
Xgrid Programming Guide
Mac OS X Server > High Performance Computing

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, eMac, Leopard,
Mac, Mac OS, Objective-C, Tiger, Xcode, and
Xgrid are trademarks of Apple Inc., registered
in the United States and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7

Chapter 1 Xgrid Overview 9

How It Works 9
Client Software 11
Controller Software 11
Agent Software 11
Setting Up Xgrid 12
Submitting Jobs to Xgrid 13

Chapter 2 Getting Started with Xgrid 15

Before You Start 15
Three Tasks With Different Requirements 16
The Recommended Development Process 16

Chapter 3 Using the Xgrid Command-Line Client 17

Basic xgrid Syntax 17
Running a Job Synchronously 18
Submitting a Job for Asynchronous Execution 18
Submitting a Batch Job 19

Chapter 4 Building and Running GridSample 21

The GridSample Targets 21
The Xgrid Sample Target 22
The GridFeeder Target 24
Debugging and Monitoring Progress 24

Chapter 5 Overriding the Job Specification Function 27

How the GridSample Code Is Organized 27
Changing the Job Specification 28

Step One: Create a New Job Submission UI 29
Step Two: Add the Support Code 30
Step Three: Create an Application Delegate 31
Step Four: Change the Application Delegate’s Class in MainMenu.nib 32
Summary 33

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 6 Writing a Cocoa Xgrid Client 35

Writing an Application in Six Steps 35
Step One: Locate a Controller and Connect 36
Step Two: Authenticate 36
Step Three: Submit a Job 36
Step Four: Retrieve Job ID 37
Step Five: Register for Notifications 37
Step Six: Data Collection 37
Good Housekeeping 37

Document Revision History 39

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Xgrid Overview 9

Figure 1-1 Xgrid architecture 10
Figure 1-2 Agent configuration 12

Chapter 3 Using the Xgrid Command-Line Client 17

Listing 3-1 Excerpt from the xgrid man page 17
Listing 3-2 Running a job synchronously 18
Listing 3-3 Submitting a job asynchronously 18

Chapter 4 Building and Running GridSample 21

Figure 4-1 GridSample project 22
Figure 4-2 The Xgrid Sample controller selection window 23
Figure 4-3 Xgrid Sample main window 23
Figure 4-4 Gridfeeder Sample New Job window 24

Chapter 5 Overriding the Job Specification Function 27

Figure 5-1 Locating the right NewJob.nib file 29
Figure 5-2 GridSample job submission .nib file 30
Figure 5-3 GridCalendar job submission .nib file 30
Figure 5-4 GridSampleNewJobWindowContoller files 31
Figure 5-5 Classes tab in MainMenu.nib 32
Figure 5-6 GridCalendarApplicationDelegate subclass 32
Listing 5-1 GridCalendarApplicationDelegate 31

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

This document describes the programming interfaces to Xgrid, Apple’s technology for distributed
multiprocessing using multiple computers and multiple processors.

If you are writing an application that can benefit from being executed on multiple processors simultaneously,
you should read this document.

Organization of This Document

This document is divided into the following chapters:

 ■ “Xgrid Overview” (page 9)—A description of the Xgrid architecture and tools.

 ■ “Getting Started with Xgrid” (page 15)—Considerations when planning a project for Xgrid, finding the
source code, executables, and documentation.

 ■ “Using the Xgrid Command-Line Client” (page 17)—A description of the Apple-supplied xgrid
command-line client and how to use it.

 ■ “Building and Using GridSample” (page 21)—How to build and use the GridSample Xcode project client
application.

 ■ “Overriding the Job Specification Function” (page 27)—How to modify and customize GridSample to
create a new application.

 ■ “Writing a Cocoa Xgrid Client” (page 35)—How to write an Xgrid client application from scratch in
Objective-C using the Xgrid Foundation framework.

Organization of This Document 7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 Organization of This Document
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Xgrid allows you to execute programs using multiple computers—and multiple processors on a single
computer—to perform multiple calculations in parallel.

Xgrid is a generalized system, capable of assembling clusters of processors on demand, detecting and
correcting failures, and parceling out parallel tasks as needed for general-purpose parallel computing on
multiple systems.

The Xgrid controller is a feature of Mac OS X Server, but any computer with Mac OS X (version 10.4 and later)
can submit jobs to Xgrid or act as an agent to carry out Xgrid computations.

How It Works

The main components of Xgrid are the client, the controller, and one or more agents. As illustrated in Figure
1-1, the client submits jobs to the controller, which assigns tasks to the agents. The agents carry out the tasks
and return data to the controller. The controller supervises the agents, collects the data, and notifies the
client when the job terminates.

How It Works 9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

Figure 1-1 Xgrid architecture

1

Dedicated agent

Cluster agent

Client submits job
to Controller

Client Controller

3 Agents execute tasks

2 Controller splits job
into tasks, then submits
tasks to agents

5 Controller collects tasks
and returns job results
to client

4 Agents return tasks
to controller

Screensaver agent

Distributed agents

A job, as defined for Xgrid, is a collection of one or more executable tasks that can be run in parallel. Each
individual task consists of an executable file and any necessary input parameters, data files, and directories.

If enough agents are available, each task is assigned to an agent for simultaneous execution. If necessary,
agents with multiple CPUs or multiple cores will have a separate task assigned to each CPU or core.

If there are not enough agents, CPUs, or cores to execute all the tasks simultaneously, the controller assigns
tasks to each agent, then waits and assigns the remaining tasks to agents as they finish their current task or
otherwise become available.

The controller passes or copies the executable files to the agents, along with any necessary working directories
for input and output. The controller supervises and coordinates the agents, detects individual failures, and
reassigns tasks as necessary. The agents complete the tasks and return any data, and the controller notifies
the client when the job is done or aborts due to an error.

Since jobs typically take a long time to execute, the process is asynchronous. The client submits the job and
is notified when it completes.

The client can register to be notified by the controller when the job completes or when events such as errors
occur. Notifications by email are also supported.

10 How It Works
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

The client may also monitor the job state at any time by querying the controller. The client may disconnect
from the network and return to check the status of the job later.

Xgrid provides notification of errors, task completion, and job completion. Ongoing progress of individual
tasks is not reported, even for very long tasks.

Client Software

Mac OS X includes a command-line client, xgrid, and a sample client application, GridSample.

The xgrid command-line client is installed on all computers with Mac OS X, versions 10.4 and later.

When you install the Developer Tools for Mac OS X version 10.4, or the Xcode Tools for Mac OS X version
10.5, a directory named Developer/Examples/Xgrid is created. Inside this directory is an Xcode project
named GridSample. This project contains a complete client application. You can build and run this application
as a graphical alternative to the xgrid command-line tool. You can also modify the GridSample code to
create your own client applications with minimal programming. To an extent, you can treat the GridSample
project as an application framework.

You can also write your own Xgrid client software from scratch, using the Xgrid Foundation framework—a
collection of Objective-C classes.

Client software that you write, either from scratch or by modifying the GridSample code, can be run on any
computer with Mac OS X version 10.4 or later.

Controller Software

The controller software is included on Mac OS X Server version 10.4 or later.

You do not normally need to interact with the controller software directly. After a controller is configured, it
waits for job submissions from clients and performs its work without human intervention. On Mac OS X
Server, the Xgrid controller can be configured using the Server Admin tool (found in the
Applications/Server/ directory). From within Server Admin, choose Computers and Services, then select
Xgrid. Tabs are available for configuring controller software and agent software.

Mac OS X Server also includes the XgridAdmin application (also found in the Applications/Server
directory), which can be used to monitor and administer Xgrid, to cancel or delete jobs, for example.

Agent Software

Any computer with Mac OS X version 10.3 or later can act as an agent. The agent software is included in
version 10.4 and later, and can be downloaded for version 10.3.

The agent software can be controlled from the System Preferences window, as shown in Figure 1-2.

Client Software 11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

Figure 1-2 Agent configuration

By default, agent software is off. When turned on, by default it accepts tasks only when the host computer
is idle (has had no activity for 15 minutes or is running the screen saver). The agent software can be set to
accept jobs at any time, however, making the host computer a dedicated agent (the host computer can still
run other software, but is available for parallel computing tasks at all times).

On Mac OS X Server, the agent softwarer can be configured using the Server Admin tool (found in the
Applications/Server/ directory). From within Server Admin, choose Computers and Services, then select
Xgrid. Tabs are available for configuring controller software and agent software.

Setting Up Xgrid

Setting up Xgrid is fairly simple.

 ■ Choose a Mac OS X Server computer to act as a controller. Enable the controller and set the password
using the Server Admin application (choose Xgrid from the list of Computers and Services; there are tabs
for configuring the Agent and Controller services).

 ■ Choose the computers you will use as agents and enable the Xgrid function (in the Sharing pane of the
System Preferences window) for each agent computer.

 ■ Make sure that all of the agents can be accessed over the network by the controller.

12 Setting Up Xgrid
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

 ■ If your agents are sharing access to a common pool of data, rather than receiving copies of all necessary
data from the controller, make sure that all the agents have network access to the data and verify that
they have the necessary permissions to read and write.

While simple in concept, ensuring network access to all agents in a large organization can be tricky to
implement. Similarly, setting permissions correctly so that a data set can be shared by multiple agents can
involve a great deal of housekeeping. Where doing so is practical, you can eliminate most of the complexity
by taking two simplifying steps: put the controller and all the agents on the same IP subnet; and have the
controller copy all necessary data to the agents.

Setting up the controller and agents is described in more detail in [Xgrid Administration Guide]. The
administrator’s guide also provides a more detailed overview of the Xgrid architecture and setup
considerations.

Submitting Jobs to Xgrid

Mac OS X includes two client applications for submitting jobs to Xgrid: a command-line tool named xgrid,
and an application named GridSample, which is provided as build-able source code. Mac OS X (version 10.4
and later) also contains an Objective-C framework, Xgrid Foundation, which includes a client API for Xgrid.
Consequently, there are four ways to submit jobs to Xgrid:

 ■ You can use the xgrid command-line client with a headless application, such as a shell script, to submit
jobs to Xgrid. This is a utilitarian approach that allows you to use Xgrid in a UNIX-like way without writing
any Xgrid-specific code at all.

 ■ You can use the GridSample application in much the way that you use the xgrid command-line tool.
GridSample has a user interface that is more flexible and approachable than the xgrid command,
allowing your software to be run by users who may not be comfortable or familiar with the UNIX command
line or Terminal interface, without requiring you to write any UI code.

 ■ You can modify the GridSample source code, overriding the job specification function and adding your
own nib file to create a customized user interface. Modifying GridSample enables you to quickly create
a customized client with its own user interface without writing any unnecessary code. All the details of
job submission, monitoring, and I/O handling are built in. This is the recommended approach for university
environments or in-house computing projects that do not require an extensively “branded” client
application. If you are planning to write a stand-alone application, you should probably modify GridSample
as a first step to test the functional part of your code prior to debugging the UI and housekeeping parts.

 ■ You can write a stand-alone Objective-C application that acts as an Xgrid client and submits jobs to
Xgrid, using the Xgrid Foundation framework. This is the recommended approach when you need
complete control over the look and feel of the Xgrid client application.

This document describes all four methods of submitting jobs to Xgrid.

Submitting Jobs to Xgrid 13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

http://images.apple.com/server/docs/Xgrid_Admin_v10.4.pdf

14 Submitting Jobs to Xgrid
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Xgrid Overview

Writing a client application for Xgrid involves significant planning prior to writing your code. This chapter
describes some things to consider when planning a project for Xgrid and shows you how to get started.

Before You Start

The first task is to assess whether your job is suitable for parallel processing with Xgrid. If a job can be broken
into a series of independent tasks which can be performed in any order, or with simple order dependencies,
it is generally suitable. If complex interdependencies exist between one computational task and another, or
the tasks must be performed in linear order, it is generally not suitable.

You can specify minimal task dependencies when you submit a job. For example, you can specify that task
D may not begin until tasks A, B, and C are complete. More complex dependencies, however, are better
suited to a multiprocessing language such as MPI than to Xgrid.

Note: Xgrid does no logical dependency checking. If you specify that task A must complete before task B is
initiated, and vice versa, the job hangs, with each task enqueued and waiting for the other to complete.

The size of the data set being operated on also matters. If a great deal of processing is done on a small data
set, the job is better suited to Xgrid than if a small amount of processing is done on a large data
set—transferring the data may take more time than is saved by dividing the processing among multiple
computers.

It is the responsibility of the client to break the job up into independently executable tasks, and to assemble
the collection of executable files, as well as input and output files or directories, into a job submission. You’ll
find the details of a job submission later in this document, but know for now that breaking the job into
executable tasks—with any necessary files and directories—is part of the process.

The next step in the planning process is to assess what type of Xgrid is needed to perform the job in a
reasonable amount of time. Some types of jobs can be performed well by a network of loosely connected
computers; other jobs require shared access to network file servers, or even dedicated clusters sharing FDDI
access to RAID arrays for reasonable efficiency.

The two most important factors in determining the type of Xgrid you need are the size the of the data set
being operated on and the amount of processing to be done on the data set. For example, if you are doing
a great deal of processing on a relatively small data set, the agents can be loosely connected—by Ethernet,
Airport, or even the Internet. If a great deal of data must be processed by a relatively short algorithm, the
time spent transferring the data may be greater than the time saved by dividing up the processing, unless
shared access to data—or very fast data connections—are available.

Before You Start 15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Getting Started with Xgrid

Three Tasks With Different Requirements

A common task for Xgrid is video processing. Consider three kinds of job: compressing a short video to several
bandwidths for Internet distribution, applying a filter to a long video, and compressing a large video for DVD
in three formats: standard television, widescreen, and high definition.

Compressing a short video to several bandwidths can be accomplished simply over Ethernet, and may be
practical even with Airport networking. Transferring the video to the agents takes only seconds or a few
minutes, while the compression may take many minutes or an hour. Thus the job scales well with an agent
assigned to compressing each bandwidth. The returned data is compressed, making its transfer somewhat
more efficient.

Applying a simple filter to a long video, however, may require dedicated hardware to benefit from parallel
processing at all. In principal, it is easy to divide the job into a parallel set of tasks: simply divide the frames
by the number of agents and set each agent to process a set of frames. It may require more time to transfer
each frame to and from the agent than it does to apply the filter, however, thus negating any time saving
unless the agents share rapid access to the data via shared FDDI access to a RAID or a similar technology.

Compressing a long video to three data-intensive formats falls between these two extremes. The processing
may take several hours for each format, so the time saved by parceling out the task to multiple agents is
significant (a separate agent for compressing the audio may also save significant time), but the data transfer
time is also significant: it may take hours just to send three copies of the video over the same Ethernet
backbone. In this case, even though time can probably be saved by using a loosely connected set of agents,
fast Ethernet connection is a minimum requirement for reasonable efficiency, and FDDI or a dedicated cluster
sharing a RAID will deliver proportionately faster results.

The Recommended Development Process

If you have not already done so, install the Developer Tools or Xcode Tools that came with your copy of Mac
OS X and locate the Xgrid folder (in the Developer/Examples/ folder). Locate the GridSample and
GridMandelbrot sample projects.

Before you begin coding, you should use the xgrid command-line tool, then compile and run the GridSample
application to get a feel for how Xgrid works. See “Using the xgrid Command Line Client” (page 17), and
“Building and Running GridSample” (page 21).

When you are ready to begin coding, start by creating a collection of executable files and submitting them
as a job using the xgrid command line client. When your job is submitting and running properly, continue
your code development by modifying the GridSample code, overriding the job specification method and
modifying the user interface. This process is the best way to develop and debug the functional part of your
code, and it may be all you need to do. Modifying GridSample is explained in detail in “Overriding Job
Specification” (page 27).

To integrate Xgrid capability into an existing application or to create an Xgrid client from scratch, use the
Cocoa API for Xgrid: Xgrid Foundation. The process is described in “Writing a Cocoa Xgrid Client” (page 35).
Even if this is your intended goal, you will probably save time and effort by using the xgrid command-line
client and modifying the GridSample code as part of the development process, before creating or modifying
your own application using Xgrid Foundation.

16 Three Tasks With Different Requirements
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Getting Started with Xgrid

Mac OS X version 10.4 and later includes the xgrid command-line utility. For some applications, the xgrid
command-line tool is all the client software you need. In any event, you should become familiar with it to
get a better understanding of Xgrid before writing an Xgrid-enabled client application.

The xgrid command-line utility is an Xgrid client. You can submit a job to a controller by typing xgrid
followed by the controller’s host name and a job specification.

The job specification includes the name and path of an executable file, such as an application or a shell script,
and any arguments to pass to the executable file.

You have the option of supplying an input file or a directory of files. If you supply an input directory, it is
copied to each agent and becomes the working directory for the executable file.

You also have the option of specifying an output file or directory.

Important: You have the option of providing a relative path or an absolute path when specifying executable
files, input files and directories, and output files and directories. When a relative path is used, the executable
and the input files or directories are copied to the agents, and the output files or directories are created for
every agent and collected by the controller. If you specify an absolute path to the executable, input, or output
files or directories, those files are assumed to exist on the agent computers, or to be available to the agents
as part of a shared file system, at the path location specified. They are not copied or created.

As each agent completes its task, the standard output and error streams are returned to the controller. You
can pipe these streams to files or direct them to the output and error streams of the shell that submitted the
job. You can also retrieve any other files created in the agent’s working directory during job execution. These
files are returned to the output directory specified when the job is submitted.

Basic xgrid Syntax

If you type man xgrid from within the Terminal application, you see an illustration of the syntax for the
command-line tool. The first few lines are shown in Listing 3-1 (page 17).

Listing 3-1 Excerpt from the xgrid man page

SYNOPSIS
 xgrid [-h[ostname] hostname] [-auth { Password | Kerberos }] [-p[assword]
 password]
 xgrid -job run [-gid grid-identifier] [-si stdin] [-in indir] [-so
stdout] [-se stderr] [-out outdir]
 [-email email-address]
 cmd [arg1 [...]]
 xgrid -job submit [-gid grid-identifier] [-si stdin] [-in indir] [-dids
 jobid [, jobid]*]

Basic xgrid Syntax 17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Using the Xgrid Command-Line Client

 [-email email-address]
 cmd [arg1 [...]]

The first parameter is -h, followed by the host name or IP address of the controller.

Example: xgrid -h localhost

You can optionally include a method of authentication and a password.

The next parameter of interest is the job specification. You can either run a job synchronously, by passing
-job run, or submit a job for asynchronous execution by passing -job submit. In either case, you must
then specify a grid, and can optionally redirect the standard input and output.

If you submit a job asynchronously, rather than running it synchronously, you can include an email address
to be notified when the job terminates.

Running a Job Synchronously

Here’s a very simple example that runs the cal program using a controller on the local host:

Listing 3-2 Running a job synchronously

xgrid -h localhost -job run /usr/bin/cal 2007

By specifying the full path, you prevent the executable file from being copied to the agent. Instead, it is run
in place at the specified path location. No working directory is created.

By specifying run instead of submit, you tell xgrid to execute the command synchronously. The command
line returns nothing until the job is complete.

Since the optional input and output specifications have been omitted, standard output is used for the results.

Submitting a Job for Asynchronous Execution

Now let’s look at a more complex example. It submits the file myscript with a group of files in an input
directory. An email address is passed that will be used to notify someone at every job state change. The
results are saved in files in an output directory, then the job is deleted:

Listing 3-3 Submitting a job asynchronously

$ xgrid -job submit -in ~/data/working -email somebody@apple.com myscript param1
 param2
 { jobIdentifier = 27; }
 $ xgrid -job results -id 27 -so job.out -se job.err -out job-outdir
 $ xgrid -job delete -id 27

In this example, xgrid is told to execute the job asynchronously by passing submit instead of run.

18 Running a Job Synchronously
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Using the Xgrid Command-Line Client

Use the -in parameter to pass an input directory. This directory is copied to each agent and becomes the
working directory on the agent’s host computer. You can include anything needed in the working directory,
such as additonal input files, libraries, and executables. The executable file is run in this directory.

Next, specify the script to run, along with any input parameters. This completes the first line of input.

A job identifier is returned.

The next line of the example uses the job identifier to assign file names for the standard output, standard
error, and job output for this particular job.

The last line deletes the job.

Submitting a Batch Job

Here’s how to submit a batch job, consisting of multiple tasks. If enough agents are available, all of the tasks
are performed simultaneously. Otherwise, each available agent is assigned a task and the first agent to finish
is assigned another task, and so on until all the tasks have been completed.

To submit a batch job, you must include a property list file, describing each task to be performed. The man
page for xgrid describes the structure of the property list file, but here’s a helpful shortcut—submit each
individual task as its own job initially, and let xgrid generate the property list file for you. When the task
completes, you can retrieve the property list file. You can edit the list to modify a task, duplicating it as
necessary, or concatenate the property list files of several tasks into one batch.

For example, if you submit the cal program as a job, it looks like this:

xgrid -job submit /usr/bin/cal 6 2007

The xgrid command returns a job ID. When the job completes, you can use the job identifier to retrieve the
complete job specification, including the property list:

xgrid -job specification -id n
{
 jobSpecification = {
 applicationIdentifier = "com.apple.xgrid.cli";
 inputFiles = {};
 name = "/usr/bin/cal";
 submissionIdentifier = abc;
 taskSpecifications = {
 0 = {arguments = (6, 2007); command = "/usr/bin/cal"; };
 };
 };
}

Copy the returned job specification and save it using the .plist file suffix. You can then submit the file to
Xgrid as part of a batch job specification. If the example above were named batch.plist, you could submit
the job like this:

xgrid -job batch batch.plist

Before going any further with Xgrid programming, try breaking up your job into executable tasks and
submitting them using the xgrid command-line utility. The experience will provide a great deal of useful
information to you about how to plan and execute your program.

Submitting a Batch Job 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Using the Xgrid Command-Line Client

20 Submitting a Batch Job
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Using the Xgrid Command-Line Client

GridSample is not just a sample application. It is a library-quality set of code intended to handle a wide variety
of job submission tasks in a robust fashion, with all the authentication, submission, notification, error handling,
and housekeeping tasks handled correctly.

Consequently, it is not so much a simple teaching tool as an application framework. You can create your own
application just by overwriting the job submission function and providing a nib file to customize the user
interface.

The best way to learn from GridSample is not to study all of the code—there is a lot of it, and much of it is
complex housekeeping—but rather to build and run it, then modify it as needed, studying the parts you
need to modify.

This chapter covers the basics of building and using GridSample. Modifying the job specification function is
discussed separately in “Overriding the Job Specification Function” (page 27).

The GridSample Targets

When you install the Mac OS X Developer Tools or Xcode Tools, a Developer/Examples/Xgrid directory
is created. This directory contains the GridSample project. To get the current version, install the Developer
Tools from the installation disc for Mac OS X 10.4 (Tiger) or the Xcode Tools for Mac OS X 10.5 (Leopard).

GridSample.xcodeproj is an Xcode project. Double-clicking it opens the project in Xcode.

Note: If the project does not open, you may have an older version of Project Builder installed. Install the
latest version of the Mac OS X Developer Tools or Xcode Tools to get a current version of Xcode.

You should see the GridSample project, show in Figure 4-1.

The GridSample Targets 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

Figure 4-1 GridSample project

If you click the disclosure triangle next to the Targets icon, you will see that the project has three targets,
Sample, Feeder, and MPI, which compile three complete applications: Xgrid Sample, Xgrid Feeder Sample,
and Xgrid MPI Sample.

Xgrid Sample is the simplest application, and the easiest to use and understand. Xgrid Feeder Sample contains
more sophisticated code for handling various types of job submission. Xgrid MPI Sample is intended to feed
Xgrid jobs using MPI, a multiprocessing language which falls outside the scope of this document.

The Xgrid Sample Target

To build and run the Xgrid Sample application, select Xgrid Sample from the target list, then click the Build
and Go icon in the toolbar at the top of the window. The code will compile, link, and run. You should see
Figure 4-2, with a dialog prompting you to choose a controller.

22 The Xgrid Sample Target
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

Figure 4-2 The Xgrid Sample controller selection window

You must select a valid Xgrid controller in order to proceed.

Note: To run XgridSample, you should have access to a computer running Mac OS X Server as an Xgrid
controller, as well as one or more additional computers acting as agents. For development purposes, however,
it is possible to use a single computer running Mac OS X (one with 4 processors or cores recommended). To
do this, download and install a copy of XgridLite to configure the controller daemon, enable the development
system to act as an agent, and download and install the Mac OS X Server Admin tools on your development
system. If you do this, you can run the sample code using your development system as client, controller, and
agents, and be able to monitor and administer the process. The XgridLite application is shareware, however,
and is not provided, supported, or endorsed by Apple.

Choose a controller from the pop-up list and enter the password. GridSample connects to the controller and
brings up the user interface.

Figure 4-3 Xgrid Sample main window

The Xgrid Sample Target 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

http://www.apple.com/support/downloads/serveradmintools104.html

Click the New Job icon to submit a job to Xgrid. You are then prompted for a job name and a command. The
job name can be any descriptive string to help you identify the job. The syntax for the command is similar
to a job submission for the xgrid command-line tool (for details, see “Using the xgrid Command-Line
Client” (page 17)).

XgridSample submits the command to Xgrid as a single task, in the following format:

/bin/sh -c "COMMAND"

The GridFeeder Target

To build and run the Xgrid Feeder application, select Xgrid Feeder from the target list, then click the Build
and Go icon in the toolbar at the top of the window. The code compiles, links, and runs. Again, you should
see a window with a dialog prompting you to choose a controller.

Connect to a controller and the user interface screen appears. It is identical to the Grid Sample screen shown
earlier. When you click the New Job icon, however, a far more sophisticated interface appears, allowing you
to browse for executable tasks, construct a table of arguments, and choose a source directory for your job.

Figure 4-4 Gridfeeder Sample New Job window

You can enter or choose a command, add arguments, browse for a source directory, and otherwise interactively
construct a job entry for Xgrid.

Debugging and Monitoring Progress

Use the Xgrid Admin tool to debug your setup and monitor the job progress as Grid Sample or Grid Feeder
executes your tasks.

You can download the Admin tools from http://www.apple.com/support/downloads/serverad-
mintools1047.html. Once you have downloaded and installed the Admin tools, Xgrid Admin is located in the
Server subdirectory of your Applications directory.

24 The GridFeeder Target
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

http://www.apple.com/support/downloads/serveradmintools1047.html
http://www.apple.com/support/downloads/serveradmintools1047.html

Use Xgrid Admin to verify that you have a controller and agents available, and to monitor the status of the
jobs you submit to Grid Sample or Grid Feeder.

Debugging and Monitoring Progress 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

26 Debugging and Monitoring Progress
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Building and Running GridSample

The easiest way to create an Xgrid client application is to override the job specification function in the
GridSample sample code. This chapter shows you how to accomplish this.

How the GridSample Code Is Organized

The GridSample application is organized into several modules. All the modules are part of the GridSample
project, found in your Developer/Examples/Xgrid/GridSample/ directory.

Some modules consist entirely of .nib files that open in Interface Builder. Most of the modules are paired
.h and .m files that open in the code editor—GridSampleApplicationDelegate.h and
GridSampleApplicationDelegat.m, for example.

The GridSample modules form an outline of the main tasks any Xgrid client must perform:

 ■ Identify a controller—You need to locate a controller, typically by opening a service browser window.

See the GridSampleConnectionController and GridSampleServiceBrowser modules.

 ■ Authenticate and connect—You need to connect to the controller, which is typically password protected.

See the GridSampleLoginController module.

 ■ Submit the job—You need to assemble the tasks into a job and submit the job to the controller, specifying
a grid.

See the GridSampleNewJobWindowController and NewJob.nib modules.

 ■ Monitor status and retrieve job ID—When you submit a job, an action monitor object is returned. You
need to check the status of the action monitor to see if your job was submitted successfully. If it was,
you can obtain a job ID.

See the GridSampleNewJobWindowController module.

 ■ Set callback for notifications—Using the job ID, you can register to be notified when the job completes
or when errors occur.

See the GridSampleNewJobWindowController module.

 ■ Collect data—When the job completes, you need to collect the returned data and deal with it
appropriately.

See the GridSampleResultsWindowController module.

 ■ Housekeeping—As always, there are error handling routines and basic housekeeping tasks, such as
deleting the job.

See the dealloc function in the GridSampleResultsWindowController module.

How the GridSample Code Is Organized 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

The GridSample application is general purpose. In addition to modifying the job submission module, you
may want to streamline other behaviors. For example:

 ■ You may want to connect to a specific controller every time. To modify this behavior, refer to the
GridSampleConnectionController and GridSampleServiceBrowser modules.

 ■ You may want to use only your chosen method of authentication. To modify this behavior, refer to the
GridSampleLoginController module.

 ■ You may want to direct the collected data to another application for postprocessing. To modify this
behavior, refer to the GridSampleJobResultsWindowController module.

Most of these modifications are fairly straightforward. Examining the source code of the appropriate module
should provide you with much of the information you need, and referring the XgridFoundation Reference
should answer remaining questions. The job submission module deserves special attention, however.

Changing the Job Specification

To override the job specification function in Grid Sample, you need to make modifications in four places:

 ■ NewJob.nib

 ■ NewJobWindowController (.m and .h)

 ■ ApplicationDelegate (.m and .h)

 ■ MainMenu.nib

For example, if you examine the GridCalendar sample code, found at http://developer.apple.com/sample-
code/GridCalendar/, you will see that it is a copy of the GridSample application, with the following
modifications:

 ■ A new NewJob.nib file has been created, with a new UI for job specification.

 ■ The jobSpecification function has been subclassed to create a window controller that builds a job
specification based on the new UI.

 ■ A new application delegate has been created, subclassing classForNewJobWindowController to
point to the new window controller.

 ■ The application delegate has been subclassed in MainMenu.nib to specify the new application delegate.

Here are the steps in more detail:

 ■ NewJob.nib has been changed to provide a new job submission user interface. (The .nib file is created
using Interface Builder without actually writing any code.)

 ■ GridSampleNewJobWindowController has been supplemented with
GridCalendarNewJobWindowController, which contains the support code to process the UI state
returned from NewJob.nib into a properly formatted job submission. The new support code is
encapsulated as a subclass of jobSpecification, overriding the job specification code in
GridSampleNewJobWindowController.

28 Changing the Job Specification
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

http://developer.apple.com/documentation/Performance/Conceptual/XgridDeveloper/index.html#//apple_ref/doc/framework/XgridFoundation_reference
http://developer.apple.com/samplecode/GridCalendar/
http://developer.apple.com/samplecode/GridCalendar/

 ■ GridSampleApplicationDelegate has been supplemented withGridCalendarApplicationDelegate,
which overrides -classForNewJobWindowController to point to
GridCalendarNewJobWindowController.

 ■ In Mainmenu.nib, the application delegate object’s class has been subclassed to
GridCalendarApplicationDelegate.

You should proceed in a similar manner, using the code in GridCalendar as a guide. The process is broken
down into four steps:

Note: If you are new to Cocoa programming, refer to Cocoa Application Tutorial for guidance.

Step One: Create a New Job Submission UI

Create a new job submission UI by modifying and saving NewJob.nib.

Note that the GridSample project contains three NewJob.nib files, one for each target: GridSample, GridFeeder,
and GridMPI. Open the .nib file GridSample > Sample > Resources > Nibs, as shown in Figure 5-1.

Figure 5-1 Locating the right NewJob.nib file

Changing the Job Specification 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

Figure 5-2 and Figure 5-3 (page 30)show the NewJob.nib file from GridSample and the modified NewJob.nib
file for GridCalendar. Since GridCalendar always uses the same command, the command field and job name
field have been removed, and a date selector field has been added for the cal command.

Figure 5-2 GridSample job submission .nib file

Figure 5-3 GridCalendar job submission .nib file

Assuming your application always submits the same type of job to Xgrid, you should make similar changes
to the user interface: keep the pop-up window to select the grid, but replace the job name and command
fields with input fields that allow the user to set the parameters for each instance of your particular job.

Note: If you are unfamiliar with building .nib files using Interface Builder, refer to Cocoa Application Tutorial
for guidance.

Step Two: Add the Support Code

Create a new file that contains the support logic to create a job specification based on the returned state
from your UI. Override jobSpecification, as defined in GridSampleNewJobWindowController.m, by
creating a new class of the same name, encapsulating your code. This file supplements
GridSampleNewJobWindowController, so name it appropriately (in GridCalendar, it’s named
GridCalendarNewJobWindowController).

30 Changing the Job Specification
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

Figure 5-4 GridSampleNewJobWindowContoller files

To see how this is done, compare GridSampleNewJobWindowController.m and with
GridCalendarNewJobWindowController.m. Notice that GridCalendarNewJobWindowController.m
contains only the modified job specification code, and that the main function is named jobSpecification,
overriding the jobSpecification defined in GridSampleNewJobWindowController.m. This way, the
new window controller inherits all the functionality of the old window controller, such as selecting a grid,
submitting the job, retrieving the action monitor, and setting up callbacks for status. Only the job specification
function is overridden.

Step Three: Create an Application Delegate

Supplement GridSampleApplicationDelegate.m with your own application delegate that sublasses
classForNewJobWindowController to point to your new window controller, thereby overriding
GridSampleNewJobWindowController with your own window controller.

Listing 5-1 shows the contents of the GridCalendarApplicationDelegate.m file in its entirety.

Listing 5-1 GridCalendarApplicationDelegate

#import "GridCalendarApplicationDelegate.h"
#import "GridCalendarNewJobWindowController.h"
@implementation GridCalendarApplicationDelegate
#pragma mark *** Accessor methods ***
- (Class)classForNewJobWindowController;
{
 return [GridCalendarNewJobWindowController self];

}
@end

As you can see, the code is quite simple. As the implementation of your application delegate, define
classForNewJobWindowController to return an instance of the window controller you added in step 2.

Changing the Job Specification 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

Step Four: Change the Application Delegate’s Class in MainMenu.nib

Finally, change the application delegate’s class in MainMenu.nib to point to the new application delegate
you added in step 3.

1. Open MainMenu.nib (There are three .nib files by this name in GridSample—one for each target. Open
the MainMenu.nib file for GridSample.)

2. Select the Classes tab and highlight GridSampleApplicationDelegate, as shown in Figure 5-5.

Figure 5-5 Classes tab in MainMenu.nib

3. Press the Return key. This creates a new subclass, MyGridSampleApplicationDelegate. Double-click
the new entry to select it, then type the name of your application delegate from step 3. You will see your
new application delegate subclass, similar to Figure 5-6.

Figure 5-6 GridCalendarApplicationDelegate subclass

4. Save your changes, then click the Build and Go icon to compile and run your application. You should
have a customized Xgrid client application that submits your job to Xgrid.

32 Changing the Job Specification
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

Summary

To summarize: you have created a .nib file with a new UI for job specification; you have subclassed
jobSpecification to create a window controller that builds a job specification based on your UI; you have
created an application delegate and subclassed classForNewJobWindowController to point to your
window controller; and you have subclassed the application delegate in the MainMenu.nib file to use your
new application delegate.

Congratulations. Unless you need to further customize the look and feel of your application, you’re done. If
you do need to go further, see “Writing a Cocoa Xgrid Client” (page 35).

Changing the Job Specification 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

34 Changing the Job Specification
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Overriding the Job Specification Function

As you learned in the previous chapter, you can create a client application by simply modifying the GridSample
sample code. You may need to go further, however, and develop your own application, or add Xgrid capability
to an existing application. This chapter describes the basic steps.

Writing an Application in Six Steps

There are six steps that any Xgrid client application must take:

1. Locate a controller—You need to locate a controller, which typically involves bringing up a service
browser and letting the user choose a controller.

2. Connect and authenticate—You need to connect to the controller, which is typically password protected.

3. Submit the job—The tasks must be assembled and submitted to the controller with the proper syntax,
specifying a grid.

4. Identify the job—When you submit a job, an action monitor object is returned. Use this object to
determine whether your job submission was successful and to obtain the job ID for future reference.

5. Receive notifications—Once you have a job ID, you can register to be notified when the job completes,
when tasks complete, or when errors occur.

6. Collect the data—When the job completes, you need to collect the returned data and deal with it
appropriately.

Of course, there are housekeeping tasks as well, such as deleting the job when you are done.

This chapter highlights the functions you need to use to accomplish each step, and points you to code
samples that illustrate their use.

All code samples are included as part of the GridSample project, which is installed in the
Developer/Examples/Xcode directory on your hard disk when you install the Mac OS X Developer Tools
(Tiger) or XCode Tools (Leopard).

Writing an Application in Six Steps 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Writing a Cocoa Xgrid Client

Important: Most objects in the Xgrid Foundation API load their attributes asynchronously. If you obtain an
object from a function, and immediately interrogate its attributes, you may find that they are mostly nil.
To retrieve valid attributes, set up a callback using XGActionMonitor; when you receive a notification, test
the isUpdating attribute. You may get multiple notifications before updating is complete. Keep monitoring
until the isUpdating attribute is false. The other attributes are now valid and ready for you to work with.

Step One: Locate a Controller and Connect

To browse for Xgrid controllers, use the NSNetServiceBrowser function. GridSampleServiceBrowser.m
in GridSample provides a working code sample of an Xgrid service browser.

Connect to an Xgrid server using the XGConnection and XGController functions. See
GridSampleConnectionController.m in GridSample for working code samples.

Step Two: Authenticate

You may not need to authenticate to access an Xgrid controller, but you typically do.

Authentication by means of a simple password is supported, as is authentication using single sign-on (SSO
or Kerberos). The XGConnection function requires an authentication parameter. If the controller is
unprotected, pass nil. If it is protected, pass the user name and password, using
XGTwoWayRandomAuthenticator. If using Kerberos, use XGGSSAuthenticator.

GridSampleConnectionController.m attempts an initial connection with the connection authenticator
set to nil. If the connection fails with an authentication error, the user is prompted for login information
and XGAuthenticator is set.

Refer to GridSampleLoginController.m in GridSample for a working code sample.

Step Three: Submit a Job

Submit jobs to Xgrid using the XGController function, using this syntax:

-[XGController performSubmitJobActionWithJobSpecification:gridIdentifier:]

Note that you need to pass a job specification and a grid identifier, of type XGGrid.

GridSampleNewJobWindow.m includes sample code for a pop-up window that allows the user to choose
an available grid.

Constructing a properly formatted job submission is non-trivial. Refer to the man page for xgrid for the
correct syntax.

36 Step One: Locate a Controller and Connect
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Writing a Cocoa Xgrid Client

Refer to GridSampleNewJobWindowController.m in GridSample for working job submission sample code.
You may also find GridCalendarNewJobWindowController.m helpful. If you have not already done so,
download the GridCalendar sample code from http://developer.apple.com/samplecode/GridCalendar/.

Step Four: Retrieve Job ID

When you submit a job using XGController, an XGActionMonitor object is returned. Monitor the
XGActionMonitor object until the isUpdating attribute is false, then verify that the dictionary contains
a “success” entry. If the job submission is successful, the jobIdentifier attribute contains the job ID, an
object of type XGJob. Pass this identifier to the appropriate functions to monitor the job status and retrieve
the data.

Refer to GridSampleNewJobWindowController.m in GridSample for working sample code.

Step Five: Register for Notifications

Register for notification of job state changes, or query the controller for the current job state, using the
XGActionMonitor function. Pass in the job identifier you received in step four.

Refer to GridSampleNewJobWindowController.m in GridSample for working sample code.

Step Six: Data Collection

When the job completes, collect your data using XGFile and XGFileDownload functions. Identify the job
using the identifier object (XGJob).

Refer to GridSampleJobResultsWindowController.m in GridSample for working sample code.

Good Housekeeping

When the job is complete, and you have collected the results, the job should be deleted, notification observers
should be removed, and unneeded structures and objects should be deallocated.

See the dealloc function in GridSampleJobResultsWindowController.m for an example of good
housekeeping practices.

Step Four: Retrieve Job ID 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Writing a Cocoa Xgrid Client

http://developer.apple.com/samplecode/GridCalendar/

38 Good Housekeeping
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Writing a Cocoa Xgrid Client

This table describes the changes to Xgrid Programming Guide.

NotesDate

New document describes the programming interfaces to Xgrid, Apple’s
technology for distributed multiprocessing.

2007-10-31

39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Xgrid Programming Guide
	Contents
	Figures and Listings
	Introduction
	Xgrid Overview
	How It Works
	Client Software
	Controller Software
	Agent Software
	Setting Up Xgrid
	Submitting Jobs to Xgrid

	Getting Started with Xgrid
	Before You Start
	Three Tasks With Different Requirements
	The Recommended Development Process

	Using the Xgrid Command-Line Client
	Basic xgrid Syntax
	Running a Job Synchronously
	Submitting a Job for Asynchronous Execution
	Submitting a Batch Job

	Building and Running GridSample
	The GridSample Targets
	The Xgrid Sample Target
	The GridFeeder Target
	Debugging and Monitoring Progress

	Overriding the Job Specification Function
	How the GridSample Code Is Organized
	Changing the Job Specification
	Step One: Create a New Job Submission UI
	Step Two: Add the Support Code
	Step Three: Create an Application Delegate
	Step Four: Change the Application Delegate’s Class in MainMenu.nib
	Summary

	Writing a Cocoa Xgrid Client
	Writing an Application in Six Steps
	Step One: Locate a Controller and Connect
	Step Two: Authenticate
	Step Three: Submit a Job
	Step Four: Retrieve Job ID
	Step Five: Register for Notifications
	Step Six: Data Collection
	Good Housekeeping

	Revision History

