
Apple Core Audio Format Specification 1.0
Audio > Core Audio

2006-03-08

Apple Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Apple Core Audio Format Specification 1.0 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 CAF File Overview 9

CAF File Advantages 9
CAF File Structure 10

Chunk Structure 10
Packets, Frames, and Samples 10

Types of Chunks 11
Required 11
Channel Layout 11
Supplementary Data 11
Markers 12
Music Metadata 12
Support For Editors 12
Annotations 12
Identifier 12
Extending CAF 13
Extra Space 13

Chapter 2 Core Audio Format Specification 15

Data Types 15
CAF File Header and Chunk Headers 15

CAF File Header 15
CAF Chunk Header 16

Required Chunks 16
Audio Description Chunk 17
Audio Data Chunk 24
Packet Table Chunk 25

Channel Layout 29
Channel Layout Chunk 29

Supplementary Data 37
Magic Cookie Chunk 37
Strings Chunk 37

Marker and Region Chunks 38
Marker Data Types 39
Marker Chunk 42

3
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Region Chunk 44
Music Metadata 46

Instrument Chunk 46
MIDI Chunk 47

Audio Editor Support 48
Overview Chunk 48
Peak Chunk 50

Annotations 51
Edit Comments Chunk 51
Information Chunk 52

Identifier 55
Unique Material Identifier Chunk 55

Extending the CAF Specification 56
User-Defined Chunk 56

Extra Space 57
Free Chunk 57

Appendix A Time Of Day Data Format 59

Document Revision History 61

4
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 2 Core Audio Format Specification 15

Table 2-1 Audio Description chunk header fields 17
Table 2-2 Audio Description field values for big-endian unpacked 16-bit PCM 20
Table 2-3 Audio Description field values for little-endian packed 24-bit PCM 20
Table 2-4 Audio Description field values for floating-point 64-bit PCM 21
Table 2-5 Audio Description field values for 2 channel IMA4 22
Table 2-6 Audio Description field values for 2 channel AAC 23
Table 2-7 Audio Data chunk header fields 24
Table 2-8 Packet Table chunk header fields 25
Table 2-9 Sample variable-length encoded integers 27
Table 2-10 Packet Table header for an IMA file with 5 remainder frames 28
Table 2-11 Packet Table header for an AAC file 28
Table 2-12 Frames of valid audio data per packet for an AAC file of 3074 frames 28
Table 2-13 Channel Layout chunk header fields 29
Table 2-14 Magic Cookie chunk header fields 37
Table 2-15 Strings chunk header fields 37
Table 2-16 Marker chunk header fields 43
Table 2-17 Region chunk header fields 44
Table 2-18 Instrument chunk header fields 46
Table 2-19 MIDI chunk header fields 48
Table 2-20 Overview chunk header fields 48
Table 2-21 Peak chunk header fields 50
Table 2-22 Edit Comments chunk header fields 51
Table 2-23 Information chunk header fields 52
Table 2-24 Unique Material Identifier chunk header fields 55
Table 2-25 CAF header field values for User-Defined Chunk 56
Table 2-26 Free chunk header fields 57

Appendix A Time Of Day Data Format 59

Table A-1 Symbols used in time-of-day formats 59

5
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

TABLES

Apple’s Core Audio Format (CAF) is a file format for storing and transporting digital audio data. It simplifies
the management and manipulation of many types of audio data without the file-size limitations of other
audio file formats.

Note: This documentation is provided for reference only. All rights reserved.

Who Should Read This Document?

This document is intended for anyone who needs to understand the structure of CAF files. You can use the
information in this document, for example, to write a CAF parser or to extend the types of data stored in CAF
files. Because CAF files offer many advantages over other audio file formats, anyone writing an application
for Mac OS X that reads or writes audio files should read at least the overview chapter (“CAF File
Overview” (page 9)) to gain an understanding of the features of CAF files. In addition, you need the
information in this document if you want to use CAF files on other platforms.

End users of professional audio software may be interested in this document in order to learn more about
the capabilities of software that supports CAF.

Organization of This Document

This document contains the following chapters:

 ■ “CAF File Overview” (page 9) provides a brief overview of the Core Audio file format.

 ■ “Core Audio Format Specification” (page 15) describes the CAF specification in detail.

See Also

The following documents provide additional resources:

 ■ Getting Started with Audio introduces the resources available for music and audio developers in Mac OS
X.

 ■ Core Audio describes the interfaces available to develop audio applications for Mac OS X, including
instructions for writing codecs (coders/decoders), which you can use to write and read the audio data
in a CAF file.

Who Should Read This Document? 7
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Apple Core Audio Format
Specification 1.0

8 See Also
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Apple Core Audio Format Specification 1.0

This chapter provides background information important for understanding and using Apple’s Core Audio
Format (CAF) files.

CAF File Advantages

Apple’s Core Audio Format is a flexible, state-of-the-art file format for storing and manipulating digital audio
data. It is fully supported by Core Audio APIs on Mac OS X v10.4 and later and on Mac OS X v10.3 with
QuickTime 7 or later. CAF provides high performance and flexibility, and is scalable to future ultra-high
resolution audio recording, editing, and playback.

CAF files have several advantages over other standard audio file formats:

 ■ Unrestricted file size

Whereas AIFF, AIFF-C, and WAV files are limited in size to 4 gigabytes, which might represent as little as
15 minutes of audio, CAF files use 64-bit file offsets, eliminating practical limits. A standard CAF file can
hold audio data with a playback duration of hundreds of years.

 ■ Safe and efficient recording

Applications writing AIFF and WAV files must either update the data header’s size field at the end of
recording—which can result in an unusable file if recording is interrupted before the header is
finalized—or they must update the size field after recording each packet of data, which is inefficient.
With CAF files, in contrast, an application can append new audio data to the end of the file in a manner
that allows it to determine the amount of data even if the size field in the header has not been finalized.

 ■ Support for many data formats

CAF files serve as wrappers for a wide variety of audio data formats. The flexibility of the CAF file structure
and the many types of metadata that can be recorded enable CAF files to be used with practically any
type of audio data. Furthermore, CAF files can store any number of audio channels.

 ■ Support for many types of auxiliary data

In addition to audio data, CAF files can store text annotations, markers, channel layouts, and many other
types of information that can help in the interpretation, analysis, or editing of the audio.

 ■ Support for data dependencies

Certain metadata in CAF files is linked to the audio data by an edit count value. You can use this value
to determine when metadata has a dependency on the audio data and, furthermore, when the audio
data has changed since the metadata was written.

CAF File Advantages 9
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

CAF File Structure

CAF files begin with a file header, which identifies the file type and the CAF version, followed by a series of
chunks. A chunk consists of a header, which defines the type of the chunk and indicates the size of its data
section, followed by the chunk data. The nature and format of the data is specific to each type of chunk.

The only two chunk types required for every CAF file are the Audio Data chunk (which, as you might have
guessed, contains the audio data) and the Audio Description chunk, which specifies the audio data format.

The Audio Description chunk must be the first chunk following the file header. The Audio Data chunk can
appear anywhere else in the file, unless the size of its data section has not been determined. In that case,
the size field in the Audio Data chunk header is set to -1 and the Audio Data chunk must come last in the
file so that the end of the audio data chunk is the same as the end of the file. This placement allows you to
determine the data section size when that information is not available in the size field.

Audio is stored in the Audio Data chunk as a sequential series of packets. An audio packet in a CAF file contains
one or more frames of audio data.

CAF supports a wide range of other chunk types, which can be placed in any order in the file except first
(reserved for the Audio Description chunk) or last (when the Audio Data chunk size field is set to -1). Some
chunk types can be used more than once in a file. Some refer to—or are referred to by—chunks of other
types.

Chunk Structure

Every chunk consists of a chunk header followed by a data section. Chunk headers contain two fields:

 ■ A four-character code indicating the chunk’s type

 ■ A number indicating the chunk size in bytes

The format of the data in a chunk depends on the chunk type. It consists of a series of sections, typically
called fields. The format of the audio data depends on the data type. All of the other fields in a CAF file are
in big-endian (network) byte order.

Packets, Frames, and Samples

In order to understand this specification, it is important to understand the definitions of the following four
terms:

 ■ Sample

One number for one channel of digitized audio data.

 ■ Frame

A set of samples representing one sample for each channel. The samples in a frame are intended to be
played together (that is, simultaneously). Note that this definition might be different from the use of the
term “frame” by codecs, video files, and audio or video processing applications.

 ■ Packet

10 CAF File Structure
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

The smallest, indivisible block of data. For linear PCM (pulse-code modulated) data, each packet contains
exactly one frame. For compressed audio data formats, the number of frames in a packet depends on
the encoding. For example, a packet of AAC represents 1024 frames of PCM. In some formats, the number
of frames per packet varies.

 ■ Sample rate

The number of complete frames of samples per second of noncompressed or decompressed data.

Types of Chunks

This section briefly introduces the types of chunks defined in the CAF specification. All CAF chunk types are
fully described in “Core Audio Format Specification” (page 15).

Required

Every CAF file must include the following chunks:

 ■ Audio Description chunk, which describes the audio data format for the file. This chunk must follow
immediately after the CAF file header. See “Audio Description Chunk” (page 17).

 ■ Audio Data chunk, containing the audio data for the file. If the data chunk’s size isn’t known, it must be
the final chunk in the file. If this chunk’s header specifies the size, the chunk can appear anywhere after
the Audio Description chunk. See “Audio Data Chunk” (page 24).

 ■ If the audio packets vary in size, the file must have a Packet Table chunk, which records the size of each
packet. See “Packet Table Chunk” (page 25).

Channel Layout

There is one chunk that is required for all CAF files with more than two channels:

 ■ Channel Layout chunk, which describes the role of each channel in the file. This chunk is optional for
one- and two-channel files. See “Channel Layout Chunk” (page 29).

Supplementary Data

Some chunks refer to data in other, supporting chunks:

 ■ Some compressed audio data formats require additional codec-specific data in order to decode the
audio data. If the audio format requires this data, the file must have a Magic Cookie chunk. See “Magic
Cookie Chunk” (page 37).

 ■ Some chunks refer to text strings held in the Strings chunk. See “Strings Chunk” (page 37).

Types of Chunks 11
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

Markers

There are two chunks that you can use to place markers in the data file. These chunks share data types,
described in “Marker Data Types” (page 39):

 ■ Marker chunks hold individual markers. See “Marker Chunk” (page 42).

 ■ Region chunks delineate segments of the audio data. See “Region Chunk” (page 44)

Music Metadata

There are two chunk types that store musical information:

 ■ Instrument chunks describe aspects of the audio data needed when the audio is used by a sampler or
played as an instrument. See “Instrument Chunk” (page 46).

 ■ MIDI chunks store all of the information in a standard MIDI file. See “MIDI Chunk” (page 47).

Support For Editors

Two chunks contain data for use by audio editors:

 ■ Overview chunks contain samples of the data useful for displaying the audio at a particular resolution.
A CAF file can have any number of these; one for each resolution to be displayed. See “Overview
Chunk” (page 48).

 ■ Peak chunks list the peak amplitude in each channel and specify the frame in which that amplitude
occurs. See “Peak Chunk” (page 50).

Annotations

There are two chunk types that hold annotations to the data:

 ■ Edit Comments chunks hold time-stamped comments added when the data is edited. See “Edit Comments
Chunk” (page 51).

 ■ The Information chunk contains text strings that provide information about the audio data, such as key
signature, artist, and title. See “Information Chunk” (page 52).

Identifier

One chunk type can be used to uniquely identify the data:

 ■ The optional Unique Material Identifier (UMID) chunk provides a unique identifier for the audio data in
a CAF file. There can be at most one UMID chunk in a file. See “Unique Material Identifier Chunk” (page
55).

12 Types of Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

Extending CAF

You can define your own chunk type to extend the CAF file specification. There is a chunk type defined for
this purpose:

 ■ The User-Defined chunk provides a universally unique ID (UUID) for a new chunk type. See “User-Defined
Chunk” (page 56).

Extra Space

Many chunk types allow you to specify a larger chunk size than is currently needed for data in order to reserve
additional space. There is also a special chunk you can use to reserve extra space in the CAF file as a whole:

 ■ The Free chunk contains no data, but reserves space that you can use later. See “Free Chunk” (page 57).

Types of Chunks 13
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

14 Types of Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CAF File Overview

This chapter describes and specifies Apple’s Core Audio Format. Refer to “CAF File Overview” (page 9) for
an introduction to CAF, including information on CAF capabilities and file layout.

Important: This document uses standard C structure and enumeration declarations to specify the details of
the CAF file header and CAF chunks. This is a notational convenience. The data in a CAF file is not parseable
by a C compiler and does not constitute actual C structures or enumerations. For example, in a CAF file there
are no pad fields to ensure correct byte alignment. Another deviation from C is that multiple “fields” in a
“struct” can vary in length.

On the other hand, you can use C structures similar to those included in this document to hold the data
parsed from a CAF file. The structure names (such as CAFAudioFormat) and the field names (such as
mChunkSize) used in this specification are arbitrary, although many of them correspond to names used in
AudioToobox/CAFFile.h.

Data Types

All of the fields in a CAF file are in big-endian (network) byte order, with the exception of the audio data,
which can be big- or little-endian depending on the data format. The format of the audio data is described
by the Audio Description chunk.

All floating point fields in a CAF file must conform to the IEEE-754 specification. See
http://grouper.ieee.org/groups/754/.

CAF File Header and Chunk Headers

The CAF file header, and the chunk header in each chunk, are required elements in every CAF file. They serve
to make the file and its chunks self-describing.

CAF File Header

A CAF file begins with a simple header. The CAFFileHeader structure describes the file header.

struct CAFFileHeader
{
 UInt32 mFileType;
 UInt16 mFileVersion;
 UInt16 mFileFlags;
};

Data Types 15
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://grouper.ieee.org/groups/754/

mFileType
The file type. This value must be set to 'caff'. You should consider only files with the mFileType
field set to 'caff' to be valid CAF files.

mFileVersion
The file version. For CAF files conforming to this specification, the version must be set to 1. If Apple
releases a substantial revision of this specification, files compliant with that revision will have their
mFileVersion field set to a number greater than 1.

mFileFlags
Flags reserved by Apple for future use. For CAF v1 files, must be set to 0. You should ignore any value
of this field you don’t understand, and you should accept the file as a valid CAF file as long as the
version and file type fields are valid.

CAF Chunk Header

Every chunk in a CAF file has a header, and each such header contains two required fields as shown in the
CAFChunkHeader structure:

struct CAFChunkHeader
{
 UInt32 mChunkType;
 SInt64 mChunkSize;
};

mChunkType
The chunk type, described as a four-character code. Apple reserves all codes that use only lowercase
alphabetic characters—that is, characters in the ASCII range of 'a'–'z' along with ' ' (space) and
'.' (period). Application-defined chunk identifiers must include at least one character outside of this
range (see “User-Defined Chunk” (page 56).

mChunkSize
The size, in bytes, of the data section for the chunk. This is the size of the chunk not including the
header. Unless noted otherwise for a particular chunk type, mChunkSize must always be valid.

The Audio Data chunk can use the special value for mChunkSize of –1 when the data section size is not
known. See “Audio Data Chunk” (page 24).

CAF files can contain chunks that contain a series of entries—notably the Strings chunk, the Marker chunk,
the Region chunk, and the Information chunk. The headers of these chunks can specify a data section size
that is larger than the chunk’s current meaningful content in order to reserve room for additional data. The
data sections of such chunks begin with a specifier for the current number of valid entries in the chunk.

CAF files can also have an optional Free chunk, used to reserve additional space for the file as a whole.

See “Free Chunk” (page 57), “Strings Chunk” (page 37), “Marker Chunk” (page 42), “Region Chunk” (page
44), and “Information Chunk” (page 52).

Required Chunks

Every CAF file must have an Audio Description chunk and an Audio Data chunk. CAF files containing variable
bit rate or variable frame rate audio data must also have a Packet Table chunk.

16 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Audio Description Chunk

The Audio Description chunk is required and must appear in a CAF file immediately following the file header.
It describes the format of the audio data in the Audio Data chunk.

Audio Description Chunk Header

Table 3-1 shows the values for the fields in the Audio Description chunk header.

Table 2-1 Audio Description chunk header fields

ValueField

‘desc’mChunkType

sizeof(CAFAudioFormat)mChunkSize

The chunk size is fixed at mChunkSize = sizeof(CAFAudioFormat) to accommodate the information in
the Audio Description chunk’s data section.

Audio Description Chunk Data Section

The data section in the Audio Description chunk describes the format of the audio data contained within the
Audio Data chunk. See “Audio Data Chunk” (page 24). For definitions needed to interpret these fields, see
“Packets, Frames, and Samples” (page 10).

struct CAFAudioFormat
{
 Float64 mSampleRate;
 UInt32 mFormatID;
 UInt32 mFormatFlags;
 UInt32 mBytesPerPacket;
 UInt32 mFramesPerPacket;
 UInt32 mChannelsPerFrame;
 UInt32 mBitsPerChannel;
};

mSampleRate
The number of sample frames per second of the data. You can combine this value with the frames
per packet to determine the amount of time represented by a packet. This value must be nonzero.

mFormatID
A four-character code indicating the general kind of data in the stream. See “mFormatID Field” (page
18). This value must be nonzero.

mFormatFlags
Flags specific to each format. May be set to 0 to indicate no format flags. See “mFormatFlags
Field” (page 19).

mBytesPerPacket
The number of bytes in a packet of data. For formats with a variable packet size, this field is set to 0.
In that case, the file must include a Packet Table chunk “Packet Table Chunk” (page 25). Packets are

Required Chunks 17
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

always aligned to a byte boundary. For an example of an Audio Description chunk for a format with
a variable packet size, see “Compressed Audio Formats” (page 22).

mFramesPerPacket
The number of sample frames in each packet of data. For compressed formats, this field indicates the
number of frames encoded in each packet. For formats with a variable number of frames per packet,
this field is set to 0 and the file must include a Packet Table chunk “Packet Table Chunk” (page 25).

mChannelsPerFrame
The number of channels in each frame of data. This value must be nonzero.

mBitsPerChannel
The number of bits of sample data for each channel in a frame of data. This field must be set to 0 if
the data format (for instance any compressed format) does not contain separate samples for each
channel (see “Compressed Audio Formats” (page 22)).

The Audio Description chunk can fully describe any constant-bit-rate format that has one or more channels
of the same size. For variable bit rate data, a CAF file also requires a Packet Table chunk. See “Packet Table
Chunk” (page 25).

A CAF file can store any number of audio channels. The mChannelsPerFrame field specifies the number of
channels in the data (or encoded in the data for compressed formats). For noncompressed formats, the
mBitsPerChannel field specifies how many bits are assigned to each channel (for compressed formats, this
field is 0). The layout of the channels is described by the Channel Layout chunk (“Channel Layout Chunk” (page
29)).

mFormatID Field

The following enumeration lists some of the currently defined values for the mFormatID field. This list is not
exhaustive.

enum
{
 kAudioFormatLinearPCM = 'lpcm',
 kAudioFormatAppleIMA4 = 'ima4',
 kAudioFormatMPEG4AAC = 'aac ',
 kAudioFormatMACE3 = 'MAC3',
 kAudioFormatMACE6 = 'MAC6',
 kAudioFormatULaw = 'ulaw',
 kAudioFormatALaw = 'alaw',
 kAudioFormatMPEGLayer1 = '.mp1',
 kAudioFormatMPEGLayer2 = '.mp2',
 kAudioFormatMPEGLayer3 = '.mp3',
 kAudioFormatAppleLossless = 'alac'
};

kAudioFormatLinearPCM
Linear PCM. Uses the PCM-related format flags discussed in “mFormatFlags Field” (page 19). See
“Linear PCM” (page 20) for more information about linear PCM formats.

kAudioFormatAppleIMA4
Apple’s implementation of IMA 4:1 ADPCM. Has no format flags. See “Compressed Audio Formats” (page
22) for more information about this and other compressed audio formats.

kAudioFormatMPEG4AAC
MPEG-4 AAC. The mFormatFlags field must contain the MPEG-4 audio object type constant indicating
the specific kind of data.

18 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

kAudioFormatMACE3
MACE 3:1; has no format flags.

kAudioFormatMACE6
MACE 6:1; has no format flags.

kAudioFormatULaw
μLaw 2:1; has no format flags.

kAudioFormatALaw
aLaw 2:1; has no format flags.

kAudioFormatMPEGLayer1
MPEG-1 or 2, Layer 1 audio. Has no format flags.

kAudioFormatMPEGLayer2
MPEG-1 or 2, Layer 2 audio. Has no format flags.

kAudioFormatMPEGLayer3
MPEG-1 or 2, Layer 3 audio (that is, MP3). Has no format flags.

kAudioFormatAppleLossless
Apple Lossless; has no format flags.

mFormatFlags Field

The mFormatFlags field provides detailed specification for audio data formats that require it. These include
linear PCM, MPEG-4 AAC, and AC-3. For audio formats that don’t use formatting flags, this field must be set
to 0.

Flag bits not specified for any published format are reserved for future use. For compatibility, those flag bits
should be set to 0.

Linear PCM formatting flags can have the following values:

enum
{
 kCAFLinearPCMFormatFlagIsFloat = (1L << 0),
 kCAFLinearPCMFormatFlagIsLittleEndian = (1L << 1)
};

kCAFLinearPCMFormatFlagIsFloat
1 for floating point, 0 for signed integer.

kCAFLinearPCMFormatFlagIsLittleEndian
1 for little endian, 0 for big endian.

MPEG-4 AAC formatting flags use the MPEG-4 Audio Object types defined for AAC. These values are subject
to revision by the MPEG-4 standards bodies.

enum
{
 kMP4Audio_AAC_LC_ObjectType = 2
};

Required Chunks 19
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Linear PCM

Linear PCM (pulse-code modulated) data is the most common noncompressed audio data format. For all
linear PCM formats, the mFramesPerPacket field equals 1 by definition. The mBytesPerPacket field is
then equal to the number of bytes per frame. All packets are byte aligned.

The following variations of linear PCM audio should be supported by all CAF parsers:

 ■ Any sample rate.

 ■ Samples of 16-, 24-, and 32-bit signed integer, both big and little endian.

 ■ Samples of 32- and 64-bit floating point, both big and little endian.

Samples of 24 bits are commonly stored within PCM CAF files in either 3 bytes per sample (packed) or 4 bytes
per sample (unpacked) formats. To conform to the CAF specification, you must support both storage methods.

As an example of unpacked data, to describe 16 bit, big-endian stereo, with a sample rate of 44,100 frames
per second, you would use the Audio Description field values in Table 3-2.

Table 2-2 Audio Description field values for big-endian unpacked 16-bit PCM

ValueField

44100.mSampleRate

kAudioFormatLinearPCMmFormatID

0 (big-endian integer)mFormatFlags

2mChannelsPerFrame

16mBitsPerChannel

1mFramesPerPacket

4mBytesPerPacket

In the packed case, each 24 bit sample takes up 3 bytes in the file. For example, to describe 24 bit, little-endian
stereo, with a sample rate of 48,000 frames per second, you would use the Audio Description field values in
Table 3-3.

Table 2-3 Audio Description field values for little-endian packed 24-bit PCM

ValueField

48000.mSampleRate

kAudioFormatLinearPCMmFormatID

kCAFLinearPCMFormatFlagIsLittleEndianmFormatFlags

2mChannelsPerFrame

24mBitsPerChannel

20 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

ValueField

1mFramesPerPacket

6mBytesPerPacket

In the unpacked case, the 24 bits are aligned high within the 4 byte field so that a parser can treat the value
as if it were 32 bit integer with the lowest (or least significant) 8 bits all zero). On disk, the little-endian version
of this data format looks like this:

00 LL XX MM

where MM is the most significant byte and LL is the least significant.

A big-endian version of 24-bit PCM audio in 4 bytes looks like this:

MM XX LL 00

The Audio Description chunk for this format is the same as for the packed version (Table 3-3), except that
the mBytesPerPacket field is set to 8 rather than 6.

To describe floating point samples, you have to add the kCAFLinearPCMFormatFlagIsFloat flag to the
mFormatFlags field. For example, to describe 4 channels of little-endian 64-bit floating point samples with
a sample rate of 96,000 frames per second, you would use the Audio Description chunk field values in Table
3-4.

Table 2-4 Audio Description field values for floating-point 64-bit PCM

ValueField

96000.mSampleRate

kAudioFormatLinearPCMmFormatID

kCAFLinearPCMFormatFlagIsFloat |
kCAFLinearPCMFormatFlagIsLittleEndian

mFormatFlags

4mChannelsPerFrame

64mBitsPerChannel

1mFramesPerPacket

32mBytesPerPacket

You can also use CAF files to store non-byte-aligned PCM formats, such as 12-bit or 18-bit PCM. To do so,
you should

1. Pack the data within a byte-aligned sample width.

2. High-align the samples within the enclosing byte-aligned width.

Required Chunks 21
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

For example, 12-bit PCM data should be packed (high-aligned) within a 2-byte (16-bit) word, allowing the
CAF parser to parse the sample data using the same algorithms as used for 16-bit data.

In this case the Audio Description chunk for the 12-bit data would be identical to a chunk for 16-bit data,
except that the mBitsPerChannel field would be set to 12 rather than 16.

Pulse Width Modulation

In the Pulse Width Modulation (PWM) format (also known as 1-bit audio), each sample is one bit. This is the
data format used for Super Audio CD (SA-CD; see http://www.superaudio-cd.com/). Although CAF does not
define a format ID constant for a PWM format, it is instructive to look at how PWM data would be stored.

The sample rate for a Super Audio CD bit stream is 2,822,400 frames per second. In a CAF file with PWM data
there would be no format flags, 1 bit per channel, and 8 frames per packet. Therefore, for two channels
(stereo), there would be 2 bytes per packet (1 byte for each channel in the file).

Stereo PWM is packed as follows (in binary):

LLLLLLLL RRRRRRRR

where L is a bit for the left channel and R is a bit for the right channel. Therefore, the first L bit together with
the first R bit constitute the first frame.

Similarly, for 6 channels there would be 6 bytes per packet and 8 frames per packet, packed as follows:

11111111 22222222 33333333 44444444 55555555 66666666

As is true for the data in all CAF files, the PWM data is byte aligned.

Compressed Audio Formats

In compressed audio formats, the packets are opaque and cannot be parsed without first being decompressed
by a codec. For such formats, the mSampleRate field indicates the number of sample frames per second of
the decompressed data and the mFramesPerPacket field indicates the number of frames encoded in each
compressed packet. In addition, for compressed formats the mBitsPerChannel field is always 0. All packets
in CAF files must be byte aligned.

For example, the IMA4 data format encodes 64-sample frames into a single packet with a constant bit rate
of 34 bytes per channel. To describe a CAF file of 2 channel IMA4 data with a sampling rate of 44,100 frames
per second, you would use the Audio Description field values in Table 3-5.

Table 2-5 Audio Description field values for 2 channel IMA4

ValueField

44100.mSampleRate

kAudioFormatAppleIMA4mFormatID

0mFormatFlags

2mChannelsPerFrame

0mBitsPerChannel

22 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.superaudio-cd.com/

ValueField

64mFramesPerPacket

68 (= mChannelsPerFrame * 34)mBytesPerPacket

In this example, the mBitsPerChannel field is 0, indicating that this is a compressed format. The
mBytesPerPacket field reflects the constant number of bytes per channel (34) and the number of frames
per packet (64 in this case).

For a compressed audio format with a variable bit rate, the mBytesPerPacket field is 0, indicating that the
number of bytes per packet is variable. In this case, a Packet Table chunk (“Packet Table Chunk” (page 25))
is required.

For example, the MPEG-4 Advanced Audio Coding (AAC) data format uses a variable bit rate but a constant
number of frames per packet. To describe a CAF file of 2 channel Low Complexity Audio Object format AAC
data with a sampling rate of 44,100 frames per second (for the decompressed data), you would use the Audio
Description field values in Table 3-6.

Table 2-6 Audio Description field values for 2 channel AAC

ValueField

44100.mSampleRate

kAudioFormatMPEG4AACmFormatID

kMP4Audio_AAC_LC_ObjectTypemFormatFlags

2mChannelsPerFrame

0mBitsPerChannel

1024mFramesPerPacket

0mBytesPerPacket

In this example, the mBitsPerChannel field is 0, indicating that this is a compressed format, and the
mBytesPerPacket field is 0, indicating a variable bit rate.

Note that, as long as the format has a constant number of frames per packet, you can calculate the duration
of each packet by dividing the mSampleRate value by the mFramesPerPacket value.

Some compressed formats vary the number of frames per packet. In this case, you must set the
mFramesPerPacket field to 0 (in addition to the mBitsPerChannel field, which is 0 for all compressed
formats).

Required Chunks 23
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Audio Data Chunk

Every CAF file must have exactly one Audio Data chunk. Wheras other chunks contain data that help to
characterize or interpret the audio, this is the chunk in a CAF file that contains the actual audio data. If its
size is specified, this chunk can be placed anywhere following the Audio Description chunk. If its size is not
specified, the Audio Data chunk must be last in the file.

Audio Data Chunk Header

Table 3-7 shows the values for the fields in the Audio Data chunk header.

Table 2-7 Audio Data chunk header fields

ValueField

‘data’mChunkType

Size of data section in bytes, or -1 if unknown.mChunkSize

An mChunkSize value of -1 indicates that the size of the data section for this chunk is unknown. In this case,
the Audio Data chunk must appear last in the file so that the end of the Audio Data chunk is the same as the
end of the file. This placement allows you to determine the data section size.

It is highly recommended that, after recording or modifying the audio data, you finalize the CAF file by
updating the mChunkSize field to reflect the size of the Audio Data chunk’s data section. When you read a
CAF file whose audio data section size is not specified, you should determine the size and update the
mChunkSize value for the Audio Data chunk.

If the Audio Data chunk is not the last chunk in a CAF file, the mChunkSize field must contain the size of the
chunk’s data section for the file to be valid.

Immediately following the Audio Data chunk’s header is the audio data section.

Audio Data Chunk Data Section

The data section in an Audio Data chunk contains audio data in the format specified by the Audio Description
chunk. See “Audio Description Chunk” (page 17).

The Audio Data chunk’s data section has an edit count field followed by the audio data for the file. The
CAFData structure describes the data section for this chunk.

struct CAFData
{
 UInt32 mEditCount; //initially set to 0
 UInt8 mData [kVariableLengthArray];
};

mEditCount
The modification status of the data section. You should initially set this field to 0, and should increment
it each time the audio data in the file is modified.

mData
The audio data for the CAF file, in the format specified by the Audio Description chunk.

24 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

You can compare the value of mEditCount to the corresponding value in a dependent chunk, such as the
“Overview Chunk” (page 48) or “Peak Chunk” (page 50).

This document does not address the specifics of the data formats specified by the Audio Description chunk.
Refer to specifications issued by the appropriate standards body or industry entity for information on a
specific audio data format.

Packet Table Chunk

CAF files that contain variable bit-rate (VBR) or variable frame-rate (VFR) audio data contain audio packets
of varying size. Such files must have exactly one Packet Table chunk to specify the size of each packet.

You can identify CAF files containing VBR or VFR audio by their Audio Description chunk. In such files, one
or both of the mBytesPerPacket and mFramesPerPacket fields in the Audio Description chunk has a value
of 0. See “Audio Description Chunk” (page 17).

The content of the Packet Table chunk describes, and therefore depends on, the content of the Audio Data
chunk. See “Audio Data Chunk” (page 24). The packet table must always reflect current state of the audio
data in a CAF file.

A CAF file with constant packet size can still include a Packet Table chunk in order to record certain information
about frames (see “Packet Table Description” (page 25)).

Packet Table Chunk Header

Table 3-8 shows the values for the fields in the Packet Table chunk header.

Table 2-8 Packet Table chunk header fields

ValueField

‘pakt’mChunkType

Must always be validmChunkSize

For a CAF file with variable packet sizes, the value for mChunkSize can be greater than the actual valid
content of the packet table chunk. The Packet Table description indicates the number of valid entries in the
Packet Table (see “Packet Table Description” (page 25)). In the case of a CAF file with constant packet size,
the value for mChunkSize should be 24 bytes—just enough to contain the Packet Table description itself.

Packet Table Description

This chunk has a descriptive section for the packet table itself. It appears immediately after the chunk header.
The CAFPacketTableHeader structure describes it:

struct CAFPacketTableHeader
{
 SInt64 mNumberPackets;
 SInt64 mNumberValidFrames;
 SInt32 mPrimingFrames;
 SInt32 mRemainderFrames;

Required Chunks 25
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

};

mNumberPackets
The total number of packets of audio data described in the packet table. This value must always be
valid.

For a CAF file with variable packet sizes, this value should reflect the actual number of packets in the
Audio Data chunk. In a CAF file with constant packet size, and therefore no packet table, this field
should be set to 0.

mNumberValidFrames
The total number of audio frames encoded in the file. The duration of the audio in the file is this value
divided by the sample rate specified in the file’s Audio Description chunk. See “Audio Description
Chunk” (page 17). The value of this field must always be valid.

mPrimingFrames
The number of frames for priming or processing latency for a compressed audio format. For example,
MPEG-AAC codecs typically have a latency of 2112 frames. The number of priming frames can be
useful for any CAF file containing compressed audio, whether or not the packets vary in size.

mRemainderFrames
The number of unused frames in the CAF file’s final packet; that is, the number of frames that should
be trimmed from the output of the last packet when decoding.

For example, an AAC file may have only 313 frames containing audio data in its final packet. AAC files
hold 1024 frames per packet. The value for mRemainderFrames is then 1024 – 313 = 711.

The mNumberPackets value is specified only when the chunk contains a packet table—that is, when the
CAF file contains variable-sized packets. On the other hand, regardless of whether its packets vary in size or
not, any CAF file can use the mNumberValildFrames, mPrimingFrames, and mRemainderFrames fields.

Packet Table Chunk Data Section

The Packet Table chunk’s data section lists information about variable-sized packets in the file’s Audio Data
chunk. See “Audio Data Chunk” (page 24).

For a given CAF file, depending on the file’s audio format, packets can vary in size because of a variable bit
rate (variable bytes per packet), a variable number of frames per packet, or both.

The following list of these three audio format types includes the corresponding values for mBytesPerPacket
and mFramesPerPacket present in the Audio Description chunk. See “Audio Description Chunk” (page 17):

 ■ Variable bit rate, constant number of frames per packet (such as AAC and variable-bit-rate MP3):
mBytesPerPacket is zero, mFramesPerPacket is nonzero.

The Packet Table chunk data section contains single-number entries that describe the size, in bytes, of
each packet in the Audio Data chunk.

 ■ Variable number of frames per packet, constant bit rate: mBytesPerPacket is nonzero;
mFramesPerPacket is zero.

The Packet Table chunk data section contains single-number entries that describe the number of frames
represented by each packet in the Audio Data chunk.

 ■ Variable bit rate, variable number of frames per packet (such as Ogg Vorbis): mBytesPerPacket is zero,
mFramesPerPacket is zero.

The Packet Table chunk data section contains ordered-pair entries. The first number in each pair is the
packet size, in bytes; the second is the number of frames per packet.

26 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

The numbers describing the size of packets or frames per packet are encoded as variable-length integers. In
this encoding scheme, each byte contains 7 bits of the binary integer and a 1-bit continuation flag—the
high-order bit in each byte is used to indicate whether the number is continued in the next byte. The
lowest-order byte in any given integer is therefore the first one for which the high-order bit is not set; that
is, the first byte that has a value less than 128 holds the last 7 bits in the integer. Table 3-9 gives some examples
of encoded integers.

Table 2-9 Sample variable-length encoded integers

Integer encoding (binary)Integer encoding (hexadecimal)Packet size

0000 00010x011

0001 00010x1117

0111 11110x7F127

1000 0001 0000 00000x81 0x00128

1000 0001 0000 00100x81 0x02130

1000 0010 0000 00010x82 0x01257

1111 1111 0111 11110xFF 0x7F16383

1000 0001 1000 0000 0000 00000x81 0x80 0x0016384

Thus, the data section contains a simple list of numbers or a list of ordered pairs of numbers. In all cases,
variable-length integers are used to describe each packet.

Constant Bit Rate Format

A Packet Table chunk may be used with a constant bit rate (constant frames per packet and constant bytes
per packet) format to provide information about either of the following:

 ■ Any latency due to the nature of the codec (see the discussion of the mPrimingFrames field in “Packet
Table Description” (page 25)).

 ■ Any remainder frames. Remainder frames occur when the total number of frames in the audio data is
not evenly divisible by the frames per packet specified for the file. See the discussion of the
mFramesPerPacket field in “Audio Description Chunk Data Section” (page 17) and the discussion of
the mRemainderFrames field in “Packet Table Description” (page 25).

For either of these cases, no packet table data is needed, so set the mNumberPackets field to 0. The size of
the packet table is therefore the size of the packet table header structure.

As an example of the second use, the IMA format encodes samples into packets containing 64 sample frames
each. If the audio data is not equally divisible by 64 frames, then the last packet of IMA content decodes to
less samples than the 64 that are presented by the packet. In this case, the Packet Table header is used to
indicate the total number of frames in the file and the number of remainder frames. For example, if there
are 5 remainder frames, you would set the fields of the Packet Table header as shown in Table 3-10.

Required Chunks 27
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Table 2-10 Packet Table header for an IMA file with 5 remainder frames

ValueField

0mNumberPackets

numFramesInFile (= (mFramesPerPacket * (sizeOfAudioData) /
mBytesPerPacket)-5)

mNumberValidFrames

0mPrimingFrames

59 (= mFramesPerPacket - 5)mRemainderFrames

Variable Bit Rate, Constant Frames per Packet

The Packet Table chunk is required for compressed data formats with a variable bit rate (mBytesPerPacket
is set to 0) and a constant number of frames per packet (mFramesPerPacket is nonzero). (See “Audio
Description Chunk Data Section” (page 17) for more information about these header fields.)

In this case, the packet table data contains one variable-length integer for each packet specifying the packet’s
size in bytes. See “Packet Table Chunk Data Section” (page 26) for an explanation of variable-length integers.

For example, because AAC has a latency of 2112 frames, an AAC encoding of 3074 sample frames requires
a total of 6 packets (AAC has 1024 frames per packet). The fields of the Packet Table header for this example
are as shown in Table 3-11.

Table 2-11 Packet Table header for an AAC file

ValueField

6mNumberPackets

3074mNumberValidFrames

2112mPrimingFrames

958 (= 1024 (mFramesPerPacket) – 66)mRemainderFrames

As shown in Table 3-12, the first two packets contain only priming frames; these frames do not output any
valid audio data. The third packet contains the final 64 priming frames and then outputs 960 frames of audio
data. The following two packets contain 1024 sample frames of valid audio data apiece. (There would normally
be many more 1024-frame packets than the two in this example.) The last packet contains the final 66 sample
frames of audio data followed by 958 remainder frames (which should be trimmed from the output).

Table 2-12 Frames of valid audio data per packet for an AAC file of 3074 frames

654321Packet

661024102496000Valid Frames

102410241024102410241024Total Frames

28 Required Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Note that the Audio Description chunk would specify this file as having a constant 1024 frames per packet.
The priming and trailing frame counts can be used to determine how to trim the audio output of the file
when the data is decoded.

Following this packet table header is the packet table itself, which in this example would consist of 6 variable
sized integers that describe the number of bytes for each of the 6 packets.

Channel Layout

The channel layout chunk is required for all CAF files that have more than two channels (unless there is no
meaning or ordering of the channels in the file). There is no default assumed ordering of channels in a file
with more than two channels. The channel layout chunk is optional for a CAF file with one or two channels.
For a CAF file with one or two channels and no channel layout chunk, you can assume that a one-channel
file represents monaural data and a two-channel file represents stereo with the left-channel sample first in
each frame.

Channel Layout Chunk

The Channel Layout chunk describes the order and role of each channel in a CAF file. It is especially useful
for any CAF file with more than two audio channels but can also provide important information for one- and
two-channel files. For example, when a user converts a stereo or multichannel audio file to a set of one-channel
files, the Channel Layout chunk can indicate the role of each one-channel file.

In the Audio Data chunk (“Audio Data Chunk” (page 24)) of an uncompressed audio CAF file, a sample for
each channel appears in sequence in each frame. The number of channels per frame and the number of bits
per channel are specified in the Audio Description chunk (see “Audio Description Chunk Data Section” (page
17)). The Channel Description chunk specifies the order in which the channel data appears in the audio data
chunk.

Channel Layout Chunk Header

Table 3-13 shows the values for the fields in the Channel Layout chunk header.

Table 2-13 Channel Layout chunk header fields

ValueField

‘chan’mChunkType

Must always be validmChunkSize

The mChunkSize field must be set to the size of the chunk’s data section and must always be valid.

Channel Layout Chunk Data Section

The Channel Layout chunk data section begins with a tag that indicates the nature of the data in the chunk,
followed by the data, as shown in the CAFChannelLayout structure.

Channel Layout 29
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

struct CAFChannelLayout
{
 UInt32 mChannelLayoutTag;
 UInt32 mChannelBitmap;
 UInt32 mNumberChannelDescriptions;
 CAFChannelDescription mChannelDescriptions[kVariableLengthArray];
};

mChannelLayoutTag
A tag that indicates the type of layout used, as described in “Channel Layout Tags” (page 30).

mChannelBitmap
A bitmap that describes which channels are present. The order of the channels is the same as the
order of the bits; that is, the lowest-order bit that is set corresponds to the first channel of the file,
and so on. The number of set bits is the number of channels, which must equal the number of channels
in the file. This bit-field technique is used both in WAV files and in the USB Audio Specification. See
“Channel Bitmaps” (page 30) for bit assignments.

mNumberChannelDescriptions
The number of channel descriptions in the mChannelDescriptions array. If this number is 0, then
this is the last field in the structure.

mChannelDescriptions
An array of CAFChannelDescription structures (“Channel Description” (page 34)) that describe
the layout of the channels. This field is not present if the mNumberChannelDescriptions field is 0.

Channel Bitmaps

The significance of the bits in the mChannelBitmap field is specified in the following enumeration:

enum
{
 kCAFChannelBit_Left = (1<<0),
 kCAFChannelBit_Right = (1<<1),
 kCAFChannelBit_Center = (1<<2),
 kCAFChannelBit_LFEScreen = (1<<3),
 kCAFChannelBit_LeftSurround = (1<<4), // WAVE: "Back Left"
 kCAFChannelBit_RightSurround = (1<<5), // WAVE: "Back Right"
 kCAFChannelBit_LeftCenter = (1<<6),
 kCAFChannelBit_RightCenter = (1<<7),
 kCAFChannelBit_CenterSurround = (1<<8), // WAVE: "Back Center"
 kCAFChannelBit_LeftSurroundDirect = (1<<9), // WAVE: "Side Left"
 kCAFChannelBit_RightSurroundDirect = (1<<10), // WAVE: "Side Right"
 kCAFChannelBit_TopCenterSurround = (1<<11),
 kCAFChannelBit_VerticalHeightLeft = (1<<12), // WAVE: "Top Front Left"
 kCAFChannelBit_VerticalHeightCenter = (1<<13), // WAVE: "Top Front Center"
 kCAFChannelBit_VerticalHeightRight = (1<<14), // WAVE: "Top Front Right"
 kCAFChannelBit_TopBackLeft = (1<<15),
 kCAFChannelBit_TopBackCenter = (1<<16),
 kCAFChannelBit_TopBackRight = (1<<17)
};

Channel Layout Tags

Channel layouts can be described by a code in the mChannelLayoutTag field.

30 Channel Layout
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

A value of kCAFChannelLayoutTag_UseChannelDescriptions (== 0) indicates there is no standard
description for the ordering or use of channels in the file, so that channel descriptions are used instead. In
this case, the number of channel descriptions (mNumberChannelDescriptions) must equal the number
of channels contained in the file. The channel descriptions follow the mNumberChannelDescriptions field;
see “Channel Description” (page 34).

A value of kCAFChannelLayoutTag_UseChannelBitmap (== 0x10000) indicates that the Channel Layout
chunk uses a bitmap (in the mChannelBitmap field) to describe which channels are present.

A value greater than 0x10000 indicates one of the layout tags listed below in this section. Each channel
layout tag has two parts:

 ■ The low 16 bits represents the number of channels described by the tag.

 ■ The high 16 bits indicates a specific ordering of the channels.

For example, the tag kCAFChannelLayoutTag_Stereo is defined as ((101<<16) | 2) and indicates a
two-channel stereo, ordered left as the first channel, right as the second.

Current values for this code are listed in the following enumeration:

enum {
 kCAFChannelLayoutTag_UseChannelDescriptions = (0<<16) | 0,
 // use the array of AudioChannelDescriptions to define the mapping.

 kCAFChannelLayoutTag_UseChannelBitmap = (1<<16) | 0,
 // use the bitmap to define the mapping.

// 1 Channel Layout
 kCAFChannelLayoutTag_Mono = (100<<16) | 1,
 // a standard mono stream

// 2 Channel layouts
 kCAFChannelLayoutTag_Stereo = (101<<16) | 2,
 // a standard stereo stream (L R)

 kCAFChannelLayoutTag_StereoHeadphones = (102<<16) | 2,
 // a standard stereo stream (L R) - implied headphone playback

 kCAFChannelLayoutTag_MatrixStereo = (103<<16) | 2,
 // a matrix encoded stereo stream (Lt, Rt)

 kCAFChannelLayoutTag_MidSide = (104<<16) | 2,
 // mid/side recording

 kCAFChannelLayoutTag_XY = (105<<16) | 2,
 // coincident mic pair (often 2 figure 8's)

 kCAFChannelLayoutTag_Binaural = (106<<16) | 2,
 // binaural stereo (left, right)

// Symetric arrangements - same distance between speaker locations
 kCAFChannelLayoutTag_Ambisonic_B_Format = (107<<16) | 4,
 // W, X, Y, Z

 kCAFChannelLayoutTag_Quadraphonic = (108<<16) | 4,
 // front left, front right, back left, back right

Channel Layout 31
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

 kCAFChannelLayoutTag_Pentagonal = (109<<16) | 5,
 // left, right, rear left, rear right, center

 kCAFChannelLayoutTag_Hexagonal = (110<<16) | 6,
 // left, right, rear left, rear right, center, rear

 kCAFChannelLayoutTag_Octagonal = (111<<16) | 8,
 // front left, front right, rear left, rear right,
 // front center, rear center, side left, side right

 kCAFChannelLayoutTag_Cube = (112<<16) | 8,
 // left, right, rear left, rear right
 // top left, top right, top rear left, top rear right

// MPEG defined layouts
 kCAFChannelLayoutTag_MPEG_1_0 = kCAFChannelLayoutTag_Mono, // C
 kCAFChannelLayoutTag_MPEG_2_0 = kCAFChannelLayoutTag_Stereo, // L R
 kCAFChannelLayoutTag_MPEG_3_0_A = (113<<16) | 3, // L R C
 kCAFChannelLayoutTag_MPEG_3_0_B = (114<<16) | 3, // C L R
 kCAFChannelLayoutTag_MPEG_4_0_A = (115<<16) | 4, // L R C Cs
 kCAFChannelLayoutTag_MPEG_4_0_B = (116<<16) | 4, // C L R Cs
 kCAFChannelLayoutTag_MPEG_5_0_A = (117<<16) | 5, // L R C Ls Rs
 kCAFChannelLayoutTag_MPEG_5_0_B = (118<<16) | 5, // L R Ls Rs C
 kCAFChannelLayoutTag_MPEG_5_0_C = (119<<16) | 5, // L C R Ls Rs
 kCAFChannelLayoutTag_MPEG_5_0_D = (120<<16) | 5, // C L R Ls Rs
 kCAFChannelLayoutTag_MPEG_5_1_A = (121<<16) | 6, // L R C LFE Ls Rs
 kCAFChannelLayoutTag_MPEG_5_1_B = (122<<16) | 6, // L R Ls Rs C LFE
 kCAFChannelLayoutTag_MPEG_5_1_C = (123<<16) | 6, // L C R Ls Rs LFE
 kCAFChannelLayoutTag_MPEG_5_1_D = (124<<16) | 6, // C L R Ls Rs LFE
 kCAFChannelLayoutTag_MPEG_6_1_A = (125<<16) | 7, // L R C LFE Ls Rs Cs
 kCAFChannelLayoutTag_MPEG_7_1_A = (126<<16) | 8, // L R C LFE Ls Rs Lc Rc
 kCAFChannelLayoutTag_MPEG_7_1_B = (127<<16) | 8, // C Lc Rc L R Ls Rs LFE
 kCAFChannelLayoutTag_MPEG_7_1_C = (128<<16) | 8, // L R C LFE Ls R Rls Rrs

 kCAFChannelLayoutTag_Emagic_Default_7_1 = (129<<16) | 8,
 // L R Ls Rs C LFE Lc Rc

 kCAFChannelLayoutTag_SMPTE_DTV = (130<<16) | 8,
 // L R C LFE Ls Rs Lt Rt
 // (kCAFChannelLayoutTag_ITU_5_1 plus a matrix encoded stereo mix)

// ITU defined layouts
 kCAFChannelLayoutTag_ITU_1_0 = kCAFChannelLayoutTag_Mono, // C
 kCAFChannelLayoutTag_ITU_2_0 = kCAFChannelLayoutTag_Stereo, // L R

 kCAFChannelLayoutTag_ITU_2_1 = (131<<16) | 3, // L R Cs
 kCAFChannelLayoutTag_ITU_2_2 = (132<<16) | 4, // L R Ls Rs
 kCAFChannelLayoutTag_ITU_3_0 = kCAFChannelLayoutTag_MPEG_3_0_A, // L R C
 kCAFChannelLayoutTag_ITU_3_1 = kCAFChannelLayoutTag_MPEG_4_0_A, // L R C Cs

 kCAFChannelLayoutTag_ITU_3_2 = kCAFChannelLayoutTag_MPEG_5_0_A, // L R C Ls Rs
 kCAFChannelLayoutTag_ITU_3_2_1 = kCAFChannelLayoutTag_MPEG_5_1_A,
 // L R C LFE Ls Rs
 kCAFChannelLayoutTag_ITU_3_4_1 = kCAFChannelLayoutTag_MPEG_7_1_C,
 // L R C LFE Ls Rs Rls Rrs

32 Channel Layout
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

// DVD defined layouts
 kCAFChannelLayoutTag_DVD_0 = kCAFChannelLayoutTag_Mono, // C (mono)
 kCAFChannelLayoutTag_DVD_1 = kCAFChannelLayoutTag_Stereo, // L R
 kCAFChannelLayoutTag_DVD_2 = kCAFChannelLayoutTag_ITU_2_1, // L R Cs
 kCAFChannelLayoutTag_DVD_3 = kCAFChannelLayoutTag_ITU_2_2, // L R Ls Rs
 kCAFChannelLayoutTag_DVD_4 = (133<<16) | 3, // L R LFE
 kCAFChannelLayoutTag_DVD_5 = (134<<16) | 4, // L R LFE Cs
 kCAFChannelLayoutTag_DVD_6 = (135<<16) | 5, // L R LFE Ls Rs
 kCAFChannelLayoutTag_DVD_7 = kCAFChannelLayoutTag_MPEG_3_0_A,// L R C
 kCAFChannelLayoutTag_DVD_8 = kCAFChannelLayoutTag_MPEG_4_0_A,// L R C Cs
 kCAFChannelLayoutTag_DVD_9 = kCAFChannelLayoutTag_MPEG_5_0_A,// L R C Ls Rs
 kCAFChannelLayoutTag_DVD_10 = (136<<16) | 4, // L R C LFE
 kCAFChannelLayoutTag_DVD_11 = (137<<16) | 5, // L R C LFE Cs
 kCAFChannelLayoutTag_DVD_12 = kCAFChannelLayoutTag_MPEG_5_1_A,// L R C LFE Ls Rs
 // 13 through 17 are duplicates of 8 through 12.
 kCAFChannelLayoutTag_DVD_13 = kCAFChannelLayoutTag_DVD_8, // L R C Cs
 kCAFChannelLayoutTag_DVD_14 = kCAFChannelLayoutTag_DVD_9, // L R C Ls Rs
 kCAFChannelLayoutTag_DVD_15 = kCAFChannelLayoutTag_DVD_10, // L R C LFE
 kCAFChannelLayoutTag_DVD_16 = kCAFChannelLayoutTag_DVD_11, // L R C LFE Cs
 kCAFChannelLayoutTag_DVD_17 = kCAFChannelLayoutTag_DVD_12, // L R C LFE Ls Rs
 kCAFChannelLayoutTag_DVD_18 = (138<<16) | 5, // L R Ls Rs LFE
 kCAFChannelLayoutTag_DVD_19 = kCAFChannelLayoutTag_MPEG_5_0_B,// L R Ls Rs C
 kCAFChannelLayoutTag_DVD_20 = kCAFChannelLayoutTag_MPEG_5_1_B,// L R Ls Rs C LFE

// These layouts are recommended for Mac OS X's AudioUnit use
 // These are the symmetrical layouts
 kCAFChannelLayoutTag_AudioUnit_4= kCAFChannelLayoutTag_Quadraphonic,
 kCAFChannelLayoutTag_AudioUnit_5= kCAFChannelLayoutTag_Pentagonal,
 kCAFChannelLayoutTag_AudioUnit_6= kCAFChannelLayoutTag_Hexagonal,
 kCAFChannelLayoutTag_AudioUnit_8= kCAFChannelLayoutTag_Octagonal,
 // These are the surround-based layouts
 kCAFChannelLayoutTag_AudioUnit_5_0 = kCAFChannelLayoutTag_MPEG_5_0_B,
 // L R Ls Rs C
 kCAFChannelLayoutTag_AudioUnit_6_0 = (139<<16) | 6, // L R Ls Rs C Cs
 kCAFChannelLayoutTag_AudioUnit_7_0 = (140<<16) | 7, // L R Ls Rs C Rls Rrs
 kCAFChannelLayoutTag_AudioUnit_5_1 = kCAFChannelLayoutTag_MPEG_5_1_A,
 // L R C LFE Ls Rs
 kCAFChannelLayoutTag_AudioUnit_6_1 = kCAFChannelLayoutTag_MPEG_6_1_A,
 // L R C LFE Ls Rs Cs
 kCAFChannelLayoutTag_AudioUnit_7_1 = kCAFChannelLayoutTag_MPEG_7_1_C,
 // L R C LFE Ls Rs Rls Rrs

// These layouts are used for AAC Encoding within the MPEG-4 Specification
 kCAFChannelLayoutTag_AAC_Quadraphonic = kCAFChannelLayoutTag_Quadraphonic,
 // L R Ls Rs
 kCAFChannelLayoutTag_AAC_4_0= kCAFChannelLayoutTag_MPEG_4_0_B, // C L R Cs
 kCAFChannelLayoutTag_AAC_5_0= kCAFChannelLayoutTag_MPEG_5_0_D, // C L R Ls Rs
 kCAFChannelLayoutTag_AAC_5_1= kCAFChannelLayoutTag_MPEG_5_1_D, // C L R Ls Rs Lfe
 kCAFChannelLayoutTag_AAC_6_0= (141<<16) | 6, // C L R Ls Rs Cs
 kCAFChannelLayoutTag_AAC_6_1= (142<<16) | 7, // C L R Ls Rs Cs Lfe
 kCAFChannelLayoutTag_AAC_7_0= (143<<16) | 7, // C L R Ls Rs Rls Rrs
 kCAFChannelLayoutTag_AAC_7_1= kCAFChannelLayoutTag_MPEG_7_1_B,
 // C Lc Rc L R Ls Rs Lfe
 kCAFChannelLayoutTag_AAC_Octagonal = (144<<16) | 8, // C L R Ls Rs Rls Rrs Cs

 kCAFChannelLayoutTag_TMH_10_2_std = (145<<16) | 16,
 // L R C Vhc Lsd Rsd Ls Rs Vhl Vhr Lw Rw Csd Cs LFE1 LFE2

Channel Layout 33
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

 kCAFChannelLayoutTag_TMH_10_2_full = (146<<16) | 21,
 // TMH_10_2_std plus: Lc Rc HI VI Haptic

 kCAFChannelLayoutTag_RESERVED_DO_NOT_USE= (147<<16)
};

Channel Description

If the channel layout tag is set to kCAFChannelLayoutTag_UseChannelDescriptions , there is no
standard description for the ordering or use of channels in the file; channel descriptions are used instead. In
this case, the number of channel descriptions (mNumberChannelDescriptions) must equal the number
of channels contained in the file. Following the mNumberChannelDescriptions field is an array of channel
descriptions, one for each channel, as specified by the CAFChannelDescription structure:

struct CAFChannelDescription
{
 UInt 32 mChannelLabel;
 UInt32 mChannelFlags;
 Float32 mCoordinates[3];
};

mChannelLabel
A label that describes the role of the channel. In common cases, such as “Left” or “Right,” role implies
location. In such cases, mChannelFlags and mCoordinates can be set to 0. Refer to “Label Codes
for Channel Layouts” (page 34).

mChannelFlags
Flags that indicate how to interpret the data in the mCoordinates field. Refer to “Channel Flags for
Channel Layouts” (page 36). If the audio channel does not require this information, set this field to
0.

mCoordinates
A set of three coordinates that specify the placement of the sound source for the channel in three
dimensions, according to the mChannelFlags information. If the audio channel does not require
this information, set this field to 0.

The number of channel descriptions in this chunk’s data section must match the number of channels specified
in the mChannelsPerFrame field of the Audio Description chunk. In addition, the order of the channel
descriptions must correspond to the order of the channels in the Audio Data chunk. See “Audio Description
Chunk” (page 17) and “Audio Data Chunk” (page 24).

You can use the optional Information chunk (“Information Chunk” (page 52)) to supply user-presentable
names for particular channel layouts. However, if there is any conflict between the channel assignments in
the Information chunk and those in the Channel Layout chunk, the Channel Layout chunk always takes
precedence.

Label Codes for Channel Layouts

Label Codes indicate the role of a channel. CAF files specify this information in this chunk’s mChannelLabel
field.

The following list includes most channel layouts in common use. Due to differences in channel labeling by
various industry groups, there may be overlap or duplication. In every case, use the label that most clearly
describes the role of the audio channel.

34 Channel Layout
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

enum
{
 kCAFChannelLabel_Unknown = 0xFFFFFFFF, // unknown role or uspecified
 // other use for channel
 kCAFChannelLabel_Unused = 0, // channel is present, but
 // has no intended role or destination
 kCAFChannelLabel_UseCoordinates = 100, // channel is described
 // solely by the mCoordinates fields

 kCAFChannelLabel_Left = 1,
 kCAFChannelLabel_Right = 2,
 kCAFChannelLabel_Center = 3,
 kCAFChannelLabel_LFEScreen = 4,
 kCAFChannelLabel_LeftSurround = 5, // WAVE (.wav files): "Back Left"
 kCAFChannelLabel_RightSurround = 6, // WAVE: "Back Right"
 kCAFChannelLabel_LeftCenter = 7,
 kCAFChannelLabel_RightCenter = 8,
 kCAFChannelLabel_CenterSurround = 9, // WAVE: "Back Center or
 // plain "Rear Surround"
 kCAFChannelLabel_LeftSurroundDirect = 10, // WAVE: "Side Left"
 kCAFChannelLabel_RightSurroundDirect = 11, // WAVE: "Side Right"
 kCAFChannelLabel_TopCenterSurround = 12,
 kCAFChannelLabel_VerticalHeightLeft = 13, // WAVE: "Top Front Left"
 kCAFChannelLabel_VerticalHeightCenter = 14, // WAVE: "Top Front Center"
 kCAFChannelLabel_VerticalHeightRight = 15, // WAVE: "Top Front Right"
 kCAFChannelLabel_TopBackLeft = 16,
 kCAFChannelLabel_TopBackCenter = 17,
 kCAFChannelLabel_TopBackRight = 18,

 kCAFChannelLabel_RearSurroundLeft = 33,
 kCAFChannelLabel_RearSurroundRight = 34,
 kCAFChannelLabel_LeftWide = 35,
 kCAFChannelLabel_RightWide = 36,
 kCAFChannelLabel_LFE2 = 37,
 kCAFChannelLabel_LeftTotal = 38, // matrix encoded 4 channels
 kCAFChannelLabel_RightTotal = 39, // matrix encoded 4 channels
 kCAFChannelLabel_HearingImpaired = 40,
 kCAFChannelLabel_Narration = 41,
 kCAFChannelLabel_Mono = 42,
 kCAFChannelLabel_DialogCentricMix = 43,

 kCAFChannelLabel_CenterSurroundDirect = 44, // back center, non diffuse
 // first order ambisonic channels
 kCAFChannelLabel_Ambisonic_W = 200,
 kCAFChannelLabel_Ambisonic_X = 201,
 kCAFChannelLabel_Ambisonic_Y = 202,
 kCAFChannelLabel_Ambisonic_Z = 203,

 // Mid/Side Recording
 kCAFChannelLabel_MS_Mid = 204,
 kCAFChannelLabel_MS_Side = 205,

 // X-Y Recording
 kCAFChannelLabel_XY_X = 206,
 kCAFChannelLabel_XY_Y = 207,

 // other
 kCAFChannelLabel_HeadphonesLeft = 301,

Channel Layout 35
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

 kCAFChannelLabel_HeadphonesRight = 302,
 kCAFChannelLabel_ClickTrack = 304,
 kCAFChannelLabel_ForeignLanguage = 305
};

Channel Flags for Channel Layouts

Channel Flags specify whether a channel layout uses spherical or rectangular coordinates, and whether
distances are absolute or relative. CAF files specify this information in this chunk’s mChannelFlags field.

Here are the CAF conventions for rectangular coordinates:

 ■ Negative is left, and positive is right.

 ■ Negative is back, and positive is front.

 ■ Negative is below ground level, 0 is ground level, and positive is above ground level.

In CAF files, spherical coordinates are measured in degrees. Here are the CAF conventions for spherical
coordinates:

 ■ 0 is front center, positive is right, negative is left.

 ■ +90 is zenith, 0 is horizontal, -90 is nadir.

These constants are used in the mChannelFlags field of the Channel Layout chunk:

enum
{
 kCAFChannelFlags_AllOff = 0,
 kCAFChannelFlags_RectangularCoordinates = (1<<0),
 kCAFChannelFlags_SphericalCoordinates = (1<<1),
 kCAFChannelFlags_Meters = (1<<2)
};

kCAFChannelFlags_AllOff
No flags are set.

kCAFChannelFlags_RectangularCoordinates
The channel is specified by the cartesian coordinates of the speaker position. This flag is mutally
exclusive with kCAFChannelFlags_SphericalCoordinates.

kCAFChannelFlags_SphericalCoordinates
The channel is specified by the spherical coordinates of the speaker position. This flag is mutally
exclusive with kCAFChannelFlags_RectangularCoordinates.

kCAFChannelFlags_Meters
A flag that indicates whether the units are absolute or relative. Set to indicate the units are in meters,
clear to indicate the units are relative to the unit cube or unit sphere. For relative units, the listener
is assumed to be at the center of the cube or sphere and the maximum radius of the sphere or the
distance from the center to the midpoint of the side of the cube is 1.

If the channel description provides no coordinate information, then the mChannelFlags field is set to 0.

36 Channel Layout
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Supplementary Data

Some audio formats require specific information in addition to the data in the Audio Description and Audio
Data chunks (“Required Chunks” (page 16)). You use the Magic Cookie chunk for this purpose. Similarly,
some chunks refer to strings stored in a separate chunk, the Strings chunk.

Magic Cookie Chunk

The Magic Cookie chunk contains supplementary (“magic cookie”) data required by certain audio data formats,
such as MPEG-4 AAC, for decoding of the audio data. If the audio data format contained in a CAF file requires
magic cookie data, the file must have this chunk.

Magic Cookie Chunk Header

Table 3-14 shows the values for the fields in the Magic Cookie chunk header.

Table 2-14 Magic Cookie chunk header fields

ValueField

‘kuki’mChunkType

Must always be validmChunkSize

Magic Cookie Chunk Data Section

The structure of a Magic Cookie chunk’s data section is defined by the audio data format it applies to. For
example, a CAF file containing MPEG-4 AAC data should have a Magic Cookie chunk containing an elementary
stream descriptor. This is the data contained in the 'esds' atom in an MPEG-4 file (and is often referred to as
the ESDS) for a given AAC audio track.

Strings Chunk

The optional Strings chunk contains any number of textual strings, along with an index for accessing them.
These strings serve as labels for other chunks, such as Marker or Region chunks.

Strings Chunk Header

Table 3-15 shows the values for the fields in the Strings chunk header.

Table 2-15 Strings chunk header fields

ValueField

‘strg’mChunkType

Supplementary Data 37
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

ValueField

Must always be validmChunkSize

The Strings chunk header can specify a data section size that is larger than the chunk’s current meaningful
content in order to reserve room for additional data.

Strings Chunk Data Section

The CAFStrings structure describes the data section for the Strings chunk.

struct CAFStrings
{
 UInt32 mNumEntries;
 CAFStringID mStringsIDs[kVariableLengthArray];
 UInt8 mStrings[kVariableLengthArray];
};

mNumEntries
The number of strings in the mStrings field.

mStringsIDs
A lookup table of string IDs for each of the strings in the mStrings field. You access strings by using
the associated ID. It is recommended that you do not use 0 for an ID.

mStrings
An array of null-terminated UTF8-encoded text strings.

String ID

The CAFStringID structure describes a string ID, used for accessing a string.

struct CAFStringID {
 UInt32 mStringID;
 SInt64 mStringStartByteOffset;
};
typedef struct CAFStringID CAFStringID;

mStringID
The identifier for the string, allowing applications and other chunks in the file to refer to the string.

mStringStartByteOffset
The offset, in bytes, for the start of the string, counting from the first byte after the last mStringsIDs
entry. The first string has an offset value of 0.

Marker and Region Chunks

You can add individual markers, marked regions, or both to a CAF file. Marker and Region chunks share some
data types, described in the following section. In addition, both can use Strings chunks (“Strings Chunk” (page
37)) to contain text annotations.

38 Marker and Region Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Markers and region markers can include timestamps that you can use to correlate the marked point in the
audio stream with an external event. For example, you can use a timestamp to correlate a sound in an audio
file with a video frame in a movie file. SMPTE (Society of Motion Picture and Television Engineers, pronounced
“simptee”) time stamps and timecode types are used for this purpose. See “SMPTE Timecode Types” (page
41) and “SMPTE Timestamps” (page 42) for more information on SMPTE time.

Marker Data Types

The data types in this section are used by both the Marker chunk and the Region chunk.

Marker Descriptions

The CAFMarker structure defines a marker.

struct CAFMarker
{
 UInt32 mType;
 Float64 mFramePosition;
 UInt32 mMarkerID;
 CAF_SMPTE_Time mSMPTETime;
 UInt32 mChannel;
}
typedef struct CAFMarker CAFMarker;

mType
The type of the marker, designated by one of the codes in the Marker Types enumeration. See “Marker
Types” (page 39).

mFramePosition
The location of the marker in the file. The location is specified as a frame number, counting from 0
for the first frame in the file.

mMarkerID
The location in the string table (see “Strings Chunk” (page 37)) of a unique ID for the marker
description, set by the application. You then use this ID to refer to the marker. It is recommended
that you do not use 0 for an ID.

mSMPTETime
A SMPTE timestamp for the marker. You can use this field to relate a marker in the CAF file to a time
in another file, such as a video file. Mark the SMPTE timestamp as invalid if you do not need this
feature. To indicate that a marker’s SMPTE timestamp is not valid, set all of its bytes to 0xFF. See
“SMPTE Timestamps” (page 42).

mChannel
The channel, by number, to which the marker description applies. This number corresponds to the
sequence in which the data for the channels is ordered in the frame. The first channel is numbered
1. Set this field to 0 to indicate that the marker applies to all channels.

Marker Types

The following enumeration lists the supported marker types for CAF files. Use these codes in the mType field
of each marker description (see the CAFMarker structure, above in this section).

enum {

Marker and Region Chunks 39
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

 kCAFMarkerType_Generic = 0,
 kCAFMarkerType_ProgramStart = 'pbeg',
 kCAFMarkerType_ProgramEnd = 'pend',
 kCAFMarkerType_TrackStart = 'tbeg',
 kCAFMarkerType_TrackEnd = 'tend',
 kCAFMarkerType_Index = 'indx',
 kCAFMarkerType_RegionStart = 'rbeg',
 kCAFMarkerType_RegionEnd = 'rend',
 kCAFMarkerType_RegionSyncPoint = 'rsyc',
 kCAFMarkerType_SelectionStart = 'sbeg',
 kCAFMarkerType_SelectionEnd = 'send',
 kCAFMarkerType_EditSourceBegin = 'cbeg',
 kCAFMarkerType_EditSourceEnd = 'cend',
 kCAFMarkerType_EditDestinationBegin = 'dbeg',
 kCAFMarkerType_EditDestinationEnd = 'dend',
 kCAFMarkerType_SustainLoopStart = 'slbg',
 kCAFMarkerType_SustainLoopEnd = 'slen',
 kCAFMarkerType_ReleaseLoopStart = 'rlbg',
 kCAFMarkerType_ReleaseLoopEnd = 'rlen'
};

kCAFMarkerType_Generic
Generic marker.

kCAFMarkerType_ProgramStart
Start-of-program marker; used to delineate the start of a CD or other playlist.

kCAFMarkerType_ProgramEnd
End-of-program marker; used to delineate the end of a CD.

kCAFMarkerType_TrackStart
Start-of-track marker; used to delineate the start of a track for a CD.

kCAFMarkerType_TrackEnd
End-of-track marker; used to delineate the end of a track for a CD.

kCAFMarkerType_Index
Index marker for a Red Book compliant index.

kCAFMarkerType_RegionStart
Start-of-region marker. See “Region Chunk” (page 44).

kCAFMarkerType_RegionEnd
End-of-region marker. See “Region Chunk” (page 44).

kCAFMarkerType_RegionSyncPoint
Region synchronization point marker; used to synchronize a point in (or external to) a region with an
event, such as beat in the music.

kCAFMarkerType_SelectionStart
Start-of-selection marker, for user selection of a portion of a displayed waveform.

kCAFMarkerType_SelectionEnd
End-of-selection marker, for user selection of a portion of a displayed waveform.

kCAFMarkerType_EditSourceBegin
Beginning-of-source marker for a copy or move operation.

kCAFMarkerType_EditSourceEnd
End-of-source marker for a copy or move operation.

40 Marker and Region Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

kCAFMarkerType_EditDestinationBegin
Beginning-of-destination marker for a copy or move operation.

kCAFMarkerType_EditDestinationEnd
End-of-destination marker for a copy or move operation.

kCAFMarkerType_SustainLoopStart
Start-of-sustain marker for a sustain loop.

kCAFMarkerType_SustainLoopEnd
End-of-sustain marker for a sustain loop.

kCAFMarkerType_ReleaseLoopStart
Start-of-release marker for a sustain loop.

kCAFMarkerType_ReleaseLoopEnd
End-of-release marker for a sustain loop.

SMPTE Timecode Types

The following enumeration lists the supported SMPTE timecode types for CAF files. Timecode types are used
by the Marker and Region chunks to synchronize the data in a CAF file with the data in a video file (see
“Marker Chunk Data Section” (page 43) and “Region Chunk Data Section” (page 44)).

enum
{
 kCAF_SMPTE_TimeTypeNone = 0,
 kCAF_SMPTE_TimeType24 = 1,
 kCAF_SMPTE_TimeType25 = 2,
 kCAF_SMPTE_TimeType30Drop = 3,
 kCAF_SMPTE_TimeType30 = 4,
 kCAF_SMPTE_TimeType2997 = 5,
 kCAF_SMPTE_TimeType2997Drop = 6,
 kCAF_SMPTE_TimeType60 = 7,
 kCAF_SMPTE_TimeType5994 = 8
};

kCAF_SMPTE_TimeTypeNone
No timecode type is assigned. Use this value if you are not specifying a SMPTE time in the marker.

kCAF_SMPTE_TimeType24
24 video frames per second—standard for 16mm and 35mm film.

kCAF_SMPTE_TimeType25
25 video frames per second—standard for PAL and SECAM video.

kCAF_SMPTE_TimeType30Drop
30 video frames per second, with video-frame-number counts adjusted to ensure that the timecode
matches elapsed clock time.

kCAF_SMPTE_TimeType30
30 video frames per second.

kCAF_SMPTE_TimeType2997
29.97 video frames per second—standard for NTSC video.

kCAF_SMPTE_TimeType2997Drop
29.97 video frames per second—standard for NTSC video—with video-frame-number counts adjusted
to ensure that the timecode matches elapsed clock time.

Marker and Region Chunks 41
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

kCAF_SMPTE_TimeType60
60 video frames per second.

kCAF_SMPTE_TimeType5994
59.94 video frames per second.

SMPTE Timestamps

Each marker may contain a SMPTE timestamp in its mSMPTETime field that you can use to associate a marker
with an external SMPTE time (see “Marker Descriptions” (page 39))—for example, to synchronize the audio
data with a video file.

The CAF_SMPTE_Time structure describes the format for indicating timestamps in a CAF file.

struct CAF_SMPTE_Time
{
 SInt8 mHours;
 SInt8 mMinutes;
 SInt8 mSeconds;
 SInt8 mFrames;
 UInt32 mSubFrameSampleOffset;
};
typedef struct CAF_SMPTE_Time CAF_SMPTE_Time;

mHours
The number of hours for the timestamp.

mMinutes
The number of minutes for the timestamp.

mSeconds
The number of seconds for the timestamp.

mFrames
The number of video frames for the timestamp. Use the SMPTE timecode type (“SMPTE Timecode
Types” (page 41)) to determine the number of video frames per second.

mSubFrameSampleOffset
An audio sample offset to the HH:MM:SS:FF time stamp. You can use this field to position the marker
somewhere within the time span represented by a video frame, if necessary. The mSampleRate field
(see “Audio Description Chunk Data Section” (page 17)) specifies the number of audio frames per
second for this CAF file.

To indicate an unused SMPTE timestamp, set every byte in the CAF_SMPTE_Time structure to 0xFF. When
a CAF file does not specify a SMPTE timecode type (see “SMPTE Timecode Types” (page 41)), all marker
description timestamps must be set as invalid.

Marker Chunk

You can use the optional Marker chunk to contain any number of marker descriptions, each of which marks
a particular sample location in the file.

Marker descriptions may also use a timing convention known as SMPTE (Society of Motion Picture and
Television Engineers) timecode. For more information on this convention, see http://www.smpte.org/.

42 Marker and Region Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.smpte.org/

Marker Chunk Header

Table 3-16 shows the values for the fields in the Marker chunk header.

Table 2-16 Marker chunk header fields

ValueField

‘mark’mChunkType

Must always be validmChunkSize

The Marker chunk header can specify a data section size that is larger than the chunk’s current meaningful
content in order to reserve room for additional data.

Marker Chunk Data Section

The Marker chunk data section has two informational fields followed by a list of marker descriptions. The
CAFMarkerChunk structure describes the data section for this chunk.

struct CAFMarkerChunk
{
 UInt32 mSMPTE_TimeType;
 UInt32 mNumberMarkers;
 CAFMarker mMarkers[kVariableLengthArray];
}

mSMPTE_TimeType
The type of SMPTE timecode used for the markers. For the types available, see “SMPTE Timecode
Types” (page 41). You should use a SMPTE timestamp only if you need to synchronize a marker in
the CAF file with an external event, such as a point in a video file. To indicate that the markers in the
file do not have valid SMPTE timestamps, set this field to 0.

If this field has a nonzero value, you should interpret marker description timestamps according to
the specified timecode type. Individual marker descriptions can still have invalid (0xFF) SMPTE
timestamps.

A CAF file can contain markers with no regions (see “Region Chunk” (page 44), regions with no Marker
chunk, or both a Marker chunk and a Region chunk. For this reason, the Marker and Region chunks
both include an mSMPTE_TimeType field. In typical use, if both chunks are present, the value in both
fields is identical.

mNumberMarkers
The total number of marker descriptions in this chunk, starting immediately after this field and
continuing until the end of this chunk. This number must always be valid.

mMarkers
The marker descriptions. See “Marker Descriptions” (page 39). The Marker chunk data section contains
0 or more marker descriptions.

Marker and Region Chunks 43
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Region Chunk

You can use the optional Region chunk to contain any number of region descriptions. Each region description
includes starting and ending marker descriptions that delineate a span of sample frames in the audio data.
See “Marker Descriptions” (page 39) for more information about markers. A region description can contain
more than two markers, with the purpose of the additional markers being application defined.

Region Chunk Header

Table 3-17 shows the values for the fields in the Region chunk header.

Table 2-17 Region chunk header fields

ValueField

‘regn’mChunkType

Must always be validmChunkSize

The Region chunk header can specify a data section size that is larger than the chunk’s current meaningful
content in order to reserve room for additional data.

Region Chunk Data Section

The Region chunk data section has two informational fields followed by a list of region descriptions. The
CAFRegionChunk structure describes the data section for this chunk.

struct CAFRegionChunk
{
 UInt32 mSMPTE_TimeType;
 UInt32 mNumberRegions;
 CAFRegion mRegions[kVariableLengthArray];
}
typedef struct CAFRegionChunk CAFRegionChunk;

mSMPTE_TimeType
The type of SMPTE timecode used for the markers. For the types available, see “SMPTE Timecode
Types” (page 41). You should use a SMPTE timestamp only if you need to synchronize a region in the
CAF file with a region in another file, such as a video file. To indicate that the markers in the file do
not have valid timestamps, set this field to 0.

If this field has a nonzero value, you should interpret marker description timestamps according to
the specified timecode type. Individual marker descriptions can still have invalid (0xFF) SMPTE
timestamps.

A CAF file can contain regions with no Marker chunk (see “Marker Chunk” (page 42)), a Marker chunk
with no regions, or both a Marker chunk and a Region chunk. For this reason, both the Marker and
Region chunks include an mSMPTE_TimeType field. In typical use, if both chunks are present, the
value in both fields is identical.

mNumberRegions
The number of region descriptions in the data section.

44 Marker and Region Chunks
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

mRegions
The region descriptions.

Region Description

The Region chunk data section contains 0 or more region descriptions. The CAFRegion structure defines a
region description. Region descriptions are referred to by the Instrument chunk; see “Instrument Chunk Data
Section” (page 46).

struct CAFRegion
{
 UInt32 mRegionID;
 UInt32 mFlags;
 UInt32 mNumberMarkers;
 CAFMarker mMarkers[kVariableLengthArray];
};
typedef struct CAFRegion CAFRegion;

mRegionID
A unique ID for the region description, set by the application. You then use this ID to refer to the
region. It is recommended that you do not use 0 for a region ID.

mFlags
A flag providing some information about the purpose of the region. See “Region Flags” (page 45) for
possible values.

mNumberMarkers
The total number of marker descriptions in this region description. This number must always be valid.

mMarkers
The marker descriptions for this region.

Region Flags

Each region description includes a set of flags, defined by the following enumeration:

enum {
 kCAFRegionFlag_LoopEnable = 1,
 kCAFRegionFlag_PlayForward = 2,
 kCAFRegionFlag_PlayBackward = 4
};

kCAFRegionFlag_LoopEnable
If this flag is set, the audio data delineated by this region should be played as a loop. If this flag is set,
then one or both of the PlayForward and PlayBackward flags must also be set.

kCAFRegionFlag_PlayForward
If this flag is set, the loop should be played forward. If both this flag and the PlayBackward flag are
set, then the loop should be played alternately forward and backward.

kCAFRegionFlag_PlayBackward
If this flag is set, the loop should be played backward. If both this flag and the PlayForward flag are
set, then the loop should be played alternately forward and backward.

Marker and Region Chunks 45
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Music Metadata

Two chunk types, the Instrument chunk and the MIDI chunk, provide information of importance to the
interpretation of certain music data.

Instrument Chunk

The optional Instrument chunk can be used to describe the audio data in a CAF file in terms relevant to
samplers or to other digital audio processing applications. For example, a file or a portion of a file can be
described as a MIDI instrument. (For more information about MIDI and MIDI instruments, go to
http://www.midi.org/.)There can be any number of Instrument chunks in a CAF file, each specifying a portion
of the file.

Instrument Chunk Header

Table 3-18 shows the values for the fields in the Instrument chunk header.

Table 2-18 Instrument chunk header fields

ValueField

‘inst’mChunkType

Must always be validmChunkSize

Instrument Chunk Data Section

The Instrument chunk data section has informational fields and a list of region descriptions. The
CAFInstrumentChunk structure describes the data section for this chunk.

struct CAFInstrumentChunk
{
 Float32 mBaseNote;
 UInt8 mMIDILowNote;
 UInt8 mMIDIHighNote;
 UInt8 mMIDILowVelocity;
 UInt8 mMIDIHighVelocity;
 Float32 mdBGain;
 UInt32 mStartRegionID;
 UInt32 mSustainRegionID;
 UInt32 mReleaseRegionID;
 UInt32 mInstrumentID;
};
typedef struct CAFInstrumentChunk CAFInstrumentChunk;

mBaseNote
The MIDI note number, and fractional pitch, for the base note of the MIDI instrument. The integer
portion of this field indicates the base note, in the integer range 0 to 127, where a value of 60
represents middle C and each integer is a step on a standard piano keyboard (for example, 61 is C#

46 Music Metadata
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.midi.org/

above middle C). The fractional part of the field specifies the fractional pitch; for example, 60.5 is a
pitch halfway between notes 60 and 61.

mMIDILowNote
The lowest note for the region, in the integer range 0 to 127, where a value of 60 represents middle
C (following the MIDI convention). This value represents the suggested lowest note on a keyboard
for playback of this instrument definition. The sound data should be played if the instrument is
requested to play a note between mMIDILowNote and mMIDIHighNote, inclusive. The mBaseNote
value must be within this range.

mMIDIHighNote
The highest note for the region when used as a MIDI instrument, in the integer range 0 to 127, where
a value of 60 represents middle C. See the discussions of the mBaseNote and mMIDILowNote fields
for more information.

mMIDILowVelocity
The lowest MIDI velocity for playing the region , in the integer range 0 to 127.

mMIDIHighVelocity
The highest MIDI velocity for playing the region, in the integer range 0 to 127.

mdBGain
The gain, in decibels, for playing the region. A value of 0 represents unity gain. Use negative numbers
to indicate a decrease in gain.

mStartRegionID
The ID of the region (see“Region Description” (page 45)) that defines the portion of the file to use as
the “start” stage for a MIDI instrument. A lack of a valid region ID in this field indicates that there is
no start stage. It is recommended that you do not assign an ID of 0 to any region description, so that
you can use 0 in this and the following fields to indicate the lack of a region ID.

mSustainRegionID
The ID of the region (in the Region chunk) that defines the portion of the file to use as the “sustain”
stage for a MIDI instrument. A lack of a valid region ID in this field indicates that there is no sustain
stage.

mReleaseRegionID
The ID of the region (in the Region chunk) that defines the portion of the file to use as the “release”
stage for a MIDI instrument. A lack of a valid region ID in this field indicates that there is no release
stage.

mInstrumentID
The ID of the string (in the Strings chunk, “Strings Chunk” (page 37)) that specifies the name of the
instrument. A lack of a valid string ID in this field means that no name is specified. It is recommended
that you do not assign an ID of 0 to any string description, so that you can use 0 in this field to indicate
the lack of a string ID.

MIDI Chunk

You can use the optional MIDI chunk to contain MIDI data using the standard MIDI file format. It can be used
to store metadata about the audio in the file’s Data chunk, or even a MIDI representation of that audio. For
information on the MIDI standard, see http://www.midi.org.

You should consider information in this chunk to supersede conflicting information in the Information chunk
(“Information Chunk” (page 52)). For example, both the Information chunk and the MIDI chunk may specify
key signature and tempo. In that case, the MIDI chunk values should override the values in the Information
chunk.

Music Metadata 47
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.midi.org/

MIDI Chunk Header

Table 3-19 shows the values for the fields in the MIDI chunk header.

Table 2-19 MIDI chunk header fields

ValueField

‘midi’mChunkType

Must always be validmChunkSize

The MIDI chunk header must specify the true size of the valid data in the data section.

MIDI Chunk Data Section

The data section of a MIDI Chunk can be used to hold anything that can be described by a standard MIDI
file, such as:

 ■ Tempo information

 ■ Key signature

 ■ Time signature

 ■ MIDI representation of the audio data; for example, MIDI note numbers

Audio Editor Support

You can use the Overview chunk to hold sample descriptions of the audio data for displaying the data for
the user, and the Peak chunk to hold information about peak amplitudes.

Overview Chunk

You can use the optional Overview chunk to hold sample descriptions that you can use to draw a graphical
view of the audio data in a CAF file. A CAF file can include multiple Overview chunks to represent the audio
at multiple graphical resolutions.

Overview Chunk Header

Table 3-20 shows the values for the fields in the Overview chunk header.

Table 2-20 Overview chunk header fields

ValueField

‘ovvw’mChunkType

48 Audio Editor Support
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

ValueField

Must always be validmChunkSize

The Overview chunk header must specify the true size of the valid data in the data section.

Overview Chunk Data Section

The Overview chunk data section has two informational fields followed by a list of sample descriptions. The
CAFOverview structure describes the data section for this chunk.

struct CAFOverview
{
 UInt32 mEditCount;
 UInt32 mNumFramesPerOVWSample;
 CAFOverviewSample mData[kVariableLengthArray];
};
typedef struct CAFOverview CAFOverview;

mEditCount
The modification count of the Overview Chunk data section. When you create an Overview chunk,
you should set the mEditCount field to the value of the mEditCount field of the CAF file’s Audio
Data chunk. You can then check whether an overview is still valid by comparing the edit counts. If
they don’t match, you should regenerate the overview.

mNumFramesPerOVWSample
The number of frames of audio data that are represented by a single overview sample.

mData
An array of overview samples. For the mNumFramesPerOVWSample frames of audio in the Audio Data
chunk, you must store one sample per channel in this field. The sequence of channels should be the
same as in the Audio Data chunk.

Overview Sample

The Overview chunk data section contains overview samples, described by the CAFOverviewSample structure.

struct CAFOverviewSample
{
 SInt16 mMinValue;
 SInt16 mMaxValue;
};

mMinValue
The minimum value for the sample, listed as a big-endian, 16-bit signed integer.

mMaxValue
The maximum value for the sample, listed as a big-endian, 16-bit signed integer.

Audio Editor Support 49
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Peak Chunk

You can use the optional Peak chunk to describe the peak amplitude present in each channel of a CAF file
and to indicate in which frame the peak occurs for each channel.

Peak Chunk Header

Table 3-21 shows the values for the fields in the Peak chunk header.

Table 2-21 Peak chunk header fields

ValueField

‘peak’mChunkType

Must always be validmChunkSize

The Peak chunk uses a Peak structure to describe each peak (see “Peak Structure” (page 51)). The size of a
Peak chunk’s data section, to be placed in the mChunkSize field of the header, depends on the number of
channels in the file as follows:

mChunkSize = sizeof(CAFPositionPeak) * numChannelsInFile + sizeof(UInt32);

The sizeof(UInt32) argument represents the data section’s mEditCount field. The number of channels
in the file, represented by the numChannelsInFile argument, is specified in the mChannelsPerFrame
field of the Audio Description chunk.

Peak Chunk Data Section

The Peak chunk data section contains a field for edit count, followed by a list of Peak structures. The
CAFPeakChunk structure describes the data section for the Peak chunk.

struct CAFPeakChunk
{
 UInt32 mEditCount;
 CAFPositionPeak mPeaks[kVariableLengthArray];
};
typedef struct CAFPeakChunk CAFPeakChunk;

mEditCount
The modification status of the Peak Chunk data section. When you create a Peak chunk, set the
mEditCount field to the value of the mEditCount field of the CAF file’s Audio Data chunk. You can
then check whether the peak data is still valid by comparing the edit counts. If they don’t match, the
peak information must be regenerated.

mPeaks
An array of Peak structures, one for each channel of audio data contained in the file. See “Peak
Structure” (page 51).

The number of channels in the file is specified in the mChannelsPerFrame field of the Audio
Description chunk (“Audio Description Chunk” (page 17)).

50 Audio Editor Support
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Peak Structure

The Peak chunk data section contains one Peak structure for each channel, defined as follows:

struct CAFPositionPeak
{
 Float32 mValue;
 UInt64 mFrameNumber;
};

mValue
The signed maximum absolute amplitude in a channel, normalized to a floating-point value in the
interval [{–1.0, +1.0}].

mFrameNumber
The frame number where the peak occurs. The first frame in a CAF file is 0.

Annotations

You can add text strings to the CAF file to provide information about the audio data (in the Information
chunk) and to indicate what editing has been done on the file (in the Edit Comments chunk).

Edit Comments Chunk

You can use the optional Edit Comments chunk to carry time-stamped, human-readable comments that
coincide with edits to the audio data in a CAF file.

Edit Comments Chunk Header

Table 3-22 shows the values for the fields in the Edit Comments chunk header.

Table 2-22 Edit Comments chunk header fields

ValueField

‘edct’mChunkType

Must always be validmChunkSize

The Edit Comments chunk header can specify a data section size that is larger than the chunk’s current
meaningful content in order to reserve room for additional data.

Edit Comments Chunk Data Section

The data section for this chunk contains a field describing the number of entries, followed by a list of edit
comments. The CAFCommentStringsChunk structure describes the data section for the Edit Comments
chunk.

Annotations 51
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

struct CAFCommentStringsChunk
{
 UInt32 mNumEntries;
 mStrings[kVariableLengthArray]; // variable length
};

mNumEntries
The number of edit comments in the data section.

mStrings
A list of edit comments. See “Edit Comment” (page 52).

Edit Comment

The editComment structure describes an edit comment.

struct editCommment {
 UInt8 mKey[kVariableLengthArray];
 UInt8 mValue[kVariableLengthArray];
}

mKey
A null-terminated, time-of-day string that conforms to ISO-8601. All times are based on UTC
(Coordinated Universal Time). See “Time Of Day Data Format” (page 59).

mValue
A null-terminated UTF8 string.

Information Chunk

You can use the optional Information chunk to contain any number of human-readable text strings. Each
string is accessed through a standard or application-defined key.

You should consider information in this chunk to be secondary when the same information appears in other
chunks. For example, both the Information chunk and the MIDI chunk (“MIDI Chunk” (page 47)) may specify
key signature and tempo. In that case, the MIDI chunk values overrides the values in the Information chunk.

Information Chunk Header

Table 3-23 shows the values for the fields in the Information chunk header.

Table 2-23 Information chunk header fields

ValueField

‘info’mChunkType

Must always be validmChunkSize

The Information chunk header can specify a data section size that is larger than the chunk’s current meaningful
content in order to reserve room for additional data.

52 Annotations
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

Information Chunk Data Section

The CAFStringsChunk structure describes the data section for the Information chunk.

struct CAFStringsChunk
{
 UInt32 mNumEntries;
 mStrings[kVariableLengthArray]; // variable length
};

mNumEntries
The number of information strings in the chunk. Must always be valid.

mStrings
A variable-length keyed array of information entries. See “Information Entries” (page 53).

CAF includes some conventions for the Information chunk’s key-value pairs.

 ■ Apple reserves keys that are all lowercase (see “Information Entry Keys” (page 53)). Application-defined
keys should include at least one uppercase character.

 ■ For any key that ends with ' date' (that is, the space character followed by the word 'date'—for
example, 'recorded date'), the value must be a time-of-day string. See “Time Of Day Data
Format” (page 59).

 ■ Using a '.' (period) character as the first character of a key means that the key-value pair is not to be
displayed. This allows you to store private information that should be preserved by other applications
but not displayed to a user.

Information Entries

The CAFInformation structure describes an information entry.

struct CAFInformation
{
 UInt8 mKey[kVariableLengthArray];
 UInt8 mValue[kVariableLengthArray];
};

mKey
A null-terminated UTF8 string. See “Information Entry Keys” (page 53).

mValue
A null-terminated UTF8 string.

Information Entry Keys

Apple reserves keys that are all lowercase. Application-defined keys should contain at least one uppercase
character. Each key can be used only once. You can specify multiple values for a single key by separating the
values with commas. The following are the standard keys for the Information chunk:

tempo
The base tempo of the audio data in beats per minute.

Annotations 53
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

key signature
The key signature for the audio in the file. In the mValue field, the note is captialized with values from
A to G. Lowercase m indicates a minor key. Lowercase b indicates a flat key. The # symbol indicates a
sharp key.

Examples: ‘C’, ‘Cm’, ‘C#’, ‘Cb’.

time signature
The time signature for the audio in the file.

Examples: ‘4/4’, ‘6/8’.

artist
The name of the performance artist for the audio in the file.

Example: ‘Able Baker,Charlie Delta’

album
The name of the album that the audio in the file is a part of.

track number
The track number, within the album, for the audio in the file.

year
The year of publication for the audio in the file.

composer
The name of the composer for the audio in the file.

lyricist
The name of the lyricist for the audio in the file.

genre
The name of the genre for the audio in the file.

title
The title or name of the audio in the file. Can be different from the filename.

recorded date
A timestamp for the recording in the file. See “Time Of Day Data Format” (page 59).

comments
Freeform comments about the audio in the file.

copyright
Copyright information for the audio in the file.

Example: 'Copyright © 2004 The CoolBandName. All Rights Reserved'

source encoder
Description of the encoding algorithm, if any, used for the audio in the file.

Example: 'My AAC Encoder v4.2'

encoding application
Description of the encoding application, if any, used for the audio in the file.

Example: 'My App v1.0'

nominal bit rate
Description of the bit rate used for the audio in the file.

Example: '128 kbits'

54 Annotations
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

channel layout
Description of the channel layout for the file.

Examples: 'stereo', '5.1 Surround', '10.2 Surround'

Identifier

CAF files can include a Unique Material Identifier chunk to uniquely identify the audio content.

Unique Material Identifier Chunk

You can use the optional Unique Material Identifier chunk to uniquely identify the audio contained in a CAF
file. There can be at most one UMID chunk within a file.

The data in this chunk conforms to the standard SMPTE 330M-2004 specification for unique material identifiers.
See http://www.smpte.org/smpte_store/standards/.

The European Broadcasing Union (EBU) provides guidelines for use of UMIDs in broadcast production. CAF
files should adhere to these guidelines. See http://www.ebu.ch/CMSimages/en/tec_text_d92-2001_tcm6-
4721.pdf.

Unique Material Identifier Chunk Header

Table 3-24 shows the values for the fields in the Unique Material Identifier chunk header.

Table 2-24 Unique Material Identifier chunk header fields

ValueField

‘umid’mChunkType

64 (sizeof(CAFUMIDChunk)); Must always be validmChunkSize

Unique Material Identifier Chunk Data Section

The CAFUMIDChunk structure describes the UMID chunk’s data section.

struct CAFUMIDChunk
{
 UInt8 mBytes[64];
};
typedef struct CAFUMIDChunk CAFUMIDChunk;

Identifier 55
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.smpte.org/smpte_store/standards/
http://www.ebu.ch/CMSimages/en/tec_text_d92-2001_tcm6-4721.pdf
http://www.ebu.ch/CMSimages/en/tec_text_d92-2001_tcm6-4721.pdf

mBytes
The UMID for the file. The first 32 bytes constitute the “Basic” UMID and include four pieces of
information: instance number, flag indicating copy or original, material number, and description of
device that recorded the original material.

The second 32 bytes constitute the so-called “Source Pack” section for the UMID, which includes three
additional pieces of information: timestamp of recording, geographic coordinates of recording, and
ownership information.

The size of a UMID chunk’s data section is exactly 64 bytes. If a CAF file has only a “Basic” UMID, the
remainning 32 bytes in the data section should be set to 0.

For more information, refer to the UMID specification, SMPTE 330M-2004, available from
http://www.smpte.org/smpte_store/standards/.

Extending the CAF Specification

You can define your own chunk type to extend the CAF file specification. For this purpose, this specification
includes the User-Defined chunk type, which you can use to provide a unique universal identifier for your
custom chunk.

When parsing a CAF file, you should ignore any chunk with a UUID that you do not recognize.

User-Defined Chunk

If you define your own, custom chunk, you can use the User-Defined chunk type to assign a universally unique
ID to the chunk.

User-Defined Chunk Header

Table 3-25 shows the values for the fields in the User-Defined chunk header.

Table 2-25 CAF header field values for User-Defined Chunk

ValueField

‘uuid’mChunkType

The size of the data section plus 16 bytes for the UUID. Must always be validmChunkSize

In addition to the standard fields, the header of a custom chunk includes a universal identifier, as shown in
the CAF_UUID_ChunkHeader structure.

struct CAF_UUID_ChunkHeader
{
 CAFChunkHeader mHeader;
 UInt8 mUUID[16];
};
CAF_UUID_ChunkHeader CAF_UUID_ChunkHeader;

56 Extending the CAF Specification
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.smpte.org/smpte_store/standards/

mHeader
The standard CAF header with the values in Table 3-25.

mUUID
A unique univeral identifier (UUID), based on the ISO 14496-1 specification for UUID identifiers,
available from http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList.

User-Defined Chunk Data Section

Any data following the chunk header is defined by the custom chunk type. If the UUID chunk has dependencies
on the edit count of the Audio Data chunk, then the edit count should be stored after the mUUID field.

Extra Space

In many chunk types, you can specify a larger chunk size than is currently needed for data in order to reserve
additional space within the chunk. To reserve extra space in the CAF file as a whole, use a Free chunk.

Free Chunk

The optional Free chunk is for reserving space, or providing padding, in a CAF file. The contents of the Free
chunk data section have no significance and should be ignored.

Free Chunk Header

Table 3-26 shows the values for the fields in the Free chunk header.

Table 2-26 Free chunk header fields

ValueField

‘free’mChunkType

Must always be validmChunkSize

Set mChunkSize to the size of the data section you are using for reserved space.

Free Chunk Data Section

You should ignore the contents of the Free chunk data section.

Extra Space 57
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList

58 Extra Space
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Core Audio Format Specification

The time-of-day fields used by the Edit Comments chunk (“Edit Comments Chunk” (page 51)) and the
Information chunk (“Information Chunk” (page 52)) are based on the ISO 8601 specification for time-of-day
strings, available from http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList. Time-of-day symbols are
shown in Table A-1.

Table A-1 Symbols used in time-of-day formats

MeaningSymbol

4-digit yearYYYY

2-digit month (01=January, etc.)MM

2-digit day of month (01 through 31)DD

separator between date and time fragments‘T’

2-digit hour (00 through 23) (am/pm not allowed)hh

2-digit minute (00 through 59)mm

2-digit second (00 through 59)ss

Some example formats are:

Year
YYYY (2005)

Year and month
YYYY-MM (2005-07)

Complete date
YYYY-MM-DD (2005-07-16)

Complete date plus hours, minutes and seconds
YYYY-MM-DDThh:mm:ss (2005-07-16T19:20:30)

Note that the CAF specification’s use of this standard does not include fractional seconds.

59
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Time Of Day Data Format

http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList

60
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Time Of Day Data Format

This table describes the changes to Apple Core Audio Format Specification 1.0.

NotesDate

Corrected the description of the mStringStartByteOffset field.2006-03-08

New document that specifies the Apple Core Audio Format (CAF) for audio files.2005-06-04

61
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

62
2006-03-08 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Apple Core Audio Format Specification 1.0
	Contents
	Tables
	Introduction
	CAF File Overview
	CAF File Advantages
	CAF File Structure
	Chunk Structure
	Packets, Frames, and Samples

	Types of Chunks
	Required
	Channel Layout
	Supplementary Data
	Markers
	Music Metadata
	Support For Editors
	Annotations
	Identifier
	Extending CAF
	Extra Space

	Core Audio Format Specification
	Data Types
	CAF File Header and Chunk Headers
	CAF File Header
	CAF Chunk Header

	Required Chunks
	Audio Description Chunk
	Audio Description Chunk Header
	Audio Description Chunk Data Section
	mFormatID Field
	mFormatFlags Field
	Linear PCM
	Pulse Width Modulation
	Compressed Audio Formats

	Audio Data Chunk
	Audio Data Chunk Header
	Audio Data Chunk Data Section

	Packet Table Chunk
	Packet Table Chunk Header
	Packet Table Description
	Packet Table Chunk Data Section
	Constant Bit Rate Format
	Variable Bit Rate, Constant Frames per Packet

	Channel Layout
	Channel Layout Chunk
	Channel Layout Chunk Header
	Channel Layout Chunk Data Section
	Channel Bitmaps
	Channel Layout Tags
	Channel Description
	Label Codes for Channel Layouts
	Channel Flags for Channel Layouts

	Supplementary Data
	Magic Cookie Chunk
	Magic Cookie Chunk Header
	Magic Cookie Chunk Data Section

	Strings Chunk
	Strings Chunk Header
	Strings Chunk Data Section
	String ID

	Marker and Region Chunks
	Marker Data Types
	Marker Descriptions
	Marker Types
	SMPTE Timecode Types
	SMPTE Timestamps

	Marker Chunk
	Marker Chunk Header
	Marker Chunk Data Section

	Region Chunk
	Region Chunk Header
	Region Chunk Data Section
	Region Description
	Region Flags

	Music Metadata
	Instrument Chunk
	Instrument Chunk Header
	Instrument Chunk Data Section

	MIDI Chunk
	MIDI Chunk Header
	MIDI Chunk Data Section

	Audio Editor Support
	Overview Chunk
	Overview Chunk Header
	Overview Chunk Data Section
	Overview Sample

	Peak Chunk
	Peak Chunk Header
	Peak Chunk Data Section
	Peak Structure

	Annotations
	Edit Comments Chunk
	Edit Comments Chunk Header
	Edit Comments Chunk Data Section
	Edit Comment

	Information Chunk
	Information Chunk Header
	Information Chunk Data Section
	Information Entries
	Information Entry Keys

	Identifier
	Unique Material Identifier Chunk
	Unique Material Identifier Chunk Header
	Unique Material Identifier Chunk Data Section

	Extending the CAF Specification
	User-Defined Chunk
	User-Defined Chunk Header
	User-Defined Chunk Data Section

	Extra Space
	Free Chunk
	Free Chunk Header
	Free Chunk Data Section

	Appendix A: Time Of Day Data Format
	Revision History

