
Core Audio
(Legacy)

Audio

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, and Panther are trademarks of
Apple Inc., registered in the United States and
other countries.

iPhone is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Introduction 9

About Core Audio 9
Additional Resources 9

Chapter 2 Core Audio Overview 11

Apple’s Objectives 11
Introduction to Core Audio 12

Hardware Abstraction Layer (HAL) 12
Audio Unit 13
Audio Codec 13
Audio Toolbox 13
MIDI Services 14
Core Audio Types 14

Using Core Audio 14
Audio Data Operations 15
MIDI Data Operations 18
Higher Level Audio Operations 20
Interfacing with Hardware 22

Chapter 3 Audio Codec 25

Overview of Audio Codec 25
The ACCodec Class 25
The ACBaseCodec Class 25
The ACSimpleCodec Class 26
Miscellaneous Headers 26

Audio Codec Reference 26
Audio Codec Types 26
Audio Codec Constants 27
Audio Codec Properties 29
Base Classes 31
Audio Codec Result Codes 44

Chapter 4 Audio Toolbox 45

Overview of the Audio Toolbox 45
Audio Converter 45
Audio Format 45
Audio File 46
AUGraph 46

3
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Music Player and Music Sequence 46
Using the Audio Toolbox 47

Using Audio Converter 47
Using Audio Format 49
Using Audio File 50
Using AUGraph 52
Using Music Player and Music Sequence 54

Audio Toolbox Reference 58
Audio Converter Reference 58
Audio Format Reference 65
Audio File Reference 69
AUGraph Reference 80
Music Player and Music Sequence Reference 92

Chapter 5 Audio Units 123

Overview 123
The Audio Unit Framework 123
The Audio Unit API 123
Audio Unit State 124
Audio Unit Sources and Destinations 124
Audio Unit Properties 124
Audio Unit Parameters 125
I/O Management 125
Additional Information 126

Reference 126
Constants 126
Types 137
Structures 138
Functions 144
Callbacks 152

Chapter 6 Core Audio Types Reference 159

Audio Value Structures 159
AudioValueRange 159
AudioValueTranslation 159

Audio Buffer Structures 160
AudioBuffer 160
AudioBufferList 160

Audio Stream Basic Description 160
AudioStreamBasicDescription 160
Format IDs 161
Format Flags 161

Audio Stream Packet Description 162
AudioStreamPacketDescription 162

4
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

SMPTE Time 162
SMPTETime 162
SMPTE Types 163
SMPTE Time Stamps 163

Audio Time Stamp 163
AudioTimeStamp 163
Time Stamp Flags 163

Audio Channel Layouts 164
AudioChannelDescription 164
AudioChannelLayout 164
Defined Data Types 164
Channel Labels 165
Channel Bitmaps 166
Channel Flags 166
Channel Coordinates 166
Channel Layout Tags 167

Document Revision History 169

5
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

6
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 2 Core Audio Overview 11

Figure 2-1 The Core Audio Architecture 12
Figure 2-2 Reading in an audio file 15
Figure 2-3 Converting audio files 15
Figure 2-4 Playing back audio files 16
Figure 2-5 I/O unit hierarchy 16
Figure 2-6 Using an I/O unit for input and output 17
Figure 2-7 Audio Format Services 18
Figure 2-8 Reading in a standard MIDI file 18
Figure 2-9 Music Sequence play through 19
Figure 2-10 Music Sequence play through 19
Figure 2-11 MIDI device input 20
Figure 2-12 MIDI input parsing 20
Figure 2-13 MIDI synthesis and output 21
Figure 2-14 Mixing MIDI and audio data 22
Figure 2-15 Audio hardware architecture 23
Figure 2-16 MIDI hardware architecture 24

Chapter 4 Audio Toolbox 45

Table 4-1 Music Event Constants 98

7
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

8
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Important: The information in this document is obsolete and should not be used for new development.

This document has been replaced by Core Audio Overview and other audio documents in the ADC Reference
Library. For iPhone OS development, refer to Getting Started with Audio & Video. For Mac OS X development,
refer to Getting Started with Audio.

About Core Audio

Core Audio presents a multitiered set of API services that developers can take advantage of in their applications.
These range from low-level access to particular audio devices to sequencing and software-synthesis. The
MIDI services present the capabilities of a MIDI device, which allow an application to interface to a device
and manage and manipulate the MIDI data flow around the system.

These API services in Core Audio are presented in frameworks. A framework is a type of bundle that packages
a dynamic shared library with the resources that the library requires, including header files. A framework
bundle has an extension of .framework. Inside the bundle there can be multiple major versions of the
framework.

The executable code in a framework is a dynamic shared library. Multiple, concurrently running programs
can share the code in this library without requiring their own copy. As a packaging mechanism used by Mac
OS X, frameworks present the runtime library that your application can run against, and the header files that
you can use to link to.

Frameworks are implemented in C and C++ and present a C-based function API. There is also a Java API for
these audio system services. The Java API primarily presents a corresponding C function or structure as a
method on a Java class. There is as little overhead as possible in the interface of Java code to the underlying
C implementation. Everything in the C interface you can accomplish using Java.

Because the Java API so closely follows the C API, if you are a Java developer, you need to understand the
overall design of these frameworks in order to effectively use the provided services. The language choice is
up to you, depending upon your development needs and requirements.

Additional Resources

Apple provides a number of resources available to assist developers. These include:

 ■ The coreaudio-api mailing list: http://lists.apple.com/

 ■ The developer website: http://developer.apple.com/audio

 ■ Core Audio SDK: http://connect.apple.com

About Core Audio 9
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

http://lists.apple.com/
http://developer.apple.com/audio
http://connect.apple.com

 ■ Mac OS X development resources: http://developer.apple.com/macosx/

10 Additional Resources
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

http://developer.apple.com/macosx/

This chapter will provide you with an understanding of the architecture of Core Audio, and how the various
pieces fit together functionally.

Apple’s Objectives

In creating Core Audio, Apple’s objective in the audio space has been twofold. The primary goal is to deliver
a high-quality, superior audio experience for Macintosh users. The second objective reflects a shift in emphasis
from developers having to establish their own audio and MIDI protocols in their applications to Apple moving
ahead to assume responsibility for these services on the Macintosh platform.

Some of the key features of the Core Audio architecture available in Mac OS X include:

 ■ A flexible audio format

 ■ Multichannel audio I/O

 ■ Support for both PCM and non-PCM formats

 ■ 32-bit floating point native-endian PCM as the canonical format

 ■ Fully specifiable sample rates

 ■ Multiple application usage of audio devices

 ■ Application determined latency

 ■ Ubiquity of timing information

 ■ Both C and Java APIs

Figure 2-1 illustrates the Core Audio architecture in Mac OS X and its various building blocks.

Apple’s Objectives 11
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-1 The Core Audio Architecture

MIDI
Services

Audio
Toolbox

Audio Units

Audio Converter

Audio Format

Audio File

AUGraph

Music Player

Audio HAL

IOKit

Drivers

Hardware

The theory of operation behind the Core Audio architecture is discussed in subsequent chapters of this
document.

Introduction to Core Audio

Hardware Abstraction Layer (HAL)

Note: In its preliminary form, this document does not yet contain documentation for the Hardware Abstraction
Layer. The final document will contain information on this technology.

The Hardware Abstraction Layer (HAL) is presented in the Core Audio framework and defines the lowest level
of audio hardware access to the application. It presents the global properties of the system, such as the list
of available audio devices. It also contains an Audio Device object that allows the application to read input
data and write output data to an audio device that is represented by this object. It also provides the means
to manipulate and control the device through a property mechanism.

The service allows for devices that use PCM encoded data. For PCM devices, the generic format is 32-bit
floating point, maintaining a high resolution of the audio data regardless of the actual physical format of the
device. This is also the generic format of PCM data streams throughout the Core Audio API.

An audio stream object represents n-channels of interleaved samples that correspond to a particular I/O
end-point of the device itself. Some devices (for example, a card that has both digital and analog I/O) may
present more than one audio stream.

The service provides the scheduling and user/kernel transitions required to both deliver and produce audio
data to and from the audio device. Timing information is an essential component of this service; time stamps
are ubiquitous throughout both the audio and MIDI system. This provides the capability to know the state
of any particular sample (that is, “sample accurate timing”) of the device.

12 Introduction to Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Audio Unit

An audio unit is a single processing unit that either is a source of audio data (for example, a software
synthesizer), a destination of audio data (for example an audio unit that wraps an audio device), or both a
source and destination (for example a DSP unit, such as a reverb, that takes audio data and processes or
transforms this data).

The Audio Unit API uses a similar property mechanism as the Core Audio framework and use the same
structures for both the buffers of audio data and timing information. Audio unit also provides real-time
control capabilities, called parameters, that can be scheduled, allowing for changes in the audio rendering
to be scheduled to a particular sample offset within any given “slice” of an audio unit’s rendering process.

An application can use an AudioOutputUnit to interface to a device. The DefaultOutputAudioUnit
tracks the selection of a device by the user as the “default” output for audio, and provides additional services
such as sample rate conversion, to provide a simpler means of interfacing to an output device.

Audio Codec

Audio codecs are the encoders and decoders available to the system for audio compression and
decompression. Using the Audio Codec API for conversion between audio formats is deprecated in favor of
using the Audio Converter API, described in the “Audio Toolbox” (page 45) section.

Deploying an audio codec is performed by subclassing either the ACBaseCodec class or the ACSimpleCodec
class, both provided in the Core Audio SDK. Once subclassed, the abstract methods (those set equal to zero)
need to be provided, and the methods designated as virtual may be overridden as needed.

Audio Toolbox

This framework currently provides five primary services:

1. Audio Converter provides format conversion services. When encoding or decoding audio data, Audio
Converter should be utilized, as it allows for many different type and format conversions. It also allows
for conversions between linear PCM data and compressed audio data.

2. Audio Format is provided to help handle information about different audio formats. It is able to inspect
AudioStreamBasicDescription instances to provide information about various aspects of an audio
stream. Also, the Audio Format API can provide information about the encoders and decoders available
on the system.

3. Audio File provides file services for dealing with creating, opening, modifying, and saving audio files. It
features file-creation and format-specification capabilities, as well as reading and writing mechanisms
and the ability to open files in the file system. Audio File uses a property system to keeps track of a file’s
file format, data format, channel layout, and more.

4. AUGraph allows for the construction and management of a signal processing graph of Audio Units,
managing the connections and run-time state of the units that comprise a particular graph, including
run-time management of inserting or removing nodes. The ubiquitous timing information in the signal
chain deals with both feedback and fanning.

Introduction to Core Audio 13
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

5. Music Sequence services provide a sequence object made up of one or more tracks of music events
(both system-provided and user-defined). Track data can be edited while a sequence is playing, and its
data can be iterated over. A music sequence typically addresses a graph of audio units, where tracks can
be addressed to different nodes (audio units) of its graph, or a MIDI endpoint. A music player is responsible
for the playing of a sequence.

MIDI Services

Note: In its preliminary form, this document does not yet contain documentation for MIDI Services. Please
consult the Core Audio SDK, available from http://developer.apple.com/audio, for more information on
developing MIDI Services.

This framework provides the representation of MIDI hardware and the interapplication communication of
MIDI data to an application. The MIDIDevice object presents a MIDI-capable piece of hardware. A discrete
MIDI source or destination (16 channels of MIDI data) is represented by the MIDIEndpoint object. This may
be a real device or another application that is presented to your application as a virtual MIDIEndpoint, thus
providing the interapplication communication of MIDI data.

The framework provides the I/O service and hosts the drivers that are supplied by both Apple and third-party
companies to represent that hardware within the system.

Core Audio Types

Core Audio utilizes a series of structures and constants to encapsulate various pieces of information.
CoreAudioTypes.h includes these structures, used consistently throughout Core Audio:

 ■ AudioBufferList encapsulates buffer data.

 ■ AudioStreamBasicDescription encapsulates formatting information.

 ■ AudioTimeStamp holds time stamp information.

 ■ AudioChannelLayout specifies the layout of an audio sample’s layout.

In addition, many constants are declared, including channel layout constants, used in identifying the layout
of audio sources, and format ID constants, useful when specifying the format of the audio data.

Using Core Audio

There are many tasks that you can accomplish with Core Audio. This section will outline the architecture of
Core Audio, highlighting the various uses of Mac OS X’s audio technology.

14 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

http://developer.apple.com/audio

Audio Data Operations

One of the main functions of Core Audio is to work with and manipulate audio data, that is either stored on
disk or already in memory. Effects can be applied to the data, and data sources mixed. Beyond that, Core
Audio is also responsible for pulling data from input devices, and outputting data back out. Finally, data can
be put back out to disk as a file, and may be converted to another format.

Figure 2-2 Reading in an audio file

Hard diskMemory

Audio
File

Audio
UnitAudio Codec

Audio Converter

1 packet

1 frame

1 packet

1 frame

In order to use audio data from a file, it first must be read in. The Audio File API is provided for this purpose.
An audio file instance can be created to act as a proxy for the file on disk, or for a buffer in memory (using
callbacks).

Once the audio file has been created and bound to a file or memory, its data can be read in. If the data in
the file is encoded, an audio converter is needed to convert the data into 32 bit floating-point Pulse Code
Modulated (PCM) native-endian data, also known as the canonical format. Once the data is in this format, it
is ready to be used in an audio unit or by another portion of Core Audio.

It is worth noting that an audio converter instance inherently uses the audio codecs available on the system.
Using an audio codec directly for this kind of data conversion is discouraged, since the Audio Converter API
takes care of the actual buffering and other considerations that need to be considered during a conversion.

To write a file back out to disk, simply reverse this process. Data output in the canonical format can be
converted to an encoded format with an audio converter, and then saved to disk or memory via the Audio
File API.

Figure 2-3 Converting audio files

Hard diskMemory

Audio
File

Audio
FileAudio Codec

Audio Converter

Converting a file uses a process similar to the previous example. The Audio File API is used to open the file
off of disk, an audio converter takes the incoming data and converts it to the desired format, and another
audio file instance is used to save the data out to disk. Again, the codecs needed to decode the incoming

Using Core Audio 15
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

data and encode the outgoing data are used automatically by the converter; for instance, it is not necessary
for you to read in the encoded data, convert it to the canonical format, and then encode it in the resulting
format before writing it out. This service provided by the Audio Converter API.

Figure 2-4 Playing back audio files

Hard diskMemory

Audio
File

Audio Codec

Audio Converter

Audio
Device

I/O Unit

1 packet

1 frame

1 packet

1 frame

Playing back the contents of an audio file is one of the most common tasks that developers perform. In Core
Audio, this is accomplished by reading in the data using an audio file instance. Once the instance is set up,
an I/O unit instance can pull on the file, extracting the audio data and outputting it to the assigned audio
device. If the data is encoded in the canonical format, no further decoding is needed to output the sound.
If the data is encoded, it will need to be converted into the canonical format before it can be played back.

An I/O unit is a type of audio unit that acts as a proxy for an audio device. When data is sent to it, it will be
relayed to the device that it represents. The most common use of this is to send data to the default output,
as specified by the user. The unit to use in this case is the Default Output unit. A System Output unit is
also provided, which is discussed is the next example.

Figure 2-5 I/O unit hierarchy

GenericOutput

AUConverter
Audio Codec

Audio Converter

AUHAL

Default
Output

Unit

System
Output

16 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Each I/O unit inherits from AUConverter, an audio unit which owns an audio converter instance; this unit
can be used in a graph to convert data between formats, sample rates, and the like. A GenericOutput unit
implements adds the ability to start and stop the pulling of data to the output device.

When playing out to any piece of hardware, an AUHAL unit is needed. An instance of AUHAL can be attached
to any audio device, making the instance a proxy for getting input and providing output to that device.

The Default Output unit is provided to play audio out to the user’s prefered output, as designated in the
System Preferences. Likewise, the System Output unit is provided to play back to the current system out
device.

Figure 2-6 Using an I/O unit for input and output

Audio Device

Audio
Unit

I/O Unit

0

0

0

0

1

1

Any of these I/O units may be used to pull input data from its associated audio device, through any number
or combination of audio units or audio unit graphs, and output back through the I/O unit. The I/O unit itself
has two busses: 0 and 1, where the 0 bus is designated as the output, and the 1 bus is the input bus. The
connections between the output of the 0 bus and the audio device and the input of the 1 bus and the audio
device are made when the unit is associated with the device.

To process data from a device and play it back through, simply associate the device with the unit, connect
the output of the 1 bus with whatever audio units or graphs are being used to process the data, and connect
the output of those units to the input of the 0 bus on the I/O unit. To start the render, tell the I/O unit to
render. This, in turn, will cause the unit to ask the units attached to it to render, eventually leading back to
the I/O unit’s input bus, which will pull from the audio device. The data will pass through the input bus and
will work its way through all of the attached units until it reaches the I/O units output bus, where it will
automatically be output to the audio device.

Using Core Audio 17
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-7 Audio Format Services

AudioFormatGetProperty()

AudioFileGetGlobalProperty()

Audio Codec

Audio File

Audio Converter

Matrix Mixer

Available File Formats

AudioStreamBasicDescriptionAudio Format Services

AudioChannelLayout

Panning Information

Available Codec Formats

When working with streams of audio data, information about the data and the formats that the system has
available become important. The Audio Format API provides a mechanism to get information about audio
data, like the available codecs for encoding and decoding information, the encoding information for channel
layouts, and panning information for use with the Matrix Mixer audio unit. Also, the Audio File API provides
a function useful for determining the available file formats on the system.

MIDI Data Operations

MIDI stands for Music Instrument Digital Interface. Established as the standard method of communication
between music devices, Core Audio features full-fledged MIDI support, including provisions for communication
with MIDI devices and reading-in and playback of standard MIDI files.

Figure 2-8 Reading in a standard MIDI file

Music Sequence

Music Player

Tempo Track

Event Track
SMF

The Music Sequence API is provided to sequence events for MIDI endpoints and audio units. One of its
functions, though, is the ability to read in MIDI files and parse their contents into its tracks. Normally, each
channel of MIDI data in the file can be made into one track in the sequence, allowing each track, and therefore,
each channel of data, to be targeted at a different MIDI endpoint.

18 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-9 Music Sequence play through

AUGraph

Music Sequence

Tempo Track

Music Player

Compressor

Music Device

I/O Unit

Audio
Device

Event Track

To playback the MIDI file as audio data, a music player is assigned to a sequence, and the sequence’s tracks
are assigned to a music device. A music device is a particular type of audio unit that generates audio data
by having its parameters altered; in this case, the event track is assigned to a music device which is part of
a graph, and the events in that track contain the parameter changes needed to affect the output of the music
device. The graph itself is assigned to a sequence, so that the sequence knows which instances its tracks are
assigned to. Beyond that, the music player assigned to the sequence communicates with the I/O unit at the
head of the graph, to ensure that all timing issues for outputting sound to the unit’s assigned device are
taken care of. This is done inherently when the sequence is assigned to the graph, and so no extra steps
need to be taken in order for this synchronization to happen. The compressor is included in order to make
sure a constant stream of data is being supplied to the I/O unit.

Figure 2-10 Music Sequence play through

Music Sequence

Music Player

Core MIDI

MIDI
Server

Tempo Track

Event Track MIDI Endpoint

To play MIDI data back through an attached MIDI device, an event track needs to be assigned to a MIDI
endpoint, a proxy for a MIDI device. As with the previous example, the music player will inherently
communicate with Core MIDI to ensure all timing issues are solved and that a constant amount of data is
being fed to the MIDI sever, and therefore, the MIDI device.

Using Core Audio 19
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-11 MIDI device input

Core MIDIMIDI Server

AUMIDI
Controller

AUMIDI
Controller

Audio
Unit

Music
Device

MIDI Driver

MIDI Driver MIDI Endpoint

MIDI Endpoint

When a MIDI control surface is being used to control the properties of a software component, like an audio
unit, it will be assigned to an endpoint, which in turn, is assigned to an AUMIDIController, which will parse
the incoming MIDI signals into parameter changes for use with an audio unit.

To playback the signals generated by a MIDI keyboard, a similar scheme is used. An endpoint is assigned to
the keyboard, and the signals coming from the keyboard are assigned to an AUMIDIController, which, in
turn, will issue parameter changes to a music device. The music device will synthesize the audio data, based
on the parameters given to it via the AUMIDIController.

Figure 2-12 MIDI input parsing

Core MIDI

AUGraph

Music Sequence

Tempo Track

Music Player

Compressor

Music Device

I/O Unit

Audio
Device

Event Track

Event Track MIDI Endpoint

MIDI
Server

To take in MIDI data for saving, it is common to have already-existing data playing, while new data comes
in and is recorded. The playback of existing data is handled as before, with the track being assigned to a
music device, which outputs its data, via a graph, to an I/O unit. Beyond that, however, the data coming in
from any MIDI device needs to be parsed and placed in another event track within the sequence. The Music
Player API provides functions for determining when to place the events, based on the time the event happens.

Higher Level Audio Operations

Often, elements from the audio data operations and the MIDI data operations come together to provide a
complete audio experience. These examples look at some cases where MIDI data is synthesized and also
output to a MIDI device concurrently, or when events control a music device’s synthesis of audio data and
the parameters of an audio unit, all while mixing in data from an encoded file being read off of disk.

20 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-13 MIDI synthesis and output

Core MIDI

MIDI
Server

AUGraph

Music Sequence

Tempo Track

Music Player

Compressor

Music Device

I/O Unit

Audio
Device

Event Track

Event Track

Event Track

MIDI Endpoint

MIDI Endpoint

In this example, you can see a music sequence being used to control the synthesis of sound, via an audio
unit graph containing a music device, while additional events are sent to a MIDI endpoint, which, in turn,
are assigned to MIDI devices. This is common when using the Mac as another MIDI device, generating
synthesized data to accompany an external MIDI device. Note that the music player automatically takes care
of all timing issues between the different outputs, ensuring that the output remains in sync.

Using Core Audio 21
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-14 Mixing MIDI and audio data

AUGraph

Audio
Unit

Music
Device

Audio
File

Hard diskMemory

Audio Codec

Audio Converter

Music Sequence

Tempo Track

Music Player

3D Mixer

I/O Unit

Audio
Device

Event Track

Event Track

Event Track

This example focuses on an audio unit graph, which is used to mix synthesized MIDI data, via a music device,
and audio data coming in from a file. This scenario is common in gaming situations, where ambient noises
are saved as MIDI data, and the sound track is an encoded file on disk. Note that the sequence controls a 3D
Mixer audio unit, often used to mix various audio sources and to provide a spacial orientation for the sources
and the output. As with the previous example, the music player will ensure that the output is in sync with
the sequence.

Interfacing with Hardware

Most of the processing done with audio and MIDI data in Core Audio will eventually be played back via audio
or MIDI hardware. As a developer, it will be helpful to you if you understand the architecture behind the
hardware interfaces, even if an abstraction is used when developing an application.

22 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-15 Audio hardware architecture

Audio
Device

HAL

IO Audio
Family

Audio
Device

Audio
Device

Audio
Device

User

Kernel

IO Audio
Device

IO Kit
Driver

IO Audio
Device

IO Kit
Driver

IO Audio
Device

IO Kit
Driver

IO Audio
Device

IO Kit
Driver

When accessing audio hardware, whether it be via on-board audio inputs and outputs, USB, or other means,
a driver must exist to handle the exchange of data between the hardware and the Mac. In order for the driver
to be used by Core Audio, it must conform to the IO Audio Family of IOKit drivers; this means that the
driver music implement IO Audio Device functionality within the driver, in order for proper communication
to exist between itself and the Hardware Abstraction Layer.

The Hardware Abstraction Layer, or HAL, is provided to make discovery and access to audio hardware simpler.
Each driver in the IO Audio Family is represented as an audio device in the HAL. To make communication
with audio devices easier, and I/O unit may created and bound to an audio device, allowing a device to be
used as a source, destination, or both in connections with audio units and audio unit graphs. This is common
and encouraged when working with audio hardware.

Using Core Audio 23
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

Figure 2-16 MIDI hardware architecture

FireWire
User
Client

IO FireWire
Device

IO Kit
Driver

User

Kernel

MIDI Server

MIDI Driver

IO FireWire
Family

USB
User
Client

IO USB
Device

IO Kit
Driver

MIDI Driver

IO USB
Family

IO Kit
User
Client

IO PCI
Device

IO Kit
Driver

MIDI Driver

IO PCI
Family

The MIDI hardware architecture is different than that of audio hardware, in that MIDI drivers are in user space,
usually working with default drivers provided by the operating system. This means that raw incoming and
outgoing data is passed between the hardware and the MIDI driver, and the MIDI driver takes care of the
formatting and preparation of the data. The MIDI Server than works with Core MIDI, routing MIDI data via
endpoints, the abstraction provided to allow for easy access to MIDI devices.

24 Using Core Audio
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Audio Overview

This chapter discusses audio codec development using the Audio Codec API. The section “Audio Codec
Reference” (page 26) describes the constants, data types, and functions that are relevant to audio codec
development.

Overview of Audio Codec

Audio codecs are encoders and decoders provided by Apple or third-party developers for the purpose of
compressing and decompressing audio streams into and from encoded formats. While codec use is encouraged,
normal use should be performed through the “Audio Converter” (page 45).

Before developing an audio codec for Mac OS X, install the Core Audio SDK, available from http://develop-
er.apple.com/audio/.

Of particular interest are the contents of /AudioCodecs/ACPublic/, in the installed SDK.

The ACCodec Class

ACCodec is an abstract class that defines the basic methods that an audio codec must implement. At the
very least, all codecs must subclass ACCodec to provide basic services for those who wish to use the codec,
based on standard methods of communication expected of them. However, two subclasses of ACCodec are
provided, which implement many of this class’s abstract methods for your convenience.

The ACBaseCodec Class

ACBaseCodec is a subclass of ACCodec and provides many of the services needed by most codecs to interact
with codec clients. Property management is fully implemented in ACBaseCodec but you may override it as
needed. Also, this class provides format management for input and outputs, including getting and setting
the number of input and output formats, and getting and setting the AudioStreamBasicDescription
format information for inputs and outputs.

ACBaseCodec does not implement a buffer for the codec, however, and you must implement all methods
pertaining to buffer usage, depending on your chosen buffer size and implementation.

When developing an audio codec, you must subclass ACBaseCodec.

Overview of Audio Codec 25
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

http://developer.apple.com/audio/
http://developer.apple.com/audio/

The ACSimpleCodec Class

ACSimpleCodec, a subclass of ACBaseCodec, provides a ring buffer implementation with a variable buffer
size providing for reallocation of the buffer. This class is provided as a convenience for you in cases where
you don’t need a custom buffering scheme. When developing a codec, you don’t need to subclass
ACSimpleCodec, so long as you provide a buffering scheme.

Miscellaneous Headers

Inside /AudioCodecs/ACPublic/ are other headers that need not be modified but are necessary for the
operation of a codec, and therefore are included in order for the codec to operate properly:

 ■ ACConditionalMacros.h. This header helps determine which system headers need to be included at
compile time.

 ■ ACCodecDispatch.h. An implementation of an audio codec component dispatch method.

 ■ ACCodecDispatchTypes.h. Glue that helps ACCodecDispatch work properly on various platforms.

Audio Codec Reference

This reference section describes the methods that need to be implemented in order to deploy an audio codec
component for Mac OS X.

Note: The term “magic cookie” is used in this reference section. A magic cookie refers to header information
(usually a vector of bits) that is placed at the beginning of most audio files and contains information vital for
the codec.

Audio Codec Types

Defined Data Types

Typedefs are used for naming convenience, in an effort to make information stored in generic variables more
easily recognizable. There are two typedefs in AudioCodec.h:

 ■ typedef ComponentInstance AudioCodec

 ■ typedef UInt32 AudioCodecPropertyID

Data Structures

AudioStreamLoudnessStatistics
Encapsulates various pieces of information with regards to the loudness of the stream currently in use.

26 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

typedef struct AudioStreamLoudnessStatistics {
Float64 mAveragePerceivedPowerCoefficient;
Float64 mMaximumPerceivedPowerCoefficient;
UInt64 mMaximumPerceivedPowerPacketOffset;
Float32 mPeakAmplitude;
UInt32 mReserved;
UInt64 mPeakAmplitudeSampleOffset;
} AudioStreamLoudnessStatistics;

Discussion
An instance of this structure is returned when the kAudioCodecPropertyCurrentLoudnessStatistics
property is queried. The mAveragePercievedPowerCoefficient and
mMaximumPercievedPowerCoefficient are a normalized value on a scale of 0 to 1, while
mMaximumPerceivedPowerPacketOffset specifies the power’s offset. The mPeakAmplitude value is the
largest sample value in the entire audio stream. mPeakAmplitudeSampleOffset is the number of the
sample where the peak is found.

Availability
Available in Mac OS X v10.3 through Mac OS X v10.4.

Declared In
AudioCodec.h

AudioCodecPrimeInfo
Holds information about leading and following frames for a stream of data.

typedef struct AudioCodecPrimeInfo {
UInt32 leadingFrames;
UInt32 trailingFrames;
} AudioCodecPrimeInfo;

Discussion
Many times, an audio stream has audio data that fixes and appends the actual content that needs to be
encoded or decoded, based on the codec’s implementation. This structure holds how many leading and
trailing frames there are. A pointer to an instance of this structure is accessible via the
kAudioCodecPrimeInfo property.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioCodec.h

Audio Codec Constants

Constants are used throughout the Audio Codec API to provide information required by the Component
Manager in order to function or to work in conjunction with properties to describe a state or setting.

Component Identifiers

Identifies the codec for the Component Manager.

Audio Codec Reference 27
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

kAudioDecoderComponentType = ‘adec’
The identifier for a codec that translates data in some format into linear PCM. The subtype of this
codec specifies the format of the incoming data.

kAudioEncoderComponentType = ‘aenc’
The identifier for a codec that translates data from linear PCM into the codec’s specified output format.
The subtype of this codec specifies the format of the outgoing data.

kAudioUnityCodecComponentType = ‘acdc’
The identifier for a codec that translates data between different types of the same format. The subtype
of this codec specifies the format ID of the format that is being converted between.

Quality Settings

Specify the relative quality of a codec. The values are arbitrary and are provided as a suggestion. You can
add more quality setting constants, or ignore them.

kAudioCodecQuality_Max = 0x7F
The maximum value allowed for the codec.

kAudioCodecQuality_High = 0x60
A high quality setting.

kAudioCodecQuality_Medium = 0x40
A medium quality setting.

kAudioCodecQuality_Low = 0x20
A low quality setting.

kAudioCodecQuality_Min = 0
The minimum quality setting allowed for the codec.

These constants are used by the kAudioCodecPropertyQualitySetting property. They are arbitrary and
are provided as a suggestion. You can add more quality setting constants or ignore them altogether.

Priming Selectors

Specify the priming method use.

kAudioCodecPrimeMethod_Pre = 0
The codec primes with the leading and trailing input frames.

kAudioCodecPrimeMethod_Normal = 1
The codec primes with the trailing input frames only; all leading frames are assumed to be silence.

kAudioCodecPrimeMethod_None = 2
The codec does not prime; both leading and trailing frames are assumed to be silent.

These constants are used with the kAudioCodecPrimeMethod property. The number of frames that are
used in priming is stored in the AudioCodecPrimeInfo (page 27) structure, which is accessible through
the kAudioCodecPrimeInfo property.

Output Packet Status Constants

When using the ProduceOutputPackets()method to pull data through the codec, one of the parameters,
outStatus, has a value that reflects the state of the encode or decode after the pull has occurred. These
are the possible values:

28 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

kAudioCodecProduceOutputPacketFailure = 1
There was an error processing the data; check ioNumberPackets to see how many packets were
processed.

kAudioCodecProduceOutputPacketSuccess = 2
The requested packets were processed successfully and to completion.

kAudioCodecProduceOutputPacketSuccessHasMore = 3
The requested packets were processed successfully, and there are more left to process.

kAudioCodecProduceOutputPacketNeedsMoreInputData = 4
There was not enough data to produce the requested number of packets; check ioNumberPackets
to see how many were produced.

kAudioCodecProduceOutputPacketAtEOF = 5
An end-of-file was encountered during processing, and therefore the requested number of packets
were not produced; check ioNumberPackets to see how many were produced.

Audio Codec Properties

The property management system keeps track of information about the codec’s operation, settings, and
capabilities. These are used in conjunction with GetPropertyInfo (page 35), GetProperty (page 36),
and SetProperty (page 36).

kAudioCodecPropertyNameCFString = 'lnam'
Returns a CFStringRef with the name of the codec’s format.

kAudioCodecPropertyManufacturerCFString = 'lmak'
Returns a CFStringRef with the name of the codec’s manufacturer.

kAudioCodecPropertyRequiresPacketDescription = 'pakd'
Returns a UInt32 where a value of 1 means that the codec requires an
AudioStreamPacketDescription (page 162) to be supplied with any data in the format. If 0 is
returned, AudioStreamPacketDescription is not needed. This property is used primary in the
AppendInputData (page 43) method.

kAudioCodecPropertyPacketFrameSize = 'pakf'
Passes back a UInt32 that reflects the number of frames of audio data in each packet of data in the
codec’s format. The value is for an encoder’s input or a decoder’s output. Note that this value may
be queried only after a codec’s initialization.

kAudioCodecPropertyHasVariablePacketByteSizes = 'vpk?'
Returns a UInt32 where a value of 0 indicates that all of the packets in the codec’s format have the
same byte size, whereas a value of 1 indicates that the packets vary in size.

kAudioCodecPropertyMaximumPacketByteSize = 'pakb'
If the codec’s format has a constant packet size, this value will be the number of bytes in a packet of
the codec’s format; if the format has a variable bit rate, this value will be the number of bytes in the
largest of the packets in the codec’s format.

kAudioCodecPropertyCurrentInputFormat = 'ifmt'
Returns an AudioStreamBasicDescription (page 160) describing the current input format for the
codec.

kAudioCodecPropertySupportedInputFormats = 'ifm#'
Returns anAudioStreamBasicDescription (page 160) array describing the input formats supported
by the codec.

Audio Codec Reference 29
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

kAudioCodecPropertyCurrentOutputFormat = 'ofmt'
Returns an AudioStreamBasicDescription (page 160) describing the current output format for
the codec.

kAudioCodecPropertySupportedOutputFormats = 'ofm#'
Returns an array of AudioStreamBasicDescription (page 160) describing the output formats
supported by the codec.

kAudioCodecPropertyMagicCookie = 'kuki'
Returns an untyped buffer of configuration data the codec requires to process the stream of data.
Note that not every codec requires a magic cookie.

kAudioCodecPropertyInputBufferSize = 'tbuf'
Returns a UInt32 that contains the maximum input buffer size for the codec, in bytes.

kAudioCodecPropertyUsedInputBufferSize = 'ubuf'
Returns a UInt32 that contains the number of bytes currently in use in the buffer.

kAudioCodecPropertyIsInitialized = 'init'
Returns a UInt32 where a value of 0 means the codec is initialized, while any other value means the
codec is initialized.

kAudioCodecPropertyCurrentTargetBitRate = 'brat'
A UInt32 containing the number of bits per second to aim for when encoding data. This property is
only relevant to encoders.

kAudioCodecPropertyAvailableBitRates = 'brt#'
A UInt32 array containing the target bit rates supported by the encoder. Note that use of this property
is deprecated in favor of kAudioCodecPropertyAvailableBitRateRange.

kAudioCodecPropertyCurrentInputSampleRate = 'cisr'
Passes back a Float64 containing current input sample rate in Hz.

kAudioCodecPropertyCurrentOutputSampleRate = 'cosr'
Passes back a Float64 containing current output sample rate in Hz.

kAudioCodecPropertyAvailableInputSampleRates = 'aisr'
Returns an array of AudioValueRange (page 159) structures indicating the valid ranges for the input
sample rate of the codec for the current bit rate.

kAudioCodecPropertyAvailableOutputSampleRates = 'aosr'
Returns an array of AudioValueRange (page 159) structures indicating the valid ranges for the output
sample rates of the codec for the current bit rate.

kAudioCodecPropertyQualitySetting = 'srcq'
Returns a value to indicate the relative value of the codec’s encoding or decoding quality; see “Quality
Settings” (page 28) for possible values.

kAudioCodecPropertyCurrentLoudnessStatistics = 'loud'
Passes back a reference to an AudioStreamLoudnessStatistics (page 26) array that provides
statistics about the loudness of each channel in the stream of data being processed by the codec.
Note that this property can be queried only when the codec is initialized. Until data has actually
moved through it, the values are all defaults.

kAudioCodecPropertyAvailableBitRateRange = 'abrt'
Returns an array of AudioValueRange (page 159) structures that represents the target bit rates
supported by the encoder.

kAudioCodecPropertyApplicableBitRateRange = 'brta'
Returns an array of AudioValueRange (page 159) structures that represents the target bit rates
supported by the encoder as it is currently configured.

30 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

kAudioCodecPropertyApplicableInputSampleRates = 'isra'
Returns an array of AudioValueRange (page 159) structures that represents the valid ranges for the
input sample rates of the codec for the current bit rate.

kAudioCodecPropertyApplicableOutputSampleRates = 'osra'
Returns an array of AudioValueRange (page 159) structures that represents the valid ranges for the
output sample rates of the codec for the current bit rate.

kAudioCodecPropertyMinimumNumberInputPackets = 'mnip'
Returns a UInt32 reflecting the minimum number of packets that need to be supplied to the codec.

kAudioCodecPropertyMinimumNumberOutputPackets = 'mnop'
Returns a UInt32 indicating the minimum number of output packets that need to be handled from
the codec.

kAudioCodecPropertyZeroFramesPadded = 'pad0'
Returns a UInt32 indicating the number of zeroes (samples) that were appended to the last packet
of input data to make it a complete packet.

kAudioCodecPropertyChannelLayout = 'cmap'
Returns an array of AudioChannelLayout (page 164) structures that specifies the channel layout
that the codec is using.

kAudioCodecPropertyAvailableChannelLayouts = 'cmp#'
Returns an array of AudioChannelLayout (page 164) structures array that contains the channel
layouts the codec is capable of using.

kAudioCodecPrimeMethod = 'prmm'
Passes back a kAudioCodecPrimeMethod constant specifying the priming method currently used
by the codec. See “Priming Selectors” (page 28) for possible values.

kAudioCodecPrimeInfo = 'prim'
Uses a pointer to an instance of AudioCodecPrimeInfo (page 27) to specify the leading and trailing
number of frames used in priming.

Base Classes

There are three classes provided in the Audio Codec SDK, located in /AudioCodecs/ACPublic/, one of
which must be subclassed when developing a codec: ACCodec, ACBaseCodec, and ACSimpleCodec. It is
strongly advised that the developer subclass ACBaseCodec over ACCodecwhen developing an audio codec,
since it provides many of the property and format management feature required of an audio codec. Note
that abstract methods that exist in ACCodec must be implemented in subclasses of ACBaseCodec and
ACSimpleCodec.

ACCodec

ACCodec defines the basic methods which any audio codec must implement to be used in Mac OS X. Most
of the methods belonging to ACCodec are abstract, since they need to customized by the codec developer
for the codec being implemented. Please note that many of these methods are implemented by ACBaseCodec
and ACSimpleCodec.

Construction and Destruction

Constructors and destructors should be implemented for the codec as needed, and should at least allocate
the needed buffer space for the codec and deallocate the space upon the codec’s destruction.

Audio Codec Reference 31
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Property Management

These methods provide access to the property management system, which keeps track of various pieces of
information about the codec. Their implementation is required since other components in Core Audio rely
on their existence. Note that ACBaseCodec contains implementations of these methods that are adequate
for most uses.

GetPropertyInfo
Passes back the size of the property data belonging to inPropertyID, and its writable state.

virtual void GetPropertyInfo(
AudioCodecPropertyID inPropertyID,
UInt32& outSize,
bool& outWritable
) = 0

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
AudioUnit.k.h

GetProperty
Passes the property data belonging to inPropertyID into outPropertyData.

virtual void GetProperty(
AudioCodecPropertyID inPropertyID,
UInt32& ioPropertyDataSize,
void* outPropertyData
) = 0

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.k.h

SetProperty
Takes inPropertyData and sets it to the property data belonging to inPropertyID.

virtual void SetProperty(
AudioCodecPropertyID inPropertyID,
UInt32 inPropertyDataSize,
const void* inPropertyData
) = 0

Availability
Available in Mac OS X v10.0 and later.

32 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Declared In
Movies.k.h

Data Handling

The Data Handling methods deal with getting data into, processed, and out of the audio codec. All of these
methods are abstract and must be implemented by subclasses of ACCodec.

Initialize
Specifies the input and output formats for the data coming into and going out of the codec, as well as the
magic cookie for the data currently being encoded or decoded.

virtual void Initialize(
const AudioStreamBasicDescription* inInputFormat,
const AudioStreamBasicDescription* inOutputFormat,
const void* inMagicCookie,
UInt32 inMagicCookieByteSize
) = 0

Discussion
When a codec is initialized, all of its properties should be locked, so that they may not be changed during
the encoding or decoding. Note that a codec may be used only after it is initialized.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.k.h

Uninitialize
Unlocks the codec, so that its properties may be altered.

virtual void Uninitialize() = 0

Discussion
An audio codec that has been uninitialized may not be used to encode or decode data, since its properties
may be altered at any time.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
AudioUnit.k.h

AppendInputData
Passes in data to placed in the buffer for encoding or decoding.

Audio Codec Reference 33
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

virtual void AppendInputData(
const void* inInputData,
UInt32& ioInputDataByteSize,
UInt32& ioNumberPackets,
const AudioStreamPacketDescription* inPacketDescription
) = 0

Discussion
Here, inInputData is the data that should be put in the input buffer, and the rest of the parameters describe
the size and nature of the data.

ProduceOutputPackets
Runs the codec and returns encoded or decoded data.

virtual UInt32 ProduceOutputPackets(
void* outOutputData,
UInt32& ioOutputDataByteSize,
UInt32& ioNumberPackets,
AudioStreamPacketDescription* outPacketDescription
UInt32& outStatus,
) = 0

Discussion
Calling ProduceOutputPackets() should pull ioNumberPackets from the buffer, encode or decoded
them, and place them in outOutputData. The value of outStatus should be based on the
kAudioCodecProduceOutputPacket set of enumerated values, informing the caller if the encode or decode
failed, was a success, was a success and has more to encode or decode, was partially successful, yet needed
more input, or was at the end of the file.

Reset
Clears out the codec’s input buffer and returns any state info to its initial settings.

virtual void Reset() = 0

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.k.h

Component Support

An audio codec is a Component, and therefore, needs to be accessible from the Component Manager in
order for an application to use it. These methods perform duties that Components must perform in order to
be used.

Register
Registers the audio codec with the Component Manager.

34 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

virtual bool Register() const

Discussion
This method is provided in ACCodec and usually does not need to be overridden; however, Register() is
virtual, should this be necessary.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Components.k.h

GetVersion
Returns the version number of the codec.

virtual UInt32 GetVersion() const

Discussion
This method should be overridden to reflect the version number of the codec; however, this is not required
of the codec, only recommended.

ACBaseCodec

ACBaseCodec is provided as a base for building new audio codec components. It provides all of the Property
Management features required of an audio codec, as well as most Format Management methods. Use of
ACBaseCodec is encouraged when the audio codec being developed has its own custom buffering scheme,
and would not benefit from the ring buffer already provided for in ACSimpleCodec.

Construction and Destruction

Constructors and destructors should be developed as needed, and may allocate the needed buffer space for
the codec. Also, AddInputFormat (page 41) and AddOutputFormat (page 41) should be called from a
constructor to set up descriptions for the codec’s supported formats.

Property Management

These methods are required of an audio codec and are implemented for developer convenience in
ACBaseCodec. While overriding these methods is possible, it is usually not necessary.

GetPropertyInfo
Takes in an AudioCodecPropertyID, and, by reference, passes back the size of the property data, and a
flag telling if the property is writable.

Audio Codec Reference 35
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

virtual void GetPropertyInfo(
AudioCodecPropertyID inPropertyID,
UInt32& outPropertyDataSize,
bool& outWritable
)

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
AudioUnit.k.h

GetProperty
Takes in a AudioCodecPropertyID, the property data size (attained using GetPropertySize()), and a
void pointer for the resulting data.

virtual void GetProperty(
AudioCodecPropertyID inPropertyID,
UInt32& ioPropertyDataSize,
void* outPropertyData)

Discussion
inPropertyID corresponds to any of the properties listed in the Audio Codec Properties (page 29)
section. For the outPropertyData parameter, pass in a void pointer, and the data promised for the property
will be passed back into the pointer, typecast to the appropriate type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.k.h

SetProperty
Takes in the AudioCodecPropertyID of the property to be set, the size of the data to be set, and a void
pointer to the data.

virtual void SetProperty(
AudioCodecPropertyID inPropertyID,
UInt32 inPropertyDataSize,
const void* inPropertyData
)

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.k.h

36 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Data Handling

These methods are used for initialization, uninitialization, and like-minded methods for a codec. Many of
these methods may be left as implemented in ACBaseCodec, but may be overridden as needed. Note that
some methods are abstract, meaning that, in an ACBaseCodec subclass, they must be implemented.

IsInitialized
Returns the value of mIsInitialized, which should be set in Initialize() and Uninitialize().

bool IsInitialized() const { return mIsInitialized; }

Initialize
Passes in an input and output format, the codec’s magic cookie, and the cookie’s size.

virtual void Initialize(
const AudioStreamBasicDescription* inInputFormat,
const AudioStreamBasicDescription* inOutputFormat,
const void* inMagicCookie,
UInt32 inMagicCookieByteSize)

Discussion
The purpose of Initialize() is to provide a mechanism for the codec user to specify the formats of the
incoming and outgoing data, the proper data for the magic cookie, and the size of the magic cookie. Initializing
a codec should lock it so that none of its attributes maybe changed. Note that encoding and decoding should
only commence after the codec is initialized

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.k.h

Uninitialize
Unlocks the codec, so that its attributes may be modified.

virtual void Uninitialize()

Discussion
Note that no encoding or decoding should be allowed when an audio codec is uninitialized.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
AudioUnit.k.h

Audio Codec Reference 37
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Reset
Clears out the codec’s buffer and returns it to the post-initialized state.

virtual void Reset()

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.k.h

GetInputBufferSize
Returns the current input buffer size as a UInt32.

virtual UInt32 GetInputBufferByteSize() const = 0

Discussion
This abstract method must be implemented by any subclass of ACBasicCodec, since the return value is
dependant on the buffer size used in the buffer scheme implemented by the developer.

GetUsedInputBufferSize
Returns a UInt32 which reflects how much of the input buffer is currently filled up.

virtual UInt32 GetUsedInputBufferByteSize() const = 0

Discussion
This abstract method must be implemented by any subclass of ACBasicCodec.

ReallocateInputBuffer
Resizes the buffer to inInputBufferSize.

virtual void ReallocateInputBuffer(UInt32 inInputBufferByteSize) = 0

Discussion
For codecs which implement user-definable input buffer sizes, ReallocateInputBuffer() is a mechanism
which allows for resizing of the input buffer.

Format Management

This portion of ACBaseCodec focuses on keeping track of the formats that a codec can decode and encode.
If should be noted that while none of these methods are declared abstract, it would be advantageous to
override some of them; conversely, some of these methods are not virtual, so what ACBasicCodec implements
for them is adequate.

GetNumberSupportedInputFormats
Counts and returns the number of formats that the codec supports.

38 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

UInt32 GetNumberSupportedInputFormats() const

GetSupportedInputFormats
Passes back an array of the supported input formats for this codec.

void GetSupportedInputFormats(
AudioStreamBasicDescription* outInputFormats,
UInt32& ioNumberInputFormats
) const

Discussion
After the number of supported formats is acquired, it should be used in this method, which will pass back
an AudioStreamBasicDescription array which contains the descriptions of all of the supported input
formats. ioNumberInputFormats is also passed back as a check to ensure that the correct number of formats
were returned.

GetCurrentInputFormat
Passes back an AudioStreamBasicDescription with the current input format information in it.

void GetCurrentInputFormat(AudioStreamBasicDescription& outInputFormat)

SetCurrentInputFormat
Takes an AudioStreamBasicDescription and sets it to be the current input format.

virtual void SetCurrentInputFormat(
const AudioStreamBasicDescription& inInputFormat
)

Discussion
Setting a codec’s input format is performed by calling this method and passing it an instance of
AudioStreamBasicDescription, configured to the proper format. Note that ACBasicCodec provides a
method for setting the current input format for the codec, but that this may need to be overridden based
on the implemented codec’s capabilities.

GetNumberSupportedOutputFormats
Counts and returns the number of supported output formats.

UInt32 GetNumberSupportedOutputFormats() const

GetSupporedOutputFormats
Passes back and array of the supported output formats.

Audio Codec Reference 39
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

void GetSupportedOutputFormats(
AudioStreamBasicDescription* outOutputFormats,
UInt32& ioNumberOutputFormats
) const

Discussion
The value of outOutputFormats is an AudioStreamBasicDescription array. The input for
ioNumberOutputFormats should be the result of GetNumberSupportedOutFormats(), and its output
will be the actual number of AudioStreamBasicDescription instances in outOutputFormats.

GetCurrentOutputFormat
Passes back a description of the current output format.

void GetCurrentOutputFormat(AudioStreamBasicDescription& outOutputFormat)

SetCurrentOutputFormat
Sets the output format to inOutputFormat.

virtual void SetCurrentOutputFormat(
const AudioStreamBasicDescription& inOutputFormat
)

Discussion
This method is declared as virtual, so that it may be modified as needed to adjust to the needs of different
codecs.

GetMagicCookieByteSize
Returns the size of the current magic cookie.

virtual UInt32 GetMagicCookieByteSize() const

Discussion
If the codec implements a magic cookie, it is strongly advised that the codec developer override this method,
since each codec’s magic cookie has its own size.

GetMagicCookie
Extracts the magic cookie from the codec.

virtual void GetMagicCookie(
void* outMagicCookieData,
UInt32& ioMagicCookieDataByteSize
) const

Discussion
This method is virtual and should be overridden based on the codec’s requirements for magic cookies.

40 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

SetMagicCookie
Sets the magic cookie for the codec.

virtual void SetMagicCookie(
const void* outMagicCookieData,
UInt32 inMagicCookieDataByteSize
)

Discussion
This method is virtual and should be overridden based on the codec’s requirements for magic cookies.

AddInputFormat
Adds inInputFormat to the mInputFormatList.

void AddInputFormat(const AudioStreamBasicDescription& inInputFormat)

Discussion
This method is provided for the subclass’s constructor, so that the developer may supply input format
information. This is then used by other methods in the Property Management system.

AddOutputFormat
Adds inOutputFormat to the mOutputFormatList.

void AddOutputFormat(const AudioStreamBasicDescription& inIOutputFormat)

Discussion
This method is provided for the subclass’s constructor, so that the developer may supply input format
information. This is then used by other methods in the Property Management system.

ACSimpleCodec

ACSimpleCodec builds upon the foundation laid in ACBaseCodec by providing a simple ring buffer
implementation. Subclassing from ACSimpleCodec is not required, but when the implemented codec does
not require a custom buffering scheme, using ACSimpleCodec is recommended.

Construction and Destruction

The ACSimpleCodec constructor takes in the size that the ring buffer should be, in bytes, and allocates the
appropriate space in memory. The destructor deallocates the buffer, and should be called from any subclass’s
destructor.

Data Handling

ACSimpleCodec inherits all of the format and property management methods from ACBaseCodec, and so
the only methods that need overridding for ACSimpleCodec are those pertaining to Data Handling; that is,
those that deal with taking in and outputting converted data.

Audio Codec Reference 41
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Initialize
Sets the codec’s input format, output format, and its current magic cookie.

virtual void Initialize(
const AudioStreamBasicDescription* inInputFormat,
const AudioStreamBasicDescription* inOutputFormat,
const void* inmagicCookie,
UInt32 inmagicCookieByteSize
) = 0

Discussion
This method initializes the codec, meaning that is locks down the input and output formats, as well as the
magic cookie for the buffer that is about to be encoded. It also locks all of the codecs properties, so that they
may not be altered during a conversion. Encoding and decoding should be possible only when the codec is
initialized. Note that this method is declared as abstract, meaning that it must be overridden by any subclass
of ACSimpleCodec; this is due to varying magic cookie implementations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.k.h

Uninitialize
Unlocks the codec so that its formats and properties may be altered.

virtual void Uninitialize()

Discussion
This method is virtual, meaning that it may be overridden as needed in subclasses of ACSimpleCodec.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
AudioUnit.k.h

Reset
Clears the codec’s buffer and returns the codec to the post-initialization state.

virtual void Reset()

Discussion
This method is virtual, meaning that it may be overridden as needed in subclasses of ACSimpleCodec.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.k.h

42 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

AppendInputData
Takes a buffer of data in, along with its format description and size information.

virtual void AppendInputData(
const void* inInputData,
UInt32& ioInputDataByteSize,
UInt32& ioNumberPackets,
const AudioStreamPacketDescription* inPacketDescription
)

Discussion
Note that this method is virtual, meaning that while ACSimpleCodec provides this service, it may be
overridden if the codec requires it.

GetInputBufferSize
Returns the size of the codec’s buffer.

virtual UInt32 GetInputBufferByteSize() const

Discussion
Note that this method is virtual, meaning that while ACSimpleCodec provides this service, it may be
overridden if the codec requires it.

GetUsedInputBufferSize
Returns the size of the codec’s buffer currently in filled.

virtual UInt32 GetUsedInputBufferByteSize() const

Discussion
Note that this method is virtual, meaning that while ACSimpleCodec provides this service, it may be
overridden if the codec requires it.

ConsumeInputData
Runs inConsumedByteSize amount of data through the codec.

void ConsumeInputData(UInt32 inConsumedByteSize)

Discussion
This method should be called from within the codec’s ProduceOutputPackets().

GetInputBufferStart
Returns the current start position of the buffer.

Audio Codec Reference 43
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

Byte* GetInputBufferStart() const {
return mInputBuffer + mInputBufferStart;
}

GetInputBufferContiguousByteSize
Returns the amount of the buffer left to process.

UInt32 GetInputBufferContiguousByteSize() const {
return (mInputBufferStart <= mInputBufferEnd)
? (mInputBufferEnd - mInputBufferStart)
: (mInputBufferByteSize - mInputBufferStart)
}

ReallocateInputBuffer
Resizes the buffer to a new size.

virtual void ReallocateInputBuffer(UInt32 inInputBufferByteSize)

Discussion
Calling this method wipes the buffer contents before it resizes it. Note that this method is virtual, so it may
be overridden as needed.

Audio Codec Result Codes

These constants define errors that Audio Codec methods can return when processing data.

kAudioCodecNoError = 0,
kAudioCodecUnspecifiedError = 'what',
kAudioCodecUnknownPropertyError = 'who?',
kAudioCodecBadPropertySizeError ='!siz',
kAudioCodecIllegalOperationError = 'nope',
kAudioCodecUnsupportedFormatError = '!dat',
kAudioCodecStateError ='!stt',
kAudioCodecNotEnoughBufferSpaceError = '!buf'

44 Audio Codec Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Audio Codec

This chapter discusses the Audio Converter, Audio File, Audio Format and AUGraph APIs, which are part of
the Audio Toolbox for Mac OS X, and the services provided by the Audio Toolbox framework that applications
may use for audio processing. The section “Audio Toolbox Reference” (page 58) describes the constants,
data types, and functions of the Audio Toolbox framework.

Overview of the Audio Toolbox

The Audio Toolbox framework provides a set of services that applications can use for audio processing:

 ■ AudioConverter.h

 ■ AudioFormat.h

 ■ AudioFile.h

 ■ AUGraph.h

In Java, these services are provided in the com.apple.audio.toolbox package.

Audio Converter

Audio Converter provides format conversion services. When encoding or decoding audio data, Audio Converter
should be utilized, as it allows for sample rate conversions, interleaving and deinterleaving of audio streams,
floating-point-to-integer and integer-to-floating-point conversions, and bit rate conversions. Also, the API
handles channel reordering, as well as converting between PCM and compressed formats. When encoding
or decoding an audio stream, use of Audio Converter is strongly recommended over the direct use of an
audio codec, since optimizations are in place to provided for optimal conversions.

Audio Format

The Audio Format API is provided to help handle information about different audio formats. It is able to
inspect AudioStreamBasicDescription instances and provide more information about a particular
format’s parameters. This API also can derive information from AudioChannelLayout instances, including
a description of the channels present in the instance, and the ordering of the channels. Finally, Audio Format
can provide information about the encoders and decoders available on the system.

Overview of the Audio Toolbox 45
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Audio File

Audio File is a system with which audio files may be created, opened, modified, and saved. Besides these
operations, it also allows for discovery of global properties, including:

 ■ File types that can be read.

 ■ File types that can be written.

 ■ A name for a file type.

 ■ Stream formats that can be read.

 ■ All file extensions that can be read.

 ■ File extensions for a file type.

AUGraph

The AUGraph is a high-level representation of a set of Audio Units, along with the connections between
them. These APIs may be used to construct arbitrary signal paths through which audio may be processed,
that is, a modular routing system. The APIs deal with large numbers of Audio Units and their relationships
to one another.

AUGraphs provide the following services:

 ■ Real-time routing changes that allow for connections to be created and broken while audio is being
processed.

 ■ Maintaining representation even when Audio Units are not instantiated.

The head of a graph is always an output unit, which may save the processed audio stream to disk, into
memory, or as sound out. Starting a graph entails “pulling” on the head unit (provided for by API), which
will, in turn, pull on the next unit in the graph. The contents of a graph may be saved output and saved for
later use.

Music Player and Music Sequence

The Music Player and Music Sequence APIs are used in tandem to sequence various events. Events can range
from the changing of an audio unit's parameters to sending a MIDI endpoint a message. Standard MIDI files
are played back using the Music Player API, particularly using the provided functions (see Reading in an SMF
section). Similarly, you can save incoming MIDI data to a music sequence and then save the sequence as a
standard MIDI file.There are three pieces in the Music Player API: players, sequences, and tracks.Players are
assigned to a sequence, and trigger the sequence to start and stop. The relation between a player and a
sequence is one-to-one, meaning that each player may only have one sequence assigned to it, and vice versa.
Players also keep track of the current playback time in the sequence, and allow the playback time to be set.
Finally, a scalar can be applied to a player, which will alter the tempo of the assigned sequence by that scalar.A
sequence is a collection of tracks. A track is collection of events targeted at either a MIDI endpoint, an audio
unit, or a callback. A sequence may contain an arbitrary number of tracks, created as needed. Each sequence
also contains one special track, the tempo track. This track measures out the playback rate, in beats-per-minute
(bpm). Adding tempo events to a tempo track will change the rate at which events occur from that point
on, or until the next tempo event occurs.

46 Overview of the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

When recording MIDI events for saving to disk, the incoming MIDI data needs to be parsed and placed into
the sequence, which then can be saved as a standard MIDI file, for later use.

Using the Audio Toolbox

This usage section describes how to utilize the APIs that comprise the Audio Toolbox framework available
for Mac OS X.

Using Audio Converter

The Audio Converter API allows for the conversion between various audio formats. These examples are
provided to give the developer a feel for using the Audio Converter tool.

Creating a New Audio Converter

AudioStreamBasicDescription in, out;
 /* ... Fill out stream descriptions ... */
AudioConverterRef converter;
OSStatus err = AudioConverterNew(&in, &out, &converter);

These steps should be followed when creating a new converter:

1. Declare two AudioStreamBasicDescription instances, one for the input, and one for the output.

2. Populate the two descriptions with the appropriate stream information.

3. Declare a new converter instance.

4. Invoke the AudioConverterNew() function, providing the input, output, and converter as parameters.
Note that the parameters are passed by reference.

Converting Audio Data

AudioConverterRef converter;
 /* ... Set up the converter .. */
const UInt32 kRequestPackets = 8192;
AudioBufferList bufferList;
 /* ... Allocate the output buffer ... */

while(/* ... While there is data left to be converted ... */)
{

 UInt32 ioOutputDataPacketSize = kRequestPackets;

 OSStatus err = AudioConverterFillComplexBuffer(converter, inputProcPtr,
 userData, &ioOutputDataPacketSize, &bufferList, NULL);

}

Using the Audio Toolbox 47
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

These steps should be followed when pulling data from a converter:

1. Allocate and set up a converter instance.

2. Optional: Set up a constant for the amount of data to be pulled.

3. Set up an AudioBufferList (page 160) instance to hold the converted data. If the data is interleaved,
then only one index is needed for the instance’s mBuffers array; if the data consists of multiple mono
channels, then allocate one index in the mBuffers array for each channel.

4. Enter into a loop which pulls data until the *AudioConverterComplexInputProc signals that no more
data is left to be pulled, or until the desired amount of data is pulled.

5. Inside of the loop, use AudioConverterFillComplexBuffer() to pull the data. The parameters
passed in this example are:

 ■ converter - The converter to be used.

 ■ inputProcPtr - A callback which provides the input data for conversion.

 ■ userData - Any parameters or constants needed by the inputProcPtr callback.

 ■ ioOutputDataPacketSize - Upon input, the requested amount of converted data; on output, the
actual amount of data converted.

 ■ bufferList - The buffer for the converted audio data.

 ■ NULL - An AudioStreamPacketDescription instance used to describe the size of the resulting
packet; only needed when receiving variable bit rate (VBR) data.

Supplying Data for AudioConverterFillComplexBuffer()

OSStatus FromFloatInputProc (
 AudioConverterRef inAudioConverter,
 UInt32 *ioNumberDataPackets,
 AudioBufferList *ioData,
 AudioStreamPacketDescription **outDataPacketDescription,
 void *inUserData)
{
MyUserData *data = static_cast<MyUserData*>(inUserData);
AudioBufferList *bufferList = data->bufferList;
for (UInt32 i=0; i < bufferList->mNumberBuffers; ++i)
{
 ioData->mBuffers[i].mNumberChannels =
 bufferList->mBuffers[i].mNumberChannels;
 ioData->mBuffers[i].mData = bufferList->mBuffers[i].mData;
 ioData->mBuffers[i].mDataByteSize =
 bufferList->mBuffers[i].mDataByteSize;
}
*ioNumberDataPackets = ioData->mBuffers[0].mDataByteSize /
 data->mInputASBD.mBytesPerPacket;
return noErr;
}

This example looks at creating an *AudioConverterComplexInputDataProc for use by
AudioConverterFillComplexBuffer():

48 Using the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

1. An *AudioConverterComplexInputDataProc takes in the following arguments:

 ■ inAudioConverter - The converter in use.

 ■ ioNumberPackets - The number of packets requested.

 ■ ioData - The data to be returned to AudioConverterFillComplexBuffer() for conversion.

 ■ outPacketDescription - Provided to give the details of the packet format passed back when
decoding. This should be an AudioStreamPacketDescription (page 162) array, with each packet
corresponding to a descrption.

 ■ inUserData - Data needed by the callback, for any purpose; in this case, it holds the location of
the input data.

2. In a loop, fill each buffer in ioData with the number of channels, requested amount of data, and data
byte size.

3. Calculate the number of provided packets, and place the value in ioNumberDataPackets.

Using Audio Format

The Audio Format API is provided to acquire information about formats and channel layouts. This example
is provided to give the developer a feel for using the Audio Format API.

Getting Format ID Information

UInt32 size;
OSStatus err;
OSType *formatIDs;

err = AudioFormatGetPropertyInfo(
 kAudioFormatProperty_EncodeFormatIDs, 0, NULL, &size);
if (err) return err;

formatIDs = (OSType*)malloc(size);
UInt32 numFormats = size / sizeof(OSType);

err = AudioFormatGetProperty(
 kAudioFormatProperty_EncodeFormatIDs, 0, NULL, &size, formatIDs);
if (err) return err;

for (UInt32 i=0; i<numFormats; ++i)
{
 AudioStreamBasicDescription absd;
 memset(&absd, 0, sizeof(absd));
 absd.mFormatID = formatIDs[i];

 CFStringRef name;
 size = sizeof(CFStringRef);
 err = AudioFormatGetProperty(
 kAudioFormatProperty_FormatName, sizeof(absd), &absd, &size, &name);
 if (err) return err;

Using the Audio Toolbox 49
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

 CFShow(name);
}

This example shows how to use the property management system available in Audio Format to acquire
information about the encoder formats, and output their names:

1. Use the AudioFormatGetPropertyInfo() function to get the size of the data that will be returned
by calling AudioFormatGetProperty() for that property. The arguments for
AudioFormatGetPropertyInfo() are:

 ■ kAudioFormatProperty_EncodeFormatIDs - The property we are querying for.

 ■ 0 - The size of the specifier; in this case, 0, since this property does not require a specifier.

 ■ NULL - The specifier; in this case, NULL, since the property does not require a specifier.

 ■ &size - The size of the data that will be returned when AudioFormatGetProperty() is called for
this property.

2. Once the size is obtained, AudioFormatGetProperty()may be called. The same parameters are passed
in as with AudioFormatGetPropertyInfo(), with the addition of a void pointer, in this case
formatIDs, to hold the returned data in.

3. Now that an array of the format IDs have been attained, it may be iterated over by following these steps:

a. Create an AudioStreamBasicDescription instance and clear its contents.

b. Set the format ID of the AudioStreamBasicDescription instance to one of the format IDs returned
when AudioFormatGetProperty() was called with the
kAudioFormatProperty_EncodeFormatIDs property.

c. Create a CFStringRef to hold the name of the format, and obtain its size.

d. To obtain the format’s name, call AudioFormatGetProperty() with
kAudioFormatProperty_FormatName as the property, the AudioStreamBasicDescription
instance as the specifier, and the CFString as the outPropertyData value.

e. Print out the name of the format, as stored in the CFString.

Using Audio File

The Audio File API is used to discover global file format information and to provide an interface for creating,
opening, modifying, and saving audio files. This example is provided to give the developer a feel for using
the Audio File API.

Acquiring Global File Information

OSStatus err;
UInt32 propertySize;

err = AudioFileGetGlobalInfoSize(
 kAudioFileGlobalInfo_WritableTypes, 0, NULL, &propertySize);

50 Using the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

if (err) return err;

OSType *types = (OSType*)malloc(propertySize);
err = AudioFileGetGlobalInfo(
 kAudioFileGlobalInfo_WritableTypes, 0, NULL, &propertySize, types);
if (err) return err;

UInt32 numTypes = propertySize / sizeof(OSType);
for (UInt32 i=0; i<numTypes; ++i)
{
 CFStringRef name;
 UInt32 outSize = sizeof(name);
 err = AudioFileGetGlobalInfo(
kAudioFileGlobalInfo_FileTypeName, sizeof(OSType), types+i, &outSize, &name);
 if (err) return err;

 CFShow(name);
}

This example shows how to obtain an array of the writable file types for the system and output their names:

1. Use the AudioFileGetGlobalInfoSize() function to get the size of the data that will be returned
by calling AudioFileGetGlobalInfo() for that property. The arguments for
AudioFileGetGlobalInfoSize() are:

 ■ kAudioFileGlobalInfo_WritableTypes - The property we are querying for.

 ■ 0 - The specifier’s size; in this case, 0, since there is now need for a specifier for this property.

 ■ NULL - The specifier; in this case, NULL, since this property does not require a specifier.

 ■ &propertySize - The size of the data that will be returned when AudioFileGetGlobalInfo()
is called for this property.

2. Once the size is obtained, it will be used by the AudioFileGetGlobalInfo() function. In addition to
the four parameters used for AudioFileGetGlobalInfoSize(), a fifth is used to point to the actual
property data returned by this method. Note that the space for holding this returned data is allocated
beforehand, using the propertySize obtained previously.

3. Once the types have been returned, a loop is used to cycle through the types and query Audio File for
the name of the type, which is then printed:

a. Create a CFStringRef to hold the name of the type, and obtain its size.

b. To obtain the type’s name, call AudioFileGetGlobalInfo() with
kAudioFileGlobalInfo_FileTypeName as the property, the type as the specifier, and the
CFString as the outPropertyData value.

c. Print out the name of the format, as stored in the CFString.

Using the Audio Toolbox 51
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Using AUGraph

Audio Unit Graph State

An audio unit graph maintains its representation using the AUNode type, even when the Audio Unit
components themselves are not instantiated.

The AUGraph states are defined as open, initialized, running, and closed. These correspond directly with the
Audio Unit states.

The AUGraph APIs are responsible for representing the description of a set of Audio Unit components, as
well as the audio connections between their inputs and outputs. This representation may be saved and
restored persistently and instantiated by opening all of the Audio Units (AUGraphOpen()), and making the
physical connections between them stored in the representation (AUGraphInitialize()). Thus, the graph
is a description of the various Audio Units and their connections, but also manage the actual instantiated
Audio Units.

The AUGraph is a complete description of an audio signal processing network.

The AUGraph may be introspected in order to get complete information about all of the Audio Units in the
graph. The various nodes (AUNode) in the graph representing Audio Units may be added or removed, and
the connections between them modified.

An AUNode representing an Audio Unit component is created by specifying a ComponentDescription
record (from the Component Manager), as well as optional “class” data, which is passed to the Audio Unit
when it is opened.

This class data is in an arbitrary format, and may differ depending on the particular Audio Unit. In general,
the data is used by the Audio Unit to configure itself when it is opened (in object-oriented terms, it corresponds
to constructor arguments). In addition, certain AudioUnits may provide their own class data when they are
closed, allowing their current state to be saved for the next time they are instantiated. This provides a general
mechanism for persistence.

An AUGraph's state can be manipulated in both the rendering thread and in other threads. Consequently,
any activities that effect the state of the graph are guarded with locks.To avoid blocking the render thread,
many of the calls to AUGraph may return kAUGraphErr_CannotDoInCurrentContext. This result is only
generated when an graph modification is called from within a render callback. It means that the lock that it
required was held at that time by another thread. If this result code is returned, the action may be retried,
typically on the next render cycle (so in the mean time the lock can be cleared), or the action may be delegated
to another thread. As a general rule, the render thread should not be allowed to spin.

Setting up an Audio Unit Graph

When using AUGraph, certain steps need to be followed in order for the graph to function properly. These
steps must be followed in this order:

 ■ Create the graph. Call NewAUGraph (page 80) on an AUGraph instance.

 ■ Populate the graph. Use AUGraphNewNode (page 81) and AUGraphNewNodeSubGraph (page 81) to
populate the graph.

52 Using the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

 ■ Make connections between nodes. AUGraphConnectNodeInput (page 84) sets up connections between
the nodes. Nodes may have multiple inputs and outputs, though sharing an input or output is not
allowed. This is otherwise known as “fan in” and “fan out,” and is not allowed in AUGraph.

 ■ Open the graph. Up until this point, each node was being used in the abstract AUNode representation.
Upon calling AUGraphOpen (page 87), each node is instantiated. This allows for properties to be set for
each Audio Unit inside of the graph.

 ■ Set output sample rates and channel layouts. A common error is for sample rates and channel layouts to
be mismatched between nodes. If any format changes occur, it is imperative that sample rates and
channel number be set for all Audio Unit outputs prior to initialization

 ■ Initialize the graph. Once setup has occurred, AUGraphInitialize (page 87) may be called. This makes
all the connections between the nodes, and initializes all of the Audio Units that are part of a connection.
At the least, the output unit is initialized, even if no connections lead to it.

 ■ Start the graph. Calling AUGraphStart (page 88) begins rendering, starting with the output unit and
traversing through the graph.

Modifying an Audio Unit Graph

Once a graph has been created, its contents may be modified by adding and removing connections and
nodes. These functions are provided for performing these actions:

 ■ AUGraphNewNode (page 81).

 ■ AUGraphNewNodeSubGraph (page 81)

 ■ AUGraphRemoveNode (page 82)

 ■ AUGraphConnectNodeInput (page 84)

 ■ AUGraphDisconnectNodeInput (page 84)

 ■ AUGraphClearConnections (page 85)

After the graph is initialized, any of these functions may be called, and the changes will occur immediately,
meaning that the node will be initialized right way, and connections will be made immediately as well.

When a graph is running, however, changes to not immediately take effect. Calling any of these functions is
allowed, but the actions they perform are queued. To apply the actions to a running graph,
AUGraphUpdate (page 86) must be called.

Calling an update signals to the render thread that an update is ready to occur. When the render thread gets
to a point in its cycle where updates are allowed (usually before and after a render), the update is actually
performed. Before calling an update, check the format, sample rates, and channel layouts of the connections
to avoid errors. If an error does occur, all updates are halted.

Closing an Audio Unit Graph

When audio data rendering is no longer needed, the graph may be stopped by calling AUGraphStop (page
88). This does not alter the graph in any way; it simply halts the pull on the output node. However, AUGraph
uses a reference counting scheme to ensure that one process does not stop the graph while another may
still be accessing it. Each AUGraphStart() invocation adds one to the reference, while each AUGraphStop()
subtracts one from the reference. When the reference becomes zero, it then stops rendering. To determine
if a graph is still running, use AUGraphIsRunning (page 89).

Using the Audio Toolbox 53
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Uninitializing the graph is done by calling AUGraphUninitialize (page 88). First, doing so will stop audio
render, no matter what the reference count for the graph is. Beyond that, it also calls the Uninitialize()
function for each Audio Unit and subgraph.

If the graph is no longer needed, calling AUGraphClose (page 87) will close all the Audio Unit components
in the graph, leaving only a nodal representation of the graph. As with uninitialization, if the graph is rendering
audio data, calling this function halts the render.

It is worth noting that the graph’s structure may be serialized using the AUGraphGetNodeInfo (page 83)
and AUGraphGetNodeConnections (page 85) functions at any time the graph exists.

When the AUGraph is no longer needed, use DisposeAUGraph (page 81) to deallocate it.

Using Music Player and Music Sequence

Setting Up a Music Sequence

A music sequence is designed to hold various music tracks, which are intended to be logical groupings of
events. To use a music sequence, these functions need to be called:

 ■ NewMusicSequence (page 103) - This creates a new music sequence. The sequence, as is, contains only
a tempo track.

 ■ MusicSequenceNewTrack (page 104) - Call this function for each new track that you want in the sequence.

Also of note is the fact that you can reverse all the events in all of the tracks of a sequence by calling
MusicSequenceReverse (page 109).

Adding Events to Tracks

Events trigger changes to the destination of a track. There are eight different types of events:

 ■ MIDIChannelMessage (page 93) - For use with MusicTrackNewMIDIChannelEvent (page 113). These
events will pass the assigned data on to the channel when triggered.

 ■ MIDINoteMessage (page 92) - For use with MusicTrackNewMIDINoteEvent (page 112). These events
will pass the information for a note to the targeted endpoint when triggered.

 ■ MIDIRawData (page 93) - For use with MusicTrackNewMIDIRawDataEvent (page 113). These events
will pass raw MIDI data on to an endpoint when triggered.

 ■ MIDIMetaEvent (page 94) - For use with MusicTrackNewMetaEvent (page 114). These events should
be used when MIDI meta data needs to be passed on to an endpoint.

 ■ MusicEventUserData (page 95) - For use with MusicTrackNewUserEvent (page 115). This event will
call a MusicSequenceUserCallback (page 121) callback, passing in the structure’s user data to the
callback. The callback is registered viaMusicSequenceSetUserCallback (page 110), with each sequence
allowing for one callback to be registered to it.

 ■ ExtendedNoteOnEvent (page 95) - For use with MusicTrackNewExtendedNoteEvent (page 114).
These events will send a note message to a music device audio unit when triggered.

54 Using the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

 ■ ExtendedControlEvent (page 96) - For use with MusicTrackNewExtendedControlEvent (page
114). These events will send a control message, changing the parameters of a music device audio unit
when triggered.

 ■ ParameterEvent (page 96) - For use with MusicTrackNewParameterEvent (page 115). These events
will issue a parameter change in an audio unit when triggered.

Setting Destinations for Sequences and Tracks

A sequence or track must address either a MIDI endpoint or an audio unit (when used inside of an audio unit
graph). All of the events belonging to a sequence or track will then be sent to its assigned destination.

An entire sequence can be assigned to an endpoint or a graph via:

 ■ MusicSequenceSetMIDIEndpoint (page 106)

 ■ MusicSequenceSetAUGraph (page 105)

When targeting a sequence to a specific graph, its tracks need to be assigned to units within the track; this
is done via MusicTrackSetDestNode (page 110). Within this context, endpoints can still be addressed by
a track using MusicTrackSetDestMIDIEndpoint (page 111).

Using the Tempo Track

Each sequence has a tempo track assigned to it, which can not be removed. This track is designed to control
the rate of playback across the sequence’s tracks. The units of measurement used here are beats-per-minute
(bpm), which can be any floating point value. An event in the tempo track will change the playback rate to
the new event’s specified rate.

All of the events for this track must be of type ExtendedTempoEvent (page 97); no others are allowed in
the tempo track, and this event type is not allowed in event tracks. Each tempo track starts out with one of
these, specifying the initial playback rate. By default, this rate is 120 bpm, but it can be modified to be any
floating point value.

To access the tempo track, call MusicSequenceGetTempoTrack (page 105). Once you acquire the tempo
track, and tempo event can be added to it by calling MusicTrackExtendedTempoEvent (page 115) and
passing in a new event. The event should have the intended rate in it. This means that, once the event is
reached, the new rate will be used from that point on, until playback stops, or the next tempo event is
reached. During that time, all events in all tracks within the sequence will occur at the new rate. For example,
if the initial tempo was 120 bpm, and the next tempo event was set to occur at the 90th beat, it will occur
after 45 seconds. If that event changes the tempo to 60 bpm, all of the events from that point on will happen
at half the rate of the previous tempo. So if the next tempo event is set to occur at the 120th beat, will happen
75 seconds after playback has begun.

Disposing of Sequences and Tracks

When a sewuence is no longer needed, it may be disposed of. This is done by calling
DisposeMusicSequence (page 103).

To delete a track and its accompanying events, call MusicSequenceDisposeTrack (page 104).

Using the Audio Toolbox 55
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Getting Information about a Sequences and Tracks

A number of functions are provided with the Music Sequence API to get information about a sequence and
its tracks:

 ■ MusicSequenceGetTrackCount (page 104) - Returns the number of tracks in the current sequence.

 ■ MusicSequenceGetIndTrack (page 105) - Returns a pointer towards a track for a particular index.

 ■ MusicSequenceGetTrackIndex (page 105) - Returns the index of a track.

 ■ MusicSequenceGetAUGraph (page 106) - Returns a pointer for the audio unit graph currently assigned
to the sequence. Returns NULL if there is no graph assigned.

 ■ MusicTrackGetSequence (page 110) - Returns a pointer to the sequence which contains the current
track.

 ■ MusicTrackGetDestNode (page 111) - Returns a pointer towards the node used by the selected track.

 ■ MusicTrackGetDestMIDIEndpoint (page 111) - Returns a pointer towards the MIDI endpoint used
by the selected track.

Using Music Track Properties

Properties are used to change the status of various tracks, as described in “Music Track Properties” (page
98). Use MusicTrackGetProperty (page 112) to retrieve the current value of any of the properties, and
MusicTrackSetProperty (page 112) to change the value of the property.

Accessing Events within a Track

To gain access to the events within a track, the track needs to be iterated over. Iterating involves creating a
new iterator, and then moving forward or backward between the events within the track. These functions
are used when setting up an iterator and iterating on a track:

 ■ NewMusicEventIterator (page 118) - Creates a new iterator.

 ■ DisposeMusicEventIterator (page 118) - Disposes of the iterator.

 ■ MusicEventIteratorNextEvent (page 118) - Moves the iterator to the next event.

 ■ MusicEventIteratorPreviousEvent (page 119) - Moves the iterator to the previous event

 ■ MusicEventIteratorGetEventInfo (page 119) - Retrieves information about the current event.

 ■ MusicEventIteratorSetEventInfo (page 119) - Sets information about the current event.

 ■ MusicEventIteratorDeleteEvent (page 120) - Removes the event from the track.

 ■ MusicEventIteratorSetEventTime (page 120) - Moves the event to the new time.

 ■ MusicEventIteratorHasPreviousEvent (page 120) - Returns a boolean signifying if there is an event
before the iterator.

 ■ MusicEventIteratorHasNextEvent (page 120) - Returns a boolean signifying if there is an event after
the iterator.

 ■ MusicEventIteratorHasCurrentEvent (page 121) - Returns a boolean signifying if the iterator
currently points towards an event, or is at the end of the track.

56 Using the Audio Toolbox
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Editing a Track

Events within a track can be modified based on their placement within a track. The idea is to be able to grab
the events within a certain amount period of time and then to move them elsewhere, or delete them.

To move events within a track, use MusicTrackMoveEvents (page 116). All you need to do is to specify the
range of events to move, and where to move them to.

The NewMusicTrackFrom (page 116) function will take the specified range of events, and will create a new
track with the range in it.

MusicTrackClear (page 116) will remove the events in the given range, while MusicTrackCut (page 116)
will remove the given range, and move the events after the range up to fill the space left by the cut.

Use MusicTrackCopyInsert (page 117) to copy a series of event from one track to another. Doing so with
this function move the events behind the insertion point back to the end of the range in the destination
track.

Finally, MusicTrackMerge (page 117) will take the source range and merge it with the events following the
insertion point in the destination.

Setting Up a Music Player

A music player is associated with a music sequence, in a one-to-one relationship. The player keeps track of
the playhead for the sequence, and allows for movement within the sequence. Activating and stopping the
sequence is done via a player.

 ■ NewMusicPlayer (page 99) - Creates a new music player.

 ■ DisposeMusicPlayer (page 99) - Disposes of the music player. Note that this does not dispose of the
sequence attached to the player.

 ■ MusicPlayerSetSequence (page 99) - Sets the sequence controlled by the player.

 ■ MusicPlayerStart (page 102) - Begins playback of the sequence.

 ■ MusicPlayerStop (page 102) - Halts sequence playback.

 ■ MusicPlayerIsPlaying (page 102) - Returns a boolean signifying if the player is in use.

Of note is when the playhead is moved within the player. This is done using MusicPlayerSetTime (page
100), which also prerolls the sequence for you. Prerolling is when the sequence is prepared to begin in
mid-sequence, with all parameters and endpoints being adjusted to the points they should be at the playhead.
To determine what time the player is currently at, use MusicPlayerGetTime (page 100).

If a new event is added to a sequence, it will need to be manually prerolled using MusicPlayerPreroll (page
101).

Reading in Standard MIDI Files or MIDI Data

The Music Player API is used to read in MIDI files. To do so, simply call MusicSequenceLoadSMF (page 106),
specifying the file from which the data is to be read in, or MusicSequenceLoadSMFData (page 107) when
the MIDI is to be read in from memory. When these functions are used, the MIDI data is parsed and placed,
as events, in a track inside of a sequence.

Using the Audio Toolbox 57
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

CallingMusicSequenceLoadSMFWithFlags (page 107) andMusicSequenceLoadSMFDataWithFlags (page
107), with kMusicSequenceLoadSMF_ChannelsToTracks passed in as the flag will result in each channel in the
MIDI data being parsed into its own track in the sequence. Beyond that, any meta data that is found in the
MIDI sequence in placed in the last track of the sequence.

Saving MIDI Data

When you want to save incoming MIDI data to disk, first you need to capture the incoming MIDI data. The
data then needs to be parsed and placed into a sequence, specifically into a track. You will need to use the
MusicPlayerGetBeatsForHostTime (page 101) function to determine how far into the sequence the new
MIDI event will need to be. This can only be done as the sequence in running, so that calling this will return
the current beat in the sequence when it is invoked.

Once all of the incoming MIDI data has been captured and placed into a sequence, it needs to be saved to
disk. To do this, call the MusicSequenceSaveSMF (page 108) function, if saving the data to disk, or, if saving
it to memory, call MusicSequenceSaveSMFData (page 108).

Audio Toolbox Reference

This reference section describes the constants, data types and functions that comprise the Audio Toolbox
framework available for Mac OS X.

Audio Converter Reference

Audio converters are designed to meet a developer’s encoding and decoding needs. It allows for conversions
between most conceivable combinations of input and output formats, assuming proper codecs are available
on the system.

Audio Converter Types

Defined Data Types

Typedefs are used to simplify the declaration of converters and the use of properties in the context of an
audio converter.

 ■ typedef struct OpaqueAudioConverter* AudioConverterRef

 ■ typedef UInt32 AudioConverterPropertyID

Data Structures

AudioConverterPrimeInfo
Stores information regarding the number of frames used in priming input for the current codec.

58 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

typedef struct AudioConverterPrimeInfo {
UInt32 leadingFrames;
UInt32 trailingFrames;
} AudioConverterPrimeInfo;

Discussion
An instance of this structure is input via the kAudioConverterPrimeInfo property. The instance works in
conjunction with the kAudioConverterPrimeMethod property, which specifies the priming method used
by the codec. When a priming method is in use, the members of this structure are used to specify the number
of leading and trailing frames (when using kConverterPrimeMethod_Pre), or just the number of trailing
frames (when using kConverterPrimeMethod_Normal), for all input packets.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioConverter.h

Audio Converter Constants

Constants are provided for the developer’s convenience. They provide a consistent set of values for various
aspects of a converter’s operations, and may be appended by the developer at any time.

Converter Quality Settings

Used by kAudioConverterSampleRateConverterQuality to set the relative quality of the conversion.

kAudioConverterQuality_Max = 0x7F
kAudioConverterQuality_High = 0x60
kAudioConverterQuality_Medium = 0x40
kAudioConverterQuality_Low = 0x20
kAudioConverterQuality_Min = 0

Note: The relative quality of a conversion is an arbitrary aspect of the codec used, and may or may not alter
the quality of the resulting conversion.

Priming Method Selectors

Specifies the priming method currently in use, as referenced in the kAudioConverterPrimeMethodproperty.

kConverterPrimeMethod_Pre = 0
When kAudioConverterPrimeMethod is set to this value, the converter will expect that the packet
be primed with both leading and trailing frames.

kConverterPrimeMethod_Normal = 1
Set kAudioConverterPrimeMethod to this when the trailing frames are needed for the conversion;
leading frames are assumed to silent.

kConverterPrimeMethod_None = 2
Used when the leading and trailing frames are assumed to be silent and priming is not needed.

Audio Toolbox Reference 59
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Audio Converter Properties

The properties are used to query a converter for its settings, and sometimes, to modify those properties.

kAudioConverterPropertyMinimumInputBufferSize = 'mibs'
Returns a UInt32 containing the size of the smallest input buffer size, in bytes, that can be supplied
into theAudioConverterConvertBuffer() function or the*AudioConverterInputProc callback.

kAudioConverterPropertyMinimumOutputBufferSize = 'mobs'
Returns a UInt32 containing the size of the smallest buffer that will bereturned as a result of
AudioConverterConvertBuffer() or AudioConverterFillBuffer().

kAudioConverterPropertyMaximumInputBufferSize = 'xibs'
Returns a UInt32 containing the largest buffer size that will requested by
*AudioConverterInputProc; returns 0xFFFFFFFF if the value depends on the size of the input.

kAudioConverterPropertyMaximumInputPacketSize = 'xips'
Returns a UInt32 containing the size, in bytes, of the largest packet of data that may be input.

kAudioConverterPropertyMaximumOutputPacketSize = 'xops'
Returns a UInt32 containing the size, in bytes, of the largest packet of data that will be output.

kAudioConverterPropertyCalculateInputBufferSize = 'cibs'
On input, takes a UInt32 with the desired output size, in bytes; returns the number of bytes needed
as input to generate the requested output.

kAudioConverterPropertyCalculateOutputBufferSize = 'cobs'
On input, takes a UInt32 with the desired input size, in bytes; returns the number of bytes returned
as output for the requested input.

kAudioConverterPropertyInputCodecParameters = 'icdp'
Takes in a buffer of untyped data for private use relative and specific to the format.

kAudioConverterPropertyOutputCodecParameters = 'ocdp'
Takes in a buffer of untyped data for private use relative and specific to the format.

kAudioConverterSampleRateConverterAlgorithm = 'srci'
Deprecated. Use kAudioConverterSampleRateConverterQuality instead.

kAudioConverterSampleRateConverterQuality = 'srcq'
Specifies the quality of the sample rate conversion, using the “Converter Quality Settings” (page 59).

kAudioConverterPrimeMethod = 'prmm'
Specifies the priming method, using the “Priming Method Selectors” (page 59).

kAudioConverterPrimeInfo = 'prim'
Returns in a pointer to an AudioConverterPrimeInfo (page 58) instance.

kAudioConverterChannelMap = 'chmp'
Takes an array of SInt32 values where the index represents an output channel and the value stored
at the index in the array is the connecting input channel; the size of the array is the number of output
channels.

kAudioConverterDecompressionMagicCookie = 'dmgc'
Takes a void pointer towards the magic cookie that may be required to decompress the data.

kAudioConverterCompressionMagicCookie = 'cmgc'
Returns a void pointer towards the magic cookie used to compress the output data; may be passed
back via kAudioConverterDecompressionMagicCookie for decompressing the data.

60 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Audio Converter Functions

AudioConverterNew
Creates a new audio converter.

extern OSStatus AudioConverterNew(
const AudioStreamBasicDescription* inSourceFormat,
const AudioStreamBasicDescription* inDestinationFormat, AudioConverterRef*
outAudioConverter
);

Discussion
This function takes in two AudioStreamBasicDescription instances, one for the source, and one for the
destination, sets up all of the internal links needed for the conversion, and returns a pointer for the new
converter. Note that if the setup fails, an error is returned which specifies the error that was encountered.

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

AudioConverterDispose
Destroys an audio converter.

extern OSStatus AudioConverterDispose(AudioConverterRef inAudioConverter);

Discussion
This function deallocates the memory used by inAudioConverter.

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

AudioConverterReset
Resets the audio converter to its post-initialization state.

extern OSStatus AudioConverterReset(AudioConverterRef inAudioConverter);

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

Audio Toolbox Reference 61
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AudioConverterGetPropertyInfo
Retrieves the size and writable state of the data belonging to the queried property.

extern OSStatus AudioConverterGetPropertyInfo(
AudioConverterRef inAudioConverter,
AudioConverterPropertyID inPropertyID,
UInt32* outSize,
Boolean* outWritable
);

Discussion
The outSize value returned reflects the size, in bytes, of the data returned by calling
AudioConverterGetProperty() with the respective property.

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

AudioConverterGetProperty
Returns the requested property data.

extern OSStatus AudioConverterGetProperty(
AudioConverterRef inAudioConverter,
AudioConverterPropertyID inPropertyID,
UInt32* ioPropertyDataSize,
void* outPropertyData
);

Discussion
The ioPropertyDataSize parameter should be the value obtained from calling
AudioConverterGetPropertyInfo(); the output value of ioPropertyDataSize will be the actual data
size of the returned data, for reference.

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

AudioConverterSetProperty
Sets the property data to inPropertyData.

62 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AudioConverterSetProperty(
AudioConverterRef inAudioConverter,
AudioConverterPropertyID inPropertyID,
UInt32 inPropertyDataSize,
const void* inPropertyData
);

Discussion
The inPropertyDataSize should be the size of data being input, and inPropertyData should point to
the data to be set for inPropertyID.

Availability
Available in Mac OS X v10.1 and later.

Declared In
AudioConverter.h

AudioConverterInputDataProc
Should provide data for AudioConverterFillBuffer().

typedef OSStatus (*AudioConverterInputDataProc) (
AudioConverterRef inAudioConverter,
UInt32* ioDataSize,
void** outData,
void* inUserData
);

Discussion
Deprecated.On input, ioDataSizewill be the amount of data the converter needs to fill its buffer; on output,
this value should reflect the amount of the data provided (if there is no more input data available, 0 should
be returned).

AudioConverterFillBuffer
Fills the provided buffer with converted data.

extern OSStatus AudioConverterFillBuffer(
AudioConverterRef inAudioConverter,
AudioConverterInputDataProc inInputDataProc,
void* inInputDataProcUserData,
UInt32* ioOutputDataSize,
void* outOutputData
);

Discussion
Deprecated. Uses the provided inInputDataProc callback to acquire data, converts it, and places the
converted data in. outOutputData. Deprecated since it can only work with a single buffer. Use
AudioConverterFillComplexBuffer() instead.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

Audio Toolbox Reference 63
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Declared In
AudioConverter.h

AudioConverterComplexInputDataProc
Should provide AudioConverterFillComplexBuffer() with data for conversion.

typedef OSStatus (*AudioConverterComplexInputDataProc) (
AudioConverterRef inAudioConverter,
UInt32* ioNumberDataPackets,
AudioBufferList* ioData,
AudioStreamPacketDescription** outDataPacketDescription,
void* inUserData
);

Discussion
AudioConverterFillComplexBuffer() will use this callback to acquire data to convert. The returned
data will be an AudioBufferList, meaning that the data should be in separate indices, one for each channel.
Use inUserData for any data the callback may need passed to it. The caller will pass the number of packets
requested in ioNumberDataPackets, and upon completion, the callback should return the number of
packets actually provided, or 0 if there is no data left to provide. The resulting packet format is specified in
outDataPacketDescription.

AudioConverterFillComplexBuffer
Fills the AudioBufferList with converted data.

extern OSStatus AudioConverterFillComplexBuffer(
AudioConverterRef inAudioConverter,
AudioConverterComplexInputDataProc inInputDataProc,
void* inInputDataProcUserData,
UInt32* ioOutputDataPacketSize,
AudioBufferList* outOutputData,
AudioStreamPacketDescription* outPacketDescription
);

Discussion
Using the callback provided in inInputDataProc, this function will convert input data using
inAudioConverter and will place the resulting converted data in outOutputData. Any relevant data for
the callback should be passed in via inInputDataProcUserData, while outPacketDescription will
contain the format of the returned data. On input, ioOutDataPacketSize should contain the number of
packets requested, and as output, will contain the number of packets returned.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioConverter.h

Audio Converter Result Codes

These values are returned when errors occur.

64 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioConverterErr_FormatNotSupported = 'fmt?’
kAudioConverterErr_OperationNotSupported = 0x6F703F3F
kAudioConverterErr_PropertyNotSupported = 'prop'
kAudioConverterErr_InvalidInputSize = 'insz'
kAudioConverterErr_InvalidOutputSize = 'otsz'
kAudioConverterErr_UnspecifiedError = 'what'
kAudioConverterErr_BadPropertySizeError = '!siz'
kAudioConverterErr_RequiresPacketDescriptionsError = '!pkd’

Audio Format Reference

The audio format system is provided to allow the developer to get more information about certain aspects
of AudioStreamBasicDescription and AudioChannelLayout instances, and other important pieces of
information.

Audio Format Types

Defined Data Types

The AudioFormatPropertyID typedef is used to hold the property ID being queried using the audio format
functions.

 ■ typedef UInt32 AudioFormatPropertyID

Data Structures

AudioPanningInfo
Stores information about the position of sound sources.

typedef struct AudioPanningInfo {
UInt32 mPanningMode;
UInt32 mCoordinateFlags;
Float32 mCoordinates[3];
AudioChannelLayout* mOutputChannelMap;
} AudioPanningInfo;

Discussion
The mPanningMode value is based on the panning mode constants. The value of mCoordinateFlags will
be based on the Coordinate Flag constants. The precise coordinates of the source is located in mCoordinates,
and the mOutputChannelMap points to an instance of an AudioChannelLayout (page 164) (specified in
CoreAudioTypes.h), which tracks channel layouts in hardware and in files.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFormat.h

Audio Toolbox Reference 65
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Audio Format Constants

Constants are provided for the developer’s convenience. They provide a consistent set of values for various
aspects of a converter’s operations.

Panning Modes

These constants define various panning algorithms that can be specified in an AudioPanningInfo (page
65) instance.

kPanningMode_SoundField = 3
An Ambisonic format.

kPanningMode_VectorBasedPanning = 4
A format for panning between two speakers.

Coordinate Flags

Used by the mCoordinateFlags value in the AudioPanningInfo structure; found in CoreAudioTypes.h.

kAudioChannelFlags_RectangularCoordinates = (1L<<0)
Use if cartesian coordinates are used for speaker positioning; either this or spherical coordinates must
be chosen.

kAudioChannelFlags_SphericalCoordinates = (1L<<1)
Use if spherical coordinates are used for speaker positioning; either this or cartesian coordinates must
be chosen.

kAudioChannelFlags_Meters = (1L<<2)
Use when units are in meters; if not set, then the units are relative to the coordinate system chosen.

Audio Format Properties

The audio format tool uses the property system to get various pieces of information about structures used
in Core Audio.

AudioStreamBasicDescription Properties

When the specifier parameter for AudioFormatGetPropertyInfo() and AudioFormatGetProperty()
is an AudioStreamBasicDescription instance, these properties may be queried.

kAudioFormatProperty_FormatInfo = 'fmti'
Returns an AudioStreamBasicDescriptionwhose values contain information about the specifier’s
format.

kAudioFormatProperty_FormatIsVBR = 'fvbr'
Returns a UInt32 where a non-zero value means that the format has a variable bit rate (VBR).

kAudioFormatProperty_FormatIsExternallyFramed = 'fexf'
Returns a UInt32, where a non-zero value indicates that the format is externally framed.

kAudioFormatProperty_FormatName = 'fnam'
Returns a CFStringRef containing the name of the specified format.

66 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioFormatProperty_AvailableEncodeChannelLayouts = 'aecl'
Takes in an AudioStreamBasicDescription and returns an AudioChannelLayoutTag array
containing Audio Channel Layout constants.

AudioChannelLayout Properties

kAudioFormatProperty_ChannelLayoutForTag = 'cmpl
Takes an “Channel Layout Tags” (page 167) value (as specified in CoreAudioTypes.h) as the specifier
and returns an AudioChannelLayout (page 164) with all of its members filled with their respective
versions of the input data.

kAudioFormatProperty_TagForChannelLayout = 'cmpt'
Takes an AudioChannelLayout as the specifier and returns an AudioChannelLayoutTag with all
of its members filled with their respective versions of the input data.

kAudioFormatProperty_ChannelLayoutForBitmap = 'cmpb'
Takes in a UInt32 that contains a layout bitmap and returns an AudioChannelLayout with all of
its members filled with their respective versions of the input data.

kAudioFormatProperty_BitmapForLayoutTag = 'bmtg'
Takes in a “Channel Layout Tags” (page 167) value and returns a UInt32with the bitmap of the channel
layout.

kAudioFormatProperty_ChannelLayoutName = 'lonm'
Takes in an AudioChannelLayout and returns a CFStringRef with the name of the channel.

kAudioFormatProperty_ChannelName = 'cnam'
Takes in an AudioChannelDescription with a populated mChannelLabel value, and returns a
CFStringRef with the name of the channel.

kAudioFormatProperty_MatrixMixMap = 'mmap'
Takes in an array of two AudioChannelLayout pointers, the first to the input and the second to the
output, and returns a two dimensional Float32 array, with the input being the rows and the output
being the columns, where the value at a coordinate is the gain that needs to be applied to the input
to achieve the output at that channel.

kAudioFormatProperty_NumberOfChannelsForLayout = 'nchm'
Takes in an AudioChannelLayout as the specifier and returns a UInt32with the number of channels
represented in the layout.

kAudioFormatProperty_PanningMatrix = 'panm'
Takes in an AudioPanningInfo instance and returns a Float32 array where each channel receives
a volume level for each channel in the AudioPanningInfo’s AudioChannelLayout array.

Other Properties

These are other properties that involve discovering encoding and decoding formats and available sample
and bit rates.

kAudioFormatProperty_EncodeFormatIDs = 'acif'
Does not take a specifier (set to NULL), and returns a UInt32 array containing “Format IDs” (page 161)
(specified in CoreAudioTypes.h) for valid input formats into a converter.

kAudioFormatProperty_DecodeFormatIDs = 'acof'
Does not take a specifier (set to NULL), and returns a UInt32 array containing Format ID constants
for valid output formats into a converter.

Audio Toolbox Reference 67
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioFormatProperty_AvailableEncodeSampleRates = 'aesr'
Takes in a Format ID constant and returns an AudioValueRange (page 159) with all of the available
sample rates.

kAudioFormatProperty_AvailableEncodeBitRates = 'aebr'
Takes in a Format ID constant and returns an AudioValueRange with all of the available bit rates.

Audio Format Functions

These functions comprise the Audio Format property management system. These functions work by providing
property ID, which notifies them as to which action should be performed, and a specifier, which is the data
on which the operation is to be performed.

AudioFormatGetPropertyInfo
Retrieves the size of the data to be returned by the property.

extern OSStatus AudioFormatGetPropertyInfo(
AudioFormatPropertyID inPropertyID,
UInt32 inSpecifierSize,
void* inSpecifier,
UInt32* outPropertyDataSize
);

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFormat.h

AudioFormatGetProperty
Retrieves the property information for the given property ID and selected specifier.

extern OSStatus AudioFormatGetProperty(
AudioFormatPropertyID inPropertyID,
UInt32 inSpecifierSize,
void* inSpecifier,
UInt32* ioPropertyDataSize,
void* outPropertyData
);

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFormat.h

Audio Format Result Codes

These values are returned when errors occur.

kAudioFormatUnspecifiedError = 'what'

68 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioFormatUnsupportedPropertyError = 'prop'
kAudioFormatBadPropertySizeError = '!siz'
kAudioFormatBadSpecifierSizeError = '!spc'
kAudioFormatUnsupportedDataFormatError = 'fmt?'
kAudioFormatUnknownFormatError = '!fmt'

Audio File Reference

The Audio File API allows for opening and saving audio files in various formats, for later use.

Audio File Types

Defined Data Types

Typedefs are used to simplify the declaration of converters and the use of properties in the context of an
audio file.

 ■ typedef struct OpaqueAudioFileID *AudioFileID

 ■ typedef UInt32 AudioFilePropertyID

Data Structures

AudioFileTypeAndFormatID
Used by the kAudioGlobalInfo_AvailableStreamDescriptionForFormat property to query for
AudioStreamBasicDescriptions based on format and file type.

typedef struct AudioFileTypeAndFormatID{
UInt32 mFileType;
UInt32 mFormatID;
} AudioFileTypeAndFormat;

Discussion
The value of mFileType is a “File Types” (page 69) value, while mFormatID is from the “Format IDs” (page
161) in CoreAudioTypes.h.

Constants

Constants are provided for the developer’s convenience. They provide a consistent set of values for various
aspects of an audio file.

File Types

These constants are used to specify file types when using functions and structures related to audio files.

kAudioFileAIFFType = 'AIFF'
kAudioFileAIFCType = 'AIFC'
kAudioFileWAVEType = 'WAVE'
kAudioFileSoundDesigner2Type = 'Sd2f'

Audio Toolbox Reference 69
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioFileNextType = 'NeXT'
kAudioFileMP3Type = 'MPG3'
kAudioFileAC3Type = 'ac-3'
kAudioFileAAC_ADTSType = 'adts'

Audio File Properties

The Audio File API uses the property system to get and set information about files and global settings.

Audio File Properties

These properties are to be used when getting and setting information about an particular audio file.

kAudioFilePropertyFileFormat = 'ffmt'
Passes a UInt32 that identifies the file’s format, based on the “Format IDs” (page 161) found in
CoreAudioTypes.h.

kAudioFilePropertyDataFormat = 'dfmt'
Passes an AudioStreamBasicDescription that describes the file’s format.

kAudioFilePropertyIsOptimized = 'optm'
Returns a UInt32 with either a value of 0, meaning that the file is not optimized, and therefore, not
ready to be written to, or a value of 1, meaning that the file is currently optimized.

kAudioFilePropertyMagicCookieData = 'mgic'
Passes a void pointer towards memory set up for use as a magic cookie.

kAudioFilePropertyAudioDataByteCount = 'bcnt'
Passes a UInt64 that contains the size of the audio data in the file, in bytes.

kAudioFilePropertyAudioDataPacketCount = 'pcnt'
Passes a UInt64 that contains the size of the audio data in the file, in packets.

kAudioFilePropertyMaximumPacketSize = 'psze'
Passes a UInt32 that contains the maximum packet size in the file.

kAudioFilePropertyDataOffset = 'doff'
Passes an SInt64 that contains offset of where the audio data begins inside the file.

kAudioFilePropertyChannelLayout = 'cmap'
Passes an AudioChannelLayout, specified in CoreAudioTypes.h, used in the file.

kAudioFilePropertyDeferSizeUpdates = 'dszu'
Passes a UInt32 where a value of 1 means that the file size information in the file header is updated
only when the file is read, optimized, or closed; a value of 0 denotes that the header is updated with
every write.

kAudioFilePropertyDataFormatName = 'fnme'
Deprecated in favor of the kAudioFormatProperty_formatName property, available from Audio
Format “Audio Format Properties” (page 66).

Audio File Global Info Properties

The Global Info Properties are used to retrieve general information about the environment that is being used.
Many of these properties require a specifier for use, meaning that, in addition to passing a property ID, a
piece of information being queried upon is passed in as a specifier.

70 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioFileGlobalInfo_ReadableTypes = 'afrf'
Takes NULL as its specifier, and returns a UInt32 array containing the File Type constants which are
readable.

kAudioFileGlobalInfo_WritableTypes = 'afwf'
Takes NULL as its specifier, and returns a UInt32 array containing the File Type constants which are
writable.

kAudioFileGlobalInfo_FileTypeName = 'ftnm'
Takes a UInt32 containing a File Type constant as its specifier and returns a CFString containing
the name of the file type.

kAudioFileGlobalInfo_ExtensionsForType = 'fext'
Takes a UInt32 containing a File Type constant as its specifier and returns a CFArray of CFString
values containing the file extensions recognized for this file type.

kAudioFileGlobalInfo_AllExtensions = 'alxt'
Takes NULL as its specifier and returns a CFArray of CFString values containing all of the recognizable
file extensions.

kAudioFileGlobalInfo_AvailableFormatIDs = 'fmid'
Takes a UInt32 containing a File Type constant as its specifier and returns a UInt32 array containing
format ID constants for formats readable by audio file.

kAudioFileGlobalInfo_AvailableStreamDescriptionsForFormat = 'sdid'
Takes an AudioFileTypeAndFormatID instance as its specifier and returns an
AudioStreamBasicDescription array whose elements correspond with the elements in the
specifier.

Audio File Functions

These functions are provided to access the functionality of the Audio File API.

Data Handling

AudioFileCreate
Creates a new file using the descriptions provided.

extern OSStatus AudioFileCreate(
const FSRef *inParentRef,
CFStringRef inFileName,
UInt32 inFileType,
const AudioStreamBasicDescription *inFormat,
UInt32 inFlags,
FSRef *outNewFileRef,
AudioFileID *outAudioFile
);

Discussion
The directory that the file to be place into is provided with inParentRef, the name of the file is contained
within inFileName, a File Type constant must be provided with inFileType, the format must be specified
using inFormat, inFlag contains flags for opening and creating the file (currently undefined; should be
set to 0), and outNewFileRef is provided for file system use, while outAudioFile is for use with other
audio file functions.

Audio Toolbox Reference 71
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileInitialize
Wipes clean a existing file to prepare it for writing.

extern OSStatus AudioFileInitialize(
const FSRef *inFileRef,
UInt32 inFileType,
const AudioStreamBasicDescription *inFormat,
UInt32 inFlags,
AudioFileID *outAudioFile
);

Discussion
The inFileRef is the file to be initialized, with the inFileType being a File Type constant value, inFormat
being an AudioStreamBasicDescription specifying the format for the file, inFlags being relevant
creation and opening flags (currently undefined; should be set to 0), and outAudioFile being an
AudioFileID for use with other audio file functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileOpen
Opens a file while preserving its contents.

extern OSStatus AudioFileOpen (
const FSRef *inFileRef,
SInt8 inPermissions,
UInt32 inFlags,
AudioFileID *outAudioFile
);

Discussion
The inFileRef should be a reference to an existing file, inPermissions being the permissions for the file,
as used by FSOpenFork(), and inFlags, currently undefined, should be set to 0; outAudioFile is a file
instance that will be returned for use in other audio file functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

72 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AudioFile_ReadProc
Should read the contents of a file.

typedef OSStatus (*AudioFile_ReadProc)(
void * inRefCon,
SInt64 inPosition,
ByteCount requestCount,
void *buffer,
ByteCount* actualCount
);

Discussion
This callback needs to be provided by the developer for the purpose of reading the audio data for use with
AudioFormatInitializeWithCallbacks() and AudioFormatOpenWithCallbacks(). Constants for
use by the callback are passed in via inRefCon, the position to be read from will be passed in via inPosition,
the number of bytes requested is passed in via requestCount, the processed data is passed in via buffer,
and actualCount returns the number of bytes returned.

AudioFile_WriteProc
Should write the given buffer to the file.

typedef OSStatus (*AudioFile_WriteProc)(
void * inRefCon,
SInt64 inPosition,
ByteCount requestCount,
const void *buffer,
ByteCount* actualCount
);

Discussion
This callback needs to be provided by the developer for the purpose of writing to a file. Constants for use
by the callback are passed in via inRefCon, the position to be read from will be passed in via inPosition,
the number of bytes requested is passed in via requestCount, the data processed to is passed in via buffer,
and actualCount returns the number of bytes written.

AudioFile_GetSizeProc
Should provide the size of the file to the caller.

typedef SInt64 (*AudioFile_GetSizeProc)(void * inRefCon);

Discussion
This callback should return an SInt32 with the audio stream data size to the caller. If any constants need to
be passed to the callback, their values should be pointed to by inRefCon.

AudioFile_SetSizeProc
Should set the file size to the passed value.

Audio Toolbox Reference 73
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

typedef OSStatus (*AudioFile_SetSizeProc)(
void * inRefCon,
SInt64 inSize
);

Discussion
This callback should set the size of the file to inSize, while inRefCon is provided to pass any needed
arguments to the callback.

AudioFileInitializeWithCallbacks
Initializes an audio file using the provided callbacks.

extern OSStatus AudioFileInitializeWithCallbacks(
void * inRefCon,
AudioFile_ReadProc inReadFunc,
AudioFile_WriteProc inWriteFunc,
AudioFile_GetSizeProc inGetSizeFunc,
AudioFile_SetSizeProc inSetSizeFunc,
UInt32 inFileType,
const AudioStreamBasicDescription *inFormat,
UInt32 inFlags,
AudioFileID *outAudioFile
);

Discussion
This function will wipe the data target clean and set the various attributes using inFileType, inFormat,
and inFlags. The callbacks need to be provided by the developer, according to the callback specifications
elsewhere in this reference. Upon completion, outAudioFile will contain a reference to a file instance, for
use with other audio file functions.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFile.h

AudioFileOpenFileWithCallbacks
Opens the file an prepares it for use.

extern OSStatus AudioFileOpenWithCallbacks(
void * inRefCon,
AudioFile_ReadProc inReadFunc,
AudioFile_WriteProc inWriteFunc,
AudioFile_GetSizeProc inGetSizeFunc,
AudioFile_SetSizeProc inSetSizeFunc,
UInt32 inFlags,
AudioFileID *outAudioFile
);

Discussion
Using this function will prepare the target data, while the callbacks specified here will be used when reading,
writing, and modifying the data. This function is provided to allow for the use of Audio File’s APIs with sources
other than files.

74 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AudioFileClose
Closes the file.

extern OSStatus AudioFileClose(AudioFileID inAudioFile);

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileOptimize
Optimizes the file.

extern OSStatus AudioFileOptimize(AudioFileID inAudioFile);

Discussion
Optimizing a file will prepare it for any data which may be appended to the end of it. This is a costly operation
and should not be performed during a process-intensive routine. The kAudioFilepropertyIsOptimized
flag is available to determine whether or not the file is optimized.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileReadBytes
Reads in a certain number of bytes from the file.

extern OSStatus AudioFileReadBytes(
AudioFileID inAudioFile,
Boolean inUseCache,
SInt64 inStartingByte,
UInt32 *ioNumBytes,
void *outBuffer
);

Discussion
Here, inAudioFile is the file being read from, inStartingByte is the point from which to read from,
ioNumBytes being the amount to read, and outBuffer is where the read data is stored. To cache the read,
set inUseCache to true.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

Audio Toolbox Reference 75
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AudioFileWriteBytes
Write the contents of the buffer to the file.

extern OSStatus AudioFileWriteBytes(
AudioFileID inAudioFile,
Boolean inUseCache,
SInt64 inStartingByte,
UInt32 *ioNumBytes,
void *inBuffer
);

Discussion
Specify the file to be written to with inAudioFile, where to write within the file by specifying
inStartingByte, how much is to be written using ioNumBytes (and verifying how much was written at
output, as well), and the data to be written should be pointed to by inBuffer. To cache the written data,
set inUseCache to true.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileReadPackets
Reads in a certain number of packets from the input file.

extern OSStatus AudioFileReadPackets(
AudioFileID inAudioFile,
Boolean inUseCache,
UInt32 *outNumBytes,
AudioStreamPacketDescription *outPacketDescriptions,
SInt64 inStartingPacket,
UInt32 *ioNumPackets,
void *outBuffer
);

Discussion
This function reads in the contents of the file by packet, starting at inStartingPoint. The packets that
have been read are described in outPacketDescriptions, while the number of packets is specified in
ioNumPackets (with the actual number of packets read being the return value), and the size, in bytes, of
the read in packets returned in outNumBytes. If the read should be cached, set inUseCache to true.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileWritePackets
Writes the buffer to the file, by packets.

76 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AudioFileWritePackets(
AudioFileID inAudioFile,
Boolean inUseCache,
UInt32 inNumBytes,
AudioStreamPacketDescription *inPacketDescriptions,
SInt64 inStartingPacket,
UInt32 *ioNumPackets,
void *inBuffer
);

Discussion
When writing to inAudioFile, specify the starting index as inStartingPacket, the format of the packet
as defined in inPacketDescrptions, the size of the write as inNumBytes, and the number of packets to
be written in ioNumPackets. If the write should be cached, set inUseCache to true.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

Property Access

AudioFileGetPropertyInfo
Returns the size of the data that will be returned for the property.

extern OSStatus AudioFileGetPropertyInfo(
AudioFileID inAudioFile,
AudioFilePropertyID inPropertyID,
UInt32 *outDataSize,
UInt32 *isWritable
);

Discussion
The file being queried should be passed in as inAudioFile, while the property being queried is passed in
as inPropertyID. The size of the resulting data is returned in outDataSize, and isWritable will reflect
if the data is modifiable.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileGetProperty
Returns the data for the specified property.

Audio Toolbox Reference 77
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AudioFileGetProperty(
AudioFileID inAudioFile,
AudioFilePropertyID inPropertyID,
UInt32 *ioDataSize,
void *outPropertyData
);

Discussion
The file and property being queried should be specified in inAudioFile and inPropertyID, respectively,
with the size retrieved with AudioFileGetPropertyInfo() passed into ioDataSize, and the resulting
data being placed in outPropertyData.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

AudioFileSetProperty
Sets the data for the respective property.

extern OSStatus AudioFileSetProperty(
AudioFileID inAudioFile,
AudioFilePropertyID inPropertyID,
UInt32 inDataSize,
const void *inPropertyData
);

Discussion
The file and property being set should be specified in inAudioFile and inPropertyID, respectively, with
the size of the data being written passed into ioDataSize, and the data being written coming from
inPropertyData.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioFile.h

Global Info Access

AudioFileGetGlobalInfoSize
Calculates the size of the data that will be returned for the property.

78 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AudioFileGetGlobalInfoSize(
AudioFilePropertyID inPropertyID,
UInt32 inSpecifierSize,
void *inSpecifier,
UInt32 *outDataSize
);

Discussion
Gets the size of the inPropertyID for the inSpecifier and places it in outDataSize.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFile.h

AudioFileGetGlobalInfo
Retrieves the data for the queried property and specifier.

extern OSStatus AudioFileGetGlobalInfo(
AudioFilePropertyID inPropertyID,
UInt32 inSpecifierSize,
void *inSpecifier,
UInt32 *ioDataSize,
void *outPropertyData
);

Discussion
This function takes inPropertyID and returns outPropertyData based on inSpecifier.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AudioFile.h

Audio File Result Codes

These values are returned when errors occur.

kAudioFileUnspecifiedError = 'wht?'
kAudioFileUnsupportedFileTypeError = 'typ?'
kAudioFileUnsupportedDataFormatError = 'fmt?'
kAudioFileUnsupportedPropertyError = 'pty?'
kAudioFileBadPropertySizeError = '!siz'
kAudioFilePermissionsError = 'prm?'
kAudioFileNotOptimizedError = 'optm'
kAudioFileFormatNameUnavailableError = 'nme?'
kAudioFileInvalidChunkError = 'chk?'
kAudioFileDoesNotAllow64BitDataSizeError = 'off?'
kAudioFileInvalidPacketOffsetError = 'pck?'
kAudioFileInvalidFileError = 'dta?'
kAudioFileOperationNotSupportedError = 0x6F703F3F

Audio Toolbox Reference 79
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AUGraph Reference

The AUGraph API allows for creating graphs of Audio Units for processing audio data.

AUGraph Types

Defined Data Types

Typedefs are used to simplify the declaration of converters and the use of properties in the context of a
graph.

 ■ typedef SInt32 AUNode

 ■ typedef struct OpaqueAUGraph *AUGraph

Data Structures

AudioUnitNodeConnection
Used to symbolize the connection between two nodes.

typedef struct AudioUnitNodeConnection{
AUNode sourceNode;
UInt32 sourceOutputNumber;
AUNode destNode;
UInt32 destInputNumber;
} AudioUnitNodeConnection;

Availability
Available in Mac OS X v10.3 and later.

Declared In
AUGraph.h

AUGraph Functions

These functions are provided to access the functionality of the AUGraph API.

NewAUGraph
Creates a new AUGraph instance.

extern OSStatus NewAUGraph(AUGraph *outGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

80 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

DisposeAUGraph
Destroys an AUGraph instance.

extern OSStatus DisposeAUGraph(AUGraph inGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphNewNode
Creates a new node inside of the specified graph.

extern OSStatus AUGraphNewNode(
AUGraph inGraph,
const ComponentDescription *inDescription,
UInt32 inClassDataSize,
const void *inClassData,
AUNode *outNode
);

Discussion
The graph to which the new node is to be added is set in inGraph, while the node to be added may be
specified using either a ComponentDescription, obtained from the Component Manager. The value of
inClassData is a CFPropertyList containing the serialized data of a saved state. The function returns
outNode for future reference towards the newly-created node.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphNewNodeSubGraph
Adds a new subgraph within the graph.

extern OSStatus AUGraphNewNodeSubGraph(
AUGraph inGraph,
AUNode *outNode
);

Discussion
The subgraph node pointed to by outNode may be populated as if it were a graph in itself. The entire graph
becomes active when the subgraph node is connected to the rest of the graph, and it is deactivated when
it is disconnected.

Availability
Available in Mac OS X v10.2 and later.

Audio Toolbox Reference 81
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Declared In
AUGraph.h

AUGraphRemoveNode
Removes the specified node from the graph.

extern OSStatus AUGraphRemoveNode(
AUGraph inGraph,
AUNode inNode
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphGetNodeCount
Returns the number of nodes in the current graph.

extern OSStatus AUGraphGetNodeCount(
AUGraph inGraph,
UInt32 *outNumberOfNodes
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphGetIndNode
Returns a pointer to the node at the specified index.

extern OSStatus AUGraphGetIndNode(
AUGraph inGraph,
UInt32 inIndex,
AUNode *outNode
);

Discussion
The index for the node is arbitrarily assigned when the node is added to the graph.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

82 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AUGraphGetNodeInfo
Returns information about a node.

extern OSStatus AUGraphGetNodeInfo(
AUGraph inGraph,
AUNode inNode,
ComponentDescription *outDescription,
UInt32 *outClassDataSize,
void **outClassData,
AudioUnit *outAudioUnit
);

Discussion
This function retrieves various pieces of information about a graph’s nodes, which may be saved and used
to rebuild the graph later using AUGraphNewNode(). The node and graph containing the node in question
are passed as inGraph and inNode, respectively. Upon output, outDescription points to a
ComponentDescription, provided by the Component Manager. Also, outClassData points towards a
CFPropertyRef, which may be saved and used to rebuild the graph later on. The node’s Audio Unit type
is pointed to by outAudioUnit. The outClassDataSize parameter is currently not used, and will return
0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphGetNodeInfoSubGraph
Returns a pointer towards a subgraph.

extern OSStatus AUGraphGetNodeInfoSubGraph(
const AUGraph inGraph,
const AUNode inNode,
AUGraph *outSubGraph
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUGraph.h

AUGraphIsNodeSubGraph
Indicates if a node is a subgraph.

Audio Toolbox Reference 83
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AUGraphIsNodeSubGraph(
const AUGraph inGraph,
const AUNode inNode,
Boolean* outFlag
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUGraph.h

AUGraphConnectNodeInput
Connects two graph nodes together and specifies the way inputs are ordered.

extern OSStatus AUGraphConnectNodeInput(
AUGraph inGraph,
AUNode inSourceNode,
UInt32 inSourceOutputNumber,
AUNode inDestNode,
UInt32 inDestInputNumber
);

Discussion
When connecting nodes together, the developer must specify how the output of one node maps to the input
of another. To prevent fan out, all output-input connections are one-to-one, where each node may have
multiple inputs and outputs (indexed starting with 0).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphDisconnectNodeInput
Disconnects the input from the graph.

extern OSStatus AUGraphDisconnectNodeInput(
AUGraph inGraph,
AUNode inDestNode,
UInt32 inDestInputNumber
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
AUGraph.h

84 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AUGraphClearConnections
Clears all of the connections between all inputs and outputs.

extern OSStatus AUGraphClearConnections(AUGraph inGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphGetNumberOfConnections
Returns the number of connections present in the graph.

extern OSStatus AUGraphGetNumberOfConnections(
AUGraph inGraph,
UInt32 *outNumberOfConnections
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphCountNodeConnections
Returns the number of connections that involve the specified node.

extern OSStatus AUGraphCountNodeConnections(
AUGraph inGraph,
AUNode inNode,
UInt32 *outNumConnections
);

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphGetNodeConnections
Returns an array containing the number of connections involving the specified node.

Audio Toolbox Reference 85
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AUGraphGetNodeConnections(
AUGraph inGraph,
AUNode inNode,
AudioUnitNodeConnection *outConnections,
UInt32 *ioNumConnections
);

Discussion
This function returns an “AudioUnitNodeConnection” (page 80) array containing information about all of
the pairs of connections that involve inNode. The size of the array will be reflected in ioNumConnections,
while the value returned by AUGraphCountNodeConnections() should be passed to this parameter upon
input.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphGetConnectionInfo
Returns information about a particular connection.

extern OSStatus AUGraphGetConnectionInfo(
AUGraph inGraph,
UInt32 inConnectionIndex,
AUNode *outSourceNode,
UInt32 *outSourceOutputNumber,
AUNode *outDestNode,
UInt32 *outDestInputNumber
);

Discussion
Passing an index will return the information about it. The indices are arbitrarily assigned when the connections
are made, and should follow the indices contained in the outConnections array returned by
AUGraphGetNodeConnections().

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

Declared In
AUGraph.h

AUGraphUpdate
Updates all changes made to the graph while it is running.

86 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AUGraphUpdate(
AUGraph inGraph,
Boolean *outIsUpdated
);

Discussion
When a graph is running, no changes actually occur to the graph until AUGraphUpdate() is called. All node
connect and disconnect requests are queued until this function called. When the graph is not running, all
connect and disconnect requests are processed immediately, and therefore, AUGraphUpdate() is not
necessary. If the value of outIsUpdated is NULL, the update will block all rendering until it is finished; a
non-NULL value will allow AUGraphUpdate() to return immediately. A true value for outIsUpdated will
indicate that all changes have occurred to the graph, whereas a false value means that there are still changes
that have not occurred.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphOpen
Instantiates every Audio Unit in the graph.

extern OSStatus AUGraphOpen(AUGraph inGraph);

Discussion
This function should be called after the initial set of nodes is added to the graph and connections have been
made between them. This will instantiate the nodes, meaning that their properties will be ready for
modification. Each node’s sample rate may also be set after the graph is opened.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphClose
Closes the graph and deallocates its Audio Unit nodes.

extern OSStatus AUGraphClose(AUGraph inGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphInitialize
Initializes the graph and the connected Audio Units.

Audio Toolbox Reference 87
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AUGraphInitialize(AUGraph inGraph);

Discussion
Invoking this function will activate the connections between nodes and will initialize all nodes that are part
of a connection. It is important to note that if format changes occur, sample rates for output nodes must be
set before this function is called.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphUninitialize
Uninitializes the graph and all of the Audio Units.

extern OSStatus AUGraphUninitialize(AUGraph inGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphStart
Begins audio rendering through the graph.

extern OSStatus AUGraphStart(AUGraph inGraph);

Discussion
This function starts with the head node, always an output unit, and works through the graph to get to the
inputs, pulls the data, and renders it through all of the Audio Units in the path leading to the head.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphStop
Stops all rendering through the graph.

extern OSStatus AUGraphStop(AUGraph inGraph);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

88 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AUGraphIsOpen
Returns a boolean value indicting whether or not the graph is open.

extern OSStatus AUGraphIsOpen(
AUGraph inGraph,
Boolean *outIsOpen
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphIsInitialized
Returns a boolean value indicting whether or not the graph is initialized.

extern OSStatus AUGraphIsInitialized(
AUGraph inGraph,
Boolean *outIsInitialized
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphIsRunning
Returns a boolean value indicting whether or not the graph is running.

extern OSStatus AUGraphIsRunning(
AUGraph inGraph,
Boolean *outIsRunning
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUGraph.h

AUGraphGetCPULoad
Returns the amount of load on the CPU.

Audio Toolbox Reference 89
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus AUGraphGetCPULoad(
AUGraph inGraph,
Float32 *outCPULoad
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
AUGraph.h

AUGraphSetRenderNotification
Specifies a callback for the render process.

extern OSStatus AUGraphSetRenderNotification(
AUGraph inGraph,
AudioUnitRenderCallback inCallback,
void *inRefCon
);

Discussion
This function is intended for use when the graph has Audio Units of type ‘aunt’. The callback is specified in
inCallback, and is called before and after an audio render occurs. Passing NULL to inCallback removes
all callbacks from the notification. Multiple notifications are allowed.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
AUGraph.h

AUGraphRemoveRenderNotification
Removes the specified callback from the notification.

extern OSStatus AUGraphRemoveRenderNotification(
AUGraph inGraph,
AudioUnitRenderCallback inCallback,
void *inRefCon
);

Discussion
This function is intended for use when the graph has Audio Units of type ‘aunt’.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
AUGraph.h

90 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

AUGraphAddRenderNotify
Specifies a callback for the render process.

extern OSStatus AUGraphAddRenderNotify(
AUGraph inGraph,
AURenderCallback inCallback,
void *inRefCon
);

Discussion
This function is intended for use when the graph has Audio Units of type ‘auXX’, where XX is one of the
various version 2 Audio Unit types, as specified in AudioUnit/AUComponent.h. The callback is specified in
inCallback, and is called before and after an audio render occurs. Passing NULL to inCallback removes
all callbacks from the notification. Multiple notifications are allowed.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUGraph.h

AUGraphRemoveRenderNotify
Removes the specified callback from the notification.

extern OSStatus AUGraphRemoveRenderNotify(
AUGraph inGraph,
AURenderCallback inCallback,
void *inRefCon
);

Discussion
This function is intended for use when the graph has Audio Units of type ‘auXX’, where XX is one of the
various version 2 Audio Unit types, as specified in AudioUnit/AUComponent.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUGraph.h

AUGraph Result Codes

These values are returned when errors occur.

kAUGraphErr_NodeNotFound = -10860
kAUGraphErr_InvalidConnection = -10861
kAUGraphErr_OutputNodeErr = -10862
kAUGraphErr_CannotDoInCurrentContext = -10863
kAUGraphErr_InvalidAudioUnit = -10864

Audio Toolbox Reference 91
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Music Player and Music Sequence Reference

The Music Player and Music Sequence components allow for the sequencing of MIDI endpoints and audio
units.

Music Player and Music Sequence Types

Defined Data Types

These typedefs are provided to support the different structures and functions in Music Player.

 ■ typedef UInt32 MusicSequenceLoadFlags

 ■ typedef UInt32 MusicEventType

 ■ typedef Float64 MusicTimeStamp

 ■ typedef struct OpaqueMusicPlayer *MusicPlayer

 ■ typedef struct OpaqueMusicSequence *MusicSequence

 ■ typedef struct OpaqueMusicTrack *MusicTrack

 ■ typedef struct OpaqueMusicEventIterator *MusicEventIterator

Data Structures

MIDINoteMessage
Stores information about a MIDI note event.

typedef struct MIDINoteMessage {
UInt8 channel;
UInt8 note;
UInt8 velocity;
UInt8 reserved;
Float32 duration;
} MIDINoteMessage;

Fields
channel

The channel number to which the note is assigned.

note
The value of the note to be played.

velocity
The volume at which the note is to be played.

reserved

duration
The length of time that the note should be played, in beats.

92 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Discussion
This structure encapsulates the information needed to relay the properties of a note. An instance of this
structure is used by the MusicTrackNewMIDINoteEvent (page 112) function. The values of the structure
are:

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MIDIChannelMessage
Stores the data for a MIDI channel event.

typedef struct MIDIChannelMessage {
UInt8 status;
UInt8 data1;
UInt8 data2;
UInt8 reserved;
} MIDIChannelMessage;

Fields
status

The message and the channel it is to be relayed to.

data1
Data specific to the message.

data2
Data specific to the message.

reserved
???

Discussion
This structure encapsulates the information needed for a channel event to be used in a music track. An
instance of this structure is used by the MusicTrackNewMIDIChannelEvent (page 113) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MIDIRawData
Stores the information for any MIDI event.

Audio Toolbox Reference 93
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

typedef struct MIDIRawData {
UInt32 length;
UInt8 data[1];
} MIDIRawData;

Fields
length

The size of the space allocated for data.

data
The raw MIDI data to be stored; allocate as much space as needed for the data.

Discussion
This structure encapsulates the data for an event where raw MIDI data is sent to an endpoint. An instance
of this structure is used by the MusicTrackNewMIDIRawDataEvent (page 113) function. The values of the
structure are:

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MIDIMetaEvent
Stores the data for a MIDI meta event.

typedef struct MIDIMetaEvent {
UInt8 metaEventType;
UInt8 unused1;
UInt8 unused2;
UInt8 unused3;
UInt32 dataLength;
UInt8 data[1];
} MIDIMetaEvent;

Fields
metaEventType

Specifies the type of meta event this structure encapsulates.

unused1
An unused value.

unused2
An unused value.

unused3
An unused value.

dataLength
The size of the space allocated for data.

data
The meta data for this event.

Discussion
This structure encapsulates the information needed to pass MIDI meta data, as found in standard MIDI files,
to MIDI endpoints. An instance of this structure is used by the MusicTrackNewMetaEvent (page 114) function.
The values of the structure are:

94 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventUserData
Stores data for a user event .

typedef struct MusicEventUserData {
UInt32 length;
UInt8 data[1];
} MusicEventUserData;

Fields
length

The size, in bytes, of the value stored in data.

data
The data stored for this event.

Discussion
This structure encapsulates the information used on a user event. An instance of this structure is used by the
MusicTrackNewUserEvent (page 115) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

ExtendedNoteOnEvent
Stores the data for a playback note.

typedef struct ExtendedNoteOnEvent {
MusicDeviceInstrumentID instrumentID;
MusicDeviceGroupID groupID;
Float32 duration;
MusicDeviceNoteParams extendedParams;
} ExtendedNoteOnEvent;

Fields
instrumentID

The instrument to be used by the Music Device.

groupID
The channel of the Music Device.

duration
The length of the note.

extendedParams
Any additional parameters that need to be sent to the Music Device.

Audio Toolbox Reference 95
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Discussion
This structure encapsulates the information needed to playback a note using a Music Device. An instance of
this structure is used by the MusicTrackNewExtendedNoteEvent (page 114) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

ExtendedControlEvent
Stores information regarding an event using a Music Device.

typedef struct ExtendedControlEvent {
MusicDeviceGroupID groupID;
AudioUnitParameterID controlID;
Float32 value;
} ExtendedControlEvent;

Fields
groupID

The channel of the Music Device to be controlled.

controlID
The Music Device parameter to be controlled.

value
The value to which the parameter should be set.

Discussion
This structure encapsulates the information needed to control a Music Device. An instance of this structure
is used by the MusicTrackNewExtendedControlEvent (page 114) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

ParameterEvent
Stores information for an even using Audio Units.

typedef struct ParameterEvent {
AudioUnitParameterID parameterID;
AudioUnitScope scope;
AudioUnitElement element;
Float32 value;
} ParameterEvent;

Fields
parameterID

The parameter to be adjusted.

96 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

scope
The scope for this event.

element
The element to be controlled

value
The value to be passed into the parameter.

Discussion
This structure encapsulates the information needed to relay the properties of a note. An instance of this
structure is used by the MusicTrackNewParameterEvent (page 115) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

ExtendedTempoEvent
Specifies the tempo to be applied when this event occurs.

typedef struct ExtendedTempoEvent {
Float64 bpm;
} ExtendedTempoEvent;

Fields
pbm

The beats-per-minute to be used for the sequence from this event forward.

Discussion
This structure encapsulates the information needed to change the tempo of the sequence at a certain point.
An instance of this structure is used by the MusicTrackExtendedTempoEvent (page 115) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Music Player and Music Sequence Constants

Constants are provided for the developer’s convenience. They provide a consistent set of values for various
aspects of an audio file.

Music Events

These constants are used by the MusicEventIteratorGetEventInfo (page 119) and
MusicEventIteratorSetEventInfo (page 119) functions to determine the type of event currently being
pointed to by the iterator. Based on these values, the outEventData and inEventData pointers in these
functions should point to instances of these types:

Audio Toolbox Reference 97
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Table 4-1 Music Event Constants

Data TypeConstant

ExtendedNoteOnEvent (page 95)kMusicEventType_ExtendedNote

ExtendedControlEvent (page 96)kMusicEventType_ExtendedControl

ExtendedTempoEvent (page 97)kMusicEventType_ExtendedTempo

MusicEventUserData (page 95)kMusicEventType_User

MIDIMetaEvent (page 94)kMusicEventType_Meta

MIDINoteMessage (page 92)kMusicEventType_MIDINoteMessage

MIDIChannelMessage (page 93)kMusicEventType_MIDIChannelMessage

MIDIRawData (page 93)kMusicEventType_MIDIRawData

ParameterEvent (page 96)kMusicEventType_Parameter

In addition to these types, two other values may be returned:

 ■ kMusicEventType_NULL - Returned when a Music Track is empty.

 ■ kMusicEventType_Last - Returned when all of the events in a track have been iterated through.

Other Constants

These additional constants have been provided as flags or definitions of values for consistency.

 ■ kMusicSequenceLoadSMF_ChannelsToTracks - Used by the
MusicSequenceLoadSMFWithFlags (page 107) and MusicSequenceLoadSMFDataWithFlags (page
107) to indicate that when a standard MIDI file is read in with this flag assigned, the resulting sequence
will have a track created for each channel in the MIDI file, as well as another track for all of the meta
information.

 ■ kMusicTimeStamp_EndOfTrack - Used to provide an upper limit for the length of tracks; currently set
to 1,000,000,000.0 beats.

Music Track Properties

These properties are used by MusicTrackSetProperty (page 112) and MusicTrackGetProperty (page
112) to define the status and certain values unique to the track.

kSequenceTrackProperty_LoopInfo = 0
Uses a structure containing a MusicTimeStamp indicating the length of the track and a long indicating
the number of times the track is to be looped. If the track is to be loop infinitely, set this value equal
to zero.

98 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kSequenceTrackProperty_OffsetTime = 1
Uses a MusicTimeStamp to determine after how many beats into the sequence the track should
begin playing.

kSequenceTrackProperty_MuteStatus = 2
Uses a Boolean to mute the track.

kSequenceTrackProperty_SoloStatus = 3
Uses a Boolean to determine if the track is the only one to control an endpoint or node.

kSequenceTrackProperty_AutomatedParameters = 4
Uses a UInt32 to signify if the track modifys a node parameters.

kSequenceTrackProperty_TrackLength = 5
Uses a MusicTimeStamp to reflect the length of the track, in beats.

Music Player, Music Sequence, and Music Track Functions

These functions make up the functionality of the Music Player API.

Music Player Functions

The functions work with a Music Player instances, which are used to play back a Music Sequence instance.
Each Music Player is only allowed to be associated with one Music Sequence, and vice versa.

NewMusicPlayer
Creates a new Music Player instance.

extern OSStatus NewMusicPlayer(MusicPlayer *outPlayer);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

DisposeMusicPlayer
Disposes of a Music Player.

extern OSStatus DisposeMusicPlayer(MusicPlayer inPlayer);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerSetSequence
Associates a Music Player with a Music Sequence.

Audio Toolbox Reference 99
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicPlayerSetSequence(
MusicPlayer inPlayer,
MusicSequence inSequence
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerSetTime
Moves the Music Player’s playhead to the desired time, in beats.

extern OSStatus MusicPlayerSetTime(
MusicPlayer inPlayer,
MusicTimeStamp inTime
);

Discussion
In addition to moving the playhead, MusicPlayerSetTime() also prerolls the track up to the playhead,
setting Audio Unit parameters and MIDI endpoints to where they should be at the playhead, based on the
sequence prior to the playhead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerGetTime
Returns the current placement of the playhead, in beats.

extern OSStatus MusicPlayerGetTime(
MusicPlayer inPlayer,
MusicTimeStamp *outTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerGetHostTimeForBeats
Returns the number of seconds equivalent to the number beats provided.

100 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicPlayerGetHostTimeForBeats(
MusicPlayer inPlayer,
MusicTimeStamp inBeats,
UInt64* outHostTime
);

Discussion
This function determines what value to return by analyzing the tempo track in the sequence and determining
the amount of time has passed when inBeats number of beats have occurred. Only valid when called while
a Music Player is playing.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

MusicPlayerGetBeatsForHostTime
Returns the beat for a given time.

extern OSStatus MusicPlayerGetBeatsForHostTime(
MusicPlayer inPlayer,
UInt64 inHostTime,
MusicTimeStamp *outBeats);

Discussion
This function determines what value to return by analyzing the tempo track in the sequence and determining
the number beats that have passed at inHostTime. Only valid when called while a Music Player is playing.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

MusicPlayerPreroll
Prepares a sequence to be played.

extern OSStatus MusicPlayerPreroll(MusicPlayer inPlayer);

Discussion
Prerolling a player prepares the player’s sequence to be played. Calling this function will synchronize all of
the tracks within the sequence, bringing MIDI endpoints to their correct state with respect to the playhead,
while adjusting Audio Unit parameters as well. Adding an event prior to a playhead invalidates a preroll, and
so this function should only be called after all events have been added, since this operation is rather costly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Audio Toolbox Reference 101
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicPlayerStart
Begins playback of a sequence.

extern OSStatus MusicPlayerStart(MusicPlayer inPlayer);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerStop
Halts the playback of a sequence.

extern OSStatus MusicPlayerStop(MusicPlayer inPlayer);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicPlayerIsPlaying
Returns a Boolean reflecting the current state of a player.

extern OSStatus MusicPlayerIsPlaying(
MusicPlayer inPlayer,
Boolean* outIsPlaying
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

MusicPlayerSetPlayRateScalar
Sets a tempo multiplier for a sequence.

extern OSStatus MusicPlayerSetPlayRateScalar(
MusicPlayer inPlayer,
Float64 inScaleRate
);

Discussion
The value of inScaleRatewill be applied to the tempo track of the sequence, adjusting the playback tempo
uniformly. For instance, if a tempo track is set up to be entirely 60 bpm, and a value of two is set as the
inScaleRate, playback will occur at 120 bpm. The scale rate is not allowed to be negative (reverse playback
is not allowed), and must be greater than zero (use MusicPlayerStop (page 102) to stop playback instead).

102 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Availability
Available in Mac OS X v10.3 and later.

Declared In
MusicPlayer.h

MusicPlayerGetPlayRateScalar
Returns the current tempo multiplier.

extern OSStatus MusicPlayerGetPlayRateScalar(
MusicPlayer inPlayer,
Float64 *outScaleRate
);

Discussion
The play rate scalar is a multiplier applied to every tempo event in the tempo track of a sequence. At playback,
every tempo in the tempo track will multiplied by this value and the sequence will them play at the resulting
tempo.

Availability
Available in Mac OS X v10.3 and later.

Declared In
MusicPlayer.h

Music Sequence Functions

The functions work with a Music Sequence instance, and are used to create, modify, and dispose of sequences.

NewMusicSequence
Creates a new Music Sequence.

extern OSStatus NewMusicSequence(MusicSequence *outSequence);

Discussion
After creation, a Music Sequence contains one track: the Tempo Track. This track determines the playback
rate, in beats-per-minute (bpm), determined by events placed along the track. Only events of type
ExtendedTempoEvent (page 97) are allowed in the tempo track. To get a pointer to the tempo track (to
add and remove tempo events), use MusicSequenceGetTempoTrack (page 105).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

DisposeMusicSequence
Disposes of a Music Sequence.

Audio Toolbox Reference 103
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus DisposeMusicSequence(MusicSequence
inSequence);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceNewTrack
Creates a new event track within a sequence.

extern OSStatus MusicSequenceNewTrack(
MusicSequence inSequence,
MusicTrack *outTrack
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceDisposeTrack
Removes and disposes of a track from within a sequence.

extern OSStatus MusicSequenceDisposeTrack(
MusicSequence inSequence,
MusicTrack inTrack
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceGetTrackCount
Returns the number of tracks within a sequence.

extern OSStatus MusicSequenceGetTrackCount(
MusicSequence inSequence,
UInt32 *outNumberOfTracks
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

104 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicSequenceGetIndTrack
Returns a pointer to the track at an index.

extern OSStatus MusicSequenceGetIndTrack(
MusicSequence inSequence,
UInt32 inTrackIndex,
MusicTrack *outTrack
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceGetTrackIndex
Returns the index within the sequence for the given track.

extern OSStatus MusicSequenceGetTrackIndex(
MusicSequence inSequence,
MusicTrack inTrack,
UInt32 *outTrackIndex
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceGetTempoTrack
Returns a pointer to a sequence’s tempo track.

extern OSStatus MusicSequenceGetTempoTrack(
MusicSequence inSequence,
MusicTrack *outTrack
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
MusicPlayer.h

MusicSequenceSetAUGraph
Sets the sequence to work with a particular AUGraph instance.

Audio Toolbox Reference 105
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicSequenceSetAUGraph(
MusicSequence inSequence,
AUGraph inGraph
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceGetAUGraph
Returns a pointer to the AUGraph which is being used by the given sequence.

extern OSStatus MusicSequenceGetAUGraph(
MusicSequence inSequence,
AUGraph *outGraph
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceSetMIDIEndpoint
Sets the MIDI device being used by the given sequence.

extern OSStatus MusicSequenceSetMIDIEndpoint(
MusicSequence inSequence,
MIDIEndpointRef inEndpoint
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
MusicPlayer.h

MusicSequenceLoadSMF
Parses a standard MIDI file and places its contents into a track within a sequence.

extern OSStatus MusicSequenceLoadSMF(
MusicSequence inSequence,
const FSSpec *inFileSpec
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

106 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Not available to 64-bit applications.

Declared In
MusicPlayer.h

MusicSequenceLoadSMFData
Parses MIDI data out of memory and uses it to populate a sequence.

extern OSStatus MusicSequenceLoadSMFData(
MusicSequence inSequence,
CFDataRef inData
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MusicPlayer.h

MusicSequenceLoadSMFWithFlags
Parses a standard MIDI file and places its contents into a sequence.

extern OSStatus MusicSequenceLoadSMFWithFlags(
MusicSequence inSequence,
FSRef *inFileRef,
MusicSequenceLoadFlags inFlags
);

Discussion
Use MusicSequenceLoadSMFWithFlags to load data from a standard MIDI file into a sequence. The use
of flags allows for the resulting data to be customized. Passing in 0 to inFlags makes this function act like
MusicSequenceLoadSMF (page 106). The only other flag currently available for use is
kMusicSequenceLoadSMF_ChannelsToTracks, described in “Other Constants” (page 98).

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
MusicPlayer.h

MusicSequenceLoadSMFDataWithFlags
Parses MIDI data out of memory and uses it to populate a sequence.

Audio Toolbox Reference 107
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicSequenceLoadSMFDataWithFlags(
MusicSequence inSequence,
CFDataRef inData,
MusicSequenceLoadFlags inFlags
);

Discussion
As with MusicSequenceLoadSMFWithFlags (page 107), passing a 0 to inFlags will cause this function to
behave like MusicSequenceLoadSMFData (page 107). Passing it
kMusicSequenceLoadSMF_ChannelsToTrackswill cause the data to be formatted as described in “Other
Constants” (page 98).

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
MusicPlayer.h

MusicSequenceSaveSMF
Saves the contents of a sequence to file, in standard MIDI format.

extern OSStatus MusicSequenceSaveSMF(
MusicSequence inSequence,
const FSSpec *inFileSpec,
UInt16 inResolution
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MusicPlayer.h

MusicSequenceSaveSMFData
Saves the contents of a sequence to memory, in standard MIDI format

extern OSStatus MusicSequenceSaveSMFData(
MusicSequence inSequence,
CFDataRef *outData,
UInt16 inResolution
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
MusicPlayer.h

108 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicSequenceReverse
Revereses all of the events in a sequence.

extern OSStatus MusicSequenceReverse(MusicSequence
inSequence);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicSequenceGetSecondsForBeats
Returns the number of seconds elapsed for the given number of beats in the sequence.

extern OSStatus MusicSequenceGetSecondsForBeats(
MusicSequence inSequence,
MusicTimeStamp inBeats,
Float64* outSeconds
);

Discussion
This function uses the tempo track of the sequence to determine how much time passes until the provided
number of beats has occurred.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

MusicSequenceGetBeatsForSeconds
Returns the number of beats that have elapsed after the provided number of seconds.

extern OSStatus MusicSequenceGetBeatsForSeconds(
MusicSequence inSequence,
Float64 inSeconds,
MusicTimeStamp* outBeats
);

Discussion
This function uses the sequence’s tempo track to determine the number of beats that occur after the provided
number of seconds.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

Audio Toolbox Reference 109
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicSequenceSetUserCallback
Set the callback that is used whenever an event of type MusicEventUserData (page 95) occurs.

extern OSStatus MusicSequenceSetUserCallback(
MusicSequence inSequence,
MusicSequenceUserCallback inCallback,
void* inClientData
);

Discussion
The callback registered suing this function is of type MusicSequenceUserCallback (page 121). The pointer
passed in via inClientData is passed on to the callback when it is called. Passing NULL to inCallback
removes any callback previously registered.

Note that if MusicPlayerSetTime (page 100) is called, this callback will be called for any events between
the previous playhead and the new playhead. See MusicSequenceUserCallback (page 121) for more
information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
MusicPlayer.h

Music Track Setup Functions

These functions are provided to create and set up a music track.

MusicTrackGetSequence
Returns the sequence to which the track belongs.

extern OSStatus MusicTrackGetSequence(
MusicTrack inTrack,
MusicSequence *outSequence
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackSetDestNode
Sets the AUGraph node which the track controls.

110 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicTrackSetDestNode(
MusicTrack inTrack,
AUNode inNode
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackSetDestMIDIEndpoint
Sets the track’s destination endpoint.

extern OSStatus MusicTrackSetDestMIDIEndpoint(
MusicTrack inTrack,
MIDIEndpointRef inEndpoint
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
MusicPlayer.h

MusicTrackGetDestNode
Returns a pointer towards the node that the track points to.

extern OSStatus MusicTrackGetDestNode(
MusicTrack inTrack,
AUNode *outNode
);

Availability
Available in Mac OS X v10.1 and later.

Declared In
MusicPlayer.h

MusicTrackGetDestMIDIEndpoint
Returns a pointer towards the endpoint that the track points to.

extern OSStatus MusicTrackGetDestMIDIEndpoint(
MusicTrack inTrack,
MIDIEndpointRef *outEndpoint
);

Availability
Available in Mac OS X v10.1 and later.

Audio Toolbox Reference 111
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Declared In
MusicPlayer.h

Music Track Property Functions

The functions with a Music Track’s properties.

MusicTrackSetProperty
Sets the track’s value for the given property.

extern OSStatus MusicTrackSetProperty(
MusicTrack inTrack,
UInt32 inPropertyID,
void *inData,
UInt32 inLength
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackGetProperty
Returns the track’s value for a given property.

extern OSStatus MusicTrackGetProperty(
MusicTrack inTrack,
UInt32 inPropertyID,
void *outData,
UInt32 *ioLength
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Music Track Event Setup Functions

These function place events on the various tracks within a sequence.

MusicTrackNewMIDINoteEvent
Creates a new MIDI note event.

112 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicTrackNewMIDINoteEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const MIDINoteMessage *inMessage
);

Discussion
This places a MIDINoteMessage (page 92) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackNewMIDIChannelEvent
Creates a new MIDI channel event.

extern OSStatus MusicTrackNewMIDIChannelEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const MIDIChannelMessage *inMessage
);

Discussion
This places a MIDIChannelMessage (page 93) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackNewMIDIRawDataEvent
Creates a new MIDI raw data event.

extern OSStatus MusicTrackNewMIDIRawDataEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const MIDIRawData *inRawData
);

Discussion
This places a MIDIRawData (page 93) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Audio Toolbox Reference 113
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicTrackNewMetaEvent
Creates a new MIDI meta event.

extern OSStatus MusicTrackNewMetaEvent(
MusicTrack inTrack, M
usicTimeStamp inTimeStamp,
const MIDIMetaEvent *inMetaEvent
);

Discussion
This places a MIDIMetaEvent (page 94) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackNewExtendedNoteEvent
Creates a new extended note event.

extern OSStatus MusicTrackNewExtendedNoteEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const ExtendedNoteOnEvent *inInfo);

Discussion
This places a ExtendedNoteOnEvent (page 95) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackNewExtendedControlEvent
Creates a new extended control event.

extern OSStatus MusicTrackNewExtendedControlEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const ExtendedControlEvent *inInfo);

Discussion
This places a ExtendedControlEvent (page 96) instance on inTrack, which is to be played at
inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

114 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicTrackNewParameterEvent
Creates a new parameter event.

extern OSStatus MusicTrackNewParameterEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const ParameterEvent *inInfo
);

Discussion
This places a ParameterEvent (page 96) instance on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

MusicTrackExtendedTempoEvent
Creates a new extended tempo event.

extern OSStatus MusicTrackNewExtendedTempoEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
Float64 inBPM
);

Discussion
This places a ExtendedTempoEvent (page 97) instance on inTrack, which is to be played at inTimeStamp.

MusicTrackNewUserEvent
Creates a new user event.

extern OSStatus MusicTrackNewUserEvent(
MusicTrack inTrack,
MusicTimeStamp inTimeStamp,
const MusicEventUserData* inUserData
);

Discussion
This places a MusicEventUserData (page 95) on inTrack, which is to be played at inTimeStamp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Music Track Event Editing

The functions allow you to arrange events within a track, create new tracks from events, and edit groups of
events.

Audio Toolbox Reference 115
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicTrackMoveEvents
Moves the events from the given range to a new place.

extern OSStatus MusicTrackMoveEvents(
MusicTrack inTrack,
MusicTimeStamp inStartTime,
MusicTimeStamp inEndTime,
MusicTimeStamp inMoveTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

NewMusicTrackFrom
Creates a new music track from the event in the given range.

extern OSStatus NewMusicTrackFrom(
MusicTrack inSourceTrack,
MusicTimeStamp inSourceStartTime,
MusicTimeStamp inSourceEndTime,
MusicTrack *outNewTrack
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackClear
Removes the events in the given range.

extern OSStatus MusicTrackClear(
MusicTrack inTrack,
MusicTimeStamp inStartTime,
MusicTimeStamp inEndTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackCut
Removes the events in the given range, and moves those behind the range up.

116 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicTrackCut(
MusicTrack inTrack,
MusicTimeStamp inStartTime,
MusicTimeStamp inEndTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackCopyInsert
Inserts the selected range at the destination insertion time, move all of events behind the insertion time back
after the range.

extern OSStatus MusicTrackCopyInsert(
MusicTrack inSourceTrack,
MusicTimeStamp inSourceStartTime,
MusicTimeStamp inSourceEndTime,
MusicTrack inDestTrack,
MusicTimeStamp inDestInsertTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicTrackMerge
Merges the selected range of events with the existing events in the track.

extern OSStatus MusicTrackMerge(
MusicTrack inSourceTrack,
MusicTimeStamp inSourceStartTime,
MusicTimeStamp inSourceEndTime,
MusicTrack inDestTrack,
MusicTimeStamp inDestInsertTime
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

Music Track Event Iteration

The functions work with a Music Track instances.

Audio Toolbox Reference 117
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

NewMusicEventIterator
Creates a new iterator for a track.

extern OSStatus NewMusicEventIterator(
MusicTrack inTrack,
MusicEventIterator *outIterator
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

DisposeMusicEventIterator
Destroys an iterator.

extern OSStatus DisposeMusicEventIterator(MusicEventIterator inIterator);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorSeek
Moves the iterator to the event closest to the supplied time stamp.

extern OSStatus MusicEventIteratorSeek(
MusicEventIterator inIterator,
MusicTimeStamp inTimeStamp
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorNextEvent
Moves the iterator o the next event in the track.

extern OSStatus MusicEventIteratorNextEvent(
MusicEventIterator inIterator
);

Availability
Available in Mac OS X v10.0 and later.

118 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

Declared In
MusicPlayer.h

MusicEventIteratorPreviousEvent
Move the iterator to the previous event in the track.

extern OSStatus MusicEventIteratorPreviousEvent(
MusicEventIterator inIterator
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorGetEventInfo
Returns information about the event currently iterated upon.

extern OSStatus MusicEventIteratorGetEventInfo(
MusicEventIterator inIterator,
MusicTimeStamp *outTimeStamp,
MusicEventType *outEventType,
const void* *outEventData,
UInt32 *outEventDataSize
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorSetEventInfo
Sets the type and data for an event.

extern OSStatus MusicEventIteratorSetEventInfo(
MusicEventIterator inIterator,
MusicEventType inEventType,
const void *inEventData
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

Audio Toolbox Reference 119
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

MusicEventIteratorDeleteEvent
Removes the event from the track.

extern OSStatus MusicEventIteratorDeleteEvent(
MusicEventIterator inIterator
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorSetEventTime
Sets the time that an event should occur at.

extern OSStatus MusicEventIteratorSetEventTime(
MusicEventIterator inIterator,
MusicTimeStamp inTimeStamp
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorHasPreviousEvent
Returns a boolean signifying if there is an event before the currently iterated event.

extern OSStatus MusicEventIteratorHasPreviousEvent(
MusicEventIterator inIterator,
Boolean *outHasPreviousEvent
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorHasNextEvent
Returns a boolean signifying if there is an event after the currently iterated event.

120 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

extern OSStatus MusicEventIteratorHasNextEvent(
MusicEventIterator inIterator,
Boolean *outHasNextEvent
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MusicPlayer.h

MusicEventIteratorHasCurrentEvent
Returns a boolean which tells if the iterator points towards an event.

extern OSStatus MusicEventIteratorHasCurrentEvent(
MusicEventIterator inIterator,
Boolean *outHasCurrentEvent
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
MusicPlayer.h

Music Sequence Callbacks

MusicSequenceUserCallback
The callback used whenever a user event occurs in an event track.

typedef CALLBACK_API_C(void,MusicSequenceUserCallback)(
void *inClientData,
MusicSequence inSequence,
MusicTrack inTrack,
MusicTimeStamp inEventTime,
const MusicEventUserData *inEventData,
MusicTimeStamp inStartSliceBeat,
MusicTimeStamp inEndSliceBeat
);

Music Player and Music Sequence Result Codes

These values are returned when errors occur.

kAudioToolboxErr_TrackIndexError = -10859
kAudioToolboxErr_TrackNotFound = -10858
kAudioToolboxErr_EndOfTrack = -10857
kAudioToolboxErr_StartOfTrack = -10856
kAudioToolboxErr_IllegalTrackDestination = -10855
kAudioToolboxErr_NoSequence = -10854
kAudioToolboxErr_InvalidEventType = -10853

Audio Toolbox Reference 121
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

kAudioToolboxErr_InvalidPlayerState = -10852

122 Audio Toolbox Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Audio Toolbox

This chapter describes the functions, structures, and constants used throughout the Audio Unit framework.
The section “Reference” (page 126) describes the constants, data types, and functions that are relevant to
audio unit development.

Overview

In Core Audio, audio units serve a number of purposes. Audio units are used to generate, process, receive,
or otherwise manipulate streams of audio. They are building blocks that may be used singly or connected
together to form an audio signal graph, or AUGraph (page 46).

The Audio Unit Framework

The audio unit framework provides a set of services that developers can take advantage of in their own
applications by using audio units. The framework also provides services for those who want to develop their
own audio units.

Audio units are defined as processing units. Their input can come from a variety of sources (for example,
encoded data, other audio units, or none); their output is generally a buffer of audio data.

Apple ships a set of AudioUnit components, as well as defining the interface for the AudioUnit component.

In Java, these services are available in the com.apple.audio.units package.

In the Macintosh system architecture, audio units are simply components, and like all components are
identified based on their four-character code type, subType and ID field. The Component Manager provides
a set of APIs for querying the available components on the system. You can use the FindNextComponent()
call to find out what audio units are installed on the system. Instances are created by means of the
OpenAComponent() call and released by the CloseComponent() call.

For more information on the Component Manager, consult More Macintosh Toolbox.

The Audio Unit API

The audio unit API presents the basic audio unit interface, as well as the constants that define the audio unit
type, and the generic sub-types of an audio unit.

The specific ID of an audio unit represents the specific functionality of the audio unit itself. For example, the
DLSMusicDevice is an audio unit that is able to use both Downloadable Sounds (DLS) and SoundFont 2 (SF2)
files as sample data for sample-based synthesis. Its type is ‘aumu’–– an audio unit music device. Its sub-type
is ‘dls ’ –– a DLS music device (note the space at the end).

Overview 123
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-333.html

For more specific information about components, refer to Inside Macintosh: More Macintosh Toolbox,
Chapter 6, Component Manager.

Audio Unit State

The basic audio unit states are closed, open, and initialized, which correspond to these calls:

 ■ OpenAComponent()

 ■ CloseAComponent()

 ■ AudioUnitInitialize()

 ■ AudioUnitUninitalize()

No significant resource allocations are expected to occur when the audio unit component is first opened
with OpenAComponent(). AudioUnitInitialize() is called after optional configuration has occured.
This is where the audio unit allocates and is prepared to render.

AudioUnitReset() may be called on any initialized audio unit. The AudioUnitReset() call clears any
buffers, resets filter memory, and stops any playing notes (for example, in a MusicDevice software synthesizer).
It places the audio unit back to its initialized state.

Audio Unit Sources and Destinations

Audio units have sources and destinations. An audio unit can be just a source unit, such as software
synthesizers, which are presented as a type of audio unit defined as a MusicDevice.

An audio unit can also be just a destination that is attached to a hardware output device.

Some audio units contain both input and output audio data. DSP processors, such as reverbs, filters, and
mixers are examples, as are format converters, such as 16-bit integer to floating-point converters,
interleavers-deinterleavers, and sample rate converters.

Audio Unit Properties

Properties represent a general and extensible mechanism for passing information to and from audio units.
Information is communicated via a void* data parameter and a data byte-size parameter. The type of
information is identified by an AudioUnitPropertyID.

Information is addressed to a particular section of an audio unit with AudioUnitScope and
AudioUnitElement. AudioUnitScope includes the following constants:

 ■ kAudioUnitScope_Global

 ■ kAudioUnitScope_Input

 ■ kAudioUnitScope_Output

 ■ kAudioUnitScope_Group

124 Overview
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-333.html
http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-333.html

AudioUnitElement is a zero-based index of a particular input, output, or group and is typically ignored
for global scope. AudioUnitPropertyIDs are defined in Constants (page 126).

Audio Unit Parameters

Parameters are values that can change over time, and are generally time-sensitive and can be scheduled.
Parameters could include such things as volume or panning of a particular output on the mixer audio unit,
for instance.

I/O Management

Audio unit I/O Management relies on a “pull” I/O model, which specifies through its properties the number
and format of its inputs and outputs. Each input/output is a set of audio buffers corresponding to audio
channels.

Data can be supplied to an audio unit through one of two mechanisms:

1. Connecting an audio unit output to another audio unit that will provide input using
kAudioUnitProperty_MakeConnection. Audio data is automatically routed to the input with no
required user intervention.

2. Registering a client callback using kAudioUnitProperty_SetInputCallback where the client can
provide audio source data to an audio unit through the supplied callback.

The AUGraph API provides a higher-level connection service, freeing the client from calling the audio unit
directly.

The “Pull” I/O Model

As mentioned, audio units use a “pull” I/O model, with each unit specifying through its properties the number
and format of its inputs and ouputs. Each output is in itself a set of audio buffers corresponding to audio
channels. Connections between units are also managed via properties. Data is requested from an audio unit
through its AudioUnitRender (page 145) function being called by one of its destinations, or the
AURenderCallback (page 152) being called.

Key points about AudioUnitRender() arguments:

1. The AudioTimeStamp specifies the start time of the buffer to be rendered, synchronizing the hosttime
of the machine with the sample time of the audio to lock it with other realtime events such as MIDI.

2. The AudioBufferList argument passes in and receives back a set of buffers of audio data. The client
may pass in a list or let the AudioUnit provide it.

A client can request notifications of the rendering activity of an audio unit by installing a callback using
kAudioUnitProperty_RenderNotification. The client’s callback will then be called by the audio unit,
both before and after any call to the unit’s render slice function.

The ioActionFlags parameter provides the unit with instructions on how to handle the buffer supplied:

Overview 125
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kAudioUnitRenderAction_Accumulate –– The unit should sum its output into the given buffer, rather
than replace it. This action is only valid for formats that support easy stream mixing like linear PCM. In addition,
a buffer will always be supplied.

kAudioUnitRenderAction_UseProvidedBuffer –– This flag indicates that the rendered audio must be
placed in the buffer pointed the ioData argument. In this case, ioData must point to a valid piece of
allocated memory. If this flag is not set, the mData member of ioDatamay possibly be changed upon return,
pointing to a different buffer (owned by the audio unit).

If the ioData member is NULL, then rendering may set ioData to a buffer list owned by the audio unit. In
any case, on return, ioData points to the rendered audio data.

The inTimeStamp parameter gives the audio unit information about what the time is for the start of the
rendered audio output.

The inOutputBusNumber parameter requests that audio be rendered for a particular audio output of the
audio unit. Rendering is performed separately for each of its outputs. The audio unit is expected to cache its
rendered audio for each output in the case that it is called more than once for the same output
(inOutputBusNumber is the same) at the same time (inTimeStamp is the same). This solves the “fanout”
problem.

Additional Information

Additional information and documentation is available with the Core Audio SDK, available from the Audio
Developer webpage:

http://developer.apple.com/audio

Reference

This reference section describes the structures, constants, parameters, properties, and typedefs provided in
the Audio Unit framework. Many of these are universal among all audio units, while some are specific to
Apple-provided units.

Constants

Component Types and Subtypes

The following audio units are provided by Apple. The four-character codes identify each of these units with
the Component Manager, allowing for you to find and use them.

kAudioUnitType_Output = FOUR_CHAR_CODE('auou')
The component type for all output units.

kAudioUnitSubType_HALOutput = FOUR_CHAR_CODE('ahal')
The component subtype for an output unit that uses a HAL output.

126 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

http://developer.apple.com/audio

kAudioUnitSubType_DefaultOutput = FOUR_CHAR_CODE('def ')
The component subtype for an output unit that uses the default output, as selected by the user.

kAudioUnitSubType_SystemOutput = FOUR_CHAR_CODE('sys ')
The component subtype for an output unit that uses the system output.

kAudioUnitSubType_GenericOutput = FOUR_CHAR_CODE('genr')
The component subtype for a generic output unit.

kAudioUnitType_MusicDevice = FOUR_CHAR_CODE('aumu')
The component type for a music device unit.

kAudioUnitSubType_DLSSynth = FOUR_CHAR_CODE('dls ')
The component subtype for the DLS synth music device unit

kAudioUnitType_MusicEffect = FOUR_CHAR_CODE('aumf')
The component type for a music effect unit.

kAudioUnitType_FormatConverter = FOUR_CHAR_CODE('aufc')
The component type for a format converter unit.

kAudioUnitSubType_AUConverter = FOUR_CHAR_CODE('conv')
The component subtype for an AUConverter format converter unit.

kAudioUnitSubType_Varispeed = FOUR_CHAR_CODE('vari')
The component subtype for a Varispeed effect unit.

kAudioUnitSubType_Delay = FOUR_CHAR_CODE('dely')
The component subtype for a delay effect unit.

kAudioUnitSubType_LowPassFilter = FOUR_CHAR_CODE('lpas')
The component subtype for a low-pass filter effect unit.

kAudioUnitSubType_HighPassFilter = FOUR_CHAR_CODE('hpas')
The component subtype for a high-pass filter effect unit.

kAudioUnitSubType_BandPassFilter = FOUR_CHAR_CODE('bpas')
The component subtype for a band-pass filter effect unit.

kAudioUnitSubType_HighShelfFilter = FOUR_CHAR_CODE('hshf')
The component subtype for a high-shelf filter effect unit.

kAudioUnitSubType_LowShelfFilter = FOUR_CHAR_CODE('lshf')
The component subtype for a low-shelf filter effect unit.

kAudioUnitSubType_ParametricEQ = FOUR_CHAR_CODE('pmeq')
The component subtype for a parametric equalizer effect unit.

kAudioUnitSubType_GraphicEQ = FOUR_CHAR_CODE('greq')
The component subtype for a graphic equalizer effect unit.

kAudioUnitSubType_PeakLimiter = FOUR_CHAR_CODE('lmtr')
The component subtype for a peak limiter effect unit.

kAudioUnitSubType_DynamicsProcessor = FOUR_CHAR_CODE('dcmp')
The component subtype for a dynamics processor effect unit.

kAudioUnitSubType_MultiBandCompressor = FOUR_CHAR_CODE('mcmp')
The component subtype for multi-band compressor effect unit.

kAudioUnitSubType_MatrixReverb = FOUR_CHAR_CODE('mrev')
The component subtype for a matrix reverb effect unit.

kAudioUnitType_Mixer = FOUR_CHAR_CODE('aumx')
The component type for a mixer unit.

Reference 127
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kAudioUnitSubType_StereoMixer = FOUR_CHAR_CODE('smxr')
The component subtype for a stereo mixer unit.

kAudioUnitSubType_3DMixer = FOUR_CHAR_CODE('3dmx')
The component subtype for a three-dimensional mixer unit.

kAudioUnitSubType_MatrixMixer = FOUR_CHAR_CODE('mxmx')
The component subtype for a matrix mixer unit.

kAudioUnitType_Panner = FOUR_CHAR_CODE('aupn')
The component type for a panner unit.

kAudioUnitType_OfflineEffect = FOUR_CHAR_CODE('auol')
The component type fpr an offline effect unit.

kAudioUnitManufacturer_Apple = FOUR_CHAR_CODE('appl')
The component manufacturer type for all units provided by Apple.

Render Action Flags

These flags provide you with information on the status of a render within an audio unit.

kAudioUnitRenderAction_PreRender = (1 << 2)
The audio unit is prepared to render.

kAudioUnitRenderAction_PostRender = (1 << 3)
The audio unit is finished with the current render.

kAudioUnitRenderAction_OutputIsSilence = (1 << 4)
The current output of the render is silence.

kAudioOfflineUnitRenderAction_Preflight = (1 << 5)
The audio unit has not yet rendered.

AudioOfflineUnitRenderAction_Render = (1 << 6)
The audio unit is prepared to render.

kAudioOfflineUnitRenderAction_Complete = (1 << 7)
The audio unit has been used to render.

Errors

These errors may arrise when rendering audio with an audio unit.

kAudioUnitErr_InvalidProperty = -10879
kAudioUnitErr_InvalidParameter = -10878
kAudioUnitErr_InvalidElement = -10877
kAudioUnitErr_NoConnection = -10876
kAudioUnitErr_FailedInitialization = -10875
kAudioUnitErr_TooManyFramesToProcess = -10874
kAudioUnitErr_IllegalInstrument = -10873
kAudioUnitErr_InstrumentTypeNotFound = -10872
kAudioUnitErr_InvalidFile = -10871
kAudioUnitErr_UnknownFileType = -10870

128 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kAudioUnitErr_FileNotSpecified = -10869
kAudioUnitErr_FormatNotSupported = -10868
kAudioUnitErr_Uninitialized = -10867
kAudioUnitErr_InvalidScope = -10866
kAudioUnitErr_PropertyNotWritable = -10865
kAudioUnitErr_InvalidPropertyValue = -10851
kAudioUnitErr_PropertyNotInUse = -10850
kAudioUnitErr_Initialized = -10849
kAudioUnitErr_InvalidOfflineRender = -10848
kAudioUnitErr_Unauthorized = -10847
kAudioUnitErr_CannotDoInCurrentContext = -10863

Parameter Event Types

These values specify what type of parameter event is occuring.

kParameterEvent_Immediate = 1
kParameterEvent_Ramped = 2

Component Call Selectors

These selectors determine the state of an audio unit.

kAudioUnitInitializeSelect = 0x0001,
kAudioUnitUninitializeSelect = 0x0002,
kAudioUnitGetPropertyInfoSelect = 0x0003,
kAudioUnitGetPropertySelect = 0x0004,
kAudioUnitSetPropertySelect = 0x0005,
kAudioUnitAddPropertyListenerSelect = 0x000A,
kAudioUnitRemovePropertyListenerSelect = 0x000B,
kAudioUnitAddRenderNotifySelect = 0x000F,
kAudioUnitRemoveRenderNotifySelect = 0x0010,
kAudioUnitGetParameterSelect = 0x0006,
kAudioUnitSetParameterSelect = 0x0007,
kAudioUnitScheduleParametersSelect = 0x0011,
kAudioUnitRenderSelect = 0x000E,
kAudioUnitResetSelect = 0x0009

Audio Unit Properties

These properties can be queried of any audio unit instance.

kAudioUnitProperty_ClassInfo = 0
kAudioUnitProperty_MakeConnection = 1
kAudioUnitProperty_SampleRate = 2
kAudioUnitProperty_ParameterList = 3
kAudioUnitProperty_ParameterInfo = 4
kAudioUnitProperty_FastDispatch = 5
kAudioUnitProperty_CPULoad = 6
kAudioUnitProperty_StreamFormat = 8
kAudioUnitProperty_SRCAlgorithm = 9
kAudioUnitProperty_ReverbRoomType = 10
kAudioUnitProperty_BusCount = 11
kAudioUnitProperty_ElementCount = kAudioUnitProperty_BusCount,
kAudioUnitProperty_Latency = 12

Reference 129
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kAudioUnitProperty_SupportedNumChannels = 13
kAudioUnitProperty_MaximumFramesPerSlice = 14
kAudioUnitProperty_SetExternalBuffer = 15
kAudioUnitProperty_ParameterValueStrings = 16
kAudioUnitProperty_MIDIControlMapping = 17
kAudioUnitProperty_GetUIComponentList = 18
kAudioUnitProperty_AudioChannelLayout = 19
kAudioUnitProperty_TailTime = 20
kAudioUnitProperty_BypassEffect = 21
kAudioUnitProperty_LastRenderError = 22
kAudioUnitProperty_SetRenderCallback = 23
kAudioUnitProperty_FactoryPresets = 24
kAudioUnitProperty_ContextName = 25
kAudioUnitProperty_RenderQuality = 26
kAudioUnitProperty_HostCallbacks = 27
kAudioUnitProperty_CurrentPreset = 28
kAudioUnitProperty_InPlaceProcessing = 29
kAudioUnitProperty_ElementName = 30
kAudioUnitProperty_CocoaUI = 31
kAudioUnitProperty_SupportedChannelLayoutTags = 32
kAudioUnitProperty_ParameterValueName = 33
kAudioUnitProperty_ParameterIDName = 34
kAudioUnitProperty_ParameterClumpName = 35
kAudioUnitProperty_PresentPreset = 36
ProperkAudioUnitProperty_UsesInternalReverb = 1005

Music Device Properties

These properties can be queried of any music device audio unit instance.

kMusicDeviceProperty_InstrumentCount = 1000
kMusicDeviceProperty_InstrumentName = 1001
kMusicDeviceProperty_GroupOutputBus = 1002
kMusicDeviceProperty_SoundBankFSSpec = 1003
kMusicDeviceProperty_InstrumentNumber = 1004
kMusicDeviceProperty_UsesInternalReverb =
kAudioUnitProperty_UsesInternalReverb
kMusicDeviceProperty_MIDIXMLNames = 1006
kMusicDeviceProperty_BankName = 1007
kMusicDeviceProperty_SoundBankData = 1008
kMusicDeviceProperty_PartGroup = 1010
kMusicDeviceProperty_StreamFromDisk = 1010

Output Unit Properties

These properties can be queried of any output audio unit instance.

kAudioOutputUnitProperty_CurrentDevice = 2000
kAudioOutputUnitProperty_IsRunning = 2001
kAudioOutputUnitProperty_ChannelMap = 2002
kAudioOutputUnitProperty_EnableIO = 2003
kAudioOutputUnitProperty_StartTime = 2004
kAudioOutputUnitProperty_SetInputCallback = 2005
kAudioOutputUnitProperty_HasIO = 2006

130 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Various Audio Unit Properties

These properties can be queried of specific audio unit instances.

kAudioUnitProperty_SpatializationAlgorithm = 3000
kAudioUnitProperty_SpeakerConfiguration = 3001
kAudioUnitProperty_DopplerShift = 3002
kAudioUnitProperty_3DMixerRenderingFlags = 3003
kAudioUnitProperty_3DMixerDistanceAtten = 3004
kAudioUnitProperty_MatrixLevels = 3006
kAudioUnitProperty_MeteringMode = 3007
kAudioUnitProperty_PannerMode = 3008
kAudioUnitProperty_MatrixDimensions = 3009

Offline Unit Properties

These properties can be queried of offline audio unit instances.

kAudioOfflineUnitProperty_InputSize = 3020
kAudioOfflineUnitProperty_OutputSize = 3021
kAudioUnitOfflineProperty_StartOffset = 3022
kAudioUnitOfflineProperty_PreflightRequirements = 3023
kAudioUnitOfflineProperty_PreflightName = 3024

Reverb Room-Type Properties

These properties can be queried of reverb audio unit instances.

kReverbRoomType_SmallRoom = 0
kReverbRoomType_MediumRoom = 1
kReverbRoomType_LargeRoom = 2
kReverbRoomType_MediumHall = 3
kReverbRoomType_LargeHall = 4
kReverbRoomType_Plate = 5

Spatialization Properties

These properties can be queried of panning audio unit instances.

kSpatializationAlgorithm_EqualPowerPanning = 0
kSpatializationAlgorithm_SphericalHead = 1
kSpatializationAlgorithm_HRTF = 2
kSpatializationAlgorithm_SoundField = 3
kSpatializationAlgorithm_VectorBasedPanning = 4
kSpatializationAlgorithm_StereoPassThrough = 5

3D Mixer Properties

These properties can be queried of 3D Mixer audio unit instances.

k3DMixerRenderingFlags_InterAuralDelay = (1L << 0)
k3DMixerRenderingFlags_DopplerShift = (1L << 1)
k3DMixerRenderingFlags_DistanceAttenuation = (1L << 2)
k3DMixerRenderingFlags_DistanceFilter = (1L << 3)

Reference 131
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

k3DMixerRenderingFlags_DistanceDiffusion = (1L << 4)

Render Quality Properties

These properties can be queried of any audio unit instance.

kRenderQuality_Max = 0x7F
kRenderQuality_High = 0x60
kRenderQuality_Medium = 0x40
kRenderQuality_Low = 0x20
kRenderQuality_Min = 0

Panner Mode Properties

These properties can be queried of panning audio unit instances.

kPannerMode_Normal = 0
kPannerMode_FaderMode = 1

Offline Unit Preflight Properties

These properties can be queried of offline audio unit instances.

kOfflinePreflight_NotRequired = 0
kOfflinePreflight_Optional = 1
kOfflinePreflight_Required = 2

Scope Properties

These properties can be queried of any audio unit instance.

kAudioUnitScope_Global = 0
kAudioUnitScope_Input = 1
kAudioUnitScope_Output = 2
kAudioUnitScope_Group = 3
kAudioUnitScope_Part = 4

Preset Constants

These presets are used with AUPreset (page 141).

#define kAUPresetVersionKey "version"
#define kAUPresetTypeKey "type"
#define kAUPresetSubtypeKey "subtype"
#define kAUPresetManufacturerKey "manufacturer"
#define kAUPresetDataKey "data"
#define kAUPresetNameKey "name"
#define kAUPresetRenderQualityKey "render-quality"
#define kAUPresetCPULoadKey "cpu-load"
#define kAUPresetVSTDataKey "vstdata"
#define kAUPresetElementNameKey "element-name"
#define kAUPresetPartKey "part"

132 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Parameter Unit Constants

These presets are used with a parameter unit audio unit.

kAudioUnitParameterUnit_Generic = 0
kAudioUnitParameterUnit_Indexed = 1
kAudioUnitParameterUnit_Boolean = 2
kAudioUnitParameterUnit_Percent = 3
kAudioUnitParameterUnit_Seconds = 4
kAudioUnitParameterUnit_SampleFrames = 5
kAudioUnitParameterUnit_Phase = 6
kAudioUnitParameterUnit_Rate = 7
kAudioUnitParameterUnit_Hertz = 8
kAudioUnitParameterUnit_Cents = 9
kAudioUnitParameterUnit_RelativeSemiTones = 10
kAudioUnitParameterUnit_MIDINoteNumber = 11
kAudioUnitParameterUnit_MIDIController = 12
kAudioUnitParameterUnit_Decibels = 13
kAudioUnitParameterUnit_LinearGain = 14
kAudioUnitParameterUnit_Degrees = 15
kAudioUnitParameterUnit_EqualPowerCrossfade = 16
kAudioUnitParameterUnit_MixerFaderCurve1 = 17
kAudioUnitParameterUnit_Pan = 18
kAudioUnitParameterUnit_Meters = 19
kAudioUnitParameterUnit_AbsoluteCents = 20
kAudioUnitParameterUnit_Octaves = 21
kAudioUnitParameterUnit_BPM = 22
kAudioUnitParameterUnit_Beats = 23
kAudioUnitParameterUnit_Milliseconds = 24
kAudioUnitParameterUnit_Ratio = 25

Parameter Flags

These flags are used with an audio unit’s parameters.

kAudioUnitParameterFlag_CFNameRelease = (1L << 4)
kAudioUnitParameterFlag_HasClump = (1L << 20)
kAudioUnitParameterFlag_HasName = (1L << 21)
kAudioUnitParameterFlag_DisplayLogarithmic = (1L << 22)
kAudioUnitParameterFlag_IsHighResolution = (1L << 23)
kAudioUnitParameterFlag_NonRealTime = (1L << 24)
kAudioUnitParameterFlag_CanRamp = (1L << 25)
kAudioUnitParameterFlag_ExpertMode = (1L << 26)
kAudioUnitParameterFlag_HasCFNameString = (1L << 27)
kAudioUnitParameterFlag_IsGlobalMeta = (1L << 28)
kAudioUnitParameterFlag_IsElementMeta = (1L << 29)
kAudioUnitParameterFlag_IsReadable = (1L << 30)
kAudioUnitParameterFlag_IsWritable = (1L << 31)

MIDI Controller Parameters

These parameters are used with MIDI Controller audio units.

kAUGroupParameterID_Volume = 7
kAUGroupParameterID_Sustain = 64
kAUGroupParameterID_AllNotesOff = 123

Reference 133
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kAUGroupParameterID_ModWheel = 1
kAUGroupParameterID_PitchBend = 0xE0
kAUGroupParameterID_AllSoundOff = 120
kAUGroupParameterID_ResetAllControllers = 121
kAUGroupParameterID_Pan = 10
kAUGroupParameterID_Foot = 4
kAUGroupParameterID_ChannelPressure = 0xD0
kAUGroupParameterID_KeyPressure = 0xA0
kAUGroupParameterID_Expression = 11
kAUGroupParameterID_DataEntry = 6
kAUGroupParameterID_Volume_LSB = kAUGroupParameterID_Volume + 32
kAUGroupParameterID_ModWheel_LSB = kAUGroupParameterID_ModWheel + 32
kAUGroupParameterID_Pan_LSB = kAUGroupParameterID_Pan + 32
kAUGroupParameterID_Foot_LSB = kAUGroupParameterID_Foot + 32
kAUGroupParameterID_Expression_LSB = kAUGroupParameterID_Expression +
 32
kAUGroupParameterID_DataEntry_LSB = kAUGroupParameterID_DataEntry +
32
kAUGroupParameterID_KeyPressure_FirstKey = 256
kAUGroupParameterID_KeyPressure_LastKey = 383

Bandpass Filter Unit Parameters

These parameters are used with the Bandpass Filter Unit.

kBandpassParam_CenterFrequency = 0
kBandpassParam_Bandwidth = 1

AUHipass Unit Parameters

These parameters are used with the AUHipass Unit.

kHighShelfParam_CutOffFrequency = 0
kHighShelfParam_Resonance = 1

AULowpass Unit Parameters

These parameters are used with the AULowpass Unit.

kHighShelfParam_CutOffFrequency = 0
kHighShelfParam_Resonance = 1

AUHighShelfFilter Unit Parameters

These parameters are used with the AUHighSelfFilter Unit.

kHipassParam_CutoffFrequency = 0
kHipassParam_Gain = 1

AULowShelfFilter Unit Parameters

These parameters are used with the AULowSelfFilter Unit.

134 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kHipassParam_CutoffFrequency = 0
kHipassParam_Gain = 1

AUParametricEQ Unit Parameters

These parameters are used with the AUParametricEQ Unit.

kParametricEQParam_CenterFreq = 0
kParametricEQParam_Q = 1
kParametricEQParam_Gain = 2

AUMatrixReverb Unit Parameters

These parameters are used with the AUMatrixReverb Unit.

kReverbParam_DryWetMix = 0
kReverbParam_SmallLargeMix = 1
kReverbParam_SmallSize = 2
kReverbParam_LargeSize = 3
kReverbParam_PreDelay = 4
kReverbParam_LargeDelay = 5
kReverbParam_SmallDensity = 6
kReverbParam_LargeDensity = 7
kReverbParam_LargeDelayRange= 8
kReverbParam_SmallBrightness= 9
kReverbParam_LargeBrightness= 10
kReverbParam_SmallDelayRange= 11
kReverbParam_ModulationRate = 12
kReverbParam_ModulationDepth= 13

Delay Unit Parameters

These parameters are used with the Delay Unit.

kDelayParam_WetDryMix = 0
kDelayParam_DelayTime = 1
kDelayParam_Feedback = 2
kDelayParam_LopassCutoff= 3

AUPeakLimiter Unit Parameters

These parameters are used with the AUPeakLimiter Unit.

kLimiterParam_AttackTime = 0
kLimiterParam_DecayTime = 1
kLimiterParam_PreGain = 2

AUDynamicsProcessor Unit Parameters

These parameters are used with the AUDynamicsProcessor Unit.

kDynamicsProcessorParam_Threshold = 0
kDynamicsProcessorParam_HeadRoom = 1

Reference 135
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

kDynamicsProcessorParam_ExpansionRatio = 2
kDynamicsProcessorParam_ExpansionThreshold = 3
kDynamicsProcessorParam_AttackTime = 4
kDynamicsProcessorParam_ReleaseTime = 5
kDynamicsProcessorParam_MasterGain = 6
kDynamicsProcessorParam_CompressionAmount = 1000

AUMultibandCompressor Unit Parameters

These parameters are used with the AUMultibandCompressor Unit.

kMultibandCompressorParam_Pregain = 0
kMultibandCompressorParam_Postgain = 1
kMultibandCompressorParam_Crossover1 = 2
kMultibandCompressorParam_Crossover2 = 3
kMultibandCompressorParam_Crossover3 = 4
kMultibandCompressorParam_Threshold1 = 5
kMultibandCompressorParam_Threshold2 = 6
kMultibandCompressorParam_Threshold3 = 7
kMultibandCompressorParam_Threshold4 = 8
kMultibandCompressorParam_Headroom1 = 9
kMultibandCompressorParam_Headroom2 = 10
kMultibandCompressorParam_Headroom3 = 11
kMultibandCompressorParam_Headroom4 = 12
kMultibandCompressorParam_AttackTime = 13
kMultibandCompressorParam_ReleaseTime = 14
kMultibandCompressorParam_EQ1 = 15
kMultibandCompressorParam_EQ2 = 16
kMultibandCompressorParam_EQ3 = 17
kMultibandCompressorParam_EQ4 = 18
kMultibandCompressorParam_CompressionAmount1 = 1000
kMultibandCompressorParam_CompressionAmount2 =
2000kMultibandCompressorParam_CompressionAmount3 = 3000
kMultibandCompressorParam_CompressionAmount4 = 4000

AUVarispeed Unit Parameters

These parameters are used with the AUVarispeed Unit.

kVarispeedParam_PlaybackRate = 0
kVarispeedParam_PlaybackCents = 1

3DMixer Unit Parameters

These parameters are used with the 3DMixer Unit.

k3DMixerParam_Azimuth = 0
k3DMixerParam_Elevation = 1
k3DMixerParam_Distance = 2
k3DMixerParam_Gain = 3
k3DMixerParam_PlaybackRate = 4
k3DMixerParam_PreAveragePower = 1000
k3DMixerParam_PrePeakHoldLevel = 2000
k3DMixerParam_PostAveragePower = 3000
k3DMixerParam_PostPeakHoldLevel = 4000

136 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

StereoMixer Unit Parameters

These parameters are used with the StereoMixer Unit.

kStereoMixerParam_Volume = 0
kStereoMixerParam_Pan = 1
kStereoMixerParam_PreAveragePower = 1000
kStereoMixerParam_PrePeakHoldLevel = 2000
kStereoMixerParam_PostAveragePower = 3000
kStereoMixerParam_PostPeakHoldLevel = 4000

MatrixMixer Parameters

These parameters are used with the MatrixMixer Unit.

kMatrixMixerParam_Volume = 0
kMatrixMixerParam_Enable = 1
kMatrixMixerParam_PreAveragePower = 1000
kMatrixMixerParam_PrePeakHoldLevel = 2000
kMatrixMixerParam_PostAveragePower = 3000
kMatrixMixerParam_PostPeakHoldLevel = 4000
kMatrixMixerParam_PreAveragePowerLinear = 5000
kMatrixMixerParam_PrePeakHoldLevelLinear = 6000
kMatrixMixerParam_PostAveragePowerLinear = 7000
kMatrixMixerParam_PostPeakHoldLevelLinear = 8000

Output Unit Parameters

These parameters are used with Output Units.

kHALOutputParam_Volume = 14

DLSMusicDevice Parameters

These parameters are used with the DLSMusicDevice Unit.

kMusicDeviceParam_Tuning = 0
kMusicDeviceParam_Volume = 1
kMusicDeviceParam_ReverbVolume = 2

Types

These basic types are common within the context of audio units.

typedef UInt32 AudioUnit
typedef UInt32 AudioUnitPropertyID
typedef UInt32 AudioUnitParameterID
typedef UInt32 AudioUnitScope
typedef UInt32 AudioUnitElement
typedef UInt32 AUParameterEventType
typedef UInt32 AudioUnitParameterUnit

Reference 137
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Structures

These structures are used throughout the Audio Unit framework when working with properties and parameters.

AudioUnitParameter
Used by the Audio Unit Utilities to specify a parameter to be modified.

struct AudioUnitParameter {
 AudioUnit mAudioUnit;
 AudioUnitParameterID mParameterID;
 AudioUnitScope mScope;
 AudioUnitElement mElement;
};

Fields
mAudioUnit

The audio unit to be modified.

mParameterID
The parameter to be modified.

mScope
The scope in which the unit is being used.

mElement
The argument to be used with the parameter.

AudioUnitProperty
Used by the Audio Unit Utilities to specify a property to be modified.

struct AudioUnitProperty {
 AudioUnit mAudioUnit;
 AudioUnitPropertyID mPropertyID;
 AudioUnitScope mScope;
 AudioUnitElement mElement;
};

Fields
mAudioUnit

The audio unit to be modified.

mPropertyID
The parameter to be modified.

mScope
The scope in which the unit is being used.

mElement
The argument to be used with the property.

AudioUnitParameterEvent
Used to schedule a change in parameters during a render.

138 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

struct AudioUnitParameterEvent {
AudioUnitScope scope;
AudioUnitElement element;
AudioUnitParameterID parameter;
AUParameterEventType eventType;

union {
 struct {
 SInt32 startBufferOffset;
 UInt32 durationInFrames;
 Float32 startValue;
 Float32 endValue;
 } ramp;
 struct {
 UInt32 bufferOffset;
 Float32 value;
 } immediate;
} eventValues;

};

Fields
scope

The scope of the event.

element
Additional information about the scope of this event.

parameter
The parameter which is to be modified by the event.

eventType
A constant value; see Parameter Event Types (page 129).

eventValues
A union of the ramp and immediate event values.

ramp
The values if this event is a ramp event.

immediate
The values if this event is an immediate event.

durationInFrames
The length of the event, in frames.

startBufferOffset
The starting point of the event, after the beginning of the render.

startValue
The beginning value for the parameter.

endValue
The audio unit to be modifiedThe ending value of the parameter.

bufferOffset
Where in the current buffer the event should occur.

value
The value the parameter should be changed to.

Reference 139
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

AudioUnitConnection
Connects audio units together.

struct AudioUnitConnection {
 AudioUnit sourceAudioUnit;
 UInt32 sourceOutputNumber;
 UInt32 destInputNumber;
}

Fields
sourceAudioUnit

The audio unit where data is coming from.

sourceOutputNumber
The output bus on the source audio unit.

destInputNumber
The destination bus on the recieving audio unit.

AURenderCallbackStruct
Encapsulates render callback information.

struct AURenderCallbackStruct {
 AURenderCallback inputProc;
 void * inputProcRefCon; }

Fields
inputProc

The callback function.

inoutProcRefCon
Any arguments that should be passed to the callback.

AudioUnitExternalBuffer
Encapsulates information about an external buffer.

struct AudioUnitExternalBuffer {
 Byte* buffer;
 UInt32 size;
}

Fields
buffer

A pointer to a buffer of audio data.

size
The size of the external buffer.

AUChannelInfo
Encapsulates channel information used in a connection.

140 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

struct AUChannelInfo {
 SInt16 inChannels;
 SInt16 outChannels;
}

Fields
inChannels

The number of channels on input.

outChannels
The number of channels on output.

AUPreset
Encapsulates channel information used in a connection.

struct AUPreset {
 SInt32 presetNumber;
 CFStringRef presetName;
}

Fields
presetNumber

An arbitrary value for a preset.

presetName
The name for a preset.

HostCallbackInfo
Encapsulates callbacks to a host for information.

struct HostCallbackInfo {
 void* hostUserData;
 HostCallback_GetBeatAndTempo beatAndTempoProc;
 HostCallback_GetMusicalTimeLocation musicalTimeLocationProc;
}

Fields
hostUserData

Additional informaiton needed by the callbacks.

beatAndTempoProc
A callback that determines beat and tempo.

musicTimeLocationProc
A callback that determines the musical time, as numerator and denominator.

AudioUnitCocoaViewInfo
Encapsulates the information needed for a Cocoa view.

Reference 141
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

struct AudioUnitCocoaViewInfo {
 CFURLRef mCocoaAUViewBundleLocation;
 CFStringRef mCocoaAUViewClass[1];
}

Fields
mCocoaAUViewBundleLocation

The location of the user interface bundle.

mCocoaAUViewClass
The names of the classes that implement the required protocol for an AUView.

AudioUnitParameterValueName
Encapsulates the information needed when determining a parameter value’s name.

struct AudioUnitParameterValueName {
 AudioUnitParameterID inParamID;
 Float32* inValue;
 CFStringRef outName;
}

Fields
inParamID

The parameter in question.

inValue
The value being queried upon.

outName
The name corresponding to the value.

AudioUnitParameterNameInfo
Encapsulates the information needed when determining a parameter value’s name.

struct AudioUnitParameterNameInfo {
 UInt32 inID;
 SInt32 inDesiredLength;
 CFStringRef outName;
}

Fields
inID

The parameter in question.

inDesiredLangth
The desired length of the string.

outName
The name corresponding to the parameter.

AudioUnitParameterInfo
Encapsulates an audio units parameter information.

142 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

struct AudioUnitParameterInfo {
 char name[56];
 UInt32 clumpID;
 CFStringRef cfNameString;
 AudioUnitParameterUnit unit;
 Float32 minValue;
 Float32 maxValue;
 Float32 defaultValue;
 UInt32 flags;
}

Fields
name

The name of the parameter.

clumpID
The grouping to which the parameter belongs.

cfNameString
The name of this parameter as a CFString.

unit
The parameter unit for this parameter.

minValue
The smallest value for the parameter.

maxValue
The largest value for the parameter.

defaultValue
The default value for this parameter.

flags
Any flags that the parameter has attached to it.

AudioUnitMIDIControlMapping
Encapsulates MIDI and corresponding audio unit information.

struct AudioUnitMIDIControlMapping {
 UInt16 midiNRPN;
 UInt8 midiControl;
 UInt8 scope;
 AudioUnitElement element;
 AudioUnitParameterID parameter;
}

Fields
midiNRPN

The MIDI note information.

midiControl
The MIDI control information.

scope
The scope of the mapping.

element
Additional scope information.

Reference 143
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

parameter
The parameter to which the MIDI data is to be applied.

AudioOutputUnitStartAtTimeParam
Encapsulates the information needed when a parameter is to take effect at a certain time.

struct AudioOutputUnitStartAtTimeParams {
 AudioTimeStamp mTimestamp;
 UInt32 mFlags;
}

Fields
mTimestamp

The start time for the parameter.

mFlags
The flags for this parameter event.

Functions

These functions provide the bulk of the functionality of the Audio Unit framework, and are needed when
using or developing an audio unit.

AudioUnitInitialize
Initializes an audio unit instance.

ComponentResult AudioUnitInitialize(
AudioUnit ci
)

Parameters
ci

The audio unit to be initialized.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitUninitialize
Uninitializes an audio unit instance.

144 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

ComponentResult AudioUnitUninitialize(
AudioUnit ci
)

Parameters
ci

The audio unit to be uninitialized.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitRender
Performs the action on a buffer of audio data.

ComponentResult AudioUnitRender(
 AudioUnit ci,
 AudioUnitRenderActionFlags* ioActionFlags,
 const AudioTimeStamp* inTimeStamp,
 UInt32 inOutputBusNumber,
 UInt32 inNumberFrames,
 AudioBufferList* ioData
)

Parameters
ci

The audio unit to be changed.

ioActionFlags
Flags that provide information on the render; see “Render Action Flags” (page 128).

inTimeStamp
The time the render is begun.

inOutputBusNumber
The bus on which the output will be placed.

inNumberFrames
The number of frames to be rendered.

ioData
The audio data, before and after the render.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUComponent.h

AudioUnitReset
Resets an audio unit.

Reference 145
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

ComponentResult AudioUnitReset(
 AudioUnit ci,
 AudioUnitScope inScope,
 AudioUnitElement inElement
)

Parameters
ci

The audio unit to be reset.

inScope
The scope in which the unit is to be reset.

inElement
Additional information about the scope of the audio unit.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitGetPropertyInfo
Returns the size of the data that will be returned when calling AudioUnitGetProperty (page 147) for the
specified property.

ComponentResult AudioUnitGetPropertyInfo(
 AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 UInt32* outDataSize,
 Boolean* outWritable
)

Parameters
ci

The audio unit on which the property is to be queried.

inID
The property to be queried upon.

inScope
The scope in which the property is applicable.

inElement
Further specifies the scope of the property.

outDataSize
The size, in bytes, of the property.

outWritable
A boolean showing if the property is writable.

Availability
Available in Mac OS X v10.0 and later.

146 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Declared In
AUComponent.h

AudioUnitGetProperty
Returns the size of the data for a specified property.

ComponentResult AudioUnitGetProperty(
 AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 void* outData,
 UInt32* ioDataSize
)

Parameters
ci

The audio unit on which the property is to be queried.

inID
The property to be queried upon.

inScope
The scope in which the property is applicable.

inElement
Further specifies the scope of the property.

outData
A pointer to the data corresponding to the property.

ioDataSize
The expected data size and the actual data size returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitSetProperty
Sets a property’s value to the supplied value.

Reference 147
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

ComponentResult AudioUnitSetProperty(
 AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 const void* inData,
 UInt32 inDataSize
)

Parameters
ci

The audio unit on which the property is to be applied.

inID
The property to be modified.

inScope
The scope in which the property is applicable.

inElement
Further specifies the scope of the property.

inData
A pointer to the data to be applied to the property.

inDataSize
The size of the data being passed in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitAddPropertyListener
Monitors an audio unit’s property for changes and issues a callback notification upon the change.

ComponentResult AudioUnitAddPropertyListener(
 AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitPropertyListenerProc inProc,
 void* inProcRefCon
)

Parameters
ci

The audio unit to be monitored.

inID
The property to be monitored.

inProc
The callback to be made when a property is changed.

inProcRefCon
Additional parameters to be passed to the callback.

Availability
Available in Mac OS X v10.0 and later.

148 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Declared In
AUComponent.h

AudioUnitRemovePropertyListener
Removes the specified listener from a property.

ComponentResult AudioUnitRemovePropertyListener(
 AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitPropertyListenerProc inProc
)

Parameters
ci

The audio unit being monitored.

inID
The property being monitored.

inProc
The callback to be removed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
AUComponent.h

AudioUnitAddRenderNotify
Specifies a callback to be used before and after an audio unit render occurs.

ComponentResult AudioUnitAddRenderNotify(
 AudioUnit ci,
 AURenderCallback inProc,
 void* inProcRefCon
)

Parameters
ci

The audio unit to bemonitored.

inProc
The callback to be issued.

inProcRefCon
Additional parameters to be passed to the callback.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUComponent.h

Reference 149
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

AudioUnitRemoveRenderNotify
Removes a callback from an audio unit.

ComponentResult AudioUnitRemoveRenderNotify(
 AudioUnit ci,
 AURenderCallback inProc,
 void * inProcRefCon
)

Parameters
ci

The audio unit being monitored.

inProc
The callback being issued.

inProcRefCon
Additional parameters to be passed to the callback.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUComponent.h

AudioUnitGetParameter
Returns the current value for a parameter.

ComponentResult AudioUnitGetParameter(
 AudioUnit ci,
 AudioUnitParameterID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 Float32* outValue
)

Parameters
ci

The audio unit being queried.

inID
The parameter being queried.

inScope
The scope in which the parameter works.

inElement
Additional information about the scope of the parameter.

outValue
The current value of the parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

150 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

AudioUnitSetParameter
Returns the current value for a parameter.

ComponentResult AudioUnitSetParameter(
 AudioUnit ci,
 AudioUnitParameterID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 Float32 inValue,
 UInt32 inBufferOffsetInFrames
)

Parameters
ci

The audio unit to be changed.

inID
The parameter to be changed.

inScope
The scope in which the parameter works.

inElement
Additional information about the scope of the parameter.

inValue
The new value for the parameter.

inBufferOffsetInFrames
When in the next render the parameter should be changed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitScheduleParameters
Adds events that change certain parameters.

ComponentResult AudioUnitScheduleParameters(
 AudioUnit ci,
 const AudioUnitParameterEvent* inParameterEvent,
 UInt32 inNumParamEvents)

Parameters
ci

The audio unit to be changed.

inParameterEvent
An event or events to be placed.

inNumParamEvents
The number of events being added.

Availability
Available in Mac OS X v10.2 and later.

Reference 151
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Declared In
AUComponent.h

Callbacks

These callbacks are provided by you and are used throughout the Audio Unit framework.

AURenderCallback
A callback set by kAudioUnitProperty_SetRenderCallback for performing an audio unit’s render.

typedef CALLBACK_API_C(OSStatus , AURenderCallback)(void *inRefCon,
AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp *inTimeStamp, UInt32
 inBusNumber, UInt32 inNumberFrames, AudioBufferList *ioData)

OSStatus AURenderCallback(
void * inRefCon;
AudioUnitRenderActionFlags * ioActionFlags;
const AudioTimeStamp * inTimeStamp;
UInt32 inBusNumber;
UInt32 inNumberFrames;
AudioBufferList* ioData
)

Parameters
inRefCon

Parameters passed to the callback.

ioActionFlags
Flags for rendering options.

inTimeStamp
The time that the callback is invoked.

inBusNumber
The bun on which data will be supplied.

inNumberFrames
The number of frames to be rendered.

ioData
The audio data to be rendered upon.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUComponent.h

AudioUnitPropertyListenerProc
A callback set by kAudioUnitProperty_SetRenderCallback for performing an audio unit’s render.

152 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

typedef CALLBACK_API_C(void , AudioUnitPropertyListenerProc)(void *inRefCon,
AudioUnit ci, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement
inElement);

void AudioUnitPropertyListenerProc(
void * inRefCon,
AudioUnit ci,
AudioUnitPropertyID inID,
AudioUnitScope inScope,
AudioUnitElement inElement
)

Parameters
inRefCon

Parameters passed to the callback.

ci
The audio unit whose property was modified.

inID
The property that was changed.

inScope
The scope of the unit and the property that was changed.

inElement
The value that the property was changed to.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitGetParameterProc
A callback for returning developer specified parameter values.

typedef CALLBACK_API_C(ComponentResult , AudioUnitGetParameterProc)(void
*inComponentStorage, AudioUnitParameterID inID, AudioUnitScope inScope,
AudioUnitElement inElement, Float32 *outValue);

ComponentResult AudioUnitGetParameterProc(
void* inComponentStorage,
AudioUnitParameterID inID,
AudioUnitScope inScope,
AudioUnitElement inElement,
Float32* outValue
)

Parameters
inComponentStore

A pointer to the audio unit.

inID
The parameter being queried.

Reference 153
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

inScope
The scope of the parameter.

inElement
Additional information about the scope of the parameter.

outValue
The value returned for the parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

AudioUnitSetParameterProc
A callback for setting developer specified parameter values.

typedef CALLBACK_API_C(ComponentResult , AudioUnitSetParameterProc)(void
*inComponentStorage, AudioUnitParameterID inID, AudioUnitScope inScope,
AudioUnitElement inElement, Float32 inValue, UInt32 inBufferOffsetInFrames);

ComponentResult AudioUnitSetParameterProc(
void* inComponentStorage
AudioUnitParameterID inID
AudioUnitScope inScope
AudioUnitElement inElement
Float32 inValue
UInt32 inBufferOffsetInFrames
)

Parameters
inComponentStore

A pointer to the audio unit.

inID
The parameter to be set.

inScope
The scope of the parameter.

inElement
Additional information about the scope of the parameter.

inValue
The value for the parameter to be set.

inBufferOffsetInFrames
The place in the buffer where the parameter change is to happen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AUComponent.h

154 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

AudioUnitRenderProc
A callback for setting developer specified parameter values.

typedef CALLBACK_API_C(ComponentResult , AudioUnitRenderProc)(void
*inComponentStorage, AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp
 *inTimeStamp, UInt32 inOutputBusNumber, UInt32 inNumberFrames, AudioBufferList
*ioData);

ComponentResult AudioUnitRenderProc(
void * inComponentStorage,
AudioUnitRenderActionFlags* ioActionFlags,
const AudioTimeStamp * inTimeStamp,
UInt32 inOutputBusNumber,
UInt32 inNumberFrames,
AudioBufferList* ioData
)

Parameters
inComponentStorage

A pointer to the audio unit.

ioActionFlags
Flags that provide information on the render; see “Render Action Flags” (page 128).

inTimeStamp
The time the render is begun.

inOutputBusNumber
The bus on which the output will be placed.

inNumberFrames
The number of frames to be rendered.

ioData
The audio data, before and after the render.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AUComponent.h

HostCallback_GetBeatAndTempo
A callback for setting developer specified parameter values.

typedef OSStatus (*HostCallback_GetBeatAndTempo) (void * inHostUserData, Float64
*outCurrentBeat, Float64 * outCurrentTempo);

OSStatus HostCallback_GetBeatAndTempo (
void inHostUserData,
Float64 * outCurrentBeat,
Float64 * outCurrentTempo
)

Reference 155
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

Parameters
inHostUserData

Any arguments needed by the callback.

outCurrentBeat
The beat of the buffered data.

outCurrentTempo
The tempo of the buffered data.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioUnitProperties.h

HostCallback_GetBeatAndTempo
A callback for setting developer specified parameter values.

typedef OSStatus (*HostCallback_GetMusicalTimeLocation) (void *inHostUserData,
UInt32 *outDeltaSampleOffsetToNextBeat, Float32 *outTimeSig_Numerator, UInt32
*outTimeSig_Denominator, Float64 *outCurrentMeasureDownBeat);

OSStatus HostCallback_GetMusicalTimeLocation(
void* inHostUserData,
UInt32* outDeltaSampleOffsetToNextBeat,
Float32* outTimeSig_Numerator,
UInt32* outTimeSig_Denominator,
Float64* outCurrentMeasureDownBeat
)

Parameters
inHostUserData

Any arguments needed by the callback.

outDeltaDampleOffsetToNextBeat
The average time between beats.

outTimeSig_Numerator
The numerator of the time signature.

outTimeSig_Denominator
The denominator of the time signature.

outCurrentMeasureDownBeat
The beats in the current measure.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioUnitProperties.h

156 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

HostCallback_GetBeatAndTempo
A callback for setting developer specified parameter values.

typedef OSStatus (*HostCallback_GetMusicalTimeLocation) (void *inHostUserData,
UInt32 *outDeltaSampleOffsetToNextBeat, Float32 *outTimeSig_Numerator, UInt32
*outTimeSig_Denominator, Float64 *outCurrentMeasureDownBeat);

OSStatus HostCallback_GetMusicalTimeLocation(
void* inHostUserData,
UInt32* outDeltaSampleOffsetToNextBeat,
Float32* outTimeSig_Numerator,
UInt32* outTimeSig_Denominator,
Float64* outCurrentMeasureDownBeat
)

Parameters
inHostUserData

Any arguments needed by the callback.

outDeltaDampleOffsetToNextBeat
The average time between beats.

outTimeSig_Numerator
The numerator of the time signature.

outTimeSig_Denominator
The denominator of the time signature.

outCurrentMeasureDownBeat
The beats in the current measure.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AudioUnitProperties.h

Reference 157
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

158 Reference
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Audio Units

This chapter describes the structures and constants shared throughout all portions of Core Audio.

The CoreAudioTypes.h file contains general structures and typedefs that are found and used throughout
Core Audio, including structures that represent an audio buffer, a structure describing the particular format
of an audio stream, channel layout structures, and structures for timing information.

Audio Value Structures

AudioValueRange
Represents a continuous range of values.

typedef struct AudioValueRange{
Float64 mMinimum;
Float64 mMaximum;
} AudioValueRange;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CoreAudioTypes.h

AudioValueTranslation
Contains an input and output buffer and associated size values, for translation use.

typedef struct AudioValueTranslation {
void* mInputData;
UInt32 mInputDataSize;
void* mOutputData;
UInt32 mOutputDataSize;
} AudioValueTranslation;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CoreAudioTypes.h

Audio Value Structures 159
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

Audio Buffer Structures

AudioBuffer
A single buffer and the associated data.

typedef struct AudioBuffer {
UInt32 mNumberChannels;
UInt32 mDataByteSize;
void* mData;
} AudioBuffer;

Discussion
This structure is not used on its own, but with AudioBufferList as one of its data members. An instance
of AudioBuffer keeps track of the number of channels in the buffer, the size of the buffer, and a pointer
to the buffer data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CoreAudioTypes.h

AudioBufferList
Keeps track of multiple buffers.

typedef struct AudioBufferList {
UInt32 mNumberBuffers;
AudioBuffer mBuffers[1];
} AudioBufferList;

Discussion
When audio data is interleaved, only one buffer is needed in the AudioBufferList; when dealing with multiple
mono channels, each will need its own buffer. This is accomplished by allocating the needed space and
pointing mBuffers to it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CoreAudioTypes.h

Audio Stream Basic Description

AudioStreamBasicDescription
Contains all the information needed for describing streams of audio data.

160 Audio Buffer Structures
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

typedef struct AudioStreamBasicDescription {
Float64 mSampleRate;
UInt32 mFormatID;
UInt32 mFormatFlags;
UInt32 mBytesPerPacket;
UInt32 mFramesPerPacket;
UInt32 mBytesPerFrame;
UInt32 mChannelsPerFrame;
UInt32 mBitsPerChannel;
UInt32 mReserved;
} AudioStreamBasicDescription;

Discussion
The AudioStreamBasicDescription is the fundamental descriptive structure in Core Audio. The “Audio
Format” (page 45) API deals extensively with AudioStreamBasicDescription, as do most other parts of
Core Audio.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CoreAudioTypes.h

Format IDs

These values reflect various audio formats available from within Core Audio, and are used to populate the
mFormatID field in AudioStreamBasicDescription instances.

kAudioFormatLinearPCM = 'lpcm'
kAudioFormatAC3 = 'ac-3'
kAudioFormat60958AC3 ='cac3'
kAudioFormatMPEG = 'mpeg'
kAudioFormatAppleIMA4 = 'ima4'
kAudioFormatMPEG4AAC = 'aac '
kAudioFormatMPEG4CELP = 'celp'
kAudioFormatMPEG4HVXC = 'hvxc'
kAudioFormatMPEG4TwinVQ = 'twvq'
kAudioFormatTimeCode = 'time'
kAudioFormatMIDIStream = 'midi'
kAudioFormatParameterValueStream = 'apvs'

Format Flags

These values are used to fill the mFormatFlags field of an AudioStreamBasicDescription, and reflect
the formatting of the audio stream data.

Standard flags:

kAudioFormatFlagIsFloat = (1L << 0)
kAudioFormatFlagIsBigEndian = (1L << 1)
kAudioFormatFlagIsSignedInteger = (1L << 2)
kAudioFormatFlagIsPacked = (1L << 3)
kAudioFormatFlagIsAlignedHigh = (1L << 4)
kAudioFormatFlagIsNonInterleaved = (1L << 5)

Audio Stream Basic Description 161
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

kAudioFormatFlagsAreAllClear = (1L << 31)

Linear PCM flags:

kLinearPCMFormatFlagIsFloat = kAudioFormatFlagIsFloat
kLinearPCMFormatFlagIsBigEndian = kAudioFormatFlagIsBigEndian
kLinearPCMFormatFlagIsSignedInteger = kAudioFormatFlagIsSignedInteger
kLinearPCMFormatFlagIsPacked = kAudioFormatFlagIsPacked
kLinearPCMFormatFlagIsAlignedHigh = kAudioFormatFlagIsAlignedHigh
kLinearPCMFormatFlagIsNonInterleaved = kAudioFormatFlagIsNonInterleaved
kLinearPCMFormatFlagsAreAllClear = kAudioFormatFlagsAreAllClear

Audio Stream Packet Description

AudioStreamPacketDescription
typedef struct AudioStreamPacketDescription {
SInt64 mStartOffset;
UInt64 mLength;
} AudioStreamPacketDescription;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CoreAudioTypes.h

SMPTE Time

SMPTETime
SMPTE time is a format used to sync audio and video streams, based on video framing.

typedef struct SMPTETime {
UInt64 mCounter;
UInt32 mType;
UInt32 mFlags;
SInt16 mHours;
SInt16 mMinutes;
SInt16 mSeconds;
SInt16 mFrames;
} SMPTETime;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CoreAudioTypes.h

162 Audio Stream Packet Description
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

SMPTE Types

These constants are used for the mType value in SMPTETime to specify different frame rates.

kSMPTETimeType24 = 0
kSMPTETimeType25 = 1
kSMPTETimeType30Drop = 2
kSMPTETimeType30 = 3
kSMPTETimeType2997 = 4
kSMPTETimeType2997Drop = 5

SMPTE Time Stamps

These constants are used for the mFlags value in SMPTETime.

kSMPTETimeValid = (1L << 0)
kSMPTETimeRunning = (1L << 1)

Audio Time Stamp

AudioTimeStamp
Encapsulates time stamp information in various formats.

typedef struct AudioTimeStamp {
Float64 mSampleTime;
UInt64 mHostTime;
Float64 mRateScalar;
UInt64 mWordClockTime;
SMPTETime mSMPTETime;
UInt32 mFlags;
UInt32 mReserved;
} AudioTimeStamp;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CoreAudioTypes.h

Time Stamp Flags

The mFlags value in AudioTimeStamp uses these values, which signify which time formats are valid.

kAudioTimeStampSampleTimeValid = (1L << 0),
kAudioTimeStampHostTimeValid = (1L << 1),
kAudioTimeStampRateScalarValid = (1L << 2),
kAudioTimeStampWordClockTimeValid = (1L << 3),
kAudioTimeStampSMPTETimeValid = (1L << 4)

Audio Time Stamp 163
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

Audio Channel Layouts

AudioChannelDescription
Contains information describing a single channel.

typedef struct AudioChannelDescription {
AudioChannelLabel mChannelLabel;
UInt32 mChannelFlags;
Float32 mCoordinates[3];
} AudioChannelDescription;

Discussion
This structure is used by AudioChannelLayout to describe the position of a speaker. The mChannelFlags
data member contains a “Channel Labels” (page 165) value, while mChannelFlags marks which coordinate
system is in use. The position of the speaker is kept in mCoordinates, as per the “Channel Flags” (page 166)
and “Channel Coordinates” (page 166).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CoreAudioTypes.h

AudioChannelLayout
Specifies the channel layout in files and hardware.

typedef struct AudioChannelLayout {
AudioChannelLayoutTag mChannelLayoutTag;
UInt32 mChannelBitmap;
UInt32 mNumberChannelDescriptions;
AudioChannelDescription mChannelDescriptions[1];
} AudioChannelLayout;

Discussion
This structure is used to keep track of the channel arrangements. A “Channel Layout Tags” (page 167) value,
stored in mChannelLayoutTag, signifies which layout scheme is in use, or, if the scheme is not available
there, mChannelBitmap may contain a bitmap describing the layout. The bitmap is formed using “Channel
Bitmaps” (page 166).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CoreAudioTypes.h

Defined Data Types

Typedefs are provided to help describe channel layouts.

164 Audio Channel Layouts
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

typedef UInt32 AudioChannelLabel;
typedef UInt32 AudioChannelLayoutTag;

Channel Labels

Specifies which channel is described by an AudioChannelDescription.

Unknown/unused:

kAudioChannelLabel_Unknown = 0xFFFFFFFF
kAudioChannelLabel_Unused = 0

Standard channels:

kAudioChannelLabel_Left = 1
kAudioChannelLabel_Right= 2
kAudioChannelLabel_Center = 3
kAudioChannelLabel_LFEScreen = 4
kAudioChannelLabel_LeftSurround = 5
kAudioChannelLabel_RightSurround = 6
kAudioChannelLabel_LeftCenter = 7
kAudioChannelLabel_RightCenter = 8
kAudioChannelLabel_CenterSurround = 9
kAudioChannelLabel_LeftSurroundDirect = 10
kAudioChannelLabel_RightSurroundDirect = 11
kAudioChannelLabel_TopCenterSurround = 12
kAudioChannelLabel_VerticalHeightLeft = 13
kAudioChannelLabel_VerticalHeightCenter = 14
kAudioChannelLabel_VerticalHeightRight = 15
kAudioChannelLabel_TopBackLeft = 16
kAudioChannelLabel_TopBackCenter = 17
kAudioChannelLabel_TopBackRight = 18
kAudioChannelLabel_RearSurroundLeft = 33
kAudioChannelLabel_RearSurroundRight = 34
kAudioChannelLabel_LeftWide = 35
kAudioChannelLabel_RightWide = 36
kAudioChannelLabel_LFE2 = 37
kAudioChannelLabel_LeftTotal = 38
kAudioChannelLabel_RightTotal = 39
kAudioChannelLabel_HearingImpaired = 40
kAudioChannelLabel_Narration = 41
kAudioChannelLabel_Mono = 42
kAudioChannelLabel_DialogCentricMix = 43

First order Ambisonic channels:

kAudioChannelLabel_Ambisonic_W = 200
kAudioChannelLabel_Ambisonic_X = 201
kAudioChannelLabel_Ambisonic_Y = 202
kAudioChannelLabel_Ambisonic_Z = 203

Mid/side Recording:

kAudioChannelLabel_MS_Mid = 204
kAudioChannelLabel_MS_Side = 205

Audio Channel Layouts 165
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

X-Y Recording:

kAudioChannelLabel_XY_X = 206
kAudioChannelLabel_XY_Y = 207

Other channels:

kAudioChannelLabel_HeadphonesLeft = 301
kAudioChannelLabel_HeadphonesRight = 302
kAudioChannelLabel_ClickTrack = 304
kAudioChannelLabel_ForeignLanguage = 305

Channel Bitmaps

Used in the mChannelBitmap field of an AudioChannelLayout to specify a custom layout.

kAudioChannelBit_Left = (1L<<0)
kAudioChannelBit_Right = (1L<<1)
kAudioChannelBit_Center = (1L<<2)
kAudioChannelBit_LFEScreen = (1L<<3)
kAudioChannelBit_LeftSurround = (1L<<4)
kAudioChannelBit_RightSurround = (1L<<5)
kAudioChannelBit_LeftCenter = (1L<<6)
kAudioChannelBit_RightCenter = (1L<<7)
kAudioChannelBit_CenterSurround = (1L<<8)
kAudioChannelBit_LeftSurroundDirect = (1L<<9)
kAudioChannelBit_RightSurroundDirect = (1L<<10)
kAudioChannelBit_TopCenterSurround = (1L<<11)
kAudioChannelBit_VerticalHeightLeft = (1L<<12)
kAudioChannelBit_VerticalHeightCenter = (1L<<13)
kAudioChannelBit_VerticalHeightRight = (1L<<14)
kAudioChannelBit_TopBackLeft = (1L<<15)
kAudioChannelBit_TopBackCenter = (1L<<16)
kAudioChannelBit_TopBackRight = (1L<<17)

Channel Flags

Specifies which coordinate system is in use, and if the distances are measured in meters; stored in
mChannelFields in an AudioChannelDescription instance.

kAudioChannelFlags_RectangularCoordinates = (1L<<0)
kAudioChannelFlags_SphericalCoordinates = (1L<<1)
kAudioChannelFlags_Meters = (1L<<2)

Channel Coordinates

Specifies the meaning of indices of mCoordinates in AudioChannelDescription.

For rectangular coordinates:

kAudioChannelCoordinates_LeftRight = 0
kAudioChannelCoordinates_BackFront = 1

166 Audio Channel Layouts
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

kAudioChannelCoordinates_DownUp = 2

For spherical coordinates:

kAudioChannelCoordinates_Azimuth = 0
kAudioChannelCoordinates_Elevation = 1
kAudioChannelCoordinates_Distance = 2

Channel Layout Tags

Specifies which channel layout is in use; stored in mChannelLayout in AudioChannelLayout.

Other/unknown:

kAudioChannelLayoutTag_UseChannelDescriptions = 0
kAudioChannelLayoutTag_UseChannelBitmap = 1
kAudioChannelLayoutTag_AllUnknown = 9

General layouts:

kAudioChannelLayoutTag_Mono = 100
kAudioChannelLayoutTag_Stereo = 101
kAudioChannelLayoutTag_StereoHeadphones = 2
kAudioChannelLayoutTag_MatrixStereo = 3
kAudioChannelLayoutTag_MidSide = 4
kAudioChannelLayoutTag_XY = 5
kAudioChannelLayoutTag_Binaural = 6
kAudioChannelLayoutTag_Quadraphonic = 7
kAudioChannelLayoutTag_Ambisonic_B_Format = 8
kAudioChannelLayoutTag_AudioUnit_5_0 = 107

MPEG defined layouts:

kAudioChannelLayoutTag_MPEG_1_0 = 100
kAudioChannelLayoutTag_MPEG_2_0 = 101
kAudioChannelLayoutTag_MPEG_3_0_A = 102
kAudioChannelLayoutTag_MPEG_3_0_B = 103
kAudioChannelLayoutTag_MPEG_4_0_A = 104
kAudioChannelLayoutTag_MPEG_4_0_B = 105
kAudioChannelLayoutTag_MPEG_5_0_A = 106
kAudioChannelLayoutTag_MPEG_5_0_B = 107
kAudioChannelLayoutTag_MPEG_5_0_C = 108
kAudioChannelLayoutTag_MPEG_5_0_D = 109
kAudioChannelLayoutTag_MPEG_5_1_A = 110
kAudioChannelLayoutTag_MPEG_5_1_B = 111
kAudioChannelLayoutTag_MPEG_5_1_C = 112
kAudioChannelLayoutTag_MPEG_5_1_D = 113
kAudioChannelLayoutTag_MPEG_6_1_A = 114
kAudioChannelLayoutTag_MPEG_7_1_A = 115
kAudioChannelLayoutTag_MPEG_7_1_B = 116
kAudioChannelLayoutTag_MPEG_7_1_C = 117
kAudioChannelLayoutTag_Emagic_Default_7_1 = 118
kAudioChannelLayoutTag_SMPTE_DTV = 119

ITU defined layouts:

Audio Channel Layouts 167
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

kAudioChannelLayoutTag_ITU_1_0 = 100
kAudioChannelLayoutTag_ITU_2_0 = 101
kAudioChannelLayoutTag_ITU_2_1 = 120
kAudioChannelLayoutTag_ITU_2_2 = 121
kAudioChannelLayoutTag_ITU_3_0 = 102
kAudioChannelLayoutTag_ITU_3_1 = 104
kAudioChannelLayoutTag_ITU_3_2 = 106
kAudioChannelLayoutTag_ITU_3_2_1 = 110
kAudioChannelLayoutTag_ITU_3_4_1 = 117

DVD defined layouts:

kAudioChannelLayoutTag_DVD_0 = 100
kAudioChannelLayoutTag_DVD_1 = 101
kAudioChannelLayoutTag_DVD_2 = 120
kAudioChannelLayoutTag_DVD_3 = 121
kAudioChannelLayoutTag_DVD_4 = 122
kAudioChannelLayoutTag_DVD_5 = 123
kAudioChannelLayoutTag_DVD_6 = 124
kAudioChannelLayoutTag_DVD_7 = 102
kAudioChannelLayoutTag_DVD_8 = 104
kAudioChannelLayoutTag_DVD_9 = 106
kAudioChannelLayoutTag_DVD_10 = 125
kAudioChannelLayoutTag_DVD_11 = 126
kAudioChannelLayoutTag_DVD_12 = 110
kAudioChannelLayoutTag_DVD_13 = 104
kAudioChannelLayoutTag_DVD_14 = 106
kAudioChannelLayoutTag_DVD_15 = 125
kAudioChannelLayoutTag_DVD_16 = 126
kAudioChannelLayoutTag_DVD_17 = 110
kAudioChannelLayoutTag_DVD_18 = 127
kAudioChannelLayoutTag_DVD_19 = 107
kAudioChannelLayoutTag_DVD_20 = 111

168 Audio Channel Layouts
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Audio Types Reference

This table describes the changes to Core Audio.

NotesDate

This document has been replaced by Core AudioOverview and other documents
in the ADC Reference Library.

2008-10-15

Second Preliminary Draft completed.2004-03-25

Preliminary Draft completed for Panther.2003-08-25

Beta Draft seeded internally for comments and corrections.2003-08-08

Seed Draft completed for WWDC, based on input from the Core Audio
engineering team. Document to be distributed privately at WWDC.

2003-06-19

169
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

170
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Audio
	Contents
	Figures and Tables
	Introduction
	About Core Audio
	Additional Resources

	Core Audio Overview
	Apple’s Objectives
	Introduction to Core Audio
	Hardware Abstraction Layer (HAL)
	Audio Unit
	Audio Codec
	Audio Toolbox
	MIDI Services
	Core Audio Types

	Using Core Audio
	Audio Data Operations
	MIDI Data Operations
	Higher Level Audio Operations
	Interfacing with Hardware

	Audio Codec
	Overview of Audio Codec
	The ACCodec Class
	The ACBaseCodec Class
	The ACSimpleCodec Class
	Miscellaneous Headers

	Audio Codec Reference
	Audio Codec Types
	Defined Data Types
	Data Structures
	AudioStreamLoudnessStatistics
	AudioCodecPrimeInfo

	Audio Codec Constants
	Component Identifiers
	Quality Settings
	Priming Selectors
	Output Packet Status Constants

	Audio Codec Properties
	Base Classes
	ACCodec
	Construction and Destruction
	Property Management
	Data Handling
	Component Support

	ACBaseCodec
	Construction and Destruction
	Property Management
	Data Handling
	Format Management

	ACSimpleCodec
	Construction and Destruction
	Data Handling

	Audio Codec Result Codes

	Audio Toolbox
	Overview of the Audio Toolbox
	Audio Converter
	Audio Format
	Audio File
	AUGraph
	Music Player and Music Sequence

	Using the Audio Toolbox
	Using Audio Converter
	Creating a New Audio Converter
	Converting Audio Data
	Supplying Data for AudioConverterFillComplexBuffer()

	Using Audio Format
	Getting Format ID Information

	Using Audio File
	Acquiring Global File Information

	Using AUGraph
	Audio Unit Graph State
	Setting up an Audio Unit Graph
	Modifying an Audio Unit Graph
	Closing an Audio Unit Graph

	Using Music Player and Music Sequence
	Setting Up a Music Sequence
	Adding Events to Tracks
	Setting Destinations for Sequences and Tracks
	Using the Tempo Track
	Disposing of Sequences and Tracks
	Getting Information about a Sequences and Tracks
	Using Music Track Properties
	Accessing Events within a Track
	Editing a Track
	Setting Up a Music Player
	Reading in Standard MIDI Files or MIDI Data
	Saving MIDI Data

	Audio Toolbox Reference
	Audio Converter Reference
	Audio Converter Types
	Defined Data Types
	Data Structures

	Audio Converter Constants
	Converter Quality Settings
	Priming Method Selectors

	Audio Converter Properties
	Audio Converter Functions
	AudioConverterNew
	AudioConverterDispose
	AudioConverterReset
	AudioConverterGetPropertyInfo
	AudioConverterGetProperty
	AudioConverterSetProperty
	AudioConverterInputDataProc
	AudioConverterFillBuffer
	AudioConverterComplexInputDataProc
	AudioConverterFillComplexBuffer

	Audio Converter Result Codes

	Audio Format Reference
	Audio Format Types
	Defined Data Types
	Data Structures

	Audio Format Constants
	Panning Modes
	Coordinate Flags

	Audio Format Properties
	AudioStreamBasicDescription Properties
	AudioChannelLayout Properties
	Other Properties

	Audio Format Functions
	AudioFormatGetPropertyInfo
	AudioFormatGetProperty

	Audio Format Result Codes

	Audio File Reference
	Audio File Types
	Defined Data Types
	Data Structures

	Constants
	File Types

	Audio File Properties
	Audio File Properties
	Audio File Global Info Properties

	Audio File Functions
	Data Handling
	Property Access
	Global Info Access

	Audio File Result Codes

	AUGraph Reference
	AUGraph Types
	Defined Data Types
	Data Structures

	AUGraph Functions
	NewAUGraph
	DisposeAUGraph
	AUGraphNewNode
	AUGraphNewNodeSubGraph
	AUGraphRemoveNode
	AUGraphGetNodeCount
	AUGraphGetIndNode
	AUGraphGetNodeInfo
	AUGraphGetNodeInfoSubGraph
	AUGraphIsNodeSubGraph
	AUGraphConnectNodeInput
	AUGraphDisconnectNodeInput
	AUGraphClearConnections
	AUGraphGetNumberOfConnections
	AUGraphCountNodeConnections
	AUGraphGetNodeConnections
	AUGraphGetConnectionInfo
	AUGraphUpdate
	AUGraphOpen
	AUGraphClose
	AUGraphInitialize
	AUGraphUninitialize
	AUGraphStart
	AUGraphStop
	AUGraphIsOpen
	AUGraphIsInitialized
	AUGraphIsRunning
	AUGraphGetCPULoad
	AUGraphSetRenderNotification
	AUGraphRemoveRenderNotification
	AUGraphAddRenderNotify
	AUGraphRemoveRenderNotify

	AUGraph Result Codes

	Music Player and Music Sequence Reference
	Music Player and Music Sequence Types
	Defined Data Types
	Data Structures

	Music Player and Music Sequence Constants
	Music Events
	Other Constants

	Music Track Properties
	Music Player, Music Sequence, and Music Track Functions
	Music Player Functions
	Music Sequence Functions
	Music Track Setup Functions
	Music Track Property Functions
	Music Track Event Setup Functions
	Music Track Event Editing
	Music Track Event Iteration

	Music Sequence Callbacks
	MusicSequenceUserCallback

	Music Player and Music Sequence Result Codes

	Audio Units
	Overview
	The Audio Unit Framework
	The Audio Unit API
	Audio Unit State
	Audio Unit Sources and Destinations
	Audio Unit Properties
	Audio Unit Parameters
	I/O Management
	The “Pull” I/O Model

	Additional Information

	Reference
	Constants
	Component Types and Subtypes
	Render Action Flags
	Errors
	Parameter Event Types
	Component Call Selectors
	Audio Unit Properties
	Music Device Properties
	Output Unit Properties
	Various Audio Unit Properties
	Offline Unit Properties
	Reverb Room-Type Properties
	Spatialization Properties
	3D Mixer Properties
	Render Quality Properties
	Panner Mode Properties
	Offline Unit Preflight Properties
	Scope Properties
	Preset Constants
	Parameter Unit Constants
	Parameter Flags
	MIDI Controller Parameters
	Bandpass Filter Unit Parameters
	AUHipass Unit Parameters
	AULowpass Unit Parameters
	AUHighShelfFilter Unit Parameters
	AULowShelfFilter Unit Parameters
	AUParametricEQ Unit Parameters
	AUMatrixReverb Unit Parameters
	Delay Unit Parameters
	AUPeakLimiter Unit Parameters
	AUDynamicsProcessor Unit Parameters
	AUMultibandCompressor Unit Parameters
	AUVarispeed Unit Parameters
	3DMixer Unit Parameters
	StereoMixer Unit Parameters
	MatrixMixer Parameters
	Output Unit Parameters
	DLSMusicDevice Parameters

	Types
	Structures
	AudioUnitParameter
	AudioUnitProperty
	AudioUnitParameterEvent
	AudioUnitConnection
	AURenderCallbackStruct
	AudioUnitExternalBuffer
	AUChannelInfo
	AUPreset
	HostCallbackInfo
	AudioUnitCocoaViewInfo
	AudioUnitParameterValueName
	AudioUnitParameterNameInfo
	AudioUnitParameterInfo
	AudioUnitMIDIControlMapping
	AudioOutputUnitStartAtTimeParam

	Functions
	AudioUnitInitialize
	AudioUnitUninitialize
	AudioUnitRender
	AudioUnitReset
	AudioUnitGetPropertyInfo
	AudioUnitGetProperty
	AudioUnitSetProperty
	AudioUnitAddPropertyListener
	AudioUnitRemovePropertyListener
	AudioUnitAddRenderNotify
	AudioUnitRemoveRenderNotify
	AudioUnitGetParameter
	AudioUnitSetParameter
	AudioUnitScheduleParameters

	Callbacks
	AURenderCallback
	AudioUnitPropertyListenerProc
	AudioUnitGetParameterProc
	AudioUnitSetParameterProc
	AudioUnitRenderProc
	HostCallback_GetBeatAndTempo
	HostCallback_GetBeatAndTempo
	HostCallback_GetBeatAndTempo

	Core Audio Types Reference
	Audio Value Structures
	AudioValueRange
	AudioValueTranslation

	Audio Buffer Structures
	AudioBuffer
	AudioBufferList

	Audio Stream Basic Description
	AudioStreamBasicDescription
	Format IDs
	Format Flags

	Audio Stream Packet Description
	AudioStreamPacketDescription

	SMPTE Time
	SMPTETime
	SMPTE Types
	SMPTE Time Stamps

	Audio Time Stamp
	AudioTimeStamp
	Time Stamp Flags

	Audio Channel Layouts
	AudioChannelDescription
	AudioChannelLayout
	Defined Data Types
	Channel Labels
	Channel Bitmaps
	Channel Flags
	Channel Coordinates
	Channel Layout Tags

	Revision History

