
Open Directory Plug-in Programming Guide
Networking > Mac OS X Server

2006-05-23

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, eMac, Mac, and
Mac OS are trademarks of Apple Inc., registered
in the United States and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Runtime Environment 9

Chapter 2 Required Entry Points 11

Chapter 3 Processing Open Directory Requests 13

Chapter 4 Processing Concurrent Requests 15

Chapter 5 Open Directory Callbacks 17

Chapter 6 Calling Mac OS X Functions 19

Chapter 7 Managing References 21

Chapter 8 Standard Record and Attribute Types 23

Chapter 9 Authentication 25

Chapter 10 Property List for an Open Directory Plug-in 27

Chapter 11 Configuring an Open Directory Plug-in 29

Local Configuration 29
Remote Configuration 30
DirectoryAccess Plug-ins 30

Chapter 12 Client Side Buffer Parsing 35

Document Revision History 39

3
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Runtime Environment 9

Figure 1-1 Open Directory startup and plug-in states 9

Chapter 3 Processing Open Directory Requests 13

Table 3-1 Open Directory functions that cause the ProcessRequest entry point to be called
13

Chapter 10 Property List for an Open Directory Plug-in 27

Listing 10-1 Property list for a sample plug-in 27

Chapter 11 Configuring an Open Directory Plug-in 29

Table 11-1 DirectoryAccessPlugin interface methods 30
Table 11-2 New DirectoryAccessPlugin interface methods 32

Chapter 12 Client Side Buffer Parsing 35

Table 12-1 Format of a StdA and StdB data block 35
Table 12-2 Format of a StdA single record block 36
Table 12-3 Format of a StdA single attribute block 36
Table 12-4 Format of a StdB single record block 37
Table 12-5 Format of a StdB single attribute block 37

5
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

An Open Directory plug-in is a Mac OS X dynamically loaded library that responds to requests for directory
service from applications that are clients of Open Directory.

This book describes the runtime environment for Open Directory plug-ins and how to build and configure
an Open Directory plug-in. It also describes the entry points that an Open Directory plug-in must provide,
the requests that an Open Directory plug-in must be prepared to respond to, and the Open Directory callback
routines that the plug-in can call to register and unregister nodes and to write in log files.

Organization of This Document

This book contains the following chapters:

 ■ “Runtime Environment” (page 9) describes how Open Directory plug-ins are loaded.

 ■ “Required Entry Points” (page 11) defines the required entry points for an Open Directory plug-in

 ■ “Processing Open Directory Requests” (page 13) defines the requests an Open Directory plug-in must
be prepared to handle.

 ■ “Processing Concurrent Requests” (page 15) explains the asynchronous nature of Open Directory plug-ins

 ■ “Open Directory Callbacks” (page 17) defines the callback routines provided by Open Directory.

 ■ “Calling Mac OS X Functions” (page 19) explains the advantages and disadvantages of using Mac OS X
functions in an Open Directory plug-in.

 ■ “Managing References” (page 21) describes how Open Directory plug-ins interact with object references.

 ■ “Standard Record and Attribute Types” (page 23) explains what information needs to be maintained
from record and attribute types.

 ■ “Authentication” (page 25) defines what authentication methods an Open Directory plug-in needs to
support.

 ■ “Property List for an Open Directory Plug-in” (page 27) explains the keys used in an Open Directory
plug-in property list and how those keys are utilized.

 ■ “Configuring an Open Directory Plug-in” (page 29) describes the variety of configurations for setting up
an Open Directory plug-in.

 ■ “Client Side Buffer Parsing” (page 35) explains how to use a tDataBuffer object in an Open Directory
plug-in.

See Also

Refer to the following reference document for Open Directory plug-ins:

Organization of This Document 7
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ Open Directory Reference

For more information about Open Directory client programming, and administration, see:

 ■ Open Directory Programming Guide

 ■ Mac OS X Server Open Directory Administration

8 See Also
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

Figure 1-1 (page 9) summarizes the flow of events that occur with regard to plug-ins when Open Directory
starts up.

Figure 1-1 Open Directory startup and plug-in states

Open Directory
tells plug-in to

initialize

Plug-in
inactive

Plug-in
active

Open Directory
loads plug-in

Open Directory
starts up

Plug-in
failed to init

When Open Directory starts up, it uses the CFBundle mechanism to load into memory each plug-in that it
finds in the following directories:

 ■ /System/Library/Frameworks/DirectoryService.framework/Resources/Plugins

 ■ /Library/DirectoryServices/PlugIns

The /Library/DirectoryServices/PlugIns directory is the recommended location for your plug-in.

After a plug-in loads, it is in the “loaded but not initialized” state. For each successfully loaded plug-in, Open
Directory calls the plug-in’s Initialize entry point. If a plug-in fails to initialize itself, it is in the “failed to initialize”
state. When a plug-in successfully initializes itself, it enters the “active” state. In response to settings in the
Directory Access application, Open Directory may tell an active plug-in to become inactive or an inactive
plug-in to become active at any time.

Loading of plug-ins that are not configured to be loaded at startup is deferred until loading the plug-in
becomes absolutely necessary when, for example an application opens a node for which the as-yet-unloaded
plug-in is responsible. Search requests from clients such as the automounter can also cause a plug-in to be
loaded. This type of deferred plug-in loading is know as lazy loading.

9
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Runtime Environment

Prior to Mac OS X v10.4, plug-ins that were disabled by the Directory Access application were loaded if an
event occurred to trigger lazy loading. Starting with Mac OS X v10.4, plug-ins that have been disabled by
the Directory Access application are not longer subject to lazy loading. This change allows disabled plug-ins
to be configured without the risk of them being inadvertently loaded.

A plug-in that is in the active or inactive state can only be called through certain entry points:

 ■ In the active state, the plug-in can be called through its periodic task, process request, shutdown, and
set plug-in state entry points.

 ■ In the inactive state, the plug-in can be called through its periodic task, set plug-in state, and shutdown
entry points.

In three special cases, an inactive plug-in can be called through its process entry point:

 ■ when a node having the same name as the plug-in is opened in order to configure the plug-in. For
example, when inactive, the LDAPv3 plug-in’s process entry point is called when an application opens
the node /LDAPv3 and calls dsDoPluginCustomCall to configure the plug-in.

 ■ after the plug-in is loaded and initialized in order to receive the sHeader structure. The fContextData
field of that structure contains the DirectoryService daemon’s current run loop, which your plug-in can
use to set timers.

 ■ after the plug-in is loaded and initialized in order to receive the Kerberos mutex.

Entry points are described in the next chapter, “Required Entry Points” (page 11)

10
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Runtime Environment

Every Open Directory plug-in must provide the entry points described in this section. The entry points are
listed below in the order in which they are typically called.

 ■ Initialize, called by Open Directory so that the plug-in can initialize itself.

 ■ Validate, called by Open Directory when plug-ins are loaded in order to pass to each plug-in a unique
value that the plug-in uses to identify itself when it calls Open Directory callback routines in order to
register and unregister directory nodes or to write information in an Open Directory log file.

 ■ SetPluginState, called by Open Directory to notify the plug-in of a change in state. For example, this
entry point would be called to enable or disable the plug-in.

 ■ PeriodicTask, called by Open Directory on a regular basis so that the plug-in can perform periodic
tasks.

 ■ ProcessRequest, called by Open Directory to pass requests from Open Directory clients.

 ■ Shutdown, called by Open Directory to tell the plug-in that Open Directory is shutting down. For example,
this entry point would be called when the system shuts down. The plug-in should release memory and
perform any other tasks to prepare itself for shutdown.

11
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Required Entry Points

12
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Required Entry Points

Open Directory passes to the appropriate Open Directory plug-in certain requests from Open Directory clients.
The requests correspond to a subset of the Open Directory function calls described in Open Directory
ProgrammingGuide.Every Open Directory plug-in must be prepared to process each of the requests described
in this section even if only to respond that the requested service is not implemented (eNotYetImplemented)
or not handled (eNotHandledByThisNode). To indicate the outcome of processing a request, the plug-in
should return a result code from the list of result codes documented in Open Directory Programming Guide.

The plug-in must be prepared to process requests for each of the Open Directory functions described in this
section.

Table 3-1 Open Directory functions that cause the ProcessRequest entry point to be called

dsGetDirNodeInfodsAddAttribute

dsGetRecordAttributeInfodsAddAttributeValue

dsGetRecordAttributeValueByIDdsCloseAttributeList

dsGetRecordAttributeValueByValuedsCloseAttributeValueList

dsGetRecordEntrydsCloseDirNode

dsGetRecordListdsCloseRecord

dsGetRecordReferenceInfodsCreateRecord

dsOpenDirNodedsCreateRecordAndOpen

dsOpenRecorddsDeleteRecord

dsRemoveAttributedsDoAttributeValueSearch

dsRemoveAttributeValuedsDoAttributeValueSearchWithData

dsSetAttributeAccessdsDoDirNodeAuth

dsSetAttributeFlagsdsDoPluginCustomCall

dsSetAttributeValuedsDoMultipleAttributeValueSearch

dsSetAttributeValuesdsDoMultipleAttributeValueSearchWithData

dsSetRecordAccessdsFlushRecord

dsSetRecordFlagsdsGetAttributeEntry

dsSetRecordNamedsGetAttributeValue

13
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Processing Open Directory Requests

As an alternative to processing dsCloseAttributeList, dsCloseAttributeValueList,
dsGetRecordEntry, dsGetAttributeEntry, and dsGetAttributeValue requests in the plug-in,
applications can use client-side buffer parsing to process these requests. For information, see the chapter
“Client Side Buffer Parsing” (page 35).

See “Runtime Environment” (page 9) for information on three special cases in which the ProcessRequest
entry point of an inactive plug-in is called.

14
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Processing Open Directory Requests

Open Directory is multi-threaded, so plug-ins must be thread-safe. Plug-ins may be called multiple times by
multiple applications. For example, the following requests may occur at the same time:

 ■ Application A makes a request that takes a long length of time to complete.

 ■ Application B makes a request that takes a short length of time to complete.

 ■ Application C makes a request that takes a medium length of time to complete.

Open Directory passes requests to the responsible plug-in as the requests come in and does not manage or
serialize requests in any way. The plug-in is responsible for handling multiple concurrent requests in any way
that it deems appropriate. It may choose to process Application A’s request first and Application B’s request
last, process the requests serially, or use some other algorithm for determining the order in which to process
concurrent requests.

15
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Processing Concurrent Requests

16
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Processing Concurrent Requests

Open Directory provides three callback routines for plug-ins to call:

 ■ DSDebugLog. Writes an entry in the Open Directory log file. All records written by all Open Directory
plug-ins are written to the same log file in the order by which Open Directory receives them.

 ■ DSRegisterNode. Registers a node so that it is available for use by applications that make Open Directory
calls.

 ■ DSUnregisterNode. Unregisters a node that was previously registered.

The Open Directory callback routines are described in detail in the section Open Directory Callbacks” in the
Reference section.

17
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Open Directory Callbacks

18
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Open Directory Callbacks

Open Directory plug-ins can call any Mac OS X function but to reduce memory usage and make porting to
other platforms easier, Open Directory plug-ins should restrict themselves to the System and CoreFoundation
frameworks and use other frameworks only when there is a compelling reason to do so. (For example, the
Open Directory LDAP plug-in uses the LDAP library.)

Open Directory plug-ins themselves should not display any human interface (HI). Only a plug-in’s separate
configuration application or Directory Access plug-in should display HI.

19
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Calling Mac OS X Functions

20
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Calling Mac OS X Functions

Open Directory allocates Directory Service references, such as Open Directory node references, open record
references, and attribute list value references, and passes them to the appropriate plug-in as part of a process
request. Plug-ins can use these references to keep track of their own data. When a reference becomes invalid,
such as when an Open Directory node is closed, the plug-in must free any memory that is associated with
the now invalid reference.

21
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Managing References

22
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Managing References

Plug-ins should support the standard record and attribute types described in “Record Type Constants” in the
Reference chapter as appropriate for the data that the directory system provides and in accordance with the
needs of Mac OS X. Plug-ins should also honor the meta types described in that section. (Meta types are
types that are created dynamically, such as a user’s current location.) Plug-ins should map the standard record
and attribute types to the plug-in’s native record and attribute types.

Plug-ins can support as many native record and attribute types as they want.

23
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Standard Record and Attribute Types

24
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Standard Record and Attribute Types

If an Open Directory plug-in is going to support authentication, at minimum, it should support node native,
change password, and set password as root methods. Other authentication methods are optional. It is up to
the plug-in to determine which node native authentication allows cleartext authentication.

25
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Authentication

26
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Authentication

An Open Directory plug-in is a standard Mac OS X bundle and follows the guidelines defined for Mac OS X
packages.

Open Directory plug-ins are loaded from the following directories:

 ■ /System/Library/Frameworks/DirectoryService.framework/Resources/Plugins (which
may be read-only)

 ■ /Library/DirectoryServices/PlugIns (which is always writable)

or from other directories that may be defined later by Mac OS X.

Open Directory loads Open Directory plug-ins using the CFBundle load mechanism.

No special linker commands are required to build an Open Directory plug-in, but you should use the
-bundle_loader /usr/sbin/DirectoryService option if you want to call APIs from the DirectoryService
framework. Do no link to the DirectoryService framework, but use the DirectoryService framework to locate
header files. The benefit of this approach is that calls can be directly dispatched without the overhead of a
Mach message.

You must provide a property list file for your Open Directory plug-in. Here is the property list file for a plug-in
named SamplePlugin:

Listing 10-1 Property list for a sample plug-in

{
 "CFBundleExecutable" = "SamplePlugin";
 "CFBundleName" = "DirectoryServiceSamplePlugIn";
 "CFBundleIdentifier" = "com.apple.DirectoryService.SamplePlugin";
 "CFBundleVersion" = "1.0";
 "CFBundleShortVersionString" = "1.0";
 "CFBundlePackageType" = "dspi";
 "CFBundlePackageSignature" = "adss";
 "CFPlugInDynamicRegistration" = "NO";
 "CFPlugInFactories" = {
 "D970D52E-D515-11D3-9FF9-000502C1C736" = "ModuleFactory";
 };
 "CFPlugInTypes" = {"697B5D6C-87A1-1226-89CA-000502C1C736" =
 ("D970D52E-D515-11D3-9FF9-000502C1C736");
 };
 "DSServerSignature" = "Samp";
}

In Listing 10-1 (page 27), you are responsible for setting the following values:

 ■ CFBundleExecutable — the name of the Open Directory plug-in

 ■ CFBundleName — the name of the bundle

27
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Property List for an Open Directory Plug-in

 ■ CFBundleIdentifier — the bundle identifier

 ■ CFBundleVersion — the bundle’s version number

 ■ CFBundleShortVersionString — the bundle’s short version number

 ■ CFPluginFactories — a UNIX unique identifier (UUID) that is unique among all plug-ins generated
by the uuidgen utility

 ■ CFPlugInTypes— the first value must be 697B5D6C-87A1-1226-89CA-000502C1C736; the second
value must be your plug-in’s UUID

 ■ DSServerSignature — your server signature

The following values must be set as shown in Listing 10-1 (page 27):

 ■ CFBundlePackageType — must be dspi

 ■ CFBundlePackageSignature — must be adss

 ■ CFPlugInDynamicRegistration — must be NO

 ■ CFPlugInTypes (first value) — must be 697B5D6C-87A1-1226-89CA-00502C1C736

See the section “Local Configuration” (page 29) for information about the CFBundleConfigAvail property,
which is used to specify a configuration application for your Open Directory plug-in Mac OS X v10.1.

28
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Property List for an Open Directory Plug-in

In Mac OS X v10.1, Open Directory plug-ins are configured through the Directory Setup application, which
supports local configuration only. The Directory Setup application launches your plug-in configuration
application when an administrator selects your plug-in for configuration. The configuration application to
launch is specified in the property list file. Local configuration in Mac OS X v10.1 is described in the section
“Local Configuration” (page 29).

In Mac OS X v10.2 and later, administrators use the Directory Access application to select Open Directory
plug-ins for configuration. If you provide a Directory Access plug-in that uses custom calls to communicate
with your Open Directory plug-in, your Open Directory plug-in can be configured locally and remotely. Local
and remote configuration in Mac OS X v10.2 and later is described in the section “Remote Configuration” (page
30).

Local Configuration

In Mac OS X v10.1, the property list file is used to specify a configuration application that is to be launched
when an administrator selects a plug-in for configuration. The CFBundleConfigAvail property specifies
the full pathname, including filename, for the configuration application to launch. For example:

"CFBundleConfigAvail" = "/System/Library/Frameworks/DirectoryService.framework/
 Resources/YourPlugInConfig.app"

You can also specify the name of the configuration file to open when your configuration application is
launched:

"CFBundleConfigFile" = "/Library/Preferences/DirectoryService/
YourPlugInConfig.xml"

In this example, the configuration file is in XML format, as indicated by the extension .xml.

If your plug-in does not have a configuration application, it can set CFBundleConfigAvail to Not
Available. If the CFBundleConfigFile property is missing from your property list file or is set to Not
Available, but CFBundleConfigFile is set to a file name, the file is opened with its default application.
If CFBundleConfigAvail is set, but CFBundleConfigFile is missing or set to Not Available, the
configuration application is launched without a file. If both properties are missing or set to Not Available,
the Configure button is dimmed when your plug-in is selected.

Local Configuration 29
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

Remote Configuration

Mac OS X v10.2 and later supports remote configuration. To configure your Open Directory plug-in remotely,
you need to create a Directory Access plug-in having the same name as your Open Directory plug-in but
ending with .daplug instead of .dsplug. You can place your Directory Access plug-in in the Directory
Access application bundle:

/Applications/Utilities/Directory Access.app/Contents/PlugIns/myplug.daplug

Your Directory Access plug-in should implement at least two functions:

 ■ handle the Configure button click

 ■ accept a PluginAPIImplementor object that provides your Directory Access plug-in with the information
necessary to handle local and remote connections

You should use custom calls to your plug-in so you can support remote configuration as well as local
configuration.If you need to support configuration of your Open Directory plug-in in Mac OS X v10.1 as well
as Mac OS X v10.2 and later, you’ll need to use the CFBundleConfigAvail property in your property list
file for Mac OS X v10.1 and have a Directory Access plug-in for Mac OS X v10.2 and later. If both types of
configuration are installed on the same system running Mac OS X v10.2 or later, your Directory Access plug-in
will override the launching of the configuration application specified by the CFBundleConfigAvail
property.

DirectoryAccess Plug-ins

Starting with Mac OS 10.2, the Directory Access application, used by administrators to configure Open
Directory, supports DirectoryAccess plug-ins. DirectoryAccess plug-ins are stored in the Contents/PlugIns
directory inside the Directory Access application directory. A DirectoryAccess plug-in must be an NSBundle,
have a name that matches the Open Directory plug-in it configures and have the extension .daplug. For
Mac OS 10.3 and later, you can use the pluginName method to override the name showing in the list.

The bundle’s main class should support the DirectoryAccessPlugin interface, described below:

- (void)setPluginAPIImplementor:(id)implementor;
- (BOOL)saveChanges; // Return FALSE if can’t save for some reason.
- (BOOL)revertChanges;
- (BOOL)applicationWillQuitSavingChanges:(BOOL)save;
- (BOOL)applicationWillLockSavingChanges:(BOOL)save;
- (BOOL)isDirty;
- (void)configureButtonClicked:(id)sender;
- (void)setEnabled:(BOOL)enabled forLocation:(NSString*)location;
- (BOOL)isEnabledForLocation:(NSString*)location;

Table 11-1 describes each method.

Table 11-1 DirectoryAccessPlugin interface methods

DescriptionMethod

Provides the API implementor used for callbacks.setPluginAPIImplementor:

30 Remote Configuration
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

DescriptionMethod

Called when the Apply button is clicked.saveChanges:

Called when the Revert button is clicked.revertChanges:

Called before the application quits, with the save parameter indicating
whether to save changes. If appropriate, saveChanges will be called
after applicationWillQuitSavingChanges.

applicationWillQuit-
SavingChanges:

Called before the application locks, with the save parameter indicating
whether to save changes. If appropriate, saveChanges or
revertChanges will be called after applicationWillLock-
SavingChanges.

applicationWillLock-
SavingChanges:

Indicates whether the DirectoryAccess plug-in has any unsaved changes.
Return YES from isDirty to ensure that the user is prompted to save
changes when quitting or locking.

isDirty:

Called when your DirectoryAccess plug-in is selected when the Configure
button is clicked or if your plug-in is double-clicked.

configureButtonClicked:

Used to override the state of the Enabled checkbox.setEnabled

Used to override the state of the Enabled for Location checkbox.isEnabledForLocation

Your bundle’s main class is not required to implement all of the methods in DirectoryAccessPlugin.h;
instead, it should implement only those methods that your DirectoryAccess plug-in actually needs. The most
likely methods that you will need to implement are setPluginAPIImplementor: and
configureButtonClicked:.

Starting with Mac OS X v10.4, new DirectoryAccess methods are available:

// PluginAPIImplementor new methods available in Mac OS X v10.4 and later
- (BOOL)canSetEnabledForLocation:(NSString*)location;
- (NSString*)hostName;
- (BOOL)saveSearchPolicies;
- (BOOL)isNodeOnAuthSearchPolicy:(NSString*)nodeName;
- (BOOL)isNodeOnContactSearchPolicy:(NSString*)nodeName;
- (void)addNodeToAuthSearchPolicy:(NSString*)nodeName;
- (void)addNodeToContactsSearchPolicy:(NSString*)nodeName;
- (void)deleteNodeFromAuthSearchPolicy:(NSString *)nodeName;
- (void)deleteNodeFromContactsSearchPolicy:(NSString *)nodeName;
- (void)deleteNodesFromAuthSearchPolicyWithPrefix:(NSString *)prefix;
- (void)deleteNodesFromContactsSearchPolicyWithPrefix:(NSString *)prefix;
- (void)nodeNameChangedFrom:(NSString*)oldNodeNameto:(NSString*)newNodeName;
- (NSString *)pluginVersionWithPrefix:(NSString *)prefix;
- (BOOL)isPluginEnabled:(NSString*)prefix;
- (void)setPlugin:(NSString*)prefix enabled:(BOOL)enabled;

Table 11-2 describes the new DirectoryAccessPlugin interface methods.

DirectoryAccess Plug-ins 31
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

Table 11-2 New DirectoryAccessPlugin interface methods

DescriptionMethod

Used to determine whether to enable or disable the checkbox in
the Services list.

canSetEnabledForLocation:

Returns the host name of the machine being configured; useful
when configuring a plug-in on a remote system.

hostName

Causes any pending search policy changes to be saved; can be
used in conjunction with other methods that manipulate search
policy lists.

saveSearchPolicies

Returns YES if the specified node name is on the authentication
search policy; otherwise, returns NO.

isNodeOnAuthSearchPolicy:

Returns YES if the specified node name is on the contacts search
policy; otherwise, returns NO.

isNodeonContactsSearchPolicy:

Adds the specified node name to the authentication search policy
and changes the authentication search policy to a custom search
policy if necessary.

addNodeToAuthSeachPolicy:

Adds the specified node name to the contacts search policy and
changes the contacts search policy to a custom search policy if
necessary.

addNodeToContactsSearchPolicy:

Removes the specified node name from the authentication search
policy.

deleteNodeFromAuthSearchPolicy:

Removes the specified node name from the contacts search policy.deleteNodeFromContactsSearchPolicy:

Removes all node names that have the specified prefix from the
authentication search policy. Useful when disabling a plug-in.

deleteNodesFromAuthSearchPolicy-
WithPrefix

Removes all node names that have the specified prefix from the
contacts search policy. Useful when disabling a plug-in.

deleteNodesFrom-
ContactsSearchPolcyWithPrefix

Renames any nodes on either search policy from the old name
to the new name. Useful when a configuration change in your
plug-in changes a node name.

nodeNameChangedFrom: to:

Returns the version number from the named plug-in’s
Info.plist. Useful when using one configuration plug-in to
configure different versions of an Open Directory plug-in.

plug-inVersionWithPrefix:

Returns YES if the Open Directory plug-in is set to be enabled;
otherwise returns NO.

isPluginEnabled:

Sets the specified plug-in enabled state as specified. Useful if you
want to enable your plug-in when configuring it to be added to
the search policy from within your custom configuration sheet.

setPlugin: enabled:

The file PluginAPIImplementor.h defines the following object and methods:

32 DirectoryAccess Plug-ins
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

@interface PluginAPIImplementor : NSObject {
}

- (BOOL)preflightDSRef;
- (BOOL)preflightAuthRights;
- (OSStatus)makeAuthExternalForm:(AuthorizationExternalForm*)authExtForm;
- (tDirReference)dsRef;
- (AuthorizationRef)authorizationRef;
- (void)pluginEnableStateChanged:(NSString*)pluginName to:(BOOL)newstate;
- (void)reloadSearchPolicies;
- (void)markDirty:(id)sender;

The PluginAPIImplementor object provides callbacks to DirectoryAccess plug-ins and is passed using
setPluginAPIImplementor: after the plug-in is loaded and initialized. If you want your Open Directory
plug-in to be configurable remotely, or if you need to call any Open Directory functions, you must use the
API reference provided by dsRef.

The recommended strategy is to have a specially named node, such as /MyPlugin for a DirectoryAccess
plug-in named MyPlugin, that you open and call dsDoPluginCustomCall to read and write. To make
changes, you can use makeAuthExternalForm: to put an externalized AuthorizationRef into the buffer
so that your DirectoryAccess plug-in can verify that the user is authorized to make changes. Directory Access
requires the system.services.directory.configure authorization right, which you can check from your
DirectoryAccess plug-in using AuthorizationCopyRights. This prevents a malicious user from reconfiguring
your Open Directory plug-in without first providing an administrator name and password.

Before performing a read operation, you should call preflightDSRef. This ensures that the connection is
still established and reconnects if it isn’t. If this method returns NO, your DirectoryAccess plug-in should also
return NO to indicate the operation failed.

Before performing a write operation, you should call preflightAuthRights to ensure that the
AuthorizationRef is still valid. If preflightAuthRights returns NO, your DirectoryAccess plug-in should
also return NO to indicate to the DirectoryAccess application that the saveChanges call failed.

DirectoryAccess Plug-ins 33
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

34 DirectoryAccess Plug-ins
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Configuring an Open Directory Plug-in

Open Directory provides standard data buffer parsing for a tDataBuffer returned by the plug-in serviced
functionsdsGetRecordList,dsDoAttributeValueSearch, anddsDoAttributeValueSearchWithData
if and only if the buffer was built using the standard format, known as Client Side Buffer Parsing (CSBP)
described in this section.

CSBP reduces round trip Mach and TCP message traffic between the client and the server that would otherwise
require the passing of the entire tDataBuffer. Thus, CSBP leads to a considerable performance improvement
in servicing calls to dsGetRecordEntry, dsGetAttributeEntry, and dsGetAttributeValue, which
have to extract particular data points such as attribute values out of a tDataBuffer.

Note: At this time, CSBP is not used on a tDataBuffer created by dsGetDirNodeInfo even though the
dsGetAttributeEntry and dsGetAttributeValue functions are used to extract data from the buffer.

There are two CSBP standards: StdA and StdB. StdB was the first format and it is still supported. StdA allows
for larger attributes and is the recommended format.

Table 12-1 lists the order of the overall data block holding x number of records.

Table 12-1 Format of a StdA and StdB data block

DescriptionNumber of Bytes

ulong:: tag describing the data block; value is STDA or STDB4

ulong:: count of records contained in this data block4

ulong:: offset in bytes to the start of the first record block4

ulong:: offset in bytes to the start of the second record block4

...

ulong:: offset in bytes to the start of the last record block4

ulong:: tag describing end of offsets; value is ENDT4

empty space until the start of the last record block; that is, record blocks are packed
into the buffer starting at the end of the data block

...

ulong:: length in bytes of last record block4

last record block#

...

ulong:: length in bytes of first record block4

35
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Client Side Buffer Parsing

DescriptionNumber of Bytes

first record block#

Table 12-2 lists the order of a StdA single record block holding y complete attribute blocks.

Table 12-2 Format of a StdA single record block

DescriptionNumber of Bytes

ushort:: length of record type string2

UTF-8[n]:: record type stringn

ushort:: length of record name string2

UTF-8[m]:: record name stringm

ushort:: number of attributes in this record block2

ulong:: length in bytes of first attribute block4

first attribute block for this record block#

....

ulong:: length in bytes of last attribute block4

last attribute block for this record block#

Table 12-3 lists the order of a StdA single attribute block holding z values (that is, all of the attribute’s values).

Table 12-3 Format of a StdA single attribute block

DescriptionNumber of Bytes

ushort:: length of attribute name2

UTF-8[r]:: attribute name stringr

ushort:: number of attribute values in this attribute block2

ulong:: length of first attribute value4

byte[s]:: first attribute value for this attribute types

....

ulong:: length of last attribute value4

byte[t]:: last attribute value for this attribute typet

Table 12-4 lists the order of a StdB single record block holding y complete attribute blocks.

36
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Client Side Buffer Parsing

Table 12-4 Format of a StdB single record block

DescriptionNumber of Bytes

ushort:: length of record type string2

UTF-8[n]:: record type stringn

ushort:: length of record name string2

UTF-8[m]:: record name stringm

ushort:: number of attributes in this record block2

ushort:: length in bytes of first attribute block2

first attribute block for this record block#

....

ushort:: length in bytes of last attribute block2

last attribute block for this record block#

Table 12-5 lists the order of a StdB single attribute block holding z values (that is, all of the attribute’s values).

Table 12-5 Format of a StdB single attribute block

DescriptionNumber of Bytes

ushort:: length of attribute name2

UTF-8[r]:: attribute name stringr

ushort:: number of attribute values in this attribute block2

ushort:: length of first attribute value2

byte[s]:: first attribute value for this attribute types

....

ushort:: length of last attribute value2

byte[t]:: last attribute value for this attribute typet

37
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Client Side Buffer Parsing

38
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Client Side Buffer Parsing

This table describes the changes to Open Directory Plug-in Programming Guide.

NotesDate

Moved reference information to the new document "Open Directory Reference."2006-05-23

Updated for Mac OS X v10.4. Changed "Rendezvous" to "Bonjour." Changed title
from "Open Directory Plug-ins."

2005-04-29

39
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Open Directory Plug-in Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Runtime Environment
	Required Entry Points
	Processing Open Directory Requests
	Processing Concurrent Requests
	Open Directory Callbacks
	Calling Mac OS X Functions
	Managing References
	Standard Record and Attribute Types
	Authentication
	Property List for an Open Directory Plug-in
	Configuring an Open Directory Plug-in
	Local Configuration
	Remote Configuration
	DirectoryAccess Plug-ins

	Client Side Buffer Parsing
	Revision History

