
Core Audio Overview
Audio > Core Audio

2007-01-08

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, FireWire,
Mac, Mac OS, Macintosh, Objective-C,
QuickTime, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 What is Core Audio? 9

Core Audio in Mac OS X 9
A Little About Digital Audio and Linear PCM 10
Audio Units 10
The Hardware Abstraction Layer 12
MIDI Support 12
The Audio MIDI Setup Application 12

A Core Audio Recording Studio 13
Development Using the Core Audio SDK 14

Chapter 2 Core Audio Programming Interfaces 17

Audio Unit Services 17
Audio Processing Graph API 19
Audio File and Converter Services 20

Audio Converters and Codecs 21
File Format Information 22
Audio Metadata 22
Core Audio File Format 22

Hardware Abstraction Layer (HAL) Services 22
Music Player API 23
Core MIDI Services and MIDI Server Services 24
Core Audio Clock API 26
OpenAL (Open Audio Library) 27
System Sound API 27

Chapter 3 An Overview of Common Tasks 29

Reading and Writing Audio Data 29
Interfacing with Hardware Devices 30

Default and System Output Units 30
The AUHAL 31

Using Aggregate Devices 32
Creating Audio Units 33
Hosting Audio Units 33
Handling MIDI Data 35

3
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

Handling Both Audio and MIDI Data 38

Appendix A Core Audio Frameworks 39

AudioToolbox.framework 39
AudioUnit.framework 40
CoreAudioKit.framework 40
CoreAudio.framework 40
CoreMIDI.framework 41
CoreMIDIServer.framework 41
OpenAL.framework 41

Appendix B System-Supplied Audio Units 43

Appendix C Supported Audio File and Data Formats 47

Document Revision History 51

4
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 What is Core Audio? 9

Figure 1-1 Core Audio architecture 10
Figure 1-2 A simple audio unit chain 11
Figure 1-3 Hardware input through the HAL and the AUHAL unit 12
Figure 1-4 A simple recording studio 13
Figure 1-5 A Core Audio "recording studio" 14

Chapter 2 Core Audio Programming Interfaces 17

Figure 2-1 A simple audio processing graph 19
Figure 2-2 Incorrect and correct ways to fan out a connection 19
Figure 2-3 A subgraph within a larger audio processing graph 20
Figure 2-4 Core MIDI and Core MIDI Server 24
Figure 2-5 MIDI Server interface with I/O Kit 25
Figure 2-6 Some Core Audio Clock formats 26

Chapter 3 An Overview of Common Tasks 29

Figure 3-1 Reading audio data 29
Figure 3-2 Converting audio data using two converters 30
Figure 3-3 Inside an output unit 31
Figure 3-4 The AUHAL used for input and output 32
Figure 3-5 Reading a standard MIDI file 35
Figure 3-6 Playing MIDI data 36
Figure 3-7 Sending MIDI data to a MIDI device 36
Figure 3-8 Playing both MIDI devices and a virtual instrument 37
Figure 3-9 Accepting new track input 37
Figure 3-10 Combining audio and MIDI data 38

Appendix B System-Supplied Audio Units 43

Table B-1 System-supplied effect units (kAudioUnitType_Effect) 43
Table B-2 System-supplied instrument unit (kAudioUnitType_MusicDevice) 44
Table B-3 System-supplied mixer units (kAudioUnitType_Mixer) 44
Table B-4 System-supplied converter units (kAudioUnitType_FormatConverter) 45
Table B-5 System-supplied output units (kAudioUnitType_Output) 45
Table B-6 System-supplied generator units (kAudioUnitType_Generator) 46

5
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

Appendix C Supported Audio File and Data Formats 47

Table C-1 Allowable data formats for each file format. 47
Table C-2 Key for linear PCM formats 47

6
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Core Audio is a set of services that developers use to implement audio and music features in Mac OS X
applications. Its services handle all aspects of audio, from recording, editing, and playback, compression and
decompression, to MIDI (Musical Instrument Digital Interface) processing, signal processing, and audio
synthesis. You can use it to write standalone applications or modular plug-ins that work with existing products.

Core Audio is available to all versions of Mac OS X, although older versions may not contain particular features.
This document describes Core Audio features available as of Mac OS X v10.4.

Note: Core Audio does not handle audio digital rights management (DRM). If you need DRM support for
audio files, you must implement it yourself.

This document is for all developers interested in creating audio software in Mac OS X. You should have basic
knowledge of audio, digital audio, and MIDI terminology, as well as some familiarity with Mac OS X.

Organization of This Document

This document is organized into the following chapters:

 ■ “What is Core Audio?” (page 9) describes basic features of Core Audio and their relation to other audio
and recording technologies.

 ■ “Core Audio Programming Interfaces” (page 17) describes the various programming interfaces available
in Core Audio.

 ■ “An Overview of Common Tasks” (page 29) describes at a high level how you might use Core Audio to
accomplish common audio-related tasks.

 ■ “Core Audio Frameworks” (page 39) lists the various frameworks and headers that define Core Audio.

 ■ “System-Supplied Audio Units” (page 43) lists the audio units that ship with Mac OS X v10.4, along with
their Component Manager types and subtypes.

 ■ “Supported Audio File and Data Formats” (page 47) describes the audio file and data formats that Core
Audio supports by default.

See Also

For more information about audio and Core Audio on Mac OS X, see the following resources:

 ■ Audio Unit Programming Guide, which contains detailed information about creating audio units.

 ■ Apple Core Audio Format Specification 1.0, which describes Apple’s Core Audio File (CAF) format.

Organization of This Document 7
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ The Core Audio mailing list: http://lists.apple.com/mailman/listinfo/coreaudio-api

 ■ The Mac OS X audio developer site: http://developer.apple.com/audio/

 ■ The Core Audio SDK, available at http://developer.apple.com/sdk/

8 See Also
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://lists.apple.com/mailman/listinfo/coreaudio-api
http://developer.apple.com/audio/
http://developer.apple.com/sdk/

Core Audio is designed to handle all audio needs in Mac OS X. You can use Core Audio to generate, record,
mix, edit, process, and play audio. Using Core Audio, you can also generate, record, process, and play MIDI
data, interfacing with both hardware and software MIDI instruments.

Core Audio combines C programming interfaces with tight system integration, resulting in a flexible
programming environment that still maintains low latency through the signal chain. Some of Core Audio's
benefits include:

 ■ Plug-in interfaces for audio synthesis and audio digital signal processing (DSP)

 ■ Built in support for reading and writing a wide variety of audio file and data formats

 ■ Plug-in interfaces for handling custom file and data formats

 ■ A modular approach for constructing signal chains

 ■ Scalable multichannel input and output

 ■ Easy synchronization of audio and MIDI data during recording or playback

 ■ A standardized interface to all built-in and external hardware devices, regardless of connection type
(USB, Firewire, PCI, and so on)

Note: Although Core Audio uses C interfaces, you can call Core Audio functions from Cocoa applications
and Objective-C code.

Core Audio in Mac OS X

Core Audio is tightly integrated into Mac OS X. The majority of Core Audio services are layered on top of the
Hardware Abstraction Layer (HAL), and Core MIDI as shown in Figure 1-1. Audio signals pass to and from
hardware through the HAL, while Core MIDI provides a similar interface for MIDI data and MIDI devices.

Core Audio in Mac OS X 9
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

Figure 1-1 Core Audio architecture

Application-Level Services

Audio units

Core Audio clock

System sounds

Audio File, Converter, and Codec Services
OpenAL

Music Sequencing Services

Audio Queue Services

Hardware Abstraction Layer (HAL) Core MIDI

I/O Kit

Drivers

Hardware

The sections that follow describe some of the essential features of Core Audio:

A Little About Digital Audio and Linear PCM

As you might expect, Core Audio handles audio data in a digital format. Most Core Audio constructs manipulate
audio data in linear pulse-code-modulated (linear PCM) format, which is the most common uncompressed
data format for digital audio. Pulse code modulation relies on measuring an audio signal's magnitude at
regular intervals (the sampling rate) and converting each sample into a numerical value. This value varies
linearly with the signal amplitude. For example, standard CD audio has a sampling rate of 44.1 kHz and uses
16 bits to represent the signal amplitude (65,536 possible values). Core Audio’s data structures can describe
linear PCM at any sample rate and bit depth, supporting both integer and floating-point sample values.

Core Audio generally expects audio data to be in native-endian 32-bit floating-point linear PCM format.
However, you can create audio converters to translate audio data between different linear PCM variants. You
also use these converters to translate between linear PCM and compressed audio formats such as MP3 and
Apple Lossless. Core Audio supplies codecs to translate most common digital audio formats (though it does
not supply an encoder for converting to MP3).

Core Audio also supports most common file formats for storing audio data.

Audio Units

Audio units are plug-ins that handle audio data.

Within a Mac OS X application, almost all processing and manipulation of audio data can be done through
audio units (though this is not a requirement). Some units are strictly available to simplify common tasks for
developers (such as splitting a signal or interfacing with hardware), while others appear onscreen as signal
processors that users can insert into the signal path. For example, software-based effect processors often

10 Core Audio in Mac OS X
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

mimic their real-world counterparts (such as distortion boxes) onscreen. Some audio units generate signals
themselves, whether programmatically or in response to MIDI input. Some examples of audio unit
implementations include the following:

 ■ A signal processor (for example, high-pass filter, flanger, compressor, or distortion box). An effect unit
performs audio digital signal processing (DSP) and is analogous to an effects box or outboard signal
processor.

 ■ A musical instrument or software synthesizer. These instrument units (sometimes called music device
audio units) typically generate musical tones in response to MIDI input). An instrument unit can interpret
MIDI data from a file or an external MIDI device.

 ■ A signal source. A generator unit lets you implement an audio unit as a signal generator. Unlike an
instrument unit, a generator unit is not activated by MIDI input but rather through code. For example,
a generator unit might calculate and generate sine waves, or it might source the data from a file or over
a network.

 ■ An interface to hardware input or output. For more information, see “The Hardware Abstraction
Layer” (page 12) and “Interfacing with Hardware Devices” (page 30).

 ■ A signal converter, which uses an audio converter to convert between various linear PCM variants. See
“Audio Converters and Codecs” (page 21) for more details.

 ■ A mixer or splitter. For example, a mixer unit can mix down tracks or apply stereo or 3D panning effects.
A splitter unit might transform a mono signal into simulated stereo by splitting the signal into two
channels and applying comb filtering.

 ■ An offline effect unit. Offline effects are either too processor-intensive or simply impossible to apply in
real time. For example, a effect that reverses the samples in a file (resulting in the music being played
backward) must be applied offline.

Because audio units are modular, you can mix and match them in whatever permutations you or the end
user requires. Figure 1-2 shows a simple chain of audio units. This chain uses an instrument unit to generate
an audio signal, which is then passed through effect units to apply bandpass filtering and distortion.

Figure 1-2 A simple audio unit chain

If you develop audio DSP code that you want to make available to a wide variety of applications, you should
package them as audio units.

If you are an audio application developer, supporting audio units lets you leverage the library of existing
audio units (both third-party and Apple-supplied) to extend the capabilities of your application.

Apple ships a number of audio units to accomplish common tasks, such as filtering, delay, reverberation, and
mixing, as well as units to represent input and output devices (for example, units that allow audio data to
be transmitted and received over a network). See “System-Supplied Audio Units” (page 43) for a listing of
the audio units that ship with Mac OS X v10.4.

Core Audio in Mac OS X 11
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

For a simple way to experiment with audio units, see the AU Lab application, available in the Xcode Tools
install at /Developer/Applications/Audio. AU Lab allows you to mix and match various audio units. In
this way, you can build a signal chain from an audio source through an output device.

The Hardware Abstraction Layer

Core Audio uses a hardware abstraction layer (HAL) to provide a consistent and predictable interface for
applications to interact with hardware. The HAL can also provide timing information to your application to
simplify synchronization or to adjust for latency.

In most cases, you do not even have to interact directly with the HAL. Apple supplies a special audio unit,
called the AUHAL, which allows you to pass audio data directly from another audio unit to a hardware device.
Similarly, input coming from a hardware device is also routed through the AUHAL to be made available to
subsequent audio units, as shown in Figure 1-3.

Figure 1-3 Hardware input through the HAL and the AUHAL unit

Microphone

AUHALHAL

The AUHAL also takes care of any data conversion or channel mapping required to translate audio data
between audio units and hardware.

MIDI Support

Core MIDI is the part of Core Audio that supports the MIDI protocol. Core MIDI allows applications to
communicate with MIDI devices such as keyboards and guitars. Input from MIDI devices can be either stored
as MIDI data or translated through an instrument unit into an audio signal. Applications can also output
information to MIDI devices. Core MIDI uses abstractions to represent MIDI devices and mimic standard MIDI
cable connections (MIDI In, MIDI Out, and MIDI Thru) while providing low-latency I/O. Core Audio also supports
a music player programming interface that you can use to play MIDI data.

For more details about the capabilities of the MIDI protocol, see the MIDI Manufacturers Association site,
www.midi.org.

The Audio MIDI Setup Application

When using audio in Mac OS X, both users and developers can use the Audio MIDI Setup application to
configure audio and MIDI settings. You can use Audio MIDI Setup to:

 ■ Specify the default audio input and output devices.

 ■ Configure properties for input and output devices, such as the sampling rate and bit depth.

 ■ Map audio channels to available speakers (for stereo, 5.1 surround, and so on).

12 Core Audio in Mac OS X
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

http://www.midi.org

 ■ Create aggregate devices. (For information about aggregate devices, see “Using Aggregate Devices” (page
32).)

 ■ Configure MIDI networks and MIDI devices.

You can find the Audio MIDI Setup application in the /Applications/Utilities folder in Mac OS X v10.2
and later.

A Core Audio Recording Studio

Although Core Audio encompasses much more than recording and playing back audio, it can be useful to
compare its capabilities to elements in a recording studio. A simple hardware-based recording studio may
have a few instruments with some effect units feeding into a mixing deck, along with audio from a MIDI
keyboard, as shown in Figure 1-4. The mixer can output the signal to studio monitors as well as a recording
device, such as a tape deck (or perhaps a hard drive).

Figure 1-4 A simple recording studio

Much of the hardware used in a studio can be replaced by software-based equivalents. Specialized music
studio applications can record, synthesize, edit, mix, process, and play back audio. They can also record, edit,
process, and play back MIDI data, interfacing with both hardware and software MIDI instruments. In Mac OS
X, applications rely on Core Audio services to handle all of these tasks, as shown in Figure 1-5.

A Core Audio Recording Studio 13
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

Figure 1-5 A Core Audio "recording studio"

MIDI keyboard

Guitar

Microphone

Instrument
unit

Distortion
unit

Delay
unit

Core
MIDI

Mixer unit

Hard drive
(or memory)

Audio File and
Converter
Services

Monitors
AUHALHAL

AUHALHAL AUHAL HAL

As you can see, audio units make up much of the signal chain. Other Core Audio interfaces provide
application-level support, allowing applications to obtain audio or MIDI data in various formats and output
it to files or output devices. “Core Audio Programming Interfaces” (page 17) discusses the constituent
interfaces of Core Audio in more detail.

However, Core Audio lets you do much more than mimic a recording studio on a computer. You can use
Core Audio for everything from playing simple system sounds to creating compressed audio files to providing
an immersive sonic experience for game players.

Development Using the Core Audio SDK

To assist audio developers, Apple supplies a software development kit (SDK) for Core Audio. The SDK contains
many code samples covering both audio and MIDI services as well as diagnostic tools and test applications.
Examples include:

 ■ A test application to interact with the global audio state of the system, including attached hardware
devices. (HALLab)

 ■ Host applications that load and manipulate audio units. (AudioUnitHosting.) Note that for the actual
testing of audio units, you should use the AU Lab application mentioned in “Audio Units” (page 10).

 ■ Sample code to load and play audio files (PlayFile) and MIDI files (PlaySequence)

14 Development Using the Core Audio SDK
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

This document points to additional examples in the Core Audio SDK that illustrate how to accomplish common
tasks.

The SDK also contains a C++ framework for building audio units. This framework simplifies the amount of
work you need to do by insulating you from the details of the Component Manager plug-in interface. The
SDK also contains templates for common audio unit types; for the most part, you only need override those
methods that apply to your custom audio unit. Some sample audio unit projects show these templates and
frameworks in use. For more details on using the framework and templates, see Audio Unit Programming
Guide.

Note: Apple supplies the C++ framework as sample code to assist audio unit development. Feel free to
modify the framework based on your needs.

The Core Audio SDK assumes you will use Xcode as your development environment.

You can download the latest SDK from http://developer.apple.com/sdk/. After installation, the SDK files are
located in /Developer/Examples/CoreAudio.

Development Using the Core Audio SDK 15
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

http://developer.apple.com/sdk/

16 Development Using the Core Audio SDK
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What is Core Audio?

Core Audio is a comprehensive set of services for handling all audio tasks in Mac OS X, and as such it contains
many constituent parts. This chapter describes the various programming interfaces of Core Audio.

For the purposes of this document, an API refers to a programming interface defined by a single header file,
while a service is an interface defined by several header files.

For a complete list of Core Audio frameworks and the headers they contain, see “Core Audio Frameworks” (page
39).

Audio Unit Services

Audio Unit Services allows you to create and manipulate audio units. This interface consists of the functions,
data types, and constants found in the following header files in AudioUnit.framework and
AudioToolbox.framework:

 ■ AudioUnit.h

 ■ AUComponent.h

 ■ AudioOutputUnit.h

 ■ AudioUnitParameters.h

 ■ AudioUnitProperties.h

 ■ AudioUnitCarbonView.h

 ■ AUCocoaUIView.h

 ■ MusicDevice.h

 ■ AudioUnitUtilities.h (in AudioToolbox.framework)

Audio units are plug-ins, specifically Component Manager components, for handling or generating audio
signals. Multiple instances of the same audio unit can appear in the same host application. They can appear
virtually anywhere in an audio signal chain.

An audio unit must support the noninterleaved 32-bit floating-point linear PCM format to ensure compatibility
with units from other vendors. It may also support other linear PCM variants. Currently audio units do not
support audio formats other than linear PCM. To convert audio data of a different format to linear PCM, you
can use an audio converter (see “Audio Converters and Codecs” (page 21).

Audio Unit Services 17
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

Note: Audio File and Converter Services uses Component Manager components to handle custom file formats
or data conversions. However, these components are not audio units.

Host applications must use Component Manager calls to discover and load audio units. Each audio unit is
uniquely identified by a combination of the Component Manager type, subtype, and manufacturer’s code.
The type indicates the general purpose of the unit (effect unit, generator unit, and so on). The subtype is an
arbitrary value that uniquely identifies an audio unit of a given type by a particular manufacturer. For example,
if your company supplies several different effect units, each must have a distinct subtype to distinguish them
from each other. Apple defines the standard audio unit types, but you are free to create any subtypes you
wish.

Audio units describe their capabilities and configuration information using properties. Properties are key-value
pairs that describe non-time varying characteristics, such as the number of channels in an audio unit, the
audio data stream format it supports, the sampling rate it accepts, and whether or not the unit supports a
custom Cocoa view. Each audio unit type has several required properties, as defined by Apple, but you are
free to define additional properties based on your unit’s needs. Host applications can use property information
to create user interfaces for a unit, but in many cases, more sophisticated audio units supply their own custom
user interfaces.

Audio units also contain various parameters, the types of which depend on the capabilities of the audio
unit. Parameters typically represent settings that are adjustable in real time, often by the end user. For
example, a parametric filter audio unit may have parameters determining the center frequency and the width
of the filter response, which may be set using the user interface. An instrument unit, on the other hand, uses
parameters to represent the current state of MIDI or event data.

A signal chain composed of audio units typically ends in an output unit. An output unit often interfaces with
hardware (the AUHAL is such an output unit, for example), but this is not a requirement. Output units differ
from other audio units in that they are the only units that can start and stop data flow independently. Standard
audio units rely on a "pull" mechanism to obtain data. Each audio unit registers a callback with its successor
in the audio chain. When an output unit starts the data flow (triggered by the host application), its render
function calls back to the previous unit in the chain to ask for data, which in turn calls its predecessor, and
so on.

Host applications can combine audio units in an audio processing graph to create larger signal processing
modules. Combining units in a processing graph automatically creates the callback links to allow data flow
through the chain. See “Audio Processing Graph API” (page 19) for more information.

To monitor changes in the state of an audio unit, applications can register callbacks ("listeners") that are
invoked when particular audio unit events occur. For example, an application might want to know when a
parameter changes value or when the data flow is interrupted. See Technical Note TN2104: Handling Audio
Unit Events for more details.

The Core Audio SDK (in its AudioUnits folder) provides templates for common audio unit types (for example,
effect units and instrument units) along with a C++ framework that implements most of the Component
Manager plug-in interface for you.

For more detailed information about building audio units using the SDK, see the Audio Unit Programming
Guide.

18 Audio Unit Services
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

http://developer.apple.com/technotes/tn2002/tn2104.html
http://developer.apple.com/technotes/tn2002/tn2104.html

Audio Processing Graph API

The Audio Processing Graph API lets audio unit host application developers create and manipulate audio
processing graphs. The Audio Processing Graph API consists of the functions, data types, and constants
defined in the header file AUGraph.h in AudioToolbox.framework.

An audio processing graph (sometimes called an AUGraph) defines a collection of audio units strung together
to perform a particular task. This arrangement lets you create modules of common processing tasks that you
can easily add to and remove from your signal chain. For example, a graph could connect several audio units
together to distort a signal, compress it, and then pan it to a particular location in the soundstage. You can
end a graph with the AUHAL to transmit the sound to a hardware device (such as an amplifier/speaker).
Audio processing graphs are useful for applications that primarily handle signal processing by connecting
audio units rather than implementing the processing themselves. Figure 2-1 shows a simple audio processing
graph.

Figure 2-1 A simple audio processing graph

Compressor unit

Pitch unit

Output unit

Each audio unit in an audio processing graph is called a node. You make a connection by attaching an output
from one node to the input of another. You can't connect an output from one audio unit to more than one
audio unit input unless you use a splitter unit, as shown in Figure 2-2. However, an audio unit may contain
multiple outputs or inputs, depending on its type.

Figure 2-2 Incorrect and correct ways to fan out a connection

Instrument
unit

Distortion
unit

Filter
unit

Instrument
unit

Splitter
unit

Distortion
unit

Filter
unit

Incorrect

Correct

Audio Processing Graph API 19
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

You can use the Audio Processing Graph API to combine subgraphs into a larger graph, where a subgraph
appears as a single node in the larger graph, as shown in Figure 2-3.

Figure 2-3 A subgraph within a larger audio processing graph

Compressor unit

Pitch unit

Generic output unit

Output unit

Subgraph

Instrument
unit

File
player
unit

Delay
unit

Mixer unit

Each graph or subgraph must end in an output audio unit. In the case of a subgraph, the signal path should
end with the generic output unit, which does not connect to any hardware.

While it is possible to link audio units programmatically without using an audio processing graph, you can
modify a graph dynamically, allowing you to change the signal path while processing audio data. In addition,
because a graph represents simply an interconnection of audio units, you can create and modify a graph
without having to instantiate the audio units it references.

Audio File and Converter Services

Audio File and Converter Services lets you read or write audio data, either to a file or to a buffer, and allows
you to convert the data between any number of different formats. This service consists of the functions, data
types, and constants defined in the following header files in AudioToolbox.framework and
AudioUnit.framework:

 ■ ExtendedAudioFile.h

 ■ AudioFile.h

 ■ AudioFormat.h

 ■ AudioConverter.h

20 Audio File and Converter Services
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

 ■ AudioCodec.h (located in AudioUnit.framework).

 ■ CAFFile.h

In many cases, you use the Extended Audio File API, which provides the simplest interface for reading and
writing audio data. Files read using this API are automatically uncompressed and/or converted into linear
PCM format, which is the native format for audio units. Similarly, you can use one function call to write linear
PCM audio data to a file in a compressed or converted format. “Supported Audio File and Data Formats” (page
47) lists the file formats that Core Audio supports by default. Some formats have restrictions; for example,
by default, Core Audio can read, but not write, MP3 files, and an AC-3 file can be decoded only to a stereo
data stream (not 5.1 surround).

If you need more control over the file reading, file writing, or data conversion process, you can access the
Audio File and Audio Converter APIs directly (in AudioFile.h and AudioConverter.h). When using the
Audio File API, the audio data source (as represented by an audio file object) can be either an actual file or
a buffer in memory. In addition, if your application reads and writes proprietary file formats, you can handle
the format translation using custom Component Manager components that the Audio File API can discover
and load. For example, if your file format incorporates DRM, you would want to create a custom component
to handle that process.

Audio Converters and Codecs

An audio converter lets you convert audio data from one format to another. For example, you can make
simple conversions such as changing the sample rate and interleaving or deinterleaving audio data streams,
to more complex operations such as compressing or decompressing audio. Three types of conversions are
possible:

 ■ Decoding an audio format (such as AAC (Advanced Audio Coding)) to linear PCM format.

 ■ Encoding linear PCM data into a different audio format.

 ■ Translating between different variants of linear PCM (for example, converting 16-bit signed integer linear
PCM to 32-bit floating point linear PCM).

The Audio Converter API lets you create and manipulate audio converters. You can use the API with many
built-in converters to handle most common audio formats. You can instantiate more than one converter at
a time, and specify the converter to use when calling a conversion function. Each audio converter has
properties that describe characteristics of the converter. For example, a channel mapping property also allows
you to specify how the input channels should map to the output channels.

You convert data by calling a conversion function with a particular converter instance, specifying where to
find the input data and where to write the output. Most conversions require a callback function to periodically
supply input data to the converter.

An audio codec is a Component Manager component loaded by an audio converter to encode or decode a
specific audio format. Typically a codec would decode to or encode from linear PCM. The Audio Codec API
provides the Component Manager interface necessary for implementing an audio codec. After you create a
custom codec, then you can use an audio converter to access it. “Supported Audio File and Data Formats” (page
47) lists standard Core Audio codecs for translating between compressed formats and Linear PCM.

For examples of how to use audio converters, see SimpleSDK/ConvertFile and the AFConvert
command-line tool in Services/AudioFileTools in the Core Audio SDK.

Audio File and Converter Services 21
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

File Format Information

In addition to reading, writing, and conversion, Audio File and Converter Services can obtain useful information
about file types and the audio data a file contains. For example, you can obtain data such as the following
using the Audio File API:

 ■ File types that Core Audio can read or write

 ■ Data formats that the Audio File API can read or write

 ■ The name of a given file type

 ■ The file extension(s) for a given file type

The Audio File API also allows you to set or read properties associated with a file. Examples of properties
include the data format stored in the file and a CFDictionary containing metadata such as the genre, artist,
and copyright information.

Audio Metadata

When handling audio data, you often need specific information about the data so you know how to best
process it. The Audio Format API (in AudioFormat.h) allows you to query information stored in various
audio structures. For example, you might want to know some of the following characteristics:

 ■ Information associated with a particular channel layout (number of channels, channel names, input to
output mapping).

 ■ Panning matrix information, which you can use for mapping between channel layouts.

 ■ Sampling rate, bit rate, and other basic information.

In addition to this information, you can also use the Audio Format API to obtain specific information about
the system related to Core Audio, such as the audio codecs that are currently available.

Core Audio File Format

Although technically not a part of the Core Audio programming interface, the Core Audio File format (CAF)
is a powerful and flexible file format , defined by Apple, for storing audio data. CAF files have no size restrictions
(unlike AIFF, AIFF-C, and WAVE files) and can support a wide range of metadata, such as channel information
and text annotations. The CAF format is flexible enough to contain any audio data format, even formats that
do not exist yet. For detailed information about the Core Audio File format, see Apple Core Audio Format
Specification 1.0.

Hardware Abstraction Layer (HAL) Services

Core Audio uses a hardware abstraction layer (HAL) to provide a consistent and predictable interface for
applications to deal with hardware. Each piece of hardware is represented by an audio device object (type
AudioDevice) in the HAL. Applications can query the audio device object to obtain timing information that
can be used for synchronization or to adjust for latency.

22 Hardware Abstraction Layer (HAL) Services
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

HAL Services consists of the functions, data types, and constants defined in the following header files in
CoreAudio.framework:

 ■ AudioDriverPlugin.h

 ■ AudioHardware.h

 ■ AudioHardwarePlugin.h

 ■ CoreAudioTypes.h (Contains data types and constants used by all Core Audio interfaces)

 ■ HostTime.h

Most developers will find that Apple’s AUHAL unit serves their hardware interface needs, so they don’t have
to interact directly with the HAL Services. The AUHAL is responsible for transmitting audio data, including
any required channel mapping, to the specified audio device object. For more information about using the
AUHAL and output units, see “Interfacing with Hardware Devices” (page 30).

Music Player API

The Music Player API allows you to arrange and play a collection of music tracks. It consists of the functions,
data types, and constants defined in the header file MusicPlayer.h in AudioToolbox.framework.

A particular stream of MIDI or event data is a track (represented by the MusicTrack type). Tracks contain a
series of time-based events, which can be MIDI data, Core Audio event data, or your own custom event
messages. A collection of tracks is a sequence (type MusicSequence). A sequence always contains an
additional tempo track, which synchronizes the playback of all tracks in the sequence. Your application can
add, delete, or edit tracks in a sequence dynamically. Each sequence must be assigned to a corresponding
music player object (type MusicPlayer), which acts as the overall controller for all the tracks in the sequence.

A track is analogous to sheet music for an instrument, indicating which notes to play and for how long. A
sequence is similar to a musical score, which contains notes for multiple instruments. Instrument units or
external MIDI devices represent the musical instruments, while the music player is similar to the conductor
who keeps all the musicians coordinated.

Track data played by a music player can be sent to an audio processing graph, an external MIDI device, or a
combination of the two. The audio processing graph receives the track data through one or more instrument
units, which convert the event (or MIDI) data into actual audio signals. The music player automatically
communicates with the graph's output audio unit or Core MIDI to ensure that the audio output is properly
synchronized.

Track data does not have to represent musical information. For example, special Core Audio events can
represent changes in audio unit parameter values. A track assigned to a panner audio unit might send
parameter events to alter the position of a sound source in the soundstage over time. Tracks can also contain
proprietary user events that trigger an application-defined callback.

For more information about using the Music Player API to play MIDI data, see “Handling MIDI Data” (page
35).

Music Player API 23
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

Core MIDI Services and MIDI Server Services

Core Audio uses Core MIDI Services for MIDI support. These services consist of the functions, data types, and
constants defined in the following header files in CoreMIDI.framework:

 ■ MIDIServices.h

 ■ MIDISetup.h

 ■ MIDIThruConnection.h

 ■ MIDIDriver.h

Core MIDI Services defines an interface that applications and audio units can use to communicate with MIDI
devices. It uses a number of abstractions that allow an application to interact with a MIDI network.

A MIDI endpoint (defined by an opaque type MIDIEndpointRef) represents a source or destination for a
standard 16-channel MIDI data stream, and it is the primary conduit for interacting with Core Audio services.
For example, you can associate endpoints with tracks used by the Music Player API, allowing you to record
or play back MIDI data. A MIDI endpoint is a logical representation of a standard MIDI cable connection. MIDI
endpoints do not necessarily have to correspond to a physical device, however; an application can set itself
up as a virtual source or destination to send or receive MIDI data.

MIDI drivers often combine multiple endpoints into logical groups, called MIDI entities (MIDIEntityRef).
For example, it would be reasonable to group a MIDI-in endpoint and a MIDI-out endpoint as a MIDI entity,
which can then be easily referenced for bidirectional communication with a device or application.

Each physical MIDI device (not a single MIDI connection) is represented by a Core MIDI device object
(MIDIDeviceRef). Each device object may contain one or more MIDI entities.

Core MIDI communicates with the MIDI Server, which does the actual job of passing MIDI data between
applications and devices. The MIDI Server runs in its own process, independent of any application. Figure
2-4 shows the relationship between Core MIDI and MIDI Server.

Figure 2-4 Core MIDI and Core MIDI Server

MIDI guitar

Application Process

Core MIDI

MIDI Server Process

MIDI
server

MIDI keyboard

In addition to providing an application-agnostic base for MIDI communications, MIDI Server also handles
any MIDI thru connections, which allows device-to device chaining without involving the host application.

24 Core MIDI Services and MIDI Server Services
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

If you are a MIDI device manufacturer, you may need to supply a CFPlugin plug-in for the MIDI Server packaged
in a CFBundle to interact with the kernel-level I/O Kit drivers. Figure 2-5 shows how Core MIDI and Core MIDI
Server interact with the underlying hardware.

Note: If you create a USB MIDI class-compliant device, you do not have to write your own driver, because
Apple’s supplied USB driver will support your hardware.

Figure 2-5 MIDI Server interface with I/O Kit

User

Kernel

MIDI Server

MIDI driver

IO FireWire
family

MIDI driver

IO USB
family

IO PCI
device

MIDI driver

Core MIDI

IO PCI
family

MIDI endpoint MIDI endpoint MIDI endpoint

IO FireWire
device

IO Kit
driver

IO USB
device

The drivers for each MIDI device generally exist outside the kernel, running in the MIDI Server process. These
drivers interact with the default I/O Kit drivers for the underlying protocols (such as USB and FireWire). The
MIDI drivers are responsible for presenting the raw device data to Core MIDI in a usable format. Core MIDI
then passes the MIDI information to your application through the designated MIDI endpoints, which are the
abstract representations of the MIDI ports on the external devices.

MIDI devices on PCI cards, however, cannot be controlled entirely through a user-space driver. For PCI cards,
you must create a kernel extension to provide a custom user client. This client must either control the PCI
device itself (providing a simple message queue for the user-space driver) or map the address range of the
PCI device into the address of the MIDI server when requested to do so by the user-space driver. Doing so
allows the user-space driver to control the PCI device directly.

For an example of implementing a user-space MIDI driver, see MIDI/SampleUSBDriver in the Core Audio
SDK.

Core MIDI Services and MIDI Server Services 25
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

Core Audio Clock API

The Core Audio Clock API, as defined in the header file CoreAudioClock.h in AudioToolbox.framework,
provides a reference clock that you can use to synchronize applications or devices. This clock may be a
standalone timing source, or it can be synchronized with an external trigger, such as a MIDI beat clock or
MIDI time code. You can start and stop the clock yourself, or you can set the clock to activate or deactivate
in response to certain events.

You can obtain the generated clock time in a number of formats, including seconds, beats, SMPTE time, audio
sample time, and bar-beat time. The latter describes the time in a manner that is easy to display onscreen in
terms of musical bars, beats, and subbeats. The Core Audio Clock API also contains utility functions that
convert one time format to another and that display bar-beat or SMPTE times. Figure 2-6 shows the
interrelationship between various Core Audio Clock formats.

Figure 2-6 Some Core Audio Clock formats

Host time

Beats

Audio time
(samples)

SMTPE
seconds

Seconds

1.1.0

01.04.25.04.59

Playback rate

Tempo map translation

SMPTE offset

Media Times

Hardware Times

The hardware times represent absolute time values from either the host time (the system clock) or an audio
time obtained from an external audio device (represented by an AudioDevice object in the HAL). You
determine the current host time by calling mach_absolute_time or UpTime. The audio time is the audio
device’s current time represented by a sample number. The sample number’s rate of change depends on
the audio device’s sampling rate.

The media times represent common timing methods for audio data. The canonical representation is in
seconds, expressed as a double-precision floating point value. However, you can use a tempo map to translate
seconds into musical bar-beat time, or apply a SMPTE offset to convert seconds to SMPTE seconds.

Media times do not have to correspond to real time. For example, an audio file that is 10 seconds long will
take only 5 seconds to play if you double the playback rate. The knob in Figure 2-6 (page 26) indicates that
you can adjust the correlation between the absolute (“real”) times and the media-based times. For example,
bar-beat notation indicates the rhythm of a musical line and what notes to play when, but does not indicate
how long it takes to play. To determine that, you need to know the playback rate (say, in beats per second).
Similarly, the correspondence of SMPTE time to actual time depends on such factors as the frame rate and
whether frames are dropped or not.

26 Core Audio Clock API
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

OpenAL (Open Audio Library)

Core Audio includes a Mac OS X implementation of the open-source OpenAL specification. OpenAL is a
cross-platform API used to position and manipulate sounds in a simulated three-dimensional space. For
example, you can use OpenAL for positioning and moving sound effects in a game, or creating a sound space
for multichannel audio. In addition to simple positioning sound around a listener, you can also add distancing
effects through a medium (such as fog or water), doppler effects, and so on.

The OpenAL coding conventions and syntax were designed to mimic OpenGL (only controlling sound rather
than light), so OpenGL programmers should find many concepts familiar.

For an example of using OpenAL in Core Audio, see Services/OpenALExample in the Core Audio SDK. For
more details about OpenAL, including programming information and API references, see openal.org.

System Sound API

The System Sound API provides a simple way to play standard system sounds in your application. Its header,
SystemSound.h is the only Core Audio header located in a non-Core Audio framework. It is located in the
CoreServices/OSServices framework.

For more details about using the System Sound API, see Technical Note 2102: The System Sound APIs for
Mac OS X v10.2, 10.3, and Later.

OpenAL (Open Audio Library) 27
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

http://developer.apple.com/technotes/tn2002/tn2102.html
http://developer.apple.com/technotes/tn2002/tn2102.html

28 System Sound API
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Programming Interfaces

This chapter describes some basic scenarios in which you can use Core Audio. These examples show how
you would combine parts of Core Audio to accomplish some common tasks.

Note that Core Audio is extremely modular, with few restrictions on how to use its various parts, so you may
choose to implement certain capabilities in other ways than those shown here. For example, your application
can call Audio File and Converter Services functions directly to read data from a file and convert it to linear
PCM, or you can choose to encapsulate that capability as a standalone generator audio unit that your
application can discover and load.

Reading and Writing Audio Data

Many applications that handle audio need to read and write the data, either to disk or to a buffer. In most
cases, you will want to read the file data and convert it to linear PCM (for use in audio units and so on). You
can do so in one step using the Extended Audio File API.

As shown in Figure 3-1, the Extended Audio File API makes calls to the Audio File API to read the audio data
and then calls the Audio Converter API to convert it to linear PCM (assuming the data is not already in that
format).

Figure 3-1 Reading audio data

Extended Audio File API

Hard diskMemory

Audio
File
API

Audio
unit

1 packet

1 frame

1 packet

1 frame

Compressed Linear PCM

Audio codec

Audio converter

If you need more control over the file reading and conversion procedure, you can call Audio File or Audio
Converter functions directly. You use the Audio File API to read the file from disk or a buffer. This data may
be in a compressed format, in which case it can be converted to linear PCM using an audio converter. You
can also use an audio converter to handle changes in bit depth, sampling rate, and so on within the linear
PCM format. You handle conversions by using the Audio Converter API to create an audio converter object,
specifying the input and output formats you desire. Each format is defined in a

Reading and Writing Audio Data 29
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

AudioStreamBasicDescription structure, which is a fundamental data type in Core Audio for describing
audio data. As stated earlier, if you are converting to linear PCM, you can use Extended Audio File API calls
to go from audio file data to linear PCM in one step, without having to create your own audio converter.

Once converted to linear PCM, the data is ready to process by an audio unit. To connect with an audio unit,
you must register a callback with a particular audio unit input. When the audio unit needs input, it will invoke
your callback, which can then supply the necessary audio data.

If you want to output the audio data, you send it to an output unit. The output unit can accept only linear
PCM format data. The output unit is usually a proxy for a hardware device, but this is not a requirement.

Linear PCM can act as an intermediate format, which permits many permutations of conversions. To determine
whether a particular format conversion is possible, you need to make sure that both a decoder (format A to
linear PCM) and an encoder (linear PCM to format B) are available. For example, if you wanted to convert
data from MP3 to AAC, you would need two audio converters: one to convert from MP3 to linear PCM, and
another to convert linear PCM to AAC, as shown in Figure 3-2.

Figure 3-2 Converting audio data using two converters

Hard diskMemory

Audio
File
API Audio codec

Audio converter Audio
File
APIAudio codec

Audio converter

MP3 Linear PCM AAC

For examples of using the Audio File and Audio Converter APIs, see the SimpleSDK/ConvertFile and
Services/AudioFileTools samples in the Core Audio SDK. If you are interested in writing a custom audio
converter codec, see the samples in the AudioCodec folder.

Interfacing with Hardware Devices

Most audio applications have to connect with external hardware, either to output audio data (for example,
to an amplifier/speaker) or to obtain it (such as through a microphone). These operations must go through
the hardware abstraction layer (HAL). Fortunately, in most cases you do not need to write custom code to
access the HAL. Apple provides three standard audio units that should address most hardware needs: the
default output unit, the system output unit, and the AUHAL. Your application must call the Component
Manager to discover and load these units before you can use them.

Default and System Output Units

The default output unit and system output unit send audio data to the default output (as selected by the
user) or system output (where alerts and other system sounds are played) respectively. If you connect an
audio unit to one of these output devices (such as in an audio processing graph), your unit's callback function
(sometimes called the render callback) is called when the output needs data. The output unit routes the data
through the HAL to the appropriate output device, automatically handling the following tasks, as shown in
Figure 3-3.

30 Interfacing with Hardware Devices
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

Figure 3-3 Inside an output unit

Channel
mapping

Signal
Start/Stop

Audio
converter

 ■ Any required linear PCM data conversion. The output unit contains an audio converter that can translate
your audio data to the linear PCM variant required by the hardware.

 ■ Any required channel mapping. For example, if your unit is supplying two-channel data but the output
device can handle five, you will probably want to map which channels go to which. You can do so by
specifying a channel map using the kAudioOutputUnitProperty_ChannelMapproperty on the output
unit. If you don't supply a channel map, the default is to map the first audio channel to the first device
channel, the second to the second, and so on. The actual output heard is then determined by how the
user has configured the device speakers in the Audio MIDI Setup application.

 ■ Signal Start/Stop. Output units are the only audio units that can control the flow of audio data in the
signal chain.

For an example of using the default output unit to play audio, see SimpleSDK/DefaultOutputUnit in the
Core Audio SDK.

The AUHAL

If you need to connect to an input device, or a hardware device other than the default output device, you
need to use the AUHAL. Although designated as an output device, you can configure the AUHAL to accept
input as well by setting the kAudioOutputUnitProperty_EnableIO property on the input. For more
specifics, see Technical Note TN2091: Device Input Using the HAL Output Audio Unit. When accepting input,
the AUHAL supports input channel mapping and uses an audio converter (if necessary) to translate incoming
data to linear PCM format.

The AUHAL is a more generalized version of the default output unit. In addition to the audio converter and
channel mapping capabilities, you can specify the device to connect to by setting the
kAudioOutputUnitProperty_CurrentDevice property to the ID of an AudioDevice object in the HAL.
Once connected, you can also manipulate properties associated with the AudioDevice object by addressing
the AUHAL; the AUHAL automatically passes along any property calls meant for the audio device.

An AUHAL instance can connect to only one device at a time, so you can enable both input and output only
if the device can accept both. For example, the built-in audio for PowerPC-based Macintosh computers is
configured as a single device that can both accept input audio data (through the Mic in) and output audio
(through the speaker).

Interfacing with Hardware Devices 31
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

http://developer.apple.com/technotes/tn2002/tn2091.html

Note: Some audio hardware, including USB audio devices and built-in audio on the current line of Intel-based
Macintosh computers, are represented by separate audio devices for input and output. See “Using Aggregate
Devices” (page 32) for information about how you can combine these separate devices into a single
AudioDevice object.

For the purposes of signal flow, the AUHAL configured for both input and output behaves as two audio units.
For example, when output is enabled, the AUHAL invokes the previous audio unit's render callback. If an
audio unit needs input data from the device, it invokes the AUHAL’s render callback. Figure 3-4 shows the
AUHAL used for both input and output.

Figure 3-4 The AUHAL used for input and output

Core Audio

I/O Kit HAL

Compressor
unit

Mixer
unit

AUHAL

From input

To output
External device

Microphone

Speaker

HAL

An audio signal coming in through the external device is translated into an audio data stream and passed
to the AUHAL, which can then send it on to another audio unit. After processing the data (for example, adding
effects, or mixing with other audio data), the output is sent back to the AUHAL, which can then output the
audio through the same external device.

For examples of using the AUHAL for input and output, see the SimplePlayThru and CAPlayThrough code
samples in the ADC Reference Library. SimplePlayThru shows how to handle input and output through a
single AUHAL instance. CAPlayThrough shows how to implement input and output using an AUHAL for
input and the default output unit for output.

Using Aggregate Devices

When interfacing with hardware audio devices, Core Audio allows you to add an additional level of abstraction,
creating aggregate devices which combine the inputs and outputs of multiple devices to appear as a single
device. For example, if you need to accommodate five channels of audio output, you can assign two channels
of output to one device and the other three to another device. Core Audio automatically routes the data
flow to both devices, while your application can interact with the output as if it were a single device. Core
Audio also works on your behalf to ensure proper audio synchronization and to minimize latency, allowing
you to focus on details specific to your application or plug-in.

Users can create aggregate devices in the Audio MIDI Setup application by selecting the Audio > Open
Aggregate Device Editor menu item. After selecting the subdevices to combine as an aggregate device, the
user can configure the device’s input and output channels like any other hardware device. The user also
needs to indicate which subdevice’s clock should act as the master for synchronization purposes.

32 Using Aggregate Devices
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

Any aggregate devices the user creates are global to the system. You can create aggregate devices that are
local to the application process programmatically using HAL Services function calls. An aggregate device
appears as an AudioAggregateDevice object (a subclass of AudioDevice) in the HAL.

Note: Aggregate devices can be used to hide implementation details. For example, USB audio devices
normally require separate drivers for input and output, which appear as separate AudioDevice objects.
However, by creating a global aggregate device, the HAL can represent the drivers as a single AudioDevice
object.

An aggregate device retains knowledge of its subdevices. If the user removes a subdevice (or configures it
in an incompatible manner), those channels disappear from the aggregate, but those channels will reappear
when the subdevice is reattached or reconfigured.

Aggregate devices have some limitations:

 ■ All the subdevices that make up the aggregate device must be running at the same sampling rate, and
their data streams must be mixable.

 ■ They don’t provide any configurable controls, such as volume, mute, or input source selection.

 ■ You cannot specify an aggregate device to be a default input or output device unless all of its subdevices
can be a default device. Otherwise, applications must explicitly select an aggregate device in order to
use it.

 ■ Currently only devices represented by an IOAudio family (that is, kernel-level) driver can be added to
an aggregate device.

Creating Audio Units

For detailed information about creating audio units, see Audio Unit Programming Guide.

Hosting Audio Units

Audio units, being plug-ins, require a host application to load and control them.

Because audio units are Component Manager components, a host application must call the Component
Manager to load them. The host application can find and instantiate audio units if they are installed in one
of the following folders:

 ■ ~/Library/Audio/Plug-Ins/Components. Audio units installed here may only be used by the owner
of the home folder.

 ■ /Library/Audio/Plug-Ins/Components. Audio units installed here are available to all users.

 ■ /System/Library/Components. The default location for Apple-supplied audio units.

If you need to obtain a list of available audio units (to display to the user, for example), you need to call the
Component Manager function CountComponents to determine how many audio units of a particular type
are available, then iterate using FindNextComponent to obtain information about each unit. A

Creating Audio Units 33
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

ComponentDescription structure contains the identifiers for each audio unit (its type, subtype, and
manufacturer codes). See “System-Supplied Audio Units” (page 43) for a list of Component Manager types
and subtypes for Apple-supplied audio units. The host can also open each unit (by calling OpenComponent)
so it can query it for various property information, such as the audio unit’s default input and output data
formats, which the host can then cache and present to the user.

In most cases, an audio processing graph is the simplest way to connect audio units. One advantage of using
a processing graph is that the API takes care of making individual Component Manager calls to instantiate
or destroy audio units. To create a graph, call NewAUGraph, which returns a new graph object. Then you can
add audio units to the graph by calling AUGraphNewNode. A graph must end in an output unit, either a
hardware interface (such as the default output unit or the AUHAL) or the generic output unit.

After adding the units that will make up the processing graph, call AUGraphOpen. This function is equivalent
to calling OpenComponent on each of the audio units in the graph. At this time, you can set audio unit
properties such as the channel layout, sampling rate, or properties specific to a particular unit (such as the
number of inputs and outputs it contains).

To make individual connections between audio units, call AUGraphConnectNodeInput, specifying the
output and input to connect. The audio unit chain must end in an output unit; otherwise the host application
has no way to start and stop audio processing.

If the audio unit has a user interface, the host application is responsible for displaying it. Audio units may
supply a Cocoa or a Carbon-based interface (or both). Code for the user interface is typically bundled along
with the audio unit.

 ■ If the interface is Cocoa-based, the host application must query the unit property
kAudioUnitProperty_CocoaUI to find the custom class that implements the interface (a subclass of
NSView) and create an instance of that class.

 ■ If the interface is Carbon-based, the user interface is stored as one or more Component Manager
components. You can obtain the component identifiers (type, subtype, manufacturer) by querying the
kAudioUnitProperty_GetUIComponentList property. The host application can then instantiate the
user interface by calling AudioUnitCarbonViewCreate on a given component, which displays its
interface in a window as an HIView.

After building the signal chain, you can initialize the audio units by calling AUGraphInitialize. Doing so
invokes the initialization function for each audio unit, allowing it to allocate memory for rendering, configure
channel information, and so on. Then you can call AUGraphStart, which initiates processing. The output
unit then requests audio data from the previous unit in the chain (by means of a callback), which then calls
its predecessor, and so on. The source of the audio may be an audio unit (such as a generator unit or AUHAL)
or the host application may supply audio data itself by registering a callback with the first audio unit in the
signal chain (by setting the unit’s kAudioUnitProperty_SetRenderCallback property).

While an audio unit is instantiated, the host application may want to know about changes to parameter or
property values; it can register a listener object to be notified when changes occur. For details on how to
implement such a listener, see Technical Note TN2104: Handling Audio Unit Events.

When the host wants to stop signal processing, it calls AUGraphStop.

To uninitialize all the audio units in a graph, call AUGraphUninitialize. When back in the uninitialized
state, you can still modify audio unit properties and make or change connections. If you call AUGraphClose,
each audio unit in the graph is deallocated by a CloseComponent call. However, the graph still retains the
nodal information regarding which units it contains.

34 Hosting Audio Units
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

http://developer.apple.com/technotes/tn2002/tn2104.html

To dispose of a processing graph, call AUGraphDispose. Disposing of a graph automatically disposes of any
instantiated audio units it contains.

For examples of hosting audio units, see the Services/AudioUnitHosting and Services/CocoaAUHost
examples in the Core Audio SDK.

For an example of implementing an audio unit user interface, see the AudioUnits/CarbonGenericView
example in the Core Audio SDK. You can use this example with any audio unit containing user-adjustable
parameters.

For more information about using the Component Manager, see the following documentation:

 ■ Component Manager Reference

 ■ Component Manager for QuickTime

 ■ Component Manager documentation in Inside Macintosh: More Macintosh Toolbox. Although this is a
legacy document, it provides a good conceptual overview of the Component Manager.

Handling MIDI Data

When working with MIDI data, an application might need to load track data from a standard MIDI file (SMF).
You can invoke a Music Player function (MusicSequenceLoadSMFWithFlags or
MusicSequenceLoadSMFDataWithFlags) to read in data in the Standard MIDI Format, as shown in Figure
3-5.

Figure 3-5 Reading a standard MIDI file

Depending on the type of MIDI file and the flags set when loading a file, you can store all the MIDI data in
single track, or store each MIDI channel as a separate track in the sequence. By default, each MIDI channel is
mapped sequentially to a new track in the sequence. For example, if the MIDI data contains channels 1, 3,
and, 4, three new tracks are added to the sequence, containing data for channels 1, 3, and 4 respectively.
These tracks are appended to the sequence at the end of any existing tracks. Each track in a sequence is
assigned a zero-based index value.

Timing information (that is, tempo events) goes to the tempo track.

Once you have loaded MIDI data into the sequence, you can assign a music player instance to play it, as
shown in Figure 3-6.

Handling MIDI Data 35
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-333.html

Figure 3-6 Playing MIDI data

Audio Processing Graph

Instrument unit

Compressor unit

Music playerOutput unit

Audio
device

Music Sequence

Tempo track

Event track

Synchronize data

The sequence must be associated with a particular audio processing graph, and the tracks in the sequence
can be assigned to one or more instrument units in the graph. (If you don't specify a track mapping, the
music player sends all the MIDI data to the first instrument unit it finds in the graph.) The music player
assigned to the sequence automatically communicates with the graph's output unit to make sure the outgoing
audio data is properly synchronized. The compressor unit, while not required, is useful for ensuring that the
dynamic range of the instrument unit’s output stays consistent.

MIDI data in a sequence can also go to external MIDI hardware (or software configured as a virtual MIDI
destination), as shown in Figure 3-7.

Tracks destined for MIDI output must be assigned a MIDI endpoint. The music player communicates with
Core MIDI to ensure that the data flow to the MIDI device is properly synchronized. Core MIDI then coordinates
with the MIDI Server to transmit the data to the MIDI instrument.

Figure 3-7 Sending MIDI data to a MIDI device

Music player

Core MIDI

MIDI endpoint

MIDI
Server

Music Sequence

Tempo track

Event track

Synchronize data

A sequence of tracks can be assigned to a combination of instrument units and MIDI devices. For example,
you can assign some of the tracks to play through an instrument unit, while other tracks go through Core
MIDI to play through external MIDI devices, as shown in Figure 3-8.

36 Handling MIDI Data
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

Figure 3-8 Playing both MIDI devices and a virtual instrument

Audio Processing Graph

Instrument unit

Compressor unit

Output unit

Audio
device

Core MIDI

Music player

Music Sequence

Event track

Tempo track

MIDI
ServerMIDI endpoint

MIDI endpoint

Event track

Event track

Synchronize data

Synchronize data

The music player automatically coordinates between the audio processing graph's output unit and Core MIDI
to ensure that the outputs are synchronized.

Another common scenario is to play back already existing track data while accepting new MIDI input, as
shown in Figure 3-9.

Figure 3-9 Accepting new track input

Audio Processing Graph

Instrument unit

Compressor unit

Output unit

Audio
device

Music player

Music Sequence

Event track

Tempo track

Event track

Core MIDI

MIDI
Server

MIDI endpoint

Synchronize data

The playback of existing data is handled as usual through the audio processing graph, which sends audio
data to the output unit. New data from an external MIDI device enters through Core MIDI and is transferred
through the assigned endpoint. Your application must iterate through this incoming data and write the MIDI
events to a new or existing track. The Music Player API contains functions to add new tracks to a sequence,
and to write time-stamped MIDI events or other messages to a track.

Handling MIDI Data 37
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

For examples of handling and playing MIDI data, see the following examples in the Core Audio SDK:

 ■ MIDI/SampleTools, which shows a simple way to send and receive MIDI data.

 ■ SimpleSDK/PlaySoftMIDI, which sends MIDI data to a simple processing graph consisting of an
instrument unit and an output unit.

 ■ SimpleSDK/PlaySequence, which reads in a MIDI file into a sequence and uses a music player to play
it.

Handling Both Audio and MIDI Data

Sometimes you want to combine audio data with audio synthesized from MIDI data and play back the result.
For example, the audio for many games consists of background music, which is stored as an audio file on
disk, along with noises triggered by events (footsteps, gunfire, and so on), which are generated as MIDI data.
Figure 3-10 shows how you can use Core Audio to combine the two.

Figure 3-10 Combining audio and MIDI data

Music player

Audio Processing Graph

Music Sequence

Output unit

Hard diskMemory

3D mixer unit

Instrument
unit

Audio
device

Extended Audio
File API

Event track

Event track

Event track

Tempo track

Generator
unit

Synchronize data

The soundtrack audio data is retrieved from disk or memory and converted to linear PCM using the Extended
Audio File API. The MIDI data, stored as tracks in a music sequence, is sent to a virtual instrument unit. The
output from the virtual instrument unit is in linear PCM format and can then be combined with the soundtrack
data. This example uses a 3D mixer unit, which can position audio sources in a three-dimensional space. One
of the tracks in the sequence is sending event data to the mixer unit, which alters the positioning parameters,
making the sound appear to move over time. The application would have to monitor the player's movements
and add events to the special movement track as necessary.

For an example of loading and playing file-based audio data, see SimpleSDK/PlayFile in the Core Audio
SDK.

38 Handling Both Audio and MIDI Data
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

An Overview of Common Tasks

Core Audio consists of a number of separate frameworks, which you can find in
/System/Library/Frameworks. These frameworks are not grouped under an umbrella framework, so
finding particular headers can sometimes be tricky. This appendix describes each of the Core Audio frameworks
and their associated header files.

AudioToolbox.framework

The Audio Toolbox framework contains the APIs that provide application-level services:

 ■ AudioToolbox.h: Top-level include file for the Audio Toolbox framework.

 ■ AudioConverter.h: Audio Converter API. Defines the interface used to create and use audio converters.

 ■ AudioFile.h: Audio File API. Defines the interface used to read and write audio data in files.

 ■ ExtendedAudioFile.h: Extended Audio File API. Defines the interface used to translate audio data
from files directly into linear PCM, and vice versa.

 ■ AudioFormat.h: Audio Format API. Defines the interface used to assign and read audio format metadata
in audio files.

 ■ CoreAudioClock.h: The Core Audio Clock interface lets you designate a timing source for synchronizing
applications or devices.

 ■ MusicPlayer.h: Music Player API. Defines the interface used to manage and play event tracks in music
sequences.

 ■ AUGraph.h: Audio Processing Graph API. Defines the interface used to create and use audio processing
graphs.

 ■ DefaultAudioOutput.h: Deprecated: Do not use. Defines an older interface for accessing the default
output unit (deprecated in Mac OS X v10.3 and later).

 ■ AudioUnitUtilities.h: Some utility functions for interacting with audio units. Includes audio unit
parameter conversion functions, and audio unit event functions to create listener objects, which invoke
a callback when specified audio unit parameters have changed.

 ■ AUMIDIController.h: Deprecated: Do not use. An interface to allow audio units to receive data from
a designated MIDI source. Standard MIDI messages are translated into audio unit parameter values. This
interface is superseded by functions in the Music Player API.

 ■ CAFFile.h: Defines the Core Audio file format, which provides many advantages over other audio file
formats. See Apple Core Audio Format Specification 1.0 for more information.

 ■ AudioFileComponents.h: Defines the interface for Audio File Component Manager components. You
use an audio file component to implement reading and writing a custom file format.

AudioToolbox.framework 39
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Core Audio Frameworks

AudioUnit.framework

The Audio Unit framework contains the APIs used specifically for audio units and audio codecs.

 ■ AudioUnit.h: Top-level include file for the Audio Unit framework.

 ■ AUComponent.h: Defines the basic interface for audio unit components.

 ■ AudioCodec.h: Defines the interface used specifically for creating audio codec components..

 ■ AudioOutputUnit.h: Defines the interface used to turn an output unit on or off.

 ■ AudioUnitParameters.h: Predefined parameter constants used by Apple's audio units. Third parties
can also use these constants for their own audio units.

 ■ AudioUnitProperties.h: Predefined audio unit properties for common audio unit types as well as
Apple's audio units.

 ■ AudioUnitCarbonView.h: Defines the interface for loading and interacting with a Carbon-based audio
unit user interface. A Carbon interface is packaged as a Component Manager component and appears
as an HIView.

 ■ AUCocoaUIView.h: Defines the protocol for a custom Cocoa view you can use to hold your audio unit's
user interface. See also CoreAudioKit.framework/AUGenericView.h.

 ■ AUNTComponent.h: Deprecated: Do not use. Defines the interface for older "v1" audio units. Deprecated
in Mac OS X v10.3 and later. Replaced by AUComponent.h.

 ■ MusicDevice.h: An interface for creating instrument units (that is, software-based music synthesizers).

CoreAudioKit.framework

The Core Audio Kit framework contains APIs used for creating a Cocoa user interface for an audio unit.

 ■ CoreAudioKit.h: Top-level include file for the Core Audio Kit framework.

 ■ AUGenericView.h: Defines a generic Cocoa view class for use with audio units. This is the bare-bones
user interface that is displayed if an audio unit doesn't create its own custom interface.

CoreAudio.framework

The Core Audio framework contains lower-level APIs used to interact with hardware, as well as data types
common to all Core Audio services. This framework contains all the APIs that make up Hardware Abstraction
Layer (HAL) Services.

 ■ CoreAudio.h: Top-level include file for the Core Audio framework.

 ■ CoreAudioTypes.h: Defines data types used by all of Core Audio.

 ■ HostTime.h: Contains functions to obtain and convert the host's time base.

 ■ AudioDriverPlugin.h: Defines the interface used to communicate with an audio driver plug-in.

40 AudioUnit.framework
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Core Audio Frameworks

 ■ AudioHardware.h: Defines the interface for interacting with audio device objects. An audio device
object represents an external device in the hardware abstraction layer (HAL).

 ■ AudioHardwarePlugin.h: Defines the CFPlugin interface required for a HAL plug-in. An instance of a
plug-in appears as an audio device object in the HAL.

CoreMIDI.framework

The Core MIDI framework contains all Core MIDI Services APIs used to implement MIDI support in applications.

 ■ CoreMIDI.h: Top-level include file for the Core MIDI framework.

 ■ MIDIServices.h: Defines the interface used to set up and configure an application to communicate
with MIDI devices (through MIDI endpoints, notifications, and so on).

 ■ MIDISetup.h: Defines the interface used to configure or customize the global state of the MIDI system
(that is, available MIDI devices, MIDI endpoints, and so on).

 ■ MIDIThruConnection.h: Defines functions to create MIDI play-through connections between MIDI
sources and destinations. A MIDI thru connection allows you to daisy-chain MIDI devices, allowing input
to one device to pass through to another device as well.

CoreMIDIServer.framework

The Core MIDI Server framework contains interfaces for MIDI drivers.

 ■ CoreMIDIServer.h: Top-level include file for the Core MIDI Server framework.

 ■ MIDIDriver.h: Defines the CFPlugin interface used by MIDI drivers to interact with the Core MIDI Server.

OpenAL.framework

The OpenAL framework provides the Mac OS X implementation of the the OpenAL specification. For more
details about OpenAL APIs, see openal.org.

 ■ al.h

 ■ alc.h

 ■ alctypes.h

 ■ altypes.h

 ■ alut.h

CoreMIDI.framework 41
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Core Audio Frameworks

42 OpenAL.framework
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Core Audio Frameworks

The tables in this appendix list the audio units that ship with Mac OS X v10.4, grouped by Component Manager
type. The Component Manager manufacturer identifier for all these units is
kAudioUnitManufacturer_Apple.

Table B-1 System-supplied effect units (kAudioUnitType_Effect)

DescriptionComponent Manager SubtypeEffect Units

A single-band bandpass filter.kAudioUnitSubType_-
BandPassFilter

AUBandpass

A dynamics processor that lets you set
parameters such as headroom, the amount
of compression, attack and release times,
and so on.

kAudioUnitSubType_-
DynamicsProcessor

AUDynamicsProcessor

A delay unit.kAudioUnitSubType_DelayAUDelay

A five-band filter, allowing for low and high
frequency cutoffs as well as three bandpass
filters.

kAudioUnitSubType_-
AUFilter

AUFilter

A 10-band or 31-band graphic equalizer.kAudioUnitSubType_-
GraphicEQ

AUGraphicEQ

A high-pass filter with an adjustable
resonance peak.

kAudioUnitSubType_-
HighPassFilter

AUHiPass

A filter that allows you to boost or cut high
frequencies by a fixed amount.

kAudioUnitSubType_-
HighShelfFilter

AUHighShelfFilter

A peak limiter.kAudioUnitSubType_-
PeakLimiter

AUPeakLimiter

A low-pass filter with an adjustable
resonance peak.

kAudioUnitSubType_-
LowPassFilter

AULowPass

A filter that allows you to boost or cut low
frequencies by a fixed amount.

kAudioUnitSubType_-
LowShelfFilter

AULowShelfFilter

A four-band compressor.kAudioUnitSubType_-
MultiBandCompressor

AUMultibandCompressor

A reverberation unit that allows you to
specify spatial characteristics, such as size of
room, material absorption characteristics,
and so on.

kAudioUnitSubType_-
MatrixReverb

AUMatrixReverb

43
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

System-Supplied Audio Units

DescriptionComponent Manager SubtypeEffect Units

A unit that streams audio data over a
network. Used in conjunction with the
AUNetReceive generator audio unit.

kAudioUnitSubType_NetSendAUNetSend

A parametric equalizer.kAudioUnitSubType_-
ParametricEQ

AUParametricEQ

A delay unit that allows you to set the delay
by number of samples rather than by time.

kAudioUnitSubType_-
SampleDelay

AUSampleDelay

An effect unit that lets you alter the pitch of
the sound without changing the speed of
playback.

kAudioUnitSubType_PitchAUPitch

Table B-2 System-supplied instrument unit (kAudioUnitType_MusicDevice)

DescriptionComponent Manager
Subtype

Instrument Unit

A virtual instrument unit that lets you play MIDI data using
sound banks in the SoundFont or Downloadable Sounds
(DLS) format. Sound banks must be stored in the
/Library/Audio/Sounds/Banks folder of either your
home or system directory.

kAudioUnitSubType_-
DLSSynth

DLSMusicDevice

Table B-3 System-supplied mixer units (kAudioUnitType_Mixer)

DescriptionComponent Manager SubtypeMixer Units

A special mixing unit that can take several different
signals and mix them so they appear to be positioned
in a three-dimensional space. For details on using this
unit, see Technical Note TN2112: Using the 3DMixer Au-
dio Unit.

kAudioUnitSubType_-
3DMixer

AUMixer3D

A unit that mixes an arbitrary number of inputs to an
arbitrary number of outputs.

kAudioUnitSubType_-
MatrixMixer

AUMatrixMixer

A unit that mixes an arbitrary number of mono or stereo
inputs to a single stereo output.

kAudioUnitSubType_-
StereoMixer

AUMixer

44
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

System-Supplied Audio Units

http://developer.apple.com/technotes/tn2004/tn2112.html
http://developer.apple.com/technotes/tn2004/tn2112.html

Table B-4 System-supplied converter units (kAudioUnitType_FormatConverter)

DescriptionComponent Manager
Subtype

Converter Unit

A generic converter to handle data conversions within
the linear PCM format. That is, it can handle sample
rate conversions, integer to floating point conversions
(and vice versa), interleaving, and so on. This audio
unit is essentially a wrapper around an audio
converter, as described in “Audio Converters and
Codecs” (page 21).

kAudioUnitSubType_-
AUConverter

AUConverter

An audio unit that obtains its input from one thread
and sends its output to another; you can use this unit
to divide your audio processing chain among multiple
threads.

kAudioUnitSubType_-
DeferredRenderer

AUDeferredRenderer

An unit that combines two separate audio inputs.kAudioUnitSubType_-
Merger

AUMerger

A unit that splits an audio input into two separate
audio outputs.

kAudioUnitSubType_-
Splitter

AUSplitter

A unit that lets you change the speed of playback
without altering the pitch, or vice versa.

kAudioUnitSubType_-
TimePitch

AUTimePitch

A unit that lets you change the speed of playback
(and consequently the pitch as well).

kAudioUnitSubType_-
Varispeed

AUVarispeed

Table B-5 System-supplied output units (kAudioUnitType_Output)

DescriptionComponent Manager
Subtype

Output Unit

A unit that interfaces with an audio device using the
hardware abstraction layer. Also called the AUHAL. Despite
its name, the AudioDeviceOutput unit can also be
configured to accept device input. See “Interfacing with
Hardware Devices” (page 30) for more details.

kAudioUnitSubType_-
HALOutput

AudioDeviceOutput

An output unit that sends its input data to the
user-designated default output (such as the computer's
speaker).

kAudioUnitSubType_-
DefaultOutput

DefaultOutputUnit

A generic output unit that contains the signal format
control and conversion features of an output unit, but
doesn't interface with an output device. Typically used
for the output of an audio processing subgraph. See
“Audio Processing Graph API” (page 19).

kAudioUnitSubType_-
GenericOutput

GenericOutput

45
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

System-Supplied Audio Units

DescriptionComponent Manager
Subtype

Output Unit

An output unit that sends its input data to the standard
system output. System output is the output designated
for system sounds and effects, which the user can set in
the Sound Effects tab of the Sound preference panel.

kAudioUnitSubType_-
SystemOutput

SystemOutputUnit

Table B-6 System-supplied generator units (kAudioUnitType_Generator)

DescriptionComponent Manager SubtypeGenerator Unit

A unit that obtains and plays audio data
from a file.

kAudioUnitSubType_-
AudioFilePlayer

AUAudioFilePlayer

A unit that receives streamed audio data
from a network. Used in conjunction with
the AUNetSend audio unit.

kAudioUnitSubType_-
NetReceive

AUNetReceive

A unit that plays audio data from one or
more buffers in memory.

kAudioUnitSubType_-
ScheduledSoundPlayer

AUScheduledSoundPlayer

46
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

System-Supplied Audio Units

This appendix describes the audio data and file formats supported in Core Audio as of Mac OS X v10.4.

Each audio file type lists the data formats supported for that type. That is, a converter exists to convert data
from the particular file format to any of the listed data formats. Some data formats (such as AC3) cannot be
converted to a linear PCM format and therefore cannot be handled by standard audio units.

A Core Audio Format (CAF) file can contain audio data of any format. Any application that supports the CAF
file format can write audio data to the file or extract the data it contains. However, the ability to encode or
decode the audio data contained within it is dependent on the audio codecs available on the system.

Table C-1 Allowable data formats for each file format.

Data FormatsFile Format

'aac 'AAC (.aac, .adts)

'ac-3'AC3 (.ac3)

BEI8, BEI16, BEI24, BEI32, BEF32, BEF64, 'ulaw', 'alaw', 'MAC3',
'MAC6', 'ima4' , 'QDMC', 'QDM2', 'Qclp', 'agsm'

AIFC (.aif, .aiff,.aifc)

BEI8, BEI16, BEI24, BEI32AIFF (.aiff)

'.mp3', 'MAC3', 'MAC6', 'QDM2', 'QDMC', 'Qclp', 'Qclq', 'aac ',
'agsm', 'alac', 'alaw', 'drms', 'dvi ', 'ima4', 'lpc ', BEI8,
BEI16, BEI24, BEI32, BEF32, BEF64, LEI16, LEI24, LEI32, LEF32,
LEF64, 'ms\x00\x02', 'ms\x00\x11', 'ms\x001', 'ms\x00U', 'ms
\x00', 'samr', 'ulaw'

Apple Core Audio Format (.caf)

'.mp3'MPEG Layer 3 (.mp3)

'aac 'MPEG 4 Audio (.mp4)

'aac ', alac'MPEG 4 Audio (.m4a)

BEI8, BEI16, BEI24, BEI32, BEF32, BEF64, 'ulaw'NeXT/Sun Audio (.snd, .au)

BEI8, BEI16, BEI24, BEI32Sound Designer II (.sd2)

LEUI8, LEI16, LEI24, LEI32, LEF32, LEF64, 'ulaw', 'alaw'WAVE (.wav)

Key for linear PCM formats. For example, BEF32 = Big Endian linear PCM 32 bit floating point.

Table C-2 Key for linear PCM formats

Little EndianLE

47
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Supported Audio File and Data Formats

Big EndianBE

Floating pointF

IntegerI

Unsigned integerUI

Number of bits8/16/24/32/64

Core Audio includes a number of audio codecs that translate audio data to and from Linear PCM. Codecs for
the following audio data type are available in Mac OS X v10.4. Audio applications may install additional
encoders and decoders.

Decode to linear PCM?Encode from linear PCM?Audio data type

YesNoMPEG Layer 3 ('.mp3')

YesYesMACE 3:1 ('MAC3')

YesYesMACE 6:1 ('MAC6')

YesYesQDesign Music 2 ('QDM2')

YesNoQDesign ('QDMC')

YesYesQualcomm PureVoice ('Qclp')

YesNoQualcomm QCELP ('qclq')

YesYesAAC ('aac ')

YesYesApple Lossless ('alac')

YesNoApple GSM 10:1 ('agsm')

YesYesALaw 2:1 'alaw')

YesNoApple DRM Audio Decoder ('drms')

NoNoAC-3

YesNoDVI 4:1 ('dvi ')

YesYesApple IMA 4:1 ('ima4')

YesNoLPC 23:1 ('lpc ')

YesNoMicrosoft ADPCM

YesYesDVI ADPCM

YesNoGSM610

YesYesAMR Narrowband ('samr')

48
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Supported Audio File and Data Formats

Decode to linear PCM?Encode from linear PCM?Audio data type

YesYesµLaw 2:1 ('ulaw')

49
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Supported Audio File and Data Formats

50
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Supported Audio File and Data Formats

This table describes the changes to Core Audio Overview.

NotesDate

Minor corrections and wording changes.2007-01-08

New document that introduces the basic concepts and architecture of the Core
Audio frameworks.

2006-08-07

51
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

52
2007-01-08 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Audio Overview
	Contents
	Figures and Tables
	Introduction
	What is Core Audio?
	Core Audio in Mac OS X
	A Little About Digital Audio and Linear PCM
	Audio Units
	The Hardware Abstraction Layer
	MIDI Support
	The Audio MIDI Setup Application

	A Core Audio Recording Studio
	Development Using the Core Audio SDK

	Core Audio Programming Interfaces
	Audio Unit Services
	Audio Processing Graph API
	Audio File and Converter Services
	Audio Converters and Codecs
	File Format Information
	Audio Metadata
	Core Audio File Format

	Hardware Abstraction Layer (HAL) Services
	Music Player API
	Core MIDI Services and MIDI Server Services
	Core Audio Clock API
	OpenAL (Open Audio Library)
	System Sound API

	An Overview of Common Tasks
	Reading and Writing Audio Data
	Interfacing with Hardware Devices
	Default and System Output Units
	The AUHAL

	Using Aggregate Devices
	Creating Audio Units
	Hosting Audio Units
	Handling MIDI Data
	Handling Both Audio and MIDI Data

	Appendix A: Core Audio Frameworks
	AudioToolbox.framework
	AudioUnit.framework
	CoreAudioKit.framework
	CoreAudio.framework
	CoreMIDI.framework
	CoreMIDIServer.framework
	OpenAL.framework

	Appendix B: System-Supplied Audio Units
	Appendix C: Supported Audio File and Data Formats
	Revision History

