
Identity Services Programming Guide
Networking > Core Foundation

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Identity Services Programming Guide 7

Organization of This Document 7
See Also 7

Chapter 1 Identity Services Overview 9

What Is an Identity? 9
Access Control Lists 10
Types of Identities 11
API Architecture 12

Chapter 2 Using the Identity Picker 15

Creating and Customizing the Identity Picker 15
Invoking the Identity Picker Sheet 16
Invoking the Identity Picker Modal Dialog 16

Chapter 3 Finding and Monitoring Identities 19

Find an Identity 19
Using the Collaboration Framework 19
Using the Core Services Identity API 20

Continually Monitor Identities 23

Chapter 4 Working with Access Control Lists 25

Creating an ACL 25
Writing an ACL to a File 26
Loading an ACL 26

Document Revision History 27

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Identity Services Overview 9

Figure 1-1 Advanced user options 10
Figure 1-2 Ownership and permissions panel 11
Figure 1-3 User properties 12
Figure 1-4 Identity class interaction 13
Figure 1-5 Identity Services class hierarchy 14

Chapter 2 Using the Identity Picker 15

Listing 2-1 Customizing an CBIdentityPicker instance 15
Listing 2-2 Invoking the Identity Picker sheet 16
Listing 2-3 Retrieving identities from the Identity Picker 16
Listing 2-4 Invoking the modal Identity Picker 17

Chapter 3 Finding and Monitoring Identities 19

Listing 3-1 Finding an identity in Objective-C 19
Listing 3-2 Finding identities synchronously 20
Listing 3-3 Identity query callback function 21
Listing 3-4 Adding an identity query object to a run loop 22
Listing 3-5 Invalidating an identity query object 22

Chapter 4 Working with Access Control Lists 25

Listing 4-1 Creating an ACL with the Collaboration framework 25

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Identity Services is a new technology in Mac OS X v10.5 that allows developers to access users and groups
on a system in order to create customized access controls. Identity Services also introduces a new type of
user, known as a sharing user. Sharing users are similar to standard users but do not have login access or a
home directory. They are designed for users who only need access to network services such as file sharing
or screen sharing.

Identity Services provides access to users and groups through two APIs. The Core Services Identity API supports
user and group creation, enumeration, attribute inspection, credential management, and group membership
management. The Collaboration framework is an Objective-C API providing access to identities, as well as
managing a user interface element for selecting identities. All of these features can be combined for use in
managing access control lists (ACLs).

This book describes the Identity Services architecture and explains how to leverage that architecture in new
and existing Cocoa and Carbon applications. It is intended both for developers who want to use the Identity
Services API and for system administrators who want to understand the infrastructure for users, groups, and
access control lists.

Organization of This Document

This book contains the following chapters:

 ■ “Identity Services Overview” (page 9) describes the underlying structure of Identity Services.

 ■ “Using the Identity Picker” (page 15) explains how to select and create identities in a GUI-based
application.

 ■ “Finding and Monitoring Identities” (page 19) explains how to search for identities using the
CSIdentityQuery and CBIdentity classes.

 ■ “Working with Access Control Lists” (page 25) explains how to create, store, and load an ACL.

See Also

Refer to the following reference documents for Identity Services:

 ■ Identity Services Reference Collection

 ■ Collaboration Framework Reference

 ■ Core Services Identity Reference

Organization of This Document 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Identity Services Programming
Guide

8 See Also
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Identity Services Programming Guide

To use the Identity Services APIs, it is important to know how identities work, and how they can be used.
The following chapter describes the different types of identities and explains how to use them in Mac OS X.
It also explains the APIs available for using identities in your applications.

What Is an Identity?

When most people think about a user account, they think about a home directory. However, a user account
is much more complicated than that.

A user account, or user, works in a similar manner to a debit card. You normally think of your debit card as
a method to purchase items. When you go to a store, you find what you want to buy and hand it to the
cashier along with your debit card. The cashier scans the card, and makes sure your PIN number matches
what the bank has on file. Assuming it does, you receive your items and walk out.

A user account on a computer works in a similar fashion. When you log into the computer, the computer
asks for a user name and password. The user name is like the debit card number, it specifies who you are.
The password is like your PIN number, because it proves you are who you say you are. After you’re approved,
the computer can give you access to your files.

But what is really happening when you use your debit card? When the cashier scans the card, the debit card
number is sent to the bank. The bank has information about you, such as your name, birthday, social security
number, and balance. The bank then tells the cashier whether the card is valid, so he knows if you can buy
the item. The basis of the account is really the information stored on the computers at your bank, not the
card itself.

In much the same way, a user is defined by its identity, which is a record that contains information about
the user. Each identity is stored in a trusted directory known as an identity authority. Your user name is sent
to the identity authority and your record is found. Then, if your password matches that on the record, you
can get access to any file that your identity has access to.

Each identity contains the following required attributes:

 ■ A universally unique identifier (UUID)

 ■ A full name (must be unique throughout the system)

 ■ A POSIX ID (UID for a user, GID for a group)

 ■ A systemwide unique name (POSIX name)

Additionally, identities can contain the following optional attributes:

 ■ A home directory (only for users)

 ■ Alternate names, known as aliases

What Is an Identity? 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

 ■ An email address

 ■ An image

You can edit these attributes using the Accounts preference pane in System Preferences by Control-clicking
on the user. See Figure 1-1.

Warning: Use extreme caution when changing account attributes, as the changes might damage the
account.

Figure 1-1 Advanced user options

Access Control Lists

Fundamentally, identities are used to control who has access to files and services. If you view the Get Info
panel on a file in the Finder, you’ve seen the Ownership and Permissions section (Figure 1-2). This section
displays what access users and groups have to the file or folder. These permissions (no access, read only, or
read and write) are stored in an access control list (ACL). Every single folder and file on your computer has
an associated ACL. Thus you can create very specific, customized access permissions for the files on your
computer.

10 Access Control Lists
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

Figure 1-2 Ownership and permissions panel

Each sharing service (for example, SSH or AFP) on your computer also has an ACL. An ACL associated with a
service is referred to as a service access control list, or SACL. The ability to create and customize ACLs and
SACLs with users and groups helps make very secure, very adjustable applications.

Types of Identities

An identity can represent either a user or group:

Types of Identities 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

A user is an identity that has authentication credentials. There are two forms of credentials: a traditional
password, and a certificate. A user can be added to ACLs to access files or services. There are four different
types of users: administrators, standard, child, and sharing. The list of user types and their features is available
in Figure 1-3.

Figure 1-3 User properties

Administrative Privileges

Home Directory

Appears in Login Window

Parental Controls

Appears in ACL

User Administrator Standard Child Sharing

A group is an identity that has other identities as members. Groups can be added to ACLs and provide a
powerful way to manage permissions. A group can contain an unlimited number of members.

API Architecture

There are two levels to the Identity Services APIs: the C-based Core Services Identity API and the
Objective-C-based Collaboration framework. The Core Services Identity API is comprised of three Core
Foundation-based objects that allow you to create, manipulate, and remove users and groups: an identity
object, an identity query object, and an identity authority object. The Collaboration framework is a set of
wrapper classes for the Core Services Identity API objects. Additionally, it provides user interface support for
applications.

An identity object (CSIdentity) represents an identity in an identity authority and contains the attributes
of that user or group. The required attributes are a full name, a POSIX name, a UUID, and a POSIX ID. Of these
attributes, the POSIX name, the UUID and the POSIX ID can all be autogenerated by the API. User identities
also include authentication information (password and/or certificate), and group identities have a list of
members. These attributes can be set and retrieved using the appropriate methods, and the user or group
represented by the identity object can be stored in the identity’s authority database using a commit method.
Each instantiation of the identity class represents one user or group. Identity objects are not limited to sharing
users but can also be used to access standard users.

An identity query object (CSIdentityQuery) allows an application to search an identity authority database
for users and groups and monitor them for changes. It provides methods for searching for identities by name,
UUID, POSIX ID, reference data, or current user. In addition, an identity query object can register to be notified
for changes to an identity. For example, if you have an identity object that represents a group, you can use
an identity query object to notify you when the group membership changes.

12 API Architecture
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

An identity authority object (CSIdentityAuthority) represents a repository of identities. Every Mac OS
X system contains a local identity authority that stores the identities local to the system. When you first create
a user on a brand new Mac OS X system, the user identity is stored in the local identity authority. An identity
authority can also exist on a network directory server. An identity authority object can represent either the
local authority, the network-bound authorities, or both.

For a visual representation of how CSIdentity objects and CSIdentityQuery objects interact with an
identity authority, see Figure 1-4.

Figure 1-4 Identity class interaction

CSIdentity

UUID
name
email
alias
image

Attribute
Attribute

CSIdentityQuery
Identity Authority

Database
(Directory Services)

UUID
name
email
alias
image

CSIdentity

CSIdentityCommit

CSIdentityCommit

CSIdentityQueryCopyResults

The Collaboration framework allows you to access identities with Objective-C APIs. It also houses the the
Identity Picker user interface element. The CBIdentity and CBIdentityAuthority APIs provide the
read-only access to attributes of the CSIdentity and CSIdentityAuthority objects.

The Collaboration framework also has methods to convert between the CSIdentity objects and CBIdentity
objects. If you have a CSIdentity object and want to use it in Cocoa, use the identityWithCSIdentity:
class factory method to create a CBIdentity object from the same identity. Similarly, if you have a
CBIdentity object and want to use it in C, use the CSIdentity method on the identity object to return a
CSIdentity object from the same identity.

The Identity Picker’s relationship with Identity Services is analogous to the People Picker’s relationship with
the Address Book. Just as the People Picker is a user interface element for selecting a person from the Address
Book, the Identity Picker is a user interface element for selecting identities. The Identity Picker is a sheet or
a modal dialog that allows someone to select users on the system and promote Address Book entries to
sharing users. It is managed by a CBIdentityPicker object. More information about the Identity Picker is
available in “Using the Identity Picker” (page 15). The class hierarchy of the Collaboration framework can be
seen in Figure 1-5.

API Architecture 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

Figure 1-5 Identity Services class hierarchy

Collaboration.framework

CBGroupIdentity

CBUserIdentity

CBIdentityPicker

CBIdentity

CBIdentityAuthority

CoreServices.framework

CSIdentityQuery

CSIdentity

CSIdentityAuthority

With a strong understanding of the structure of identities, you’ll find the APIs much easier to use, and more
powerful.

14 API Architecture
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Identity Services Overview

Most applications that use identities require someone to select users to be added to an access control list
(ACL). Enter the Identity Picker. The Identity Picker is managed by the CBIdentityPicker class in the
Collaboration framework. It allows users an easy interface for not only selecting identities but also for
promoting entries in the Address Book to sharing users. As an application developer, no extra work is needed
to allow users to create identities; this capability comes free from invoking the Identity Picker. This chapter
describes how to customize the Identity Picker for your application and how to invoke the correct
implementation of the Identity Picker.

Creating and Customizing the Identity Picker

For every Identity Picker your application requires, you should create a separate instance of the
CBIdentityPicker class.

The ability of the Identity Picker to select multiple entries at once is a customizable feature. By default, the
Identity Picker does not allow multiple selections. To change the default setting, call the
setAllowsMultipleSelection: method and pass the value YES. See Listing 2-1 for an example of how
to use these methods.

Listing 2-1 Customizing an CBIdentityPicker instance

// Instantiate an ABIdentityPicker object.
CBIdentityPicker *picker = [[CBIdentityPicker alloc] init];

// Allow the Identity Picker to select multiple entries.
[picker setAllowsMultipleSelection:YES];

Creating and Customizing the Identity Picker 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Identity Picker

Invoking the Identity Picker Sheet

ThebeginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo:method invokes
the Identity Picker as a sheet.

The first argument is the window in which the sheet should open. In most cases, this is [sender window].
The modalDelegate argument is the delegate object. The didEndSelector argument is the method that
will be called when the user selects identities and chooses either the OK or Cancel button. It should be a
method that contains three arguments of its own: a CBIdentityPicker object, an array of the identities
selected, and a context. Finally, the contextInfo argument is any object you want sent to the delegate
method.

Listing 2-2 Invoking the Identity Picker sheet

- (IBAction)plusButton:(id)sender
{
 [picker beginSheetModalForWindow:[sender window]
 modalDelegate:self
 didEndSelector:@selector(identityPickerDidEnd:identities:contextInfo:)
 contextInfo:nil];
}

When the user closes the Identity Picker, the delegate method
(identityPickerDidEnd:identities:contextInfo:) is called. This method passes the selected identities
as an array of CBIdentity objects and the context defined by the method
beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo:. See Listing 2-3.

Listing 2-3 Retrieving identities from the Identity Picker

- (void)identityPickerDidEnd:(CBIdentityPicker *)identityPickerController
identities:(NSArray*)identities contextInfo:(void *)contextInfo
{
 NSEnumerator *enumerator = [identities objectEnumerator];
 CBIdentity *nextIdentity;

 while (nextIdentity = [enumerator nextObject]) {

 //Do something interesting with the nextIdentity object

 }
}

Invoking the Identity Picker Modal Dialog

To use the Identity Picker modal dialog, call the method runModal. This method invokes the modal identity
picker. If the user selects the OK button in the Identity Picker window, you can return the selected identities
with the identitiesmethod. The identitiesmethod returns an array of CBIdentity objects. See Listing
2-4.

16 Invoking the Identity Picker Sheet
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Identity Picker

Listing 2-4 Invoking the modal Identity Picker

- (IBAction)plusButton:(id)sender
{
 NSArray *identities;
 NSEnumerator *enumerator;
 CBIdentity *nextIdentity;

 if ([picker runModal] == NSOKButton) {
 identities = [picker identities];
 enumerator = [identities objectEnumerator];

 // Enumerate over the returned identities
 while ((nextIdentity = [enumerator nextObject])) {

 // Do something interesting with the identity object
 }
 }
}

Invoking the Identity Picker Modal Dialog 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Identity Picker

18 Invoking the Identity Picker Modal Dialog
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Identity Picker

One of the most common uses of the Identity Services API is to look for an identity stored in an identity
authority. You may also need to observe changes to users and groups that occur outside the scope of your
application. For example, if another application removes a user from a group your application is using, you
want to be notified of this change. In the Core Services Identity API, the CSIdentityQuery class provides
synchronous and asynchronous access to find and monitor identities from an identity authority’s database.
In the Collaboration framework, these methods are part of the CBIdentity class.

This chapter explains how to search for identities using both CSIdentityQuery objects and CBIdentity
objects.

Find an Identity

You can find an identity using either the Objective-C based Collaboration framework or the Core Services
Identity API.

Using the Collaboration Framework

To find a user or group with the Collaboration framework, use one of the CBIdentity class factory methods.
There are three methods that allow you to search based on different properties of an identity:

 ■ If you want to search by full names, short names, or aliases, use the identityWithName:authority:
method.

 ■ If you want to search by UUID, use the identityWithUUIDString:authority: method.

 ■ If you want to search using a persistent reference, use the identityWithPersistentReference:
method. (For more information about persistent references, see “Loading an ACL” (page 26)).

To complete your search, pass a search term and an identity authority object to either the
identityWithName:authority: and the identityWithUUIDString:authority: methods. There are
a number of class factory methods in CBIdentityAuthority that allow you to create an identity authority
object based on the identity authorities you want to search. Listing 3-1 (page 19) shows how to search for
all identities named “David Ortiz” in a local identity authority.

Listing 3-1 Finding an identity in Objective-C

CBIdentityAuthority *localAuthority =
 [CBIdentityAuthority localIdentityAuthority];
CBIdentity *user =
 [CBIdentity identityWithName:@"David Ortiz" authority:localAuthority];

Find an Identity 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

You can also search specifically for a user identity or a group identity by using the CBUserIdentity and
CBGroupIdentity classes, respectively. By default, the CBIdentity class factory methods search for a user
identities first, and if none are located then it looks for group identities.

Using the Core Services Identity API

To find a user or group with the Core Services Identity API you need to create a CSIdentityQuery object.
A CSIdentityQuery object contains methods to search the identities database. It is important to use the
appropriate method to create the identity query object based on how you want to search the database. The
following methods are provided for you:

 ■ If you want to search by full names, short names, or aliases, use the CSIdentityQueryCreateForName
method.

 ■ If you want to search by UUID, use the CSIdentityQueryCreateForUUID method.

 ■ If you want to search by POSIX ID, use the CSIdentityQueryCreateForPosixID method.

 ■ If you want to search by reference data (generated by the CSIdentityCreatePersistentReference
method), use the CSIdentityQueryCreateForPersistentReference method.

 ■ If you want to search for the current user’s identity, use the CSIdentityQueryCreateForCurrentUser
method.

There are two ways to execute the search, synchronously and asynchronously. It is highly recommended that
you run any process that could block as a result of network delays asynchronously.

Search Identities Synchronously

To perform a CSIdentityQuery search synchronously, call the method CSIdentityQueryExecute on
your identity query object. The method returns only when it has completed the search. If the query is executed
successfully, CSIdentityQueryExecute returns TRUE; otherwise, it returns FALSE. Assuming the query
was successful, run the CSIdentityQueryCopyResultsmethod to return an array of identity objects. When
you have finished retrieving the identities, make sure to release the CSIdentityQuery object. Listing 3-2
shows an example of this.

Listing 3-2 Finding identities synchronously

CSIdentityQueryRef query;
CFErrorRef error;
CFArrayRef identityArray;

// create the identity query based on name
query = CSIdentityQueryCreateForName(kCFAllocatorDefault,
 CFSTR("David"),
 kCSIdentityQueryStringBeginsWith,
 kCSIdentityClassUser,
 CSGetDefaultIdentityAuthority());

// execute the query
if (CSIdentityQueryExecute(query, kCSIdentityQueryGenerateUpdateEvents, &error))
{
 // retrieve the results of the identity query
 identityArray = CSIdentityQueryCopyResults(query);

20 Find an Identity
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

 // do something with identityArray

}
CFRelease(query);

Search Identities Asynchronously

Performing an identity query asynchronously is similar to performing a query synchronously but differs in
an important way. With a synchronous query, you execute the query, wait for it to complete, and then ask
for the results. In contrast, with an asynchronous query, you start the query and your callback function will
be passed the results as they become available. The process for setting up asynchronous callbacks is similar
in theory and in practice to other Core Services callbacks.

To search for an identity asynchronously requires two main steps: setting up a callback function and adding
the identity query object to a run loop. First, set up your callback function. The callback function must be a
void function and must accept five arguments:

 ■ CSIdentityQueryRef query, the identity query object

 ■ CSIdentityQueryEvent event, the event that caused the callback function to be run

 ■ CFArrayRef identities, the results of the query as an array identities

 ■ CFErrorRef error, the error that occurred as a result of the identity query, if applicable

 ■ void *info, any data placed in the CSIdentityQueryClientContext, to be sent to the callback
function

A callback function might look like Listing 3-3.

Listing 3-3 Identity query callback function

void myIdentityQueryCallback (CSIdentityQueryRef query,
 CSIdentityQueryEvent event,
 CFArrayRef identities,
 CFErrorRef error,
 void *info) {

 // See what event triggered the callback
 switch (event) {

 case kCSIdentityQueryEventResultsAdded:
 // An identity was added to the list of results
 break;

 case kCSIdentityQueryEventSearchPhaseFinished:
 // The query was completed
 break;
 }
}

Find an Identity 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

To add the identity query object to a run loop, first create the object. Then create a
CSIdentityQueryClientContext structure. In the CSIdentityQueryClientContext structure, define
the name of the callback function to be run. With the CSIdentityQueryClientContext structure set up,
call the CSIdentityQueryExecuteAsynchronously method to add the query to a run loop.

CSIdentityQueryExecuteAsynchronously requires five arguments: the identity query object to be
executed, the execution options (from CSIdentityQueryFlags), a pointer to your
CSIdentityQueryClientContext structure, the run loop on which to schedule callbacks, and the run
loop mode. If the query is added to the run loop, the function returns TRUE and any errors as a result of the
query are sent to your callback function. See Listing 3-4 to see how this looks in code.

Listing 3-4 Adding an identity query object to a run loop

CSIdentityQueryRef query;
CSIdentityQueryClientContext queryclient =
 {0, NULL, NULL, NULL, NULL, myIdentityQueryCallback};

// create the identity query based on name
query = CSIdentityQueryCreateForName(kCFAllocatorDefault,
 CFSTR("David"),
 kCSIdentityQueryStringBeginsWith,
 kCSIdentityClassUser,
 CSGetDefaultIdentityAuthority());

// add the identity query object to the current run loop
if (!CSIdentityQueryExecuteAsynchronously(query,
 kCSIdentityQueryGenerateUpdateEvents,
 &queryclient,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes))
{
 // query was not added to the run loop
}

When an event is triggered based on your query, your callback function is run. The event that causes your
callback function to run is passed to the callback function along with an array of identities. If identities from
the query are added, removed, or modified, the array contains only those identities that have been affected.
If the search is completed, then the array is NULL. In this case, use CSIdentityQueryCopyResults to get
the full list of identities.

After the query has completed, you need to remove the identity query object from the run loop. To do this,
call the CSIdentityQueryStop method and pass it the identity query object. Then, release the identity
query object. This should look like the code in Listing 3-5.

Listing 3-5 Invalidating an identity query object

CSIdentityQueryStop(query);
CFRelease(query);

22 Find an Identity
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

Continually Monitor Identities

Monitoring an identity is very similar to searching for one. If you are searching for an identity asynchronously,
then all you need to do is to not call CSIdentityQueryStop when the query is completed. As long as your
identity query object is registered on the run loop, it continues to notify you when the contents of your query
change. So if you are searching for all Identities with the name “Chris”, and a new user is created with the
name “Chris Jones” after your original search finished, your callback function will be notified of this new user.
When you are done monitoring the identities, make sure to call CSIdentityQueryStop.

To monitor identities synchronously, you need to poll an identity query object. Each identity query object
can only be executed once, so after running CSIdentityQueryExecute and checking the results with
CSIdentityQueryCopyResults, you will need to create an identical identity query object to execute again.
Each time you run CSIdentityQueryCopyResults it will return an array with the full results of your query,
not just what has changed. This is another reason why it is recommended that you search for and monitor
identities asynchronously, rather than synchronously.

Continually Monitor Identities 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

24 Continually Monitor Identities
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Monitoring Identities

A number of applications that take advantage of identities use them to control access to a file or service. The
identities and their access levels are often stored in an access control list (ACL). The following chapter explains
how to create an ACL, store it, and load it for use later.

Creating an ACL

An ACL can be maintained in any data object you want. This data object should be tailored based on your
application’s needs. For example, if your application needs to store a list of only those users and groups who
can access your service, then a simple array or set may suffice. However, if your application needs to store a
list of identities and their access level, you might want to use a dictionary. Listing 4-1 (page 25) shows how
to create a dictionary object for you ACL and then run the identity picker. The identities returned from the
picker are stored in the dictionary object as a key-value pair, where the key is the identity and the value is
the permissions.

Listing 4-1 Creating an ACL with the Collaboration framework

// Create a dictionary to use as your ACL
NSMutableDictionary *accessControlList = [[NSMutableDictionary alloc] init];

// Run the identity picker
if ([picker runModal] == NSOKButton) {
 NSArray *identities = [picker identities];
 NSEnumerator *enumerator = [identities objectEnumerator];

 // Enumerate over the returned identities,
 // and add each one to the ACL
 while ((nextIdentity = [enumerator nextObject])) {

 // Make sure to use the identity object as the key, and the permissions
 level as the value
 [accessControlList setObject:@"read-only" forKey:nextIdentity];
 }
}

If you are using the Core Services Identity API, you can create a similar ACL with a CFDictionary object,
using CSIdentity objects as the keys.

Creating an ACL 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with Access Control Lists

Writing an ACL to a File

When your application quits, it needs to store the ACL as a file. If your ACL is stored as an NSDictionary
object, simply use the method writeToFile:atomically: to write the ACL to a plist file. When the file is
written, each identity is stored as a persistent reference. The persistent reference of an identity is an opaque
data object that is a faster, more reliable way to retrieve the identity from an identity authority than a UUID.

If you are not using a dictionary to house your ACL, use a persistent reference when you write the ACL to a
file. In the Collaboration framework, use the method persistentReference to create a persistent reference
for an identity or use the NSCoding protocol methods. In the Core Services Identity API, use the
CSIdentityCreatePersistentReference method.

Loading an ACL

After you write your ACL to a file, your application needs to restore the ACL to a form it can access quickly.
If you are using an NSDictionary object, instantiate a new object with the
dictionaryWithContentsOfFile: method. Similarly, if you used the NSCoding protocol methods to
archive the ACL, use the appropriate methods to unarchive the ACL. Either approach will also convert the
persistent reference to an identity object automatically, so you can begin using the new dictionary object
immediately. If an identity in the ACL has been removed, no conversion will take place.

If you wrote the ACL to a custom file format, you need to load the file back into memory, and load each
persistent reference. You can instantiate the identity object from the persistent reference with the
identityWithPersistentReference: method.

Retrieving an identity object in the Core Services API is a bit more involved. Once you have the presistent
reference, create an identity query object using the CSIdentityQueryCreateForPersistentReference
method. Then execute the query, and retrieve the returned identity objects. (For more information about
querying an identity authority, see “Finding and Monitoring Identities” (page 19)).

26 Writing an ACL to a File
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with Access Control Lists

This table describes the changes to Identity Services Programming Guide.

NotesDate

Fixed typographical errors.2008-10-15

New document that describes how to create, maintain, and search for users and
groups.

2007-05-15

27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Identity Services Programming Guide
	Contents
	Figures and Listings
	Introduction
	Identity Services Overview
	What Is an Identity?
	Access Control Lists
	Types of Identities
	API Architecture

	Using the Identity Picker
	Creating and Customizing the Identity Picker
	Invoking the Identity Picker Sheet
	Invoking the Identity Picker Modal Dialog

	Finding and Monitoring Identities
	Find an Identity
	Using the Collaboration Framework
	Using the Core Services Identity API
	Search Identities Synchronously
	Search Identities Asynchronously

	Continually Monitor Identities

	Working with Access Control Lists
	Creating an ACL
	Writing an ACL to a File
	Loading an ACL

	Revision History

