
NSNetServices and CFNetServices
Programming Guide
Networking > Bonjour

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to NSNetServices and CFNetServices Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7

Foundation Network Services Architecture 9

Foundation Classes for Network Services 9
NSNetService 9
NSNetServiceBrowser 9
Asynchronous Results and Delegate Objects 10

Operations on Network Services 11
Publication 11
Service Discovery 12
Resolution 13
Browsing for Domains 14

Publishing Network Services 15

The Publication Process 15
Setting Up Socket Ports 16
Initializing and Publishing a Network Service 16
Implementing Delegate Methods for Publication 18

Browsing for Network Services 21

The Browsing Process 21
Initializing the Browser and Starting a Search 21
Implementing Delegate Methods for Browsing 22

Browsing for Domains 27

About Domain Browsing 27
Initializing the Browser and Starting a Search 28
Implementing Delegate Methods for Browsing 28

Resolving and Using Network Services 33

The Resolution Process 33
Obtaining and Resolving an NSNetService Object 33
Implementing Delegate Methods for Resolution 34
Connecting to a Network Service 36

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Monitoring a Service 37

CFNetServices 39

Requirements 39
Using the CFNetServices API 39
Publishing a Service 39

Creating a CFNetService 39
Registering a CFNetService 40

Browsing for Services 41
Resolving a Service 42
Monitoring a Service 43
Asynchronous and Synchronous Modes 43
Shutting Down Services and Searches 45

Document Revision History 47

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Foundation Network Services Architecture 9

Figure 1 Asynchronous service resolution returning results to a delegate object 10
Figure 2 Service publication with NSNetService 12
Figure 3 Service discovery with NSNetServiceBrowser 13
Figure 4 Service resolution with NSNetService 14

Publishing Network Services 15

Listing 1 Initializing and publishing a Bonjour network service 17
Listing 2 Interface for an NSNetService delegate object (publication) 19
Listing 3 Implementation for an NSNetService delegate object (publication) 19

Browsing for Network Services 21

Listing 1 Browsing for Bonjour network services 22
Listing 2 Interface for an NSNetServiceBrowser delegate object (services) 23
Listing 3 Implementation for an NSNetServiceBrowser delegate object (services) 23

Browsing for Domains 27

Listing 1 Browsing for registration domains 28
Listing 2 Interface for an NSNetServiceBrowser delegate object (domains) 29
Listing 3 Implementation for an NSNetServiceBrowser delegate object (domains) 29

Resolving and Using Network Services 33

Listing 1 Resolving network services with NSNetService 34
Listing 2 Interface for an NSNetService delegate object (resolution) 35
Listing 3 Implementation for an NSNetService delegate object (resolution) 35
Listing 4 Connecting to a resolved Bonjour network service 36

CFNetServices 39

Table 1 Behavior of certain CFNetServices functions in asynchronous and synchronous
mode 44

Listing 1 Creating a CFNetService 40
Listing 2 Registering an Asynchronous Service 40
Listing 3 Browsing Asynchronously for Services 41
Listing 4 Resolving a Service Asynchronously 42
Listing 5 Canceling an Asynchronous CFNetService Resolve Process 45
Listing 6 Stop Browsing for Services 45

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSNetServicesandCFNetServicesProgrammingGuide is a collection of articles describing the APIs that implement
Bonjour on the Foundation and Core Foundation levels. The articles describe how to use NSNetServices, and
CFNetServices for tasks such as publishing a service and browsing for services.

Who Should Read This Document

This document is intended for developers who wish to add Bonjour functionality to their Cocoa or Carbon
application. It assumes that the developer already is familiar with the basics of Bonjour from reading Bonjour
Overview. If developers want to add Bonjour functionality into a non-Cocoa, or a BSD-style application, it is
recommended that they investigate the DNS Service Discovery Programming Guide first.

Organization of This Document

This document contains the following articles:

 ■ “Foundation Network Services Architecture” (page 9) describes the functions available in the
NSNetServices framework.

 ■ “Publishing Network Services” (page 15) explains how to publish a Bonjour service.

 ■ “Browsing for Network Services” (page 21) describes how to search for available Bonjour services.

 ■ “Browsing for Domains” (page 27) explains how to browse for Bonjour domains

 ■ “Resolving and Using Network Services” (page 33) explains how to resolve a Bonjour service.

 ■ “CFNetServices” (page 39) explains how to perform all of the above tasks using the Core Foundation
framework.

Who Should Read This Document 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to NSNetServices and
CFNetServices Programming Guide

8 Organization of This Document
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to NSNetServices and CFNetServices Programming Guide

This article describes the structure of the Foundation classes used for network services, and how the methods
in these classes operate.

Foundation Classes for Network Services

The Foundation framework defines two classes for managing Bonjour network services. These classes
correspond to the two basic elements of network services: services and service browsers. NSNetService
represents an actual instance of a service, and provides methods both for publishing a local service to the
network and for connecting to a remote service. NSNetServiceBrowser acts as a browser for a particular type
of service; it queries the network for available services and collects the results.

NSNetService

The NSNetService class represents a single instance of a service. The service can either be a remote service
that your application wants to use, or a local service your application is publishing; however, it is never both.
NSNetService instances perform all operations asynchronously, returning results to a delegate object for
processing.

NSNetService objects that represent remote services are initialized with the service name, type, and domain,
but no host name, IP address or port number. The name, type, and domain are used to resolve the instance
into socket information (IP address and port number) so your application can connect to the service.

NSNetService objects used for publishing local services to the network are initialized with the service name,
type, and domain, and also the service’s port number. They use this information to announce the necessary
information to the network through the multicast DNS responder.

NSNetServiceBrowser

An NSNetServiceBrowser object represents one of two things: A browser for a single type of service, or a
browser for domains. Like NSNetService, NSNetServiceBrowser instances perform all operations asynchronously,
returning results to a delegate object for processing. At any given time, a single NSNetServiceBrowser object
can execute at most one search operation; if you need to search for multiple types of services at once, use
multiple NSNetServiceBrowser objects.

Most of the time, you use NSNetServiceBrowser to search for a specific type of service. For example, you
might set up a service browser to search for FTP services available on the local network and present the list
of services to the user, letting the user connect to one of them. The results of such a search are instances of
NSNetService corresponding to each remote service.

Foundation Classes for Network Services 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

You can also use NSNetServiceBrowser to search for available domains. By passing NSNetServiceBrowser the
empty string (@"") for the domain, it will search for all potential domains. However, just because you have
access to all available domains, does not mean that you should begin searching through them sequentially.
It is best to present the user with the list of domains, allowing him to select one which can then be scanned
for services.

Asynchronous Results and Delegate Objects

Due to the length of time it takes for network discovery, the NSNetService and NSNetServiceBrowser APIs
perform all their operations asynchronously. The methods provided by NSNetService and NSNetServiceBrowser
return immediately, so your application can continue executing while network operations take place. However,
your application still needs to process the information returned by the objects. Instead of requiring you to
subclass NSNetService and NSNetServiceBrowser to handle results, both classes send the results of network
operations to delegate objects that implements the appropriate methods to handle the results.

A common network operation is resolving a service instance name—such as 3rd Floor Copy
Room._printer._tcp.local.—into socket information (IP address and port number). Figure 1 illustrates
how this resolution process happens asynchronously and returns results to the delegate object.

At some point (step 1), a message is sent to the NSNetService object requesting that it retrieve socket addresses
for the service; this method returns immediately. In step 2, the application continues execution as the
resolution proceeds. At some later point in time, the resolution finishes (step 3), and the NSNetService object
returns results to its delegate object.

Figure 1 Asynchronous service resolution returning results to a delegate object

NSRunLoop

1. Resolution method called 2. Application execution
 continues during resolution

Call resolution
method

on service

Method
returns

immediately

3. Resolution results returned
 to delegate object

NSRunLoop

NSNetService

Delegate

NSNetService

Delegate

Delegate

NSNetService

NSRunLoop

Resolution
proceeds

asynchronously

Network

10 Foundation Classes for Network Services
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

Operations on Network Services

The architecture for Bonjour network services in the Foundation framework abstracts your application away
from the details of DNS record management, and lets you manage services in terms of the three fundamental
operations defined for Bonjour network services:

 ■ Publication (advertising a service)

 ■ Service discovery (browsing for available services)

 ■ Resolution (translating service names to addresses and port numbers for use)

In Cocoa applications, you perform these operations using NSNetService and NSNetServiceBrowser objects.
NSNetService objects represent instances of Bonjour net services, and are involved in all three operations.
The NSNetServiceBrowser class, as its name suggests, defines an interface for service discovery; it also lets
you search for domains available for publication and browsing.

The relationship between these operations and the two classes is discussed in the following sections.

Publication

The NSNetService class handles service publication, as illustrated in Figure 2. To publish a service, an application
first sets up a valid socket for communication, for example with NSSocketPort (step 1). Once the socket is
ready, the application initializes an NSNetService object with the socket and domain information (step 2),
and sets up a delegate object to receive results. The object automatically registers itself with the current run
loop. In step 3, the application sends a message to the NSNetService object requesting that the service be
published to the network, and publication proceeds asynchronously. In step 4, the NSNetService object
returns results to your delegate.

When the service is about to be published, the delegate is notified. If publication fails for any reason, the
delegate is also notified, along with appropriate error information. If publication proceeds successfully, no
further messages are sent to the delegate.

For step-by-step instructions and code examples about service publication, see “Publishing Network
Services” (page 15).

Operations on Network Services 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

Figure 2 Service publication with NSNetService

Network

1. NSSocketPort object initialized 2. NSNetService object initialized

NSSocketPort for TCP port 1010

3. NSNetService object publishes 4. Result of publication returned to delegate object

NSSocketPort for TCP port 1010

NSNetService for
Ed's Party Mix._music._tcp.local.

at eds-musicbox.local.:1010

NSSocketPort for TCP port 1010

Delegate

NSNetService for
Ed's Party Mix._music._tcp.local.

at eds-musicbox.local.:1010

Delegate

NSSocketPort for TCP port 1010

Delegate

NSNetService for
Ed's Party Mix._music._tcp.local.

at eds-musicbox.local.:1010 netService:willPublish:
netService:didNotPublish:

publish

Service Discovery

To discover services advertised on the network, you use the NSNetServiceBrowser class, as shown in Figure
3. In step 1, the application initializes an NSNetServiceBrowser object and associates a delegate object to it.
In step 2, the NSNetServiceBrowser object searches asynchronously for services. In step 3, results are returned
to the delegate object. The last step can happen a number of times as new services are found on the network.
A browser can search for an extended period of time, and the delegate is notified as new services come
online or shut down.

12 Operations on Network Services
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

Figure 3 Service discovery with NSNetServiceBrowser

Delegate

1. NSServiceBrowser object
 and delegate initialized

2. NSServiceBrowser object
 searches asynchronously

Network

3. Results returned to delegate object

Ed's Party Mix._music._tcp.local.

netServiceBrowser:didFindService:moreComing:
netServiceBrowser:didNotSearch:

netServiceBrowser:didRemoveService:moreComing:

NSNetServiceBrowser

Delegate

Music-sharing
device

NSNetServiceBrowser

searchForServicesOfType:
inDomain:

NSNetServiceBrowser

Delegate

For step-by-step instructions and code examples about service discovery, see “Browsing for Network
Services” (page 21).

Resolution

If you know the name, type, and domain of a service, you can initialize an NSNetService object with this
information, and ask the object to resolve the service name into socket addresses. To prevent your application
from slowing down, resolution also takes place asynchronously, returning results or error messages to the
NSNetService object’s delegate. If valid addresses were found for the service, your application can then use
the addresses to make a socket connection.

Figure 4 illustrates this process. In step 1, the application initializes an NSNetService instance for the service,
in this case a local music service over TCP called Ed's Party Mix. In step 2, the NSNetService object
receives a resolve message. The resolution proceeds asynchronously, and at some point it receives an IP
address and port number for the service (169.254.150.84:1010). In step 3, the delegate is notified, and
in step 4, the delegate asks the NSNetService object for a list of addresses and port numbers, in this case just
one of each.

For step-by-step instructions and code examples about service resolution, see “Resolving and Using Network
Services” (page 33).

Operations on Network Services 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

Figure 4 Service resolution with NSNetService

Network

4. Delegate object retrieves addresses,
 and application connects to service.

NSNetServiceBrowser

Delegate
Return list of addresses

and port numbers
(168.254.150.84:1010)

Initialize NSSocketPort
object with address

(168.254.150.84:1010)

Delegate

1. NSService object and
 delegate initialized

2. NSService object
 resolves asynchronously

3. Results returned to delegate object

®

169.254.150.84:1010

netServiceWillResolve:
netServiceDidResolveAddress:
netServiceDidNotResolve:

NSNetService for
Ed's Party Mix._music._tcp.local.

Delegate

Music-sharing
device

NSNetServiceBrowser

resolve
NSNetService

Delegate

NSSocketPort

Network

Browsing for Domains

NSNetServiceBrowser objects can also search for domains in much the same way as they search for services.
Instead of returning NSNetService objects to delegate objects, they return domain names.

For step-by-step instructions and code examples about domain browsing, see “Browsing for Domains” (page
27)

14 Operations on Network Services
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Foundation Network Services Architecture

Bonjour enables dynamic discovery of network services on IP networks without a centralized directory server.
The Foundation framework’s NSNetService class represents instances of Bonjour network services. This article
describes the process for publishing Bonjour network services with NSNetService.

The Publication Process

Bonjour network services use standard DNS information to advertise their existence to potential clients on
a network. In Cocoa, the NSNetService class handles the details of service publication.

Typically, you use NSNetService to publish a service provided by a socket owned by the same process. This
is not a requirement, so you can use the class to advertise on behalf of another process’s service—for example,
an FTP server process that has not yet been updated to support Bonjour. However, if you are creating an IP
network service, you should include Bonjour publication code as part of its startup process.

Because network activity can sometimes take some time, NSNetService objects process publication requests
asynchronously, delivering information through delegate methods. To use NSNetService correctly, your
application must assign a delegate to each NSNetService instance it creates. Because the identity of the
NSNetService object is passed as a parameter in delegate methods, you can use one delegate for multiple
NSNetService objects.

Publishing a Bonjour network service takes four steps:

1. Set up a valid socket port for communication.

2. Initialize an NSNetService instance with name, type, domain and socket information, and assign a delegate
to the object.

3. Publish the NSNetService instance.

4. Respond to messages sent to the NSNetService object’s delegate.

The following sections describe these steps in detail.

The Publication Process 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

Note: Bonjour does not need its own socket, only the network service does. If you are making an existing
network application Bonjour enabled and already have socket ports configured for the network services, you
can ignore step number one.

Setting Up Socket Ports

Bonjour network services are set up as standard TCP or UDP socket ports over IP. Mac OS X provides a number
of APIs to help you manage sockets:

 ■ CFNetwork, part of the Core Services framework, for HTTP sockets

 ■ NSSocketPort, part of the Foundation framework

 ■ CFStream and CFSocket

 ■ Raw BSD sockets, using the API provided in <sys/socket.h> and <netinet/in.h>.

Using NSSocketPort or CFStream and CFSocket generally means also interacting with the lower-level BSD
sockets layer. NSSocketPort objects can also be used as endpoints for Cocoa distributed objects communication
advertised as a Bonjour network service. CFNetwork also provides an abstraction over low-level sockets, but
only for HTTP transactions.

For more detailed information, see the CFNetwork Programming Guide, the documentation for NSSocketPort
and the many available web and print resources about BSD sockets.

Initializing and Publishing a Network Service

To initialize an NSNetService instance for publication, use the initWithDomain:type:name:port:method.
This method sets up the instance with appropriate socket information and adds it to the current run loop.

The service type expresses both the application protocol (FTP, HTTP, and so on) and the transport protocol
(TCP or UDP). The format is as described in Domain Naming Conventions, for example, _printer._tcp for
a printer over TCP.

The service name can be any NSString. This is the name that should be presented to users, so it should be
human-readable and descriptive of the specific service instance. You should let the user override any default
name you provide.

It is recommended that you use the computer name as the service name. If you pass the empty string (@"")
for the service name parameter, the system automatically advertises your service using the computer name
as the service name. Another possibility is to retrieve the computer name to concatenate it with another
string. In Mac OS X on the desktop, calling the SCDynamicStore function from the System Configuration
framework returns the computer name so you can manipulate it like any other string. In iPhone OS, you can
obtain the same information from the name property of the UIDevice class.

If you want to use a run loop other than the current run loop, you can call the removeFromRunLoop:forMode:
and scheduleInRunLoop:forMode: methods. The object must be scheduled in a run loop to operate.

16 Setting Up Socket Ports
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

Once the initialization is complete and valid, assign a delegate to the NSNetService object with the
setDelegate: method. Finally, publish the service with the publish method, which returns immediately.
It performs publication asynchronously and returns results through delegate methods.

Listing 1 demonstrates the initialization and publication process for Bonjour network services. An explanation
of the code follows it. Also see the PictureSharing application in
/Developer/Examples/Foundation/PictureSharing for a good example of service publication.

Note: When the PictureSharing example code in Mac OS X v10.2 was finalized, the link-local suffix was
local.arpa., but it changed to local. before the operating system shipped. Use local. to specify the
link-local network.

Listing 1 Initializing and publishing a Bonjour network service

#import <netinet/in.h>
#import <sys/socket.h>

// ...

id delegateObject; // Assume this exists.
NSSocketPort *socket;
NSNetService *service;
struct sockaddr *addr;
int port;

// 1socket = [[NSSocketPort alloc] init];
if(socket)
{

// 2 [self setUpSocket:socket];

// 3 addr = (struct sockaddr *)[[socket address] bytes];
 if(addr->sa_family == AF_INET)
 {
 port = ntohs(((struct sockaddr_in *)addr)->sin_port);
 }
 else if(addr->sa_family == AF_INET6)
 {
 port = ntohs(((struct sockaddr_in6 *)addr)->sin6_port);
 }
 else
 {
 [socket release];
 socket = nil;
 NSLog(@"The family is neither IPv4 nor IPv6. Can't handle.");
 }
}
else
{
 NSLog(@"An error occurred initializing the NSSocketPort object.");
}

if(socket)
{

// 4 service = [[NSNetService alloc] initWithDomain:@""
 type:@"_music._tcp"
 name:@"" port:port];

Initializing and Publishing a Network Service 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

 if(service)
 {

// 5 [service setDelegate:delegateObject];
// 6 [service publish];

 }
 else
 {
 NSLog(@"An error occurred initializing the NSNetService object.");
 }
}
else
{
 NSLog(@"An error occurred initializing the NSSocketPort object.");
}

Here’s what the code does:

1. Initializes an NSSocketPort instance with the init method, which sets up an available TCP/IP socket
port.

2. Calls a setup method defined elsewhere in this object. This method might connect the socket to a custom
BSD sockets-based service, a distributed objects connection, or other TCP/IP service.

3. Extracts the port number from the sockaddr structure returned by the NSSocketPort addressmethod.
Finds out whether the structure is IPv4-based or IPv6-based, and extracts the appropriate part of the
structure.

4. If the socket initialization succeeds, initializes the NSNetService object. This example uses the default
domain(s) for publication and a hypothetical TCP/IP music service.

5. Sets the delegate for the NSNetService object. This object handles all results from the NSNetService
object, as described in “Implementing Delegate Methods for Publication” (page 18).

6. Finally, publishes the service to the network.

To stop a service that is already running or in the process of starting up, use the stop method.

Implementing Delegate Methods for Publication

NSNetService returns publication results to its delegate. If you are publishing a service, your delegate object
should implement the following methods:

 ■ netServiceWillPublish:

 ■ netService:didNotPublish:

 ■ netServiceDidStop:

The netServiceWillPublish: method notifies the delegate that the network is ready to publish the
service. When this method is called, the service is not yet visible to the network, and publication may still
fail. After this method is called, however, you can assume the service is visible unless you receive an error
message.

18 Implementing Delegate Methods for Publication
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

The netService:didNotPublish: method is called when publication fails for any reason. Publication can
fail even after the netServiceWillPublish: method is called. If the delegate receives a
netService:didNotPublish: message, you should extract the type of error from the returned dictionary
using the NSNetServicesErrorCode key and handle the error accordingly.

One common error is NSNetServicesCollisionError, which is received when the service name is already
in use. If your application receives this error, it should inform the user and ask for a different name. See
NSNetService for a complete list of possible errors.

The netServiceDidStop:method gets called as a result of the stopmessage being sent to the NSNetService
object. If this method gets called, the service is no longer running.

Listing 2 shows the interface for a class that acts as a delegate for multiple NSNetService objects, and Listing
3 shows its implementation. You can use this code as a starting point for more sophisticated tracking of
published services.

Listing 2 Interface for an NSNetService delegate object (publication)

#import <Foundation/Foundation.h>

@interface NetServicePublicationDelegate : NSObject
{
 // Keeps track of active services or services about to be published
 NSMutableArray *services;
}

// NSNetService delegate methods for publication
- (void)netServiceWillPublish:(NSNetService *)netService;
- (void)netService:(NSNetService *)netService
 didNotPublish:(NSDictionary *)errorDict;
- (void)netServiceDidStop:(NSNetService *)netService;

// Other methods
- (void)handleError:(NSNumber *)error withService:(NSNetService *)service;

@end

Listing 3 Implementation for an NSNetService delegate object (publication)

#import "NetServicePublicationDelegate.h"

@implementation NetServicePublicationDelegate

- (id)init
{
 self = [super init];
 services = [[NSMutableArray alloc] init];
 return self;
}

- (void)dealloc
{
 [services release];
 [super dealloc];
}

// Sent when the service is about to publish

Implementing Delegate Methods for Publication 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

- (void)netServiceWillPublish:(NSNetService *)netService
{
 [services addObject:netService];
 // You may want to do something here, such as updating a user interface
}

// Sent if publication fails
- (void)netService:(NSNetService *)netService
 didNotPublish:(NSDictionary *)errorDict
{
 [self handleError:[errorDict objectForKey:NSNetServicesErrorCode]];
 [services removeObject:netService];
}

// Sent when the service stops
- (void)netServiceDidStop:(NSNetService *)netService
{
 [services removeObject:netService];
 // You may want to do something here, such as updating a user interface
}

// Error handling code
- (void)handleError:(NSNumber *)error withService:(NSNetService *)service
{
 NSLog(@"An error occurred with service %@.%@.%@, error code = %@",
 [service name], [service type], [service domain], error);
 // Handle error here
}

@end

20 Implementing Delegate Methods for Publication
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Publishing Network Services

An important part of Bonjour is the ability to browse for services on the network. This article describes how
to use the NSNetServiceBrowser class to discover Bonjour network services.

The Browsing Process

The NSNetServiceBrowser class provides methods for browsing for available Bonjour network services.

Because of the possible delays associated with network traffic, NSNetServiceBrowser objects perform browsing
asynchronously by registering with the default run loop. Browsing results are returned to your application
through delegate methods. To handle results from an NSNetServiceBrowser object, you must assign it a
delegate.

Browsing for Bonjour network services takes three steps:

1. Initialize an NSNetServiceBrowser instance and assign a delegate to the object.

2. Begin a search for services of a specific type in a given domain.

3. Handle search results and other messages sent to the delegate object.

The following sections describe these steps in detail.

Initializing the Browser and Starting a Search

To initialize an NSNetServiceBrowser object, use the init method. This sets up the browser and adds it to
the current run loop. If you want to use a run loop other than the current one, use the
removeFromRunLoop:forMode: and scheduleInRunLoop:forMode: methods.

To begin the browsing process, use the searchForServicesOfType:inDomain: method.

The service type expresses both the application protocol (FTP, HTTP, and so on.) and the transport protocol
(TCP or UDP). The format is as described in Domain Naming Conventions, for example, _printer._tcp for
an LPR printer over TCP.

The domain parameter specifies the DNS domain in which the browser performs its search. Unless you only
want to browse a specific domain, pass the empty string (@"") as the domain to allow
searchForServicesOfType:inDomain: to search all domains available to your system. You can retrieve
a list of potential browsing domains with NSNetServiceBrowser’s searchForRegistrationDomainsmethod
by passing in the empty string (@"") for the domain parameter. For more information read through “Browsing
for Domains” (page 27)

The Browsing Process 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

To stop a search, use the stop method. You should perform any necessary cleanup in the
netServiceBrowserDidStopSearch: delegate callback.

Listing 1 demonstrates how to browse for Bonjour network services with NSNetServiceBrowser. The code
initializes the object, assigns a delegate, and begins a search for a hypothetical music service type,
_music._tcp, on the local network. Also see the PictureSharingBrowser application in
/Developer/Examples/PictureSharingBrowser for a good example of service browsing.

Note: When the PictureSharingBrowser example code in Mac OS X v10.2 was finalized, the link-local suffix
was local.arpa., but it changed to local. before the operating system shipped. Use local. to specify
the link-local network.

Listing 1 Browsing for Bonjour network services

id delegateObject; // Assume this exists.
NSNetServiceBrowser *serviceBrowser;

serviceBrowser = [[NSNetServiceBrowser alloc] init];
[serviceBrowser setDelegate:delegateObject];
[serviceBrowser searchForServicesOfType:@"_music._tcp" inDomain:@""];

Implementing Delegate Methods for Browsing

NSNetServiceBrowser returns all browsing results to its delegate. If you are using the class to browse for
services, your delegate object should implement the following methods:

 ■ netServiceBrowserWillSearch:

 ■ netServiceBrowserDidStopSearch:

 ■ netServiceBrowser:didNotSearch:

 ■ netServiceBrowser:didFindService:moreComing:

 ■ netServiceBrowser:didRemoveService:moreComing:

The netServiceBrowserWillSearch: method notifies the delegate that a search is commencing. You
can use this method to update your user interface to reflect that a search is in progress. When browsing
stops, the delegate receives a netServiceBrowserDidStopSearch: message, where you can perform
any necessary cleanup.

If the delegate receives a netServiceBrowser:didNotSearch: message, it means that the search failed
for some reason. You should extract the error information from the dictionary with the
NSNetServicesErrorCode key and handle the error accordingly. See NSNetService for a list of possible
errors.

You track services with the netServiceBrowser:didFindService:moreComing: and
netServiceBrowser:didRemoveService:moreComing: methods, which indicate that a service has
become available or has shut down. The “more coming” parameter indicates whether more results are on
the way. If this parameter is YES, you should delay updating any user interface elements until the method
is called with a “more coming” parameter of NO. However, if the parameter returns NO there is still a chance
that more services will become available at a later time. It is important that you make sure to retain the

22 Implementing Delegate Methods for Browsing
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

didFindService parameter before trying to resolve it, or you risk the object becoming deallocated. If you
want a list of available services, you need to maintain your own array based on the information provided by
delegate methods.

Listing 2 shows the interface for a class that responds to the NSNetServiceBrowser delegate methods required
for service browsing, and Listing 3 shows its implementation. You can use this code as a starting point for
your service browsing code.

Listing 2 Interface for an NSNetServiceBrowser delegate object (services)

#import <Foundation/Foundation.h>

@interface NetServiceBrowserDelegate : NSObject
{
 // Keeps track of available services
 NSMutableArray *services;

 // Keeps track of search status
 BOOL searching;
}

// NSNetServiceBrowser delegate methods for service browsing
- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser;
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing;

// Other methods
- (void)handleError:(NSNumber *)error;
- (void)updateUI;

@end

Listing 3 Implementation for an NSNetServiceBrowser delegate object (services)

#import "NetServiceBrowserDelegate.h"

@implementation NetServiceBrowserDelegate

- (id)init
{
 self = [super init];
 services = [[NSMutableArray alloc] init];
 searching = NO;
 return self;
}

- (void)dealloc
{
 [services release];
 [super dealloc];

Implementing Delegate Methods for Browsing 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

}

// Sent when browsing begins
- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser
{
 searching = YES;
 [self updateUI];
}

// Sent when browsing stops
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser
{
 searching = NO;
 [self updateUI];
}

// Sent if browsing fails
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict
{
 searching = NO;
 [self handleError:[errorDict objectForKey:NSNetServicesErrorCode]];
}

// Sent when a service appears
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 [services addObject:aNetService];
 if(!moreComing)
 {
 [self updateUI];
 }
}

// Sent when a service disappears
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 [services removeObject:aNetService];

 if(!moreComing)
 {
 [self updateUI];
 }
}

// Error handling code
- (void)handleError:(NSNumber *)error
{
 NSLog(@"An error occurred. Error code = %d", [error intValue]);
 // Handle error here
}

// UI update code
- (void)updateUI

24 Implementing Delegate Methods for Browsing
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

{
 if(searching)
 {
 // Update the user interface to indicate searching
 // Also update any UI that lists available services
 }
 else
 {
 // Update the user interface to indicate not searching
 }
}

@end

Implementing Delegate Methods for Browsing 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

26 Implementing Delegate Methods for Browsing
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Network Services

Bonjour service browsers and publishers that want to support hierarchical domain browsing should search
for domains. If your application searches for services but does not care which domain it originates from, or,
if your application publishes services and does not need to only publish to specific domains, you do not need
to browse for domains. This article explains how to use the NSNetServiceBrowser class to discover available
domains.

About Domain Browsing

The NSNetServiceBrowser class provides methods for browsing available domains. You should use these
methods if you are writing a browser application that needs to see services outside the local network, or if
you are publishing a service that needs to be seen outside the local network.

If you are writing a Bonjour network service browser, in general you should provide your users with the ability
to browse all the domains available to them.

If the source domain of a service is not important, pass the empty string (@"") into the NSNetService and
NSNetServiceBrowser methods that take a domain to find services. By passing the empty string for the
domain, the system will automatically search the default domains as determined by the system's configuration
and the network environment. In Mac OS X version 10.4, this means the local domain and possibly other
global domains, whereas in Mac OS X version 10.2 and 10.3, this limits the search to the local. domain.
Also, passing the empty string in domain searches will ensure that your application will be able to take
advantage of future enhancements made to Bonjour. If you want to limit the domain which is searched in
for services, just pass the name of the domain (such as local.) as the domain parameter.

Because domain browsing can take time, NSNetServiceBrowser objects perform browsing asynchronously
by registering with a run loop. Browsing results are returned to your application through delegate methods.
To correctly use an NSNetServiceBrowser object, you must assign it a delegate.

Browsing for domains takes three steps:

1. Initialize an NSNetServiceBrowser instance and assign a delegate to the object.

2. Begin a search for domains (either for registration or for browsing).

3. Handle search results and other messages sent to the delegate object.

The following sections describe these steps in detail.

About Domain Browsing 27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

Initializing the Browser and Starting a Search

To initialize an NSNetServiceBrowser object, use the init method. This sets up the browser and adds it to
the current run loop. If you want to use a run loop other than the current one, use the
removeFromRunLoop:forMode: and scheduleInRunLoop:forMode: methods.

If you want to search for domains in which you can register services, use the
searchForRegistrationDomains method. If you want to find all domains available for browsing, use the
searchForBrowseDomains method.

To stop a search, use the stop method. You should perform any necessary cleanup in the
netServiceBrowserDidStopSearch: delegate callback.

Listing 1 demonstrates how to browse for registration domains with NSNetServiceBrowser. The code initializes
the object, assigns a delegate, and begins a search for available domains.

Listing 1 Browsing for registration domains

id delegateObject; // Assume this exists.
NSNetServiceBrowser *domainBrowser;

domainBrowser = [[NSNetServiceBrowser alloc] init];
[domainBrowser setDelegate:delegateObject];
[domainBrowser searchForRegistrationDomains];

Implementing Delegate Methods for Browsing

NSNetServiceBrowser returns all browsing results to its delegate. If you are using the class to browse for
domains, your delegate object should implement the following methods:

 ■ netServiceBrowserWillSearch:

 ■ netServiceBrowserDidStopSearch:

 ■ netServiceBrowser:didNotSearch:

 ■ netServiceBrowser:didFindDomain:moreComing:

 ■ netServiceBrowser:didRemoveDomain:moreComing:

The netServiceBrowserWillSearch: method notifies the delegate that a search is commencing. You
can use this method to update your user interface to reflect that a search is in progress. When browsing
stops, the delegate receives a netServiceBrowserDidStopSearch: message, where you can perform
any necessary cleanup.

If the delegate receives a netServiceBrowser:didNotSearch: message, it means that the search failed
for some reason. You should extract the error information from the dictionary with the
NSNetServicesErrorCode key and handle the error accordingly. See NSNetServicesError for a list of
possible errors.

28 Initializing the Browser and Starting a Search
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

You track domains with the netServiceBrowser:didFindDomain:moreComing: and
netServiceBrowser:didRemoveDomain:moreComing:methods, which indicate that a service has become
available or has shut down. The “more coming” parameter indicates whether more results are on the way. If
this parameter is YES, you should not update any user interface elements until the method is called with a
“more coming” parameter of NO. However, just because the parameter is NO, does not mean that more services
will not become available in the future. If you want a list of available domains, you need to maintain your
own array based on the information provided by delegate methods.

Listing 2 shows the interface for a class that responds to the NSNetServiceBrowser delegate methods required
for domain browsing, and Listing 3 shows its implementation. You can use this code as a starting point for
your domain browsing code.

Listing 2 Interface for an NSNetServiceBrowser delegate object (domains)

#import <Foundation/Foundation.h>

@interface NetServiceDomainBrowserDelegate : NSObject
{
 // Keeps track of available domains
 NSMutableArray *domains;

 // Keeps track of search status
 BOOL searching;
}

// NSNetServiceBrowser delegate methods for domain browsing
- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser;
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing;
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing;

// Other methods
- (void)handleError:(NSNumber *)error;
- (void)updateUI;

@end

Listing 3 Implementation for an NSNetServiceBrowser delegate object (domains)

#import "NetServiceDomainBrowserDelegate.h"

@implementation NetServiceDomainBrowserDelegate

- (id)init
{
 self = [super init];
 domains = [[NSMutableArray alloc] init];
 searching = NO;
 return self;
}

Implementing Delegate Methods for Browsing 29
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

- (void)dealloc
{
 [domains release];
 [super dealloc];
}

// Sent when browsing begins
- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser
{
 searching = YES;
 [self updateUI];
}

// Sent when browsing stops
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser
{
 searching = NO;
 [self updateUI];
}

// Sent if browsing fails
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict
{
 searching = NO;
 [self handleError:[errorDict objectForKey:NSNetServicesErrorCode]];
}

// Sent when a domain appears
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing
{
 [domains addObject:domainString];
 if(!moreComing)
 {
 [self updateUI];
 }
}

// Sent when a domain disappears
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing
{
 [domains removeObject:domainString];

 if(!moreComing)
 {
 [self updateUI];
 }
}

// Error handling code
- (void)handleError:(NSNumber *)error
{
 NSLog(@"An error occurred. Error code = %@", error);
 // Handle error here

30 Implementing Delegate Methods for Browsing
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

}

// UI update code
- (void)updateUI
{
 if(searching)
 {
 // Update the user interface to indicate searching
 // Also update any UI that lists available domains
 }
 else
 {
 // Update the user interface to indicate not searching
 }
}

@end

Implementing Delegate Methods for Browsing 31
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

32 Implementing Delegate Methods for Browsing
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Browsing for Domains

This article describes how to use the NSNetService class to resolve discovered network services into socket
information you can use to connect to a service.

The Resolution Process

The NSNetService class provides methods for resolving discovered services into network addresses and port
numbers you can use to connect to a service. Resolution takes place every time a service is used because,
although the service name is a persistent property, socket information (IP address and port number) can
change from session to session. If a user browses for a service and saves that service, such as in a printer
chooser, only the service name, type, and domain are stored. When it is time to connect, these values are
resolved into socket information.

Because resolution can take time, especially if the service is unavailable, NSNetService resolves asynchronously,
providing information to your application through a delegate object.

Resolving and using an NSNetService instance takes four steps:

1. Obtain a NSNetService instance through initialization or service discovery.

2. Resolve the service.

3. Respond to messages sent to the object’s delegate about addresses or errors.

4. Use the resulting addresses to connect to the service.

The following sections describe these steps in detail.

Obtaining and Resolving an NSNetService Object

You can obtain an NSNetService object representing the service you want to connect to in one of two ways:

 ■ Use NSNetServiceBrowser to discover services.

 ■ Initialize a new NSNetService object with known name, type, and domain information, usually saved
from a previous browsing session.

See “Browsing for Network Services” (page 21) for information about service browsing.

To create an NSNetService object for resolution rather than publication, use the
initWithDomain:type:name: method.

The Resolution Process 33
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

Note: When browsing or resolving services, passing the empty string (@"") as the domain will specify the
default list of domains, which includes local. and Back To My Mac. To limit your scope to a single domain
or to access a domain not included in the default list, specify it explicitly, such as @"local.".

Once you have an NSNetService object to resolve, assign it a delegate and use the resolveWithTimeout:
method to asynchronously search for socket addresses. When resolution is complete, the delegate receives
a netServiceDidResolveAddress: or netService:didNotResolve: message if an error occurred.
Because the delegate receives the identity of the NSNetService object as part of the delegate method, one
delegate can serve multiple NSNetService objects.

Listing 1 demonstrates how to initialize and resolve an NSNetService object for a hypothetical music-sharing
service. The code initializes the object with name serviceName, type _music._tcp, and the link-local suffix
local.. It then assigns it a delegate and asks it to resolve the name into socket addresses.

Listing 1 Resolving network services with NSNetService

id delegateObject; // Assume this exists.
NSString *serviceName; // Assume this exists.
NSNetService *service;

service = [[NSNetService alloc] initWithDomain:@"local." type:@"_music._tcp"
 name:serviceName];
[service setDelegate:delegateObject];
[service resolveWithTimeout:5.0];

Implementing Delegate Methods for Resolution

NSNetService returns resolution results to its delegate. If you are resolving a service, your delegate object
should implement the following methods:

 ■ netServiceDidResolveAddress:

 ■ netService:didNotResolve:

The netServiceDidResolveAddress: method tells the delegate that the NSNetService object has added
an address to its list of addresses for the service. However, more addresses may be added. For example, in
systems that support both IPv4 and IPv6, netServiceDidResolveAddress: may be called two or more
times: once for the IPv4 address and again for the IPv6 address. You should analyze the result of the addresses
call before attempting to use the service to ensure that all the required connection information is present.
If there’s information missing, netServiceDidResolveAddress: will be called later. If multiple addresses
are returned from resolving a service, try to connect to each one before giving up.

If resolution fails for any reason, the netService:didNotResolve:method is called. If the delegate receives
a netService:didNotResolve:message, you should extract the type of error from the returned dictionary
using the NSNetServicesErrorCode key and handle the error accordingly. See NSNetService for a list of
possible errors.

Listing 2 shows the interface for a class that acts as a delegate for multiple NSNetService objects, and Listing
3 shows its implementation. You can use this code as a starting point for more sophisticated tracking of
resolved services.

34 Implementing Delegate Methods for Resolution
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

Listing 2 Interface for an NSNetService delegate object (resolution)

#import <Foundation/Foundation.h>

@interface NetServiceResolutionDelegate : NSObject
{
 // Keeps track of services handled by this delegate
 NSMutableArray *services;
}

// NSNetService delegate methods for publication
- (void)netServiceDidResolveAddress:(NSNetService *)netService;
- (void)netService:(NSNetService *)netService
 didNotResolve:(NSDictionary *)errorDict;

// Other methods
- (BOOL)addressesComplete:(NSArray *)addresses
 forServiceType:(NSString *)serviceType;
- (void)handleError:(NSNumber *)error withService:(NSNetService *)service;

@end

Listing 3 Implementation for an NSNetService delegate object (resolution)

#import "NetServiceResolutionDelegate.h"

@implementation NetServiceResolutionDelegate

- (id)init
{
 self = [super init];
 services = [[NSMutableArray alloc] init];
 return self;
}

- (void)dealloc
{
 [services release];
 [super dealloc];
}

// Sent when addresses are resolved
- (void)netServiceDidResolveAddress:(NSNetService *)netService
{
 // Make sure [netService addresses] contains the
 // necessary connection information
 if ([self addressesComplete:[netService addresses]
 forServiceType:[netService type]]) {
 [services addObject:netService];
 }
}

// Sent if resolution fails
- (void)netService:(NSNetService *)netService
 didNotResolve:(NSDictionary *)errorDict
{
 [self handleError:[errorDict objectForKey:NSNetServicesErrorCode]];
 [services removeObject:netService];

Implementing Delegate Methods for Resolution 35
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

}

// Verifies [netService addresses]
- (BOOL)addressesComplete:(NSArray *)addresses
 forServiceType:(NSString *)serviceType
{
 // Perform appropriate logic to ensure that [netService addresses]
 // contains the appropriate information to connect to the service
 return YES;
}

// Error handling code
- (void)handleError:(NSNumber *)error withService:(NSNetService *)service
{
 NSLog(@"An error occurred with service %@.%@.%@, error code = %@",
 [service name], [service type], [service domain], error);
 // Handle error here
}

@end

Connecting to a Network Service

Once an NSNetService object’s delegate is notified that addresses have been resolved for the service, your
application can connect. The recommended way to do this is with the getInputStream:outputStream:
method of the NSNetService class. This method provides a reference to an input stream (NSInputStream)
and an output stream (NSOutputStream), both of which you may access synchronously or asynchronously.
To interact asynchronously, you need to schedule the streams in the current run loop and assign them a
delegate object. These streams provide a protocol-independent means of communicating with network
services.

Listing 4 demonstrates how to connect to an NSNetService using streams. Note that if you require only
one of the two streams, it is not necessary for you to do anything with the other. See the PictureSharingBrowser
application in /Developer/Examples/Foundation/PictureSharingBrowser for a complete example
of service resolution with NSStream objects.

Listing 4 Connecting to a resolved Bonjour network service

#import <sys/socket.h>
#import <netinet/in.h>

// ...

NSNetService *service; // Assume this exists. For instance, you may
 // have received it from an NSNetServiceBrowser
 // delegate callback.

NSInputStream *istream = nil;
NSOutputStream *ostream = nil;

[service getInputStream:&istream outputStream:&ostream];
if (istream && ostream)
{
 // Use the streams as you like for reading and writing.

36 Connecting to a Network Service
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

}
else
{
 NSLog(@"Failed to acquire valid streams");
}

Monitoring a Service

If you want to monitor a service for changes, Mac OS X v10.4 has two new methods to provide this functionality.
Monitoring a service could be useful in a situation such as a chat program. If a user (Matt) were to change
his status from available to idle, the other users should learn this new information quickly, without having
to constantly poll Matt's machine looking for his status. Enter startMonitoring and stopMonitoring.

By calling startMonitoring on your service Bonjour will monitor your service and call a delegate function
if anything changes. The delegate method is named netService:didUpdateTXTRecordData: and passes
the new TXT record as the didUpdateTXTRecordData parameter. When you no longer need to monitor the
TXT record call stopMonitoring on your service.

Monitoring a Service 37
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

38 Monitoring a Service
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Resolving and Using Network Services

CFNetServices is a Core Services API that allows you to register a network service, such as a printer or file
server. By registering a service, it can be found by name or browsed for by service type and domain.
Applications can use the CFNetServices API to discover the services that are available on the network and to
find all access information — such as name, IP address, and port number — needed to use each service.

The CFNetServices API uses the Core Services framework to provide access to Bonjour. It should be used
when programming in C or C++ to write applications that need to discover services. If your C or C++ program
uses a run loop, use this API.

Requirements

Version 10.2 or later of Mac OS X is required.

Using the CFNetServices API

The CFNetServices API provides access to Bonjour through three objects:

 ■ CFNetService - An object that represents a single service on the network. A CFNetService has a name,
a type, a domain, and a port number. Service types used by CFNetServices are maintained at
http://www.dns-sd.org/servicetypes.html.

 ■ CFNetServiceBrowser - An object used to discover domains and discover network services within
domains.

 ■ CFNetServiceMonitor - An object used to monitor services for changes to their TXT records.

Publishing a Service

Publishing a service on the network involves two tasks: creating a service, and registering a service. The next
two sections will describe what is required to perform these two tasks.

Creating a CFNetService

The function that creates a CFNetService (CFNetServiceCreate) requires you to provide the following
parameters that describe the service:

 ■ Name — human-readable name of the service (such as “Sales Laser Printer”)

Requirements 39
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

http://www.dns-sd.org/servicetypes.html

 ■ Service Type — the type of service, such as “_printer._tcp“;

 ■ Domain — the domain for the service, typically the empty string (CFSTR(""))for default domain(s), or
local. for the local domain only

 ■ Port — the port number the service listens on

Note: The dot in “local.“ is part of the domain name. It signifies that the domain is fully qualified, which
prevents anything from being added to the end of the domain (for example, local.com).

If you are implementing a protocol that relies on data stored in DNS text records, you can associate that
information with a CFNetService by calling a separate CFNetServices function (CFNetServiceSetTXTData).
Prior to Mac OS X v10.4, use the deprecated function CFNetServiceSetProtocolSpecificInformation
instead.

Associate a callback function with your CFNetService by calling CFNetServices function
CFNetServiceSetClient . Your callback function will be called to report errors that occur while your service
is running.

If you want the service to run asynchronously, you must also schedule the CFNetService on a run loop by
calling CFNetServiceScheduleWithRunLoop; otherwise, the service will run synchronously. For more
information about the modes in which a service can run, see“Asynchronous and Synchronous Modes” (page
43).

Below is some example code for how to create a CFNetService.

Listing 1 Creating a CFNetService

CFNetService netService = CFNetServiceCreate(NULL, CFSTR(""), serviceType,
serviceName, chosenPort);

Registering a CFNetService

To make a service available on the network, call the CFNetServices function
CFNetServiceRegisterWithOptions that registers a CFNetService. (This process is also known as
“publishing” a service.) A CFNetServiceBrowser will be able to find the service until the service is stopped by
the CFNetServices function CFNetServiceCancel that terminates services.

Please see Listing 2 (page 40) for sample code on this subject.

Listing 2 Registering an Asynchronous Service

void startBonjour (CFNetServiceRef netService) {
 CFStreamError error;
 CFNetServiceClientContext clientContext = { 0, NULL, NULL, NULL, NULL };

 CFNetServiceSetClient(netService, registerCallback, &clientContext);
 CFNetServiceScheduleWithRunLoop(netService, CFRunLoopGetCurrent(),
kCFRunLoopCommonModes);
 CFNetServiceRegister(netService, NULL);
 if (CFNetServiceRegister(netService, &error) == false) {
 CFNetServiceUnscheduleFromRunLoop(netService,
CFRunLoopGetCurrent(),kCFRunLoopCommonModes);

40 Publishing a Service
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

 CFNetServiceSetClient(netService, NULL, NULL);
 CFRelease(netService);
 fprintf(stderr, "could not register Bonjour service");
 }
}

Browsing for Services

To browse for services represented by a CFNetService, call the CFNetServices function that creates
CFNetServiceBrowsers, CFNetServiceBrowserCreate. When you create a CFNetServiceBrowser, you need
to provide a pointer to your callback function, which will be called when services are found.

If you want searches to be conducted asynchronously, you must also schedule the CFNetServiceBrowser on
a run loop withCFNetServiceBrowserScheduleWithRunLoop.

To browse for services you can call the CFNetServices function CFNetServiceBrowserSearchForServices
and specify the services to search for. For the domain parameter, you have two options. It is recommended
that you pass the empty string (CFSTR("")) as the domain, allowing you to discover services in any domain
on which your system is registered. Alternatively, you can specifying a domain to search in. Your callback
function will be called and passed a CFNetService representing a matching service. The CFNetServiceBrowser
will continue searching until your application stops the search by calling CFNetServiceBrowserStopSearch.

For each CFNetService that your callback function receives, you can call a CFNetServices function
CFNetServiceResolveWithTimeout to update the CFNetService with the IP address for the service. Prior
to Mac OS X v10.4, use the deprecated function CFNetServiceResolve instead of
CFNetServiceResolveWithTimeout. Then call the CFNetService function CFNetServiceGetAddressing
to get a CFArray containing a CFDataRef for each IP address associated with the service. Each CFDataRef
consists of a sockaddr structure containing an IP address.

A good example of how to browse for services can be seen in Listing 3 (page 41).

Listing 3 Browsing Asynchronously for Services

static Boolean MyStartBrowsingForServices(CFStringRef type, CFStringRef domain)
 {
 CFNetServiceClientContext clientContext = { 0, NULL, NULL, NULL, NULL };
 CFStreamError error;
 Boolean result;

 assert(type != NULL);

 gServiceBrowserRef = CFNetServiceBrowserCreate(kCFAllocatorDefault,
MyBrowseCallBack, &clientContext);
 assert(gServiceBrowserRef != NULL);

 CFNetServiceBrowserScheduleWithRunLoop(gServiceBrowserRef,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes);

 result = CFNetServiceBrowserSearchForServices(gServiceBrowserRef, domain,
 type, &error);
 if (result == false) {

 // Something went wrong so lets clean up.

Browsing for Services 41
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

 CFNetServiceBrowserUnscheduleFromRunLoop(gServiceBrowserRef,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
CFRelease(gServiceBrowserRef);
 gServiceBrowserRef = NULL;

 fprintf(stderr, "CFNetServiceBrowserSearchForServices returned (domain
 = %d, error = %ld)\n", error.domain, error.error);
 }

 return result;
}

Resolving a Service

Once you have a name, type and domain, you can resolve the service to retrieve its host name and port. Like
registering a service, resolving a service also needs to create a CFNetService reference by calling
CFNetServiceCreate. Beginning in Mac OS X v10.4, When you call CFNetServiceCreate it is important
to pass a valid domain that was obtained when the service was first detected. Starting with Mac OS X v10.4,
if you pass an empty CFString for the domain argument, Bonjour will not equate it with the domain local.
as it did in releases of Mac OS X prior to v10.4.

If you plan to resolve a service asynchronously, you should then associate the newly created
CFNetServiceRef with a callback function, which will receive a CFNetServiceRef, and a pointer to a
CFStreamError. The callback association is performed by calling CFNetServiceSetClient and following
it with CFNetServiceScheduleWithRunLoop to add the service to a run loop. To use the current run loop,
pass CFRunLoopGetCurrent() as a parameter.

After setting up the run loop, call the function CFNetServiceResolve, ensuring that it does not return an
error. If an error is returned, then you should clean up all the references you created. Otherwise just wait for
your callback functions to be called.

An example of resolving a service with CFNetService is in Listing 4 (page 42).

Listing 4 Resolving a Service Asynchronously

static void MyResolveService(CFStringRef name, CFStringRef type, CFStringRef
domain)
{
 CFNetServiceClientContext context = { 0, NULL, NULL, NULL, NULL };
 CFTimeInterval duration = 0; // use infinite timeout
 CFStreamError error;

 gServiceBeingResolved = CFNetServiceCreate(kCFAllocatorDefault, domain,
type, name, 0);
 assert(gServiceBeingResolved != NULL);

 CFNetServiceSetClient(gServiceBeingResolved, MyResolveCallback, &context);
 CFNetServiceScheduleWithRunLoop(gServiceBeingResolved, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 if (CFNetServiceResolveWithTimeout(gServiceBeingResolved, duration, &error)
 == false) {

 // Something went wrong so lets clean up.

42 Resolving a Service
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

 CFNetServiceUnscheduleFromRunLoop(gServiceBeingResolved,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFNetServiceSetClient(gServiceBeingResolved, NULL, NULL);
 CFRelease(gServiceBeingResolved);
 gServiceBeingResolved = NULL;

 fprintf(stderr, "CFNetServiceResolve returned (domain = %d, error =
%ld)\n", error.domain, error.error);
}

 return;
}

Monitoring a Service

CFNetServiceMonitor, which debuted in Mac OS X v10.4, gives developers the ability to watch services
for changes to their TXT records. In order to monitor a service asynchronously, you need to follow the same
general formula that is used for resolving a service.

Once you have a CFNetServiceRef for a service, you need to create a monitor reference
(CFNetServiceMonitorRef using the function CFNetServiceMonitorCreate. Like resolving a service,
the next step is to schedule the monitor reference on a run loop with
CFNetServiceMonitorScheduleWithRunLoop. The default run loop can be obtained by calling
CFRunLoopGetCurrent().

After the monitor reference has been added to a run loop, you can start the monitor with the function
CFNetServiceMonitorStart passing it the monitor reference. Make sure to check the return value to
ensure that the monitor has started.

When you have finished monitoring a service, call CFNetServiceMonitorStop to stop the monitoring,
CFNetServiceMonitorUnscheduleFromRunLoop to unschedule your monitor from its run loop and
CFNetServiceMonitorInvalidate to destroy the monitor reference.

Asynchronous and Synchronous Modes

Several CFNetServices functions can operate in asynchronous or synchronous mode. Scheduling a CFNetService
or a CFNetServiceBrowser on a run loop causes the service or browser to operate in asynchronous mode. If
a CFNetService or a CFNetServiceBrowser is not scheduled on a run loop, it operates in synchronous mode.
Operating in asynchronous mode changes the behavior of functions.

While it is possible to use the synchronous modes of these functions, please keep in mind that it is
unacceptable to block the user interface or other functions of your program while you wait for synchronous
functions to return. Due to the arbitrary amount of time network operations may last, it is highly recommended
that you use the asynchronous modes of each function.

Monitoring a Service 43
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

Table 1 Behavior of certain CFNetServices functions in asynchronous and synchronous mode

Synchronous modeAsynchronous modeFunction

Blocks until your application cancels the
service from another thread or until an
error occurs, at which point the function
returns. The error is returned in an error
structure pointed to by a parameter of the
CFNetServiceRegisterWithOptions
function. The service is available on the
network until your application cancels the
registration or an error occurs.

Starts the registration and returns.
The callback function for the
CFNetService will be called to
report any errors that occur while
the service is running. The service
is available on the network until
your application cancels the
registration.

CFNetServiceRegister-
WithTimeout (Mac OS X
v10.4 only)

Blocks until at least one IP address is found
for the service, an error occurs, the time
specified as the timeout parameter is
reached or your application cancels the
resolution, at which point the function
returns. If an error occurs, the error is
returned in an error structure pointed to
by a parameter to the
CFNetServiceResolveWithTimeout
function. The resolution process continues
to run until your application cancels it or
an error occurs.

Starts the resolution and returns.
The callback function for the
CFNetService will be called to
report any errors that occur
during resolution. The resolution
process runs until the specified
timeout is reached, or, if the
timeout was specified as zero,
until it is canceled.

CFNetServiceResolve-
WithTimeout (Mac OS X
v10.4 only)

Blocks until an error occurs or your
application calls CFNetServiceBrowser-
StopSearch at which time, the callback
function for the CFNetServiceBrowser will
be called for each domain that was found.
Any error is returned in an error structure
pointed to by a parameter to the
CFNetServiceBrowser-
SearchForDomains function. Browsing
continues until your application stops the
browsing.

Starts the search and returns. The
callback function for the
CFNetServiceBrowser will be
called for each domain that is
found and to report any errors
that occur while browsing.
Browsing continues to run until
your application stops the
browsing.

CFNetServiceBrowser-
SearchForDomains

Blocks until an error occurs or until your
application calls CFNetServiceBrowser-
StopSearch at which time, the callback
function for the CFNetServiceBrowser will
be called for each CFNetService that was
found. Any error is returned in an error
structure pointed to by a parameter to the
CFNetServiceBrowser-
SearchForServices function. Browsing
continues until your application stops the
browsing.

Starts the search and returns. The
callback function for the
CFNetServiceBrowser will be
called for each CFNetService that
is found and to report any errors
that occur while browsing.
Browsing continues to run until
your application stops the
browsing.

CFNetServiceBrowser-
SearchForServices

44 Asynchronous and Synchronous Modes
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

Shutting Down Services and Searches

To shut down a service that is running in asynchronous mode, your application unschedules the service from
all run loops it may be scheduled on and then calls CFNetServiceSetClientwith the clientCB parameter
set to NULL to disassociate your callback function from the CFNetService. Then call CFNetServiceCancel
to stop the service. If the service is running in synchronous mode, you only need to call CFNetServiceCancel
from another thread.

Listing 5 (page 45) shows a good example of how to shut down an asynchronous CFNetService Resolve
process which has not timed out.

Listing 5 Canceling an Asynchronous CFNetService Resolve Process

void MyCancelResolve()
{
 assert(gServiceBeingResolved != NULL);
 CFNetServiceUnscheduleFromRunLoop(gServiceBeingResolved,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFNetServiceSetClient(gServiceBeingResolved, NULL, NULL);
 CFNetServiceCancel(gServiceBeingResolved);
 CFRelease(gServiceBeingResolved);
 gServiceBeingResolved = NULL;
 return;
}

To shut down a browser that is running in asynchronous mode, your application unschedules the browser
from all run loops it may be scheduled on and then calls CFNetServiceBrowserInvalidate. Then your
application calls CFNetServiceBrowserStopSearch. If the browser is running in synchronous mode, you
only need to call CFNetServiceBrowserStopSearch. An example of these functions can be seen in Listing
6 (page 45).

Listing 6 Stop Browsing for Services

static void MyStopBrowsingForServices()
{
 assert(gServiceBrowserRef != NULL);
 CFNetServiceBrowserStopSearch(gServiceBrowserRef, &streamerror);
 CFNetServiceBrowserUnscheduleFromRunLoop(gServiceBrowserRef,
CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFNetServiceBrowserInvalidate(gServiceBrowserRef);
 CFRelease(gServiceBrowserRef);
 gServiceBrowserRef = NULL;
 return;
}

Shutting Down Services and Searches 45
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

46 Shutting Down Services and Searches
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CFNetServices

This table describes the changes to NSNetServices and CFNetServices Programming Guide.

NotesDate

Updated code listings.2008-10-15

Removed Preliminary stamp.2005-11-09

New document that describes how to implement Bonjour in Cocoa or Carbon
applications.

2005-10-04

47
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

48
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	NSNetServices and CFNetServices Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Foundation Network Services Architecture
	Foundation Classes for Network Services
	NSNetService
	NSNetServiceBrowser
	Asynchronous Results and Delegate Objects

	Operations on Network Services
	Publication
	Service Discovery
	Resolution
	Browsing for Domains

	Publishing Network Services
	The Publication Process
	Setting Up Socket Ports
	Initializing and Publishing a Network Service
	Implementing Delegate Methods for Publication

	Browsing for Network Services
	The Browsing Process
	Initializing the Browser and Starting a Search
	Implementing Delegate Methods for Browsing

	Browsing for Domains
	About Domain Browsing
	Initializing the Browser and Starting a Search
	Implementing Delegate Methods for Browsing

	Resolving and Using Network Services
	The Resolution Process
	Obtaining and Resolving an NSNetService Object
	Implementing Delegate Methods for Resolution
	Connecting to a Network Service
	Monitoring a Service

	CFNetServices
	Requirements
	Using the CFNetServices API
	Publishing a Service
	Creating a CFNetService
	Registering a CFNetService

	Browsing for Services
	Resolving a Service
	Monitoring a Service
	Asynchronous and Synchronous Modes
	Shutting Down Services and Searches

	Revision History

