the key “CFBundleDisplayName” (page 23).

CFBundlePackageType

CFBundlePackageType (String) identifies the type of the bundle and is analogous to the Mac OS 9 file
type code. The value for this key consists of a four-letter code. The type code for applications is APPL; for
frameworks, it is FMWK; for loadable bundles, it is BNDL. For loadable bundles, you can also choose a type
code that is more specific than BNDL if you want.

Key Descriptions 27
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFBundleShortVersionString

CFBundleShortVersionString (String) specifies the release version number of the bundle, which
identifies a released iteration of the application. The release version number is a string comprised of three
period-separated integers. The first integer represents major revisions to the application, such as revisions
that implement new features or major changes. The second integer denotes revisions that implement less
prominent features. The third integer represents maintenance releases.

The value for this key differs from the value for “CFBundleVersion” (page 29), which identifies an iteration
(released or unreleased) of the application.

CFBundleSignature

CFBundleSignature String) identifies the creator of the bundle and is analogous to the Mac OS 9 file
creator code. The value for this key is a string containing a four-letter code that is specific to the bundle. For
example, the signature for the TextEdit application is ttxt.

CFBundleURLTypes

CFBundleURLTypes DictionaryArray describes the URL schemes (http, ftp, and so on) supported by
the application. The purpose of this key is similar to that of “CFBundleDocumentTypes” (page 24), but it
describes URL schemes instead of document types. Each dictionary entry corresponds to a single URL scheme.
Table 4 lists the keys to use in each dictionary entry.

Table 4 Keys for CFBundleURLTypes dictionaries

DescriptionTypeKey

This key specifies the application’s role with respect to the URL type.
The value can be Editor, Viewer, Shell, or None. See “Document
Configuration” (page 47) for descriptions of these values. This key is
required.

StringCFBundleTypeRole

This key contains the name of the icon image file (minus the extension)
to be used for this URL type.

StringCFBundleURLIconFile

This key contains the abstract name for this URL type. This is the main
way to refer to a particular type. To ensure uniqueness, it is
recommended that you use a Java-package style identifier. This name
is also used as a key in the InfoPlist.strings file to provide the
human-readable version of the type name.

StringCFBundleURLName

This key contains an array of strings, each of which identifies a URL
scheme handled by this type. Examples of URL schemes include http,
ftp, and so on.

ArrayCFBundleURLSchemes

28 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFBundleVersion

CFBundleVersion (String) specifies the build version number of the bundle, which identifies an iteration
(released or unreleased) of the bundle. This is a monotonically increased string, comprised of one or more
period-separated integers. This key is not localizable.

CFPlugInDynamicRegistration

CFPlugInDynamicRegistration (String) specifies whether how host loads this plug-in. If the value is
YES, the host attempts to load this plug-in using its dynamic registration function. If the value is NO, the host
uses the static registration information included in the “CFPlugInFactories” (page 29), and
“CFPlugInTypes” (page 29) keys.

See “Plug-in Registration” in Plug-ins for information about registering plug-ins.

CFPlugInDynamicRegisterFunction

CFPlugInDynamicRegisterFunction (String) identifies the function to use when dynamically registering
a plug-in. Specify this key if you want to specify one of your own functions instead of implement the default
CFPlugInDynamicRegister function.

See “Plug-in Registration” in Plug-ins for information about registering plug-ins.

CFPlugInFactories

CFPlugInFactories (Dictionary) is used for static plug-in registration. It contains a dictionary identifying
the interfaces supported by the plug-in. Each key in the dictionary is a universally unique ID (UUID) representing
the supported interface. The value for the key is a string with the name of the plug-in factory function to call.

See “Plug-in Registration” in Plug-ins for information about registering plug-ins.

CFPlugInTypes

CFPlugInTypes (Dictionary) is used for static plug-in registration. It contains a dictionary identifying one
or more groups of interfaces supported by the plug-in. Each key in the dictionary is a universally unique ID
(UUID) representing the group of interfaces. The value for the key is an array of strings, each of which contains
the UUID for a specific interface in the group. The UUIDs in the array corresponds to entries in the
“CFPlugInFactories” (page 29) dictionary.

See “Plug-in Registration” in Plug-ins for information about registering plug-ins.

Key Descriptions 29
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

CFPlugInUnloadFunction

CFPlugInUnloadFunction String) specifies the name of the function to call when it is time to unload
the plug-in code from memory. This function gives the plug-in an opportunity to clean up any data structures
it allocated.

See “Plug-in Registration” in Plug-ins for information about registering plug-ins.

CSResourcesFileMapped

CSResourcesFileMapped Boolean) specifies whether to map this application’s resource files into memory.
Otherwise, they are read into memory normally. File mapping can improve performance in situations where
you are frequently accessing a small number of resources. However, resources are mapped into memory
read-only and cannot be modified.

LSArchitecturePriority

LSArchitecturePriority (StringArray) identifies the architectures this application supports. The order
of the strings in this array dictate the preferred execution priority for the architectures. The possible strings
for this array are listed in Table 5.

Table 5 Execution architecture identifiers

DescriptionString

The 32-bit Intel architecture.i386

The 32-bit PowerPC architecture.ppc

The 64-bit Intel architecture.x86_64

The 64-bit PowerPC architecture.ppc64

if a PowerPC architecture appears before either of the Intel architectures, Mac OS X runs the executable under
Rosetta emulation on Intel-based Macintosh computers regardless by default. To force Mac OS X to use the
current platform’s native architecture, include the “LSRequiresNativeExecution” (page 32) key in your
information property list.

LSBackgroundOnly

LSBackgroundOnly (Boolean) specifies whether this application runs only in the background. If this key
exists and is set to “1”, Launch Services runs the application in the background only. You can use this key to
create faceless background applications. You should also use this key if your application uses higher-level
frameworks that connect to the window server, but are not intended to be visible to users. Background
applications must be compiled as Mach-O executables. This option is not available for CFM applications.

30 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

LSEnvironment

LSEnvironment Dictionary) defines environment variables to be set before launching this application.
The names of the environment variables are the keys of the dictionary, with the values being the corresponding
environment variable value. Both keys and values must be strings.

These environment variables are set only for applications launched through Launch Services. If you run your
executable directly from the command line, these environment variables are not set.

LSFileQuarantineEnabled

LSFileQuarantineEnabled (Boolean) specifies whether files this application creates are quarantined by
default.

DescriptionValue

Files created by this application are quarantined by default.true

(Default) Files created by this application are not quarantined by default.false

See

This key is available in Mac OS X v10.5 and later.

LSGetAppDiedEvents

LSGetAppDiedEvents (Boolean) indicates whether the operation system notifies this application when
when one of its child process terminates. If you set the value of this key to YES, the system sends your
application an kAEApplicationDied Apple event for each child process as it terminates.

LSHasLocalizedDisplayName

LSHasLocalizedDisplayName (String) specifies whether the Finder displays the name of this application
as a localized string. When set to “1”, the Finder displays the name of your application as a localized string.
Include this key only if you include localized versions of the key “CFBundleDisplayName” (page 23) in your
language-specific InfoPList.strings files.

Including this key significantly improves the performance of localized filename display. If your bundle supports
localized display names, you should include this key in your information property list file.

LSMinimumSystemVersion

LSMinimumSystemVersion (String) indicates the minimum version of Mac OS X required for this application
to run. This string is usually of the form n.n.n where n is a number. The first number is the major version
number of the system. The second and third numbers are minor revision numbers. For example, to support
Mac OS X v10.1 and later, you would set the value of this key to "10.1.5".

Key Descriptions 31
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

If the minimum system version is not available, Mac OS X tries to display an alert panel notifying the user of
that fact, although it may not always be able to do so.

LSMinimumSystemVersionByArchitecture

LSMinimumSystemVersionByArchitecture (Dictionary) specifies the earliest Mac OS X version for a
set of architectures. This key contains a dictionary of key-value pairs. Each key corresponds to one of the
architectures associated with the “LSExecutableArchitectures” (page 30) key. The value for each key is the
minimum version of Mac OS X required for the application to run under that architecture. This string is usually
of the form n.n.n where n is a number. The first number is the major version number of the system. The
second and third numbers are minor revision numbers. For example, to support Mac OS X v10.4.9 and later,
you would set the value of this key to "10.4.9".

If the current system version is less than the required minimum version, Launch Services does not attempt
to use the corresponding architecture. This key applies only to the selection of an execution architecture and
can be used in conjunction with the “LSMinimumSystemVersion” (page 31) key, which specifies the overall
minimum system version requirement for the application.

LSMultipleInstancesProhibited

LSMultipleInstancesProhibited (Boolean) indicates whether an application is prohibited from running
simultaneously in multiple user sessions. If true, the application runs in only one user session at a time. You
can use this key to prevent resource conflicts that might arise by sharing an application across multiple user
sessions. For example, you might want to prevent users from accessing a custom USB device when it is already
in use by a different user.

Launch Services returns an appropriate error code if the target application cannot be launched. If a user in
another session is running the application, Launch Services returns a
kLSMultipleSessionsNotSupportedErr error. If you attempt to launch a separate instance of an
application in the current session, it returns kLSMultipleInstancesProhibitedErr.

LSRequiresIPhoneOS

LSRequiresIPhoneOS (Boolean) specifies whether the application can run only on iPhone OS. If this key
is set to YES, Launch Services allows the application to launch only when the host platform is iPhone OS.

LSRequiresNativeExecution

LSRequiresNativeExecution (Boolean) specifies whether to launch the application using the subbinary
for the current architecture. If this key is set to YES, Launch Services always runs the application using the
binary compiled for the current architecture. You can use this key to prevent a universal binary from being
run under Rosetta emulation on an Intel-based Macintosh computer. For more information about configuring
the execution architectures, see “LSExecutableArchitectures” (page 30).

32 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

LSUIElement

LSUIElement (String). If this key is set to “1”, Launch Services runs the application as an agent application.
Agent applications do not appear in the Dock or in the Force Quit window. Although they typically run as
background applications, they can come to the foreground to present a user interface if desired. A click on
a window belonging to an agent application brings that application forward to handle events.

The Dock and loginwindow are two applications that run as agent applications.

LSUIPresentationMode

LSUIPresentationMode (Number) identifies the initial user-interface mode for the application. You would
use this in applications that may need to take over portions of the screen that contain UI elements such as
the Dock and menu bar. Most modes affect only UI elements that appear in the content area of the screen,
that is, the area of the screen that does not include the menu bar. However, you can request that all UI
elements be hidden as well.

This key is applicable to both Carbon and Cocoa applications and can be one of the following values:

DescriptionValue

Normal mode. In this mode, all standard system UI elements are visible. This is the default value.0

Content suppressed mode. In this mode, system UI elements in the content area of the screen are
hidden. UI elements may show themselves automatically in response to mouse movements or
other user activity. For example, the Dock may show itself when the mouse moves into the Dock’s
auto-show region.

1

Content hidden mode. In this mode, system UI elements in the content area of the screen are
hidden and do not automatically show themselves in response to mouse movements or user
activity.

2

All hidden mode. In this mode, all UI elements are hidden, including the menu bar. Elements do
not automatically show themselves in response to mouse movements or user activity.

3

All suppressed mode. In this mode, all UI elements are hidden, including the menu bar. UI elements
may show themselves automatically in response to mouse movements or other user activity. This
option is available only in Mac OS X 10.3 and later.

4

LSVisibleInClassic

LSVisibleInClassic (String). If this key is set to “1”, any agent applications or background-only
applications with this key appears as background-only processes to the Classic environment. Agent applications
and background-only applications without this key do not appear as running processes to Classic at all. Unless
your process needs to communicate explicitly with a Classic application, you do not need to include this key.

Key Descriptions 33
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

NSAppleScriptEnabled

NSAppleScriptEnabled (Boolean or String). This key identifies whether the application is scriptable.
Set the value of this key to true (when typed as Boolean) or “YES” (when typed as String) if your application
supports AppleScript.

NSHumanReadableCopyright

NSHumanReadableCopyright (String). This key contains a string with the copyright notice for the bundle;
for example, © 2008, My Company. You can load this string and display it in an About dialog box. This key
can be localized by including it in your InfoPlist.strings files. This key replaces the obsolete
CFBundleGetInfoString key.

NSJavaNeeded

NSJavaNeeded (Boolean or String). This key specifies whether the Java VM must be loaded and started
up prior to executing the bundle code. This key is required only for Cocoa Java applications to tell the system
to launch the Java environment. If you are writing a pure Java application, do not include this key.

You can also specify a string type with the value “YES” instead of a Boolean value if desired.

Deprecated in Mac OS X v10.5.

NSJavaPath

NSJavaPath (Array). This key contains an array of paths. Each path points to a Java class. The path can be
either an absolute path or a relative path from the location specified by the key “NSJavaRoot” (page 34). The
development environment (or, specifically, its jamfiles) automatically maintains the values in the array.

Deprecated in Mac OS X v10.5.

NSJavaRoot

NSJavaRoot (String). This key contains a string identifying a directory. This directory represents the root
directory of the application’s Java class files.

NSMainNibFile

NSMainNibFile (String). This key contains a string with the name of the application’s main nib file (minus
the .nib extension). A nib file is an Interface Builder archive containing the description of a user interface
along with any connections between the objects of that interface. The main nib file is automatically loaded
when an application is launched.

34 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

NSPersistentStoreTypeKey

NSPersistentStoreTypeKey (String). This key contains a string that specifies the type of Core Data
persistent store associated with a document type (see “CFBundleDocumentTypes” (page 24)). See
NSPersistentStoreCoordinator_Store_Types for possible values.

NSPrefPaneIconFile

NSPrefPaneIconFile (String). This key contains a string with the name of an image file (including
extension) containing the preference pane’s icon. This key should only be used by preference pane bundles.
The image file should contain an icon 32 by 32 pixels in size. If this key is omitted, the System Preferences
application looks for the image file using the CFBundleIconFile key instead.

NSPrefPaneIconLabel

NSPrefPaneIconLabel (String). This key contains a string with the name of a preference pane. This string
is displayed below the preference pane’s icon in the System Preferences application. You can split long names
onto two lines by including a newline character (‘\n’) in the string. If this key is omitted, the System Preferences
application gets the name from the CFBundleName key.

This key can be localized and included in the InfoPlist.strings files of a bundle.

NSPrincipalClass

NSPrincipalClass (String). This key contains a string with the name of a bundle’s principal class. This
key is used to identify the entry point for dynamically loaded code, such as plug-ins and other
dynamically-loaded bundles. The principal class of a bundle typically controls all other classes in the bundle
and mediates between those classes and any classes outside the bundle. The class identified by this value
can be retrieved using the principalClass method of NSBundle. For Cocoa applications, the value for
this key is NSApplication by default.

NSServices

NSServices (Array). This key contains an array of dictionaries specifying the services provided by the
application. Table 6 lists the keys for specifying a service:

Table 6 Keys for NSServices dictionaries

DescriptionTypeKey

This key specifies the name of the port your application monitors for
incoming service requests. Its value depends on how the service provider
application is registered. In most cases, this is the application name.
For more information, see System Services.

StringNSPortName

Key Descriptions 35
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

DescriptionTypeKey

This key specifies the name of the instance method to invoke for the
service. In Objective-C, the instance method must be of the form
messageName: userData:error:. In Java, the instance method must
be of the form messageName(NSPasteBoard,String).

StringNSMessage

This key specifies an array of data type names that can be read by the
service. The NSPasteboard class description lists several common data
types. You must include this key, the NSReturnTypes key, or both.

ArrayNSSendTypes

This key specifies an array of data type names that can be returned by
the service. The NSPasteboard class description lists several common
data types. You must include this key, the NSSendTypes key, or both.

ArrayNSReturnTypes

This key contains a dictionary that specifies the text to add to the
Services menu. The only key in the dictionary is called default and its
value is the menu item text. This value must be unique. You can use a
slash character “/” to specify a submenu. For example, Mail/Send
would appear in the Services menu as a menu named Mail with an item
named Send.

DictionaryNSMenuItem

This key is optional and contains a dictionary with the keyboard
equivalent used to invoke the service menu command. Similar to
NSMenuItem, the only key in the dictionary is called default and its
value is a single character. Users invoke this keyboard equivalent by
pressing the Command and Shift key modifiers along with the character.

DictionaryNSKeyEquivalent

This key is an optional string that contains a value of your choice.StringNSUserData

This key is an optional numerical string that indicates the number of
milliseconds Services should wait for a response from the application
providing a service when a response is required.

StringNSTimeout

UIInterfaceOrientation

UIInterfaceOrientation (String) specifies the initial orientation of the application’s user interface.

This value is based on the Interface Orientation Constants constants declared in the
UIApplication.h header file. The default style is UIInterfaceOrientationPortrait.

UIPrerenderedIcon

UIPrerenderedIcon (Boolean) specifies whether the iPhone OS applies sheen and bevel effects to the
application icon.

DescriptionValue

iPhone OS doesn’t apply sheen and bel effects to the application icon.YES

36 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

DescriptionValue

(Default) iPhone OS applies sheen and bel effects to the application icon.NO

UIRequiresPersistentWiFi

UIRequiresPersistentWiFi (Boolean) specifies whether the application requires a Wi-Fi connection.
iPhone OS maintains the active Wi-Fi connection open while the application is running.

DescriptionValue

iPhone OS opens a Wi-Fi connection when this application is launched and keeps it open while
the application is running. Use with Wi-Fi–based applications.

YES

(Default) iPhone OS closes the active Wi-Fi connection after 30 minutes.NO

UIStatusBarHidden

UIStatusBarHidden (Boolean) specifies whether the status bar is initially hidden when the application
launches.

DescriptionValue

Hides the status bar.YES

Shows the status bar.NO

UIStatusBarStyle

UIStatusBarStyle (String) specifies the style of the status bar as the application launches.

This value is based on the Status Bar Style Constants constants declared in UIApplication.h header
file. The default style is UIStatusBarStyleGray.

UTExportedTypeDeclarations

UTExportedTypeDeclarations (DictionaryArray) declares the uniform type identifiers (UTIs) owned
and exported by the application. You use this key to declare your application’s custom data formats and
associate them with UTIs. Exporting a list of UTIs is the preferred way to register your custom file types;
however, Launch Services recognizes this key and its contents only in Mac OS X v10.5 and later. This key is
ignored on versions of Mac OS X prior to version 10.5.

The value for the UTExportedTypeDeclarations key is an array of dictionaries. Each dictionary contains
a set of key-value pairs identifying the attributes of the type declaration. Table 7 lists the keys you can include
in this dictionary along with the typical values they contain. These keys can also be included in array of
dictionaries associated with the “UTImportedTypeDeclarations” (page 38) key.

Key Descriptions 37
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

Table 7 UTI property list keys

DescriptionTypeKey

(Required) Contains an array of strings. Each string identifies a UTI
to which this type conforms. These keys represent the parent
categories to which your custom file format belongs. For example,
a JPEG file type conforms to the public.image and
public.data types. For a list of high-level types, see
System-Declared Uniform Type Identifiers in Uniform Type
Identifiers Overview.

ArrayUTTypeConformsTo

A user-readable description of this type. The string associated
with this key may be localized in your bundle’s
InfoPlist.strings files.

StringUTTypeDescription

The name of the bundle icon resource to associate with this UTI.
You should include this key only for types that your application
exports.

StringUTTypeIconFile

(Required) The UTI you want to assign to the type. This string uses
the reverse-DNS format, whereby more generic types come first.
For example, a custom format for your company would have the
form com.<yourcompany>.<type>.<subtype>.

StringUTTypeIdentifier

The URL for a reference document that describes this type.StringUTTypeReferenceURL

(Required) A dictionary defining one or more equivalent type
identifiers. The key-value pairs listed in this dictionary identify the
filename extensions, MIME types, OSType codes, and pasteboard
types that correspond to this type. For example, to specify
filename extensions, you would use the key
public.filename-extension and associate it with an array of
strings containing the actual extensions. For more information
about the keys for this dictionary, see System-Declared Uniform
Type Identifiers in Uniform Type Identifiers Overview.

DictionaryUTTypeTag-
Specification

For more information about UTIs and their use, see Uniform Type Identifiers Overview.

UTImportedTypeDeclarations

UTImportedTypeDeclarations (Array) declares the uniform type identifiers (UTIs) inherently supported
(but not owned) by the application. You use this key to declare any supported types that your application
recognizes and wants to ensure are recognized by Launch Services, regardless of whether the application
that owns them is present. For example, you could use this key to specify a file format that is defined by
another company but which your program can read and export.

The value for the UTExportedTypeDeclarations key is an array of dictionaries and uses the same keys as
those for the “UTExportedTypeDeclarations” (page 37) key. For a list of these keys, see Table 7 (page 38).

For more information about UTIs and their use, see Uniform Type Identifiers Overview.

38 Key Descriptions
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Property List Key Reference

Preferences are application or system options that allow users to customize their working environment. Most
applications read in some form of user preferences. For example, a document-based application may store
preferences for the default font, automatic save options, or page setup information. Preferences are not
limited to applications, however. You can read and write preference information, including user preferences,
from any frameworks or libraries you define.

The preferences system of Mac OS X includes built-in support for preserving and restoring user settings across
sessions. Both Carbon and Cocoa applications can use Core Foundation’s Preference Services for reading and
writing preference information. Cocoa applications can also use the NSUserDefaults class to read user
preferences.

Important: The assumption with user preferences is that they are not critical; if they are lost, the application
should be able to recreate the default set of preferences. You should not store an application’s initial
configuration data as a preference. Initial configuration data is critical and should be stored in a property list
inside the application package.

The preferences system associates preference values with a key, which you use to retrieve the preference
value later. User preferences have a scope based on a combination of the user login ID, application ID, and
host (computer) name. This mechanism allows you to create preferences that apply at different levels. For
example, you can save a preference value that applies to any of the following entities:

 ■ the current user of your application on the current host

 ■ all users of your application on a specific host connected to the local network

 ■ the current user of your application on any host connected to the local network (the usual category for
user preferences)

 ■ any user of any application on any host connected to the local network

Applications should store only those preferences that represent information captured from the user. Storing
the same set of default preferences for each user is an inefficient way to manage your application’s preferences.
Preferences are stored in property list files that must be parsed to read in the preference information. A more
efficient way to manage preferences is to store a set of default preferences internally and then apply any
user-customized preferences on top of the default set.

How Preferences Are Stored

The preferences system stores preference data in files located in the Library/Preferences folder in the
appropriate file-system domain. For example, if the preference applies to a single user, the file is written to
the Library/Preferences folder in the user’s home directory. If the preference applies to all users on a
network, it goes in /Network/Library/Preferences.

How Preferences Are Stored 39
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Preferences System

The name of each file in Library/Preferences is comprised of the application’s bundle identifier followed
by the .plist extension. For example, the bundle identifier for the TextEdit application is
com.apple.TextEdit so its preferences file name is com.apple.TextEdit.plist.

To ensure that there are no naming conflicts, Apple strongly recommends that bundle identifiers take the
same form as Java package names—your company’s unique domain name followed by the application or
library name. For example, the Finder uses the identifier com.apple.finder. This scheme minimizes the
possibility of name collision and leaves you the freedom to manage the identifier name space under your
corporate domain. See the property-list key “CFBundleIdentifier” (page 27) for more information.

Problems might ensue if an application tries to write preferences to a location other than
Library/Preferences in the appropriate file-system domain. For one thing, the preferences APIs aren’t
designed for this difference. But more importantly, preferences stored in unexpected locations are excluded
from the preferences search list and so might not be noticed by other applications, frameworks, or system
services.

In Mac OS X version 10.3 and earlier, preferences were saved in the XML property list format. In Mac OS X
version 10.4 and later, preferences are saved in the binary plist format. You can convert a file from one format
to another using the plutil(1) tool (for example so that you can examine the plist in XML form), but you
should not rely on the format of the file. You should refrain from editing preference files manually. Entering
incorrect information or malformed data could cause problems when your application tries to read the file
later. The correct way to extract information from preference domains in your application is through the
preferences APIs.

Preference Domains

When your application searches for an existing preference value, the preferences system uses the current
preference domain to limit the scope of the search. Similarly, when your application writes out new preferences,
the values are scoped to the current domain.

Preference domains are identified by three pieces of information: a user ID, an application identifier, and a
host name. In most cases, you would specify preferences for the current user and application. However, you
might also decide to store application-level preferences. To do that, you would use the functions in the Core
Foundation Preferences Utilities to specify exactly which domain you wanted to use. For information on how
to use these routines, see Preferences Programming Topics for Core Foundation.

Table 1 shows all of the preference domains. The routines for retrieving preferences search through the
preference domains in the order shown here until they find the requested key. Thus, if a preference is not
found in a more user-specific and application-specific domain, the routines search the more global domains
for the information.

Table 1 Preference domains in search order

Host ScopeApplication ScopeUser ScopeSearch order

Current HostCurrent ApplicationCurrent User1

Any HostCurrent ApplicationCurrent User2

Current HostAny ApplicationCurrent User3

Any HostAny ApplicationCurrent User4

40 Preference Domains
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Preferences System

Host ScopeApplication ScopeUser ScopeSearch order

Current HostCurrent ApplicationAny User5

Any HostCurrent ApplicationAny User6

Current HostAny ApplicationAny User7

Any HostAny ApplicationAny User8

The defaults Utility

The preferences system of Mac OS X includes a command-line utility named defaults for reading, writing,
and removing preferences (also known as user defaults) from the application domain or other domains. The
defaults utility is invaluable as an aid for debugging applications. Many preferences are accessible through
an application’s Preference dialog (or the equivalent), but preferences such as the position of a window aren’t
always available. For those preferences, you can view them with the defaults utility.

To run the utility, launch the Terminal application and, in a BSD shell, enter defaults plus command options
describing what you want. For a terse description of syntax and arguments, run the defaults command by
itself. For a more complete description, read the man page for defaults or run the command with the
usage argument:

$ defaults usage

You should avoid changing values using the defaults tool while the target application is running. If you
make such a change, the application is unlikely to see the change and more likely to overwrite the new value
you just specified.

The defaults Utility 41
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Preferences System

42 The defaults Utility
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Preferences System

Environment variables are another way to configure your application dynamically. Many applications and
systems use environment variables to store important information, such as the location of executable programs
and header files. The variable consists of a key string with the name of the variable and a value string.

To get the value of an environment variable, your application must call the getenv function that is part of
the standard system library (stdlib.h). You pass this function a string containing the name of the variable
you want and it returns the value, or NULL if no variable of that name was found. Your application can then
use the variable as it sees fit.

Environment Variable Scope

Environment variables are scoped to the process that created them and to any children of that process. The
Terminal application treats each window as its own separate process for the sake of managing environment
variables. Thus, if you create a Terminal window and define some environment variables, any programs you
execute from that window inherit those variables. However, you cannot access the variables defined in the
first window from a second Terminal window, and vice versa.

Sessions can be inherited. For example, when a user logs in, the system creates a user session and defines a
standard set of environment variables. Any processes launched by the user during the session inherit the
user environment variables. However, this inheritance is a read-only relationship. Any changes made to the
variable by a process remain local to that process and are not inherited by other processes.

User Session Environment Variables

Mac OS X supports the definition of environment variables in the scope of the current user session. On login,
the loginwindow application looks for a special property list file with the name environment.plist. This
file must be located in a directory called .MacOSX at the root of the user’s home directory. The path to this
file is as follows:

~/.MacOSX/environment.plist

If an environment.plist file exists, loginwindow looks for keys that are children of the root element. For
each of these keys, loginwindow registers an environment variable of the same name and assigns it the value
of the key. This file supports only the definition of environment variables. You cannot use this file to execute
other forms of script code. The format of the file is the same XML format as other property list files, with each
key in the file containing a string value. For example, in the Property List Editor application (located in
<Xcode>/Applications/Utilities, where <Xcode> is your Xcode installation directory), such a
property-list file might look like the following:

Environment Variable Scope 43
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Environment Variables

Application-Specific Environment Variables

There are two ways to make environment variables available to an application. The first is to define the
variables in a Terminal session and then launch the application from the same session. When launched from
Terminal, the application inherits the session settings, including any environment variables defined there.

The second way to associate environment variables with an application is to include the LSEnvironment
key in the application’s information property list file. The LSEnvironment key lets you specify an arbitrary
number of key/value pairs representing environment variables and their values. Because it requires modifying
the application’s information property list file, use of this key is best for options that do not change too
frequently. For more information on using this key, see “Property List Key Reference” (page 17).

44 Application-Specific Environment Variables
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Environment Variables

The primary way to configure an application is with an information property list file. In this file goes the
information needed to register the application with the Finder and Launch Services. The following sections
show you which keys to use when configuring an application and some legacy techniques for configuring
an application.

Information Property List Files

An application bundle should always contain an information property list file with keys to identify the
application to the Finder and Launch Services. The sections that follow describe the required and
recommended keys you should include. For a complete description of these keys, see “Property List Key
Reference” (page 17).

Required Properties

The following sections list the keys applications should include in their information property list files.

Application Keys

At a minimum, all applications should contain the following keys in their information property list file:

 ■ CFBundleDisplayName

 ■ CFBundleIdentifier

 ■ CFBundleName

 ■ CFBundlePackageType

 ■ CFBundleShortVersionString

 ■ CFBundleSignature

 ■ CFBundleVersion

 ■ LSHasLocalizedDisplayName

 ■ NSHumanReadableCopyright

 ■ NSAppleScriptEnabled

These keys identify your application to the system and provide some basic information about the services it
provides. Cocoa applications should also include the following keys to identify key resources in the bundle:

 ■ NSMainNibFile

Information Property List Files 45
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Guidelines for Configuring Applications

 ■ NSPrincipalClass

Note: If you are building a Cocoa application using an Xcode template, the NSMainNibFile and
NSPrincipalClass keys are typically already set in the template project.

Document Keys

If your application associates itself with one or more document types, you should include a
CFBundleDocumentTypes key to identify those types. The entry for each document type should contain
the following keys:

 ■ CFBundleTypeIconFile

 ■ CFBundleTypeName

 ■ CFBundleTypeRole

In addition to these keys, it must contain at least one of the following keys:

 ■ LSItemContentTypes

 ■ CFBundleTypeExtensions

 ■ CFBundleTypeMIMETypes

 ■ CFBundleTypeOSTypes

The LSItemContentTypes key takes precedence over other keys present when the application runs in Mac
OS X v10.4 and later. You can continue to include the other keys for compatibility with older versions of the
system, however.

Recommended Properties

If you are building a universal binary, you should generally specify the preferred executable architectures
you support. Although the native architecture for the current platform is preferred, you may need to run
your application under a different architecture to support legacy plug-ins.

To specify which environment you want your application to run in, include the following key in your
information property list file:

 ■ LSExecutableArchitectures

 ■ LSRequiresNativeExecution

The LSRequiresNativeExecution key is recommended only if you want to ensure that your universal
binary does not run under Rosetta because a PowerPC architecture is preferred over Intel-based architectures.
For more information, see “LSExecutableArchitectures” (page 30).

46 Information Property List Files
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Guidelines for Configuring Applications

Localized Properties

The following list contains the keys that are appropriate to include in your language-specific
InfoPlist.strings files:

 ■ CFBundleDisplayName

 ■ CFBundleName

 ■ CFBundleShortVersionString

 ■ NSHumanReadableCopyright

 ■ CFBundleGetInfoString

Document Configuration

Information property list files let you define the role your application plays for its supported document and
Clipboard (pasteboard) types. This role defines the relationship between your application and the associated
type. Your application can take one of the following roles for any given type:

 ■ Editor. The application can read, manipulate, and save the type.

 ■ Viewer. The application can read and present data of that type.

 ■ Shell. The application provides runtime services for other processes—for example, a Java applet viewer.
The name of the document is the name of the hosted process (instead of the name of the application),
and a new process is created for each document opened.

 ■ None. The application does not understand the data, but is just declaring information about the type
(for example, the Finder declaring an icon for fonts).

The role you choose applies to all of the concrete formats associated with the document or Clipboard type.
For example, the Safari application associates itself as a viewer for documents with the “.html”, “.htm”, “shtml,
or “jhtml” filename extensions. Each of these extensions represents a concrete type of document that falls
into the overall category of HTML documents. This same document can also support MIME types and 4-byte
OS types used to identify files in Mac OS 9.

The PkgInfo File

The PkgInfo file is an alternate way to specify the type and creator codes of your application or bundle. This
file is not required, but can improve performance for code that accesses this information. Regardless of
whether you provide this file, you should always include type and creator information in your information
property list file using the CFBundlePackageType and CFBundleSignature keys, respectively.

The contents of the PkgInfo file are the 4-byte package type followed by the 4-byte signature of your
application. Thus, for the TextEdit application, whose type is 'APPL' and whose signature is 'ttxt', the
file would contain the ASCII string “APPLttxt”.

Document Configuration 47
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Guidelines for Configuring Applications

Using a ‘plst’ Resource

It is possible to incorporate configuration information into a single-file, CFM-based application. However, if
you want your application to run natively in Mac OS X—as opposed to running in the Classic compatibility
environment—you must provide a 'plst' resource. The 'plst' resource allows the Finder to handle your
application and document types properly. If your application does not contain this resource, the Finder
automatically runs your application in the Classic compatibility environment.

To create a 'plst' resource, add a new instance with ID 0 to your application resource fork. The content of
this resource is the raw XML text from what would be your Info.plist file if your application were bundled.
The encoding of this XML data should be UTF-8.

See “Putting Info.plist Files in a Flat Executable” (page 15) for information on including an information-property
list file in an unbundled Mach-O executable.

Using Launch Arguments

If you have a Cocoa application, you can override many user defaults settings by specifying them on the
command line. In addition, Cocoa recognizes a few additional arguments for opening and printing files. Table
1 lists some of the more commonly used command-line arguments for Cocoa applications.

Table 1 Command-line arguments for Cocoa applications

DescriptionArgument

Opens the specified file after the application finishes launching. Uses the
application: openFile: method of the application’s delegate to open
the file.

-NSOpenfileName

Opens the specified file as a temp file after the application finishes launching.
Uses the application: openTempFile: method of the application’s
delegate to open the file.

-NSOpenTempfileName

Prints the specified file after the application finishes launching. Uses the
application: printFile:method of the application’s delegate to print
the file.

-NSPrintfileName

Shows areas that are about to be drawn in yellow so that you can see which
parts of your views are being updated. This is similar to the feature that is
available through the Quartz Debug application but operates only on the
specified application.

-NSShowAllDrawing<YES>

Displays a running log of events received by the application.-NSTraceEvents<YES>

48 Using a ‘plst’ Resource
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Guidelines for Configuring Applications

This table describes the changes to Runtime Configuration Guidelines.

NotesDate

Updated multiplatform information.2008-07-08

Added LSRequiresIPhoneOS, UIRequiresPersistentWiFi,
UIStatusBarStyle, UIStatusBarHidden, UIInterfaceOrientation,
LSFileQuarantineEnabled, LSHandlerRankkeys.

Updated property list keys to include UTI-based keys. Updated configuration
guidelines to include Intel-based keys.

2007-04-18

Reintroduced the CFBundleGetInfoString key and clarified details about the
NSAppleScriptEnabled key.

2006-11-07

Added details on the new purpose of the CFBundleGetInfoString key.

Clarified the possible types of the NSAppleScriptEnabled key.

Added definition of NSPersistentStoreTypeKey.2006-09-05

Updated description of the CFBundleVersion and CFBundleShortVersionString
keys.

2006-07-24

Undocumented the CFBundleGetInfoString key.

Made minor editorial changes.

Updated description of CFBundleIdentifier key.2006-04-04

Modified example for LSMinimumSystemVersion key.2005-11-09

Updated description of NSPrincipalClass key. Added information about how to
put Info.plist data into flat executables. Added environment.plist illustration.

2005-08-11

Updated for Mac OS X v10.4.2005-04-29

Added CFBundleAllowMixedLocalizations key. Removed CFBundleGetInfoHTML
key, which was included erroneously and is not supported.

2005-02-03

Added notes about the correct capitalization of files and directories in a bundle.2004-08-31

Minor bug fixes.2004-04-15

Minor bug fixes.2004-01-08

Minor bug fixes.2003-12-02

49
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

NotesDate

First version of Runtime Configuration. Some of the information in this topic
previously appeared in System Overview.

2003-08-07

50
2008-07-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Runtime Configuration Guidelines
	Contents
	Tables and Listings
	Introduction
	Information Property List Files
	Standard Information Property List Files
	Localizing Property List Values
	Creating and Editing Property Lists
	An Example of an Information Property List File
	Putting Info.plist Files in a Flat Executable

	Property List Key Reference
	Key Summary
	Key Descriptions
	APInstallerURL
	APFiles
	ATSApplicationFontsPath
	CFAppleHelpAnchor
	CFBundleAllowMixedLocalizations
	CFBundleDevelopmentRegion
	CFBundleDisplayName
	CFBundleDocumentTypes
	CFBundleExecutable
	CFBundleGetInfoString
	CFBundleHelpBookFolder
	CFBundleHelpBookName
	CFBundleIconFile
	CFBundleIdentifier
	CFBundleInfoDictionaryVersion
	CFBundleLocalizations
	CFBundleName
	CFBundlePackageType
	CFBundleShortVersionString
	CFBundleSignature
	CFBundleURLTypes
	CFBundleVersion
	CFPlugInDynamicRegistration
	CFPlugInDynamicRegisterFunction
	CFPlugInFactories
	CFPlugInTypes
	CFPlugInUnloadFunction
	CSResourcesFileMapped
	LSArchitecturePriority
	LSBackgroundOnly
	LSEnvironment
	LSFileQuarantineEnabled
	LSGetAppDiedEvents
	LSHasLocalizedDisplayName
	LSMinimumSystemVersion
	LSMinimumSystemVersionByArchitecture
	LSMultipleInstancesProhibited
	LSRequiresIPhoneOS
	LSRequiresNativeExecution
	LSUIElement
	LSUIPresentationMode
	LSVisibleInClassic
	NSAppleScriptEnabled
	NSHumanReadableCopyright
	NSJavaNeeded
	NSJavaPath
	NSJavaRoot
	NSMainNibFile
	NSPersistentStoreTypeKey
	NSPrefPaneIconFile
	NSPrefPaneIconLabel
	NSPrincipalClass
	NSServices
	UIInterfaceOrientation
	UIPrerenderedIcon
	UIRequiresPersistentWiFi
	UIStatusBarHidden
	UIStatusBarStyle
	UTExportedTypeDeclarations
	UTImportedTypeDeclarations

	The Preferences System
	How Preferences Are Stored
	Preference Domains
	The defaults Utility

	Environment Variables
	Environment Variable Scope
	User Session Environment Variables
	Application-Specific Environment Variables

	Guidelines for Configuring Applications
	Information Property List Files
	Required Properties
	Application Keys
	Document Keys

	Recommended Properties
	Localized Properties

	Document Configuration
	The PkgInfo File
	Using a ‘plst’ Resource
	Using Launch Arguments

	Revision History

