
System Configuration Programming
Guidelines
Networking

2006-02-07

Apple Inc.
© 2004, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AirPort, AppleTalk,
FireWire, Keychain, Mac, Mac OS, Pages, and
PowerBook are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to System Configuration Programming Guidelines 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Chapter 1 System Configuration Goals and Architecture 9

Goals of the System Configuration Framework 9
An Example of Mobility 10
System Configuration Architecture 12

System Configuration Terms 13
Interaction of System Configuration Components 13

System Configuration APIs 15
System Configuration Utilities 16

Chapter 2 Components of the System Configuration Framework 17

The Persistent Store 17
The Dynamic Store 19
The Schema: Hierarchy and Definitions 19
Configuration Agents 20

Chapter 3 The System Configuration Schema 23

Layout of the Persistent Store 23
The Sets Dictionary 24
The NetworkServices Dictionary 26

Behavior of the Configuration Agents 35
Preferences Monitor 35
Kernel Event Monitor 37
IPv4 Configuration Agent 37
IPv6 Configuration Agent 39
IP Monitor 40
PPP Controller 42

Using the Schema 43
Programmatically Setting Preferences 44
Getting Detailed PPP Connection-Status Information 44
Getting Notifications 45

3
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 4 Determining Reachability and Getting Connected 47

Scope of the Reachability and Connection APIs 47
A Reachability and Connection Example 48
Using the Reachability API 49

Creating a Reference 49
Adding a Target to a Run Loop 50
Associating a Callback Function With the Target 50
Determining Reachability 51

Using the Network Connection API 52
Creating a Connection Reference 52
Adding a Connection Reference to a Run Loop 53
Starting and Stopping a Connection 53
Getting the Status of a Connection 54

Document Revision History 57

4
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 System Configuration Goals and Architecture 9

Figure 1-1 A location in Network preferences 11
Figure 1-2 A location in the Apple menu 12
Figure 1-3 Architecture and interaction of System Configuration framework components 14

Chapter 2 Components of the System Configuration Framework 17

Figure 2-1 Partial listing of a persistent store 18

Chapter 3 The System Configuration Schema 23

Figure 3-1 Relationship among top-level preferences in the persistent store 24
Table 3-1 Keys and values for the Interface dictionary 27
Table 3-2 Optional values for the IPv4 ConfigMethod key 29
Table 3-3 Optional values for the IPv6 ConfigMethod key 30
Table 3-4 Optional keys and values for the PPP protocol entity dictionary 30
Table 3-5 Keys and values for the AirPort hardware entity dictionary 32
Table 3-6 Keys and typical values for the Modem hardware entity dictionary 33
Table 3-7 Keys and values for the Proxies dictionary 34
Table 3-8 Keys the kernel event monitor publishes 37
Table 3-9 Keys the IPv4 configuration agent uses 38
Table 3-10 Keys the IPv4 configuration agent publishes 38
Table 3-11 Keys the IPv6 configuration agent uses 39
Table 3-12 Keys the IPv6 configuration agent publishes 40
Table 3-13 Keys the IP monitor uses 41
Table 3-14 Keys the IP monitor publishes 42
Table 3-15 Keys the PPP controller uses 43
Table 3-16 Some keys the PPP controller publishes 43
Listing 3-1 Subset of service dictionary (ServiceID 100) 36
Listing 3-2 Subset of service dictionary, after mapping into the dynamic store 36

Chapter 4 Determining Reachability and Getting Connected 47

Table 4-1 SCNetworkConnectionFlags 51
Table 4-2 High-level connection status values 55
Table 4-3 PPP connection status values 55

5
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document describes the architecture of the system configuration services in Mac OS X and the APIs in
the System Configuration framework. It describes how users and applications use the configurable network
preferences and how applications can use the framework APIs to accomplish various tasks.

What Is the System Configuration Framework?

The System Configuration framework provides powerful, flexible support for establishing and maintaining
access to configurable network and system resources. It offers your application the ability to determine, set,
and maintain configuration settings and to detect and respond dynamically to changes in that information.

The framework supports a wide range of configuration management, including high-level access to network
services. Although the bulk of the System Configuration APIs were available in Mac OS X version 10.1, later
versions of Mac OS X have included some changes and additions. This document focuses on the System
Configuration APIs available in Mac OS X version 10.3.

Who Should Read This Document?

The audience for this document comprises two main groups:

 ■ Developers of network configuration or dialer software.

 ■ Developers of applications that need to request and use network connections.

If you are developing an application that defines network services, initiates IP networking or creates a PPP
connection, you should concentrate on the network preferences and configuration APIs. If you’re developing
an application that needs to know if a remote host is reachable or initiate a PPP connection, you should focus
on the reachability and connection APIs.

Organization of This Document

This document is divided into four chapters:

 ■ “System Configuration Goals and Architecture” (page 9) describes the System Configuration framework
in its entirety, paying special attention to the interaction of the network preferences, configuration
agents, and APIs.

 ■ “Components of the System Configuration Framework” (page 17) describes the individual System
Configuration framework components in greater detail. In this chapter, you learn about how the
components work together and how the configuration agents do their work.

What Is the System Configuration Framework? 7
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to System Configuration
Programming Guidelines

 ■ “The System Configuration Schema” (page 23) describes the structure of network preferences and
introduces the System Configuration schema that defines it. This chapter also describes how the
configuration agents use the schema’s keys and values and when you might need to use them.

 ■ “Determining Reachability and Getting Connected” (page 47) introduces the reachability and connectivity
APIs and describes how applications can use them.

The chapters you read depend on the goals of your application. All developers new to the System Configuration
framework should read “System Configuration Goals and Architecture” (page 9). Then, if you’re developing
an ISP or dialer application that needs to manipulate network configurations, you should read “Components
of the System Configuration Framework” (page 17) and “The System Configuration Schema” (page 23). If,
on the other hand, you’re developing an application that initiates PPP connections or determines if a remote
host is reachable, you can skip to the last chapter, “Determining Reachability and Getting Connected” (page
47).

See Also

Apple provides comprehensive API reference documentation of the System Configuration framework. On
the web, see System Configuration Framework Reference.

In addition, Apple provides several code samples that illustrate various network configuration and connection
tasks. These samples are available on the web at http://developer.apple.com/samplecode/Sample_Code/Net-
working.htm.

When you install the Developer Package, you get developer documentation as well as tools and sample code.
The System Configuration API reference documentation is available at /Developer/ADC Reference
Library/documentation/Networking/Reference.

8 See Also
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to System Configuration Programming Guidelines

http://developer.apple.com/samplecode/Sample_Code/Networking.htm
http://developer.apple.com/samplecode/Sample_Code/Networking.htm

This chapter provides an overview of the System Configuration framework goals and architecture. You should
read this chapter if you’re new to Mac OS X network configuration or if you need to know which APIs and
services in the System Configuration framework your application should use. In particular, if your application
needs to determine the reachability of a remote host or request a PPP-based connection, you might choose
to skim this chapter for context and then read “Determining Reachability and Getting Connected” (page 47).

Goals of the System Configuration Framework

The Mac OS X System Configuration framework provides the foundation for network configuration on Mac
OS X. The dual goals of the framework are:

 ■ To provide dynamic network configuration that supports seamless user mobility

 ■ To support applications that need to create, modify, or access network services. This includes applications
that create or manipulate network configurations and applications that need to determine remote-host
reachability and make connections

The first goal of the System Configuration framework is user-oriented. In the System Preferences application’s
Network preferences panel (which is a client of the System Configuration framework), a user can set up
multiple network configurations. Each of these configurations can describe a different networking environment.
This means that a user can enter a few values in Network preferences and her system automatically detects,
configures, and starts the appropriate network service. The user can impose a preferred order on the services
and the system automatically switches between them, according to which network interfaces are currently
available, without requiring a restart. For an example of how this works, see “An Example of Mobility” (page
10).

The second goal of the System Configuration framework is to provide network configuration and access
services to a wide range of applications. At one end of the range is a network-configuration application such
as one an Internet service provider (ISP) might offer to define new services and provide dial-up support. Such
an application needs to access System Configuration framework components at a low level to provide network
services.

At the other end of the range are what can be termed network-aware applications. For the most part, a
network-aware application simply needs to use existing network services, not define new ones. Such an
application might need to determine if a remote host is reachable or request a network connection so it can
provide content to its users.

The System Configuration framework supports applications throughout this range by providing:

 ■ Access to current network configuration information

 ■ APIs that allow applications to determine the reachability of remote hosts and start PPP-based connections

 ■ Notification of changes to network status and configurations and to system state

Goals of the System Configuration Framework 9
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

 ■ A flexible schema that allows definition of and access to stored preferences and the current network
configuration

The System Configuration framework offers a level of abstraction that allows your application to manage a
wide range of configuration tasks. To achieve this, the framework takes advantage of Core Foundation run
loop technology and property list types.

In addition, the source code for the System Configuration framework is available in Darwin as part of Apple’s
Open Source initiative, so you can see exactly how things work. In Darwin, the source code for the System
Configuration framework and related entities is divided among three projects:

 ■ configd. This project includes configd (the network configuration daemon) and the System
Configuration framework itself.

 ■ configd_plugins. This project contains various built-in plug-ins, such as the kernel event monitor and
the IP monitor.

 ■ bootp. This project includes BootP and DHCP, which inform the IPv4 and IPv6 configuration agents.

An Example of Mobility

The System Configuration framework allows users to set up multiple network interfaces in various combinations
and supports dynamic network reconfiguration without requiring user intervention. To see how this works,
consider Maria, a PowerBook-toting executive on her way to deliver a presentation at a remote office.

Because Maria uses her PowerBook in different network environments, she uses Network preferences to
establish a collection of network configurations for each environment. Each collection of network configurations
is called a location.Figure 1-1 (page 11) shows a location named Office in Maria’s Network preferences.

10 An Example of Mobility
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

Figure 1-1 A location in Network preferences

Maria establishes three locations:

 ■ Office. The Office location sets the built-in Ethernet interface to be the primary interface. If the built-in
Ethernet interface isn’t available, the system uses the AirPort interface instead.

 ■ Offline. This location disables all network interfaces so that no connection attempts are made.

 ■ Home. This location sets an Ethernet-based DSL modem to be the primary interface. If the DSL modem
isn’t available, the system uses a 56K dial-up modem instead.

In her office, Maria plugs in the Ethernet cable and selects the Office location from the Apple menu, as shown
in Figure 1-2 (page 12).

An Example of Mobility 11
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

Figure 1-2 A location in the Apple menu

To attend a meeting, Maria unplugs the Ethernet cable and enters the conference room. When her PowerBook
wakes up in the conference room, it determines that the cabled LAN is not active and automatically switches
to the corporate AirPort network.

In the taxi to the airport, with no network services available, Maria writes her meeting notes. While waiting
for her flight, she wakes the PowerBook and uses the wireless network available at the airport to send her
presentation slides ahead to the remote office for finishing touches. To this point, Maria has not adjusted
her network preferences, but she’s had no problems using available network services, even across sleep-wake
cycles.

As she boards the airplane, Maria uses the Apple menu to select the Offline location which shuts off all
networking (as required during air travel). During the flight, she works on the introduction to her presentation.

When she arrives at the remote office, Maria again selects the Office location and gives her presentation. She
uses the newly polished slides she retrieves over AirPort from the local server.

When she returns home, Maria plugs in the Ethernet and phone cables and selects the Home location from
the Apple menu. Now she can work on last-minute business whether her DSL connection is active today or
not.

Because of the System Configuration framework’s dynamic network reconfiguration support, Maria never
had to restart her PowerBook to take advantage of changing network environments.

System Configuration Architecture

The System Configuration framework comprises many components that work together to support configurable
network resources. This section introduces these components and defines several terms the System
Configuration framework (and this document) uses to describe a user’s network configuration.

12 System Configuration Architecture
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

For developers of network-aware applications, this section provides enough background information to get
started using the reachability and connection APIs. For an overview of all the APIs the System Configuration
framework offers, read “System Configuration APIs” (page 15). Then, you may choose to skip ahead to
“Determining Reachability and Getting Connected” (page 47) for specific information on how to use the
reachability and connection APIs.

A developer of network-configuration applications, however, needs more in-depth information about the
individual components of the System Configuration framework. To learn more about these components, you
should read “Components of the System Configuration Framework” (page 17). In addition, if you’re developing
an application that defines new locations or services, be sure to read “The System Configuration Schema” (page
23).

System Configuration Terms

Before you read any further, be sure you’re familiar with the System Configuration terms this document uses:

 ■ Location. A collection of network configurations a user creates in Network preferences to describe a
specific environment, such as the home environment.

Note: Following the lead of the System Preferences application, this document uses “location” when
describing a collection of network configurations in a user-interface context. To describe a collection of
network configurations in a developer context, this document uses the term “set” (defined next).

 ■ Set. The complete configuration for a single location. The configuration typically includes IP and interface
configuration information, as well as system-wide information.

 ■ Network service. A collection of network entities for a single network interface or network connection.
Together, these entities contain all the information required to make the service active.

 ■ Network entity. A collection of properties that are specific to some protocol or area of interest, such as
PPP or DNS.

 ■ Interface. The physical connection, such as Ethernet.

Interaction of System Configuration Components

The System Configuration framework comprises several components that work together to provide powerful,
flexible support for establishing and maintaining access to configurable network resources. These components
are:

 ■ A persistent storage structure for network configuration preferences and selected system information

 ■ A dynamic storage structure for current network state information

 ■ Configuration agents that manage the data in the two storage areas, handle low-level configuration
events, and provide notification services

 ■ A comprehensive and flexible schema that defines both the data types in the persistent and dynamic
stores and their hierarchical structure

 ■ A full range of APIs that provide access to the current network state information and furnish notifications,
handle reachability and connectivity, and support the definition of new sets and services. For an overview
of the APIs the System Configuration framework provides, see “System Configuration APIs” (page 15).

System Configuration Architecture 13
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

Figure 1-3 (page 14) shows the first three of these components (the schema and the APIs are not shown)
and how they interact.

Figure 1-3 Architecture and interaction of System Configuration framework components

(Key1, Value1)
(Key2, Value2)

...

(Keyn, Valuen)

Dynamic store

Agent

Source

Agent Agent

Source

Preferences
(Persistent store)

As shown in Figure 1-3 (page 14), the dynamic store is the conceptual heart of the System Configuration
architecture. The dynamic store:

 ■ Contains a copy of the configuration information for the currently active location

 ■ Contains the current network state information (and also some system state information)

 ■ Provides input to the configuration agents

 ■ Receives up-to-date status information from the configuration agents

 ■ Supports the notification process

The dynamic store is kept up-to-date by various configuration agents and is recreated after every system
restart. “The Dynamic Store” (page 19) describes the dynamic store in more detail.

The persistent store houses:

 ■ The user’s network preferences (entered in Network preferences)

 ■ Some system values, such as the computer name and selected power management information

As its name implies, the persistent store persists across reboots and is only changed by explicit actions of
the user, the system, or network-configuration applications. The persistent store is described in more detail
in “The Persistent Store” (page 17).

Figure 1-3 (page 14) shows three configuration agents. In a running Mac OS X system, there are several more
configuration agents (some of which are internal implementation details that are not discussed in this
document). Each configuration agent is responsible for a well-defined area of configuration management,
such as IPv4 or PPP. In general, an agent gets preferences and status information from the dynamic store

14 System Configuration Architecture
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

and combines it with information the agent receives from various system and network events. The agent
publishes the merged information and the results of any actions it takes back into the dynamic store. See
“Configuration Agents” (page 20) for more information about individual configuration agents.

Although it is not shown in Figure 1-3 (page 14), the schema serves as the common language that allows
the various components of the System Configuration framework to communicate. The information in both
the dynamic and persistent stores is held in key-value pairs. The configuration agents use the key-value pairs
to access configuration information and to update the dynamic store. Applications can use the key-value
pairs to define new services and watch for changes in network state or configuration. The schema defines
these keys and values and the hierarchy that binds them together to describe specific services. The schema
is described in more detail in “The Schema: Hierarchy and Definitions” (page 19). For information on how to
use the schema to define new sets or services, see “The System Configuration Schema” (page 23).

The System Configuration framework also contains a full complement of APIs. These APIs include low-level
functions an ISP application might use to provide new services and higher-level functions any application
can use to connect to a remote host. It is important to remember that if your application is primarily concerned
with the reachability of a remote host and subsequent connection to it, knowledge of the System Configuration
framework architecture is not essential. Instead, you should focus on the reachability and connection APIs
discussed in “Determining Reachability and Getting Connected” (page 47).

The architecture of the System Configuration framework lends itself to other types of dynamic state
management, as well. The structure and flexibility of the dynamic store and the interaction of the configuration
agents are well suited to the communication of system information, such as power management status.
Although it is possible for third-party developers to use the dynamic store structure for purposes other than
network configuration, this is not covered in this document. For help with such a project, you should contact
Apple Worldwide Developer Relations directly.

System Configuration APIs

The System Configuration framework provides APIs to support a wide range of network applications, from
network-aware applications that need to connect to a remote host to ISP and dialer applications.

It’s useful to view the System Configuration APIs as divided into two groups:

 ■ High-level reachability and connection APIs

 ■ Low-level configuration APIs

Applications that need to find out if a remote host is reachable or establish a PPP connection use the high-level
reachability and connection APIs. These APIs combine the power of the System Configuration architecture
with the convenience of high-level functions. For more information on these APIs, see “Determining
Reachability and Getting Connected” (page 47).

Applications that need to create or duplicate sets, or activate or deactivate services have a more complicated
task. They must use the low-level configuration APIs. In addition, to develop these applications you must
understand and use the System Configuration schema to interpret and build dictionaries that describe the
new sets and services.

It’s also important to realize that to modify network preferences (in other words, to change the persistent
store), your application must acquire root privileges. This is not a trivial task; for more information, you can
read Authorization Services Programming Guide and review the code samples AuthSample and
MoreAuthSample available at http://developer.apple.com/samplecode/Security/idxAuthorization-date.html.

System Configuration APIs 15
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

http://developer.apple.com/samplecode/Security/idxAuthorization-date.html

Currently, the low-level configuration APIs are very basic and somewhat difficult to use. In fact, to perform
common operations, such as creating a new set, you must combine the System Configuration APIs with I/O
Kit access. In future versions of Mac OS X, the System Configuration framework may provide higher-level
APIs to perform such network-configuration tasks.

Until then, however, if you’re developing an application that needs to create new sets or activate or deactivate
services, you should examine the MoreSCF sample code. Apple’s Developer Technical Support created this
sample to provide a library of high-level functions that make performing these tasks comparatively easy. In
particular, the MoreSCF sample provides you with some help using the complex System Configuration schema
to build set and service dictionaries. Following the lead of this sample, combined with perusal of the System
Configuration API reference (available in the Networking Reference Library), should provide a foundation to
get you started. In addition, be sure to read “The System Configuration Schema” (page 23) to gain an
understanding of the keys and values you may have to use.

System Configuration Utilities

You can use the following applications to view and, in some ways, change system configuration information:

 ■ scutil. Provides command-line access to the dynamic store.

 ■ scselect. Allows you to view and change the current location.

 ■ Property List Editor. Provides a user-friendly way to view the persistent store.

You can use the scutil command-line utility to view the dynamic store, monitor notifications, and create
and modify dictionaries for testing. Using the Terminal application (located at
/Applications/Utilities/Terminal), type scutil at the prompt. For a list of commands, type ‘help’
at the scutil prompt.

The scselect tool is a setuid tool (a tool that has its setuid bit set to allow it to perform privileged operations)
that the Apple menu launches to allow a non-privileged user to change locations. scselect is not an API.
If your application needs to change locations, you should use the preferences APIs in the System Configuration
framework.

For a brief description of Property List Editor, see “The Persistent Store” (page 17).

16 System Configuration Utilities
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

System Configuration Goals and Architecture

If you’re developing a network-configuration application, you need to know how the components of the
System Configuration framework work together and how your application interacts with them. This chapter
describes each component in greater detail.

If you’re developing a network-aware application, you do not need in-depth information on the dynamic
and persistent stores, the schema, or the configuration agents. Instead, you should concentrate on the
reachability and connection APIs described in “Determining Reachability and Getting Connected” (page 47).

The Persistent Store

The persistent store contains the network preferences set by the user and by applications that configure
network services. It is a hierarchically structured database that holds configuration information for all locations,
services, and interfaces defined in the system, whether or not they are currently active. The information is
kept in a large dictionary of keys (CFString types) and values (CFPropertyList types, typically CFDictionary
types). The System Configuration schema (described in “The Schema: Hierarchy and Definitions” (page 19))
dictates the precise combinations of key-value pairs required to define each service and entity. The dictionary
is maintained as an XML file which, in Mac OS X version 10.3 and above, currently resides in the default
location /Library/Preferences/SystemConfiguration/preferences.plist. (The default location
in earlier versions of Mac OS X is /var/db/SystemConfiguration/preferences.xml.)

Important: The location, type, and name of the file that represents the persistent store is private to the
System Configuration framework. This document describes it to enhance your understanding of the persistent
store, but under no circumstances should your application rely on its location or directly access it in any way.

This section presents an overview of the persistent store, focusing on the top-level preferences. If you’re
developing a network-configuration application, you need to know how to define your service with specific
key-value pairs. For more information on the precise layout of the preferences, see “The System Configuration
Schema” (page 23).

Currently, the persistent store contains four top-level preferences:

 ■ Sets. A CFDictionary object that lists all locations currently configured on the system, such as Office or
Home. There is one set for each location. (Recall that “location” refers to the user-visible configuration
of a network environment.)

 ■ CurrentSet. A CFString object that contains the identity of the currently active location (a member of
the Sets dictionary).

 ■ NetworkServices. A CFDictionary object that contains the complete list of network services defined for
all sets. Each service contains the protocol entities defined for that service.

 ■ System. A CFDictionary object that contains configuration information that is system-specific rather
than location-specific, such as the computer name.

The Persistent Store 17
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration
Framework

Together, these four preferences describe the configurations of all locations and network services on the
system. If you install the Developer Tools package, you can use the Property List Editor application (located
in /Developer/Applications/Utilities/Property List Editor) to examine the persistent store
on your computer. For example, Figure 2-1 (page 18) shows a portion of the persistent store from the
computer of the fictional executive Maria (introduced in “An Example of Mobility” (page 10)), as displayed
by Property List Editor:

Figure 2-1 Partial listing of a persistent store

As you can see in Figure 2-1 (page 18), the top-level preference CurrentSet contains a string that refers to a
member of the Sets dictionary (in this example, the currently active location is Office).

The Sets dictionary contains a subdictionary representing the set associated with each location Maria has
defined on her system. In Figure 2-1 (page 18), you can see dictionaries for the locations Office, Offline, and
Home.

The NetworkServices dictionary contains a subdictionary for each network service defined on Maria’s computer.
Notice that in Figure 2-1 (page 18), the NetworkServices dictionary contains only the dictionaries representing
the three services listed in the Office location; services listed in the other locations are not shown. Each service
subdictionary in the NetworkServices dictionary is identified by a unique ID string. These ID strings have no
inherent meaning and are not associated with the user-visible name for the service or location. In Mac OS X
version 10.3 and above, the ID strings often consist of a GUID, or globally unique ID.

18 The Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration Framework

Each network service subdictionary contains the configuration information for all the entities associated with
that service, such as PPP or AppleTalk. The system-wide information in the System dictionary consists of the
computer name (“Maria’s Computer”) and the local host name (“Marias-Computer”).

The Dynamic Store

In a running Mac OS X system, the dynamic store contains a snapshot of the current network state. It also
holds a copy of the preferences that define the currently active configuration. Because it contains the current
configuration, as opposed to all configurations the user has defined, this part of the dynamic store is a subset
of the persistent store. As such, the dynamic store’s hierarchical structure and combinations of key-value
pairs are also determined by the System Configuration schema.

Various configuration agents (introduced in “Configuration Agents” (page 20)) keep the dynamic store up
to date. To do this, they use the information in some keys to decide what to do and they publish the results
of their actions in other keys. This interaction between the configuration agents and the dynamic store is an
ongoing process and is not limited to the initial configuration of network services that occurs when you turn
on your computer. Instead, the configuration agents update the dynamic store whenever system or network
events affect the current system state. The ability of the dynamic store to reflect the current system state is
at the heart of Mac OS X network mobility.

In addition to holding the current network state, the dynamic store provides a level of abstraction between
low-level networking and system events and the applications that need to know about them. For example,
when you unplug your Ethernet cable a configuration agent gets this information from a low-level kernel
event and updates the value of the appropriate dynamic store key. Through the dynamic store, an application
can get this information without having to monitor low-level system events. This is because the System
Configuration framework provides notification services that allow an application to register interest in specific
keys. When a key’s value changes, an interested application is notified that a change occurred. It is then the
application’s responsibility to inspect the value of the key.

Although you can register interest in any key, it’s best to be very selective about the notifications you choose
to receive. For one thing, to be sure you’re watching the correct key and to interpret the information you
get from it, you need detailed knowledge of the complex System Configuration schema. In many cases, you
can use System Configuration APIs to receive notifications of specific events without resorting to watching
individual keys. For information on some of these APIs, see “System Configuration APIs” (page 15) and
“Determining Reachability and Getting Connected” (page 47).

The Schema: Hierarchy and Definitions

The System Configuration schema describes the complex hierarchical layout of the persistent and dynamic
stores. In addition to imposing the overall structure, the schema also defines the exact combinations of
key-value pairs that describe all services available on the system. All configuration agents must fully understand
the part of the schema that defines their area of interest to be able to read and correctly update the dynamic
store.

Although the schema is not private system API, it is very low level. As much as possible, an application should
avoid depending directly on the schema and employ higher-level interfaces instead. For example, a
network-aware application can use the notification services in the reachability and connection APIs instead
of requesting notifications on specific keys the schema defines. However, for some applications this is not

The Dynamic Store 19
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration Framework

an option. A network-configuration application, for example, must combine the correct key-value pairs to
define new locations and services. Developers of such applications should read “The System Configuration
Schema” (page 23) for more information on how the schema defines specific services.

The SCSchemaDefinitions.h file in the System Configuration framework defines the keys and values the
schema uses, but does not indicate how they’re used. This section gives a brief overview of the types of keys
and values you find in the SCSchemaDefinitions.h file. For in-depth information on the keys and values
of the schema, see “The System Configuration Schema” (page 23).

The SCSchemaDefinitions.h file groups the keys and values into the following types:

 ■ Generic keys. These are keys, such as kSCPropUserDefinedName and kSCPropVersion, that can be
used at different levels in the persistent store. For example, kSCPropUserDefinedName is an appropriate
key for both a service dictionary and a location dictionary.

 ■ Preference keys. These keys define the top-level preferences in the persistent store, such as
kSCPrefCurrentSet and kSCPrefSystem. (The top-level preferences are described in “The Persistent
Store” (page 17).)

 ■ Component keys. These keys define the main categories in the dynamic and persistent stores, such as
kSCCompSystem and kSCCompInterface.

 ■ Entity keys. The entity keys name network entities, such as kSCEntNetIPv4 and kSCEntNetDNS.

 ■ Property keys. These keys identify the properties for each entity, such as the IPv4
kSCPropNetIPv4ConfigMethod property.

 ■ Value keys. These keys provide appropriate values for specific property keys. For example,
kSCValNetIPv4ConfigMethodBOOTP is a possible value for the IPv4 kSCPropNetIPv4ConfigMethod
property.

Configuration Agents

The System Configuration framework communicates with a system-level daemon, configd, to manage
network configuration. When you turn on your computer, configd runs early in the boot process to configure
the network. To keep the network state data current, configd initializes the dynamic store and loads the
configuration agents as bundles (or plug-ins). These agents run within the configd memory space, as part
of its process. Each agent is responsible for a well-defined aspect of configuration management, such as IPv4
or PPP. An agent monitors low-level kernel events, relevant configuration sources, and the status reported
by other configuration agents, to configure its area of interest and update the dynamic store.

To communicate with the dynamic store, the configuration agents use the keys and values defined in the
SCSchemaDefinitions.h file and follow the hierarchy defined by the System Configuration schema. Each
agent understands a well-defined subset of key-value pairs that relates to its area of interest. The agent uses
some keys to obtain configuration information and others to publish the results of events it detects and
actions it takes.

In Mac OS X, configd loads several configuration agents, some of which are of internal interest only. Your
application might be aware of the following configuration agents:

 ■ Preferences monitor. Populates the dynamic store with the preferences associated with the currently
active configuration set (specified in the user’s CurrentSet preference).

20 Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration Framework

 ■ Kernel event monitor. Maintains information about the network interfaces defined in the system and
monitors low-level kernel events.

 ■ IPv4 configuration agent. Configures Ethernet-type devices for IP networking.

 ■ IPv6 configuration agent. Configures Ethernet-type devices, FireWire devices, and 6to4 interfaces for IP
networking.

 ■ IP monitor. Selects the primary network service (the service associated with the default route and default
DNS for the system).

 ■ PPP controller. Configures PPP interfaces for IP networking.

For more information on these configuration agents and the specific keys and values they use, see “Behavior
of the Configuration Agents” (page 35).

Configuration Agents 21
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration Framework

22 Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Components of the System Configuration Framework

The System Configuration schema defines the layout of network configuration information in the persistent
store. This chapter describes this layout and some of the specific combinations of key-value pairs that define
sets and services. It then describes which key-value pairs the configuration agents use to manage their areas
of interest. Finally, this chapter describes how to use your knowledge of the schema to provide preferences
that define a service. You should read this chapter if your application defines sets or services. Additionally,
if your application needs detailed information about the status of a PPP connection, you should read this
chapter to find out how to interpret the information you receive.

Most network-aware applications do not need to access network preferences or the dynamic store to perform
their tasks. If your application requests network connections or finds out if a remote server is reachable, you
might choose to skip ahead to “Determining Reachability and Getting Connected” (page 47).

Layout of the Persistent Store

The hierarchical placement of keys and values in the persistent store is dictated by the System Configuration
schema. This section describes the hierarchy of key-value pairs and identifies some of the specific combinations
of preferences that define individual services.

“The Persistent Store” (page 17) introduces the four top-level preferences in the persistent store:

 ■ Sets

 ■ CurrentSet

 ■ NetworkServices

 ■ System

The system uses the information in these four preferences to configure network services. Figure 3-1 (page
24) shows how these preferences are related.

Layout of the Persistent Store 23
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Figure 3-1 Relationship among top-level preferences in the persistent store

CurrentSet

	 Setk

Sets

	 Set1

	 ...

	 Setk

	 	 Network

	 	 	 Global

	 	 	 Interface

	 	 	 Service

	 	 	 	 ServiceIDx

	 	 	 	 ServiceIDy

	 	 	 	 ...

	 ...

	 Setn

System

	 Network

	 	 HostNames

	 System

	 	 ComputerName

NetworkServices

	 ServiceID1

	 ...

	 ServiceIDx

	 	 AppleTalk

	 	 DNS

	 	 IPv4

	 	 Ethernet

	 	 Interface

	 	 Proxies

	 	 MyOffice

	 ...

	 ServiceIDy

	 	 DNS

	 	 IPv4

	 	 Modem

	 	 Interface

	 	 PPP

	 	 Proxies

	 	 MyHome

	 ...

	 ServiceIDn

As you can see in Figure 3-1 (page 24), the System preference is separate from the other three preferences.
This is because the System dictionary contains global, system-wide information, such as the computer name.
This information is applicable to the machine as a whole, regardless of the current network configuration. A
network-configuration application has no need to add values to the System preference.

The CurrentSet preference always contains the internal ID that represents the currently active set in the Sets
preference (in Figure 3-1 (page 24), this is Setk). When a user selects a different location in Network preferences
or from the Apple menu, the preferences monitor notices and updates the dynamic store to reflect the
change. For more information on the preferences monitor, see “Preferences Monitor ” (page 35)).

The remaining two top-level preferences, Sets and NetworkServices, contain the bulk of the information the
system needs to configure network services. As you can see in Figure 3-1 (page 24), a set listed in the Sets
dictionary contains the internal IDs that represent individual services listed in the NetworkServices dictionary.
The following sections describe the Sets and NetworkServices dictionaries in more detail.

The Sets Dictionary

The Sets dictionary contains a subdictionary for each set defined in the system. Generally, sets represent the
locations created by the user in Network preferences, although network-configuration applications can also
create them. For example, an ISP might provide an application that defines a new location that makes it easy
for a user to connect to the ISP. To offer this new location, the application creates a new set dictionary and
some number of new services. The new set dictionary contains configuration information for the location,
including a property that holds the ISP’s name, and references to the new services.

24 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Each individual set dictionary within the top-level Sets dictionary contains the following properties:

 ■ UserDefinedName

 ■ Network

The UserDefinedName property is a string that holds the location name the user enters in Network preferences.
An application that defines a new location would use this key to provide a suitable location name, for example,
the name of the ISP. The ISP’s name is then displayed in the Location menu of Network preferences and in
the Apple menu.

The Network property is a dictionary that describes the network configuration for the set, including a list of
services defined for the set. Every Network dictionary within a set should contain the following properties,
all of which are dictionaries:

 ■ Global

 ■ Interface

 ■ Service

As its name implies, the Global dictionary supplies information that is not specific to any particular service.
Currently, the Global dictionary contains two member dictionaries: IPv4 and NetInfo, both of which are
required.

The IPv4 dictionary should contain the ServiceOrder key. This key’s value is an array that allows the user to
impose an ordering on his network services in Network preferences. When multiple services are active at the
same time, the system uses the ServiceOrder array to determine which service should be deemed primary.
The primary service determines the default route and the DNS and proxy server configurations.

The IPv4 dictionary may also contain the PPPOverridePrimary key. This is a legacy key that allows any active
PPP-based service to be treated as if it were first in the ServiceOrder array. This functionality has been replaced
by allowing any individual service to include an OverridePrimary key in its own (per service) IPv4 dictionary.

The NetInfo dictionary contains NetInfo binding preferences. As the use of Directory Services becomes more
widespread, however, the NetInfo dictionary will become less common.

The Interface dictionary holds per-interface settings. Each member of the Interface dictionary is a subdictionary
identified by the BSD name of the interface, such as en0. Each subdictionary contains a dictionary named
Ethernet, which holds the results of a manual configuration of the interface. Speed, duplex, and maximum
packet size (maximum transfer unit, or MTU) values are stored here. This information is stored at the interface
level to prevent individual services from attempting to configure the same interface in different ways.

Typically, however, the user accepts the default Ethernet configuration by choosing the Automatically option
in the Ethernet configuration tab of Network preferences. When this is the case, the Ethernet dictionary is
either not present or contains the key __INACTIVE__.

The Service dictionary contains references to the services defined for this set. Every member of the Service
dictionary is itself a dictionary that contains a single member—an internal service ID that refers to a service
listed in the top-level NetworkServices dictionary. Network preferences uses the information in the Service
dictionary to display the services and whether or not they’re enabled. The preferences monitor also uses this
information as it loads the current configuration preferences into the dynamic store (for more information
on this process, see “Preferences Monitor ” (page 35)).

Layout of the Persistent Store 25
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

The NetworkServices Dictionary

The top-level NetworkServices dictionary contains all the network services defined for the system. Each
network service is represented by a dictionary (identified by a unique key) that contains the configuration
properties for the entities associated with that service. The combination of entities is determined by the type
of service. For example, a modem-based service needs the Interface, PPP, Modem, and IPv4 entities, but not
the AppleTalk entity, because Mac OS X does not support AppleTalk over PPP.

If you are developing an application that adds a service to a new set, you need to create a network service
dictionary that describes it. This section outlines the contents of a network service dictionary.

A network service dictionary can include the following properties:

 ■ An interface dictionary that describes the network interface underlying the service

Note: If you want to ensure that the appropriate configuration agent processes your service, you must
include an interface dictionary in your network service dictionary.

 ■ A variable number of protocol entity dictionaries, each of which describes the configuration of a protocol
entity (such as PPP or AppleTalk) that’s defined for the service. (Note that some protocol entity dictionaries
may be present in a network service dictionary but be empty or marked as inactive.)

 ■ One hardware entity dictionary, depending on the type of service (the type of service is specified in the
interface entity dictionary)

 ■ A proxies dictionary that identifies which proxies are enabled for the service

 ■ A user-visible name for the service

The Interface Dictionary

The Interface dictionary describes the transport of the service’s network connection. The contents of the
Interface dictionary vary according to the type of the service, but three members are required:

 ■ DeviceName

 ■ Hardware

 ■ Type

The value of the DeviceName key supplies the BSD device name for the network connection, for example,
en0 or en1. For serial-like devices, the value of the DeviceName key is the base name, minus any prefix. For
example, the DeviceName value for a modem with the name cu.modem is modem. Currently, the System
Configuration framework does not supply API to find all ports suitable for networking. See “Programmatically
Setting Preferences” (page 44) for a reference to a library of sample code that can help with this.

The value of the Hardware key is a property of type CFString that names the type of hardware underlying
the network connection, such as Ethernet or AirPort. You can view the contents of this dictionary as a reference
to the hardware entity dictionary of the same name (for more information on hardware entity dictionaries,
see “Hardware Entity Dictionaries” (page 32)).

The Type key identifies the type of connection, which could be Ethernet, FireWire, PPP, or 6to4.

26 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Note: If the service is PPP, the value of the Type key must be PPP and a SubType key must be added to
indicate the type of PPP, such as PPPoE (PPP over Ethernet).

In addition to the required keys, the Interface dictionary usually contains the UserDefinedName key, which
holds the user-visible name of the network port.

The Interface dictionary keys and values are summarized in Table 3-1, along with associated actions of
configuration agents.

Table 3-1 Keys and values for the Interface dictionary

NotesFurther action requiredValueKey

NoneBSD device nameDeviceName

NoneAirPortHardware

NoneEthernetHardware

NoneModemHardware

NoneEthernetType

NoneFireWireType

None6to4Type

PPP controller
configures this
service.

Must supply a SubType key.PPPType

Required for PPP over Ethernet services.PPPoESubType

Required for PPP over serial, modem,
Bluetooth, etc. services.

PPPSerialSubType

Required for VPN (using PPTP) services.PPTPSubType

Required for VPN (using L2TP) services.L2TPSubType

NoneHuman readable nameUserDefinedName

Protocol Entity Dictionaries

Each protocol entity dictionary contains the information the system needs to configure the protocol. For
example, the ConfigMethod property in the IPv4 entity dictionary might tell the system to use DHCP to
configure IPv4.

Currently, the protocol entities that can be defined for a service are:

 ■ AppleTalk

 ■ DNS

Layout of the Persistent Store 27
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

 ■ IPv4

 ■ IPv6

 ■ PPP

For the most part, a service dictionary can contain any combination of these protocol entity dictionaries. If
an interface does not support a protocol, however, the corresponding dictionary is ignored. For example, in
Mac OS X version 10.3, the AppleTalk dictionary is ignored for PPP services because Mac OS X does not
support AppleTalk over PPP.

The contents of some protocol entity dictionaries (such as PPP) affect the contents of other members of a
network service dictionary. The following sections describe the contents of each protocol entity dictionary,
including any effect those contents might have on other properties.

AppleTalk

The AppleTalk protocol entity dictionary is an optional protocol entity dictionary. If it is present, it contains
the following required key:

 ■ ConfigMethod (kSCValNetAppleTalkConfigMethod)

The possible values for the ConfigMethod key are:

 ■ Node (kSCPropNetAppleTalkConfigMethodNode). The standard AppleTalk configuration, which is
suitable for general workstations.

 ■ Router (kSCPropNetAppleTalkConfigMethodRouter). Used for AppleTalk routers.

 ■ SeedRouter (kSCPropNetAppleTalkConfigMethodSeedRouter). Used for AppleTalk seed routers.

Depending on which configuration method you choose, other key-value pairs may be required. For example,
if you select the SeedRouter configuration method, you must also supply values for the SeedNetworkRange
and SeedZones keys.

For more information on AppleTalk configuration options, you can view the man page for the appletalk.cfg
file (the default configuration file the appletalk command reads) at http://developer.apple.com/documen-
tation/Darwin/Reference/ManPages/index.html.

The key-value pairs in the AppleTalk protocol entity dictionary have no effect on the contents of other
dictionaries in a network service dictionary.

DNS

The DNS protocol entity dictionary is an optional protocol entity dictionary. It is usually present in a service’s
network service dictionary, but is often empty. An empty DNS protocol dictionary means that the user chooses
not to manually configure DNS, allowing the DNS server names and search domains to be automatically
supplied by the ISP.

If you want to require the use of specific DNS servers and search domains, you can add any of the following
optional keys to the DNS protocol entity dictionary:

 ■ DomainName (kSCPropNetDNSDomainName)

 ■ SearchDomains (kSCPropNetDNSSearchDomains)

28 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

http://developer.apple.com/documentation/Darwin/Reference/ManPages/index.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/index.html

 ■ ServerAddresses (kSCPropNetDNSServerAddresses)

 ■ SortList (kSCPropNetDNSSortList)

For more information on the SortList key, you can view the man page for the resolver configuration file format
at http://developer.apple.com/documentation/Darwin/Reference/ManPages/index.html.

The key-value pairs in the DNS protocol entity dictionary have no effect on the contents of other dictionaries
in a network service dictionary.

IPv4

The IPv4 protocol entity dictionary is an optional protocol entity dictionary. It has one required key:

 ■ ConfigMethod (kSCPropNetIPv4ConfigMethod)

Table 3-2 (page 29) shows the six possible values of the ConfigMethod key. It also shows the additional keys
you must supply with certain ConfigMethod values.

Table 3-2 Optional values for the IPv4 ConfigMethod key

Further action requiredValue

NoneBOOTP

NoneDHCP

NoneLinkLocal

Provide values for Addresses, Router, SubnetMasks Setup: keys.INFORM

Provide values for Addresses, Router, SubnetMasks Setup: keys.Manual

Can specify a manual address.PPP

For all ConfigMethod values except PPP, the IPv4 configuration agent publishes values for the Addresses,
SubnetMasks, Router, and InterfaceName State: keys. When the ConfigMethod is PPP, the PPP controller
publishes values for the Addresses, DestAddresses, Router, and InterfaceName State: keys. For more
information on these configuration agents, see “Behavior of the Configuration Agents” (page 35).

IPv6

The IPv6 protocol entity dictionary is an optional protocol entity dictionary. The IPv6 protocol entity dictionary
has much the same composition as the IPv4 protocol entity dictionary and it, too, has a single required key:

 ■ ConfigMethod (kSCPropNetIPv6ConfigMethod)

Table 3-3 (page 30) shows the four possible values of the ConfigMethod key, along with any further action
required.

Layout of the Persistent Store 29
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

http://developer.apple.com/documentation/Darwin/Reference/ManPages/index.html

Table 3-3 Optional values for the IPv6 ConfigMethod key

NotesFurther action requiredValue

IPv6 configuration agent publishes values for
Addresses, PrefixLength, Flags, and InterfaceName
State: keys.

NoneAutomatic

IPv6 configuration agent publishes values for
Addresses, PrefixLength, Flags, Router, and
InterfaceName State: keys.

Provide values for
Addresses, Router, and
PrefixLength

Manual

IPv6 configuration agent publishes values for
PrefixLength, Flags, and InterfaceName State: keys.

NoneRouterAdvertisement

IPv6 configuration agent publishes values for
Addresses, PrefixLength, Flags, and InterfaceName
State: keys.

Provide value for 6to4
Relay

6to4

If an IPv6 protocol entity dictionary is present in a network service dictionary, the PPP controller triggers IPv6
negotiation within PPP. It then configures the LinkLocal address if the IPv6 negotiation with the server was
successful.

PPP

The PPP protocol entity dictionary is an optional protocol entity dictionary. The schema provides many keys
and values for use in this dictionary to allow developers to define finely grained services. The content of the
PPP protocol entity dictionary affects the contents of some of the other dictionaries in a network service,
most notably, the IPv4 and Interface dictionaries. In addition, the presence of a PPP service in a set requires
the presence of the PPPOverridePrimary key in the IPv4 subdictionary in the set’s Global dictionary (as
described in “The Sets Dictionary” (page 24)).

Mac OS X recognizes a wide range of options for PPP services, many of which are used only in very special
circumstances. This document does not attempt to describe them all. Instead, this section focuses on the
PPP options a user sees in Network preferences. Because you can connect to the vast majority of PPP services
using these more generic options, you can create a PPP protocol entity dictionary using the keys described
in this section (and their default values), and your connection should succeed. Then, you can refine your
service by adding other keys defined in the SCSchemaDefinitions.h file.

Table 3-4 shows the keys for the user-visible PPP options, along with some possible values.

Table 3-4 Optional keys and values for the PPP protocol entity dictionary

NotesValueKey

Enables automatic dial-up. This key should be used with care to
avoid unwanted dialing.

0DialOnDemand

Prompts the user to maintain the PPP connection when the
seconds in the IdleReminderTimer value elapse. If the user doesn’t
acknowledge the onscreen dialog, PPP automatically disconnects.

0IdleReminder

30 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

NotesValueKey

The number of seconds to elapse before the user is reminded to
maintain the PPP connection (if IdleReminder is enabled).

1800IdleReminderTimer

Automatically disconnects if there is no traffic for the number of
seconds in the DisconnectOnIdleTimer value.

1DisconnectOnIdle

The number of idle seconds to elapse before the PPP connection
automatically disconnects (if DisconnectOnIdle is enabled).

900DisconnectOnIdleTimer

Automatically disconnects when the user logs out or when the
user switches out with fast user switching.

1DisconnectOnLogout

For modem-based connections, enables redial if busy.1CommRedialEnabled

The number of times to redial if busy (if CommRedialEnabled is
enabled).

1CommRedialCount

The interval in seconds to wait between redialing if busy (if
CommRedialEnabled is enabled).

30CommRedialInterval

Enables the PPP echo protocol. This protocol allows the rapid
detection of an unreported modem disconnection. Enabling this
protocol generates additional traffic and may not be suitable if
the user pays by traffic load instead of by connection time.

1LCPEchoEnabled

Enables VJ (Van Jacobson) compression on the PPP link. For
PPPSerial connections, the value can be 1 (“on”) or 0 (“off”). For
PPPoE, PPTP, and L2TP connections, the value should be 0 (“off”).

1IPCPCompressionVJ

Enables display of a Terminal window to show login and
password interaction with a server. This works only with PPPSerial
connections.

0CommDisplayTerminalWindow

Enables the logging of the entire PPP negotiation, which can be
useful for debugging a connection failure.

0VerboseLogging

Optional name for the connection. This value has no effect on
the PPP protocol.

UserDefinedName

User name for authentication purposes.AuthName

Password for authentication purposes.AuthPassword

The address or name of the remote server. This can be a phone
number for a PPPSerial connection, a ServiceName for a PPPoE
connection, or an IP address or name for a PPTP or L2TP
connection.

CommRemoteAddress

Used only for PPPSerial connections, this is an alternate address
to use when the address in CommRemoteAddress is busy.

CommAlternateRemoteAddress

Layout of the Persistent Store 31
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

The definition of a PPP service requires a few changes in some of the other members of your network service
dictionary. If you are providing a PPP service, you need to make the following changes to the network service
dictionary you are building:

 ■ The Type key in the Interface dictionary must have the value PPP. This ensures the PPP Controller agent
will act on this service.

 ■ You must add the SubType key to the Interface dictionary and give it the value that describes the type
of PPP service you’re providing, such as PPPoE or L2TP.

 ■ If you’re defining a PPP service meant to be used over a modem, you’ll need to add a modem hardware
entity dictionary to the network service dictionary.

Hardware Entity Dictionaries

Your network service dictionary must contain exactly one hardware entity dictionary, which should provide
information on a per-service basis. Its name must match the value of the Hardware property of the Interface
dictionary (described in “The Interface Dictionary” (page 26)). The hardware entity dictionary can be:

 ■ Ethernet

 ■ AirPort

 ■ Modem

A hardware entity dictionary contains details about the network hardware underlying the service defined by
the network service dictionary. Therefore, the keys and values in the dictionary vary according to the type
of hardware the dictionary describes.

The AirPort hardware entity dictionary can contain some combination of the keys shown in Table 3-5.

Note: In versions of Mac OS X later than 10.3, the contents of the AirPort hardware entity dictionary may
move to another location.

Table 3-5 Keys and values for the AirPort hardware entity dictionary

ValueKey

0 or 1AllowNetCreation

AuthPassword

KeychainAuthPasswordEncryption

AutomaticJoinMode

PreferredJoinMode

RecentJoinMode

StrongestJoinMode

0 or 1PowerEnabled

32 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

ValueKey

PreferredNetwork

0 or 1SavePasswords

The Modem hardware entity dictionary supports a large number of options that allow you to specify a highly
detailed setup. Table 3-6 displays some of the keys the schema defines along with some typical values.

Table 3-6 Keys and typical values for the Modem hardware entity dictionary

NotesValueKey

This is the CCL (connection control
language) script.

Name of file in modem scripts
folder

ConnectionScript

1DataCompression

Other values are IgnoreDialTone and
Manual.

WaitForDialToneDialMode

1ErrorCorrection

0 or 1HoldCallWaitingAudibleAlert

0 or 1HoldDisconnectOnAnswer

0 or 1HoldEnabled

0 or 1HoldReminder

HoldReminderTime

0PulseDial

1Speaker

The speed the serial port is opened with to
communicate with the modem.

Speed

As the developer of a network-configuration application, you supply the modem options required by your
setup. When a user opens Network preferences, she can set the options that matter to her. For example, an
application can set the ConnectionScript property to point to a file in the modem scripts folder at
/Library/Modem Scripts. A user might choose different Speaker and DialMode options depending on
the environment in which she is making the connection.

The Proxies Dictionary

The Proxies dictionary in each network service dictionary contains the proxy server configuration information.
The System Configuration schema defines several properties that allow a user to specify how to configure
proxies for the given service. For example, a user can:

 ■ Choose which proxies to enable

Layout of the Persistent Store 33
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

 ■ Identify the server and port associated with enabled proxies

 ■ List network resources that should be accessed without a proxy server

A network-configuration application might deliver a custom set of default proxy information for the user to
accept or modify. To do this, the application supplies a Proxies dictionary that includes specific proxy servers,
ports, and enable status.

For most proxy types, the SCSchemaDefinitions.h file defines three keys that provide the name of the
proxy, the port, and whether or not the proxy is enabled. The keys are of the form ProtocolProxy, ProtocolPort,
and ProtocolEnable, where Protocol is the name of the service to be proxied. In addition, the schema defines
the ExceptionsList key which allows you to list specific hosts and domains for which the proxy settings should
be bypassed. Table 3-7 lists the keys and values you can use to create a Proxies dictionary.

Table 3-7 Keys and values for the Proxies dictionary

NotesValueKey

Array of host and domain
names

ExceptionsList

Controls whether or not FTP clients use passive FTP. Note
that passive FTP can cause problems with older servers
and some network configurations. Default value is 1
(passive FTP enabled).

0 or 1FTPPassive

If the value of FTPEnable is 1, the FTP proxy server is
specified by the value of the FTPProxy key.

0 or 1FTPEnable

Port numberFTPPort

Proxy serverFTPProxy

If the value of GopherEnable is 1, the gopher proxy server
is specified by the value of the GopherProxy key.

0 or 1GopherEnable

Port numberGopherPort

Proxy serverGopherProxy

If the value of HTTPEnable is 1, the HTTP proxy server is
specified by the value of the HTTPProxy key.

0 or 1HTTPEnable

Port numberHTTPPort

Proxy serverHTTPProxy

If the value of HTTPSEnable is 1, the HTTPS proxy server is
specified by the value of the HTTPSProxy key.

0 or 1HTTPSEnable

Port numberHTTPSPort

Proxy serverHTTPSProxy

34 Layout of the Persistent Store
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

NotesValueKey

If the value of RTSPEnable is 1, the RTSP proxy server is
specified by the value of the RTSPProxy key.

0 or 1RTSPEnable

Port numberRTSPPort

Proxy serverRTSPProxy

If the value of SOCKSProxy is 1, the SOCKS proxy server is
specified by the value of the SOCKSProxy key.

0 or 1SOCKSEnable

Port numberSOCKSPort

Proxy serverSOCKSProxy

Behavior of the Configuration Agents

Recall that the system-level daemon, configd, keeps the network state data current by initializing the
dynamic store and loading the configuration agents as bundles (or plug-ins). The agents run within the
configd memory space and are each responsible for a well-defined area of configuration management.

The configuration agents use the keys and values defined in the SCSchemaDefinitions.h file to
communicate with the dynamic store. The agents use some keys to obtain configuration information and
others to publish the results of events they detect and actions they take.

Although some configuration agents are of internal interest only, others affect the dynamic store in ways
your application might need to understand. This section describes the behavior of these configuration agents
and lists many of the keys and values they use.

Preferences Monitor

The preferences monitor reads the currently active configuration set specified by the user’s CurrentSet
preference and loads the associated preferences into the dynamic store. Loading the preferences involves a
mapping process that flattens into a single level the hierarchy of nested dictionaries that make up the currently
active set. The mapping replaces each nested dictionary with a new key-value pair. The new key is the path
from the root of the set dictionary to the nested dictionary and the value is the nested dictionary’s value,
minus any additional nested dictionaries. In this way, an arbitrarily deep hierarchy of nested dictionaries can
be represented as a series of top-level dictionaries, none of which contain nested dictionaries.

The mapping process also removes dictionaries that are empty or marked inactive and it resolves all references
and links. It’s important to note that a dictionary is considered inactive when it contains the __INACTIVE__
key, regardless of the key’s value.

As it maps the contents of the set dictionary into the dynamic store, the preferences monitor prefixes each
key with the string Setup:. This identifies these keys as having come from the user’s preferences in the
persistent store. Other keys in the dynamic store begin with other strings, such as State:. The State: keys
are those the other configuration agents use to hold transient network and system state information.

Behavior of the Configuration Agents 35
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

As an example of the mapping process the preferences monitor performs, Listing 3-1 shows a subset of a
user’s preferences as it appears in the persistent store.

Listing 3-1 Subset of service dictionary (ServiceID 100)

<key>100</key>
<dict>
 <key>IPv4</key>
 <dict>
 <key>ConfigMethod</key>
 <string>BootP</string>
 </dict>
 <key>DNS</key>
 </dict>
 <key>Interface</key>
 <dict>
 <key>DeviceName</key>
 <string>en0</string>
 <key>Hardware</key>
 <string>Ethernet</string>
 <key>Type</key>
 <string>Ethernet</string>
 <key>UserDefinedName</key>
 <string>Built-in Ethernet</string>
 </dict>
 <key>UserDefinedName</key>
 <string>Built-in Ethernet</string>
</dict>

Listing 3-2 shows what this dictionary looks like after the preferences monitor maps it.

Listing 3-2 Subset of service dictionary, after mapping into the dynamic store

/Network/Service/100
/Network/Service/100/IPv4
<dictionary>
 <key>ConfigMethod</key>
 <string>BootP</string>
</dictionary>

/Network/Service/100/Interface
<dictionary>
 <key>DeviceName</key>
 <string>en0</string>
 <key>Hardware</key>
 <string>Ethernet</string>
 <key>Type</key>
 <string>Ethernet</string>
 <key>UserDefinedName</key>
 <string>Built-in Ethernet</string>
</dictionary>

<dictionary>
 <key>UserDefinedName</key>
 <string>Built-in Ethernet</string>
</dictionary>

36 Behavior of the Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

As you can see in Listing 3-2 (page 36), the IPv4 and Interface subdictionaries are now at the same level as
their parent (the service dictionary) and have keys that describe their position in the parent dictionary. In
addition, the empty DNS subdictionary in Listing 3-1 (page 36) is not represented in the mapping.

When it generates a new mapping, the preferences monitor keeps track of the differences from the old
mapping. Applying these differences to the dynamic store triggers notifications associated with keys that
have changed. This ensures that reconfiguration is automatic when, for example, a user selects a different
location in Network preferences or from the Apple menu.

Kernel Event Monitor

The kernel event monitor maintains a list of all network interfaces defined in the system, the link status
associated with each interface, and any assigned addresses. It monitors low-level kernel events and watches
the network stacks, keeping track of the link status of each network interface. The kernel event monitor’s
main job is to post the status of each network interface in the dynamic store. This frees applications from
having to reach into the kernel to find out, for example, if the Ethernet cable is plugged in or if the assigned
addresses have changed.

Unlike most other agents, the kernel event monitor does not retrieve configuration information from Setup:
keys in the dynamic store. Instead, it receives its input directly from the kernel and publishes its observations
in some of the State: keys, as shown in Table 3-8.

Table 3-8 Keys the kernel event monitor publishes

NotesPropertyKey

Published for all interfaces.AddressesState:/Network/Interface/InterfaceName/IPv4

Published for broadcast interfaces.SubnetMasksState:/Network/Interface/InterfaceName/IPv4

Published for broadcast interfaces.BroadcastAddressesState:/Network/Interface/InterfaceName/IPv4

Published for point-to-point
interfaces.

DestAddressesState:/Network/Interface/InterfaceName/IPv4

TRUE when interface is active.ActiveState:/Network/Interface/InterfaceName/Link

This is an array of interface names.InterfacesState:/Network/Interface

IPv4 Configuration Agent

The IPv4 configuration agent configures Ethernet-type devices for IP networking. When the preferences
monitor loads an updated mapping from the persistent store into the dynamic store, the IPv4 configuration
agent receives a notification for each configured service. It gets the configuration information from the
relevant Setup: keys and applies that configuration to the indicated interface. It then updates the dynamic
store to reflect the actual IP addresses that were assigned. For some configurations, such as DHCP and BootP,
the IPv4 configuration agent also updates the dynamic store with any configuration options it received from
the server.

Behavior of the Configuration Agents 37
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

When a user switches locations or makes a change to the IP configuration preferences in Network preferences,
the preferences monitor loads the new settings into the dynamic store. The IPv4 configuration agent receives
notification of the changes and updates the network configuration according to the new settings. It then
publishes the new network status information in the appropriate State: keys.

The IPv4 configuration agent also monitors changes in link status. It does this by registering interest in the
State: keys the kernel event monitor publishes (shown in Table 3-8 (page 37)). This supports the automatic
configuration of network interfaces when the computer is plugged into the network. Table 3-9 shows the
keys the IPv4 configuration agent uses.

Table 3-9 Keys the IPv4 configuration agent uses

NotesPropertyKey

The list of network interfaces.InterfacesState:/Network/Interface

The link status of a given interface.ActiveState:/Network/Interface/InterfaceName/Link

An array of service IDs used for ranking and
prioritization.

ServiceOrderSetup:/Network/Global/IPv4

The BSD interface name to be configured.DeviceNameSetup:/Network/Service/ServiceID/Interface

Configures services when Type is Ethernet.TypeSetup:/Network/Service/ServiceID/Interface

Manual, BootP, DHCP, PPP, INFORM,
LinkLocal.

ConfigMethodSetup:/Network/Service/ServiceID/IPv4

For Manual and INFORM, the IP address to
be assigned.

AddressesSetup:/Network/Service/ServiceID/IPv4

For Manual and INFORM, the IP mask to be
assigned.

SubnetMasksSetup:/Network/Service/ServiceID/IPv4

The IPv4 configuration agent also publishes values in the dynamic store. Table 3-10 shows the keys the IPv4
configuration agent publishes and the circumstances under which it does so.

Table 3-10 Keys the IPv4 configuration agent publishes

NotesPropertyKey

The IP address assigned for this service. For
Manual and INFORM, this should be the same
address specified in the Setup: keys.

AddressesState:/Network/Service/ServiceID/IPv4

The IP mask assigned for this service. For
Manual and INFORM, this should be the same
address specified in the Setup: keys.

SubnetMasksState:/Network/Service/ServiceID/IPv4

RouterState:/Network/Service/ServiceID/IPv4

The BSD interface name associated with this
service.

InterfaceNameState:/Network/Service/ServiceID/IPv4

38 Behavior of the Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

NotesPropertyKey

Published when ConfigMethod is DHCP,
BootP, or INFORM and required data has
been provided by the server.

DomainNameState:/Network/Service/ServiceID/DNS

Published when ConfigMethod is DHCP,
BootP, or INFORM and required data has
been provided by the server.

ServerAddressesState:/Network/Service/ServiceID/DNS

Published when ConfigMethod is DHCP,
BootP, or INFORM and required data has
been provided by the server.

ServerAddressesState:/Network/Service/ServiceID/NetInfo

Published when ConfigMethod is DHCP,
BootP, or INFORM and required data has
been provided by the server.

ServerTagsState:/Network/Service/ServiceID/NetInfo

DHCP-specific information, such as the lease
time.

State:/Network/Service/ServiceID/DHCP

IPv6 Configuration Agent

Like the IPv4 configuration agent, the IPv6 configuration agent also configures Ethernet-type devices for IP
networking. In addition, the IPv6 configuration agent configures FireWire devices and the new 6to4 interface.
When the preferences monitor loads an updated mapping from the persistent store into the dynamic store,
the IPv6 configuration agent receives a notification for each configured service. It gets the configuration
information from the relevant Setup: keys and applies that configuration to the indicated interface. It then
updates the dynamic store to reflect the actual IP addresses that were assigned.

The IPv6 configuration agent also monitors changes in link status. It does this by registering interest in the
State: keys the kernel event monitor publishes (shown in Table 3-8 (page 37)). This supports the automatic
configuration of network interfaces when the computer is plugged into the network. Table 3-11 shows the
keys the IPv6 configuration agent uses.

Table 3-11 Keys the IPv6 configuration agent uses

NotesPropertyKey

Used to determine which interface to use
for 6to4 tunnelling.

PrimaryServiceState:/Network/Global/IPv4

The list of network interfaces.InterfacesState:/Network/Interface

Manual or automatically assigned IP
address.

AddressesState:/Network/Interface/InterfaceName/IPv6

Address-specifics flags.FlagsState:/Network/Interface/InterfaceName/IPv6

Length of address prefix or subnet.PrefixLengthState:/Network/Interface/InterfaceName/IPv6

RouterState:/Network/Interface/InterfaceName/IPv6

Behavior of the Configuration Agents 39
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

NotesPropertyKey

The link status of a given interface.ActiveState:/Network/Interface/InterfaceName/Link

The IP address to be assigned.AddressesSetup:/Network/Service/ServiceID/IPv6

Automatic, Manual, RouterAdvertisement,
6to4.

ConfigMethodSetup:/Network/Service/ServiceID/IPv6

Address-specific flags.FlagsSetup:/Network/Service/ServiceID/IPv6

Length of address prefix or subnet.PrefixLengthSetup:/Network/Service/ServiceID/IPv6

Updates routing table with the default
route.

RouterSetup:/Network/Service/ServiceID/IPv6

Configures services when Type is Ethernet,
FireWire or 6to4. Also configures IPv4
services over FireWire.

TypeSetup:/Network/Service/ServiceID/Interface

6to4 relay address.RelaySetup:/Network/Service/ServiceID/6to4

The IPv6 configuration agent also publishes values in the dynamic store. Table 3-12 (page 40) shows the
keys the IPv6 configuration agent publishes and, for some keys, the circumstances under which it does so.

Table 3-12 Keys the IPv6 configuration agent publishes

NotesPropertyKey

AddressesState:/Network/Service/ServiceID/IPv6

FlagsState:/Network/Service/ServiceID/IPv6

PrefixLengthState:/Network/Service/ServiceID/IPv6

When ConfigMethod is Manual.RouterState:/Network/Service/ServiceID/IPv6

InterfaceNameState:/Network/Service/ServiceID/IPv6

IP Monitor

The main job of the IP monitor agent is to select the primary network service. This is typically the service that
is associated with the default route and default DNS for the system. To make its determination, the IP monitor
agent examines both the user’s preferred priority of services and the current status of those services. It then
selects the currently available service that is highest on the user’s priority list and marks that service as primary
in the dynamic store.

The IP monitor agent is driven by information other agents publish in the dynamic store. It monitors the
user’s preferences mapped in by the preferences monitor and the configuration status of services published
by the IPv4 and IPv6 configuration agents and the PPP controller. Table 3-13 shows the keys the IP monitor
agent uses.

40 Behavior of the Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Table 3-13 Keys the IP monitor uses

NotesPropertyKey

ActiveState:/Network/Interface/InterfaceName/Link

ServiceOrderSetup:/Network/Global/IPv4

Specified by the user. In general, these
settings are preferred over values derived
from the network.

RouterSetup:/Network/Service/ServiceID/IPv4

DomainNameSetup:/Network/Service/ServiceID/DNS

ServerAddressesSetup:/Network/Service/ServiceID/DNS

SearchDomainsSetup:/Network/Service/ServiceID/DNS

SortListSetup:/Network/Service/ServiceID/DNS

BindingMethodsSetup:/Network/Service/ServiceID/NetInfo

ServerAddressesSetup:/Network/Service/ServiceID/NetInfo

ServerTagsSetup:/Network/Service/ServiceID/NetInfo

All propertiesSetup:/Network/Service/ServiceID/Proxies

Settings derived from the type of
configuration. In general, these settings
are used when a user-specified setting is
unavailable.

AddressesState:/Network/Service/ServiceID/IPv4

RouterState:/Network/Service/ServiceID/IPv4

DomainNameState:/Network/Service/ServiceID/DNS

ServerAddressesState:/Network/Service/ServiceID/DNS

SearchDomainsState:/Network/Service/ServiceID/DNS

SortListState:/Network/Service/ServiceID/DNS

ServerAddressesState:/Network/Service/ServiceID/NetInfo

ServerTagsState:/Network/Service/ServiceID/NetInfo

All propertiesState:/Network/Service/ServiceID/Proxies

The IP monitor also publishes values in the dynamic store. Table 3-14 shows the keys the IP monitor publishes
and the circumstances under which it does so.

Behavior of the Configuration Agents 41
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Table 3-14 Keys the IP monitor publishes

NotesPropertyKey

Identifies which network service is deemed
primary.

PrimaryServiceState:/Network/Global/IPv4

Identifies which network interface is deemed
primary.

PrimaryInterfaceState:/Network/Global/IPv4

Updates routing table with the PrimaryService
default route. Handles “proxy arp” which is
enabled if the Router value is the same as one
of the service’s Addresses values (enabled
automatically if Router has no value).

RouterState:/Network/Global/IPv4

Checks each of the DNS properties for the
primary service, favoring a property from the
Setup: key over one from the State: key.

DomainNameState:/Network/Global/DNS

ServerAddressesState:/Network/Global/DNS

SearchDomainsState:/Network/Global/DNS

SortListState:/Network/Global/DNS

Generates the list of NetInfo server addresses
and server tags based on the primary service’s
NetInfo information.

ServerAddressesState:/Network/Global/NetInfo

ServerTagsState:/Network/Global/NetInfo

If available, uses the primary service’s proxy
information in the Setup: key, otherwise, uses
the proxy information in the State: key.

All propertiesState:/Network/Global/Proxies

For ConfigMethod other than Manual.RouterState:/Network/Service/ServiceID/IPv6

PPP Controller

The PPP controller configures PPP interfaces for IP networking. It manages connections through dial-up
modems and through PPP over Ethernet (PPPoE) and VPN (virtual private network) connections using PPTP
(point-to-point tunneling protocol) and L2TP (layer 2 tunneling protocol). The PPP controller interacts with
dialer applications and instantiates PPP interfaces as needed.

The PPP controller gets its configuration information from the Setup: keys provided by the preferences
monitor and receives notification when these keys change. After an interface is configured, the PPP controller
publishes the IP, destination, and router addresses and the DNS information provided by the PPP server.
Table 3-15 shows the keys the PPP controller uses.

42 Behavior of the Configuration Agents
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Table 3-15 Keys the PPP controller uses

NotesPropertyKey

DeviceNameSetup:/Network/Service/ServiceID/Interface

Configures services with Type PPPTypeSetup:/Network/Service/ServiceID/Interface

PPPSerial, PPPoE, PPTP, L2TPSubTypeSetup:/Network/Service/ServiceID/Interface

ServiceOrderSetup:/Network/Global/IPv4

All propertiesSetup:/Network/Service/ServiceID/PPP

The PPP controller publishes many keys in the dynamic store. Table 3-16 shows some of them.

Table 3-16 Some keys the PPP controller publishes

NotesPropertyKey

AddressesState:/Network/Service/ServiceID/IPv4

DestAddressesState:/Network/Service/ServiceID/IPv4

RouterState:/Network/Service/ServiceID/IPv4

InterfaceNameState:/Network/Service/ServiceID/IPv4

DomainNameState:/Network/Service/ServiceID/DNS

ServerAddressesState:/Network/Service/ServiceID/DNS

SearchDomainsState:/Network/Service/ServiceID/DNS

SortListState:/Network/Service/ServiceID/DNS

Reserved for Apple useState:/Network/Service/ServiceID/PPP

Using the Schema

The previous section describes how the System Configuration schema structures the persistent store and
which key-value combinations define sets and specific services. This is essential knowledge for any developer
writing an application that defines a set or provides a network service, because the information must be
presented in the correct format. It is also essential knowledge for the developer of an application that requires
detailed PPP connection information or that requests notifications. This is because the configuration agents
and the dynamic store also adhere to the schema. Whether you need to register for notifications or get
information about current connection status, you need to know which key-value pairs hold the data you’re
interested in.

This section describes three situations in which knowledge of the schema is essential.

Using the Schema 43
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

Programmatically Setting Preferences

The System Configuration framework provides an API to programmatically set the keys and values that define
sets and services. Unfortunately, the API is very low level. For the most part, it consists of functions to get
and set individual key-value pairs. It provides no guidance on how to lay out a set or network service dictionary
and no support for building these complex structures.

To help meet the needs of developers, Apple’s Developer Technical Support provides a large library of sample
code that wraps some of the low-level System Configuration API in higher-level functions. Not only does this
library insulate you from much of the low-level manipulation of key-value pairs, it also provides a streamlined
template you can use to define a basic service. When you get this basic service working, you can then tweak
the settings, using the information in“Layout of the Persistent Store” (page 23) as a guide.

The sample code library, called MoreSCF, contains several modules that help you programmatically define
sets, find active ports, and activate services.

Getting Detailed PPP Connection-Status Information

The System Configuration framework provides API that allows you to get detailed information about the
current PPP connection. Available in Mac OS X version 10.3 and later, this API gives you access to information
gathered by the PPP controller. To use this API, you should be familiar with the layout of the network service
dictionary and PPP protocol entity dictionary, as defined by the schema. This is because the information the
API returns to you follows the same structure.

Recall that the preferences monitor reads the persistent store and populates the dynamic store with flattened
keys and values that describe the user’s currently active configuration. This information is in the setup portion
of the dynamic store, using keys prefixed by Setup: (for more information on how these keys are created,
see “Preferences Monitor ” (page 35)). The other configuration agents read the setup keys they’re interested
in, monitor sources of network status information, and publish the results of their observations and
configuration actions in the state portion of the dynamic store. Although it is tempting to go directly to the
dynamic store and get the value of a specific key, in some cases, it’s not as effective as you might expect.

In particular, to get current PPP status, it’s much better to use the
SCNetworkConnectionCopyExtendedStatus function in the SCNetworkConnection API (defined in the
SCNetworkConnection.h file in the System Configuration framework). Using this function, you can get
very detailed connection-status information from the PPP controller, including some information that is never
copied into the state portion of the dynamic store.

For example, when a user chooses to make a PPP connection through a modem, there are several steps the
modem takes before connection is finally established. If you register for notification on the PPP Status key
in the dynamic store (State:/Network/Service/serviceID/PPP/Status), you’ll receive notification
when this key’s value is updated. If you need connection-status information sooner, you might choose to
retrieve the value of the PPP Status key immediately after a connection is initiated. When you do this, however,
you’ll receive the value Disconnected until after the connection completes. This is because the PPP controller
does not update the dynamic store PPP Status key until after the connection is complete. If, instead, you use
the SCNetworkConnectionCopyExtendedStatus function to request immediate notification, you’ll be
able to observe intermediate states, such as Initialize, Connect, Negotiate, Authenticate, and Connected. In
this way, you can get much more detailed (and more accurate) information than if you simply watched the
dynamic store.

44 Using the Schema
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

It’s important to remember that the SCNetworkConnection API, like most other System Configuration APIs,
depends on the schema-defined layout of network-service dictionaries and of the dynamic store. When you
use the SCNetworkConnectionCopyExtendedStatus function to get PPP connection-status information,
you receive a dictionary that contains a subdictionary for each of the service’s subcomponents, such as PPP,
IPv4, and Modem. To successfully interpret the information in these dictionaries, you need to know how the
schema defines the layout of the key-value pairs. For more information on the structure of these dictionaries,
see the appropriate sections in “The NetworkServices Dictionary” (page 26).

Getting Notifications

Understanding how the schema positions the information in the dynamic store gives you a lot of power. In
particular, it gives you access to a great deal of low-level network status information. On the other hand, it
also fosters the notion that you should be paying attention to every small change in network status.
Conceivably, you could write an application that watches large numbers of keys and provides the user with
constant updates on every network status change. This is seldom necessary, however, and it is not advisable.

Although the System Configuration framework enables you to request information at this level, it also provides
APIs that abstract some of it and provide it in more palatable forms. Therefore, it’s important to know when
it’s appropriate to request notifications on individual keys and when it’s appropriate to use the API to get
information.

For example, if your application needs to be aware of changes to network proxy settings while it runs, you
should watch the dynamic store key associated with the network proxy settings. This is will ensure you receive
a notification when any of these settings change. If, instead, you call the SCDynamicStoreCopyProxies
function to get the proxy settings in force when your application starts, you won’t get notified of changes
as your application runs.

On the other hand, watching configuration keys (the Setup: keys in the dynamic store) is usually a bad idea
unless you’re developing a configuration agent. This is because your application has no way of knowing if,
or more importantly when, configuration changes are reflected in the system’s running configuration.

Using the Schema 45
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

46 Using the Schema
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

The System Configuration Schema

This chapter describes the System Configuration reachability and connection APIs. You use the reachability
API to determine if data destined for a remote host can leave the local machine. To start or stop a PPP
connection, you use the connection API.

Note: The System Configuration connection API supports only PPP-based connections; it does not not help
you establish a TCP-based connection.

It is not necessary to have an in-depth understanding of the System Configuration architecture to determine
reachability or start a PPP connection. The reachability and connection APIs provide a layer of abstraction
that allows an application to make connections without worrying about the state of the network stack.

Scope of the Reachability and Connection APIs

Many types of applications need to find out if a remote host is reachable or to start a PPP-based connection.
For example, an application might need to check for software updates that are available from a remote server.
In Mac OS X version 10.3 and later, the System Configuration framework provides APIs to accomplish these
tasks quickly and easily, without requiring a detailed knowledge of System Configuration architecture. In
particular, the reachability and connection APIs do much of their work behind the scenes, so the application
does not have to poll for status changes or watch specific keys in the dynamic store.

The System Configuration reachability API helps an application determine if a remote host is reachable. A
remote host is considered reachable if a data packet sent to the host can leave the local computer, regardless
of what ultimately happens to the packet. In other words, the reachability of a remote host does not guarantee
that the host will receive the data.

In practice, when a remote host is deemed reachable, but the packets you send to it fail to arrive, the myriad
possible reasons for the failure fall into two broad categories:

1. A part of the Internet connection over which you have no control is broken. For example, the remote
host’s server is down.

2. A part of your local network infrastructure over which you might have control is broken. For example,
your modem hasn’t dialed or your AirPort base station is turned off.

The reachability API cannot help you with problems in the first category. As long as data packets can leave
the local machine, the remote host is considered reachable. What the reachability API can provide is help
diagnosing some of the problems in the second category. If, for example, the modem is currently disconnected,
the API can tell you this.

To further define the scope of the System Configuration reachability and connection APIs, this document
uses the following phrases to distinguish between two different types of network connection:

Scope of the Reachability and Connection APIs 47
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting
Connected

 ■ Network transport connection. This is a TCP-based connection you initiate using, for example, BSD
sockets.

 ■ Network link connection. This is a PPP-based connection you initiate by, for example, telling the modem
to dial.

The reachability API helps you determine if a remote host is reachable by examining the status of the local
network link connection. The connection API allows you to start a network link connection. After you
successfully start a network link connection, you use different API (such as Core Foundation networking API)
to establish a network transport connection.

A Reachability and Connection Example

Determining reachability and requesting a network link connection often go hand in hand. As an example,
consider the running of an email application. The sequence of events might go like this:

1. The user launches the email application to check her email.

2. The email application uses the reachability API to find out if the POP server is reachable.

3. The reachability API tells the application that the POP server is reachable, but that a network link
connection must first be made.

4. The email application asks the user if she wants to dial the modem and she clicks “OK”. (The application
might skip this step if the user has set a preference that tells the modem to dial automatically when the
email application is launched.)

5. The email application uses the connection API to start a PPP connection, which causes the modem to
dial. At this point, the email application can return to its work.

6. The reachability API notifies the email application that the network link connection is up and the email
application then uses a network transport connection to fetch the email.

After the email application delivers the email to the user, it might or might not cause the PPP connection to
drop, depending on the user’s preferences. Either way, when the email application quits, the PPP connection
is dropped and, if the email application held the last reference to the connection, the modem disconnects.
For more information on connection references, see “Starting and Stopping a Connection” (page 53).

48 A Reachability and Connection Example
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

Using the Reachability API

Note: Function names in the System Configuration framework APIs follow Core Foundation function-name
conventions. In particular, a function that has “Create” or “Copy” in its name returns a reference you must
release. To learn more about Core Foundation memory management policies, see Memory Management
Programming Guide for Core Foundation.

In versions of Mac OS X prior to 10.3, the System Configuration reachability API consisted of two functions.
The functions, SCNetworkCheckReachabilityByAddress and SCNetworkCheckReachabilityByName,
supply information about the reachability of a remote host by providing a set of flags. The flags (defined in
SCNetwork.h) indicate, for example, that the specified remote host could be reached using the current
network configuration. Unfortunately, these functions encouraged polling because they did not support
notifications.

In Mac OS X version 10.3, the System Configuration framework introduced the SCNetworkReachability API
which supports asynchronous notifications of changes in the connection to a remote host. You still get the
same set of connection-status flags the previous reachability functions supplied to determine if a connection
is required, but you no longer have to poll to find out if a connection attempt is successful.

Most functions in the new API rely on an SCNetworkReachabilityRef (defined in
SCNetworkReachability.h) you use to identify the remote target. You create this reference for a specific
address or hostname and use it to add the reference to your run loop and set up a callback function. You
can use the information in the connection-status flags to request a network link connection and the new
reachability API notifies you when the connection is established.

You can use the new reachability functions in your application to perform the following tasks:

 ■ Create a reference for your target remote host you can use in other reachability functions.

 ■ Add the target to your run loop.

 ■ Provide a callback function that’s called when the reachability status of your target changes.

 ■ Determine if the target is reachable.

The following sections describe how to use the SCNetworkReachability functions to perform these tasks. For
a code example demonstrating how to use the SCNetworkReachability API, see SimpleReach.

Creating a Reference

The SCNetworkReachability API provides three functions that create a target reference you can use to monitor
the reachability of a remote host:

 ■ SCNetworkReachabilityCreateWithAddress

 ■ SCNetworkReachabilityCreateWithAddressPair

 ■ SCNetworkReachabilityCreateWithName

Using the Reachability API 49
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

If you are interested in the reachability of only the remote host, you can use either
SCNetworkReachabilityCreateWithAddress or SCNetworkReachabilityCreateWithName. For
SCNetworkReachabilityCreateWithAddress, you supply a remote host address in a sockaddr structure.
For more information on the sockaddr structure, see the networking man page at http://developer.ap-
ple.com/documentation/Darwin/Reference/ManPages/man4/netintro.4.html. For
SCNetworkReachabilityCreateWithName, you supply a remote host name, such as www.apple.com.

If you need to monitor possible changes to both the local and remote host addresses, you use the
SCNetworkReachabilityCreateWithAddressPair function. This function returns a reference you can
use to find out if:

 ■ The address of your local host changes

 ■ The remote address becomes unreachable

 ■ The network route associated with the remote host changes

All three functions return an object of type SCNetworkReachabilityRef for the remote host, which you
can use in any of the other SCNetworkReachability functions.

Adding a Target to a Run Loop

To ensure that your application receives notification when the reachability status of the target remote host
changes, you add the target’s SCNetworkReachabilityRef to your application’s run loop. A run loop
monitors sources of input to an application. When an input source becomes ready for processing (because
some activity occurs), the run loop dispatches control to a callback function associated with the input source.
For more information on run loops and modes, see Run Loops.

For a network-aware application, the input source is the SCNetworkReachabilityRef, the activity is a
change in the target’s connection status, and the callback function is one you provide. Thus, by using the
reachability API to add your target to your application’s run loop and to provide a callback function (described
in “Associating a Callback Function With the Target” (page 50)), you ensure your application will be notified
of changes in the target’s reachability.

To add an SCNetworkReachabilityRef to your application’s run loop, you use the
SCNetworkReachabilityScheduleWithRunLoop function. You provide theSCNetworkReachabilityRef,
a reference to your application’s run loop, and the mode in which the run loop should run, typically the
default mode.

To remove an SCNetworkReachabilityRef from your application’s run loop, you use the
SCNetworkReachabilityUnscheduleFromRunLoop function, which requires the same parameters as the
SCNetworkReachabilityScheduleWithRunLoop function.

Associating a Callback Function With the Target

To make use of the notifications the reachability API provides, you should associate a callback function with
the SCNetworkReachabilityRef representing the remote host you’re interested in. The callback function
might display the change in the connection to the user or perform some other task.

To associate a callback function with your target, you first define a function of type
SCNetworkReachabilityCallBack (this type is defined inSCNetworkReachability.h). To pass contextual
information about the changes to your callback function, you define a structure of type

50 Using the Reachability API
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man4/netintro.4.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man4/netintro.4.html

SCNetworkReachabilityContext. You use the info argument to contain the context information (you
can also specify NULL, if context information is unnecessary). Finally, you pass the callback function, the
SCNetworkReachabilityRef representing the remote host, and the context to the
SCNetworkReachabilitySetCallback function.

Note: If you pass NULL for the SCNetworkReachabilityCallBack parameter, you remove the callback
function currently associated with the target.

Determining Reachability

The SCNetworkReachability API provides the SCNetworkReachabilityGetFlags function you can use to
determine the reachability of a remote host. This function supplies the same connection-status flags the
older reachability functions defined in SCNetwork.h supplied.

To use this function, you supply the SCNetworkReachabilityRef for your remote host and the address
of the variable you declare to contain the flags. The flags you can receive are listed in Table 4-1.

Table 4-1 SCNetworkConnectionFlags

MeaningFlag name

The target is reachable through a transient connection (for example,
PPP).

kSCNetworkFlags-
TransientConnection

The target is reachable using the current network configuration.kSCNetworkFlagsReachable

The target is reachable using the current network configuration, but a
connection must be established first. For example, a suitable dialup
connection exists, but it is not active.

kSCNetworkFlags-
ConnectionRequired

The target is reachable using the current network configuration, but a
connection must be established first. Further, any traffic directed to
the target will automatically initiate the connection.

kSCNetworkFlags-
ConnectionAutomatic

The target is reachable using the current network configuration, but a
connection must be established first. Further, some user action is
required to establish connection (for example, providing a password).

kSCNetworkFlags-
InterventionRequired

The target is associated with a network interface on the current system.
For example, the target address is one of the IP addresses assigned to
the system.

kSCNetworkFlags-
IsLocalAddress

Network traffic to the target will not pass through a router because the
destination address is on a network that’s directly connected to one
of the local machine’s interfaces (for example, it’s on the same subnet
as the local machine).

kSCNetworkFlagsIsDirect

Using the Reachability API 51
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

Using the Network Connection API

In Mac OS X version 10.3, the System Configuration framework introduced the SCNetworkConnection API.
This API allows an application to control connection-oriented services already defined in the system. Currently,
an application can control only PPP services with this API.

In addition to controlling an existing service, an application can use the SCNetworkConnection API to get
information about the connection. The API provides connection-status information on two levels:

 ■ High-level, generic information that describes the status of the network connection, such as connected
or disconnected

 ■ Detailed, PPP-specific information that describes the status of the PPP stack

These two levels of status information target different types of applications. A network-aware application
might want to display whether or not a network link connection is live, but is probably uninterested in
knowing if the PPP controller is currently configuring the link layer. A complex dialer application, on the other
hand, might need to know exactly what the PPP controller is doing at each step of the connection process.

Although these functions are defined in the same header file, this chapter does not describe the PPP-specific
connection-status functions in SCNetworkConnection.h. For more information on how to use these
functions and how to use the System Configuration schema to interpret the results, see “The System
Configuration Schema” (page 23). Instead, this chapter focuses on the remainder of the SCNetworkConnection
API, describing how an application can use it to accomplish the following tasks:

 ■ Create a reference representing the connection you can use with other connection functions.

 ■ Add the connection reference to your application’s run loop.

 ■ Start a connection.

 ■ Get the status of a connection.

 ■ Stop an existing connection.

For a code example demonstrating the use of the SCNetworkConnection API, see SimpleDial.

Creating a Connection Reference

The SCNetworkConnection API provides one function you can use to create a connection reference:
SCNetworkConnectionCreateWithServiceID. To use this function, you supply a service ID and a callback
function, along with a couple of other parameters, and you receive an object of type
SCNetworkConnectionRef. You use this object to represent the connection in the other
SCNetworkConnection functions.

Because you’ll be using the SCNetworkConnectionRef to refer to a specific PPP connection, you must
supply a unique service ID to identify it. There are two ways to get this service ID. One way is to look in the
dynamic store for available services and choose one. The second way is for your application to use the
SCNetworkConnectionCopyUserPreferences function to get the default service ID (the one the Internet
Connect application uses).

52 Using the Network Connection API
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

Although you can pass NULL for the callback function parameter, it is not recommended. If you don’t define
a callback function, your application will not receive status-change notifications and will have to poll for
updates.

Adding a Connection Reference to a Run Loop

To ensure your application gets notified of changes in a specific connection’s status, you can add the
SCNetworkConnectionRef representing the connection to your application’s run loop. When the connection’s
status changes, the SCNetworkConnectionRef alerts the run loop and the run loop passes control to the
callback function you provide.

To add an SCNetworkConnectionRef to your application’s run loop, you use the
SCNetworkConnectionScheduleWithRunLoop function. You provide the SCNetworkConnectionRef,
a reference to your application’s run loop, and the mode in which the run loop should run (in most cases,
the default mode). For more information on run loops and modes, see Introduction to Run Loops in the Core
Foundation Reference Library.

To remove the SCNetworkConnectionRef from your application’s run loop, you use the
SCNetworkConnectionUnscheduleFromRunLoop function. Like the
SCNetworkConnectionScheduleWithRunLoop function, this function expects the
SCNetworkConnectionRef, a reference to your application’s run loop, and the run loop mode.

Starting and Stopping a Connection

The SCNetworkConnection API provides two functions your application can use to control a connection using
an SCNetworkConnectionRef object:

 ■ SCNetworkConnectionStart

 ■ SCNetworkConnectionStop

Both functions return immediately while the connection or disconnection process they initiate proceeds
asynchronously. If you add the connection’s SCNetworkConnectionRef to your application’s run loop and
provide a callback function, your application is notified when the status of the connection changes. Your
application can then check the status to determine if the connection process is complete. If you don’t add
the connection reference to the run loop, you will have to poll to discover the connection status, and this is
not recommended.

By default, the SCNetworkConnectionStart function uses the user’s preferred connection settings to start
the connection. You can, however, provide a dictionary of values to override some of these settings for the
duration of the connection.

If you do provide a dictionary of additional settings be aware that:

 ■ The dictionary must be in the correct format for a network service dictionary (described in “The
NetworkServices Dictionary” (page 26)). If you do not follow this format precisely, the PPP controller
may ignore the dictionary.

 ■ The PPP controller merges the settings you provide with the user’s existing settings before the connection
is established, ignoring any inappropriate values in your dictionary.

Using the Network Connection API 53
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

Starting and stopping a connection are implicitly arbitrated. This means that the interest other applications
may have in a connection is taken into account before the connection is stopped. For example, application
“B” can start a connection that has already been started by application “A”. Application “A” may choose to
stop the connection but the system should not stop the connection until “B” is finished with it. Using the
SCNetworkConnection functions, application “A” can call SCNetworkConnectionStop on the connection
and the function will return success, but the connection will not stop until “B” calls
SCNetworkConnectionStop. An application can also use the linger parameter (discussed below) to
register interest.

The SCNetworkConnectionStart function allows an application to indicate an interest in a connection.
In this way, an application can request that the existence of the connection be tied to actions the application
takes. In the simplest case, an application might want a connection to start when the application calls
SCNetworkConnectionStart and stop when any of the following events occur:

 ■ The application quits.

 ■ The application releases the SCNetworkConnectionRef representing the connection.

 ■ The application calls SCNetworkConnectionStop.

To indicate interest in a connection, an application can use the linger parameter of the
SCNetworkConnectionStart function. An application, such as an email client, that needs to get connected,
perform its tasks, and get disconnected, sets the parameter to FALSE. This indicates that the connection
should stop when the application quits or releases the connection reference. A PPP dialer application, on
the other hand, might choose to set the parameter to TRUE so that the user has control over the modem.
The TRUE value indicates the connection should not stop when the application quits or releases the connection
reference.

It’s important to note, however, that several concurrent applications might register interest in the same
connection. When this is the case, the System Configuration framework keeps track of the references to the
connection, stopping it when the last reference is released (or the last application holding a reference quits).

The SCNetworkConnectionStop function performs an arbitrated stop of the connection. In other words,
it closes the connection if:

 ■ There are no other interested applications currently running or holding references to the connection. If
there are, the SCNetworkConnectionStop function returns success to the calling application, but the
connection will persist until all interested applications terminate or release their references to the
connection.

 ■ An application calls SCNetworkConnectionStop and passes TRUE in the forceDisconnect parameter.
This stops the connection regardless of the interest of other currently running applications. Most
applications do not need to force a connection to stop in this way. A PPP dialer application, however,
would probably choose to do this because it ensures that the connection stops when the user wants it
to.

Getting the Status of a Connection

An application can use the SCNetworkConnectionGetStatus function to get the high-level status of the
connection. You pass the SCNetworkConnectionRef representing the connection to the function and you
receive one of the constants shown in “Introduction to System Configuration Programming Guidelines” (page
7).

54 Using the Network Connection API
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

Table 4-2 High-level connection status values

MeaningStatus

The network connection refers to an invalid service.kSCNetworkConnectionInvalid

The network connection is disconnected.kSCNetworkConnectionDisconnected

The network connection is connecting.kSCNetworkConnectionConnecting

The network connection is connected.kSCNetworkConnectionConnected

The network connection is disconnecting.kSCNetworkConnectionDisconnecting

If your application needs to know more about the PPP connection, such as when the PPP controller is
authenticating to the server, you should use the SCNetworkConnectionCopyExtendedStatus function.
You pass the SCNetworkConnectionRef representing the connection to the function and you receive a
dictionary that contains subdictionaries for each subcomponent of the service, such as PPP, IPv4, and Modem.
The PPP connection status is represented by a constant defined in the SCNetworkConnection API. Table
4-3 (page 55) shows the current set of constants. Note that additional status values might be defined in the
future, so your application should be able to handle an unknown value.

Table 4-3 PPP connection status values

MeaningStatus

PPP is disconnected.kSCNetworkConnectionPPPDisconnected

PPP is initializing.kSCNetworkConnectionPPPInitializing

PPP is connecting the lower layer (as when, for example, the
modem is dialing out).

kSCNetworkConnection-
PPPConnectingLink

PPP is waiting for networking traffic to automatically
establish the connection.

kSCNetworkConnection-
PPPDialOnTraffic

The PPP lower layer is connected and PPP is negotiating the
link layer (the LCP protocol).

kSCNetworkConnection-
PPPNegotiatingLink

PPP is authenticating to the server (using PAP, CHAP,
MSCHAP, or EAP protocol).

kSCNetworkConnection-
PPPAuthenticating

PPP is waiting for the server to call back. Note: this state is
defined but will not occur because CallBack is not supported
in Mac OS X version 10.3.

kSCNetworkConnection-
PPPWaitingForCallBack

PPP is authenticated and is now negotiating the networking
layer (using IPCP or IPv6CP protocol).

kSCNetworkConnectionPPPNetgotiating-
Network

PPP is fully connected for at least one networking layer.
Additional networking protocols might still be negotiating.

kSCNetworkConnectionPPPConnected

PPP networking and link protocols are terminating.kSCNetworkConnectionPPPTerminating

Using the Network Connection API 55
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

MeaningStatus

PPP is disconnecting the lower connection layer (as when,
for example, the modem is hanging up).

kSCNetworkConnection-
PPPDisconnectingLink

PPP is disconnected and maintaining the link temporarily
“off”.

kSCNetworkConnection-
PPPHoldingLinkOff

PPP is suspended as the result of the “suspend” command
as when, for example, a V92 Modem is “On Hold”.

kSCNetworkConnectionPPPSuspended

PPP found a busy server and is waiting for redial.kSCNetworkConnection-
PPPWaitingForRedial

For more information on why you might choose to use the SCNetworkConnectionCopyExtendedStatus
function, see “Getting Detailed PPP Connection-Status Information” (page 44).

56 Using the Network Connection API
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Determining Reachability and Getting Connected

This table describes the changes to System Configuration Programming Guidelines.

NotesDate

Removed link to unavailable, legacy AppleTalk document; added links to sample
code.

2006-02-07

Added link to API reference documentation.2004-11-02

First version.2004-04-22

57
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

58
2006-02-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	System Configuration Programming Guidelines
	Contents
	Figures, Tables, and Listings
	Introduction
	System Configuration Goals and Architecture
	Goals of the System Configuration Framework
	An Example of Mobility
	System Configuration Architecture
	System Configuration Terms
	Interaction of System Configuration Components

	System Configuration APIs
	System Configuration Utilities

	Components of the System Configuration Framework
	The Persistent Store
	The Dynamic Store
	The Schema: Hierarchy and Definitions
	Configuration Agents

	The System Configuration Schema
	Layout of the Persistent Store
	The Sets Dictionary
	The NetworkServices Dictionary
	The Interface Dictionary
	Protocol Entity Dictionaries
	AppleTalk
	DNS
	IPv4
	IPv6
	PPP

	Hardware Entity Dictionaries
	The Proxies Dictionary

	Behavior of the Configuration Agents
	Preferences Monitor
	Kernel Event Monitor
	IPv4 Configuration Agent
	IPv6 Configuration Agent
	IP Monitor
	PPP Controller

	Using the Schema
	Programmatically Setting Preferences
	Getting Detailed PPP Connection-Status Information
	Getting Notifications

	Determining Reachability and Getting Connected
	Scope of the Reachability and Connection APIs
	A Reachability and Connection Example
	Using the Reachability API
	Creating a Reference
	Adding a Target to a Run Loop
	Associating a Callback Function With the Target
	Determining Reachability

	Using the Network Connection API
	Creating a Connection Reference
	Adding a Connection Reference to a Run Loop
	Starting and Stopping a Connection
	Getting the Status of a Connection

	Revision History

