
DNS Service Discovery Programming Guide
Networking > Bonjour

2005-11-09

Apple Inc.
© 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, iChat, iTunes,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to DNS Service Discovery 5

Who Should Read This Document? 5
Organization of This Document 6
Before You Start 6
Requirements 7
Limitations 7
For More Information 7

Registering and Terminating a Service 9

Registering a Service 9
Terminating a Service's Registration 11

Browsing for Network Services 13

Using DNSServiceBrowse 13
Browsing Multiple Domains 14
Terminating Browsing 15

Resolving the Current Address of a Service 17

Using DNSServiceResolve 17
Setting Up a Callback Function 18

Enumerating Domains 21

Using DNS Service Discovery in Windows 23

Windows Graphical User Interfaces 23
Windows Command-Line Interfaces 23

Document Revision History 25

3
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

This document describes how to use the DNS Service Discovery API in your program. The DNS Service
Discovery API helps you to perform three main tasks:

 ■ Registering a service

 ■ Browsing for services

 ■ Resolving service names to host names

In support of these main tasks, this API can directly assist you in performing two subsidiary tasks:

 ■ Enumerating domains (finding recommended service domains)

 ■ Updating registrations (changing your DNS registration data dynamically)

The DNS Service Discovery API is part of Bonjour, Apple’s implementation of zero-configuration networking
(ZEROCONF). For an overview of how Bonjour works, please read BonjourOverview prior to using DNS Service
Discovery.

Note: This document describes the socket-based DNS Service Discovery API, which is the recommended API
that’s available in Mac OS X v10.3 and later. The alternative Mach-based API is deprecated.

Who Should Read This Document?

This document is meant for developers who want to use Bonjour in their applications. There are a number
of reasons to use the DNS Service Discovery API over the Network Services APIs (NSNetServices and
CFNetServices):

 ■ You are writing BSD-style applications that will not need to link to higher level frameworks.

 ■ You are writing cross-platform programs (DNS Service Discovery API is available on Mac OS X, Windows,
and other POSIX compatible operating systems).

 ■ You are writing an application that requires special purpose low-level routines, such as registering
individual records or being able to use only specific network interfaces.

If none of those features are necessary for your program, it is highly recommended that you take a look at
NSNetService and CFNetService first.

Who Should Read This Document? 5
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to DNS Service Discovery

Organization of This Document

This document contains the following articles:

 ■ "Registering and Terminating a Service" (page 9) explains how to register and terminate your service
with the mDNSResponder daemon.

 ■ "Browsing for Network Services" (page 13) describes how to browse for services.

 ■ "Resolving the Current Address of a Service" (page 17) explains how to get information on a service
based on its name, registration type, and domain.

 ■ "Enumerating Domains" (page 21) helps you understand how to find domains recommended for
registration and browsing.

 ■ "Using DNS Service Discovery in Windows" (page 23) gives an overview for how to implement DNS
Service Discovery in a Windows-based application.

Before You Start

The next few paragraphs describe some things you should know about this API before attempting any of
the tasks.

Most functions in this API do not return all of their data using their function return or parameter block. Instead,
they require you to provide a callback function that can handle data sent asynchronously.

Your callback function may be called multiple times in response to a single function call on your part. For
example, you might request a list of available services. Your callback would be called once for each available
service that matches your request, then called again whenever a matching service is added or removed.

Some functions return error codes in the usual way, but many do not. In these cases, any error code and
status flags are sent to your callback function as part of the asynchronous reply, along with—or instead
of—any returned data.

Most of the functions in this API use a common set of parameters to describe services. You will need to supply
some or all of these parameters, depending on the purpose of your call. In many cases, you will provide some
parameters, such as the domain and type of service, and your callback function will receive data corresponding
to other parameters, such as the service name of a matching service.

Here is a list of the common parameters required by the DNS Service Discovery API:

 ■ Name—human readable name of the service, such as Sales Laser Printer.

 ■ Registration type—the service type followed by the protocol name and separated by a dot (.) ;
_printer._tcp is an example.

 ■ Domain—the domain for the service, typically NULL.

6 Organization of This Document
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to DNS Service Discovery

 ■ Full domain name—the name that uniquely identifies a service. A full domain name is the concatenation
of the name, registration type, and domain. Because the dot (.) character is used as a separator, any dot
characters in the name portion of a full domain name must be escaped by a backslash character (\). If
the name contains a literal backslash, the backslash must also be escaped by a backslash character. Here
is an example of a full domain name: Dr\.Smith’s Home\\Office Server._http._tcp.local.

 ■ Port—the port number for the service in network byte order.

 ■ Text record—an optional record containing any additional information that may be needed to use the
service, such as a print queue name.

Requirements

The DNS Service Discovery API requires the services of the mDNSResponder daemon. Mac OS X, versions
10.2 and later, include an mDNSResponder daemon as part of the operating system. Apple also provides
source code for an mDNSResponder daemon to Darwin developers as part of versions 10.2 and later. This
API is also available in Bonjour for Windows and when mDNSResponder source code is downloaded and
incorporated in the Linux, Solaris, and FreeBSD operating systems.

Note: Apple encourages hardware developers to embed the Darwin mDNSResponder daemon code in their
hardware.

Limitations

The DNS Service Discovery API does not perform network access setup for services. Similarly, the DNS Service
Discovery API does not provide a network connection from an application to a service. It allows applications
to browse for services, or to ask for them by name, and provides the IP address, port, and so on. You can use
BSD sockets to connect to a service over the network.

For More Information

For additional information on Bonjour, including links to standards, specifications, and resources, see
http://developer.apple.com/networking/bonjour and read Bonjour Overview.

Documentation on the Java-based DNS Service Discovery API is available at http://developer.apple.com/doc-
umentation/Java/Reference/DNSServiceDiscovery_JavaRef/index.html.

For information on dynamic update and shared secrets, see http://www.ietf.org/rfc/rfc2136.txt and
http://www.ietf.org/rfc/rfc2845.txt, respectively.

For information Network Address Translation (NAT), see http://www.ietf.org/rfc/rfc3022.txt, and for information
on automatic NAT port mapping, see http://files.dns-sd.org/draft-nat-port-mapping.txt.

Requirements 7
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to DNS Service Discovery

http://developer.apple.com/networking/bonjour
http://developer.apple.com/documentation/Java/Reference/DNSServiceDiscovery_JavaRef/index.html
http://developer.apple.com/documentation/Java/Reference/DNSServiceDiscovery_JavaRef/index.html
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2845.txt
http://www.ietf.org/rfc/rfc3022.txt
http://files.dns-sd.org/draft-nat-port-mapping.txt

8 For More Information
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to DNS Service Discovery

When your service starts up, you need to register with the mDNSResponder daemon so that applications
can discover your service. This section provides a general overview of the process, followed by a set of
step-by-step instructions.

Registering a Service

To register your service, call DNSServiceRegister. The parameters for making this call consist of the
following:

 ■ An uninitialized service discovery reference.

 ■ The index for the interface on which you want to register your service; pass 0 to register on all available
interfaces, pass –1 to register on the local machine only (your service will not be available to remote
hosts), or pass the number that represents the interface on which you want to register (use the
if_nametoindex family of calls to get the number).

 ■ Flags that indicate how you want to handle name conflicts. By default, (n) is automatically appended
to your service name, where n is a number, if a name conflict occurs. To override this behavior, set the
kDNSServiceFlagsNoAutoRename flag, which will cause your registration callback function to be
called so that you can handle name conflicts. The kDNSServiceFlagsNoAutoRename flag is only valid
if you also explicitly specify a service name.

 ■ The service’s name; you can specify NULL to use the computer’s name as the service’s name.

 ■ The service’s registration type.

 ■ The SRV target host name; usually, you’ll pass NULL to use the computer’s default host name. Passing
NULL is the desired behavior in almost every case. However, proxy applications may pass an explicit SRV
target other than the computer's host name.

 ■ The port number in network byte order on which the service accepts connections. Passing 0 for the port
registers a placeholder service. With a placeholder service, the service will not be discovered by browsing,
but a name conflict will occur if another client tries to register the same name. Most applications do not
need to use placeholder service.

 ■ The callback function that is to be called to provide information on the success or failure of the registration,
or NULL.

 ■ A user-defined context value that will be passed to the callback function when it is called, or NULL.

Services that require TXT records also pass the raw data of the TXT record and the length of the raw data as
parameters. Most services don’t need TXT records and therefore pass NULL and 0, respectively, for these
parameters.

Registering a Service 9
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Registering and Terminating a Service

Instead of providing a callback function, you may pass NULL, in which case, you will not be notified of default
values that may be chosen on your behalf and you will not be notified of any asynchronous errors that may
prevent the registration of your service. If you pass NULL for this parameter, you cannot pass
kDNSServiceFlagsNoAutoRename as the flag parameter. You can de-register a service that is registered
without a callback function in the normal way, by calling DNSServiceRefDeallocate.

If the registration can be started, DNSServiceRegister initializes the service discovery reference and creates
a socket that is used to communicate with the mDNSResponder daemon. Use the service discovery reference
to call DNSServiceRefSockFD and get the socket descriptor for the service reference.

Set up a run or select loop using the socket descriptor. When the loop indicates that the mDNSResponder
daemon’s reply is available, call DNSServiceProcessResult and pass to it the service discovery reference
initialized by DNSServiceRegister. DNSServiceProcessResultwill call the callback function associated
with the service discovery reference.

Instead of setting up a run loop or a select loop, you can call DNSServiceRegister and immediately call
DNSServiceProcessResult. TheDNSServiceProcessResult function will block until the mDNSResponder
daemon has a response, at which time the callback specified when DNSServiceRegister was called (if
any) will be invoked.

In addition to the service discovery reference and flags that are not currently used, your callback will be called
with the following parameters:

 ■ An error code that indicates whether the registration was successful; if the registration was successful,
the remaining parameters contain valid data

 ■ The service’s name as passed to DNSServiceRegister or the name that was chosen if NULLwas passed
to DNSServiceRegister as the service’s name

 ■ The registration type as passed to DNSServiceRegister

 ■ The domain in which the service was registered

 ■ The user-defined context information that was passed to DNSServiceRegister

If the combination of service name, registration type, and domain name resulted in a full domain name that
is already in local use and you specified kDNSServiceFlagsNoAutoRename, you’ll need to deallocate the
service discovery reference, choose another service name and try again, until a locally unique name can be
registered.

Upon successful registration, your service is announced to the local network and its access information (IP
address, port, and so on) can be found using multicast DNS, either by name or by browsing for services. Using
the initialized service discovery reference, you can communicate with the mDNSResponder daemon to add
a record to the registration information for your service, update an added record, or remove an added record
while your service is running. However, you will probably never need to make changes to your registration
information because Bonjour handles the common cases, such as waking, sleeping, shutting down, and
changing IP addresses.

A rare exception would be the need to update the text record associated with a service. If a text field contains
a queue name, for example, and the queue name changes, you would need to update the text record for
the service.

You must keep the socket descriptor on the run loop or the select loop as long as you expect your callback
function to be called.

10 Registering a Service
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Registering and Terminating a Service

Terminating a Service's Registration

To terminate your service's registration, remove the socket descriptor from the run loop or the select loop
and call DNSServiceRefDeallocate, passing to it the service discovery reference that was initialized when
your service was registered. In addition to invalidating the service discovery reference and deallocating the
memory associated with it, any resource records that have been added are de-registered and their references
are invalidated. The socket that underlies the connection with the mDNSResponder daemon is closed, thereby
terminating your application’s connection with the daemon.

Terminating a Service's Registration 11
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Registering and Terminating a Service

12 Terminating a Service's Registration
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Registering and Terminating a Service

Browsing for services using this API is fairly simple. You can find out what services of a given type are available
in a given domain with a single function call.

Using DNSServiceBrowse

To browse for available services, call DNSServiceBrowse. The parameters for making this call consist of the
following:

 ■ An uninitialized service discovery reference.

 ■ The index for the interface you want to browse; pass 0 to browse all available interfaces, pass –1 to
browse for services on the local host only, or pass the number that represents the interface you want to
browse (use the if_nametoindex family of calls to get the number).

 ■ The registration type of the service you want to browse; the registration type is the service type followed
by a dot, followed by the protocol (for example, _printer._tcp).

 ■ The domain to browse; pass NULL to browse the domain(s) specified by the user as acceptable for
browsing or pass a domain name to only browse that domain.

 ■ The callback function that is to be called to provide information on the success or failure of the browse
and to provide search results, such as a service that has been found or a service that is no longer available.

 ■ A user-defined context value that will be passed to the callback function when it is called, or NULL.

If the browse can be started, DNSServiceBrowse initializes the service discovery reference and creates a
socket that is used to communicate with the mDNSResponder daemon. Use the service discovery reference
to call DNSServiceRefSockFD and get the socket descriptor for the socket.

Use the socket descriptor to set up a run loop or a select loop that will indicate when a response from the
mDNSResponder daemon becomes available. The response may indicate that a service instance matching
the specified type, domain, and interface has been found or that a service instance that was previously found
is no longer available. When the loop indicates that the mDNSResponder daemon has responded, call
DNSServiceProcessResult and pass to it the service discovery reference initialized by DNSServiceBrowse.
DNSServiceProcessResult will call the callback function associated with the service discovery reference.

Your callback will be called with the following parameters:

 ■ The service discovery reference that was initialized by DNSServiceBrowse.

 ■ Flags that provide information about a service that has been found or that is no longer available and
browsing status. For example, kDNSServiceFlagsAdd indicates that the service parameter contains
the name of a service that has been found; you should add it to your list of available services. If
kDNSServiceFlagsAdd is not set, the service specified by the service parameter is no longer available
and should be removed from your list of available services. Browsing status is indicated by the
kDNSServiceFlagsMoreComing flag. When it is set, your callback function will be called again

Using DNSServiceBrowse 13
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Browsing for Network Services

immediately, so you should not update your user interface. When kDNSServiceMoreComing is not set,
your callback function will not be called again immediately, so you have time to update your user
interface.

 ■ The index of the interface on which the service was discovered.

 ■ An error code that indicates whether browsing was successful; if browsing was successful, the remaining
parameters contain valid data.

 ■ The name of the service that was found, if browsing was successful.

 ■ The registration type, if browsing was successful.

 ■ The domain in which the service was discovered, if browsing was successful.

 ■ The user-defined context information that was passed to DNSServiceBrowse.

Browsing Multiple Domains

To browse in multiple domains, or for multiple service types, call DNSServiceBrowse for each domain and
service type of interest. Your application is responsible for keeping track of the responses.

Note: You can obtain a list of recommended domains to search by calling DNSServiceEnumerateDomains.
For details, see "Enumerating Domains" (page 21).

If your application needs to leave the browser interface visible the entire time your application is running,
as iTunes and iChat do, then you typically will call DNSServiceBrowse once per session. Whenever a new
service becomes available or an existing service becomes unavailable, data is sent to your callback function,
so you can simply leave the callback active, and your list of services will always be up to date. This information
typically changes infrequently, so the callback shouldn’t use much CPU time.

However, if you application does not need to constantly show the list of available services, in a situation such
as the printer dialog, then you should call DNSServiceBrowse and terminate the browsing when you are
finished.

When you call DNSServiceBrowse, it initializes a service discovery reference and opens a socket-based
connection with the mDNSResponder daemon. For this reason, if you choose to deactivate your callback and
repeat the search as needed, be sure to call DNSServiceRefDeallocate to deallocate the reference before
calling DNSServiceBrowse again. Otherwise, you will leak memory and sockets for every search.

The actual IP address and port of a given service instance will change more frequently than the service name.
Each time you use the service, you should resolve the current address of a service instance just prior to using
the service. See the next section, "Resolving the Current Address of a Service" (page 17).

14 Browsing Multiple Domains
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Browsing for Network Services

Terminating Browsing

To terminate browsing, remove the socket descriptor from the run loop or the select loop and call
DNSServiceRefDeallocate, passing to it the service discovery reference that was initialized when
DNSServiceBrowsewas called. Browsing is halted, the service discovery reference is invalidated, and memory
associated with the reference is deallocated. The socket that underlies the connection with the mDNSResponder
daemon is closed, thereby terminating your application’s connection with the daemon.

Terminating Browsing 15
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Browsing for Network Services

16 Terminating Browsing
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Browsing for Network Services

This article describes how to use DNSServiceResolve to get information about a service based on its name,
type, and domain.

Using DNSServiceResolve

Once you have the name, registration type, and domain of a service, you can get information about the
service, such as the interface(s) on which the service is registered, the full domain name of the service, name
of the host that provides the service, and the content of the service’s primary TXT record, by calling
DNSServiceResolve.

Warning: DNSServiceResolve is appropriate for getting information about a service that has a single
SRV record and a single TXT record (which may be empty). To resolve services that have multiple SRV
or TXT records, you should use DNSServiceQueryRecord You should also use
DNSServiceQueryRecord to monitor TXT record content instead of DNSServiceResolve.

To resolve a service name to its hostname and port, call DNSServiceResolve. The parameters for making
this call consist of the following:

 ■ An uninitialized service discovery reference

 ■ The index of the interface on which you want to resolve the service; pass the value that was passed to
your callback function for DNSServiceBrowse, or 0 to resolve on all available interfaces

 ■ The service name to be resolved; pass a value that was passed to your callback function for
DNSServiceBrowse

 ■ The registration type of the service to be resolved; pass the value that was passed to your callback
function for DNSServiceBrowse

 ■ The domain in which the service is registered; pass the value that was passed to your callback function
for DNSServiceBrowse

 ■ The callback function that is to be called to provide information on the success or failure of the resolution

 ■ A user-defined context value that will be passed to the callback function when it is called, or NULL

If the resolution can be started, DNSServiceResolve initializes the service discovery reference and creates
a socket that is used to communicate with the mDNSResponder daemon. Use the service discovery reference
to call DNSServiceRefSockFD and get the socket descriptor for the socket.

Using DNSServiceResolve 17
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Resolving the Current Address of a Service

Setting Up a Callback Function

If DNSServiceResolve returns error-free, you need to have mDNSResponder resolve the service discovery
reference and run a callback function when it has received a response. There are two techniques to set up
the callback function: asynchronously and synchronously.

To get a response from mDNSResponder asynchronously, set up a run or a select loop using the socket
descriptor. The loop will be notified whenever a response from the mDNSResponder daemon becomes
available. When the loop indicates that a response is available, call DNSServiceProcessResult and pass
to it the service discovery reference initialized by DNSServiceResolve. DNSServiceProcessResult will
call the callback function associated with the service discovery reference. The mDNSResponder daemon will
provide a response for each service that it resolves on a per-interface basis.

If you want to run the callback function synchronously instead of setting up a run loop or a select loop,
you can call DNSServiceResolve and immediately call DNSServiceProcessResult. The
DNSServiceProcessResult function will block until the mDNSResponder daemon has a response, at which
time the callback specified when DNSServiceResolvewas called will be invoked. This entire process should
probably be run within a loop of its own for each service you wish to resolve.

In addition to the service discovery reference and flags that are not currently used, your callback will be called
with the following parameters:

 ■ The interface index on which the service was resolved; use the if_nametoindex family of calls to relate
the index to an interface name

 ■ An error code that indicates whether the resolution was successful; if the resolution was successful, the
remaining parameters contain valid data

 ■ The full domain name of the service, suitable for passing to special purpose functions that take a full
domain name as a parameter

 ■ The hostname of the machine that provides the service, suitable for passing to gethostbyname or
DNSServiceQueryRecord to get the host’s IP address

 ■ The port number in network byte order on which the service accepts connections

 ■ The length of the TXT record for the service

 ■ The primary TXT record for the service in standard TXT record format (that is, a length byte followed by
data, followed by a length byte, followed by data, and so on)

 ■ The user-defined context information that was passed to DNSServiceResolve

Important: The service's IP addresses and port numbers can change dynamically, so you should get the
current address each time you use a service, just prior to using it.

Your run loop or select loop will be notified for each interface on which the service is resolved and for each
TXT record associated with the service.

When the desired results have been obtained, you must terminate the resolution. Remove the socket descriptor
from the run loop or the select loop and call DNSServiceRefDeallocate, passing to it the service
discovery reference that was initialized when DNSServiceResolvewas called. The service discovery reference

18 Setting Up a Callback Function
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Resolving the Current Address of a Service

is invalidated, and memory associated with the reference is deallocated. The socket that underlies the
connection with the mDNSResponder daemon is closed, thereby terminating your application’s connection
with the daemon.

Setting Up a Callback Function 19
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Resolving the Current Address of a Service

20 Setting Up a Callback Function
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Resolving the Current Address of a Service

The DNSServiceEnumerateDomains function finds domains that are recommended for registration and
browsing. Each time your callback is called, information about one domain is provided, along with flags
indicating whether to add or remove the domain from your list of domains or indicating that the domain is
a default domain, or is no longer the default domain.

The parameters for calling DNSServiceEnumerateDomainsconsist of the following:

 ■ An uninitialized service discovery reference

 ■ A flag that indicates whether you want to enumerate recommended browsing or registration domains

 ■ An interface index that specifies the interface to enumerate; pass 0 to enumerate domains on all interfaces
or a positive integer to specify the interface on which to enumerate domains (use the if_nametoindex
family of calls to get the index of the interface you want to enumerate)

 ■ The callback function that is to be called to provide information on the success or failure of the
enumeration

 ■ A user-defined context value that will be passed to the callback function when it is called, or NULL

If the enumeration can be started, DNSServiceEnumerateDomains initializes the service discovery reference
and creates a socket that is used to communicate with the mDNSResponder daemon. Use the service discovery
reference to call DNSServiceRefSockFD and get the socket descriptor for the socket.

Set up a run loop or a select loop using the socket descriptor. When the loop indicates that a response
from the mDNSResponder daemon is available, call DNSServiceProcessResult and pass to it the service
discovery reference initialized by DNSServiceEnumerateDomains. DNSServiceProcessResult will call
the callback function associated with the service discovery reference.

Instead of setting up a run or select loop, you can call DNSServiceEnumerate and immediately call
DNSServiceProcessResult. TheDNSServiceProcessResult function will block until the mDNSResponder
daemon has a response, at which time the callback specified when DNSServiceEnumerate was called will
be invoked.

Your callback will be called with the following parameters:

 ■ The service discovery reference that was passed to DNSServiceEnumerateDomains

 ■ Flags that indicate whether your callback will be called again immediately to pass information about
another domain that has been found, whether to add or remove this domain from the list that your
application maintains, and whether to add or remove the domain as a default domain

 ■ The index of the interface on which the domain was found

 ■ An error code that indicates whether the enumeration was successful; if the enumeration was successful,
the other parameters contain valid data

 ■ The name of the domain that was found

 ■ The user-defined context information that was passed to DNSServiceEnumerateDomains

21
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Enumerating Domains

The run loop or the select loop will be notified for each recommended domain enumerated on per-interface
basis and whenever a domain is added or removed. You are responsible for assembling the daemon’s
responses into a list of current recommended domains.

Note: Even if the flag indicates that the list is complete, your callback will be called again if a domain is
added or removed, made the default, or is no longer the default.

To terminate the enumeration, remove the socket descriptor from the run loop or the select loop and call
DNSServiceRefDeallocate, passing to it the service discovery reference that was initialized when
DNSServiceEnumerateDomains was called. The service discovery reference is invalidated, and memory
associated with the reference is deallocated. The socket that underlies the connection with the mDNSResponder
daemon is closed, thereby terminating your application’s connection with the daemon.

22
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Enumerating Domains

DNS Service Discovery was written with cross-platform compatibility in mind. Therefore, all of the DNS Service
Discovery API calls that are valid in Mac OS X are also valid in Windows. The difference between the two
platforms lies in how each handles run loops. The next two sections will explain what changes need to be
made to write programs that take advantage of DNS Service Discovery in Windows. Before reading these
sections, you’ll want to become familiar with the DNS Service Discovery API and Microsoft Foundation classes,
if you are not already.

Windows Graphical User Interfaces

To properly incorporate DNS Service Discovery in a Windows graphical user interface, use the WinSock API
WSAAsyncSelect. WSAAsyncSelect integrates socket-based network events into the Windows message loop.
To use this in your Windows code, you should first create and initialize a DNSServiceRef. Then, call the function
WSAAsyncSelect to associate your DNSServiceRef’s socket with the Windows message loop.WSAAsyncSelect
requires four arguments: a socket to your DNSServiceRef, a window to receive the message, a message to
be sent when the event occurs, and a bitmask for the network events you are interested in. A simple example
of this is provided below. In the example, you can see how to create a NULL DNSServiceRef, initialize that
reference with DNSServiceBrowse, and then add it to the work loop with WSAAsyncSelect.

// create blank DNSServiceRef
e = new ServiceHandlerEntry;
...
// initialize the DNSServiceRef for browsing
err = DNSServiceBrowse(&e->ref, 0, 0, e->type, NULL, BrowseCallBack, e);

// add browsing to the work loop with WSAAsyncSelect
// where m_hWnd is the window, WM_PRIVATE_SERVICE_EVENT is the message and
// FD_READ and FD_CLOSE are bitmasks for reading and closing sockets
err = WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(e->ref),
 m_hWnd,
 WM_PRIVATE_SERVICE_EVENT,
 FD_READ|FD_CLOSE);

Windows Command-Line Interfaces

Creating a Windows command-line program using DNS Service Discovery is similar to creating one for Mac
OS X. Windows, like Mac OS X, has support for the select system call. This function is used to determine
when results are available from the DNS Service Discovery API functions. More information about using the
select loop with DNS Service Discovery is available in "Registering and Terminating a Service" (page 9),
"Browsing for Network Services" (page 13), and "Resolving the Current Address of a Service" (page 17).

Windows Graphical User Interfaces 23
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Using DNS Service Discovery in Windows

24 Windows Command-Line Interfaces
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Using DNS Service Discovery in Windows

This table describes the changes to DNS Service Discovery Programming Guide.

NotesDate

Changed title from "DNSServiceDiscovery Programming Guide."2005-11-09

Updated domain information.2005-10-04

Added Windows-specific information.2005-06-06

Updated for Mac OS X v10.4. Changed "Rendezvous" to "Bonjour." Changed title
from "DNSServiceDiscovery API."

2005-04-29

First version of this document, which describes the socket-based API that replaces
the Mach-based DNS Service Discovery API.

2004-02-01

25
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

26
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	DNS Service Discovery Programming Guide
	Contents
	Introduction
	Registering and Terminating a Service
	Registering a Service
	Terminating a Service's Registration

	Browsing for Network Services
	Using DNSServiceBrowse
	Browsing Multiple Domains
	Terminating Browsing

	Resolving the Current Address of a Service
	Using DNSServiceResolve
	Setting Up a Callback Function

	Enumerating Domains
	Using DNS Service Discovery in Windows
	Windows Graphical User Interfaces
	Windows Command-Line Interfaces

	Revision History

