
Universal Binary Programming Guidelines,
Second Edition
Mac OS X

2009-02-04

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, ColorSync, eMac, FireWire, Logic, Mac,
Mac OS, Macintosh, Objective-C, Pages,
Panther, Quartz, QuickDraw, QuickTime,
Rosetta, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Finder and Spotlight are trademarks of Apple
Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

MMX is a trademark of Intel Corporation or its
subsidiaries in the United States and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Who Should Read This Document? 9
Organization of This Document 9
Assumptions 10
Conventions 10

Chapter 1 Building a Universal Binary 11

Build Assumptions 11
Building Your Code 12
Debugging 15
Troubleshooting Your Built Application 15
Determining Whether a Binary Is Universal 16
Build Options 17

Default Compiler Options 17
Architecture-Specific Options 18
Autoconf Macros 18

See Also 19

Chapter 2 Architectural Differences 21

Alignment 21
Bit Fields 21
Byte Order 21
Calling Conventions 22
Code on the Stack: Disabling Execution 22
Data Type Conversions 22
Data Types 23
Divide-By-Zero Operations 23
Extensible Firmware Interface (EFI) 23
Floating-Point Equality Comparisons 24
Structures and Unions 24
See Also 24

Chapter 3 Swapping Bytes 25

Why Byte Ordering Matters 25
Guidelines for Swapping Bytes 27
Byte-Swapping Routines 28
Byte-Swapping Strategies 28

Constants 29

3
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

Custom Apple Event Data 29
Custom Resource Data 29
Floating-Point Values 30
Integers 31
Network-Related Data 32
OSType-to-String Conversions 33
Unicode Text Files 33
Values in an Array 35

Writing a Callback to Swap Data Bytes 35
See Also 40

Chapter 4 Guidelines for Specific Scenarios 41

Aliases 41
Archived Bit Fields 41
Automator Scripts 41
Bit Shifting 42
Bit Test, Set, and Clear Functions: Carbon and POSIX 42
CPU Subtype 42
Dashboard Widgets 43
Deprecated Functions 43
Disk Partitions 43
Double-Precision Values: Bit-by-Bit Sensitivity 43
Finder Information and Low-Level File System Operations 44
FireWire Device Access 44
Font-Related Resources 44
GWorlds 45
Java Applications 45
Java I/O API (NIO) 46
Machine Location Data Structure 46
Mach Processes: The Task for PID Function 46
Metrowerks PowerPlant 47
Multithreading 47
Objective-C: Messages to nil 47
Objective-C Runtime: Sending Messages 47
Open Firmware 48
OpenGL 48
OSAtomic Functions 51
Pixel Data 51
PostScript Printing 52
Quartz Bitmap Data 52
QuickDraw Routines 52
QuickTime Components 53
QuickTime Metadata Functions 53
Runtime Code Generation 53
Spotlight Importers 54

4
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

System-Specific Predefined Macros 54
USB Device Access 54
See Also 54

Chapter 5 Preparing Vector-Based Code 55

Accelerate Framework 55
Rewriting AltiVec Instructions 56
See Also 56

Appendix A Rosetta 57

What Can Be Translated? 57
How It Works 58
Special Considerations 58
Forcing an Application to Run Translated 59

Make a Setting in the Info Window 60
Use Terminal 60
Modify the Property List 60
Use the sysctlbyname Function 61

Preventing an Application from Opening Using Rosetta 61
Programmatically Detecting a Translated Application 61
Troubleshooting 63

Appendix B Architecture-Independent Vector-Based Code 67

Architecture-Specific Code 67
Architecture-Independent Matrix Multiplication 71

Appendix C 32-Bit Application Binary Interface 73

Appendix D 64-Bit Application Binary Interface 75

Document Revision History 77

5
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Building a Universal Binary 11

Figure 1-1 The Build pane 13
Figure 1-2 Architectures settings 14
Figure 1-3 The Chess application has a Universal binary 17
Table 1-1 Default values for compiler flags on an Intel-based Macintosh computer 18

Chapter 2 Architectural Differences 21

Listing 2-1 Code that illustrates byte-ordering differences 21
Listing 2-2 Architecture-dependent code 22
Listing 2-3 A union whose components can be affected by byte order 24

Chapter 3 Swapping Bytes 25

Figure 3-1 Big-endian byte ordering compared to little-endian byte ordering 26
Table 3-1 Byte order marks 33
Listing 3-1 A data structure that contains multibyte and single-byte data 25
Listing 3-2 Encoding a 64-bit floating-point value 30
Listing 3-3 Decoding a 32-bit floating-point value 31
Listing 3-4 Swapping a 16-bit integer from big-endian to host-endian 31
Listing 3-5 Swapping integers from little-endian to host-endian 31
Listing 3-6 A routine for swapping the bytes of the values in an array 35
Listing 3-7 A declaration for a custom resource 36
Listing 3-8 A flipper function for RGBColor data 37
Listing 3-9 A flipper for the custom 'PREF' resource 37

Chapter 4 Guidelines for Specific Scenarios 41

Figure 4-1 A test image that can help locate the source of color problems 51
Table 4-1 Quartz constants that specify byte ordering 52

Appendix A Rosetta 57

Figure A-1 The Info window for the Calculator application 60
Figure A-2 Rosetta listens for a port connection 63
Figure A-3 Terminal windows with the commands for debugging a PowerPC binary on an

Intel-based Macintosh computer 65
Listing A-1 A structure whose endian format depends on the architecture 59
Listing A-2 A routine that controls the preferred CPU type for sublaunched processes 61
Listing A-3 A utility routine for calling the sysctlbyname function 62

7
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

Listing A-4 A routine that determines whether a process is running natively or translated 62

Appendix B Architecture-Independent Vector-Based Code 67

Listing B-1 Architecture-specific code needed to support matrix multiplication 67
Listing B-2 Architecture-independent code that performs matrix multiplication 71

8
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Universal Binary Programming Guidelines will assist experienced developers to build and modify their Mac OS
X applications to run as universal binaries. Universal binaries run natively on Macintosh computers using
PowerPC or Intel microprocessors and deliver optimal performance for both architectures in a single package.

This document is designed to help developers determine exactly how much work needs to be done and
provides useful tips for general as well as specific code modification scenarios. It describes the prerequisites
for building code as a universal binary and shows how to do so using Xcode 2.2. It also discusses the differences
between the Intel and PowerPC architectures that can affect code behavior and provides guidelines for
ensuring that universal binary code builds correctly.

This version of Universal Binary Programming Guidelines represents a significant update since its introduction
at the Apple Worldwide Developers Conference in June, 2005. It brings together all the information that
developers need to make the transition to Intel-based Macintosh computers. This version includes pointers
to newly revised tools documentation—“Building Universal Binaries” in Xcode Project Management Guide,
GCC Porting Guide, Cross-Development Programming Guide, and more—as well as improved guidelines and
tips. Anyone who has an older version of Universal Binary Programming Guidelines will want to replace it with
this version.

Who Should Read This Document?

Any developer who currently has an application that runs in Mac OS X will want to read this document to
learn how to modify their code so that it runs natively on all current Apple hardware. Developers who have
not yet written an application for the Macintosh, but are planning to do so, will want to follow the guidelines
in the document to ensure that their code can run as a universal binary.

Organization of This Document

This document is organized into the following chapters:

 ■ “Building a Universal Binary” (page 11) shows how to use Xcode 2.2 to build native and universal binaries,
describes build options, and provides troubleshooting information for code that doesn’t run properly
on an Intel-based Macintosh computer.

 ■ “Architectural Differences” (page 21) outlines the major differences between the x86 and PowerPC
architectures. Understanding the differences will help you to write portable code.

 ■ “Swapping Bytes” (page 25) describes byte-ordering differences in detail, provides a list of byte-swapping
routines, and discusses strategies for a number of scenarios that require you to swap bytes. This is a
must-read chapter for all Mac OS X developers. It will help you understand how to avoid byte-ordering
issues when transferring data and data files between architectures.

Who Should Read This Document? 9
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Guidelines for Specific Scenarios” (page 41) contains tips for a variety of situations that are not common
to most applications.

 ■ “Preparing Vector-Based Code” (page 55) discusses the options available for those developers who have
high-performance computing needs.

This document contains the following appendixes:

 ■ “Rosetta” (page 57) describes the translation process that allows PowerPC binaries to run on an Intel-based
Macintosh computer.

 ■ “Architecture-Independent Vector-Based Code” (page 67) uses matrix multiplication as an example to
show how to write vector code with a minimum amount of architecture-specific coding.

 ■ “32-Bit Application Binary Interface” (page 73) provides information on where to find details.

 ■ “64-Bit Application Binary Interface” (page 75) provides information on where to find details.

Assumptions

The document assumes the following:

 ■ Your application runs in Mac OS X.

Your application can use any of the Mac OS X development environments: Carbon, Cocoa, Java, or BSD
UNIX.

If your application runs in the UNIX operating system but not specifically in Mac OS X, you should first
read Porting UNIX/Linux Applications to Mac OS X.

If your application runs only in the Windows operating system, you should first read Porting to Mac OS
X fromWindows Win32 API.

If you are new to Mac OS X, you should take a look at Mac OS X Technology Overview.

 ■ You know how to use Xcode.

Currently Xcode is the only GUI tool available that compiles code to run universally.

If you are unfamiliar with Xcode, you might want to take a look at Xcode Workspace Guide.

If you have been using CodeWarrior, you should read Porting CodeWarrior Projects to Xcode.

Conventions

The term x86 is a generic term used in some parts of this book to refer to the class of microprocessors
manufactured by Intel. This book uses the term x86 as a synonym for IA-32 (Intel Architecture 32-bit).

10 Assumptions
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Architectural differences between Macintosh computers that use Intel and PowerPC microprocessors can
cause existing PowerPC code to behave differently when built and run natively on a Macintosh computer
that uses an Intel microprocessor. The extent to which architectural differences affect your code depends on
the level of your source code. Most existing code is high-level source code that is not specific to the processor.
If your application falls into this category, you’ll find that creating a universal binary involves adjusting code
in a few places. Cocoa developers may need to make fewer adjustments than Carbon developers whose code
was ported from Mac OS 9 to Mac OS X.

Most code that uses high-level frameworks and that builds with GCC 4.0 in Mac OS X v10.4 will build with
few, if any, changes on an Intel-based Macintosh computer. The best approach for any developer in that
situation is to build the existing code as a universal binary, as described in this chapter, and then see how
the application runs on an Intel-based Macintosh. Find the places where the code doesn’t behave as expected
and consult the sections in this document that cover those issues.

Developers who use AltiVec instructions in their code or who intentionally exploit architectural differences
for optimization or other purposes will need to make the most code adjustments. These developers will
probably want to consult the rest of this document before building a universal binary. AltiVec programmers
should read “Preparing Vector-Based Code” (page 55).

This chapter describes how to use Xcode 2.2 to create a universal binary, provides troubleshooting information,
and lists relevant build options. You’ll find that the software development workflow on an Intel-based
Macintosh computer is exactly the same as the software development workflow on a PowerPC-based
Macintosh.

Build Assumptions

Before you build your code as a universal binary, you must ensure that:

 ■ Your application already builds for Mac OS X. Your application can use any of the Mac OS X development
environments: Carbon, Cocoa, Java, or BSD UNIX.

 ■ Your application uses the Mach-O executable format. Mach-O binaries are the only type of binary that
run natively on an Intel-based Macintosh computer. If you are already using the Xcode compilers and
linkers, your application is a Mach–O binary. Carbon applications based on the Code Fragment Manager
Preferred Executable Format (PEF) must be changed to Mach-O.

 ■ Your Xcode target is a native Xcode target. If it isn’t, in Xcode you can choose Project > Upgrade All
Targets in Project to Native.

 ■ Your code project is ported to GCC 4.0. Xcode uses GCC 4.0 for targeting Intel-based Macintosh computers.
You may want to look at the document GCC Porting Guide to assess whether you need to make any
changes to your code to allow it to compile using GCC 4.0.

 ■ You installed the Mac OS X v10.4 universal SDK. The installer places the SDK in this location:

/Developer/SDKs/MacOSX10.4u.sdk

Build Assumptions 11
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

Building Your Code

If you have already been using Xcode to build applications on a PowerPC-based Macintosh, you’ll see that
building your code on an Intel-based Macintosh computer is accomplished in the same way. By default,
Xcode compiles code to run on the architecture on which you build your Xcode project. Note that your Xcode
target must be a native target.

Tip: CodeWarrior users can read Xcode From a CodeWarrior Perspective for a discussion of the similarities
and differences between the two. This information can help you to put your CodeWarrior experience to work
in Xcode.

When you are in the process of developing your project, you’ll want to use the following settings for the
Default and Debug configurations:

 ■ Keep the Architectures settings set to $(NATIVE_ARCH).

 ■ Change the Mac OS X Deployment Target settings to Mac OS X 10.4.

 ■ Make sure the SDKROOT setting is /Developer/SDKs/MacOSX10.4u.sdk.

You can set the SDK root for the project by following these steps:

1. Open your project in Xcode 2.2 or later.

Make sure that your Xcode target is a native target. If it isn’t, you can choose Project > Upgrade All
Targets in Project to Native.

2. In the Groups & Files list, click the project name.

3. Click the Info button to open the Info window.

4. In the General pane, in the Cross-Develop Using Target SDK pop-up menu, choose Mac OS X 10.4
(Universal).

If you don’t see Mac OS X 10.4 (Universal) as a choice, look in the following directory to make sure that
the universal SDK is installed:

/Developer/SDKs/MacOSX10.4u.sdk

If it’s not there, you’ll need to install this SDK before you can continue.

5. Click Change in the sheet that appears.

The Debug build configuration turns on ZeroLink, Fix and Continue, and debug-symbol generation, among
other settings, and turns off code optimization.

When you are ready to test your application on both architectures, you’ll want to use the Release configuration.
This configuration turns off ZeroLink and Fix and Continue. It also sets the code-optimization level to optimize
for size. As with the Default and Debug configurations, you’ll want to set the Mac OS X Deployment Target
to Mac OS X 10.4 and the SDK root to MacOSX10.4u.sdk. To build a universal binary, the Architectures
setting for the Release configuration must be set to build on Intel and PowerPC.

You can change the Architectures setting by following these steps:

12 Building Your Code
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

1. Open your project in Xcode 2.2 or later.

2. In the Groups & Files list, click the project name.

3. Click the Info button to open the Info window.

4. In the Build pane (see Figure 1-1), choose Release from the Configuration pop-up menu.

Figure 1-1 The Build pane

Building Your Code 13
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

5. Select the Architectures setting and click Edit. In the sheet that appears, select the PowerPC and Intel
options, as shown in Figure 1-2.

Figure 1-2 Architectures settings

6. Close the Info window.

7. Build and run the project.

If your application doesn’t build, see “Debugging” (page 15).

If your application builds but does not behave as expected when you run it as a native binary on an Intel-based
Macintosh computer, see “Troubleshooting Your Built Application” (page 15).

If your application behaves as expected, don’t assume that it also works on the other architecture. You need
to test your application on both PowerPC Macintosh computers and Intel-based Macintosh computers. If
your application reads data from and writes data to disk, you should make sure that you can save files on
one architecture and open them on the other.

14 Building Your Code
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

Note: Xcode 2.x has per-architecture SDK support. For example, you can target Mac OS X versions 10.3 and
10.4 for PowerPC while also targeting Mac OS X v10.4 and later for Intel-based Macintosh computers.

For information on default compiler settings, architecture-specific options, and Autoconf macros, see “Build
Options” (page 17).

For information on building with version-specific SDKs for PowerPC (Mac OS X v10.3, v10.2, and so forth)
while still building a universal binary for both PowerPC and Intel-based Macintosh computers, see the following
resources:

 ■ Using Cross Development in Xcode.

 ■ Cross-Development and Universal Binaries in the Cross-Development ProgrammingGuide provides details
on to create executable files that contain object code for both Intel-based and PowerPC-based Macintosh
computers.

Debugging

Xcode uses GDB for debugging, so you’ll want to review the XcodeDebuggingGuide document. Xcode provides
a powerful user interface to GDB that lets you step through your code, set breakpoints and view variables,
stack frames, and threads.

Debugging with GDB—an Open Source document that explains how to use GDB—is another useful resource
that you’ll want to look at. It provides a lot of valuable information, including how to get a list of breakpoints
for debugging.

If you are moving code to GCC 4.0, you can find remedies for most linking issues and compiler warnings by
consulting GCC Porting Guide. You can find additional information on the GCC options you can use to request
or suppress warnings in Section 3.8 of the GNU C/C++/Objective-C 4.0.1 Compiler User Guide.

Troubleshooting Your Built Application

Here are the most typical behavior problems you’ll observe when your application runs natively on an
Intel-based Macintosh computer:

 ■ The application crashes.

 ■ There are unexpected numerical results.

 ■ Color is displayed incorrectly.

 ■ Text is not displayed properly—characters from the Last Resort font or unexpected Chinese or Japanese
characters appear.

 ■ Files are not read or written correctly.

 ■ Network communication does not work properly.

Debugging 15
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

The first two problems in the list are typically caused by architecture-dependent code. On an Intel-based
Macintosh computer, an integer divide-by-zero exception results in a crash, but on PowerPC the same
operation returns zero. In these cases, the code must be rewritten in an architecture-independent manner.
“Architectural Differences” (page 21) discusses the major differences between Macintosh computers that
use PowerPC and Intel microprocessors. That chapter can help you determine which code is causing the
crash or the unexpected numerical results.

The last four problems in the list are most often caused by byte-ordering differences between architectures.
These problems are easily remedied by taking the byte order into account when you read and write data.
The strategies available for handling byte ordering, as well as an in-depth discussion of byte-ordering
differences, are provided in “Swapping Bytes” (page 25). Keep in mind that Mac OS X ensures that
byte-ordering is correct for anything it is responsible for. Apple-defined resources (such as menus) won’t
result in problem behavior. Custom resources provided by your application, however, can result in problem
behavior. For example, if images in your application seem to have a cyan tint, it’s quite likely that your
application is writing alpha channel data to the blue channel. For this specific issue, depending on the APIs
that you are using, you’d want to consult the sections “GWorlds” (page 45), “Pixel Data ” (page 51), or other
graphics-related sections in “Guidelines for Specific Scenarios” (page 41).

Apple engineers prepared a lot of code to run natively on an Intel-based Macintosh computer—including
the operating system, most Apple applications, and Apple tools. The guidelines in this book are the result of
their work. In addition to the more common issues discussed in “Architectural Differences” (page 21) and
“Swapping Bytes” (page 25), the engineers identified a number of narrowly focused issues. These are described
in “Guidelines for Specific Scenarios” (page 41). You will want to at least glance at this chapter to see if your
code can benefit from any of the information.

Determining Whether a Binary Is Universal

You can determine whether an application has a universal binary by looking at the Kind entry in the General
section of the Info window for the application (see Figure 1-3). To open the Info window, click the application
icon and press Cmd-I.

16 Determining Whether a Binary Is Universal
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

Figure 1-3 The Chess application has a Universal binary

On an Intel-based Macintosh computer, when you double-click an application that doesn’t have an executable
for the native architecture, it might launch. Whether or not it launches depends on how compatible the
application is with Rosetta. For more information, see “Rosetta” (page 57).

Build Options

This section contains information on the build options that you need to be aware of when using Xcode 2.2
and later on an Intel-based Macintosh computer. It lists the default compiler options, discusses how to set
architecture-specific options, and provides information on using GNU Autoconf macros.

Default Compiler Options

In Xcode 2.2 and later on an Intel-based Macintosh computer, the defaults for compiler flags that differ from
standard GCC distributions are listed in Table 1-1.

Build Options 17
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

Table 1-1 Default values for compiler flags on an Intel-based Macintosh computer

Specifies toDefault valueCompiler flag

Use SSE instructions for floating-point math.sse-mfpmath

Enable the MMX, SSE, and SSE2 extensions in the Intel instruction set
architecture.

On by default-msse2

Architecture-Specific Options

Most developers don’t need to use architecture-specific options for their projects.

In Xcode, to set one flag for an Intel-based Macintosh and another for PowerPC, you use the
PER_ARCH_CFLAGS_i386 and PER_ARCH_CFLAGS_ppc build settings variables to supply the
architecture-specific settings.

For example to set the architecture-specific flags -faltivec and -msse3, you would add the following
build settings:

PER_ARCH_CFLAGS_i386 = -msse3
PER_ARCH_CFLAGS_ppc = -faltivec

Similarly, you can supply architecture-specific linker flags using the OTHER_LDFLAGS_i386 and
OTHER_LDFLAGS_ppc build settings variables.

You can pass the -arch flag to gcc, ld, and as. The allowable values are i386 and ppc. You can specify
both flags as follows:

-arch ppc -arch i386

For more information on architecture-specific options, see“Building Universal Binaries” in Xcode Project
Management Guide.

Autoconf Macros

If you are compiling a project that uses GNU Autoconf and trying to build it for both PowerPC-based and
Intel-based Macintosh computers, you need to make sure that when the project configures itself, it doesn't
use Autoconf macros to determine the endian type of the runtime system. For example, if your project uses
the Autoconf AC_C_BIGENDIAN macro, the program won't work correctly when it is run on the opposite
architecture from the one you are targeting when you configure the project. To correctly build for both
PowerPC-based and Intel-based Macintosh computers, use the compiler-defined __BIG_ENDIAN__ and
__LITTLE_ENDIAN__ macros in your code.

For more information, see Using GNU Autoconf in Porting UNIX/Linux Applications to Mac OS X.

18 Build Options
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

See Also

These resources provide information related to compiling and building applications, and measuring
performance:

 ■ Xcode Project Management Guide contains all the instructions needed to compile and debug any type of
Xcode project (C, C++, Objective C, Java, AppleScript, resource, nib files, and so forth).

 ■ GCC Porting Guide provides advice for how to modify your code in ways that make it more compatible
with GCC 4.0.

 ■ GNU C/C++/Objective-C 4.0.1 Compiler User Guide provides details about the GCC implementation. Xcode
uses the GNU compiler collection (GCC) to compile code.

The assembler (as) used by Xcode supports AT&T System V/386 assembler syntax in order to maintain
compatibility with the output from GCC. The AT&T syntax is quite different from Intel syntax. The major
differences are discussed in the GNU documentation.

 ■ C++ Runtime Environment Programming Guide provides information on the GCC 4.0 shared C++ runtime
that is available in Panther 10.3.9 and later.

 ■ Porting UNIX/Linux Applications to Mac OS X. Developers porting from UNIX and Linux applications who
want to compile a universal binary, will want to read the section Compiling for Multiple Architectures.

 ■ Kernel Extension Programming Topics contains information about debugging KEXTs on Intel-based
Macintosh computers.

 ■ Performance tools. Shark, MallocDebug, ObjectAlloc, Sampler, Quartz Debug, Thread Viewer, and other
Apple-developed tools (some command-line, others use a GUI) are in the /Developer directory.
Command-line performance tools are in the /usr/bin directory.

 ■ Code Size Performance Guidelines and Code Speed Performance Guidelines discuss optimization strategies
for a Mach-O executable.

See Also 19
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

20 See Also
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Building a Universal Binary

The PowerPC and the x86 architectures have some fundamental differences that can prevent code written
for one architecture from running properly on the other architecture. The extent to which you need to change
your PowerPC code so that it runs natively on an Intel-based Macintosh computer depends on how much
of your code is processor specific. This chapter describes the major differences between architectures,
organized alphabetically by topic. You can use the information to identify the parts of your code that are
likely to be problematic.

Alignment

All PowerPC instructions are 4 bytes in size and must be 4-byte aligned. x86 instructions are variable in size
(from 1 to >10 bytes), and as a consequence do not need to be aligned.

Bit Fields

The value of a signed, 1-bit bit field is either 0, 1, or –1, depending on the compiler, architecture, optimization
level, and so forth. Code that compares the value of a bit field to 1 may not work if the bit field is signed, so
you will want to use unsigned 1-bit bit fields. Keep in mind that the order of bit fields in memory can be
reversed between architectures.

For more information on issues related to endian format, see “Swapping Bytes” (page 25). See also “Archived
Bit Fields” (page 41) and “Structures and Unions” (page 24).

Byte Order

Microprocessor architectures commonly use two different byte-ordering methods (little-endian and big-endian)
to store the individual bytes of multibyte data formats in memory. This difference becomes critically important
if you try to read data from files that were created on a computer that uses a different byte ordering than
yours. You also need to consider byte ordering when you send and receive data through a network connection
and handle networking data. The difference in byte ordering can produce incorrect results if you do not
account for this difference. For example, the order of bytes in memory of a scalar type is
architecture-dependent, as shown in Listing 2-1 (page 21).

Listing 2-1 Code that illustrates byte-ordering differences

unsigned char charVal;
unsigned long value = 0x12345678;
unsigned long *ptr = &value;
charVal = *(unsigned char*)ptr;

Alignment 21
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Differences

On a processor that uses little-endian addressing the variable charVal takes on the value 0x78. On a processor
that uses big-endian addressing the variable charVal takes on the value 0x12. To make this code
architecture-independent, change the last line in Listing 2-1 to the following:

charVal = (unsigned char)*ptr;

For a detailed discussion of byte ordering and strategies that you can use to account for byte-ordering
differences, see “Swapping Bytes” (page 25).

Calling Conventions

The x86 C-language calling convention (application binary interface, or ABI) specifies that arguments to
functions are passed on the stack. The PowerPC ABI specifies that arguments to functions are passed in
registers. Also, x86 has far fewer registers, so many local variables use the stack for their storage. Thus,
programming errors, or other operations that access past the end of a local variable array or otherwise
incorrectly manipulate values on the stack may be more likely to crash applications on x86 systems than on
PowerPC.

For detailed information about the IA-32 ABI, see Mac OS X ABI Function Call Guide. This document describes
the function-calling conventions used in all the architectures supported by Mac OS X. See also “32-Bit
Application Binary Interface” (page 73).

Code on the Stack: Disabling Execution

Intel processors include a bit that prevents code from being executed on the stack. On Intel-based Macintosh
computers, this bit is always set to On.

Data Type Conversions

For some data type conversions, such as casting a string to a long and converting a floating-point type to
an integer type, the PowerPC and x86 architectures perform differently. When the microprocessor converts
a floating-point type to an integer type, it discards the fractional part of the value. The behavior is undefined
if the value of the integral part cannot be represented by the integer type.

Listing 2-2 shows an example of the sort of code that is architecture-dependent. You would need to modify
this code to make it architecture-independent. On a PowerPC microprocessor, the variable x shown in the
listing is equal to 7fffffff or INTMAX. On an x86 microprocessor, the variable x is equal to 80000000 or
INTMIN.

Listing 2-2 Architecture-dependent code

int main (int argc, const char * argv[])
{
 double a;
 int x;

22 Calling Conventions
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Differences

 a = 5000000.0 * 6709000.5; // or any really big value
 x = a;
 printf("x = %08x \n",x);
 return 0;
}

Data Types

A long double is 16 bytes on both architectures, but only 80 bits are significant in long double data types
on Intel-based Macintosh computers.

A bool data type is a single byte on an x86 system, but four bytes on a PowerPC architecture. This size
difference can cause alignment problems. You should use fixed-size data types to avoid alignment problems.
(The bool data type is not the Carbon Boolean type, which is a fixed size of 1 byte.)

Existing document formats that include the bool data type as part of a data structure that is written directly
to disk can be problematic because the data structure might not be laid out the same on both architectures.
If you update the data structure definition to use the UInt32 data type or another fixed-size four-byte data
type, the structure should then be portable, although you must swap bytes appropriately.

Divide-By-Zero Operations

An integer divide-by-zero operation is fatal on an x86 system but the operation continues on a PowerPC
system, where it returns zero. (A floating point divide-by-zero behaves the same on both architectures.) If
you get a crash log that mentions EXC_I386_DIV (divide by zero), your program divided by zero. Mod
operations perform a divide, so a mod-by-zero operation produces a divide-by-zero exception. To fix a
divide-by-zero exception, find the place in your program corresponding to that operation. Then add code
that checks for a denominator of zero before performing the divide operation.

For example, change this:

 int a = b % c; // Divide by zero can happen here;

to this:

int a;
if (c != 0) {
 a = b % c;
 } else {
 a = 0;
}

Extensible Firmware Interface (EFI)

Intel-based Macintosh computers use extensible firmware interface (EFI). EFI provides a flexible and adaptable
interface between Mac OS X and the platform firmware. This change should be transparent to most developers,
but may affect some, such as those who write boot drivers.

Data Types 23
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Differences

For more information on the EFI specification, see http://www.intel.com/technology/efi/

Floating-Point Equality Comparisons

The results of a floating-point equality comparison are architecture-dependent. Whether the comparison
works depends on a number of things, including the compiler, the surrounding code, all compiler flags in
use (particularly optimization flags), and the current floating-point mode for the thread. If your floating-point
comparison is currently working on PowerPC, you may need to inspect it on an Intel-based Macintosh
computer.

You can use the GCC flag -Wfloat-equal to receive a warning for floating-point equality comparisons. For
details on this option, see Section 3.8 of the GNU C/C++/Objective-C 4.0.1 Compiler User Guide

Structures and Unions

The fields in a structure can be sensitive to their defined order. Structures must either be properly ordered
or accessed by the field name directly.

When a union has components that could be affected by byte order, use a form similar to that shown in
Listing 2-3. Code that sets wch and then reads hi and lo as the high and low bytes of wch will work correctly.
The same is true for the reverse direction. Code that sets hi and lo and then reads wch will get the same
value on both architectures. For another example, see the WideChar union that’s defined in the
IntlResources.h header file.

Listing 2-3 A union whose components can be affected by byte order

union WChar{
 unsigned short wch;
 struct {
#if __BIG_ENDIAN__
 unsigned char hi;
 unsigned char lo;
#else
 unsigned char lo;
 unsigned char hi;
#endif
 } s;
}

See Also

The ISO standard for the C programming language—ISO/IEC 9899—is a valuable reference that you can use
to investigate code portability issues, many of which may not be immediately obvious. You can find this
reference in a number of locations on the web, including:

http://www.iso.org/

24 Floating-Point Equality Comparisons
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Differences

http://www.intel.com/technology/efi/
http://www.iso.org/

Two primary byte-ordering methods (or endian formats) exist in the world of computing. An endian format
specifies how to store the individual bytes of multibyte numerical data in memory. Big-endian byte ordering
specifies to store multibyte data with its most significant byte first. Little-endian byte ordering specifies to
store multibyte data with its least significant byte first. The PowerPC processor uses big-endian byte ordering.
The x86 processor family uses little-endian byte ordering. By convention, multibyte data sent over the network
uses big-endian byte ordering.

If your application assumes that data is in one endian format, but the data is actually in another, then it will
interpret the data incorrectly. You will want to analyze your code for routines that read multibyte data (16
bits, 32 bits, or 64 bits) from, or write multibyte data to, disk or to the network, as these routines are sensitive
to byte-ordering format. There are two general approaches for handling byte ordering differences: swap
bytes when necessary or use XML or another byte-order-independent data format such as those offered by
Core Foundation (CFPreferences, CFPropertyList, CFXMLParser).

Whether you should swap bytes or use a byte-order-independent data format depends on how you use the
data in your application. If you have an existing file format to support, the binary-compatible solution is to
accept the big-endian file format you have been using in your application, and write code that swaps bytes
when the file is read or written on an Intel-based Macintosh. If you don’t have legacy files to support, you
could consider redesigning your file format to use XML (extensible markup language), XDR (external data
representation), or NSCoding (Objective C) to represent data.

This chapter describes why byte ordering matters, gives guidelines for swapping bytes, describes the
byte-swapping APIs available in Mac OS X, and provides solutions for most of the situations where byte
ordering matters.

Why Byte Ordering Matters

The example in this section is designed to show you why byte ordering matters. Take a look at the C data
structure defined in Listing 3-1. It contains a four-byte integer, a character string, and a two-byte integer.
The listing also initializes the structure.

Listing 3-1 A data structure that contains multibyte and single-byte data

typedef struct {
 uint32_t myOptions;
 char myStringArray [7];
 short myVariable;
} myDataStructure;

myDataStructure aStruct;

aStruct.myOptions = 0xfeedface;
strcpy(aStruct.myStringArray, "safari");
aStruct.myVariable = 0x1234;

Why Byte Ordering Matters 25
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Figure 3-1 compares how this data structure is stored in memory on big-endian and little-endian systems.
In a big-endian system, memory is organized with the address of each data byte increasing from most
significant to least significant. In a little-endian system, memory is organized with the address of each data
byte increasing from the least significant to the most significant.

Figure 3-1 Big-endian byte ordering compared to little-endian byte ordering

0x00000004
0x00000005
0x00000006
0x00000007

0x00000008
0x00000009
0x0000000A
0x0000000B

0x0000000C
0x0000000D
0x0000000E
0x0000000F

fe

fe

ed
edfa
fa

ce

ce

's' 's'
'a'

'a''a'

'a'
'f' 'f'

'r' 'r'
'i''i'

12
1234
34

\0\0

0x00000000
0x00000001
0x00000002
0x00000003

Address Data

*

*
*

Big-endian

0x00000004
0x00000005
0x00000006
0x00000007

0x00000008
0x00000009
0x0000000A
0x0000000B

0x0000000C
0x0000000D
0x0000000E
0x0000000F

0x00000000
0x00000001
0x00000002
0x00000003

Address Data

*

*
*

Little-endian

Padding bytes used to
maintain alignment

As you look at Figure 3-1, note the following:

 ■ Multibyte data, such as the 32-bit and 16-bit variables shown in the figure, are stored differently between
big-endian and little-endian systems. As you can see in the figure, big-endian systems store data in
memory so that the most significant byte of the data is stored in the address with the lowest value.
Little-endian systems store data in memory so that the most significant byte of the data is in the address
with the highest value. Hence, the least significant byte of the myOptions variable (0xce) is stored in
memory location0x00000003on the big-endian system while it is stored in memory location0x00000000
on the little-endian system.

 ■ Single-byte data, such as the char values in the myStringArray character array, are stored in the same
memory location on either system regardless of the byte ordering format of the system.

 ■ Each system pads bytes to maintain four-byte data alignment. Padded bytes in the figure are designated
by a shaded box that contains an asterisk.

The byte ordering of multibyte data in memory matters if you are reading data written on one architecture
from a system that uses a different architecture and you access the data on a byte-by-byte basis. For example,
if your application is written to access the second byte of the myOptions variable, then when you read the
data from a system that uses the opposite byte ordering scheme, you’ll end up retrieving the first byte of
the myOptions variable instead of the second one.

26 Why Byte Ordering Matters
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Suppose the example data values that are initialized by the code shown in Listing 3-1 are generated on a
little-endian system and saved to disk. Assume that the data is written to disk in byte-address order. When
read from disk by a big-endian system, the data is again laid out in memory as shown in Figure 3-1. The
problem is that the data is still in little-endian byte order even though it is interpreted on a big-endian system.
This difference causes the values to be evaluated incorrectly. In this example, the value of the field myOptions
should be 0xfeedface, but because of the incorrect byte ordering it is evaluated as 0xcefaedfe.

Note: The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-century satire Gulliver’s
Travels. The subjects of the empire of Blefuscu were divided into two factions: those who ate eggs starting
from the big end and those who ate eggs starting from the little end.

Guidelines for Swapping Bytes

The following guidelines, along with the strategies provided later in this chapter, will help ensure optimal
byte-swapping code in your application.

 ■ Keep data structures in native byte-order while in memory. Only swap bytes when you read data from
disk or write it to disk.

 ■ When possible, let the compiler do the work for you. For example, when you use function calls such as
the Core Foundation function CFSwapInt16BigToHost, the compiler determines whether the function
call does something for the processor you are targeting. If the code does nothing, the compiler won’t
call the function. Letting the compiler do the work is more efficient than using #ifdef statements.

 ■ If you must access a large file, consider arranging the data in a way that limits the byte swapping that
you must perform. For example, you can arrange the most frequently accessed data contiguously in the
file. Then, you need to read and swap bytes only for that chunk of data instead of for the entire data file.

 ■ Use the __BIG_ENDIAN__ and __LITTLE_ENDIAN__ macros only if you must. Do not use macros that
check for a specific processor type, such as __i386__ and __ppc__.

 ■ Choose a consistent byte-order approach and stick with it. That is, if you are reading and writing data
from disk on a regular basis, choose the endian format you want to use. This eliminates the need for you
to check the byte ordering of the data, and then to possibly have to swap the byte order.

 ■ Be aware of which functions return big-endian data, and use them appropriately. These include the BSD
Sockets networking functions, the DNSServiceDiscovery functions (for example, TCP and UDP ports
are specified in network byte order), and the ColorSync profile functions (for which all data is big-endian).
The IconFamilyElement and IconFamilyResource data types (which also include the data types
IconFamilyPtr and IconFamilyHandle) are always big-endian. There may be other functions and
data types that are not listed here. Consult the appropriate API reference for information on data returned
by a function. For more information see “Network-Related Data” (page 32).

 ■ Keep in mind that swapping bytes comes at a performance cost so swap them only when absolutely
necessary.

Guidelines for Swapping Bytes 27
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Byte-Swapping Routines

The APIs that provide byte-swapping routines are listed below. For most situations it’s best to use the routines
that match the framework you’re programming in. The Core Foundation and Foundation APIs have functions
for swapping floating-point values, while the other APIs listed do not.

 ■ POSIX (Portable Operating System Interface) byte ordering functions (ntohl, htonl, ntohs, and htons)
are documented in Mac OS X Man Pages.

 ■ Darwin byte ordering functions and macros are defined in the header file libkern/OSByteOrder.h.
Even though this header is in the kernel framework, it is acceptable to use it from high-level applications.

 ■ Core Foundation byte-order functions are defined in the header file CoreFoundation/CFByteOrder.h
and described in the Byte-Order Utilities Reference. For details on using these functions, see the Byte
Swapping article in Memory Management Programming Guide for Core Foundation.

 ■ Foundation byte-order functions are defined in the header file Foundation/NSByteOrder.h and
described in Foundation Framework Reference.

 ■ The Core Endian API is defined in the header file CarbonCore/Endian.h and described in Core Endian
Reference.

Note: When you use byte-swapping routines, the compiler optimizes your code so that the routines are
executed only if they are needed for the architecture on which your code is running.

Byte-Swapping Strategies

The strategy for swapping bytes depends on the format of the data; there is no universal routine that can
take care of all byte ordering differences. Any program that needs to swap data must know the data type,
the source data endian order, and the host endian order.

This section lists byte-swapping strategies, organized alphabetically, for the following data:

 ■ “Constants” (page 29)

 ■ “Custom Apple Event Data” (page 29)

 ■ “Custom Resource Data” (page 29)

 ■ “Floating-Point Values” (page 30)

 ■ “Integers” (page 31)

 ■ “Network-Related Data” (page 32)

 ■ “OSType-to-String Conversions” (page 33)

 ■ “Unicode Text Files” (page 33)

 ■ “Values in an Array” (page 35)

28 Byte-Swapping Routines
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Constants

Constants that are part of a compiled executable are in host byte order. You need to swap bytes for a constant
only if it is part of data that is not maintained natively or if the constant travels between hosts. In most cases
you can either swap bytes ahead of time or let the preprocessor perform any needed math by using shifts
or other simple operators.

If you are defining and populating a structure that must use data of a specific endian format in memory, use
the OSSwapConstmacros and the OSSwap*Const variants defined in the libkern/OSByteOrder.h header
file. These macros can be used from high-level applications.

Custom Apple Event Data

An Apple event is a high-level event that conforms to the Apple Event Interprocess Messaging Protocol. The
Apple Event Manager sends Apple events between applications on the same computer or between applications
on remote computers. You can define your own Apple event data types, and send and receive Apple events
using the Apple Event Manager API.

Mac OS X manages system-defined Apple event data types for you, handling them appropriately for the
currently executing code. You don't need to perform any special tasks. When the data that your application
extracts from an Apple event is system-defined, the system swaps the data for you before giving the event
to your application to process. You will want to treat system-defined data types from Apple events as native
endian. Similarly, if you put native-endian data into an Apple event that you are sending, and it is a
system-defined data type, the receiver will be able to interpret the data in its own native endian format.

However, you must account for byte-ordering differences for the custom Apple event data types that you
define. You can accomplish this in one of the following ways:

 ■ Write a byte-swapping callback routine (also known as a flipper) and provide it to the system. Whenever
the system determines that your Apple event data needs to be byte swapped it invokes your flipper to
ensure that the recipient of the data gets the data in the correct endian format. For details, see “Writing
a Callback to Swap Data Bytes” (page 35).

 ■ Choose one endian format to use, regardless of architecture. Then, when you read or write your custom
Apple event data, use big-to-host and host-to-big routines, such as the Core Foundation Byte Order
Utilities functions CFSwapInt16BigToHost and CFSwapInt16HostToBig.

Custom Resource Data

In Mac OS X, the preferred way to supply resources is to provide files in your application bundle that define
resources such as image files, sounds, localized text, and archived user-interface definitions. The resource
data types discussed in this section are those defined in Resource Manager-style files supported by Carbon.
The Resource Manager was created prior to Mac OS X. If your application uses Resource Manager-style
resource files, you should consider moving towards Mac OS X–style resources in your application bundle
instead.

Byte-Swapping Strategies 29
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Resources typically include data that describes menus, windows, controls, dialogs, sounds, fonts, and icons.
Although the system defines a number of standard resource types (such as 'moov', used to specify a
QuickTime movie, and 'MENU', used to define menus) you can also create your own private resource types
for use in your application. You use the Resource Manager API to define resource data types and to get and
set resource data.

Mac OS X keeps track of resources in memory and allows your application to read or write resources.
Applications and system software interpret the data for a resource according to its resource type. Although
you'll typically let the operating system read resources (such as your application icon) for you, you can also
call Resource Manager functions directly to read and write resources.

Mac OS X manages the system-defined resources for you, handling them appropriately for the currently
executing code. That is, if your application runs on an Intel-based Macintosh, Mac OS X swaps bytes so that
your application icon, menus, and other standard resources appear correctly. You don't need to perform any
special tasks. But if you define your own private resource data types for use in your application, you need to
account for byte-ordering differences between architectures when you read or write resource data from disk.

You can use either of the following strategies to handle custom Resource Manager-style resource data. Notice
that these are the same strategies used to handle custom Apple event data:

 ■ Provide a byte-swapping callback routine for the system to invoke whenever the system determines
your resource data must be byte swapped. For details, see “Writing a Callback to Swap Data Bytes” (page
35).

 ■ Always write your data using the same endian format, regardless of the architecture. Then, when you
read or write your custom resource data, use big-to-host and host-to-big routines, such as the Core
Foundation Byte Order Utilities CFSwapInt16BigToHost and CFSwapInt16HostToBig.

Note: If you are revising old code that marks resources with a preload bit, you should remove the preload
bit from any resources that must be byte swapped. In Mac OS X, the preload bit is almost always unnecessary.
If you cannot remove the preload bit, you should swap the resource data after you read the resource. You
will not be able to use a flipper callback to swap bytes automatically because in Mac OS X a preload bit causes
the resources to be read before any of the application code runs.

Floating-Point Values

Core Foundation defines a set of functions and two special data types to help you work with floating-point
values. These functions allow you to encode 32- and 64-bit floating-point values in such a way that they can
later be decoded and byte swapped if necessary. Listing 3-2 shows you how to encode a 64-bit floating-point
number and Listing 3-3 shows how to decode it.

Listing 3-2 Encoding a 64-bit floating-point value

double d = 3.0;
CFSwappedFloat64 swappedDouble;
// Encode the floating-point value.
swappedDouble = CFConvertFloat64HostToSwapped(d);
// Call the appropriate routine to write swappedDouble to disk,
// send it to another process, etc.
write(myFile, &swappedDouble, sizeof(swappedDouble));

30 Byte-Swapping Strategies
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

The data types CFSwappedFloat32 and CFSwappedFloat64 contain floating-point values in a canonical
representation. A CFSwappedFloat data type is not itself a floating-point value, and should not be directly
used as one. You can however send one to another process, save it to disk, or send it over a network. Because
the format is converted to and from the canonical format by the conversion functions, there is no need for
explicit swapping. Bytes are swapped for you during the format conversion if necessary.

Listing 3-3 Decoding a 32-bit floating-point value

float f;
CFSwappedFloat32 swappedFloat;
// Call the appropriate routine to read swappedFloat from disk,
// receive it from another process, etc.
read(myFile, &swappedFloat, sizeof(swappedFloat));
f = CFConvertFloat32SwappedToHost(swappedFloat)

The NSByteOrder.h header file defines functions that are comparable to the Core Foundation functions
discussed here.

Integers

The system library byte-access functions, such as OSReadLittleInt16 and OSWriteLittleInt16, provide
generic byte swapping. These functions swap bytes if the native endian format is different from the endian
format of the destination. They are defined in the libkern/OSByteOrder.h header file.

Note: The OSReadXXX and OSWriteXXX functions provide higher performance than the OSSwapXXX
functions or any other functions in the higher-level frameworks.

Core Foundation provides three optimized primitive functions for swapping bytes— CFSwapInt16,
CFSwapInt32, and CFSwapInt64. All of the other swapping functions use these primitives to accomplish
their work. In general you don’t need to use these primitives directly.

Although the primitive swapping functions swap unconditionally, the higher-level swapping functions are
defined in such a way that they do nothing when swapping bytes is not required—in other words, when the
source and host byte orders are the same. For the integer types, these functions take the forms
CFSwapXXXBigToHost,CFSwapXXXLittleToHost,CFSwapXXXHostToBig, andCFSwapXXXHostToLittle,
where XXX is a data type such as Int32. For example, on a little-endian machine you use the function
CFSwapInt16BigToHost to read a 16-bit integer value from a network whose data is in network byte order
(big-endian). Listing 3-4 demonstrates this process.

Listing 3-4 Swapping a 16-bit integer from big-endian to host-endian

SInt16 bigEndian16;
SInt16 swapped16;
// Swap a 16-bit value read from the network.
swapped16 = CFSwapInt16BigToHost(bigEndian16);

Suppose the integers are in the fields of a data structure. Listing 3-5 demonstrates how to swap bytes.

Listing 3-5 Swapping integers from little-endian to host-endian

// Swap the bytes of the values if necessary.
aStruct.int1 = CFSwapInt32LittleToHost(aStruct.int1)

Byte-Swapping Strategies 31
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

aStruct.int2 = CFSwapInt32LittleToHost(aStruct.int2)

The code swaps bytes only if necessary. If the host is a big-endian architecture, the functions used in the
code sample swap the bytes in each field. The code does nothing when run on a little-endian machine—the
compiler ignores the code.

Network-Related Data

Network-related data typically uses big-endian format (also known as network byte order), so you may need
to swap bytes when communicating between the network and an Intel-based Macintosh computer. You
probably never had to adjust your PowerPC code when you transmitted data to, or received data from, the
network. On an Intel-based Macintosh computer you must look closely at your networking code and ensure
that you always send network-related data in the appropriate byte order. You must also handle data received
from the network appropriately, swapping the bytes of values to the endian format appropriate to the host
microprocessor.

You can use the following POSIX functions to convert between network byte order and host byte order.
(Other byte-swapping functions, such as those defined in the OSByteOrder.h and CFByteOrder.h header
files, can also be useful for handling network data.)

 ■ network to host:

uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

 ■ host to network:

uint32_t htonl (uint32_t hostlong);

uint16_t htons (uint16_t hostshort);

These functions are documented in Mac OS X Man Pages.

The sin_saddr.s_addr and sin_port fields of a sockaddr_in structure should always be in network
byte order. You can find out the appropriate endian format of any argument to a BSD networking function
by reading the man page documentation.

When advertising a service on the network, you use getsockname to get the local TCP or UDP port that your
socket is bound to, and then pass my_sockaddr.sin_port unchanged, without any byte swapping, to the
DNSServiceRegister function.

In CoreFoundation code, you can use the same approach. Use the CFSocketCopyAddress function as shown
below, and then pass my_sockaddr.sin_port unchanged, without any byte swapping, to the
DNSServiceRegister function.

CFDataRef addr = CFSocketCopyAddress(myCFSocketRef);
struct sockaddr_in my_sockaddr;
memmove(&my_sockaddr, CFDataGetBytePtr(addr), sizeof(my_sockaddr));
DNSServiceRegister(... , my_sockaddr.sin_port, ...);

When browsing and resolving, the process is similar. The DNSServiceResolve function and the BSD Sockets
calls such as gethostbyname and getaddrinfo all return IP addresses and ports already in the correct byte
order so that you can assign them directly to your struct sockaddr_in and call connect to open a TCP
connection. If you byte-swap the address or port, then your program will not work.

32 Byte-Swapping Strategies
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

The important point is that when you use the DNSServiceDiscovery API with the BSD Sockets networking
APIs, you do not need to swap anything. Your code will work correctly on both PowerPC and Intel-based
Macintosh computers as well as on Linux, Solaris, and Windows.

OSType-to-String Conversions

You can use the functions UTCreateStringForOSType and UTGetOSTypeFromString to convert an
OSType data type to or from a CFString object (CFStringRef data type). These functions are discussed
in Uniform Type Identifiers Overview and defined in the UTType.h header file, which is part of the Launch
Services framework.

When you use four-character literals, keep in mind that "abcd" != 'abcd'. Rather 'abcd' == 0x61626364.
You must treat 'abcd' as an integer and not string data, as 'abcd' is a shortcut for a 32-bit integer. (A
FourCharCode data type is a UInt32 data type.) The compiler does not swap this for you. You can use the
shift operator if you need to deal with individual characters.

For example, if you currently print an OSType or FourCharCode type using the standard C printf-style
semantics, use

printf("%c%c%c%c", (char) (val >> 24), (char) (val >> 16),
 (char) (val >> 8), (char) val)

instead of the following:

printf("%4.4s", (const char*) &val)

Unicode Text Files

Mac OS X often uses UTF-16 to encode Unicode; a UniChar data type is a double-byte value. As with any
multibyte data, Unicode characters are sensitive to the byte ordering method used by the microprocessor.
A byte order mark written to the beginning of a file informs the program reading the data which byte ordering
method was used to write the data. The Unicode standard states that in the absence of a byte order mark
(BOM) the data in a Unicode data file is to be taken as big-endian. Although a BOM is not mandatory, you
should make use of it to ensure that a file written on one architecture can be read from the other architecture.
The program can then act accordingly to make sure the byte ordering of the Unicode text is compatible with
the host.

Table 3-1 lists the standard byte order marks for UTF-8, UTF-16, and UTF-32. (Note that the UTF-8 BOM is not
used for endian issues, but only as a tag to indicate that the file is UTF-8.)

Table 3-1 Byte order marks

Encoding formByte order mark

UTF-8EF BB BF

UTF-16/UCS-2, little endianFF FE

UTF-16/UCS-2, big endianFE FF

UTF-32/UCS-4, little endianFF FE 00 00

Byte-Swapping Strategies 33
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

Encoding formByte order mark

UTF-32/UCS-4, big endian00 00 FE FF

In practice, when your application reads a file, it does not need to look for a byte order mark nor does it need
to swap bytes as long as you follow these steps to read a file:

1. Map the file using mmap to get a pointer to the contents of the file (or string).

Reading the entire file into memory ensures the best performance and is a prerequisite for the next step.

2. Generate a CFString object by calling the function CFStringCreateWithBytes with the
isExternalRepresentation parameter set to true, or call the function
CFStringCreateWithExternalRepresentation to generate a CFString, passing in an encoding
of kCFStringEncodingUnicode (for UTF-16) or kCFStringEncodingUTF8 (for UTF-8).

Either function interprets a BOM swaps bytes as necessary. Note that a BOM should not be used in
memory; its use is solely for data transmission (files, pasteboard, and so forth).

In summary, with respect to Unicode files, your application performs best when you follow these guidelines:

 ■ Accept the BOM when taking UTF-16 or UTF-8 encoded files from outside the application.

 ■ Use native-endian UniChar data types internally.

 ■ Generate a BOM when writing UTF-16 to a file. Ideally, you only need to generate a BOM for an architecture
that uses little-endian format, but it is also acceptable to generate a BOM for an architecture that uses
big-endian format.

 ■ When you put data on the Clipboard, make sure that 'utxt' data does not have a BOM. Only 'ut16'
data should have a BOM. If you use Cocoa to put an NSString object on the pasteboard, you don’t need
to concern yourself with a BOM.

For more information, see “UTF & BOM,” available from the Unicode website:

http://www.unicode.org/faq/utf_bom.html

The Apple Event Manager provides text constants that you can use to specify the type of your data. As of
Mac OS X v10.4, only two text constants are recommended:

 ■ typeUTF16ExternalRepresentation, which specifies Unicode text in 16-bit external representation
with optional byte order mark (BOM). The presence of this constant guarantees that either there is a
BOM or the data is in UTF-16 big-endian format.

 ■ typeUTF8Text, which specifies 8-bit Unicode (UTF-8 encoding).

The constant typeUnicodeText indicates utxt text data, in native byte ordering format, with an optional
BOM. This constant does not specify an explicit Unicode encoding or byte order definition.

The Scrap Manager provides the flavor type constant kScrapFlavorTypeUTF16External which specifies
Unicode text in 16-bit external representation with optional byte order mark (BOM).

34 Byte-Swapping Strategies
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

http://www.unicode.org/faq/utf_bom.html

Values in an Array

The routine in Listing 3-6 shows an approach that you can use to swap the bytes of values in an array. On a
big-endian system, the compiler optimizes away the entire function; you don’t need to use #ifdef statements
to swap these sorts of arrays.

Listing 3-6 A routine for swapping the bytes of the values in an array

static inline void SwapUInt32ArrayBigToHost(UInt32 *array, UInt32 count) {
 int i;

 for(i = 0; i < count; i++) {
 array[i] = CFSwapInt32BigToHost(array[i]);
 }
}

Writing a Callback to Swap Data Bytes

You can provide a byte-swapping callback routine, also referred to as a flipper, to the system for custom
resource data, custom pasteboard data, and custom Apple event data. When you install a byte-swapping
callback, you specify which domain that the data type belongs to. There are two data domains—Apple event
and resource. The resource data domain specifies custom pasteboard data or custom resource data. If the
callback can be applied to either domain (Apple event and resource), you can specify that as well.

The Core Endian API defines a callback that you provide to swap bytes for custom resource and Apple event
data. You must provide one callback for each type of data you want to swap bytes. The prototype for the
CoreEndianFlipProc callback is:

typedef CALLBACK_API (OSStatus, CoreEndianFlipProc)
 (OSType dataDomain,
 OSType dataType,
 short id,
 void *dataPtr,
 UInt32 dataSize,
 Boolean currentlyNative,
 void *refcon
);

The callback takes the following parameters:

 ■ dataDomain—An OSType value that specifies the domain to which the flipper callback applies. The
value kCoreEndianResourceManagerDomain signifies that the domain is resource or pasteboard data.
The value kCoreEndianAppleEventManagerDomain signifies that the domain is Apple event data.

 ■ dataType—The type of data that needs the callback to swap bytes for. This is the four-character code
of the resource type, pasteboard type, or Apple event.

 ■ id—The resource id of the data type. This field is ignored if the dataDomain parameter is not
kCoreEndianResourceManagerDomain.

 ■ dataPtr—On input, points to the data to be flipped. On output, points to the byte swapped data.

 ■ dataSize—The size of the data pointed to by the dataPtr parameter.

Writing a Callback to Swap Data Bytes 35
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

 ■ currentlyNative—A Boolean value that indicates the direction to swap bytes. The value true specifies
the data pointed to by the dataPtr parameter uses the byte ordering of the currently executing code.
On a PowerPC Macintosh, true specifies that the data is in big-endian format. On an Intel-based
Macintosh, true specifies that the data is in little-endian format.

 ■ refcon—A 32-bit value that contains, or refers to, data needed by the callback.

The callback returns a result code that indicates whether bytes are swapped successfully. Your callback should
return noErr if the data is byte swapped without error and the appropriate result code to indicate an error
condition—errCoreEndianDataTooShortForFormat, errCoreEndianDataTooLongForFormat, or
errCoreEndianDataDoesNotMatchFormat. The result code you return is propagated through the
appropriate manager (Resource Manager (ResError) or Apple Event Manager) to the caller.

You do not need to swap bytes for quantities that are not numerical (such as strings, byte streams, and so
forth). You need to provide a callback only to swap bytes data types for which the order of bytes in a word
or long word are important. (For the preferred way to handle Unicode strings, see “Unicode Text Files” (page
33).)

Your callback should traverse the data structure that contains the data and swap bytes for:

 ■ All counts and lengths so that array indexes are associated with the appropriate value

 ■ All integers and longs so that when you read them into variables of a compatible type, you can operate
correctly on the values (such as numerical, offset, and shift operations)

The Core Endian API provides these functions for working with your callback:

 ■ CoreEndianInstallFlipper registers your callback for the specified data type (custom resource or
custom Apple Event). After you register a byte-swapping callback for an application-defined resource
data type, then any time you call a Resource Manager function that operates on that resource type, the
system invokes your callback if it is appropriate to do so. (If your callback operates on pasteboard data,
the system also invokes the callback at the appropriate time.) Similarly, if you specify Apple event as the
domain for your callback, then any time you call an Apple Event Manager function that operates on that
data type, your callback is invoked when it is appropriate to do so.

 ■ CoreEndianGetFlipper obtains the callback that is registered for the specified data type. You can call
this function to determine whether a flipper is available for a given data type.

 ■ CoreEndianFlipData invokes the callback associated with the specified data type. You shouldn’t need
to call this function, because the system invokes your callback whenever it’s needed.

As an example, look at a callback for the custom resource type ('PREF') defined in Listing 3-7. The
MyPreferences structure is used to store preferences data on disk. The structure contains a number of
values and includes two instances of the RGBColor data type and an array of RGBColor values.

Listing 3-7 A declaration for a custom resource

#define kMyPreferencesType 'PREF'

struct MyPreferences {
 SInt32 fPrefsVersion;

 Boolean fHighlightLinks;
 Boolean fUnderlineLinks;

 RGBColor fHighlightColor;

36 Writing a Callback to Swap Data Bytes
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

 RGBColor fUnderlineColor;
 SInt16 fZoomValue;

 char fCString[32];

 SInt16 fCount;
 RGBColor fPalette[];
};

You can handle the RGBColor data type by writing a function that swaps bytes in an RGBColor data structure,
such as the function MyRGBSwap, shown in Listing 3-8. This function calls the Core Endian macro
EndianS16_Swap to swap bytes for each of the values in the RGBColor data structure. The function doesn’t
need to check for the currently executing system because the function is never called unless the values in
the RGBColor data type need to have their bytes swapped. The MyRGBSwap function is called by the
byte-swapping callback routine (shown in Listing 3-9 (page 37)) that’s provided to handle the custom 'PREF'
resource (that is defined in Listing 3-7 (page 36)).

Listing 3-8 A flipper function for RGBColor data

static void MyRGBSwap (RGBColor *p)
{
 p->red = Endian16_Swap(p->red);
 p->blue = Endian16_Swap(p->blue);
 p->green = Endian16_Swap(p->green);
}

Listing 3-9 shows a byte-swapping callback for the custom 'PREF' resource. An explanation for each numbered
line of code appears following the listing. Note that the flipper checks for data that is malformed or is of an
unexpected length. If the data passed into the flipper routine is a shorter length than the flipped type is
normally, or (for example) contains garbage data instead of an array count, the flipper must be careful not
to read or write data beyond the end of the passed-in data. Instead, the routine returns an error.

Listing 3-9 A flipper for the custom 'PREF' resource

#define kCurrentVersion 0x00010400

// 1static OSStatus MyFlipPreferences (OSType dataDomain,
// 2 OSType dataType,
// 3 short id,
// 4 void * dataPtr,
// 5 UInt32 dataSize,
// 6 Boolean currentlyNative,
// 7 void* refcon)

{
 UInt32 versionNumber;

 OSStatus status = noErr;
// 8 MyPreferences* toFlip = (MyPreferences*) dataPtr;

 int count, i;

 if (dataSize < sizeof(MyPreferences))
// 9 return errCoreEndianDataTooShortForFormat;
// 10 if (currentlyNative)

 {
 count = toFlip->fCount;
 versionNumber = toFlip->fPrefsVersion;

Writing a Callback to Swap Data Bytes 37
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

 toFlip->fPrefsVersion = Endian32_Swap (toFlip->fPrefsVersion);
 toFlip->fCount = Endian16_Swap (toFlip->fCount);
 toFlip->fZoomValue = Endian16_Swap (toFlip->fZoomValue);
 }

// 11 else
 {
 toFlip->fPrefsVersion = Endian32_Swap (toFlip->fPrefsVersion);
 versionNumber = toFlip->fPrefsVersion;
 toFlip->fCount = Endian16_Swap (toFlip->fCount);
 toFlip->fZoomValue = Endian16_Swap (toFlip->fZoomValue);
 count = toFlip->fCount;
 }

// 12 if (versionNumber != kCurrentVersion)
 return errCoreEndianDataDoesNotMatchFormat;

// 13 MyRGBSwap (&toFlip->fHighlightColor);
// 14 MyRGBSwap (&toFlip->fUnderlineColor);

 if (dataSize < sizeof(MyPreferences) + count * sizeof(RGBColor))
// 15 return errCoreEndianDataTooShortForFormat;

 for(i = 0; i < count; i++)
 {

// 16 MyRGBSwap (&toFlip->fPalette[i]);
 }

// 17 return status;
}

Here’s what the code does:

1. The system passes to your callback the domain to which the callback applies. You define the domain
when you register the callback using the function CoreEndianInstallFlipper.

2. The system passes to your callback the resource type you defined for the data. In this example, the
resource type is 'PREF'.

3. The system passes to your callback the resource ID of the data type. If the data is not a resource, this
value is 0.

4. The system passes to your callback a pointer to the resource data that needs to have its bytes swapped.
In this case, the pointer refers to a MyPreferences data structure.

5. The system passes to your callback the size of the data pointed to by the pointer described in the previous
step.

6. The system passes to your callback true if the data in the buffer passed to the callback is in the byte
ordering of the currently executing code. On a PowerPC Macintosh, when currentlyNative is true,
the data is in big-endian order. On a Macintosh that uses an Intel microprocessor, when
currentlyNative is true, the data is in little-endian order. Your callback needs to know this value,
because if your callback uses a value in the data buffer to decide how to process other data in the buffer
(for example, the count variable shown in the code), you must know whether that value needs to be
flipped before the value can be used by the callback.

7. The system passes to your callback a pointer that refers to application-specific data. In this example, the
callback doesn’t require any application-specific data.

38 Writing a Callback to Swap Data Bytes
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

8. Defines a variable for the MyPreferences data type and assigns the contents of the data pointer to the
newly-defined toFlip variable.

9. Checks the static-length portion of the structure. If the size is less than it should be, the routine returns
the error errCoreEndianDataTooLongForFormat.

10. If currentlyNative is true, saves the count value to a local variable and then swaps the bytes for the
other values in the MyPreferences data structure. You must save the count value before you swap
because you need it for an iteration later in the function. The fact that currentlyNative is true
indicates that the value does not need to be byte swapped if it is used in the currently executing code.
However, the value does need to be swapped to be stored to disk.

The values are swapped using the appropriate Core Endian macros.

11. If currentlyNative is false, flips the values in the MyPreferences data structure before it saves
the count value to a local variable. The fact that currentlyNative is false indicates that the count
value needs to have its bytes swapped before it can be used in the callback.

12. Checks to make sure the version of the data structure is supported by the application. If the version is
not supported, then your callback would not swap bytes for the data and would return the result
errCoreEndianDataDoesNotMatchFormat.

13. Calls the MyRGBSwap function (shown in Listing 3-8 (page 37)) to swap the bytes of the fHighlightColor
field of the data structure.

14. Calls the MyRGBSwap function to swap the bytes of the fUnderlineColor field of the data structure.

15. Checks the data size to make sure that it is less than it should be. If not, the routine returns the error
errCoreEndianDataTooLongForFormat.

16. Iterates through the elements in the fPalette array, calling the MyRGBSwap function to swap the bytes
of the data in the array.

17. Returns noErr to indicate that the data is flipped without error.

Although the sample performs some error checking, it does not include all the error-handling code that it
could. When you write a flipper you may want to include such code.

Note: The callback does not flip any of the Boolean values in the MyPreferences data structure because
these are single character values. The callback also ignores the C string.

You register a byte-swapping callback routine by calling the function CoreEndianInstallFlipper. You
should register the callback when your application calls its initialization routine or when you open your
resources. For example, you would register the flipper callback shown in Listing 3-9 (page 37) using the
following code:

OSStatus status = noErr;
status = CoreEndianInstallFlipper (kCoreEndianResourceManagerDomain,
 kMyPreferencesType,
 MyFlipPreferences,
 NULL);

Writing a Callback to Swap Data Bytes 39
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

The system invokes the callback for the specified resource type and data domain when currentlyNative
is false at the time a resource is loaded and true at the time the resource is set to be written. For example,
the sample byte-swapping callback gets invoked any time the following line of code is executed in your
application:

MyPreferences** hPrefs = (MyPreferences**) GetResource ('PREF', 128);

After swapping the bytes of the data, you can modify it as much as you’d like.

When the Resource Manager reads a resource from disk, it looks up the resource type (for example, 'PREF')
in a table of byte-swapping routines. If a callback is installed for that resource type, the Resource Manager
invokes the callback if it is appropriate to do so. Similar actions are taken when the Resource Manager writes
a resource to disk. It finds the appropriate routine and invokes the callback to swap the bytes of the resource
if it is appropriate to do so.

When you copy or drag custom data from an application that has a callback installed for pasteboard data,
the system invokes your callback at the appropriate time. If you copy or drag custom data to a native
application, the data callback is not invoked. If you copy or drag custom data to a nonnative application, the
system invokes your callback to swap the bytes of the custom data. If you paste or drop custom data into
your application from a nonnative application, and a callback exists for that custom data, the system invokes
the callback at the time of the paste or drop. If the custom data is copied or dragged from another native
application, the callback is not invoked.

Note that different pasteboard APIs use different type specifiers. The Scrap Manager and Drag Manager use
OSType data types. The Pasteboard Manager uses Uniform Type Identifiers (UTI), and the NSPasteboard
class uses its own type mechanism. In each case, the type is converted by the system to an OSType data type
to discover if there is a byte-swapping callback for that type.

Apple event data types are typically swapped to network byte order when sent over a network. The callback
you install is called only if a custom data type that you define is sent to another machine, or if another machine
sends Apple event data to your application. The byte ordering of Apple events on the network is big-endian.

For cases in which the system would not normally invoke your byte-swapping callback, you can call the
function CoreEndianFlipData to invoke the callback function installed for the specified data type and
domain.

See Also

The following resources are available in the ADC Reference Library:

 ■ Byte-Order Utilities Reference describes the Core Foundation byte order utilities API.

 ■ Byte Swapping, in Core Foundation Memory Management, shows how to swap integers and floating-point
values using Core Foundation byte-order utilities.

 ■ File-System Performance Guidelines provides information useful for mapping Unicode files to memory.

40 See Also
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Swapping Bytes

This chapter lists an assortment of scenarios that relate to a specific technology or API. Although many of
these scenarios are uncommon, you will want to at least glance at the topics to determine whether anything
applies to your application. The topics are organized alphabetically.

Aliases

Aliases are big-endian on all systems. Applications that add extra information to the end of an AliasHandle
must ensure that the extra data is always endian-neutral or of a defined endian type, preferably big-endian.

The AliasRecord data structure is opaque when building your application with the Mac OS X v10.4(Universal)
SDK. Code that formerly accessed the userType field of an AliasRecord must use the Alias Manager
functions GetAliasUserType, GetAliasUserTypeFromPtr, SetAliasUserType, or
SetAliasUserTypeFromPtr. Code that formerly accessed the aliasSize field of an AliasRecord must
use the functions GetAliasSize or GetAliasSizeFromPtr.

These Alias Manger functions are available in Mac OS X v10.4 and later. For more information, see Alias
Manager Reference.

Archived Bit Fields

For cross platform portability, avoid using bit fields. It’s best not to use the NSArchiver class to archive any
structures that contain bit fields as integers. Individual values are stored in the archives in an architecture
and compiler dependent manner. In cases where archives already contain such structures, you can read a
structure correctly by changing its declaration so that the bit fields are swapped appropriately

Automator Scripts

AppleScript actions are platform-independent and do not need any changes to run on Intel-based Macintosh
computers. However, any action that contains Cocoa code, whether it is a solely Cocoa action or an action
that uses both AppleScript and Cocoa code, must be built as a universal binary to run correctly on both
architectures.

For more information, see Automator Programming Guide.

Aliases 41
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

Bit Shifting

When you shift a value by the width of its type or more, the fill bits are undefined regardless of the architecture.
In fact, two different compilers on the same architecture could differ on the value of y after these two
statements:

uint32_t x = 0xDEADBEEF;

uint32_t y = x >> 32;

Bit Test, Set, and Clear Functions: Carbon and POSIX

Don’t mix using the C bitwise operators with the Carbon functions BitTst, BitSet, and BitClr and the
POSIX macros setbit, clrbit, isset, and isclr. If you consistently use the Carbon and POSIX functions
and avoid the C bitwise operators, your code will function properly. Keep in mind, however, that you must
use the Carbon and POSIX functions on the correct kind of data. The Carbon and POSIX functions perform a
byte-by-byte traversal, which causes problems on an Intel-based Macintosh when they operate on data types
that are larger than 1 byte. You can use these functions only on a pointer to a string of endian-neutral bytes.
When you need to perform bit manipulation on integer values you should use functions such as (int32 &
(1 << 26)) instead of BitTst(&int32, 5L).

You’ll encounter problems when you use the function BitTst to test for 24-bit mode. For example, the
following bit test returns false, which indicates that the process is running in 24-bit mode, or at least that
the code is not running in 32-bit mode. The POSIX equivalents perform similarly:

Gestalt(gestaltAddressingModeAttr, &gestaltResult);
if (!(BitTst(&gestaltResult,31L))) /*If 24 bit

You can use any of the bit testing, setting, and clearing functions if you pass a pointer to data whose byte
order is fixed. Used in this way, these functions behave the same on both architectures.

For more information, see the ToolUtils.h header file in the Core Services framework and Mathematical
and Logical Utilities Reference.

CPU Subtype

Don't try to build a binary for a specific CPU subtype. Since the CPU subtype for Intel-based Macintosh
computers is generic, you can't use it to check for specific functionality. If your application requires information
about specific CPU functionality, use the sysctlbyname function, providing an appropriate selector. See
Mac OS X Man Pages for information on using sysctlbyname.

42 Bit Shifting
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

Dashboard Widgets

Dashboard widgets typically contain platform-independent elements such as HTML, JavaScript, CSS, and
image files. If you create a widget that contains only these elements, it should work on both PowerPC and
Intel-based Macintosh computers without any modification on your part. However, if your widget contains
a plug-in, you must build the plug-in as a universal binary for it to run natively on an Intel-based Macintosh
computer.

For more information, see Dashboard Programming Topics.

Deprecated Functions

Many deprecated functions, such as those that use PICT + PS data, have byte swapping issues. You may
want to replace deprecated functions at the same time you prepare your code to run as a universal binary.
You’ll not only solve byte swapping issues, but your code will use functions that ultimately benefit future
development.

A function that is deprecated has an availability statement in its header file that states the version of Mac OS
X in which the function is deprecated. Many API reference documents provide a list of deprecated functions.
In addition, compiler warnings for deprecated functions are on by default in Xcode 2.2 and later.

Disk Partitions

The standard disk partition format on an Intel-based Macintosh computer differs from the disk partition
format of a PowerPC-based Macintosh computer. If your application depends on the partitioning details of
the disk, it may not behave as expected. Partitioning details can affect tools that examine the hard disk at a
low level.

By default, internal hard drives on Intel-based Macintosh computers use the GUID Partition Table (GPT)
scheme and external drives use the Apple Partition Map (APM) partition scheme. To create an external USB
or FireWire disk that can boot an Intel-based Macintosh computer, select the GPT disk partition scheme
option using Apple Disk Utility. Starting up an Intel-based Macintosh using an APM disk is not supported.

Double-Precision Values: Bit-by-Bit Sensitivity

Although both architectures are IEEE 754 compliant, there are differences in the rounding procedure used
by each when operating on double-precision numbers. If your application is sensitive to bit-by-bit values in
double-precision numbers, be aware that the same computation performed on each architecture may produce
a different numerical result.

For more information, see Volume 1 of the Intel developer software manuals, available from the following
website:

http://developer.intel.com/design/Pentium4/documentation.htm

Dashboard Widgets 43
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

http://developer.intel.com/design/Pentium4/documentation.htm

Finder Information and Low-Level File System Operations

If your code operates on the file system at a low level and handles Finder information, keep in mind that the
file system does not swap bytes for the following information:

 ■ The finderInfo field in the HFSPlus data structures HFSCatalogFolder, HFSPlusCatalogFolder,
HFSCatalogFile, HFSPlusCatalogFile, and HFSPlusVolumeHeader.

 ■ The FSPermissionInfo data structure, which is used when the constant kFSCatInfoPermissions
is passed to the HFSPlus functions FSGetCatalogInfo and FSGetCatalogInfoBulk.

The value of multibyte fields on disk always uses big-endian format. When running on a little-endian system,
you must swap the bytes of any multibyte fields.

The getattrlist function retrieves the metadata associated with a file. The getxattr function, added in
Mac OS X v10.4, retrieves extended attributes—those that are an extension of the basic set of attributes.
When using the getxattr function to access the legacy attribute "com.apple.FinderInfo", note that
as with getattrlist, the information returned by this call is not byte swapped. (For more information on
the getxattr and getattrlist functions see Mac OS X Man Pages.)

Note: This issue pertains only to code that operates below CarbonCore. Calls to Carbon functions such as
FSGetCatalogInfo are not affected.

FireWire Device Access

The FireWire bus uses big-endian format. If you are developing a universal binary version of an application
that accesses a FireWire device, see “FireWire Device Access on an Intel-Based Macintosh” in FireWire Device
Interface Guide for a discussion of the issues you can encounter.

Font-Related Resources

Font-related resource types (FOND, NFNT, sfnt, and so forth) are in big-endian format on both PowerPC and
Intel-based Macintosh computers. If your application accesses font-related resource types directly, you must
swap the fields of font-related resource types yourself.

The following functions from the ATS for Fonts API obtain font resources that are returned in big-endian
format:

 ■ ATSFontGetTableDirectory

 ■ ATSFontGetTable

 ■ ATSFontGetFontFamilyResource

The following functions from the Font Manager API obtain font resources that are returned in big-endian
format. Note that Font Manager API is based on QuickDraw technology, which was deprecated in Mac OS X
v10.4.

44 Finder Information and Low-Level File System Operations
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

 ■ FMGetFontTableDirectory

 ■ FMGetFontTable

 ■ FMGetFontFamilyResource

GWorlds

When the QuickDraw function NewGWorld allocates storage for the pixel buffer, and the depth parameter
is 16 or 32 bits, the byte ordering within each pixel matters. The pixelFormat field of the PixMap data
structure can have the values k16BE555PixelFormat or k16LE555PixelFormat for 2-byte pixels, and
k32ARGBPixelFormat or k32BGRAPixelFormat for 4-byte pixels. (These constants are defined in the
Quickdraw.h header file.) By default, NewGWorld always creates big-endian pixel formats
(k16BE555PixelFormat or k32ARGBPixelFormat), regardless of the endian format of the system.

For best performance, it is generally preferable for you to use a pixel format that corresponds to the native
byte ordering of the system. When you pass kNativeEndianPixMap in the flagsparameter to NewGWorld,
the byte ordering of the pixel format is big-endian on big-endian systems, and little-endian on little-endian
systems.

Note: QuickDraw does not support little-endian pixel formats on big-endian systems.

You can use the GWorld pixel storage as input to the Quartz function CGBitmapContextCreate or as a
data provider for the Quartz function CGImageCreate. The byte ordering of the source pixel format needs
to be communicated to Quartz through additional flags in the bitmapInfo parameter. These flags are
defined in the CGImage.h header file. Assuming that your bitmapInfo parameter is already set up, you
now need to combine it (by using a bitwise OR operator) with kCGBitmapByteOrder16Host or
kCGBitmapByteOrder32Host if you created the GWorld with a kNativeEndianPixMap flag. Similarly, you
should use kCGBitmapByteOrder16Big or kCGBitmapByteOrder32Big when you know that your pixel
byte order is big-endian.

Java Applications

Pure Java applications do not require any code changes to run on Intel-based Macintosh computers. However,
Java applications that interface with PowerPC-based native code will not run successfully using Rosetta on
Intel-based Macintosh computers.

Specifically, the following must be built as universal binaries:

 ■ JNI libraries built for PowerPC-based Macintosh computers are not loaded using Rosetta because the
Java Virtual Machine has already launched without using Rosetta. Java applications fail on Intel-based
Macintosh computers when trying to load PowerPC-only binaries.

 ■ Native applications that use the VM Invocation Interface to start a Java Virtual Machine must be built as
universal binaries to run on Intel-based Macintosh computers. The Java VM must run natively; attempts
by an application running using Rosetta to instantiate a JVM fail.

GWorlds 45
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

For more information, see TechnicalQ&AQA1295: Javaon Intel-basedMacintoshComputers in the ADC Reference
Library.

Java I/O API (NIO)

The I/O API (NIO) that was introduced in JDK 1.4 allows the use of native memory buffers. If you are a Java
programmer who uses this API, you may need to revise your code. NIO byte buffers have a byte ordering
that by default is big-endian. If you have Java code originally written for Mac OS X on PowerPC, when you
create java.nio.ByteBuffers you should call the function
ByteBuffer.order(ByteOrder.nativeOrder()) to set the byte order of the buffers to the native byte
order for the current architecture. If you fail to do this, you will obtain flipped data when you read multibyte
data from the buffer using JNI.

Machine Location Data Structure

The Memory Management Utilities data type MachineLocation contains information about the geographical
location of a computer. The ReadLocation and WriteLocation functions use the geographic location
record to read and store the geographic location and time zone information in extended parameter RAM.

If your code uses the MachineLocation data structure, you need to change it to use the
MachineLocation.u.dls.Delta field that was added to the structure in Mac OS X version 10.0.

To be endian-safe, change code that uses the old field:

MachineLocation.u.dlsDelta = 1;

to use the new field:

MachineLocation.u.dls.Delta = 1;

The gmtDelta field remains the same—the low 24 bits are used. The order of assignment is important. The
following is incorrect because it overwrites results:

MachineLocation.u.dls.Delta = 0xAA; // u = 0xAAGGGGGG; G=Garbage
MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBBB;

This is the correct way to assign the values:

MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBB;
MachineLocation.u.dls.Delta = 0xAA; // u = 0xAABBBBBB;

For more details see Memory Management Utilities Reference.

Mach Processes: The Task for PID Function

The task_for_pid function returns the task associated with a process ID (PID). This function can be called
only if the process is owned by the procmod group or if the caller is root.

46 Java I/O API (NIO)
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

http://developer.apple.com/technicalqas/Java/index-title.html
http://developer.apple.com/technicalqas/Java/index-title.html

Metrowerks PowerPlant

You can use PowerPlant on an Intel-based Macintosh computer by downloading the PowerPlant framework
available from http://sourceforge.net/projects/open-powerplant. This Open Source version of the PowerPlant
Framework for Mac OS X includes support for Intel and GCC 4.0.

Multithreading

Multithreading is a technique used to improve performance and enhance the perceived responsiveness of
applications. On computers with one processor, this technique can allow a program to execute multiple
pieces of code independently. On computers with more than one processor, multithreading can allow a
program to execute multiple pieces of code simultaneously. If your application is single-threaded, consider
threading your application to take advantage of hardware multithreading processor capabilities. If your
application is multithreaded, you’ll want to ensure that the number of threads is not hard coded to a fixed
number of processors.

Dual-core technology improves performance by providing two physical cores within a single physical processor
package. Multiprocessor and dual-core technology all exploit thread-level parallelism to improve application
and system responsiveness and to boost processor throughput.

When you prepare code to run as a universal binary, the multithreading capabilities of the microprocessor
are transparent to you. This is true whether your application is threaded or not. However, you can optimize
your code to take advantage of the specific way hardware multithreading is implemented for each architecture.

Objective-C: Messages to nil

In Objective-C, it is valid to send a message to a nil object. The Objective-C runtime assumes that the return
value of a message sent to a nil object is nil, as long as the message returns an object or any integer scalar
of size less than or equal to sizeof(void*).

On Intel-based Macintosh computers, messages to a nil object always return 0.0 for methods whose return
type is float, double, long double, or long long. Methods whose return value is a struct, as defined
by the Mac OS X ABI Function Call Guide to be returned in registers, will return 0.0 for every field in the data
structure. Other struct data types will not be filled with zeros. This is also true under Rosetta. On PowerPC
Macintosh computers, the behavior is undefined.

Objective-C Runtime: Sending Messages

The information in this section is only for developers who use the Objective-C runtime library, which is used
primarily for developing bridge layers between Objective-C and other languages, or for low-level debugging.
Most developers do not need to use the Objective-C runtime library directly when programming in Objective-C.

If your application directly calls the Objective-C runtime function objc_msgSend_stret, you need to change
your code to have it work correctly on an Intel-based Macintosh.

Metrowerks PowerPlant 47
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

http://sourceforge.net/projects/open-powerplant

The x86 ABI for struct-return functions differs from the ABI for struct-address-as-first-parameter
functions, but the two ABIs are identical on PowerPC. When you call objc_msgSend_stret, you must cast
the function to a function pointer type that uses the expected struct return type. The same applies for calls
to objc_msgSendSuper_stret.

For other details on the ABI, see “32-Bit Application Binary Interface” (page 73).

If your application directly calls the Objective-C runtime function objc_msgSend, you should always cast to
the appropriate return value. For instance, for a method that returns a BOOL data type, the following code
executes properly on a PPC Macintosh but might not on an Intel-based Macintosh computer:

BOOL isEqual = objc_msgSend(string, @selector("isEqual:"), otherString);

To ensure that the code does executes properly on an Intel-based Macintosh computer, you would change
the code to the following:

BOOL isEqual = ((BOOL (*)(id, SEL, id))objc_msgSend)(object,
@selector("isEqual:"), otherString);

Open Firmware

Macintosh computers that use an Intel microprocessor do not use Open Firmware. Although many parts of
the I/O registry are present and work as expected, information that is provided by Open Firmware on a
PowerPC Macintosh (such as a complete device tree) is not available in the I/O registry on a Macintosh that
uses an Intel microprocessor. You can obtain some of the information from IODeviceTree by using the
sysctlbyname or sysctl commands.

OpenGL

When defining an OpenGL image or texture, you need to provide a type that specifies to OpenGL which
format the texture is in. Most of these functions (for example, glTexImage2D) take format and type_
parameters that specify how the texture is laid out on disk or in memory. OpenGL supports a number of
different image types; some are endian-neutral but others are not.

Note: The advice in this section is for applications that can not reorder their pixel data because of the type
of image loaders they are using.

For example, a common image format is GL_RGBA with a type of GL_UNSIGNED_BYTE. This means that the
image has a byte that specifies the red color data followed by a byte that specifies the green color data, and
so forth. This format is not endian-specific; the bytes are in the same order on all architectures. Another
common image format is GL_BGRA, often specified by the type GL_UNSIGNED_INT_8_8_8_8_REV. This type
means that every 4 bytes of image data are interpreted as an unsigned int, with the most significant 8
bits representing the alpha data, the next most significant 8 bits representing the red color data, and so forth.
Because this format is specific to the integer format of the host, the format is interpreted differently on
little-endian systems than on big-endian systems. When using GL_UNSIGNED_INT_8_8_8_8_REV, the
OpenGL implementation expects to find data in byte order ARGB on big-endian systems, but BGRA on
little-endian systems.

48 Open Firmware
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

Because there is no explicit way in OpenGL to specify a byte order of ARGB with 32-bit or 16-bit packed pixels
(which are common image formats on Macintosh PowerPC computers), many applications specify GL_BGRA
with GL_UNSIGNED_INT_8_8_8_8_REV. This practice works on a big-endian system such as PowerPC, but
the format is interpreted differently on a little-endian system and causes images to be rendered with incorrect
colors.

Applications that have this problem are those that use the OpenGL host-order format types, but assume that
the data referred to is always big-endian. These types include, but are not limited to the following:

GL_SHORT
GL_UNSIGNED_SHORT
GL_INT
GL_UNSIGNED_INT
GL_FLOAT
GL_DOUBLE
GL_UNSIGNED_BYTE_3_3_2
GL_UNSIGNED_SHORT_4_4_4_4
GL_UNSIGNED_SHORT_5_5_5_1
GL_UNSIGNED_INT_8_8_8_8
GL_UNSIGNED_INT_10_10_10_2
GL_UNSIGNED_SHORT_5_6_5
GL_UNSIGNED_BYTE_2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5_REV
GL_UNSIGNED_SHORT_4_4_4_4_REV
GL_UNSIGNED_SHORT_1_5_5_5_REV
GL_UNSIGNED_INT_8_8_8_8_REV
GL_UNSIGNED_INT_2_10_10_10_REV

If your application does not use any of these types, it is unlikely to have any problems with OpenGL. Note
that an application is not necessarily incorrect to use one of these types. Many applications might already
present host-order data tagged with one of these formats, especially with existing cross-platform code,
because the Mac OS X implementation behaves the same way as a Windows implementation.

If an application incorrectly uses one of these types, its OpenGL textures and images are rendered with
incorrect colors. For example, red might appear green, or the image might appear to be tinted purple.

You can fix this problem in one of the following ways:

1. If the images are generated or loaded algorithmically, change the code to generate the textures in
host-order format that matches what OpenGL expects. For example, a JPEG decoder can be modified to
store its output in 32-bit integers instead of four 8-bit bytes. The resulting data is identical on big-endian
systems, but on a little-endian system, the bytes are in a different order. This matches the OpenGL
expectation, and the existing OpenGL code continues to work on both architectures. This is the preferred
approach.

In many cases, rewriting the algorithms may prove a significant amount of work to implement and
debug. If that’s the case, an approach that asks OpenGL to interpret the texture data differently might
be a better approach for you to take.

2. If the application uses GL_UNSIGNED_INT_8_8_8_8_REV or GL_UNSIGNED_INT_8_8_8_8, it can switch
between them based on the architecture. Since these two types are exactly byte swapped versions of
the same format, using GL_UNSIGNED_INT_8_8_8_8_REV on a big-endian system is equivalent to using
GL_UNSIGNED_INT_8_8_8_8 on a little-endian system and vice versa. Code might look as follows:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGRA_EXT,
#if __BIG_ENDIAN__

OpenGL 49
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

 GL_UNSIGNED_INT_8_8_8_8_REV,
#else
 GL_UNSIGNED_INT_8_8_8_8,
#endif
 data);

If this is a common idiom, it might be easiest to define it as a macro that can be used multiple times:

#if __BIG_ENDIAN__
#define ARGB_IMAGE_TYPE GL_UNSIGNED_INT_8_8_8_8_REV
#else
#define ARGB_IMAGE_TYPE GL_UNSIGNED_INT_8_8_8_8
#endif
/* later on, use it like this */
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB,
 width, height, 0, GL_BGRA_EXT,
 ARGB_IMAGE_TYPE, data);

Note that switching between GL_UNSIGNED_INT_8_8_8_8_REV and GL_UNSIGNED_INT_8_8_8_8
works only for this particular 32-bit packed-pixel data type. For 16-bit ARGB data stored using
GL_UNSIGNED_SHORT_1_5_5_5_REV, there is no corresponding byte swapped type. Keep in mind that
GL_UNSIGNED_SHORT_5_5_5_1 is not a replacement for GL_UNSIGNED_SHORT_1_5_5_5_REV on an
Intel-based Macintosh computer. The format is interpreted as bit-order arrrrrbbbbbggggg on a
big-endian system, and as bit order ggrrrrrabbbbbggg on a little-endian system.

3. If you can’t use the previous approaches, you should either generate/load your data in the native endian
format of the system and use the same pixel type on both architectures or use the
GL_UNPACK_SWAP_BYTES pixel store setting to instruct OpenGL to swap the bytes of any texture loaded
on a little-endian system. This setting applies to all texture or image calls made with the current OpenGL
context, so it needs to be set only once per OpenGL context, for example:

#if __LITTLE_ENDIAN__
 glPixelStorei(GL_UNPACK_SWAP_BYTES, 1);
#endif

This method causes images that use the problematic formats to be loaded as they would be on PowerPC.
You should consider this option only if no other option is available. Enabling this option causes OpenGL
to use a slower rendering path than normal. Performance-sensitive OpenGL applications may be
significantly slower with this option enabled than with it off. Although this method can get an
OpenGL-based program up and running in as little time as possible, it is highly recommended that you
use one of the other two methods.

50 OpenGL
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

Note: Using the GL_UNSIGNED_INT_8_8_8_8 format for GL_BGRA data is not necessarily faster than using
GL_UNPACK_SWAP_BYTES. In some cases, performance decreases for rendering textures that use either of
those two methods compared to using a data type such as GL_UNSIGNED_INT_8_8_8_8_REV. It’s advisable
that you use Shark or other tools to analyze the performance of your OpenGL code and make sure that you
are not encountering particularly bad cases.

OSAtomic Functions

The kernel extension functions OSDequeueAtomic and OSEnqueueAtomic are not available on an Intel-based
Macintosh.

For more information on these functions, see Kernel Framework Reference.

Pixel Data

Applications that store pixel data in memory using ARGB format must take care in how they read data. If the
code is not written correctly, it’s possible to misread the data; the result is colors or alpha that appear wrong.

If you see colors that appear wrong when your application runs on an Intel-based Macintosh computer, the
following strategy may help you identify where pixel data is being read incorrectly.

Create a test image whose pixel data is easy to identify. For example, set each pixel so that alpha is ff, red
is aa, green is bb, and blue is cc. Then read that image into your application. Figure 4-1 shows such an image.

Figure 4-1 A test image that can help locate the source of color problems

It's also helpful to go through your code and cast pixel data to the unsigned char data type.

Start with the portion of your code that reads the image. Use the following GDB command to examine the
pixel data as hexadecimal bytes:

x/<number_bytes>xb <address of first byte>

This command prints the specified number of bytes, starting with the first byte of the first pixel. You should
easily be able to see whether what’s displayed onscreen matches the values of the pixels in the test image.
If the values you see do not match the test image, then you've identified the misreading problem. If the
values match, then you need to identify other portions of your code that modify or transform pixel data, and
inspect the pixel data after each transformation.

OSAtomic Functions 51
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

PostScript Printing

If you are using the Carbon Printing Manager, note that the PICT with PostScript ('pictwps') printing path
is not available on Intel-based Macintosh computers except under Rosetta. If you need only to support EPS
data you can use Quartz drawing together with the function PMCGImageCreateWithEPSDataProvider
to allow the inclusion of EPS data as part of your Quartz drawing. If you need to generate the PostScript code
for your application drawing you should use the function PMPrinterPrintWithFile.

Quartz Bitmap Data

The Quartz constants shown in Table 4-1 specify the byte ordering of pixel formats. These constants, which
are defined in the CGImage.h header file, are used in the bitmapInfo parameter. To specify byte ordering
to Quartz, use a bitwise OR operator to combine the appropriate constant with the bitmapInfo parameter.

Table 4-1 Quartz constants that specify byte ordering

SpecifiesConstant

The byte order maskkCGBitmapByteOrderMask

16-bit, big-endian formatkCGBitmapByteOrder16Big

32-bit, big-endian formatkCGBitmapByteOrder32Big

16-bit, little-endian formatkCGBitmapByteOrder16Little

32-bit, little-endian formatkCGBitmapByteOrder32Little

16-bit, host-endian formatkCGBitmapByteOrder16Host

32-bit, host-endian formatkCGBitmapByteOrder32Host

QuickDraw Routines

If you have existing code that directly accesses the picFrame field of the QuickDraw Picture data structure,
you should use the QuickDraw function QDGetPictureBounds to get the appropriately swapped bounds
for a Picture. This function is available in Mac OS X version 10.3 and later. Its prototype is as follows:

Rect * QDGetPictureBounds(
 PicHandle picH,
 Rect *outRect)

If you have existing code that uses the QuickDraw DeltaPoint function or the HIToolbox PinRect function
(defined in MacWindows.h), make sure that you do not cast the function result to a Point data structure.
The horizontal difference is returned in the low 16 bits, and the vertical difference is returned in the high 16
bits. You can obtain the horizontal and vertical values by using code similar to the following:

 Point pointDiff;

52 PostScript Printing
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

 SInt32 difference = DeltaPoint (p1, p2);
 pointDiff.h = LoWord (difference);
 pointDiff.v = HiWord (difference);

Tip: The best solution is to convert your QuickDraw code to Quartz 2D. QuickDraw was deprecated starting
in Mac OS X v10.4. For help with converting to Quartz 2D, see Quartz Programming Guide for QuickDraw
Developers.

QuickTime Components

The Component Manager recognizes which architectures are supported by a component by looking at the
'thng' resource for the component, not the architecture of the file. You must specify the appropriate
architectures in the 'thng' resource. To accomplish this, in the .r file where you define the 'thng' resource,
modify your ComponentPlatformInfo array to look similar to the following:

#if defined(__ppc__)
kMyComponentFlags, kMyCodeType, kMyCodeID, platformPowerPCNativeEntryPoint,
#endif
#if defined(__i386__)
kMyComponentFlags, kMyCodeType, kMyCodeID, platformIA32NativeEntryPoint,
#endif

Then, rebuild your component. For details, see “Building a Universal Binary” (page 11).

QuickTime Metadata Functions

When you call the function QTMetaDataGetItemProperty and the type of the key whose value you are
retrieving is code, the data returned is an OSType, not a buffer of four characters. (You can determine the
key type by calling the function QTMetaDataGetItemPropertyInfo.) To ensure that your code runs properly
on both PowerPC and Intel-based Macintosh computers, you must use a correctly-typed buffer so that the
endian format of the data returned to you is correct. If you supply a buffer of the wrong type, for example a
buffer of UInt8 instead of a buffer of OSType, the endian format of the data returned in the buffer will be
wrong on Intel-based Macintosh Computers.

Runtime Code Generation

If your application generates code at runtime, keep in mind that the compiler assumes that the stack must
be 16-byte aligned when calling into Mac OS X libraries or frameworks. 16-byte stack alignment is enforced
on Intel-based Macintosh computers, which means that you need to ensure that your code is 16-byte aligned
to avoid having your application crash.

For more information, see Mac OS X ABI Function Call Guide.

QuickTime Components 53
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

Spotlight Importers

A Spotlight importer is a plug-in bundle that extracts information from files created by an application. The
Spotlight engine uses importers to gather information about new and existing files. Spotlight importers are
not compatible with Rosetta. To run an importer on an Intel-based Macintosh as well as on a PowerPC-based
Macintosh, you must compile it as a universal binary.

For more information on Spotlight, see Spotlight Overview andSpotlight Importer Programming Guide.

System-Specific Predefined Macros

The C preprocessor has several predefined macros whose purpose is to indicate the type of system and
machine in use. If your code uses system-specific predefined macros, evaluate whether you really need to
use them. In most cases applications need to know the capabilities available on a computer and not the
specific system or machine on which the application is running. For example, if your application needs to
know whether it is running on a little-endian or big-endian microprocessor, you should use the
__BIG_ENDIAN__ or __LITTLE_ENDIAN__ macros or the Core Foundation function
CFByteOrderGetCurrent. Do not use the __i386__ and __ppc__ macros for this purpose.

See GNU C 4.0 Preprocessor User Guide for additional information.

USB Device Access

USB uses little-endian format. If you are developing a universal binary version of an application that accesses
a USB device, see “USB Device Access in an Intel-Based Macintosh” inUSBDevice InterfaceGuide for a discussion
of the issues you may encounter.

See Also

In addition to the following resources, check the ADC website periodically for updates and technical notes
that might address other specific situations:

 ■ Quartz Programming Guide for QuickDraw Developers which provides information on moving code from
the deprecated QuickDraw API to Quartz

 ■ IA-32 Intel Architecture Optimization Reference Manual, available from:

http://developer.intel.com/design/pentium4/manuals/index_new.htm

54 Spotlight Importers
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Guidelines for Specific Scenarios

http://developer.intel.com/design/pentium4/manuals/index_new.htm

This chapter is relevant only for those developers who want to start writing vector-based code or whose
applications already directly use the AltiVec extension to the PowerPC instruction set. AltiVec instructions,
because they are processor specific, must be replaced on Intel-based Macintosh computers. You can choose
from these two options:

 ■ Use the Accelerate framework. This is the recommended option because the framework provides a layer
of abstraction that lets you perform vector-based operations without needing to use low-level vector
instructions yourself. See “Accelerate Framework” (page 55).

 ■ Port AltiVec code to the Intel instruction set architecture (ISA). This solution is available for developers
who have performance needs that can’t be met by using the Accelerate framework. See “Rewriting
AltiVec Instructions” (page 56).

Accelerate Framework

The Accelerate framework, introduced in Mac OS X v10.3 and expanded in v10.4, is a set of high-performance
vector-accelerated libraries. You don’t need to be concerned with the architecture of the target machine
because the routines in this framework abstract the low-level details. The system automatically invokes the
appropriate instruction set for the architecture that your code runs on.

This framework contains the following libraries:

 ■ vImage is the Apple image processing framework that includes high-level functions for image
manipulation—convolutions, geometric transformations, histogram operations, morphological
transformations, and alpha compositing—as well as utility functions that convert formats and perform
other operations. See vImage Programming Guide.

 ■ vDSP provides mathematical functions that perform digital signal processing (DSP) for applications such
as speech, sound, audio, and video processing, diagnostic medical imaging, radar signal processing,
seismic analysis, and scientific data processing. The vDSP functions operate on real and complex data
types and include data type conversions, fast Fourier transforms (FFTs), and vector-to-vector and
vector-to-scalar operations.

 ■ vMathLib contains vector-accelerated versions of all routines in the standard math library. See vecLib
Framework Reference.

 ■ LAPACK is a linear algebra package that solves simultaneous sets of linear equations, tackles eigenvalue
and singular solution problems, and determines least-squares solutions for linear systems.

 ■ BLAS (Basic Linear Algebra Subroutines) performs basic vector and matrix computations.

 ■ vForce contains routines that take matrices as input and output arguments, rather than single variables.

Accelerate Framework 55
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Preparing Vector-Based Code

Rewriting AltiVec Instructions

Most of the tasks required to vectorize for AltiVec—restructuring data structures, designing parallel algorithms,
eliminating branches, and so forth— are the same as those you’d need to perform for the Intel architecture.
If you already have AltiVec code, you’ve already completed the fundamental vectorization work needed to
rewrite your application for the Intel architecture. In many cases the translation process will be smooth,
involving direct or nearly direct substitution of AltiVec intrinsics with Intel equivalents.

The MMX, SSE, SSE2, and SSE3 extensions provide analogous functionality to AltiVec. Like the AltiVec unit,
these extensions are fixed-sized SIMD (Single Instruction Multiple Data) vector units, capable of a high degree
of parallelism. Just as for AltiVec, code that is written to use the Intel ISA typically performs many times faster
than scalar code.

Before you start rewriting AltiVec instructions for the Intel instruction set architecture, read AltiVec/SSE
MigrationGuide. It outlines the key differences between architectures in terms of vector-based programming,
gives an overview of the SIMD extensions on x86, lists what you need to do to build your code, and provides
an in-depth discussion on alignment and other relevant issues.

See Also

The following resources are relevant for rewriting AltiVec instructions for the Intel architecture:

 ■ “Architecture-Independent Vector-Based Code” (page 67) shows how to write a fast matrix-multiplication
function with a minimum of architecture-specific coding.

 ■ Intel software manuals describe the x86 vector extensions:

http://developer.intel.com/design/Pentium4/documentation.htm

 ■ Perf-Optimization-dev is a list for discussions on analyzing and optimizing performance in Mac OS X.
You can subscribe at:

http://lists.apple.com/mailman/listinfo/perfoptimization-devlists.apple.com

56 Rewriting AltiVec Instructions
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Preparing Vector-Based Code

http://developer.intel.com/design/Pentium4/documentation.htm
http://lists.apple.com/mailman/listinfo/perfoptimization-dev
http://lists.apple.com/mailman/listinfo/perfoptimization-devlists.apple.com

Rosetta is a translation process that runs a PowerPC binary on an Intel-based Macintosh computer—it allows
applications to run as nonnative binaries. Many, but not all, applications can run translated. Applications that
run translated will never run as fast as they run as a native binary because the translation process itself incurs
a processing cost.

How compatible your application is with Rosetta depends on the type of application it is. An application
such as a word processor that has a lot of user interaction and low computational needs is quite compatible.
An application that requires a moderate amount of user interaction and has some high computational needs
or that uses OpenGL is most likely also quite compatible. One that has intense computing needs isn’t
compatible. This includes applications that need to repeatedly compute fast Fourier transforms (FFTs), that
compute complex models for 3-D modeling, or that compute ray tracing.

To the user, Rosetta is transparent. Unlike Classic, when the user launches an application, there aren’t any
visual cues to indicate that the application is translated. The user may perceive that the application is slow
to start up or that the performance is slower than it is on a PowerPC-based Macintosh. The user can discover
whether an application has only a PowerPC binary by looking at the Finder information for the application.
(See “Determining Whether a Binary Is Universal” (page 16).)

This appendix discusses the sorts of applications that can run translated, describes how Rosetta works, points
out special considerations for translated applications, shows how to force an application to run translated
using Rosetta, describes how to programmatically detect whether an application is running nonnatively, and
provides troubleshooting information if your application won’t run translated but you think that it should.

What Can Be Translated?

Rosetta is designed to translate currently shipping applications that run on a PowerPC with a G3 or G4
processor and that are built for Mac OS X. That includes CFM as well as Mach-O PowerPC applications.

Rosetta does not run the following:

 ■ Applications built for any version of the Mac OS earlier than Mac OS X —that means Mac OS 9, Mac OS
8, Mac OS 7, and so forth

 ■ The Classic environment

 ■ Screen savers written for the PowerPC architecture

 ■ Code that inserts preferences in the System Preferences pane

 ■ Applications that require a G5 processor

 ■ Applications that depend on one or more PowerPC-only kernel extensions

 ■ Kernel extensions

 ■ Java applications with JNI libraries

What Can Be Translated? 57
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

 ■ Java applets in applications that Rosetta can translate; that means a web browser that Rosetta can run
translated will not be able to load Java applets.

Rosetta does not support precise exceptions. Any application that relies on register states being accurate in
exception handlers or signal handlers will not function properly running with Rosetta.

For more information on the limitations of Java applications using Rosetta, see “Java Applications” (page 45)
and Technical Q &A QA1295, Java on Intel-based Macintosh Computers, which is in the ADC Reference Library.

How It Works

When an application launches on an Intel-based Macintosh computer, the kernel detects whether the
application has a native binary. If the binary is not native, the kernel launches the binary using Rosetta. If the
application is one of those that can be translated, it launches and runs, although not as fast as it would as a
native binary. Behind the scenes, Rosetta translates and executes the PowerPC binary code.

Rosetta runs in the same thread of control as the application. When Rosetta starts an application, it translates
a block of application code and executes that block. As Rosetta encounters a call to a routine that it has not
yet translated, it translates the needed routine and continues the execution. The result is a smooth and
continual transitioning between translation and execution. In essence, Rosetta and your application work
together in a kind of symbiotic relationship.

Rosetta optimizes translated code to deliver the best possible performance on the nonnative architecture.
It uses a large translation buffer, and it caches code for reuse. Code that gets reused repeatedly in your
application benefits the most because it needs to be translated only once. The system uses the cached
translation, which is faster than translating the code again.

Special Considerations

Rosetta must run the entire process when it translates. This has implications for applications that use third-party
plug-ins or any other component that must be loaded at the time your application launches. All parts
(application, plug-ins, or other components needed at launch time) must run either nonnatively or natively.
For example, if your application is built as a universal binary, but it uses a plug-in that has only a PowerPC
binary, then your application needs to run nonnatively on an Intel-based Macintosh computer to use the
nonnative plug in.

Rosetta takes endian issues into account when it translates your application. Multibyte data that moves
between your application and any system process is automatically handled for you—you don’t need to
concern yourself with the endian format of the data.

The following kinds of multibyte data can have endian issues if the data moves between:

 ■ Your translated application and a native process that’s not a system process

 ■ A custom pasteboard provided by your translated application and a custom pasteboard provided by a
native application

 ■ Data files or caches provided by your translated application and a native application

58 How It Works
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

http://developer.apple.com/technicalqas/Java/index-title.html

You might encounter this scenario while developing a universal binary. For example, if you’ve created a
universal binary for a server process that your application relies on, and then test that process by running
your application as a PowerPC binary, the endian format of the data passed from the server to your application
would be wrong. You encounter the same problem if you create a universal binary for your application, but
have not yet done so for a server process needed by the application.

Structures that the system defines and that are written using system routines will work correctly. But consider
the code in Listing A-1.

Listing A-1 A structure whose endian format depends on the architecture

typedef struct
{
 int x;
 int y;
} data_t

void savefile(data_t data, int filehandle)
{
 write(filehandle, &data, sizeof(data));
}

When run using Rosetta, the application will write a big-endian structure; x and y are both written as big-endian
integers. When the application runs natively on an Intel-based Macintosh, it will write out a little-endian
structure; x and y are written as little-endian integers. It is up to you to define data formats on disk to be of
a canonical endian format. Endian-specific data formats are fine as long as any application that reads or write
the data understands what the endian format of the data is and treats the data appropriately.

Keep in mind that private frameworks and plug-ins can also encounter these sorts of endian issues. If a private
framework creates a cache or data file, and the framework is a universal binary, then it will try to access the
cache from both native and PPC processes. The framework either needs to account for the endian format of
the cache when reading or writing data or needs to have two separate caches.

Forcing an Application to Run Translated

Assuming that the application meets the criteria described in “What Can Be Translated?” (page 57), applications
that have only a PowerPC binary automatically run as translated on an Intel-based Macintosh. For testing
purposes, there are several ways that you can force applications that have a universal binary to launch as a
PowerPC binary on an Intel-based Macintosh:

 ■ For applications, “Make a Setting in the Info Window” (page 60)

 ■ For command-line tools “Use Terminal” (page 60)

 ■ For an application that you are writing, “Modify the Property List” (page 60)

 ■ Programmatically, “Use the sysctlbyname Function” (page 61)

Each of these methods is described in this section.

Forcing an Application to Run Translated 59
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

Make a Setting in the Info Window

You can manually set which binary to execute on an Intel-based Macintosh computer by selecting the “Open
using Rosetta” option in the Info window of the application. To set the option, click the application icon, then
press Command-I to open the Info window. Make the setting, as shown in Figure A-1.

Figure A-1 The Info window for the Calculator application

Use Terminal

You can force a command-line tool to run translated by entering the following in Terminal:

ditto -arch ppc <toolname> /tmp/toolname
/tmp/toolname

Modify the Property List

You can set the default setting for the “Open using Rosetta” option by adding the following key to the
Info.plist of your application bundle:

<key>LSPrefersPPC</key>

60 Forcing an Application to Run Translated
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

<true/>

This key informs the system that the application should launch as a PowerPC binary and causes the “Open
using Rosetta” checkbox to be selected. You might find this useful if you ship an application that has plug-ins
that are not native at the time of shipping.

Use the sysctlbyname Function

The exec_affinity routine in Listing A-2 controls the preferred CPU type for sublaunched processes. You
might find this routine useful if you are using fork and exec to launch applications from your application.

The routine calls the sysctlbyname function with the "sysctl.proc_exec_affinity" string, passing a
constant that specifies the CPU type. Pass CPU_TYPE_POWERPC to launch the PPC executable in a universal
binary. (For information on sysctlbyname see Mac OS X Man Pages.)

Listing A-2 A routine that controls the preferred CPU type for sublaunched processes

cpu_type_t exec_affinity (cpu_type_t new_cputype)
{
 cpu_type_t ret;
 cpu_type_t *newp = NULL;
 size_t sz = sizeof (cpu_type_t);

 if (new_cputype != 0)
 newp = &new_cputype;

 if (sysctlbyname("sysctl.proc_exec_affinity",
 &ret, &sz, newp, newp ? sizeof(cpu_type_t) : 0) == -1) {
 fprintf(stderr, "exec_affinity: sysctlbyname failed: %s\n",
 strerror(errno));
 return -1;
 }
 return ret;
}

Preventing an Application from Opening Using Rosetta

To prevent an application from opening using Rosetta, add the following key to the Info.plist:

<key>LSRequiresNativeExecution</key>
<true/>

Programmatically Detecting a Translated Application

Some developers may want to determine programmatically whether an application is running using Rosetta.
For example, a developer writing device interface code may need to determine whether the user client is
using the same endian format as the kernel.

Preventing an Application from Opening Using Rosetta 61
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

Listing A-3 is a utility routine that can call the sysctlbyname function on a process ID (pid). If you pass a
process ID of 0 to the routine, it performs the call on the current process. Otherwise it performs the call on
the process specified by the pid value that you pass. (For information on sysctlbyname see Mac OS X Man
Pages.)

Listing A-3 A utility routine for calling the sysctlbyname function

static int sysctlbyname_with_pid (const char *name, pid_t pid,
 void *oldp, size_t *oldlenp,
 void *newp, size_t newlen)
{
 if (pid == 0) {
 if (sysctlbyname(name, oldp, oldlenp, newp, newlen) == -1) {
 fprintf(stderr, "sysctlbyname_with_pid(0): sysctlbyname failed:"
 "%s\n", strerror(errno));
 return -1;
 }
 } else {
 int mib[CTL_MAXNAME+1];
 size_t len = CTL_MAXNAME;
 if (sysctlnametomib(name, mib, &len) == -1) {
 fprintf(stderr, "sysctlbyname_with_pid: sysctlnametomib failed:"
 "%s\n", strerror(errno));
 return -1;
 }
 mib[len] = pid;
 len++;
 if (sysctl(mib, len, oldp, oldlenp, newp, newlen) == -1) {
 fprintf(stderr, "sysctlbyname_with_pid: sysctl failed:"
 "%s\n", strerror(errno));
 return -1;
 }
 }
 return 0;
}

The is_pid_native routine shown in Listing A-4 (page 62) calls the sysctlbyname_with_pid routine,
passing the string "sysctl.proc_native". The is_pid_native routine determines whether the specified
process is running natively or translated. The routine returns:

 ■ 0 if the process is running translated using Rosetta

 ■ 1 if the process is running natively on a PowerPC- or Intel-based Macintosh

 ■ –1 if an unexpected error occurs

Listing A-4 A routine that determines whether a process is running natively or translated

int is_pid_native (pid_t pid)
{
 int ret = 0;
 size_t sz = sizeof(ret);

 if (sysctlbyname_with_pid("sysctl.proc_native", pid,
 &ret, &sz, NULL, 0) == -1) {
 if (errno == ENOENT) {
 return 1;

62 Programmatically Detecting a Translated Application
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

 }
 fprintf(stderr, "is_pid_native: sysctlbyname_with_pid failed:"
 "%s\n", strerror(errno));
 return -1;
 }
 return ret;
}

Note: On Mac OS X v10.4, the proc_native call fails if the current user doesn't own the process being
checked.

Troubleshooting

If you are convinced that your application falls into the category of those that should be able to run using
Rosetta but it doesn’t run or it has unexpected behavior, you can follow the procedure in this section to
debug your application. This procedure works only for PowerPC binaries—not for a universal binary—and
is the only way you can debug a PowerPC binary on an Intel-based Macintosh. Xcode debugging does not
work for translated applications.

To debug a PowerPC binary on an Intel-based Macintosh, follow these steps:

1. Open Terminal.

2. Enter the following two lines:

For tcsh:

setenv OAH_GDB YES
/<path>/<your_application>.app/Contents/MacOS/<your_application>

For bash:

export OAH_GDB=YES
/<path>/<your_application>.app/Contents/MacOS/<your_application>

You’ll see the Rosetta process launch and wait for a port connection (Figure A-2).

Figure A-2 Rosetta listens for a port connection

3. Open a second terminal window and start up GDB with the following command:

Troubleshooting 63
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

gdb --oah

Using GDB on an Intel-based Macintosh computer is just like using GDB on a PowerPC Macintosh.

4. Attach your application.

attach <your_application>

5. Press Tab.

GDB automatically appends the process ID (pid) to your application name.

6. Press Return.

7. Type c to execute your application.

Important: Do not type run. Typing run will not execute your code. It will leave your application in a
state that requires you to start over from the first step.

Figure A-3 shows the commands for initiating a debugging session for a PowerPC binary. After you start the
session, you can debug in much the same way as you would debug a native process except that you can’t
call functions—either explicitly or implicitly—from within GDB. For example, you can’t inspect CF objects by
calling CFShow.

Keep in mind that symbol files aren’t loaded at the start of the debugging session. They are loaded after your
application is up and running. This means that any breakpoints you set are “pending breakpoints” until the
executable and libraries are loaded.

64 Troubleshooting
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

Figure A-3 Terminal windows with the commands for debugging a PowerPC binary on an Intel-based
Macintosh computer

Note: Debugging Rosetta applications from within either CodeWarrior or Xcode is not supported.

Troubleshooting 65
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

66 Troubleshooting
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Rosetta

The intention of this appendix is to show how to factor a mathematical calculation into
architecture-independent and architecture-specific parts. Using matrix multiplication as an example, you’ll
see how to write a function that works for both the PowerPC and the x86 architectures with a minimum of
architecture-specific coding. You can then apply this approach to other, more complex mathematical
calculations.

The following basic operations are available on both architectures:

 ■ Vector loads and stores

 ■ Multiplication

 ■ Addition

 ■ An instruction to splat a float across a vector

For other types of calculations, you may need to write separate versions of code. Because of the differences
in the number of registers and the pipeline depths between the two architectures, it is often advantageous
to provide separate versions.

Note: There is a function for 4x4 matrix multiplication in the Accelerate framework (vecLib) that is tuned
for both architectures. You can also call sgemm from Basic Linear Algebra Subprograms (BLAS) (also available
in the Accelerate framework) to operate on larger matrices.

Architecture-Specific Code

Listing B-1 (page 67) shows the architecture-specific code you need to support matrix multiplication. The
code calls the architecture-independent function MyMatrixMultiply, which is shown in Listing B-2 (page
71). The code shown in Listing B-1 works properly for both instruction set architectures only if you build the
code as a universal binary. For more information, see “Building a Universal Binary” (page 11).

Note: The sample code makes use of a GCC extension to return a result from a code block ({}). The code may
not compile correctly on other compilers. The extension is necessary because you cannot pass immediate
values to an inline function, meaning that you must use a macro.

Listing B-1 Architecture-specific code needed to support matrix multiplication

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

// For each vector architecture...
#if defined(__VEC__)

Architecture-Specific Code 67
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

// AltiVec
 // Set up a vector type for a float[4] array for each vector type
 typedef vector float vFloat;

 // Define some macros to map a virtual SIMD language to
 // each actual SIMD language. For matrix multiplication, the tasks
 // you need to perform are essentially the same between the two
 // instruction set architectures (ISA).
 #define vSplat(v, i) ({ vFloat z = vec_splat(v, i);
 /* return */ z; })
 #define vMADD vec_madd
 #define vLoad(ptr) vec_ld(0, ptr)
 #define vStore(v, ptr) vec_st(v, 0, ptr)
 #define vZero() (vector float) vec_splat_u32(0)

#elif defined(__SSE__)
// SSE
 // The header file xmmintrin.h defines C functions for using
 // SSE and SSE2 according to the Intel C programming interface
 #include <xmmintrin.h>

 // Set up a vector type for a float[4] array for each vector type
 typedef __m128 vFloat;

 // Also define some macros to map a virtual SIMD language to
 // each actual SIMD language.

 // Note that because i MUST be an immediate, it is incorrect here
 // to alias i to a stack based copy and replicate that 4 times.
 #define vSplat(v, i)({ __m128 a = v; a = _mm_shuffle_ps(a, a, \
 _MM_SHUFFLE(i,i,i,i)); /* return */ a; })
 inline __m128 vMADD(__m128 a, __m128 b, __m128 c)
 {
 return _mm_add_ps(c, _mm_mul_ps(a, b));
 }
 #define vLoad(ptr) _mm_load_ps((float*) (ptr))
 #define vStore(v, ptr) _mm_store_ps((float*) (ptr), v)
 #define vZero() _mm_setzero_ps()

#else
// Scalar
 #warning To compile vector code, you must specify -faltivec,
 -msse, or both- faltivec and -msse
 #warning Compiling for scalar code.

 // Some scalar equivalents to show what the above vector
 // versions accomplish

 // A vector, declared as a struct with 4 scalars
 typedef struct
 {
 float a;
 float b;
 float c;
 float d;
 }vFloat;

 // Splat element i across the whole vector and return it

68 Architecture-Specific Code
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

 #define vSplat(v, i) ({ vFloat z; z.a = z.b = z.c = z.d = ((float*)
 &v)[i]; /* return */ z; })

 // Perform a fused-multiply-add operation on architectures that support it
 // result = X * Y + Z
 inline vFloat vMADD(vFloat X, vFloat Y, vFloat Z)
 {
 vFloat result;

 result.a = X.a * Y.a + Z.a;
 result.b = X.b * Y.b + Z.b;
 result.c = X.c * Y.c + Z.c;
 result.d = X.d * Y.d + Z.d;

 return result;
 }

 // Return a vector that starts at the given address
 #define vLoad(ptr) ((vFloat*) ptr)[0]

 // Write a vector to the given address
 #define vStore(v, ptr) ((vFloat*) ptr)[0] = v

 // Return a vector full of zeros
 #define vZero() ({ vFloat z; z.a = z.b = z.c = z.
 d = 0.0f; /* return */ z; })

#endif

// Prototype for a vector matrix multiply function
void MyMatrixMultiply(vFloat A[4], vFloat B[4], vFloat C[4]);

int main(void)
{
 // The vFloat type (defined previously) is a vector or scalar array
 // that contains 4 floats
 // Thus each one of these is a 4x4 matrix, stored in the C storage order.
 vFloat A[4];
 vFloat B[4];
 vFloat C1[4];
 vFloat C2[4];
 int i, j, k;

 // Pointers to the elements in A, B, C1 and C2
 float *a = (float*) &A;
 float *b = (float*) &B;
 float *c1 = (float*) &C1;
 float *c2 = (float*) &C2;

 // Initialize the data
 for(i = 0; i < 16; i++)
 {
 a[i] = (double) (rand() - RAND_MAX/2) / (double) (RAND_MAX);
 b[i] = (double) (rand() - RAND_MAX/2) / (double) (RAND_MAX);
 c1[i] = c2[i] = 0.0;
 }

 // Perform the brute-force version of matrix multiplication

Architecture-Specific Code 69
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

 // and use this later to check for correctness
 printf("Doing simple matrix multiply...\n");
 for(i = 0; i < 4; i++)
 for(j = 0; j < 4; j++)
 {
 float result = 0.0f;

 for(k = 0; k < 4; k++)
 result += a[i * 4 + k] * b[k * 4 + j];

 c1[i * 4 + j] = result;
 }

 // The vector version
 printf("Doing vector matrix multiply...\n");
 MyMatrixMultiply(A, B, C2);

 // Make sure that the results are correct
 // Allow for some rounding error here
 printf("Verifying results...");
 for(i = 0 ; i < 16; i++)
 if(fabs(c1[i] - c2[i]) > 1e-6)
 printf("failed at %i,%i: %8.17g %8.17g\n", i/4,
 i&3, c1[i], c2[i]);

 printf("done.\n");

 return 0;
}

The 4x4 matrix multiplication algorithm shown in Listing B-2 (page 71) is a simple matrix multiplication
algorithm performed with four columns in parallel. The basic calculation is as follows:

C[i][j] = sum(A[i][k] * B[k][j], k = 0... width of A)

It can be rewritten in mathematical vector notation for rows of C as the following:

C[i][] = sum(A[i][k] * B[k][], k = 0... width of A)

Where:

C[i][] is the ith row of C
A[i][k] is the element of A at row i and column k
B[k][] is the kth row of B

An example calculation for C[0][] is as follows:

C[0][] = A[0][0] * B[0][] + A[0][1] * B[1][] + A[0][2] * B[2][] + A[0][3] * B[3][]

This calculation is simply a multiplication of a scalar times a vector, followed by addition of similar elements
between two vectors, repeated four times, to get a vector that contains four sums of products. Performing
the calculation in this way saves you from transposing B to obtain the B columns, and also saves you from
adding across vectors, which is inefficient. All operations occur between similar elements of two different
vectors.

70 Architecture-Specific Code
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

Architecture-Independent Matrix Multiplication

Listing B-2 (page 71) shows architecture-independent vector code that performs matrix multiplication. This
code compiles as scalar if you do not set up the appropriate compiler flags for PowerPC (-faltivec) or x86
(-msse), or if AltiVec is unavailable on the PowerPC. The matrices used in the MyMatrixMultply function
assume the C storage order for 2D arrays, not the FORTRAN storage order.

Listing B-2 Architecture-independent code that performs matrix multiplication

void MyMatrixMultiply(vFloat A[4], vFloat B[4], vFloat C[4])
{
 vFloat A1 = vLoad(A); //Row 1 of A
 vFloat A2 = vLoad(A + 1); //Row 2 of A
 vFloat A3 = vLoad(A + 2); //Row 3 of A
 vFloat A4 = vLoad(A + 3); //Row 4 of A
 vFloat C1 = vZero(); //Row 1 of C, initialized to zero
 vFloat C2 = vZero(); //Row 2 of C, initialized to zero
 vFloat C3 = vZero(); //Row 3 of C, initialized to zero
 vFloat C4 = vZero(); //Row 4 of C, initialized to zero

 vFloat B1 = vLoad(B); //Row 1 of B
 vFloat B2 = vLoad(B + 1); //Row 2 of B
 vFloat B3 = vLoad(B + 2); //Row 3 of B
 vFloat B4 = vLoad(B + 3); //Row 4 of B

 //Multiply the first row of B by the first column of A (do not sum across)
 C1 = vMADD(vSplat(A1, 0), B1, C1);
 C2 = vMADD(vSplat(A2, 0), B1, C2);
 C3 = vMADD(vSplat(A3, 0), B1, C3);
 C4 = vMADD(vSplat(A4, 0), B1, C4);

 // Multiply the second row of B by the second column of A and
 // add to the previous result (do not sum across)
 C1 = vMADD(vSplat(A1, 1), B2, C1);
 C2 = vMADD(vSplat(A2, 1), B2, C2);
 C3 = vMADD(vSplat(A3, 1), B2, C3);
 C4 = vMADD(vSplat(A4, 1), B2, C4);

 // Multiply the third row of B by the third column of A and
 // add to the previous result (do not sum across)
 C1 = vMADD(vSplat(A1, 2), B3, C1);
 C2 = vMADD(vSplat(A2, 2), B3, C2);
 C3 = vMADD(vSplat(A3, 2), B3, C3);
 C4 = vMADD(vSplat(A4, 2), B3, C4);

 // Multiply the fourth row of B by the fourth column of A and
 // add to the previous result (do not sum across)
 C1 = vMADD(vSplat(A1, 3), B4, C1);
 C2 = vMADD(vSplat(A2, 3), B4, C2);
 C3 = vMADD(vSplat(A3, 3), B4, C3);
 C4 = vMADD(vSplat(A4, 3), B4, C4);

 // Write out the result to the destination
 vStore(C1, C);
 vStore(C2, C + 1);
 vStore(C3, C + 2);

Architecture-Independent Matrix Multiplication 71
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

 vStore(C4, C + 3);
}

72 Architecture-Independent Matrix Multiplication
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Architecture-Independent Vector-Based Code

Mac OS X ABI Function Call Guide describes the function-calling conventions used in all the architectures
supported by Mac OS X. For detailed information about the IA-32 ABI, read the section “IA-32 Function Calling
Conventions,” which:

 ■ Lists data types, sizes, and natural alignment

 ■ Describes stack structure

 ■ Discusses prologs and epilogs

 ■ Provides details on how arguments are passed and results are returned

 ■ Tells which registers preserve their value after a procedure call and which ones are volatile

73
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

32-Bit Application Binary Interface

74
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

32-Bit Application Binary Interface

For information on the Apple x86-64 ABI, see:

 ■ Mac OS X ABI Function Call Guide

 ■ Mac OS X ABI Mach-O File Format Reference

 ■ Mach-O Programming Topics

75
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX D

64-Bit Application Binary Interface

76
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

APPENDIX D

64-Bit Application Binary Interface

This table describes the changes to Universal Binary Programming Guidelines, Second Edition.

NotesDate

Made minor content additions.2009-02-04

Updated “Programmatically Detecting a Translated Application ” (page 61) with
details about the behavior of the sysctl call when working with the
proc_native variable.

Updated for Mac OS X v10.5.2007-02-26

Removed the Appendix “Using PowerPlant” because an Open Source version
that supports Intel-based Macintosh computers is available. See “Metrowerks
PowerPlant” (page 47).

Replaced the content in “64-Bit Application Binary Interface” (page 75) with
cross-references to documents that are more thorough at describing the ABI.

Added information on 64-bit and made technical corrections.2007-01-08

Added “64-Bit Application Binary Interface” (page 75).

Added a note to “OpenGL” (page 48).

Revised the explanation of the return values for the code in Listing A-4 (page
62).

Removed the code example in “Archived Bit Fields” (page 41) because it was
incorrect.

Made a few minor technical corrections.2006-07-24

Revised “Network-Related Data” (page 32).

Clarified how Listing A-4 (page 62) works.

Fixed link.2006-06-28

Added “PostScript Printing” (page 52).

Redirected link from Kernel Extensions Reference to Kernel Framework Reference.

Removed outdated links and made a few other minor changes.2006-05-23

Revised code regarding flippers to use an explicit UInt16 pointer and to assign
back to dataptr the advanced countPtr.

77
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Updated instructions in “Troubleshooting” (page 63).

Added information about the CCSResourcesFileMapped flag to “using
PowerPlant”.

Removed links to documentation that is no longer relevant.

Added a note to “LStream.h” concerning reading and writing bool values.

Corrected two function names.2006-04-04

Revised information in “32-Bit Application Binary Interface” (page 73) so that
it now only provides a link to the primary ABI reference.

Improved wording and added information on Spotlight importers.2006-03-08

Added information to “Objective-C Runtime: Sending Messages” and
“Objective-C: Messages to nil.”

Improved the wording in several sections.2006-02-07

Revised wording in “Bit Shifting” (page 42), “Bit Test, Set, and Clear Functions:
Carbon and POSIX” (page 42), “Troubleshooting” (page 63), and “Guidelines
for Swapping Bytes” (page 27).

Revised code in Listing A-4 (page 62) by adding a statement to handle versions
of Mac OS that pre-date Rosetta.

Updated content for Mac OS X v10.4.4.2006-01-10

Removed the note about preliminary documentation from “Introduction to
Universal Binary Programming Guidelines” (page 9).

Changed Xcode 2.1 to Xcode 2.2 in various places throughout the document
because this is the recommended version for building a universal binary.

Updated screenshots.

Updated information in “Disk Partitions” (page 43), “Finder Information and
Low-Level File System Operations” (page 44), “Multithreading” (page 47),
“Objective-C: Messages to nil” (page 47), “QuickTime Components” (page 53),
“Runtime Code Generation” (page 53), and “Values in an Array” (page 35).

Added the sections “Code on the Stack: Disabling Execution” (page 22),
“Extensible Firmware Interface (EFI)” (page 23), and “Mach Processes: The Task
for PID Function” (page 46).

In “Rosetta” (page 57), updated the sections “What Can Be Translated?” (page
57) and “Forcing an Application to Run Translated” (page 59).

In “Rosetta” (page 57), added the section “Programmatically Detecting a
Translated Application ” (page 61).

78
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Made refinements to existing content.2005-12-06

Added code that shows how to swap bytes for values in an array. See “Values
in an Array” (page 35).

Added “Automator Scripts” (page 41), “Dashboard Widgets” (page 43), and
“QuickTime Metadata Functions” (page 53).

Updated for Xcode 2.2; includes pointers to newly revised tools documentation
as well as improved guidelines and tips.

2005-11-09

Revised “Building Your Code” (page 12).

Added “Debugging” (page 15).

Added information to “Pixel Data ” (page 51) on how to track down color
problems.

Added the section “Quartz Bitmap Data” (page 52).

Added information about IP addresses and other “false” numerical values.

In several places throughout the book, added cross references to newly revised,
relevant documentation.

Added clarification on the long double data type. See “Data Types” (page 23).

Added information about using the PinRect function. See “QuickDraw
Routines” (page 52).

Added information about the need for Xcode targets to be native. See “Build
Assumptions” (page 11) and “Building Your Code” (page 12).

Corrected information about how ATS for Fonts handles font resources. See
“Font-Related Resources” (page 44).

Changed extended markup language to extensible markup language.

Improved the grammar in “Objective-C: Messages to nil” (page 47).

Fixed a link to information on Hyper-Threading Technology. See the “See
Also” (page 54) section in “Guidelines for Specific Scenarios” (page 41).

Made numerous editorial changes throughout.

Made technical improvements and minor editorial changes throughout.2005-10-04

Added a few resources to See Also in “Building a Universal Binary” (page 11).

Changed the title of the Appendix Fast Matrix Multiplication to
“Architecture-Independent Vector-Based Code” (page 67).

79
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added new sections to the chapter “Guidelines for Specific Scenarios” (page
41). See “FireWire Device Access” (page 44) and “USB Device Access” (page
54).

Added information about a relevant technical note to “QuickTime
Components” (page 53).

Added an example of a color issue to “Troubleshooting Your Built
Application” (page 15).

Revised the section “Objective-C: Messages to nil” (page 47).

Revised the code for swapping floating-point values. See “Floating-Point
Values” (page 30).

Add a reference to Cross-Development Programming Guide in the chapter
“Building a Universal Binary” (page 11).

Made corrections to the section “OpenGL” (page 48).

Updated a substantial amount of task and conceptual information.2005-09-08

Completely replaced information related to PowerPlant.

Removed most of the content from “Preparing Vector-Based Code” (page 55)
because the document AltiVec/SSE Migration Guide provides a more complete
discussion of porting AltiVec code to SSE.

Removed most of the content from the appendix titled Application Binary
Interface because the document Mac OS X ABI Function Call Guide provides a
more complete description of the IA-32 ABI for Intel-based Macintosh computers.

Added a section—“Java Applications” (page 45)—that provides information
about Java on Intel-based Macintosh computers, including what happens under
Rosetta. Added cross-references to a technical note on this topic to
“Rosetta” (page 57).

Numerous minor technical and editorial changes throughout.2005-08-11

Removed the appendix titled x86 Equivalent Instructions for AltiVec Instructions.”

Made numerous minor technical refinements and fixed a few typographical
errors.

2005-07-07

Fixed typographical and linking errors. Made several improvements to technical
content.

2005-06-17

New document that describes the architectural differences between PowerPC
and Intel and provides tips for writing code that can run on both.

2005-06-07

80
2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Universal Binary Programming Guidelines, Second Edition
	Contents
	Figures, Tables, and Listings
	Introduction
	Building a Universal Binary
	Build Assumptions
	Building Your Code
	Debugging
	Troubleshooting Your Built Application
	Determining Whether a Binary Is Universal
	Build Options
	Default Compiler Options
	Architecture-Specific Options
	Autoconf Macros

	See Also

	Architectural Differences
	Alignment
	Bit Fields
	Byte Order
	Calling Conventions
	Code on the Stack: Disabling Execution
	Data Type Conversions
	Data Types
	Divide-By-Zero Operations
	Extensible Firmware Interface (EFI)
	Floating-Point Equality Comparisons
	Structures and Unions
	See Also

	Swapping Bytes
	Why Byte Ordering Matters
	Guidelines for Swapping Bytes
	Byte-Swapping Routines
	Byte-Swapping Strategies
	Constants
	Custom Apple Event Data
	Custom Resource Data
	Floating-Point Values
	Integers
	Network-Related Data
	OSType-to-String Conversions
	Unicode Text Files
	Values in an Array

	Writing a Callback to Swap Data Bytes
	See Also

	Guidelines for Specific Scenarios
	Aliases
	Archived Bit Fields
	Automator Scripts
	Bit Shifting
	Bit Test, Set, and Clear Functions: Carbon and POSIX
	CPU Subtype
	Dashboard Widgets
	Deprecated Functions
	Disk Partitions
	Double-Precision Values: Bit-by-Bit Sensitivity
	Finder Information and Low-Level File System Operations
	FireWire Device Access
	Font-Related Resources
	GWorlds
	Java Applications
	Java I/O API (NIO)
	Machine Location Data Structure
	Mach Processes: The Task for PID Function
	Metrowerks PowerPlant
	Multithreading
	Objective-C: Messages to nil
	Objective-C Runtime: Sending Messages
	Open Firmware
	OpenGL
	OSAtomic Functions
	Pixel Data
	PostScript Printing
	Quartz Bitmap Data
	QuickDraw Routines
	QuickTime Components
	QuickTime Metadata Functions
	Runtime Code Generation
	Spotlight Importers
	System-Specific Predefined Macros
	USB Device Access
	See Also

	Preparing Vector-Based Code
	Accelerate Framework
	Rewriting AltiVec Instructions
	See Also

	Appendix A: Rosetta
	What Can Be Translated?
	How It Works
	Special Considerations
	Forcing an Application to Run Translated
	Make a Setting in the Info Window
	Use Terminal
	Modify the Property List
	Use the sysctlbyname Function

	Preventing an Application from Opening Using Rosetta
	Programmatically Detecting a Translated Application
	Troubleshooting

	Appendix B: Architecture-Independent Vector-Based Code
	Architecture-Specific Code
	Architecture-Independent Matrix Multiplication

	Appendix C: 32-Bit Application Binary Interface
	Appendix D: 64-Bit Application Binary Interface
	Revision History

