
Apple Filing Protocol Reference
Networking > Mac OS X Server

2006-05-23

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Mac, Mac OS, Macintosh,
PowerBook, and ProDOS are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Apple Filing Protocol Reference 11

Overview 11
Functions 11

FPAccess 11
FPAddAPPL 13
FPAddComment 16
FPAddIcon 17
FPByteRangeLock 19
FPByteRangeLockExt 21
FPCatSearch 24
FPCatSearchExt 29
FPChangePassword 35
FPCloseDir 37
FPCloseDT 38
FPCloseFork 39
FPCloseVol 40
FPCopyFile 40
FPCreateDir 43
FPCreateFile 45
FPCreateID 47
FPDelete 49
FPDeleteID 50
FPDisconnectOldSession 52
FPEnumerate 53
FPEnumerateExt 57
FPEnumerateExt2 61
FPExchangeFiles 65
FPFlush 68
FPFlushFork 69
FPGetACL 70
FPGetAPPL 73
FPGetAuthMethods 74
FPGetComment 75
FPGetExtAttr 77
FPGetFileDirParms 80
FPGetForkParms 84
FPGetIcon 85
FPGetIconInfo 87
FPGetSessionToken 89
FPGetSrvrInfo 91
FPGetSrvrMsg 96

3
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

FPGetSrvrParms 98
FPGetUserInfo 100
FPGetVolParms 101
FPListExtAttrs 103
FPLogin 105
FPLoginCont 108
FPLoginExt 109
FPLogout 112
FPMapID 113
FPMapName 114
FPMoveAndRename 115
FPOpenDir 118
FPOpenDT 120
FPOpenFork 121
FPOpenVol 124
FPRead 126
FPReadExt 128
FPRemoveAPPL 130
FPRemoveComment 132
FPRemoveExtAttr 134
FPRename 136
FPResolveID 138
FPSetACL 140
FPSetDirParms 142
FPSetExtAttr 145
FPSetFileDirParms 147
FPSetFileParms 150
FPSetForkParms 152
FPSetVolParms 154
FPWrite 155
FPWriteExt 157
FPZzzzz 160

Data Types 161
Access Control List Structure 161
Access Rights Bitmap 162
Directory Bitmap 162
Directory Attributes Bitmap 163
Extended Attributes Bitmap 164
File Bitmap 164
File Attributes Bitmap 165
FPUnixPrivs 166
Server Flags Bitmap 167
Volume Attributes Bitmap 167
Volume Bitmap 168

Constants 169
Access Control List Bitmap 169

4
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

AFP Version Strings 170
AFP UAM Strings 171
FPGetSessionToken Types 171
FPMapID Constants 172
FPMapName Constants 173
Path Type Constants 174
File Creation Constants 174
ACL Access Rights 174

Result Codes 176

Document Revision History 181

Index 183

5
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

6
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Apple Filing Protocol Reference 11

Figure 1 Request block for the FPAccess command 13
Figure 2 Request block for the FPAddAPPL command 15
Figure 3 Request block for the FPAddComment command 17
Figure 4 Request block for the FPAddIcon command 19
Figure 5 Request and reply blocks for the FPByteRangeLock command 21
Figure 6 Request and reply blocks for the FPByteRangeLockExt command 24
Figure 7 Parameters FPCatSearch searches when searching directories only 27
Figure 8 Parameters FPCatSearch searches when searching files only 27
Figure 9 Parameters FPCatSearch searches when searching directories and files 27
Figure 10 Request and reply blocks for the FPCatSearch command 29
Figure 11 Parameters FPCatSearchExt searches when searching directories only 32
Figure 12 Parameters FPCatSearchExt searches when searching files only 32
Figure 13 Parameters FPCatSearchExt searches when searching directories and files 33
Figure 14 Request and reply blocks for the FPCatSearchExt command 34
Figure 15 Request block for the FPChangePassword command 37
Figure 16 Request block for the FPCloseDir command 38
Figure 17 Request block for the FPCloseDT command 39
Figure 18 Request block for the FPCloseFork command 39
Figure 19 Request block for the FPCloseVol command 40
Figure 20 Request block for the FPCopyFile command 43
Figure 21 Request and reply blocks for the FPCreateDir command 45
Figure 22 Request block for the FPCreateFile command 47
Figure 23 Request block for the FPCreateID command 48
Figure 24 Request block for the FPDelete command 50
Figure 25 Request block for the FPDeleteID command 52
Figure 26 Request block for the FPDisconnectOldSession command 53
Figure 27 Request and reply blocks for the FPEnumerate command 57
Figure 28 Request and reply blocks for the FPEnumerateExt command 61
Figure 29 Request and reply blocks for the FPEnumerateExt2 command 65
Figure 30 Example of exchanging files 67
Figure 31 Request block for the FPExchangeFiles command 68
Figure 32 Request block for the FPFlush command 69
Figure 33 Request block for the FPFlushFork command 70
Figure 34 Request and reply blocks for the FPGetACL command 72
Figure 35 Request and reply blocks for the FPGetAPPL command 74
Figure 36 Request and reply blocks for the FPGetAuthMethods command 75
Figure 37 Request and reply blocks for the FPGetComment command 77
Figure 38 Request and reply blocks for the FPGetExtAttr command 80
Figure 39 Bitmaps, Attributes, and Access Rights returned by FPGetFileDirParms 82
Figure 40 Request and reply blocks for the FPGetFileDirParms command 84

7
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Figure 41 Request and reply blocks for the FPGetForkParms command 85
Figure 42 Request and reply blocks for the FPGetIcon command 87
Figure 43 Request and reply blocks for the FPGetIconInfo command 89
Figure 44 Request and reply blocks for the FPGetSessionToken command 91
Figure 45 Bit usage in the ServerFlags parameter 92
Figure 46 AFP Network Address format 93
Figure 47 Request and reply blocks for the FPGetSrvrInfo command 96
Figure 48 Request and reply blocks for the FPGetSrvrMsg command 98
Figure 49 Request and reply blocks for the FPGetSrvrParms command 99
Figure 50 Request and reply blocks for the FPGetUserInfo command 101
Figure 51 Request and reply blocks for the FPGetVolParms command 102
Figure 52 Request and reply blocks for the FPListExtAttrs command 105
Figure 53 Request and reply blocks for the FPLogin command 107
Figure 54 Request and reply blocks for the FPLoginCont command 109
Figure 55 Request and reply blocks for the FPLoginExt command 112
Figure 56 Request block for the FPLogout command 113
Figure 57 Request and reply blocks for the FPMapID command 114
Figure 58 Request and reply blocks for the FPMapName command 115
Figure 59 Request block for the FPMoveAndRename command 118
Figure 60 Request and reply blocks for the FPOpenDir command 120
Figure 61 Request and reply blocks for the FPOpenDT command 121
Figure 62 Request and reply blocks for the FPOpenFork command 124
Figure 63 Request and reply blocks for the FPOpenVol command 126
Figure 64 Request and reply blocks for the FPRead command 128
Figure 65 Request and reply blocks for the FPReadExt command 130
Figure 66 Request and reply blocks for the FPRemoveAPPL command 132
Figure 67 Request and reply blocks for the FPRemoveComment command 134
Figure 68 Request block for the FPRemoveExtAttr command 136
Figure 69 Request block for the FPRename command 138
Figure 70 Request and reply blocks for the FPResolveID command 140
Figure 71 Request block for the FPSetACL command 142
Figure 72 Request block for the FPSetDirParms command 144
Figure 73 Request block for the FPSetExtAttr command 147
Figure 74 Request block for the FPSetFileDirParms command 150
Figure 75 Request block for the FPSetFileParms command 152
Figure 76 Request block for the FPSetForkParms command 154
Figure 77 Request block for the FPSetVolParms command 155
Figure 78 Request and reply blocks for the FPWrite command 157
Figure 79 Request and reply blocks for the FPWriteExt command 160
Figure 80 Request block for the FPZzzzz command 161
Figure 81 Access Rights bitmap 162
Figure 82 Directory bitmap 163
Figure 83 Directory Attributes bitmap 164
Figure 84 File bitmap 165
Figure 85 File Attributes bitmap 166
Figure 86 Volume Attributes bitmap 168

8
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

Figure 87 Volume bitmap 169
Table 1 Result codes for the FPAccess command 12
Table 2 Result codes for the FPAddAPPL command 15
Table 3 Result codes for the FPAddComment command 17
Table 4 Result codes for the FPByteRangeLock command 21
Table 5 Result codes for the FPByteRangeLockExt command 23
Table 6 Result codes for the FPCatSearch command 28
Table 7 Reply block for the FPCatSearch command 28
Table 8 Result codes for the FPCatSearchExt command 33
Table 9 Reply block for the FPCatSearchExt command 33
Table 10 Result codes for the FPChangePassword command 36
Table 11 Result codes for the FPCopyFile command 42
Table 12 Result codes for the FPCreateDir command 44
Table 13 Result codes for the FPCreateFile command 46
Table 14 Result codes for the FPCreateID command 48
Table 15 Result codes for the FPDelete command 49
Table 16 Result codes for the FPDeleteID command 51
Table 17 Result codes for the FPEnumerate command 55
Table 18 Reply block for the FPEnumerate command 56
Table 19 Result codes for the FPEnumerateExt command 59
Table 20 Reply block for the FPEnumerateExt command 60
Table 21 Result codes for the FPEnumerateExt2 command 63
Table 22 Reply block for the FPEnumerateExt2 command 64
Table 23 Result codes for the FPExchangeFiles command 67
Table 24 Result codes for the FPGetACL command 71
Table 25 Reply block for the FPGetACL command 71
Table 26 Reply block for the FPGetAPPL command 74
Table 27 Reply block for the FPGetAuthMethods command 75
Table 28 Result codes for the FPGetComment command 76
Table 29 Result codes for the FPGetExtAttr command 78
Table 30 Reply block for the FPGetExtAttr command 79
Table 31 Result codes for the FPGetFileDirParms command 83
Table 32 Reply block for the FPGetFileDirParms command 83
Table 33 Reply block for the FPGetForkParms command 85
Table 34 Reply block for the FPGetIconInfo command 88
Table 35 Reply block for the FPGetSessionToken command 91
Table 36 AFP Network Address fields 93
Table 37 Reply block for the FPGetSrvrInfo command 94
Table 38 Reply block for the FPGetSrvrMsg command 98
Table 39 Reply block for the FPGetSrvrParms command 99
Table 40 Result codes for the FPGetUserInfo command 100
Table 41 Reply block for the FPGetUserInfo command 101
Table 42 Reply block for the FPGetVolParms command 102
Table 43 Result codes for the FPListExtAttrs command 104
Table 44 Reply block for the FPListExtAttrs command 104
Table 45 Result codes for the FPLogin command 106

9
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

Table 46 Reply block for the FPLogin command 107
Table 47 Result codes for the FPLoginCont command 108
Table 48 Reply block for the FPLoginCont command 109
Table 49 Result codes for the FPLoginExt command 111
Table 50 Reply block for the FPLoginExt command 112
Table 51 Result codes for the FPMoveAndRename command 117
Table 52 Result codes for the FPOpenDir command 119
Table 53 Result codes for the FPOpenFork command 122
Table 54 Reply block for the FPOpenFork command 123
Table 55 Result codes for the FPOpenVol command 125
Table 56 Reply block for the FPOpenVol command 125
Table 57 Result codes for the FPRead command 127
Table 58 Result codes for the FPReadExt command 129
Table 59 Result codes for the FPRemoveAPPL command 131
Table 60 Result codes for the FPRemoveComment command 133
Table 61 Result codes for the FPRemoveExtAttr command 135
Table 62 Result codes for the FPRename command 137
Table 63 Result codes for the FPResolveID command 139
Table 64 Reply block for the FPResolveID command 139
Table 65 Result codes for the FPSetACL command 141
Table 66 Result codes for the FPSetDirParms command 144
Table 67 Result codes for the FPSetExtAttr command 146
Table 68 Result codes for the FPSetFileDirParms command 149
Table 69 Result codes for the FPSetFileParms command 152
Table 70 Result codes for the FPSetForkParms command 153
Table 71 Result codes for the FPSetVolParms command 155
Table 72 Result codes for the FPWrite command 157
Table 73 Result codes for the FPWriteExt command 159

10
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

Companion guide Apple Filing Protocol Programming Guide

Overview

This document describes the Apple Filing Protocol (AFP) commands, data types and constants that can be
used to communicate with an AFP file server. AFP allows users of multiple computers to share files easily and
efficiently over a network.

Functions

FPAccess
Requests access to a file or directory on a volume for which ACLs are enabled.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
unsigned short Bitmap
16 bytes UUID
long ReqAccess
byte Pathtype
string Pathname

Parameters
CommandCode

kFPAccess (75).

Pad
Pad byte.

VolumeID
Volume identifier.

DirectoryID
Directory identifier.

Bitmap
Reserved.

UUID
Universally Unique Identifier (UUID) of the process sending this command.

Overview 11
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReqAccess
Requested access. For definitions, see "ACL Access Rights" (page 174).

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the file or directory for which access is being requested. Pathname is a string if it contains
Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if access is allowed. See Table 2 (page 15) for other possible result codes.

Discussion
The request is sent to the server, which determines whether to grant access.

Support for this command, as well as FPGetACL (page 70) and FPSetACL (page 140) is required in order to
support access control lists (ACLs). Support for UTF-8 and UUIDs is also required in order to support ACLs.

Table 2 (page 15) lists the result codes for the FPAccess command.

Table 1 Result codes for the FPAccess command

ExplanationResult code

User does not have the access privileges required to request access to the file or
directory.

kFPAccessDenied

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Figure 1 shows the request block for the FPAccess command.

12 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 1 Request block for the FPAccess command

Request

FPAccess

0

VolumeID

DirectoryID

Bitmap

UUID
(16 bytes)

ReqAccess

PathType

PathName

Version Notes
Introduced in AFP 3.2.

FPAddAPPL
Adds an APPL mapping to the Desktop database.

Functions 13
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short DTRefNum
long DirectoryID
long FileCreator
long ApplTag
byte PathType
string Pathname

Parameters
CommandCode

kFPAddAPPL (53).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

DirectoryID
Ancestor Directory ID.

FileCreator
File creator of the application corresponding to the APPL mapping being added.

ApplTag
User-defined tag stored with the APPL mapping.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the application corresponding to the APPL mapping being added. Pathname is a string
if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 2 (page 15) for other possible result codes.

Reply block
None.

Discussion
This command adds the specified mapping to the volume’s Desktop database, including the application’s
location, and file creator. If an APPL mapping for the same application (same filename, same directory, and
same file creator) already exists, the mapping is replaced.

The user must have search or write privileges to all ancestors except the application’s parent directory, as
well as write access to the parent directory.

There may be more than one application in the Desktop database’s list of APPL mappings for a given file
creator. To distinguish among them, the ApplTag parameter is stored with each APPL mapping. The tag
information may be used to decide among these multiple applications and is not interpreted by the Desktop
database.

The user must have previously called FPOpenDT (page 120) for the corresponding volume. In addition, the
application must be present in the specified directory before this command is sent.

Table 2 (page 15) lists the result codes for the FPAddAPPL command.

14 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 2 Result codes for the FPAddAPPL command

ExplanationResult code

User does not have the access privileges required to add an APPL mapping.kFPAccessDenied

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file.kFPObjectNotFound

Input parameters point to a directory.kFPObjectTypeErr

Session reference or Desktop database reference number is unknown; pathname
is invalid.

kFPParamErr

Figure 2 shows the request block for the FPAddAPPL command.

Figure 2 Request block for the FPAddAPPL command

Request

kFPAddAPPL

0

DTRefNum

APPLTag

DirectoryID

FileCreator

PathType

Pathname

Functions 15
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPAddComment
Adds a comment for a file or directory to a volume’s Desktop database.

byte CommandCode
byte Pad
short DTRefNum
long DirectoryID
byte PathType
string Pathname
string Comment

Parameters
CommandCode

kFPAddComment (56).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

DirectoryID
Ancestor Directory ID.

PathType
Type of name in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the file or directory with which the comment is to be associated. Pathname is a string
if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Comment
Comment data to be associated with the specified file or directory.

Result
kFPNoErr if no error occurred. See Table 3 (page 17) for other possible result codes.

ReplyBlock
None.

Discussion
This command stores the comment data in the Desktop database and associates the comment with the
specified file or directory. If the comment is longer than 199 bytes, the comment is truncated to 199 bytes
without returning an error.

To add a comment to a directory that is not empty, the user needs search access to all ancestors including
the directory’s parent directory, as well as write access to the parent directory. To add a comment to an
empty directory, the user needs search or write access to all ancestors except the directory’s parent directory,
as well as write access to the parent directory.

To add a comment to a file that is not empty, the user needs search access to all ancestors except the file’s
parent directory, as well as read and write access to the parent directory. To add a comment to an empty
file, the user needs search or write access to all ancestors except the files’s parent directory, as well as write
access to the parent directory.

The user must have previously called FPOpenDT (page 120) for the corresponding volume. In addition, the
specified file or directory must be present in the specified directory before this command is sent.

16 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 3 (page 17) lists the result codes for the FPAddComment command.

Table 3 Result codes for the FPAddComment command

ExplanationResult code

User does not have the access privileges required to add a comment.kFPAccessDenied

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Non-AFP error occurred.kFPMiscErr

Figure 3 (page 17) shows the request block for the FPAddComment command.

Figure 3 Request block for the FPAddComment command

Request

kFPAddComment

0

DTRefNum

DirectoryID

FileCreator

PathType

Pathname

0 Add a null byte if necessary
to make Comment begin
on an even boundary.

Comment

FPAddIcon
Adds an icon bitmap to a volume’s Desktop database.

Functions 17
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short DTRefNum
long FileCreator
long FileType
byte IconType
byte Pad
long IconTag
short BitmapSize

Parameters
CommandCode

kFPAddIcon (192).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

FileCreator
File creator associated with the icon that is to be added.

FileType
File type associated with the icon that is to be added.

IconType
Type of icon that is to be added.

Pad
Pad byte.

IconTag
Tag information to be stored with the icon.

BitmapSize
Size of the bitmap for this icon.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or the Desktop database
reference number is unknown or if the pathname is invalid, kFPIconTypeError if the new icon’s
size is different from the size of the existing icon, or kFPMiscErr if an error occurred that is not
specific to AFP.

ReplyBlock
None.

Discussion
This command adds the icon for the specified file creator and icon type to the Desktop database and associates
the tag information with the icon. If an icon of the same file creator and icon type already exists in the
database, the icon is replaced. However, if the new icon’s size is different from the old icon, the server returns
a kFPIconTypeError result code.

The user must have previously called FPOpenDT (page 120) for the corresponding volume.

Figure 4 (page 19) shows the request block for the FPAddIcon command.

18 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 4 Request block for the FPAddIcon command

Request

FPAddIcon

0

DTRefNum

FileCreator

FileType

IconType

0

IconTag

BitmapSize

FPByteRangeLock
Locks or unlocks a specified range of bytes within an open fork.

byte CommandCode
byte Flags
short OForkRefNum
long Offset
long Length

Parameters
CommandCode

kFPByteRangeLock (1).

Pad
Pad byte.

Functions 19
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DTRefNum
Bit 0 is the LockUnlock bit, where 0 indicates lock and 1 indicates unlock. Bit 7 is the StartEndFlag
bit, where 0 indicates that Offset is relative to the beginning of the fork and 1 indicates that Offset
is relative to the end of the fork. The StartEndFlag bit is only used when locking a range.

OForkRefNum
Open fork reference number.

Offset
Offset to the first byte of the range to be locked or unlocked (can be negative if the StartEndFlag bit
is set to 1).

Length
Number of bytes to be locked or unlocked (a signed, positive long integer; cannot be negative except
for the special value $FFFFFFFF).

Result
kFPNoErr if no error occurred. See Table 4 (page 21) for possible result codes.

ReplyBlock
If the result code is kFPNoErr and the reply is for an attempt to lock a range, the server returns a
reply block. The reply block consists of a long, called RangeStart, containing the number of the first
byte of the range that was locked.

Discussion
This command locks and unlocks the specified range of bytes within an open fork for use by a user application.
When locking a range, the server returns the number of the first locked byte.

Bytes are numbered from 0 to $7FFFFFFF. The latter value is the maximum size of the fork. The end of fork
is one more than the number of the last byte in the fork.

If no user holds a lock on any part of the requested range, the server locks the range specified by this command.
A user can hold multiple locks within the same open fork, up to a server-specific limit. Locks cannot overlap.
A locked range can start or extend past the end of fork; this does not move the end of fork or prevent another
user from writing to the fork past the locked range. Setting Offset to zero, the StartEndFlag bit to zero
(start), and Length to $FFFFFFFF locks the entire fork to the maximum size of the fork. Setting Offset to a
value other than zero, the StartEndFlag bit to zero, and Length to $FFFFFFFF locks a range beginning at
Offset and extending to the maximum size of the fork.

Setting the StartEndFlag bit to 1 (end) allows a lock to be offset relative to the end of the fork. This enables
a user to set a lock when the user does not know the exact end of the fork, as can happen when multiple
writers are concurrently modifying the fork. The server returns the number of the first locked byte.

Lock conflicts are determined by the value of OForkRefNum. That is, if a fork is opened twice, the two open
fork reference numbers are considered two different “users” regardless of whether they were opened for the
same or different sessions.

All locks held by a user are unlocked when the user closes the fork. Unlocking a range makes it available to
other users for reading and writing. The server returns a result code of kFPRangeNotLocked if a user tries
to unlock a range that was locked by another user or that was not locked at all.

To unlock a range, the StartEndFlag bit must be set to zero (start), Length must match the size of the
range that was locked, and Offset must match the number of the first byte in the locked range. If the range
was locked with the StartEndFlag bit set to zero (start), use the same value of Offset to unlock the range
that was used to lock the range. If the range was locked with the StartEndFlag bit set to 1 (end), set Offset
to the value of RangeStart that was returned by the server. You cannot unlock part of range.

Mac OS X supports memory-mapped files, but byte range locks should not be used in conjunction with them.

20 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 4 (page 21) lists the result codes for the FPByteRangeLock command.

Table 4 Result codes for the FPByteRangeLock command

ExplanationResult code

Some or all of the requested range is locked by another user.kFPLockErr

Non-AFP error occurred.kFPMiscErr

Server’s maximum lock count has been reached.kFPNoMoreLocks

Session reference number or open fork reference number is unknown; a
combination of the StartEndFlag bit and Offset specifies a range that starts before
byte zero.

kFPParamErr

User tried to unlock a range that is locked by another user or that is not locked
at all.

kFPRangeNotLocked

User tried to lock some or all of a range that the user has already locked.kFPRangeOverlap

Figure 5 (page 21) shows the request and reply blocks for the FPByteRangeLock command.

Figure 5 Request and reply blocks for the FPByteRangeLock command

Request

FPByteRangeLock

OForkRefNum

Offset

Length

Reply

RangeStart
StartEndFlag LockUnlockFlag

FPByteRangeLockExt
Locks or unlocks a specified range of bytes within an open fork.

Functions 21
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Flags
short OForkRefNum
long long Offset
long long Length

Parameters
CommandCode

kFPByteRangeLockExt (59).

Pad
Pad byte.

Flags
Bit 0 is the LockUnlock bit, where 0 indicates lock and 1 indicates unlock. Bit 7 is the StartEndFlag
bit, where 0 indicates that Offset is relative to the beginning of the fork and 1 indicates that Offset
is relative to the end of the fork. The StartEndFlag bit is only used when locking a range.

OForkRefNum
Open fork reference number.

Offset
Offset to the first byte of the range to be locked or unlocked (can be negative if the StartEndFlag bit
is set to 1).

Length
Number of bytes to be locked or unlocked (a signed, positive long integer; cannot be negative except
for the special value $FFFFFFFFFFFFFFFF).

Result
kFPNoErr if no error occurred. See Table 5 (page 23) for possible result codes.

ReplyBlock
If the result code is kFPNoErr and the reply is for an attempt to lock a range, the server returns a
reply block. The reply block consists of a long, called RangeStart, containing the number of the first
byte of the range that was locked.

Discussion
This command locks and unlocks the specified range of bytes within an open fork for use by a user application.
When locking a range, the server returns the number of the locked byte.

The FPByteRangeLockExt command differs from the FPByteRangeLock command in that the
FPByteRangeLockExt command is prepared to handle large values that may be required for locking ranges
for volumes larger than 4 GB in size.

Bytes are numbered starting from 0. The end of fork is one more than the number of the last byte in the fork.

If no user holds a lock on any part of the requested range, the server locks the range specified by this command.
A user can hold multiple locks within the same open fork, up to a server-specific limit. Locks cannot overlap.
A locked range can start or extend past the end of the fork; this does not move the end of the fork or prevent
another user from writing to the fork past the locked range. Setting Offset to zero, the StartEndFlag bit
to zero (start), and Length to $FFFFFFFFFFFFFFFF locks the entire for to the maximum size of the fork.
Specifying an offset other than zero, the StartEndFlag bit to zero (start), and Length to $FFFFFFFFFFFFFFFF
locks a range beginning at Offset and extending to the maximum size of the fork.

Setting the StartEndFlag bit to 1 (end) allows a lock to be offset relative to the end of the fork. This enables
a user to set a lock when the user does not know the exact end of the fork, as can happen when multiple
writers are concurrently modifying the fork. The server returns the number of the first locked byte.

22 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Lock conflicts are determined by the value of OForkRefNum. That is, if a fork is opened twice, the two open
fork reference numbers are considered two different “users” regardless of whether they were opened for the
same or different sessions.

All locks held by a user are unlocked when the user closes the fork. Unlocking a range makes it available to
other users for reading and writing. The server returns a result code of kFPRangeNotLocked if a user tries
to unlock a range that was locked by another user or that was not locked at all.

To unlock a range, the StartEndFlag bit must be set to zero (start), Length must match the size of the
range that was locked, and Offset must match the number of the first byte in the locked range. If the range
was locked with StartEndFlag set to zero (start), use the same value of Offset to unlock the range that
was used to lock the range. If the range was locked with the StartEndFlag bit set to 1 (end), set Offset
to the value of RangeStart that was returned by the server. You cannot unlock part of range.

Mac OS X supports memory-mapped files, but byte range locks should not be used in conjunction with them.

Table 5 (page 23) lists the result codes for the FPByteRangeLockExt command.

Table 5 Result codes for the FPByteRangeLockExt command

ExplanationResult code

Some or all of the requested range is locked by another user.kFPLockErr

Non-AFP error occurred.kFPMiscErr

Server’s maximum lock count has been reached.kFPNoMoreLocks

Open fork reference number is unknown; a combination of the StartEndFlag bit
and Offset parameters specifies a range that starts before byte zero.

kFPParamErr

User tried to lock some or all of a range that the user has already locked.kFPRangeOverlap

User tried to unlock a range that is locked by another user or that is not locked
at all.

kFPRangeNotLocked

Figure 6 (page 24) shows the request and reply blocks for the FPByteRangeLockExt command.

Functions 23
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 6 Request and reply blocks for the FPByteRangeLockExt command

Request

FPByteRangeLockExt

OForkRefNum

Offset

Length

Reply

RangeStart

StartEndFlag LockUnlockFlag

FPCatSearch
Searches a volume for files and directories that match specified criteria.

24 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long ReqMatches
long Reserved
16 bytes CatalogPosition
short FileRsltBitmap
short DirectoryRsltBitmap
long ReqBitmap
Specification1
Specification2
unsigned char Length

Parameters
CommandCode

kFPCatSearch (43).

Pad
Pad byte.

VolumeID
The ID of the volume to search.

Reserved
Reserved; must be zero.

ReqMatches
The maximum number of matches to return.

CatalogPosition
Current position in the catalog.

FileRsltBitmap
File bitmap describing the file parameters to get or null to get directory parameters only. Set the bit
that corresponds to each desired parameter. This bitmap is the same as the FileBitmap parameter
of the FPGetFileDirParms (page 80) command with some restrictions described in the Discussion
section. For bit definitions for this bitmap, see File Bitmap (page 164).

DirectoryRsltBitmap
Directory bitmap describing the directory parameters to get or null to get file parameters only. Set
the bit that corresponds to each desired parameter. This bitmap is the same as the DirectoryBitmap
parameter of the FPGetFileDirParms (page 80) command with some restrictions described in the
Discussion section. For bit definitions for this bitmap, see Directory Bitmap (page 162).

ReqBitmap
Directory and file parameters that are to be searched. For directory parameters only, see Figure 7 (page
27). For file parameters only, see Figure 8 (page 27). For directory and file parameters, see Figure
9 (page 27).

Specification1
Search criteria lower bounds and values.

Specification2
Optional search criteria upper bounds and masks.

Length
Length of this request block.

Result
kFPNoErr if no error occurred. See Table 6 (page 28) for possible result codes.

Functions 25
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 7 (page 28) for the format
of the reply block.

Discussion
This command searches a volume for files and directories that match the specified criteria and returns an
array of records that describe the matches that were found. The criteria can include most parameters in the
File bitmap, the Directory bitmap, or both bitmaps, that are defined for the FPGetFileDirParms (page 80)
command. Parameters for the matching files and directories are returned. These parameters can also be any
of those specified by the FPGEtFileDirParms command.

The first word of the CatalogPosition parameter specifies whether the parameter denotes an actual
catalog position or a hint. If the first word is zero, the search starts at the beginning of the volume. If the first
word is non-zero, CatalogPosition is a actual catalog position and the search starts with this entry.

The Specification1 and Specification2 parameters are used together to specify the search parameters.
These parameters are packed in the same order as the bits in ReqBitmap. All variable-length parameters
(such as those containing names) are put at the end of each specification record. An offset is stored in the
specification parameters to indicate where the actual variable-length parameter is located. This offset is
measured from the start of the specification parameters (not including the length and filler bytes). Results
are packed in the same way.

The fields in Specification1 and Specification2 have different uses:

 ■ In the name field, Specification1 holds the target string; Specification2 must always have a null
name field.

 ■ In all date and length fields, Specification1 holds the lowest value in the target range and
Specification2 holds the highest value in the target range.

 ■ In file attributes and Finder Info fields, Specification1 holds the target value and Specification2
holds the bitwise mask that specifies which bits in that field in Specification1 are relevant to the
current search.

This command returns a result code of kFPEOFErr only when it has reached the end of the volume directory
tree. For example, if the client requests ten matches, the server may return only four matches, without
returning an error. The client should then send a request for six (ten minus four) more matches, using the
same CatalogPosition value that was received in the previous reply. This process continues until the
originally requested matches are received or a kFPEOFErr is returned. If this command returns a result code
of kFPCatalogChanged, the client cannot continue the search. The client must restart the search by setting
the first word of CatalogPosition to zero.

This command returns parameters for files, directories or both, depending on the value of the
FileRsltBitmap and DirectoryRsltBitmap parameters. If FileRsltBitmap is null, this command
assumes that you are not searching for files. Likewise, if DirectoryRsltBitmap is null, this command
assumes that you are not searching for directories. If both parameters are non-zero, this command searches
for files and directories. Note that if you are searching for both files and directories, certain restrictions apply
with regard to the parameters that are searched. The rest of this section describes these restrictions.

The ReqBitmap parameter specifies the directory and file parameters to be searched. The low-order word
of ReqBitmap is the same as low-order word of the File bitmap and the Directory bitmap used by the
FPGetFileDirParms (page 80) command, with the exception of the Short Name parameter, which cannot
be searched. The high bit of the high-order word of ReqBitmap indicates whether the search should match
on full names or partial names (0 = full name, 1 = partial name). There is no equivalent to the fsSBNegate bit
used by the Macintosh File Manager’s PBCatSearch function.

26 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 7 (page 27) shows parameters this command can search when it is searching directories only.

Figure 7 Parameters FPCatSearch searches when searching directories only

0 0 0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes*

Offspring Count

0 0 0
0

Match on full names (0) or partial names (1)

*DeleteInhibit and RenameInhibit only

Figure 8 (page 27) shows parameters this command can search when it is searching files only.

Figure 8 Parameters FPCatSearch searches when searching files only

0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes*

0 0
0

Data Fork Length
Resource Fork Length

Extended Data Fork Length
Extended Resource Fork Length

Match on full names (0) or partial names (1)

*DeleteInhibit, RenameInhibit, and WriteInhibit only

Figure 9 (page 27) shows parameters this command can search when it is searching both directories and
files.

Figure 9 Parameters FPCatSearch searches when searching directories and files

0 0 0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID

0 0
0

0 0Match on full names (0) or partial names (1)
0

Functions 27
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Before sending this command, the user must call FPOpenVol (page 124) for the volume that is to be searched.

To return all files and directories that match the specified criteria, the user must have Read Only or Read &
Write privileges for all directories. This command skips directories for which the user does not have Read
Only or Read & Write privileges.

Table 6 lists the result codes for the FPCatSearch command.

Table 6 Result codes for the FPCatSearch command

ExplanationResult code

Server does not support this command.kFPCallNotSupported

Catalog has changed and CatalogPosition may be invalid. No matches were
returned.

kFPCatalogChanged

No more matches.kFPEOFErr

Non-AFP error occurred.kFPMiscErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is null or bad.

kFPParamErr

Table 7 describes the reply block for the FPCatSearch command.

Table 7 Reply block for the FPCatSearch command

DataName and size

Current position in the catalog.CatalogPosition (16 bytes)

Copy of the input bitmap.FileRsltBitmap (short)

Copy of the input bitmap.DirectoryRsltBitmap (short)

Number of ResultsRecord structures that follow.ActualCount (byte)

Array of ResultsRecord structures describing the matches that were
found and having the following structure: StructLength (byte) —
Unsigned length of this structure including this byte and the byte for
the FileDir bit. FileDir (bit 7 of a one-byte value) — Whether the
record is for a file (0) or directory (1). Results — The matching Long
Name, Parent Directory ID, or both with a trailing null byte if necessary
to make the entire structure end on an even boundary.

Zero or more ResultsRecord
structures

Figure 10 shows the request and reply blocks for the FPCatSearch command.

28 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 10 Request and reply blocks for the FPCatSearch command

Request

FPCatSearch

0

VolumeID

Reply

ReqMatches

Length

0

0
(Reserved)

CatalogPosition

FileRsltBitmap

DirectoryRsltBitmap

ReqBitmap

Specification1

Specification2
(optional)

SpecStruct

CatalogPosition

FileRsltBitmap

DirectoryRsltBitmap

ActualCount

ResultsRecord

0

StructLength

FileDir bit

A null byte is added to each
structure if necessary to make
the length of the structure even.

The low-order word of ReqBitmap
is equivalent to the File and Directory bitmaps
used by the FPGetFileDirParms
command. The high bit of the high-order word
is 1 if searching on partial names or 0 if
searching on full names.

Repeated
ActualCount
times

FPCatSearchExt
Searches a volume for files and directories that match specified criteria.

Functions 29
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long ReqMatches
long Reserved
16 bytes CatalogPosition
short FileRsltBitmap
short DirectoryRsltBitmap
long ReqBitmap
Specification1
Specification2
unsigned char Length

Parameters
CommandCode

kFPCatSearchExt (67).

Pad
Pad byte.

VolumeID
Volume ID.

ReqMatches
Maximum number of matches to return.

Reserved
Reserved; must be zero.

CatalogPosition
Current position in the catalog.

FileRsltBitmap
Bitmap describing the file parameters to get or null to get directory parameters only. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the FileBitmap parameter of
the FPGetFileDirParms (page 80) command with some restrictions described later in this section.
For bit definitions for this bitmap, see File Bitmap (page 164).

DirectoryRsltBitmap
Bitmap describing the directory parameters to get or null to get file parameters only. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the DirectoryBitmap parameter
of the FPGetFileDirParms (page 80) command with some restrictions described later in this section.
For bit definitions for this bitmap, see Directory Bitmap (page 162).

ReqBitmap
Directory and file parameters that are to be searched. For directory parameters, see Figure 11 (page
32). For file parameters, see Figure 12 (page 32). For directory and file parameters, see Figure 13 (page
33).

Specification1
Search criteria lower bounds and values.

Specification2
Optional search criteria upper bounds and masks.

Length
Length of this request block.

Result
kFPNoErr if no error occurred. See Table 8 (page 33) for possible result codes.

30 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 9 (page 33) for the format
of the reply block.

Discussion
This command searches a volume for files and directories that match the specified criteria and returns an
array of records that describe the matches that were found.

This command differs from the FPCatSearch (page 24) command in that FPCatSearchExt is prepared to
handle longer search results that can occur when searching volumes that are more than 4 GB in size.

The criteria can include most parameters in the File bitmap, the Directory bitmap, or both bitmaps, that are
defined for the FPGetFileDirParms (page 80) command. Parameters for the matching files and directories
are returned. These parameters can also be any of those specified by the FPGetFileDirParms command.

The first word of the CatalogPosition parameter specifies whether the parameter denotes an actual
catalog position or a hint. If the first word is zero, the search starts at the beginning of the volume. If the first
word is non-zero, CatalogPosition is an actual catalog position and the search starts with this entry.

The Specification1 and Specification2 parameters are used together to specify the search parameters.
These parameters are packed in the same order as the bits in the ReqBitmap. All variable-length parameters
(such as those containing names) are put at the end of each specification record. An offset is stored in the
specification parameters to indicate where the actual variable-length parameter is located. This offset is
measured from the start of the specification parameters (not including the length and filler bytes). Results
are packed in the same way.

The fields in Specification1 and Specification2 have different uses:

 ■ In the name field, Specification1 holds the target string; Specification2 must always have a null
name field.

 ■ In all date and length fields, Specification1 holds the lowest value in the target range and
Specification2 holds the highest value in the target range.

 ■ In Attributes and Finder Info fields, Specification1 holds the target value and Specification2
holds the bitwise mask that specifies which bits in that field in Specification1 are relevant to the
current search.

This command returns a result code of kFPEOFErr only when it has reached the end of the volume directory
tree. For example, if the client requests ten matches, the server may return only four matches, without
returning an error. The client should then send a request for six (ten minus four) more matches, using the
same CatalogPosition value that was received in the previous reply. This process continues until the
originally requested matches are received or a result code of kFPEOFErr is returned. If this command returns
a result code of kFPCatalogChanged, the client cannot continue the search. The client must restart the
search by setting the first word of CatalogPosition to zero.

This command returns parameters for files, directories or both, depending on the value of the
FileRsltBitmap and DirectoryRsltBitmap parameters. If FileRsltBitmap is null, this command
assumes that you are not searching for files. Likewise, if DirectoryRsltBitmap is null, this command assumes
that you are not searching for directories. If both parameters are non-zero, this command searches for files
and directories. Note that if you are searching for both files and directories, certain restrictions apply with
regard to the parameters that are searched. The rest of this section describes these restrictions.

The ReqBitmap parameter specifies the directory and file parameters to be searched. The low-order word
of ReqBitmap is the same as low-order word of the File bitmap and the Directory bitmap in
FPGetFileDirParms (page 80), with the exception of the Short Name parameter, which cannot be searched.

Functions 31
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The high bit of the high-order word of ReqBitmap indicates whether the search should match on full names
or partial names (0 = full name, 1 = partial name). There is no equivalent to the fsSBNegate bit used by the
Macintosh File Manager’s PBCatSearch function.

Figure 11 (page 32) shows parameters this command can search when it is searching directories only.

Figure 11 Parameters FPCatSearchExt searches when searching directories only

0 0 0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes*

Offspring Count

0 0 0
0

Match on full names (0) or partial names (1)

*DeleteInhibit and RenameInhibit only

Figure 8 (page 27) shows parameters this command can search when it is searching files only.

Figure 12 Parameters FPCatSearchExt searches when searching files only

0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes*

0 0
0

Data Fork Length
Resource Fork Length

Extended Data Fork Length
Extended Resource Fork Length

Match on full names (0) or partial names (1)

*DeleteInhibit, RenameInhibit, and WriteInhibit only

Figure 9 (page 27) shows parameters this command can search when it is searching both directories and
files.

32 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 13 Parameters FPCatSearchExt searches when searching directories and files

0 0 0

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID

0 0
0

0 0Match on full names (0) or partial names (1)
0

Before sending this command, the user must call FPOpenVol (page 124) for the volume that is to be searched.

To return all files and directories that match the specified criteria, the user must have Read Only or Read &
Write privileges for all directories. This command skips directories for which the user does not have Read
Only or Read & Write privileges.

Table 8 (page 33) lists the result codes for the FPCatSearchExt command.

Table 8 Result codes for the FPCatSearchExt command

ExplanationResult code

Server does not support this command.kFPCallNotSupported

Catalog has changed and CatalogPosition may be invalid. No matches were
returned.

kFPCatalogChanged

No more matches.kFPEOFErr

Non-AFP error occurred.kFPMiscErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is null or bad.

kFPParamErr

Table 9 describes the reply block for the FPCatSearchExt command.

Table 9 Reply block for the FPCatSearchExt command

DataName and size

Current position in the catalog.CatalogPosition (16 bytes)

Copy of the input bitmap.FileRsltBitmap (short)

Copy of the input bitmap.DirectoryRsltBitmap (short)

Number of ResultsRecord structures that follow.ActualCount (short)

Functions 33
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DataName and size

Array of ResultsRecord structures describing the matches that were
found and having the following structure: StructLength (byte) —
Unsigned length of this structure including this byte and the byte for
the FileDir bit. FileDir (bit 7 of a one-byte value) — Whether the
record is for a file (0) or directory (1). Results — The matching Long
Name, Parent Directory ID, or both with a trailing null byte if necessary
to make the entire structure end on an even boundary.

Zero or more ResultsRecord
structures

Figure 14 shows the request and reply blocks for the FPCatSearchExt command.

Figure 14 Request and reply blocks for the FPCatSearchExt command

Request

kFPCatSearchExt

0

VolumeID

Reply

ReqMatches

Length

0
(Reserved)

CatalogPosition

FileRsltBitmap

DirectoryRsltBitmap

ReqBitmap

Specification1

Specification2
(optional)

SpecStruct

CatalogPosition

FileRsltBitmap

DirectoryRsltBitmap

ActualCount

ResultsRecord

0

StructLength

FileDir bit

A null byte is added to each
structure if necessary to make
the length of the structure even.

The low-order word of ReqBitmap
is equivalent to the File and Directory
bitmaps used by the FPGetFileDirParms
command. The high bit of the high-order
word is 1 if searching on partial names, 0 if
searching on full names.

Repeated
ActualCount
times

34 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPChangePassword
Allows users to change their passwords.

byte CommandCode
byte Pad
string UAM
string UserName
UserAuthInfo

Parameters
CommandCode

kFPChangePassword (36).

Pad
Pad byte.

UAM
String specifying the UAM to uses.

UserName
Name of the user whose password is to be changed. Starting with AFP 3.0, UserName is two bytes
with each byte set to zero. The first byte indicates a zero length string, and the second byte is a pad
byte.

UserAuthInfo
UAM-specific information.

Result
kFPNoErr if no error occurred. See Table 10 (page 36) for other possible result codes.

ReplyBlock
None.

Discussion
If the UAM is Cleartxt Passwrd, the AFP client sends the server the user’s name plus the user’s old and
new eight-byte passwords in cleartext. The server looks up the password for that user. If it matches the old
password sent in the packet, the new password is saved for that user. For more information on the Cleartext
Password UAM, see the section “Cleartext Password” in the “Introduction” section.

If the UAM is Randnum Exchange, DES is used to encrypt and decrypt passwords. The AFP client sends the
server the user name, the user’s old eight-byte password encrypted with the user’s new eight-byte password,
and the user’s new eight-byte password encrypted with the user’s old eight-byte password. The server looks
up the password for that user, uses that password as a key to decrypt the new password, and uses the result
to decrypt the old password. If the final result matches what the server knows to be the old password, the
new password is saved for that user. For more information on the Random Number Exchange UAM, see the
section “Random Number Exchange” in the “Introduction” section.

When using the Random Number Exchange UAM, be sure to append null bytes to any password that is less
than eight bytes so that the resulting password has a length of eight bytes.

If the user logged in using the Two-Way Random Number Exchange UAM, the client uses the Randnum UAM
for changing the user’s password.

If the UAM is DHCAST128, the AFP client must call FPChangePassword twice. The first time, the AFP client
calls FPChangePassword to send the user name and a random number that has been encrypted. The server
replies with an ID, a random number, and a nonce/server signature value encrypted by a session key. The
AFP client calls FPChangePassword again, this time sending the user name and the ID returned by the

Functions 35
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

server. The client also sends the nonce incremented by one, the new password, and the old password, all
encrypted by the session key. For information on using the DHX UAM to change passwords, see the section
“DHX and Changing a Password” in the “Introduction” section.

Servers are not required to support this command. Call FPGetSrvrInfo (page 91) to determine whether a
server supports this command.

The user may not have been granted the ability to change his or her password. Granting the ability to change
a password is an administrative function and is beyond the scope of this protocol specification.

Table 10 lists the result codes for the FPChangePassword command.

Table 10 Result codes for the FPChangePassword command

ExplanationResult code

No error occurred.kFPNoErr

Server does not support this command.kFPCallNotSupported

UAM failed (the specified old password doesn’t match) or no user is logged in
yet for the specified session.

kFPUserNotAuth

Specified UAM is not a UAM that FPChangePassword supports.kFPBadUAM

User does not have the access privileges required to use this command.kFPAccessDenied

User name is null, exceeds the UAM’s user name length limit, or does not exist.kFPParamErr

User attempted to change his or her password to the same password that he
or she previously had. This error occurs only if the password expiration feature
is enabled on the server.

kFPPwdSameErr

User password is shorter than the server’s minimum password length, or user
attempted to change password to a password that is shorter than the server’s
minimum password length.

kFPPwdTooShortErr

New password does not conform to the server’s password policy.kFPPwdPolicyErr

Non-AFP error occurred.kFPMiscErr

Figure 15 (page 37) shows the request block for the FPChangePassword command.

36 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 15 Request block for the FPChangePassword command

kFPChangePassword

0

A null byte a zero-length
string.

0

UAM

UserAuthInfo

0 A null pad byte.

FPCloseDir
Closes a directory and invalidates its Directory ID.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID

Parameters
CommandCode

kFPCloseDir (3).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Directory ID.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number, Volume ID, or Directory
ID is unknown, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command invalidates the Directory ID specified by DirectoryID.

This command should be used only for variable Directory ID volumes. The user must have previously called
FPOpenVol (page 124) for this volume and FPOpenDir (page 118) for this directory.

Figure 16 (page 38) shows the request block for the FPCloseDir command.

Functions 37
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 16 Request block for the FPCloseDir command

Request

FPCloseDir

0

DirectoryID

VolumeID

FPCloseDT
Closes a volume’s Desktop database.

byte CommandCode
byte Pad
short DTRefNum

Parameters
CommandCode

kFPCloseDT (49).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or the Desktop database
reference number is unknown, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command invalidates the Desktop database reference number specified by DTRefNum.

The user must first have sent a successful FPOpenDT (page 120) command.

Figure 17 (page 39) shows the request block for the FPCloseDT command.

38 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 17 Request block for the FPCloseDT command

Request

kFPCloseDT

0

DTRefNum

FPCloseFork
Closes a fork.

byte CommandCode
byte Pad
short OForkRefNum

Parameters
CommandCode

kFPCloseFork (4).

Pad
Pad byte.

OForkRefNum
Open fork reference number.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or the open fork
reference number is unknown, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command causes the server to flush and close the specified fork, invalidating the open fork reference
number. If the fork was written to, the file’s modification date is set to the server’s clock.

The user must first have sent a successful FPOpenFork (page 121) command.

Figure 18 (page 39) shows the request block for the FPCloseFork command.

Figure 18 Request block for the FPCloseFork command

Request

kFPCloseFork

0

OForkRefNum

Functions 39
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPCloseVol
Closes a volume.

byte CommandCode
byte Pad
short VolumeID

Parameters
CommandCode

kFPCloseVol (2).

Pad
Pad byte.

VolumeID
Volume ID.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or the Volume ID is
unknown, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command invalidates the specified Volume ID but does not necessarily close all open files on a volume
before closing the volume, so you should close all open files before calling FPCloseVol.

The user must first have sent a successful FPOpenVol (page 124) command for this volume.

After sending this command, the user can send no other commands for this volume without opening the
volume again.

Figure 19 (page 40) shows the request block for the FPCloseVol command.

Figure 19 Request block for the FPCloseVol command

Request

kFPCloseVol

0

UolumeID

FPCopyFile
Copies a file from one location to another on the same file server.

40 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short SourceVolumeID
long SourceDirectoryID
short DestVolumeID
long DestDirectoryID
byte SourcePathType
string SourcePathname
byte DestPathType
string DestPathname
byte NewType
string NewName

Parameters
CommandCode

kFPCopyFile (5).

Pad
Pad byte.

SourceVolumeID
Source Volume ID.

SourceDirectoryID
Source ancestor Directory ID.

DestVolumeID
Destination Volume ID.

DestDirectoryID
Destination ancestor Directory ID.

SourcePathType
Type of names in SourcePathname. See Path Type Constants (page 174) for possible values.

SourcePathname
Pathname of the file to be copied (cannot be null). SourcePathname is a string if it contains Short
or Long Names or an AFPName if it contains a UTF-8–encoded path.

DestPathType
Type of names in DestPathname. See Path Type Constants (page 174) for possible values.

DestPathname
Pathname to the destination parent directory (may be null). DestPathname is a string if it contains
Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

NewType
Type of name in NewName. See Path Type Constants (page 174) for possible values.

NewName
Name to be given to the copy (may be null).

Result
kFPNoErr if no error occurred. See Table 11 (page 42) for other possible result codes.

ReplyBlock
None.

Discussion
This command copies a file to a new location on the server. The source and destination can be on the same
or on different volumes.

Functions 41
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The server tries to open the source file for Read, DenyWrite access. If this fails, the server returns
kFPDenyConflict as the result code. If the server successfully opens the file, it copies the file to the directory
specified by the destination parameters.

The copy is given the name specified by the NewName parameter. If NewName is null, the server gives the
copy the same name as the original. The file’s other name (Long, Short) is generated as described in the
section “Catalog Node Names” in Chapter 1. A unique file number is assigned to the file. The server also sets
the file’s Parent ID to the Directory ID of the destination parent directory. All other file parameters remain
the same as the source file’s parameters. The modification date of the destination parent directory is set to
the server’s lock.

The user must have search access to all ancestors of the source file, except the source parent directory, and
read access to the source parent directory. Further, the user must have search or write access to all ancestors
of the destination file, except the destination parent directory, and write access to the destination parent
directory.

This command is optional and may not be supported by all servers.

Table 11 lists the result codes for the FPCopyFile command.

Table 11 Result codes for the FPCopyFile command

ExplanationResult code

User does not have the access privileges required to read the file or write to
the destination.

kFPAccessDenied

Server does not support this command.kFPCallNotSupported

File cannot be opened for Read, DenyWrite.kFPDenyConflict

No more space exists on the destination volume.kFPDiskFull

Non-AFP error occurred.kFPMiscErr

File or directory of the name specified by NewName already exists in the
destination parent directory.

kFPObjectExists

The source file does not exist; ancestor directory is unknown.kFPObjectNotFound

Source parameters point to a directory.kFPObjectTypeErr

Open fork reference number is unknown; a combination of the StartEndFlag
bit and Offset parameters specifies a range that starts before byte zero.

kFPParamErr

Figure 20 (page 43) shows the request block for the FPCopyFile command.

42 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 20 Request block for the FPCopyFile command

Request

FPCopyFile

0

SourceVolumeID

SourceDirectoryID

DestVolumeID

DestDirectoryID

SourcePathType

SourcePathname

DestPathType

DestPathname

NewType

NewName

FPCreateDir
Creates a new directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPCreateDir (6).

Functions 43
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname, including the name of the new directory (cannot be null). Pathname is a string if it contains
Short or Long Names or an AFPName if it contains a UTF-8– encoded path.

Result
kFPNoErr if no error occurred. See Table 12 (page 44) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a long, called NewDirectoryID, containing the
Directory ID of the new directory in the reply block.

Discussion
This command creates an empty directory having the name specified by the Pathname parameter. The file
server assigns the directory a unique Directory ID and returns it in the reply block. The new directory’s Owner
ID is set to the User ID of the user sending the command, and its Group ID is set to the ID of the user’s Primary
Group ID, if a primary group has been specified for the user.

The new directory’s privileges are initially set to read, write, and search for the owner, with no privileges for
a group or Everyone. Finder information is set to zero and all directory attributes are initially cleared. The
directory’s creation and modification dates, as well as the modification date of the parent directory, are set
to the server’s clock. The directory’s backup date is set to $80000000, signifying that the directory has never
been backed up. The directory’s other names are generated as described in the section “Catalog Node Names”
in Chapter 1.

The user must have search or write access to all ancestors, except this directory’s parent directory, as well as
write access to the parent directory.

Table 12 lists the result codes for the FPCreateDir command.

Table 12 Result codes for the FPCreateDir command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

No more space exists on the volume.kFPDiskFull

Volume is flat and does not support directories.kFPFlatVol

Non-AFP error occurred.kFPMiscErr

Ancestor directory is unknown.kFPObjectNotFound

File or directory of the specified name already exists.kFPObjectExists

Session reference number, Volume ID, or pathname is null or invalid.kFPParamErr

44 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Destination volume is read-only.kFPVolLocked

Figure 21 (page 45) shows the request and reply blocks for the FPCreateDir command.

Figure 21 Request and reply blocks for the FPCreateDir command

Request

kFPCreateDir

0

VolumeID

Reply

NewDirectoryID

DirectoryID

PathType

Pathname

FPCreateFile
Creates a new file.

byte CommandCode
byte Flag
short VolumeID
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPCreateFile (7).

Flag
Bit 7 of the Flag parameter is the CreateFlag bit, where 0 indicates a soft create and 1 indicates a
hard create.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Functions 45
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pathname
Pathname, including the name of the new file (cannot be null). Pathname is a string if it contains
Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 13 (page 46) for other possible result codes.

ReplyBlock
None.

Discussion
This command creates an empty file having the name specified by Pathname. For a soft create, if a file by
that name already exists, the server returns a result code of kFPObjectExists. Otherwise, it creates a new
file and assigns it the name specified by Pathname. A unique file number is assigned to the file. Finder
information is set to zero, and all file attributes are initially cleared. The file’s creation and modification dates,
and the modification date of the file’s parent of the file’s parent directory, are set to the server’s clock. The
file’s backup date is set to $80000000, signifying that this file has never been backed up. The file’s other
names are generated as described in the section “Catalog Node Names” in Chapter 1. The lengths of both
of the file’s forks are set to zero.

For a soft create, the user must have search or write access to all ancestors, except this file’s parent directory,
as well as write access to the parent directory. For a hard create, the user must have search access to all
ancestors, except the parent directory, as well as read and write access to the parent directory.

For a hard create, if the file already exists and is not open, the file is deleted and then recreated. All file
parameters (including the creation date) are reinitialized as described above.

Table 13 lists the result codes for the FPCreateFile command.

Table 13 Result codes for the FPCreateFile command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

No more space exists on the volume.kFPDiskFull

If attempting a hard create, the file already exists and is open.kFPFileBusy

Non-AFP error occurred.kFPMiscErr

If attempting a soft create, a file of the specified name already exists.kFPObjectExists

Ancestor directory is unknown.kFPObjectNotFound

Destination volume is read-only.kFPVolLocked

Session reference number, Volume ID, or pathname is null or invalid.kFPParamErr

Figure 22 (page 47) shows the request block for the FPCreateFile command.

46 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 22 Request block for the FPCreateFile command

Request

kFPCreateFile

VolumeID

DirectoryID

PathType

Pathname

CreateFlag

FPCreateID
Creates a unique File ID for a file.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPCreateID (39).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Directory ID of the directory in which the file is to be created.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Name of the file that is the target of the File ID (that is, the filename of the file for which a File ID is
being created). Pathname is a string if it contains Short or Long Names or an AFPName if it contains
a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 14 (page 48) for other possible result codes.

Functions 47
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReplyBlock
None.

Discussion
File IDs provide a way to keep track of a file even if its name or location changes. The scope of a File ID is
limited to the files on a volume. File IDs cannot be used across volumes.

The AFP server should take steps to ensure that every File ID is unique and that no File ID is reused once it
has been deleted.

The user must have the Read Only or the Read & Write privilege to use this command.

Table 14 lists the result codes for the FPCreateID command.

Table 14 Result codes for the FPCreateID command

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Target file does not exist.kFPObjectNotFound

Object defined was a directory, not a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is null or bad.

kFPParamErr

Destination volume is read-only.kFPVolLocked

Figure 23 (page 48) shows the request block for the FPCreateID command.

Figure 23 Request block for the FPCreateID command

Request

FPCreateID

0

VolumeID

Reply

FileID

DirectoryID

PathType

Pathname

48 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPDelete
Deletes a file or directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPDelete (8).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname of the file or directory to be deleted (may be null if a directory is to be deleted). Pathnameis
a string if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 15 (page 49) for other possible result codes.

ReplyBlock
None.

Discussion
When deleting a directory, the server checks to see if it contains any offspring. If a directory contains offspring,
the server returns a result code of kFPDirNotEmpty. If a file that is to be deleted is open by any user, the
server returns a result code of kFPFileBusy. The modification date of the parent directory of the deleted
file or directory is set to the servers clock.

The user must have search access to all ancestors except the file or directory’s parent directory, as well as
write access to the parent directory. If a directory is being deleted, the user must also have search access to
the parent directory; for a file, the user must also have read access to the parent directory.

The AFP server identifies the Network Trash Folder by name, and that name is not localized in international
versions of the Mac OS because it is invisible.

Table 15 lists the result codes for the FPDelete command.

Table 15 Result codes for the FPDelete command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Functions 49
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Directory is not empty.kFPDirNotEmpty

Non-AFP error occurred.kFPMiscErr

File or directory is marked DeleteInhibit.kFPObjectLocked

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Object defined was a directory, not a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is invalid.

kFPParamErr

Volume is read-only.kFPVolLocked

Figure 24 (page 50) shows the request block for the FPDelete command.

Figure 24 Request block for the FPDelete command

Request

FPDelete

VolumeID

DirectoryID

PathType

Pathname

0

FPDeleteID
Invalidates all instances of the specified File ID.

byte CommandCode
byte Pad
short VolumeID
long FileID

Parameters
CommandCode

kFPDeleteID (40).

50 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

VolumeID
Volume ID.

FileID
File ID that is to be deleted.

Result
kFPNoErr if no error occurred. See Table 16 for other possible result codes.

ReplyBlock
None.

Discussion
This command deletes the specified File ID, which was created by an earlier call to FPCreateID (page 47).

The user must have the Read Only or the Read & Write access privilege to use this command.

Table 16 lists the result codes for the FPDeleteID command.

Table 16 Result codes for the FPDeleteID command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Server does not support this command.kFPCallNotSupported

File ID was not found. (No file thread exists.)kFPIDNotFound

Non-AFP error occurred.kFPMiscErr

Target file does not exist. The File ID is deleted anyway.kFPObjectNotFound

Object defined was a directory, not a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is null or bad.

kFPParamErr

Volume is read-only.kFPVolLocked

Figure 25 (page 52) shows the request block for the FPDeleteID command.

Functions 51
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 25 Request block for the FPDeleteID command

Request

FPDeleteID

0

VolumeID

FileID

FPDisconnectOldSession
Disconnects an old session and transfers its resources to a new session.

byte CommandCode
byte Pad
short Type
long TokenLength
string Token

Parameters
CommandCode

kFPDisconnectOldSession (65).

Pad
Pad byte.

Type
Volume ID.

TokenLength
Length of Token.

Token
Token previous obtained by calling FPGetSessionToken (page 89).

Result
kFPNoErr if no error occurred, kFPCallNotSupported if the server does not support this command,
or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command disconnects the session identified by the Token parameter, which was obtained by previously
calling FPGetSessionToken (page 89) and transfers the resources of the old session to the new session.

52 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The AFP client calls this command when the session it previously established was inadvertently disconnected,
it successfully establishes a new session, and it is able to restore the state of the previous session. If the AFP
client cannot successfully reestablish the state of the previous session, it should call this command, log out,
and report the failure to the local operating system.

If the AFP client successfully reestablishes the state of the previous session, it should call this command again
to get a new session token.

Figure 26 (page 53) shows the request block for the FPDisconnectOldSession command.

Figure 26 Request block for the FPDisconnectOldSession command

Request

kFPDisconnectOldSession

0

Type

TokenLength

Token

FPEnumerate
Lists the contents of a directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short FileBitmap
short DirectoryBitmap
short ReqCount
short StartIndex
short MaxReplySize
byte PathType
string Pathname

Parameters
CommandCode

kFPEnumerate (9).

Pad
Pad byte.

VolumeID
Volume ID.

Functions 53
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DirectoryID
Identifier for the directory to list.

FileBitmap
Bitmap describing the parameters to return if the enumerated offspring is a file. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the FileBitmap parameter of
the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see File Bitmap (page 164).

DirectoryBitmap
Bitmap describing the parameters to return if the enumerated offspring is a directory. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the DirectoryBitmap parameter
of the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see Directory Bitmap (page 162).

ReqCount
Maximum number of ResultsRecord structures for which information is to be returned.

StartIndex
Directory offspring index.

MaxReplySize
Maximum size of the reply block.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 17 (page 55) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 18 (page 56) for the format
of the reply block.

Discussion
This command enumerates a directory as specified by the input parameters. This command differs from the
FPEnumerateExt (page 57) and FPEnumerateExt2 (page 61) commands in that it is not able to handle
values that may be returned when volumes are larger than 4 GB in size.

If FileBitmap is null, only directory offspring are enumerated, and StartIndex can range from one to the
total number of directory offspring. Similarly, if DirectoryBitmap is null, only file offspring are enumerated,
and StartIndex can range from one to the total number of file offspring. If both bitmaps have bits set,
StartIndex can range from one to the total number of offspring. In this case, offspring structures for both
files and directories are returned. These structures are not returned in any particular order.

This command is completed when the number of structures specified by ReqCount has been inserted into
the reply block, when the reply block is full, or when no more offspring exist to be enumerated. No partial
offspring structures are returned.

The server retrieves the specified parameters for each enumerated offspring and packs them, in bitmap order,
in structures in the reply block. The server inserts one copy of the input bitmaps before all of the structures.

54 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The server needs to keep variable-length parameters, such as Long Name and Short Name, at the end of
each structure. In order to do this, the server represents variable-length parameters in the bitmap order as
fixed-length offsets (integers). Each offset is measured from the start of the parameters in each structure (not
from the start of the bitmap or the start of the header bytes) to the start of the variable-length parameter.
Each structure is padded (suffixed) with a null byte if necessary to make its length even.

If this command returns a result code of kFPNoErr, all structures in the reply block are valid. If any error
result code is returned, no valid offspring structures are in the reply block.

If the OffSpring Count bit in the Directory bitmap is set, the server adjusts the Offspring Count of each
directory to reflect the access rights the user has to that directory. For example, if a particular directory
contains three file and two directory offspring, the server returns the Offspring Count as 2 if the user has
only search access to the directory, 3 if the user has only read access to the directory, or 5 if the user has both
search and read access to the directory.

The user must have search access to all ancestors except this directory. In addition, the user needs search
access to this directory in order to enumerate directory offspring and read access in order to enumerate file
offspring.

Enumerating a large directory may require the sending of several FPEnumerate commands. During that
time, other users may add to or delete from the directory, so enumeration can miss offspring or return
duplicate offspring. To enumerate a directory accurately, enumerate until a kFPObjectNotFound result
code is returned and then filter out duplicate entries.

A given offspring is not guaranteed to occupy the same index number in the parent directory from one
enumeration to the next.

Table 17 lists the result codes for the FPEnumerate command.

Table 17 Result codes for the FPEnumerate command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to retrieve a parameter that cannot be retrieved by this
command, an attempt was made to retrieve the Directory ID for a directory on a
variable Directory ID volume, or both bitmaps are empty.

kFPBitmapErr

Input parameters do not point to an existing directory.kFPDirNotFound

Non-AFP error occurred.kFPMiscErr

No more offspring exist to be enumerated.kFPObjectNotFound

Input parameters point to a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown, pathname
is bad, or MaxReplySize is too small to hold a single offspring structure.

kFPParamErr

Table 18 describes the reply block for the FPEnumeratecommand.

Functions 55
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 18 Reply block for the FPEnumerate command

DataName and size

Copy of the input parameter.FileBitmap (short)

Copy of the input parameter.DirectoryBitmap (short)

Actual number of ResultsRecord structures returned.ActualCount (short)

Array of ResultsRecord structures consisting of the following fields:
StructLength (byte) — Unsigned length of this structure, including
this byte and the byte for the FileDir bit. FileDir (bit) — Flag
indicating whether the OffspringParameters field describes a file (0)
or a directory (1). OffspringParameters — Packed in bitmap order,
with a trailing null byte if necessary to make the length of the entire
structure an even number.

Zero or more ResultsRecord
structures

Figure 27 shows the request and reply blocks for the FPEnumerate command.

56 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 27 Request and reply blocks for the FPEnumerate command

Reply

FileBitmap

DirectoryBitmap

ActualCount

StructLength

OffspringParameters

Request

kFPEnumerate

0

VolumeID

Repeated
ActualCount
times

DirectoryID

FileBitmap

DirectoryBitmap

ReqCount

StartIndex

MaxReplySize

PathType

Pathname

FileDir bit

0

A null byte is added to each
structure if necessary
to make the length of
the structure even.

FPEnumerateExt
Lists the contents of a directory.

Functions 57
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short FileBitmap
short DirectoryBitmap
short ReqCount
short StartIndex
short MaxReplySize
byte PathType
string Pathname

Parameters
CommandCode

kFPEnumerateExt (66).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Identifier for the directory to list.

FileBitmap
Bitmap describing the parameters to return if the enumerated offspring is a file. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the FileBitmap parameter of
the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see File Bitmap (page 164).

DirectoryBitmap
Bitmap describing the parameters to return if the enumerated offspring is a directory. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the DirectoryBitmap parameter
of the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see Directory Bitmap (page 162).

ReqCount
Maximum number of ResultsRecord structures for which information is to be returned.

StartIndex
Directory offspring index.

MaxReplySize
Maximum size of the reply block.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 19 (page 59) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 20 (page 60) for the format
of the reply block.

58 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
This command enumerates a directory as specified by the input parameters. This command differs from the
FPEnumerate (page 53) command in that this command is prepared to handle values that may be returned
when volumes are larger than 4 GB in size. This command also differs from the FPEnumerateExt2 (page
61) command in that StartIndex and MaxReplySize are shorts (instead of longs), which may limit the number
of entries in a single directory that can be listed. The reply block for this command is the same as the reply
block for FPEnumerateExt2.

If FileBitmap is null, only directory offspring are enumerated, and StartIndex can range from one to the
total number of directory offspring. Similarly, if the DirectoryBitmap is null, only file offspring are
enumerated, and StartIndex can range from one to the total number of file offspring. If both bitmaps have
bits set, StartIndex can range from one to the total number of offspring. In this case, offspring structures
for both files and directories are returned. These structures are not returned in any particular order.

This command is completed when the number of structures specified by ReqCount has been inserted into
the reply block, when the reply block is full, or when no more offspring exist to be enumerated. No partial
offspring structures are returned.

The server retrieves the specified parameters for each enumerated offspring and packs them, in bitmap order,
in structures in the reply block. The server inserts one copy of the input bitmaps before all of the structures.

The server needs to keep variable-length parameters, such as Long Name and Short Name, at the end of
each structure. In order to do this, the server represents variable-length parameters in the bitmap order as
fixed-length offsets (integers). Each offset is measured from the start of the parameters in each structure (not
from the start of the bitmap or the start of the header bytes) to the start of the variable-length parameter.
Each structure will be padded (suffixed) with a null byte if necessary to make its length even.

If kFPNoErr is returned, all structures in the reply block are valid. If any error result code is returned, no valid
offspring structures exist in the reply block.

If the OffSpring Count bit in the Directory bitmap is set, the server adjusts the Offspring Count of each
directory to reflect what access rights the user has to that directory. For example, if a particular directory
contains three file and two directory offspring, the server will return its Offspring Count as 2 if the user has
only search access to the directory, 3 if the user has only read access to the directory, or 5 if the user has both
search and read access to the directory.

The user must have search access to all ancestors except this directory. In addition, the user needs search
access to this directory in order to enumerate directory offspring and read access in order to enumerate file
offspring.

Enumerating a large directory may require the sending of several FPEnumerateExt commands. During that
time, other users may add to or delete from the directory, so enumeration can miss offspring or return
duplicate offspring. To enumerate a directory accurately, enumerate until a kFPObjectNotFound result
code is returned and then filter out duplicate entries.

A given offspring is not guaranteed to occupy the same index number in the parent directory from one
enumeration to the next.

Table 19 lists the result codes for the FPEnumerateExt command.

Table 19 Result codes for the FPEnumerateExt command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Functions 59
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Attempt was made to retrieve a parameter that cannot be retrieved by this
command, an attempt was made to retrieve the Directory ID for a directory on a
variable Directory ID volume, or both bitmaps are empty.

kFPBitmapErr

Input parameters do not point to an existing directory.kFPDirNotFound

Non-AFP error occurred.kFPMiscErr

No more offspring exist to be enumerated.kFPObjectNotFound

Input parameters point to a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown, pathname
is bad, or MaxReplySize is too small to hold a single offspring structure.

kFPParamErr

Table 20 describes the reply block for the FPEnumerateExt command.

Table 20 Reply block for the FPEnumerateExt command

DataName and size

Copy of the input parameter.DirectoryBitmap (short)

Actual number of ResultsRecord structures returned.ActualCount (short)

An array of ResultsRecord structure consisting of the following fields:
StructLength (byte) — Unsigned length of this structure, including this
byte and the byte for the FileDir bit. FileDir (bit) — Flag indicating
whether the OffspringParameters field describes a file (0) or a directory
(1). Pad (byte) — Always zero. OffspringParameters— Packed
in bitmap order, with a trailing null byte if necessary to make the length
of the entire structure an even number.

Zero or more ResultsRecord
structures

Figure 28 shows the request and reply blocks for the FPEnumerateExt command.

60 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 28 Request and reply blocks for the FPEnumerateExt command

Reply

FileBitmap

DirectoryBitmap

ActualCount

StructLength

OffspringParameters

Request

kFPEnumerateExt

0

VolumeID

Repeated
ActualCount
times

DirectoryID

FileBitmap

DirectoryBitmap

ReqCount

StartIndex

MaxReplySize

PathType

Pathname

FileDir bit

0

A null byte is added to each
structure if necessary
to make the length of
the structure even.

0

FPEnumerateExt2
Lists the contents of a directory.

Functions 61
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short FileBitmap
short DirectoryBitmap
short ReqCount
long StartIndex
long MaxReplySize
byte PathType
string Pathname

Parameters
CommandCode

kFPEnumerateExt2 (68).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Identifier for the directory to list.

FileBitmap
Bitmap describing the parameters to return if the enumerated offspring is a file. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the FileBitmap parameter of
the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see File Bitmap (page 164).

DirectoryBitmap
Bitmap describing the parameters to return if the enumerated offspring is a directory. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the DirectoryBitmap parameter
of the FPGetFileDirParms (page 80) command and can be null. For bit definitions for this bitmap,
see Directory Bitmap (page 162).

ReqCount
Maximum number of ResultsRecord structures for which information is to be returned.

StartIndex
Directory offspring index.

StartIndex
Maximum size of the reply block.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 21 (page 63) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 22 (page 64) for the format
of the reply block.

62 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
This command enumerates a directory as specified by the input parameters. This command differs from the
FPEnumerateExt (page 57) command in that StartIndex and MaxReplySize are longs instead of shorts,
thereby allowing this command to list more entries in a single directory. The reply block for this command
is the same as the reply block for the FPEnumerateExt command.

If FileBitmap is null, only directory offspring are enumerated, and StartIndex can range from one to the
total number of directory offspring. Similarly, if the DirectoryBitmap is null, only file offspring are
enumerated, and StartIndex can range from one to the total number of file offspring. If both bitmaps have
bits set, StartIndex can range from one to the total number of offspring. In this case, offspring structures
for both files and directories are returned. These structures are not returned in any particular order.

This command is completed when the number of structures specified by ReqCount has been inserted into
the reply block, when the reply block is full, or when no more offspring exist to be enumerated. No partial
offspring structures are returned.

The server retrieves the specified parameters for each enumerated offspring and packs them, in bitmap order,
in structures in the reply block. The server inserts one copy of the input bitmaps before all of the structures.

The server needs to keep variable-length parameters, such as Long Name and Short Name, at the end of
each structure. In order to do this, the server represents variable-length parameters in the bitmap order as
fixed-length offsets (integers). Each offset is measured from the start of the parameters in each structure (not
from the start of the bitmap or the start of the header bytes) to the start of the variable-length parameter.
Each structure will be padded (suffixed) with a null byte if necessary to make its length even.

If kFPNoErr is returned, all structures in the reply block are valid. If any error result code is returned, no valid
offspring structures exist in the reply block.

If the OffSpring Count bit in the Directory bitmap is set, the server adjusts the Offspring Count of each
directory to reflect what access rights the user has to that directory. For example, if a particular directory
contains three file and two directory offspring, the server will return its Offspring Count as 2 if the user has
only search access to the directory, 3 if the user has only read access to the directory, or 5 if the user has both
search and read access to the directory.

The user must have search access to all ancestors except this directory. In addition, the user needs search
access to this directory in order to enumerate directory offspring and read access in order to enumerate file
offspring.

Enumerating a large directory may require the sending of several FPEnumerateExt2 commands. During
that time, other users may add to or delete from the directory, so enumeration can miss offspring or return
duplicate offspring. To enumerate a directory accurately, enumerate until a kFPObjectNotFound result
code is returned and then filter out duplicate entries.

A given offspring is not guaranteed to occupy the same index number in the parent directory from one
enumeration to the next.

Table 21 lists the result codes for the FPEnumerateExt2 command.

Table 21 Result codes for the FPEnumerateExt2 command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Functions 63
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Attempt was made to retrieve a parameter that cannot be retrieved by this
command, an attempt was made to retrieve the Directory ID for a directory on a
variable Directory ID volume, or both bitmaps are empty.

kFPBitmapErr

Input parameters do not point to an existing directory.kFPDirNotFound

Non-AFP error occurred.kFPMiscErr

No more offspring exist to be enumerated.kFPObjectNotFound

Input parameters point to a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown, pathname
is bad, or MaxReplySize is too small to hold a single offspring structure.

kFPParamErr

Table 22 describes the reply block for the FPEnumerateExt2 command.

Table 22 Reply block for the FPEnumerateExt2 command

DataName and size

Copy of the input parameter.FileBitmap (short)

Copy of the input parameter.DirectoryBitmap (short)

Actual number of ResultsRecord structures returned.ActualCount (short)

An array of ResultsRecord structures, each consisting of the following
fields: StructLength (byte) — Unsigned length of this structure,
including this byte and the byte for the FileDir bit. FileDir (bit) —
Flag indicating whether the OffspringParameters field describes a
file (0) or a directory (1). Pad (byte) — Always zero.
OffspringParameters — Packed in bitmap order, with a trailing null
byte if necessary to make the length of the entire structure an even
number.

Zero or more ResultsRecord
structures

Figure 29 shows the request and reply blocks for the FPEnumerateExt2 command.

64 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 29 Request and reply blocks for the FPEnumerateExt2 command

Reply

FileBitmap

DirectoryBitmap

ActualCount

StructLength

OffspringParameters

Request

kFPEnumerateExt2

0

VolumeID

Repeated
ActualCount
times

DirectoryID

FileBitmap

DirectoryBitmap

ReqCount

StartIndex

MaxReplySize

PathType

Pathname

FileDir bit

0

A null byte is added to each
structure if necessary
to make the length of
the structure even.

0

FPExchangeFiles
Preserves existing File IDs when performing a Save or a Save As operation.

Functions 65
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long SourceDirectoryID
long DestDirectoryID
byte SourcePathType
string SourcePathname
byte DestPathType
string DestPathname

Parameters
CommandCode

kFPExchangeFiles (42).

Pad
Pad byte.

VolumeID
Volume ID.

SourceDirectoryID
Identifier of the directory containing the source file.

DestDirectoryID
Identifier of the directory containing the destination file.

SourcePathType
Type of names in SourcePathname. See Path Type Constants (page 174) for possible values.

SourcePathname
Pathname of the source file. SourcePathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

DestPathType
Type of names in DestPathname. See Path Type Constants (page 174) for possible values.

DestPathname
Pathname of the source file. DestPathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 23 (page 67) for other possible result codes.

ReplyBlock
None.

Discussion
To use this command, both files must exist on the same volume. File IDs do not, however, have to exist on
the files to be exchanged. The files being exchanged can be open or closed.

Figure 30 (page 67) shows the results of an exchange operation between two files named Blue and Red.

66 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 30 Example of exchanging files

Before

Catalog
information

After

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

100
Blue
31
121
962
Jan 1991
April 1991
0...10
DenyWrite

Data BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

100
Red
32
222
962
Feb 1992
April 1991
0...10
DenyWrite

Catalog
information

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

202
Red
32
222
961
Feb 1992
May 1992
25...30
None

Data

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

202
Blue
31
121
961
Jan 1991
May 1992
25...30
None

RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed

RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed
RedRedRedRedRedRedRedRed

BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlue

Notice that only the filename, Parent Directory ID, File ID, and creation dates are exchanged. Byte-range locks
and deny modes still apply to the same file reference number and data.

The user must have the Read & Write privilege for both files in order to use this command.

Table 23 lists the result codes for the FPExchangeFiles command.

Table 23 Result codes for the FPExchangeFiles command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

File ID is not valid.kFPBadIDErr

Server does not support this command.kFPCallNotSupported

File ID was not found. (No file thread exists.)kFPIDNotFound

Non-AFP error occurred.kFPMiscErr

Object defined was a directory, not a file.kFPObjectTypeErr

Functions 67
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Session reference number, Volume ID, or pathname type is unknown; pathname
is null or bad.

kFPParamErr

Figure 31 shows the request block for the FPExchangeFiles command.

Figure 31 Request block for the FPExchangeFiles command

Request

FPExchangeFiles

0

VolumeID

SourceDirectoryID

DestDirectoryID

SourcePathType

SourcePathname

DestPathType

DestPathname

FPFlush
Writes any volume data that has been modified.

byte CommandCode
byte Pad
short VolumeID

Parameters
CommandCode

kFPFlush (10).

Pad
Pad byte.

68 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

VolumeID
Volume ID.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Volume ID is invalid,
or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command writes to disk as much changed information as possible including

 ■ all forks opened by the user

 ■ volume catalog information changed by the user

 ■ any updated volume data structures

AFP does not specify that the server must perform all of these functions. Therefore, users should not rely on
the server to perform any particular function.

The volume’s modification date may change as a result of this command, but uses should not rely on it;
updating of the date is implementation-dependent. If no volume information was changed since the last
FPFlush command, the date may or may not change.

Notice that only the filename, Parent Directory ID, File ID, and creation dates are exchanged. Byte-range locks
and deny modes still apply to the same file reference number and data.

The user must have the Read & Write privilege for both files in order to use this command.

Figure 32 shows the request block for the FPFlush command.

Figure 32 Request block for the FPFlush command

Request

FPFlush

0

VolumeID

FPFlushFork
Writes any data buffered from previous write commands.

byte CommandCode
byte Pad
short OForkRefNum

Parameters
CommandCode

kFPFlushFork (11).

Functions 69
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

OForkRefNum
Open fork reference number.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Volume ID is invalid,
or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command writes to disk any data buffered by the server by previous write commands. If the fork has
been modified, the server set’s the file’s modification date to the server’s clock.

In order to optimize disk access, the server may buffer write commands made to a particular file fork. Within
the constraints of performance, the server flushes each fork as soon as possible. By sending this command,
the AFP client can force the server to write any buffered data.

Figure 33 shows the request block for the FPFlushFork command.

Figure 33 Request block for the FPFlushFork command

Request

FPFlushFork

0

OForkRefNum

FPGetACL
Gets the access control list for a file or directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
unsigned short Bitmap
long MaxReplySize
byte Pathtype
string Pathname

Parameters
CommandCode

kFPGetACL (73).

Pad
Pad byte.

VolumeID
Volume identifier.

70 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DirectoryID
Directory identifier.

Bitmap
Bits that specify the values that are to be obtained. Specify kFileSec_UUID to get the UUID of the
specified file or directory. Specify kFileSec_GRPUUID to get the Group UUID of the specified file or
directory, or specify kFileSec_ACL to get the ACL of the specified file or directory. For declarations
of these constants, see Access Control List Bitmap (page 169).

MaxReplySize
Reserved. Set this parameter to zero.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname of the file or directory for which the access control list (ACL) is to be obtained. Pathname
is a string if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 24 for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 26 (page 74) for the format
of the reply block.

Discussion
Depending on the bits set in the Bitmap parameter, this command gets the UUID, Group UUID, or ACL for
the specified file or directory. If the kFileSec_UUID bit is set, the file or directory’s UUID appears first in the
reply packet. If the kFileSec_GRPUUID bit is set, the file or directory’s Group UUID appears next in the reply
packet. If the kFileSec_ACL bit is set, the file or directory’s ACL appears next in the packet.

Support for this command, as well as FPAccess (page 11) and FPSetACL (page 140) is required in order to
support access control lists (ACLs). Support for UTF-8 and UUIDs is also required in order to support ACLs.

Table 24 lists the result codes for the FPGetACL command.

Table 24 Result codes for the FPGetACL command

ExplanationResult code

User does not have the access rights required to get the ACL for the specified file
or directory.

kFPAccessDenied

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Table 25 describes the reply block for the FPGetACL command.

Table 25 Reply block for the FPGetACL command

DataName and size

Copy of the bitmap sent to the server.Bitmap (short)

Functions 71
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DataName and size

File or directory’s UUID, if the kFileSec_UUID bit was set.UUID (16 bytes)

File or directory’s Group UUID, if the kFileSec_GRPUUID bit was set.GRPUUID (16 bytes)

File or directory’s ACL in a kauth_acl structure, if the kFileSec_ACL bit was set.
For details, see Access Control List Structure (page 161).

ACL

Figure 34 shows the request and reply blocks for the FPGetACL command.

Figure 34 Request and reply blocks for the FPGetACL command

Request

FPGetACL

kauth_ace
structure

kauth_acl
structure
(Optional)

0

VolumeID

DirectoryID

Bitmap

MaxReplySize

PathType

PathName

Reply

Bitmap

GRPUUID
(16 bytes)

UUID
(16 bytes)

acl_entrycount

acl_flags

ace_applicable
(16 bytes)

ace_flags

ace_rights

Optional

Optional

Version Notes
Introduced in AFP 3.2.

72 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPGetAPPL
Retrieves an APPL mapping from a volume’s Desktop database.

byte CommandCode
byte Pad
short DTRefNum
long FileCreator
short APPLIndex

Parameters
CommandCode

kFPGetAPPL (55).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

FileCreator
File creator of the application corresponding to the APPL mapping to be retrieved.

APPLIndex
Index of the APPL mapping to be retrieved.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Desktop database
reference is unknown, kFPItemNotFound if no entries in the Desktop database match the input
parameters, kFPBitmapErr if an attempt was made to retrieve a parameter that cannot be obtained
with this command, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 26 (page 74) for the format
of the reply block.

Discussion
For each file creator, the Desktop database contains a list of APPL mappings. Each APPL mapping contains
the Parent Directory ID and CNode name of an application associated with the file creator, as well as an APPL
Tag that can be used to distinguish among the APPL mappings (the APPL Tag is uninterpreted by the Desktop
database).

Information about the application file associated with each APPL mapping can be obtained by sending
successive FPGetAPPL commands with Index varying from one to the total number of APPL mappings
stored in the Desktop database for that file creator. If Index is more than the number of APPL mappings in
the Desktop database for FileCreator, a kFPItemNotFound result code is returned. An Index of zero
returns the first APPL mapping, if one exists in the Desktop database.

The server retrieves the specified parameters for the application file and packs the, in bitmap order, in the
reply block.

The user must have search access to all ancestors except the parent directory and read access to the parent
directory of the application for which information will be returned.

The user must have previously called FPOpenDT (page 120) for the corresponding volume.

Table 26 describes the reply block for the FPGetAPPL command.

Functions 73
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 26 Reply block for the FPGetAPPL command

DataName and size

Bitmap describing the parameters of the application file to return. Set the bit that
corresponds to each desired parameter. This bitmap is the same as the FileBitmap
parameter of the FPGetFileDirParms (page 80) command. For bit definitions for
the File bitmap, see Table 1-7 in File Bitmap (page 164).

Bitmap (short)

Tag information associated with the APPL mapping.APPLTag (long)

Requested file parameters.FileParameters

Figure 35 shows the request and reply blocks for the FPGetAPPL command.

Figure 35 Request and reply blocks for the FPGetAPPL command

Request

kFPGetAPPL

0

DTRefNum

FileCreator

Index

Bitmap

Reply

Bitmap

APPLTag

FileParameters

FPGetAuthMethods
Gets the UAMs that an Open Directory domain supports.

byte CommandCode
byte Pad
byte Flags
byte PathType
string Pathname

Parameters
CommandCode

kFPGetAuthMethods (62).

Pad
Pad byte.

74 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Flags
Flags providing additional information. (No flags are currently defined.)

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname of the Open Directory domain for which UAMs are to be obtained. Pathname is a string if
it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred, kFPObjectNotFound if the specified Open Directory domain could
not be found, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 27 (page 75) for the format
of the reply block.

Discussion
This command gets the UAMs for the specified Open Directory domain.

Table 27 describes the reply block for the FPGetAuthMethods command.

Table 27 Reply block for the FPGetAuthMethods command

Copy of the Flags input parameter.Flags (byte)

Number of UAMs that follow.Count (byte)

Packed Pascal strings containing the names of the available UAMsUAMStrings (packed Pascal strings)

Figure 36 shows the request and reply blocks for the FPGetAuthMethods command.

Figure 36 Request and reply blocks for the FPGetAuthMethods command

Request

FPGetAuthMethods

0

Flags

Reply

Count

Flags

Pathname

UAMStrings
PathType

FPGetComment
Gets the comment associated with a file or directory from the volume’s Desktop database.

Functions 75
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short DTRefNum
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPGetComment (58).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

DirectoryID
Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 28 for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a string,
called Comment, containing the comment text.

Discussion
The comment for the specified file or directory, if it is found in the volume’s Desktop database, is returned
in the reply block.

If the comment is associated with a directory, the user must have search access to all ancestors, including
the parent directory. If the comment is associated with a file, the user must have search access to all ancestors
except the parent directory and read access to the parent directory.

The user must have previously called FPOpenDT (page 120) for the corresponding volume. In addition, the
file or directory must exist before this command is sent.

Table 28 lists the result codes for the FPGetComment command.

Table 28 Result codes for the FPGetComment command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

No comment was found in the Desktop database.kFPItemNotFound

Session reference number or Desktop database reference number is unknown.kFPParamErr

Input parameters do point to an existing file or directory.kFPObjectNotFound

76 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Figure 37 shows the request and reply blocks for the FPGetComment command.

Figure 37 Request and reply blocks for the FPGetComment command

Request

kFPGetComment

0

DTRefNum

DirectoryID

PathType

Pathname

Reply

Comment

FPGetExtAttr
Gets the value of an extended attribute.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID unsigned short Bitmap
long long Offset
long long ReqCount
long MaxReplySize
byte PathType
string Pathname
byte Pad
unsigned short NameLength
string Name

Parameters
CommandCode

kFPGetExtAttr (69).

Pad
Pad byte.

VolumeID
Volume identifier.

Functions 77
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DirectoryID
Directory identifier.

Bitmap
Bitmap specifying the desired behavior when getting the value of an extended attribute. For this
command, only kAttrDontFollow is valid. For details, see Extended Attributes Bitmap (page
164) for details.

Offset
Always zero; reserved for future use.

ReqCount
Always –1; reserved for future use.

MaxReplySize
Size in bytes of the reply that your application can handle; set to zero to get the size of the reply
without actually getting the attributes.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Pad
Optional pad byte if needed to pad to an even boundary.

NameLength
Length in bytes of the extended attribute name that follows.

Name
UTF-8–encoded name of the extended attribute whose value is to be obtained.

Result
kFPNoErr if no error occurred. See Table 28 for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a bitmap
and the value of the extended attribute that was requested. See Table 30 (page 79) for the format
of the reply block.

Discussion
If the result code is kFPNoErr, this command returns in the reply block the value of the extended attribute
that was requested.

Support for this command, as well as FPListExtAttrs (page 103), FPRemoveExtAttr (page 134) and
FPSetExtAttr (page 145) is required in order to support extended attributes. UTF-8 support is also required
in order to support extended attributes.

Table 29 lists the possible result codes for the FPGetExtAttr command.

Table 29 Result codes for the FPGetExtAttr command

ExplanationResult code

User does not have the access privileges required to get the file of an extended
attribute for the specified file or directory.

kFPAccessDenied

Bitmap is null or specifies a value that is invalid for this command.kFPBitmapErr

78 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Table 30 describes the reply block for the FPGetExtAttr command.

Table 30 Reply block for the FPGetExtAttr command

DataName and size

Copy of the input parameter.Bitmap (short)

Length in bytes of the extended attribute data that follows.DataLength (long)

Extended attribute dataExtendedAttribute Data (string)

Figure 37 shows the request and reply blocks for the FPGetExtAttr command.

Functions 79
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 38 Request and reply blocks for the FPGetExtAttr command

Request

Request (continued)

FPGetExtAttr

0

VolumeID

DirectoryID

Bitmap

MaxReplySize

ReqCount

Offset

PathType

PathName

Reply

Bitmap

DataLength

AttributeData

Pad

NameLength

Name

Optional pad byte if
needed to pad to an
even boundary

Version Notes
Introduced in AFP 3.2.

FPGetFileDirParms
Gets the parameters for a file or a directory.

80 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short FileBitmap
short DirectoryBitmap
byte PathType
string Pathname

Parameters
CommandCode

kFPGetFileDirParms (34).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Directory ID.

FileBitmap
Bitmap describing the parameters to return for a file. Set the bit that corresponds to each desired
parameter. For the bit definitions of this bitmap, see File Bitmap (page 164).

DirectoryBitmap
Bitmap describing the parameters to return for a directory. Set the bit that corresponds to each desired
parameter. For the bit definitions of this bitmap, see Directory Bitmap (page 162).

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 31 (page 83) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 32 (page 83) for the format
of the reply block.

Discussion
The server packs the requested parameters in the reply block in the order specified by the appropriate bitmap.
The FileDir bit indicates whether the parameters are for a file or a directory. A copy of the input bitmaps
is inserted before the parameters.

Variable-length parameters, such as Long Name and Short Name, are kept at the end of the block. To do this,
the server represents variable-length parameters in the bitmap order as fixed-length offsets (integers). Each
offset is measured from the start of the parameters (not from the start of the bitmap) to the start of the
variable-length parameter. The actual variable-length parameters are then packed after all fixed-length
parameters.

If the CNode exists and both bitmaps are null, no error is returned; FileBitmap, DirectoryBitmap, and
the byte containing the FileDir bit are returned with no other parameters.

Functions 81
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

If a directory’s access rights are requested, the server returns the Access Rights parameter (a four-byte quantity)
containing the read, write, and search access privileges corresponding to owner, group, and everyone as
well as the User Access Rights Summary byte, which indicates the privileges the current user of the AFP client
has to this directory. For bit definitions of the Access Rights parameter, see Access Rights Bitmap (page 162).

If the Offspring Count bit of the DirectoryBitmap parameter is set, the server will adjust the Offspring
Count to reflect the access rights the user has to that directory. For example, if a particular directory contains
three file and two directory offspring, the server will return its Offspring Count as two if the user has only
search access to the directory, three if the user has only read access to the directory, or five if the user has
both search and read access to the directory.

Figure 39 (page 82) shows the File and Directory bitmaps, the File and Directory Attributes parameters, and
the Access Rights for directories.

Figure 39 Bitmaps, Attributes, and Access Rights returned by FPGetFileDirParms

Directory Bitmap

0
Short Name
Long Name

Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes

Node ID
Offspring Count

Owner ID
Group ID

Access Rights
Unicode Name

UNIX Privileges

0 0 0 0 0

Write
Read

Search

BlankAccessPrivileges
Owner 0 0 0

0 0 0 0 0
0 0 0 00

UARights
Everyone
Group
Owner

Access Rights

0 0 0 0 0

File Attributes

RenameInhibit
BackupNeeded
WriteInhibit
RAlreadyOpen
DAlreadyOpen

System
MultiUser
Invisible

DeleteInhibit
CopyProtect

Set/Clear 0 0 0 0 0 0

Directory Attributes

0RenameInhibit
BackupNeeded
InExpFolder

Mounted
System

IsExpFolder
Invisible

DeleteInhibit
Set/Clear

File Bitmap

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes

Node ID
Data Fork Length

Resource Fork Length
Ext. Data Fork Length

Launch Limit
Unicode Name

Ext. Resource Fork Length
UNIX Privileges

Short Name

82 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The user must have search access to all ancestors except this CNode’s parent directory. For directories, the
user also needs search access to the parent directory. For files, the user needs read access to the parent
directory.

Most of the attributes requested by this command are stored in corresponding flags within the CNode’s
Finder Info record.

Table 31 lists the result codes for the FPGetFileDirParms command.

Table 31 Result codes for the FPGetFileDirParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to retrieve a parameter that cannot be obtained with this
command.

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Session reference number, Volume ID, or pathname type is unknown; pathname
is invalid.

kFPParamErr

Table 32 describes the reply block for the FPGetFileDirParms command.

Table 32 Reply block for the FPGetFileDirParms command

DataName and size

Copy of the input parameter.FileBitmap (short)

Copy of the input parameter.DirectoryBitmap (short)

Bit indicating whether the CNode is a file or a directory:0 = file 1 = directoryFileDir (bit)

Requested parameters.ReqParameters

Figure 40 shows the request and reply blocks for the FPGetFileDirParms command.

Functions 83
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 40 Request and reply blocks for the FPGetFileDirParms command

Request

FPGetFileDirParms

0

VolumeID

DirectoryID

PathType

Pathname

Reply

FileBitmap

FileBitmap

DirectoryBitmap

DirectoryBitmap

0

ReqParameters

FileDir bit

FPGetForkParms
Gets the parameters for a fork.

byte CommandCode
byte Pad
short OForkRefNum
short Bitmap

Parameters
CommandCode

kFPGetForkParms (14).

Pad
Pad byte.

OForkRefNum
Open fork reference number.

Bitmap
Bitmap describing the parameters to be returned. Set the bits that correspond to each desired
parameter. This bitmap is the same as the FileBitmap parameter of the FPGetFileDirParms (page
80) command. For bit definitions for this bitmap, see File Bitmap (page 164).

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or open fork reference
number is invalid, kFPBitmapErr if an attempt was made to retrieve a parameter that cannot be
obtained with this command; bitmap is null, or kFPMiscErr if an error occurred that is not specific
to AFP.

84 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 33 (page 85) for the format
of the reply block.

Discussion
The server packs the parameters in bitmap order in the reply block.

Variable-length parameters, such as Long Name and Short Name, are kept at the end of the block. To do this,
the server represents variable-length parameters in the bitmap order as fixed-length offsets (integers). Each
offset is measured from the start of the parameters (not from the start of the bitmap) to the start of the
variable-length parameter. The actual variable-length fields are then packed after all fixed-length parameters.

This command retrieves the length the fork indicated by OForkRefNum; a kFPBitmapErr result code is
returned if an attempt is made to retrieve the length of the file’s other fork.

The user must have previously called FPOpenFork (page 121) for this volume.

Table 33 describes the reply block for the FPGetForkParms command.

Table 33 Reply block for the FPGetForkParms command

DataName and size

Copy of the input parameter.Bitmap (short)

Requested fork parameters.FileParameters

Figure 41 shows the request and reply blocks for the FPGetForkParms command.

Figure 41 Request and reply blocks for the FPGetForkParms command

Request

kFPGetForkParms

0

OForkRefNum

Bitmap

Reply

Bitmap

ForkParameters

FPGetIcon
Gets an icon from the Desktop database.

Functions 85
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short DTRefNum
long FileCreator
long FileType
byte IconType
byte Pad
short Length

Parameters
CommandCode

kFPGetIcon (51).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

FileCreator
File creator of the file with which the icon is associated.

FileType
File type of the file with which the icon is associated.

IconType
Preferred icon type.

Pad
Pad byte.

Length
Number of bytes the caller expects the icon bitmap to require in the reply block.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Desktop database
reference number is unknown, kFPItemNotFound if no icon corresponding to the input parameters
was found in the Desktop database, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a short
containing the requested icon bitmap.

Discussion
The server retrieves an icon bitmap from the Desktop database as specified by the FileCreator, FileType,
and IconType parameters.

An input Length value of zero is acceptable to test for the presence or absence of a particular icon. If Length
is less than the actual size of the icon bitmap, only Length bytes are returned.

The user must have previously called FPOpenDT (page 120) for the corresponding volume.

Figure 42 shows the request and reply blocks for the FPGetIcon command.

86 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 42 Request and reply blocks for the FPGetIcon command

Request

FPGetIcon

0

DTRefNum

FileCreator

Reply

IconBitmap

FileType

IconType

0

Length

FPGetIconInfo
Gets icon information from the Desktop database.

byte CommandCode
byte Pad
short DTRefNum
long FileCreator
short IconIndex

Parameters
CommandCode

kFPGetIconInfo (51).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

FileCreator
File creator of the file with which the icon is associated.

IconIndex
Index of the requested icon.

Functions 87
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Desktop database
reference number is unknown, kFPItemNotFound if no icon corresponding to the input parameters
was found in the Desktop database, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 34 (page 88) for the format
of the reply block.

Discussion
The server retrieves a information about an icon in the volume’s Desktop database as specified by the icon’s
file creator and icon index.

For each file creator, the Desktop database contains a list of icons. Information about each icon can be
obtained by sending successive FPGetIconInfo commands with IconIndex varying from one to the total
number of icons stored in the Desktop database for that file creator. If IconIndex is more than the number
of icons in the Desktop database for the specified file creator, a result code of kFPItemNotFound is returned.

The user must have previously calledFPOpenDT (page 120)FPOpenDT (page 120) for the corresponding volume.

Table 34 describes the reply block for the FPGetIconInfo command.

Table 34 Reply block for the FPGetIconInfo command

DataName and size

Tag information associated with the requested icon.IconTag (long)

File type of the requested icon.FileType (long)

Type of the requested icon.IconType (byte)

Pad byte.Pad (byte)

Size of the icon bitmap.Size (short)

Figure 43 shows the request and reply blocks for the FPGetIconInfo command.

88 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 43 Request and reply blocks for the FPGetIconInfo command

Request

FPGetIconInfo

0

DTRefNum

FileCreator

Reply

IconTag

IconIndex

FileType

IconType

0

Size

FPGetSessionToken
Gets a session token.

byte CommandCode
byte Pad
short Type
long IDLength
long timeStamp (optional)
ID

Parameters
CommandCode

kFPGetSessionToken (64).

Pad
Pad byte.

Type
The value of this parameter is kLoginWithoutID (0) if the client supports an earlier version of AFP
that does not send an IDLength and an ID parameter. It is kLoginWithTimeAndID (3) if the client
is sending an IDLength, an ID, and a Timestamp parameter and the client wants its old session to
be discarded. It is kReconnWithTimeAndID (4) if the client has just finished a successful reconnect,
is sending an IDLength, an ID, and a Timestamp parameter, and wants the session to be updated
with the ID parameter. It is kGetKerberosSessionKey (8) if the client is logging in using Kerberos
v5. See FPGetSessionToken Types (page 171) for the enumeration that defines the constants for this
parameter.

IDLength
Length of the ID parameter.

Functions 89
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

timeStamp
Optional time stamp specified only if the value of ID is kLoginWithTimeAndID or
kReconnWithTimeAndID.

ID
A client-defined value that uniquely identifies this session.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number is unknown,
kFPCallNotSupported if the server does not support this command, or kFPMiscErr if an error
occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 35 (page 91) for the format
of the reply block.

Discussion
This command helps an AFP client manage a disconnect that occurs and there are open files or locked
resources on the remote server. The remote server will save the current state of the session (including open
files) and wait until its reconnect timeout expires before closing the files and discarding the saved session.
In the case of an AFP client that fails to wake up properly from sleep with a mounted AFP server, the session
will be saved on the remote server until the sleep timeout expires.

Under these circumstances, prior to AFP 3.1, when an AFP client logged back into the server from the same
system, attempts to access the files that were open at the time of the crash would fail with a “file already
open” or “resources already locked” result. The AFP client would have to wait for the reconnect or sleep
timeout to expire, or a server administrator would have to manually disconnect the old session.

With AFP 3.1, the AFP client can set the Type parameter to kLoginWithID, set the ID parameter to a
unique client-defined value, and send this command. The server will associate the value of ID with the
session. Later, if the local system crashes and the AFP client logs in again, the AFP client can set the Type
parameter to kLoginWithID, set the ID parameter to the ID that it previously sent to the remote server,
and send this command again. The remote server will look for a session that matches the value of ID. If a
match is found, it will close any files associated with the session that are open, free any locked resources,
and disconnect the matching session. Note that in the current version, the unique ID is associated with a
particular computer, so after the system crashes, the AFP client must log in from the same computer using
the same information that was used to log in originally.

With AFP 3.1, the AFP client can also set the Type parameter to kLoginWithTimeAndID. In this case, the
client must include a four-byte time stamp after the IDLength field, and the server saves the time stamp
as well as the value of ID for each session. When the server receives a FPGetSessionToken command
having a TYPE parameter whose value is kLoginWithTimeAndID, the server searches all of its session queues.
If the server finds a session that matches the value of ID, it also checks the time stamp. If the time stamp
matches, the client has not restarted so the session is not discarded. The session is only discarded if the saved
time stamp does not match.

This command returns a session token that, with AFP 3.0 and later, is used to reconnect. If the local system
is disconnected and the AFP client logs in again using the same log in information as before, the AFP client
can call FPDisconnectOldSession (page 52), passing the session token obtained by calling
FPGetSessionToken, to tell the server to transfer the old session to the new session.

Note that sending the FPGetSrvrMsg command does not initiate a reconnect.

For security purposes, the server always fails reconnections for users who log in as Guest.

Table 35 describes the reply block for the FPGetSessionToken command.

90 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 35 Reply block for the FPGetSessionToken command

DataName and size

Length of the token that follows.TokenLength (long)

Token that can be passed to FPDisconnectOldSession if the session is
inadvertently disconnected and then re-established. If the client supports the
Reconnect UAM, the token needs to be refreshed periodically, and is also sent to
the server by the FPLoginExt (page 109) command to reconnect if the session
is disconnected.

Token (variable length)

Figure 44 shows the request and reply blocks for the FPGetSessionToken command.

Figure 44 Request and reply blocks for the FPGetSessionToken command

Reply

TokenLength

Token

Request

FPGetSessionToken

0

Type

IDLength

timeStamp

ID

Specified only if
the value of Type
is 3 or 4.

FPGetSrvrInfo
Gets information about a server.

byte CommandCode
byte Pad

Parameters
CommandCode

kFPGetSrvrInfo (15).

Functions 91
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

Result
kFPNoErr if no error occurred, kFPNoServer if the server is not responding, or kFPMiscErr if an
error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 37 (page 94) for the format
of the reply block.

Discussion
The reply block begins with the offset to the MachineType parameter, followed by the offset to the
AFPVersions parameter, the offset to the UAMs parameter, and the offset to the VolumeIconAndMask
parameter. The offsets are followed by the Flags parameter, the ServerName parameter padded to an even
boundary, the offset to the ServerSignature parameter, and the offset to the NetworkAddresses
parameter.

The server packs the information in the reply block in any order, so no assumption should be made about
the order of the information. Instead AFP clients should access the information only through the offsets. The
exception is the ServerName parameter, which is always after the Flags parameter.

Providing offsets to the VolumeIconAndMask, ServerSignature, NetworkAddresses, and
DirectoryNamesparameters is required, but providing the parameters themselves is optional. If not provided,
the value of each parameter is zero.

The Flags parameter indicates the server’s support for certain features. If bit 9 in the Flags parameter is
set, the reply block contains a UTF-8ServerNames offset to the server’s name in UTF-8 format. Figure 45
shows how bits are used in the Flags parameter.

Figure 45 Bit usage in the ServerFlags parameter

Flags

0 0 0 0

Supports reconnect
Supports server notifications

Supports TCP/IP
Supports server signature
Supports server messages

Does not allow password saving
Supports changing passwords

Supports copy file

Supports Open Directory
Supports UTF-8 Server Name

Supports UUIDs
Supports super client

The AFPVersionsCount and UAMCount parameters are each one byte containing the number of AFP and
UAM version strings that follow, with the strings packed back-to-back without padding. For the AFP versions
supported by this version of AFP, see AFP Version Strings (page 170). For the UAMs supported by this
version of AFP, see AFP UAM Strings (page 171).

92 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

The optional ServerSignature parameter contains a unique identifier for the server. An AFP client should
use the server signature to ensure that it does not log on to the same server multiple times. Preventing
multiple log ins is important when the server is configured for multihoming.

The NetworkAddresses parameter contains the addresses that the client can use to connect to the server.
Each address is stored as an AFP Network Address. The format of an AFP Network Address is shown in Figure
46.

Figure 46 AFP Network Address format

AddressLength Tag

Each AFP Network Address consists of a length byte containing the total length in bytes of the Network
Address, followed by a tag byte identifying the type of address the Address field contains, followed by up
to 254 bytes of data. Table 36 lists the possible values of the Length and Tag fields and describes the type
of address stored in the Address field.

Table 36 AFP Network Address fields

AddressTagLength

Reserved0x00

Four-byte IP address0x010x6

Four-byte IP address followed by a two-byte port number0x020x8

DDP address (two bytes for the network number, one byte for the node number, and one
byte for the socket number)

0x030x6

DNS name0x04Variable

IP address (four bytes) with port number (2 bytes). If this tag is present and the client is
so configured, the client attempts to build a Secure Shell (SSH) tunnel between itself and
the server and try to connect through the it.

0x050x8

IPv6 address (16 bytes)0x60x12

IPv6 address (16 bytes) following by a two-byte port number0x070x14

The network address format provides the available network addresses to the AFP client. AFP clients should
ignore any tags that it does not recognize.

FPGetSrvrInfo can be called without first establishing a session with the server.

Table 37 describes the reply block for the FPGetSrvrInfo command.

Functions 93
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 37 Reply block for the FPGetSrvrInfo command

DataName and size

Offset to the location in the reply block containing the server’s machine
type.

MachineType offset

Offset to the location in the reply block containing the number of AFP
versions the server supports.

AFPVersionCount offset

Offset to the location in the reply block containing the number of UAMs
the server supports.

UAMCount offset

Offset to the location in the reply block containing volume icon and mask
data.

VolumeIconAndMask offset

Flags describing the server’s capabilities. For bit definitions, see the section
Server Flags Bitmap (page 167).

Flags (short)

String containing the server’s name.ServerName (string)

Offset to the location in the reply block containing the server’s signature.ServerSignature offset

Offset to the location in the reply block containing the number of AFP
Network Addresses.

NetworkAddressesCount
offset

Offset to the location in the reply block containing the number of Directory
Names.

DirectoryNamesCount offset

Offset to the location in the reply block containing the server’s name in
UTF-8 characters.

UTF-8ServerName

A string containing a description of the server’s hardware, operating
system, or both.

MachineType (string)

Number of AFP version strings that follow.AFPVersionsCount

Each AFP version that the server supports in packed format. For each
supported version, there is one byte stating the number of bytes in the
version string that follows.

AFPVersions (packed string)

Number of UAM strings that follow.UAMsCount

Each UAM that the server supports in packed format. For each supported
UAM, there is one byte stating the number of bytes in the UAM name
string that follows.

UAMs (packed string)

Sixteen-byte number that uniquely identifies the server, or zero if not
supported. For AFP servers, supporting server signatures is optional, but
AFP servers must provide a ServerSignature offset. An AFP server
indicates that it supports server signatures by setting the
kSupportsSrvrSig bit in the Flags parameter.

ServerSignature (16 bytes)

94 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DataName and size

Server’s network addresses, or zero if not supported. (The AFP Network
Address format is described later in this section.) For AFP servers, providing
aNetworkAddressesparameter is optional, but AFP servers must provide
a NetworkAddresses offset. An AFP server indicates that it supports
Network Addresses by setting the kSupportsTCP bit in the Flags
parameter.

NetworkAddresses (AFP
Network Address)

String containing the names of directories that Open Directory has made
available for sharing, or zero if not supported. For AFP servers, supporting
Open Directory is optional, but AFP servers must provide a
DirectoryNames offset. An AFP server indicates that it supports Open
Directory by setting the kSupportsDirServices bit in the Flags
parameter. If the server supports the Kerberos UAM, it places its principal
name in this string.

DirectoryNames (string)

AFPName containing the UTF-8–encoded name of the server.UTF-8ServerName (AFPName)

128 bytes of icon data and 128 bytes of mask data.VolumeIconAndMask (256
bytes)

Figure 47 shows the request and reply blocks for the FPGetSrvrInfo command.

Functions 95
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 47 Request and reply blocks for the FPGetSrvrInfo command

Reply

MachineType
offset

AFPVersionCount
offset

UAMCount offset

VolumeIconAndMask
offset

Request

kFPGetSrvrInfo

0

A null byte is added
if necessary to make
ServerSignature Offset
begin on an even
boundary.

ServerName

AFPVersions

UAMs

0

AFPVersionsCount

Network Addresses

ServerSignature
(16 bytes)

VolumeIconAndMask
(optional)

UAMCount

NetworkAddressesCount

ServerSignature
offset

MachineType

DirectoryNames

DirectoryNamesCount

UTF-8 ServerName

The
"Fixed"
fields

Flags

Reply (continued)

NetworkAddressesCount
offset

DirectoryNamesCount
offset

UTF-8 ServerName
offset

FPGetSrvrMsg
Gets a message from a server.

byte CommandCode
byte Pad
short MessageType
short MessageBitmap

Parameters
CommandCode

kFPGetSrvrMsg (38).

96 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

MessageType
Type of message, were 0 indicates log in and 1 indicates server. (Set MessageType to 1 when the
Server Message bit in the attention code is set.)

MessageBitmap
Bitmap providing additional information. The client sets bit 0 of this bitmap to indicate it is requesting
a message. Starting with AFP 3.0, the client can set bit 1 of this bitmap to indicate that it supports
UTF-8 messages.

Result
kFPNoErr if no error occurred, kFPCallNotSupported if the server does not support this command,
kFPBitmapErr if unrecognized bits are set in MessageBitmap, or kFPMiscErr if an error occurred
that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 38 (page 98) for the format
of the reply block.

Discussion
An AFP client uses the FPGetSrvrMsg command to get messages from the server. Usually, the server sends
an attention code to the client when server messages are available, and the client responds by calling
FPGetSrvrMsg. However, the client can call FPGetSrvrMsg at any time. If no message is available when
the client calls FPGetSrvrMsg, the server returns a zero-length string.

There are two message types: log in and server. The log in message type allows the server to send a message
to a client at log in time. The client can query the server for a log in message at log in time, or whenever it
is convenient to do so. If there is no login message, FPGetSrvrMsg returns a zero-length string.

The server message type allows the server to send messages to the client once the client has logged on. The
server notifies the client that a server message is available by sending a DSI Attention packet in which the
Server Message bit in the AFPUserBytes field is set.

There are two server message types:

 ■ Shutdown. The server can send a shutdown message to explain why the server is shutting down, how
long it will be down, and so on. In addition to setting the Server Message bit in the AFPUserBytes field
of the DSI Attention packet, the server sets the Shutdown bit to indicate that a shutdown message is
available.

 ■ User. The server can send a message to a specific user. The client is made aware that a user message is
available when the server sends an DSI Attention packet in which the Server Message bit in the
AFPUserBytes field is set and the Shutdown bit is not set.

The usual size of any of these messages is 200 bytes including the length byte (a Str199). AFP 3.x clients can
request that the server send longer attention messages by setting the attention quantum size in the Option
field of the DSOpenSession command (described in the document Apple Filing Protocol Client).

The user must be logged on to the server to receive server message notifications. Otherwise, no special access
privileges are necessary to use this command.

Note that in the case of a disconnected session, sending this command does not initiate a reconnect.

Table 38 describes the reply block for the FPGetSrvrMsg command.

Functions 97
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 38 Reply block for the FPGetSrvrMsg command

DataName and size

Copy of the input parameter.MessageType (short)

Bitmap describing the message. Bit 0 is set if ServerMessage contains a
message. Starting with AFP 3.0, bit 1 is set to indicate that the message is UTF-8
encoded.

MessageBitmap (short)

Message from the server.ServerMessage (string)

Figure 48 shows the request and reply blocks for the FPGetSrvrMsg command.

Figure 48 Request and reply blocks for the FPGetSrvrMsg command

Request

FPGetSrvrMsg

0

MessageType

Reply

MessageBitmap

MessageType

MessageBitmap

ServerMessage

Message bitmap

0 0 0 0 0
0 0 0

0 0 0
0 0 0 Message

Unicode

Long Reply

MessageType

MessageBitmap

ServerMessage

Length

FPGetSrvrParms
Gets server parameters.

byte CommandCode
byte Pad

Parameters
CommandCode

kFPGetSrvrParms (16).

Pad
Pad byte.

98 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number is unknown, or
kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 39 for the format of the
reply block.

Discussion
The VolName string, the HasPassword bit, and the HasConfigInfo bit are packed without padding in the
reply block.

For AFP 2.x, this command returns volume names in ANSI format with a maximum length of 27 bytes.

For AFP 3.x, this command returns volume names in UTF-8 format with a one byte length byte specifying
any length up to 255. Note that the Finder limits setting volume names to no more than 27 characters.

Table 39 describes the reply block for the FPGetSrvrParms command.

Table 39 Reply block for the FPGetSrvrParms command

DataName and size

Current date and time on the server’s clock.ServerTime (long)

Number of VolStructure structures that follow.MessageBitmap (short)

An array of Volstructure structures consisting of the following fields: Flags
(byte) where bit 0 (HasConfigInfo) is set if the volume has configuration
information and bit 7 (HasPassword) is set if a password is set for the volume
VolName (string) name of the volume

VolStructure

Figure 49 shows the request and reply blocks for the FPGetSrvrParms command.

Figure 49 Request and reply blocks for the FPGetSrvrParms command

Request

FPGetSrvrParms

Reply

ServerTime

NumVolStructures

VolName

HasPassword HasConfigInfo

Repeated
for each
volume

Functions 99
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPGetUserInfo
Gets information about a user.

byte CommandCode
byte Pad
long UserID
short Bitmap

Parameters
CommandCode

kFPGetUserInfo (37).

Pad
Pad byte.

UserID
ID of user for whom information is to be retrieved. (Not valid if the ThisUser bit is set.)

Bitmap
Bitmap describing which ID to retrieve, where bit zero is set to get the user’s User ID and bit 1 is set
to get the user’s Primary Group ID.

Result
kFPNoErr if no error occurred. See Table 40 for the other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 41 (page 101) for the format
of the reply block.

Discussion
The server retrieves the specified information for the specified user and packs them, in bitmap order, in the
reply block.

This command can be used only to retrieve the User ID and the Primary Group ID of the user who is the client
of this session, thus requiring that the ThisUser bit be set. The UserID parameter is intended for future
use.

Table 40 lists the result codes for the FPGetUserInfo command.

Table 40 Result codes for the FPGetUserInfo command

ExplanationResult code

User does not have the access privileges required to get information about the
specified user.

kFPAccessDenied

Attempt was made to retrieve a parameter that cannot be obtained with this
command.

kFPBitmapErr

Server does not support this command.kFPCallNotSupported

Specified User ID is unknown.kFPItemNotFound

Non-AFP error occurred.kFPMiscErr

ThisUser bit is not set.kFPParamErr

100 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 41 describes the reply block for the FPGetUserInfo command.

Table 41 Reply block for the FPGetUserInfo command

DataName and size

Copy of the input parameter.Bitmap (short)

Requested information, packed in bitmap order.UserInfo

Figure 50 shows the request and reply blocks for the FPGetUserInfo command.

Figure 50 Request and reply blocks for the FPGetUserInfo command

Request

kFPGetUserInfo

UserID

Reply

Bitmap
ThisUser

Bitmap

UserInfo

0 0 0 0 0 0 0 0

0 0 0 0 0 0

Primary Group ID

User ID

Bitmap

FPGetVolParms
Gets volume parameters.

byte CommandCode
byte Pad
short VolumeID
short Bitmap

Parameters
CommandCode

kFPGetVolParms (17).

Pad
Pad byte.

VolumeID
Volume ID for the volume whose parameters are to be retrieved.

Functions 101
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Bitmap
Bitmap describing the parameters that are to be returned. Set the bit of the desired parameter. This
bitmap is the same as the bitmap used by the FPOpenVol (page 124) command. For bit definitions
for this bitmap, see Volume Bitmap (page 168).

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or Volume ID is unknown,
kFPBitmapErr if the specified bitmap has unrecognized bits set, or kFPMiscErr if an error occurred
that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 42 (page 102) for the format
of the reply block.

Discussion
This command retrieves parameters that describe a volume as specified by the volume’s Volume ID.

The server responds to this command by returning a reply block containing a bitmap for the volume
parameters and the parameters themselves. All variable-length parameters, such as Volume Name, are at
the end of the block. The server represents variable-length parameters in bitmap order as fixed-length offsets
(shorts). These offsets are measured from the start of the parameters (not from the start of the bitmap) to
the start of the variable-length parameters. The variable-length parameters are then packed after all
fixed-length parameters.

Table 42 describes the reply block for the FPGetVolParms command.

Table 42 Reply block for the FPGetVolParms command

DataName and size

Copy of the input parameter.Bitmap (short)

Volume parameters packed in bitmap order.VolumeParameters

Figure 51 shows the request and reply blocks for the FPGetVolParms command.

Figure 51 Request and reply blocks for the FPGetVolParms command

Request

FPGetVolParms

VolumeID

Bitmap

Reply

Bitmap

VolumeParameters

0

For the layout of the bitmap and the volume parameters, see the sections Volume Attributes Bitmap (page
167) and Volume Bitmap (page 168).

102 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPListExtAttrs
Gets the names of extended attributes for a file or directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID unsigned short Bitmap
short ReqCount
long StartIndex
long MaxReplySize
byte PathType
string Pathname

Parameters
CommandCode

kFPListExtAttrs (72).

Pad
Pad byte.

VolumeID
Volume identifier.

DirectoryID
Directory identifier.

Bitmap
Bitmap describing the desired behavior when getting the names of extended attributes. For this
command kAttrDontFollow is the only valid bit. For details, see Extended Attributes
Bitmap (page 164).

ReqCount
Reserved for future use. For AFP 3.2, clients can set this parameter to any numeric value. Servers
should ignore this parameter and return all extended attribute names.

StartIndex
Reserved for future use. For AFP 3.2, set StartIndex to zero. Servers should ignore this parameter.

MaxReplySize
Size in bytes of the reply that your application can handle, including the size of the Bitmap and
DataLength parameters. Set this parameter to zero to get the size of the reply block that would be
returned without actually getting the names of the extended attributes.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 43 for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See "Reply block for the
FPListExtAttrs command " for the format of the reply block.

Functions 103
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
If the result code is kFPNoErr, this command returns in the reply block the names of extended attributes
for the specified file or directory.

Support for this command, as well as FPGetExtAttr (page 77), FPRemoveExtAttr (page 134) and
FPSetExtAttr (page 145) is required in order to support extended attributes. UTF-8 support is also required
in order to support extended attributes.

Table 43 lists the possible result codes for the FPListExtAttrs command.

Table 43 Result codes for the FPListExtAttrs command

ExplanationResult code

User does not have the access privileges required to list the extended attribute
names for the specified file or directory.

kFPAccessDenied

Bitmap is null or specifies a value that is invalid for this command.kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Table 44 describes the reply block for the FPListExtAttrs command.

Table 44 Reply block for the FPListExtAttrs command

DataName and size

Reserved.Bitmap (short)

Length of the data that follows. If MaxReplySize was set to zero,
DataLength describes the length of data that would otherwise have been
returned.

DataLength (unsigned long)

Series of null-terminated, UTF-8 encoded extended attribute names if
MaxReplySize was not set to zero.

AttributeNames (string)

Figure 37 shows the request and reply blocks for the FPListExtAttrs command.

104 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 52 Request and reply blocks for the FPListExtAttrs command

Request

FPListExtAttrs

0

VolumeID

DirectoryID

Bitmap

MaxReplySize

StartIndex

ReqCount

PathType

PathName

Reply

Bitmap

DataLength

AttributeNames

Version Notes
Introduced in AFP 3.2.

FPLogin
Establishes a session with a server.

byte CommandCode
byte Pad
string AFPVersion
string UAM
UserAuthInfo

Parameters
CommandCode

kFPLogin (18).

Functions 105
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

AFPVersion
String indicating which AFP version to use. For possible values, see AFP Version Strings (page
170).

UAM
String indicating which UAM to use. For possible values, see AFP UAM Strings (page 171).

UserAuthInfo
UAM-dependent information required to authenticate the user (can be null). The data type of
UserAuthInfo depends on the UAM specified by UAM.

Result
kFPNoErr if no error occurred. See Table 45 (page 106) for the possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 46 (page 107) for the format
of the reply block.

Discussion
This command establishes an AFP session with an AFP server. Before calling FPLogin, the AFP client should
call FPGetAuthMethods (page 74) to obtain the AFP versions and UAMs that the server supports. From the
list of AFP versions and UAMs returned by FPGetAuthMethods, the AFP client chooses the highest AFP
version and the most secure UAM that the client supports and provides them as the AFPVersion and UAM
parameters to the FPLogin command.

If the server returns any result code other than kFPAuthContinue or kFPNoErr, a session has not been
established.

For more detailed information about UAMs, see “File Server Security” in the “Introduction” section.

The AFP server keeps a count of log in attempts that is reset to zero after every successful login. For every
failed login attempt without a preceding successful login, the count is incremented. When the maximum
number of failed login attempts is reached, the user’s account is disabled. Any attempts to log in after the
account is disabled yield a result code of kFPParamErr, indicating that the user is unknown or that his or
her account is disabled. The administrator must enable the user’s account again. AFP does not notify the
administrator that a user’s account has been disabled; the user must notify the administrator by some other
means.

Table 45 lists the result codes for the FPLogin command.

Table 45 Result codes for the FPLogin command

ExplanationResult code

Authentication is not yet complete.kFPAuthContinue

Specified UAM is unknown.kFPBadUAM

Server does not support the specified AFP version.kFPBadVersNum

Server does not support this command.kFPCallNotSupported

User is already authenticated.kFPMiscErr

Server is not responding.kFPNoServer

106 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

User’s password has expired. User is required to change his or her password.
The user is logged on but can only change his or her password or log out.

kFPPwdExpiredErr

User’s password needs to be changed. User is required to change his or her
password. The user is logged on but can only change his or her password or
log out.

kFPPwdNeedsChangeErr

Server is shutting down.kFPServerGoingDown

Authentication failed.kFPUserNotAuth

Table 46 describes the reply block for the FPLogincommand.

Table 46 Reply block for the FPLogin command

DataName and size

Session reference number used to refer to this session when sending all subsequent
commands for this session. The session reference number is valid if kFPNoErr or
kFPAuthContinue is returned as the result code.

SRefNum (short)

ID returned by certain UAMs to be passed to the FPLoginCont command. (Valid only
when kFPAuthContinue is returned as the result code.)

ID (short)

Value returned by certain UAMs. (Valid only when kFPAuthContinue is returned as the
result code.)

UserAuthInfo

Figure 53 shows the request and reply blocks for the FPLogin command.

Figure 53 Request and reply blocks for the FPLogin command

Request

FPLogin

Reply

IDNumber
(some UAMs only)

UserAuthInfo
(some UAMs only)

AFPVersion

UAM

UserAuthInfo
(required by some

UAMs)

0

Functions 107
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPLoginCont
Continues the login and user authentication process started by a login command.

byte CommandCode
byte Pad
short ID
UserAuthInfo

Parameters
CommandCode

kFPLoginCont (19).

Pad
Pad byte.

ID
Number returned by a previous call to FPLogin, FPLoginExt, or FPLoginCont.

UserAuthInfo
UAM-dependent information required to authenticate the user (can be null). The data type of
UserAuthInfo depends on the UAM that was specified when FPLogin (page 105) or
FPLoginExt (page 109) was called.

Result
kFPNoErr if no error occurred. See Table 47 (page 108) for the possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 48 (page 109) for the format
of the reply block.

Discussion
This command sends the ID and UserAuthInfo parameters to the server, which uses them to execute the
next step in the UAM. If an additional exchange of packets is required, the server returns a result code of
kFPAuthContinue. Otherwise, it returns no kFPNoErr (meaning the user has been authenticated) or
kFPUserNotAuth (meaning the authentication has failed). If the server returns no error, SRefNum is valid
for use when sending subsequent AFP commands for this session. If the server returns kFPUserNotAuth, it
also closes the session and invalidates SRefNum.

If this command returns a result code of kFPPwExpiredErr or kFPPwdNeedsChangeErr, the AFP client
should display an explanatory dialog box and allow the user to change his or her password.

Table 47 lists the result codes for the FPLoginCont command.

Table 47 Result codes for the FPLoginCont command

ExplanationResult code

Authentication is not yet complete.kFPAuthContinue

Non-AFP error occurred.kFPMiscErr

Server is not responding.kFPNoServer

Authentication failed for an undisclosed reason.kFPParamErr

108 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

User’s password has expired. User is required to change his or her password.
The user is logged in but can only change his or her password or log out.

kFPPwdExpiredErr

User’s password needs to be changed. User is required to change his or her
password. The user is logged on but can only change his or her password or
log out.

kFPPwdNeedsChangeErr

User was not authenticated because the password is incorrect.kFPUserNotAuth

Table 48 describes the reply block for the FPLoginCont command.

Table 48 Reply block for the FPLoginCont command

DataName and size

ID returned by certain UAMs to be passed to the FPLoginCont command. (Valid only if
kFPAuthContinue is returned as the result code.)

ID (short)

Value returned by certain UAMs. (Valid only if kFPAuthContinue is returned as the result
code.)

UserAuthInfo

Figure 54 shows the request and reply blocks for the FPLoginCont command.

Figure 54 Request and reply blocks for the FPLoginCont command

Request

FPLoginCont

Reply

IDNumber
(some UAMs only)

UserAuthInfo
(some UAMs only)

IDNumber

UserAuthInfo

0

FPLoginExt
Establishes a session with a server using an Open Directory domain.

Functions 109
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short Flags
string AFPVersion
string UAM
byte UserNameType
AFPName UserName
byte PathType
string Pathname
byte Pad
UserAuthInfo

Parameters
CommandCode

kFPLoginExt (63).

Pad
Pad byte.

Flags
Flags providing additional information. (No flags are currently defined.)

AFPVersion
String indicating which AFP version to use. For possible values, see AFP Version Strings (page
170).

UAM
String indicating which UAM to use. For possible values, see AFP UAM Strings (page 171).

UserNameType
Type of name in UserName; always 3.

UserName
UTF-8–encoded name of the user.

PathType
Type of names in PathName. See Path Type Constants (page 174) for possible values.

Pathname
Pathname for the Open Directory domain in which the user specified by UserName can be found.
Pathname is a string if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded
path.

Pad
Pad byte that may be required for Pathname to end on an even boundary.

UserAuthInfo
UAM-dependent information required to authenticate the user (can be null). The data type of
UserAuthInfo is dependent on the UAM specified by UAM.

Result
kFPNoErr if no error occurred. See Table 49 (page 111) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr or kFPAuthContinue, the server returns a reply block. See Table
50 (page 112) for the format of the reply block.

110 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
This command establishes an AFP session using the specified Open Directory domain in which information
about the user can be found. Before sending this command, the AFP client should call
FPGetAuthMethods (page 74) to obtain the UAMs that the Open Directory domain supports. From the list
of UAMs returned by FPGetAuthMethods, the AFP client chooses the most secure UAM that it supports and
provides it in the UAM parameter of the FPLoginExt command.

If the server returns any result code other than kFPAuthContinue or KFPNoErr, a session has not been
established.

For more detailed information about UAMs, see “File Server Security” in the “Introduction” section.

The AFP server keeps a count of log in attempts that is reset to zero after every successful login. For every
failed log in attempt without a preceding successful log in, the count is incremented. When the maximum
number of failed log in attempts is reached, the user’s account is disabled. Any attempts to log in after the
account is disabled result in an kFPParamErr indicating that the user is unknown or that his or her account
is disabled. The administrator must enable the user’s account again. AFP does not notify the administrator
that a user’s account has been disabled; the user must notify the administrator by some other means.

Table 49 lists the result codes for the FPLoginExt command.

Table 49 Result codes for the FPLoginExt command

ExplanationResult code

Authentication is not yet complete.kFPAuthContinue

Specified UAM is unknown.kFPBadUAM

Server does not support the specified AFP version.kFPBadVersNum

User is already authenticated.kFPMiscErr

Specified user is unknown or the account has been disabled due to too many
login attempts.

kFPParamErr

User’s password has expired. User is required to change his or her password.
The user is logged on but can only change his or her password or log out.

kFPPwdExpiredErr

User’s password needs to be changed. User is required to change his or her
password. The user is logged in but can only change his or her password or
log out.

kFPPwdNeedsChangeErr

Server is not responding.kFPNoServer

Server is shutting down.kFPServerGoingDown

Authentication failed.kFPUserNotAuth

Table 50 describes the reply block for the FPLoginExtcommand.

Functions 111
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 50 Reply block for the FPLoginExt command

DataName and size

Session reference number used to refer to this session when sending all subsequent
commands for this session. The session reference number is valid if kFPNoErr or
kFPAuthContinue is returned as the result code.

SRefNum (short)

ID returned by certain UAMs to be passed to the FPLoginCont command. (Valid only
when kFPAuthContinue is returned as the result code.)

ID (short)

Value returned by certain UAMs when kFPAuthContinue is returned as the result code.UserAuthInfo

Figure 55 shows the request and reply blocks for the FPLoginExt command.

Figure 55 Request and reply blocks for the FPLoginExt command

Request

FPLoginExt

Flags

UAM

UserNameType

0

0

Add a null byte if necessary
to make Pathname end on an
even boundary.

Reply

IDNumber
(some UAMs only)

UserAuthInfo
(some UAMs only)

AFPVersion

UserName

PathType

Pathname

UserAuthInfo

FPLogout
Terminates a session with a server.

112 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad

Parameters
CommandCode

kFPLogout (20).

Pad
Pad byte.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number is unknown, or
kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
None.

Discussion
This command terminates sessions established by FPLogin (page 105)and FPLoginExt (page 109). The server
flushes and closes any forks opened by the session, frees all session-related resources, and invalidates the
session reference number.

Figure 56 shows the request block for the FPLogout command.

Figure 56 Request block for the FPLogout command

Request

0

FPLogout

FPMapID
Maps a User ID to a user name or a Group ID to a group name.

byte CommandCode
byte Subfunction
long ID

Parameters
CommandCode

kFPMapID (21).

Subfunction
Subfunction code, where 1 maps a User ID to a Macintosh Roman user name, 2 maps a Group ID to
a Macintosh Roman group name, 3 maps a User ID to a UTF-8–encoded user name, and 4 maps a
Group ID to a UTF-8–encoded group name.

ID
Group ID or User ID that is to be mapped.

Functions 113
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or subfunction code
is unknown, kFPItemNotFound if the ID was not found, or kFPMiscErr if an error occurred that is
not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a string,
called Name, containing the name that corresponds to ID. The name can be a string of up to 255
Macintosh Roman characters or an AFPName of up to 255 characters.

Discussion
The server retrieves the user or group name in that corresponds to the specified User ID or Group ID.

The Subfunction parameter tells the server which database (user or group) to search first. User and group
IDs come from the same pool of numbers, so if the ID has been assigned, FPMapID always returns a user or
group name.

Figure 57 shows the request and reply blocks for the FPMapID command.

Figure 57 Request and reply blocks for the FPMapID command

Request

FPMapID

Subfunction

ID

Reply

Name

FPMapName
Maps a user name to a User ID or a group name to a Group ID.

byte CommandCode
byte Subfunction
string Name

Parameters
CommandCode

kFPMapName (22).

Subfunction
Subfunction code, where 1 maps a UTF-8–encoded user name to a User ID, 2 maps a UTF-8–encoded
group name to a Group ID, 3 maps a Macintosh Roman user name to User ID, and 4 maps a Macintosh
Roman group name to a Group ID.

Name
Name that is to be mapped to an ID. The name can be a string of up to 255 Macintosh Roman characters
or an AFPName of up to 255 characters.

114 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or subfunction code
is unknown, kFPItemNotFound if the ID was not found, or kFPMiscErr if an error occurred that is
not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a long,
called ID, containing the ID corresponding to the input name.

Discussion
The server retrieves the ID number that corresponds to the specified user or group name or returns a
kFPItemNotFound result code if it does not find the name in its list of valid names.

The Subfunction parameter tells the server which database (user or group) to search first. If you have a
user and a group that are both named “Fred” and you call FPMapName, the subfunction code will determine
in which database (user or group) the match is found.

Figure 58 shows the request and reply blocks for the FPMapName command.

Figure 58 Request and reply blocks for the FPMapName command

Request

FPMapName

Subfunction

Reply

Name

ID

FPMoveAndRename
Moves a CNode to another location on a volume or renames a CNode.

byte CommandCode
byte Pad
short VolumeID
long SourceDirectoryID
long DestDirectoryID
byte SourcePathType
string SourcePathname
byte DestPathType
string DestPathname
byte NewType
string NewName

Parameters
CommandCode

kFPMoveAndRename (23).

Pad
Pad byte.

VolumeID
Volume ID.

Functions 115
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

SourceDirectoryID
Source ancestor Directory ID.

DestDirectoryID
Destination ancestor Directory ID.

SourcePathType
Type of names in SourcePathname. See Path Type Constants (page 174) for possible values.

SourcePathname
Pathname of the file or directory to be moved (may be null if a directory is being moved).
SourcePathname is a string if it contains Short or Long Names or an AFPName if it contains a
UTF-8–encoded path.

DestPathType
Type of names in DestPathname. See Path Type Constants (page 174) for possible values.

DestPathname
Pathname of the file or directory to be moved (may be null if a directory is being moved).
DestPathname is a string if it contains Short or Long Names or an AFPName if it contains a
UTF-8–encoded path.

NewType
Type of name in NewName. See Path Type Constants (page 174) for possible values.

NewName
New name of file or directory (may be null). NewName is a string if it contains Short or Long Names or
an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 51 (page 117) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a long,
called ID, containing the ID corresponding to the input name.

Discussion
This command copies and optionally renames the CNode and removes the CNode from the original parent
directory. If the NewName parameter is null, the moved CNode retains it original name. Otherwise, the server
moves the CNode, creating the Long or Short Names as described in the section “Catalog Node Names” in
Chapter 1. The CNode’s modification date and the modification date of the source and destination parent
directories are set to the server’s clock. The CNode’s Parent ID is set to the destination Parent ID. All other
parameters remain unchanged, and if the CNode is a directory, the parameters of all descendent directories
and files remain unchanged.

The FPMoveAndRename command indicates the destination of the move by specifying the ancestor Directory
ID and the pathname to the CNode’s destination parent directory.

If the CNode being moved is a directory, all its descendents are moved as well.

To move a directory, the user must have search access to all ancestors, down to and including the source
and destination parent directories, as well as write access to those directories. To move a file, the user must
have search access to all ancestors, except the source and destination parents, as well as read and write
access to the source parent directory and write access to the destination parent directory.

A CNode cannot be moved from one volume to another with this command, even if both volumes are
managed by the same server.

Table 51 lists the result codes for the FPMoveAndRename command.

116 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 51 Result codes for the FPMoveAndRename command

ExplanationResult code

User does not have the access privileges required to move or rename the specified
file or directory.

kFPAccessDenied

Attempt was made to move a directory into one of its descendent directories.kFPCantMove

Directory being moved contains a share point and is being moved into a directory
that is shared or is the descendent of a directory that is shared.

kFPInsideSharedErr

Shared directory is being moved into the Trash; a directory is being moved to
the trash and it contains a shared folder.

kFPInsideTrashErr

Non-AFP error occurred.kFPMiscErr

File or directory having the name specified by NewName already exists.kFPObjectExists

Directory being moved, renamed, or moved and renamed is marked
RenameInhibit; file being moved and renamed is marked RenameInhibit.

kFPObjectLocked

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Session reference number, Volume ID, or pathname type is unknown; a pathname
or NewName is invalid.

kFPParamErr

Volume is ReadOnly.kFPVolLocked

Figure 59 shows the request block for the FPMoveAndRename command.

Functions 117
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 59 Request block for the FPMoveAndRename command

Request

FPMoveAndRename

0

VolumeID

SourceDirectoryID

DestDirectoryID

SourcePathType

SourcePathname

DestPathType

DestPathname

NewType

NewName

FPOpenDir
Opens a directory on a variable Directory ID volume and returns its Directory ID.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPOpenDir (25).

118 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname of the file or directory to be moved (may be null if a directory is being moved). Pathname
is a string if it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 52 (page 119) for other possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a long,
called DirectoryID, containing the Directory ID of the opened directory.

Discussion
If VolumeID specifies a variable Directory ID volume, the server generates a Directory ID for the specified
directory. If VolumeID specifies a fixed Directory ID type, the server returns the fixed Directory ID belonging
to the directory specified by Pathname.

Although this command can obtain a Directory ID for a directory on a fixed Directory ID volume, the
recommended way to obtain a Directory ID for a directory on a fixed Directory ID volume is to call
FPGetFileDirParms (page 80).

The user must have search access to all ancestors down to and including the specified directory’s parent
directory.

Table 52 lists the result codes for the FPOpenDir command.

Table 52 Result codes for the FPOpenDir command

ExplanationResult code

User does not have the access privileges required to open the directory.kFPAccessDenied

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing directory.kFPObjectNotFound

Input parameters point to a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; a pathname
is invalid.

kFPParamErr

Figure 60 shows the request and reply blocks for the FPOpenDir command.

Functions 119
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 60 Request and reply blocks for the FPOpenDir command

Request

kFPOpenDir

0

VolumeID

DirectoryID

PathType

Pathname

Reply

DirectoryID

FPOpenDT
Opens the Desktop database on a particular volume.

byte CommandCode
byte Pad
short VolumeID

Parameters
CommandCode

kFPOpenDT (48).

Pad
Pad byte.

VolumeID
Volume ID.

Result
kFPNoErr if no error occurred, kFPParamErr if the session reference number or VolumeID is
unknown, or kFPMiscErr if an error occurred that is not specific to AFP.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. The reply block consists of a short,
called DTRefNum, containing a Desktop database reference number.

Discussion
The server opens the Desktop database on the selected volume and returns a Desktop database reference
number that is unique among such reference numbers. The Desktop database reference number is to be
used in all subsequent Desktop database commands relating to this volume.

The user must have previously called FPOpenVol (page 124) for this volume.

Figure 61 shows the request and reply blocks for the FPOpenDT command.

120 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 61 Request and reply blocks for the FPOpenDT command

Request

kFPOpenDT

VolumeID

Reply

DTRefNum
0

FPOpenFork
Opens a fork of an existing file for reading or writing.

byte CommandCode
byte Flag
short VolumeID
long DirectoryID
short Bitmap
short AccessMode
byte PathType
string Pathname

Parameters
CommandCode

kFPOpenFork (26).

Flag
Bit 7 of the Flag parameter is the ResourceDataFlag bit, and it indicates which fork to open, where
0 specifies the data fork and 1 specifies the resource fork.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

Bitmap
Bitmap describing the fork parameters to be returned. Set the bit that corresponds to each desired
parameter. This bitmap is the same as the FileBitmap parameter of the FPGetFileDirParms (page
80) command and can be null. For bit definitions for the File bitmap, see File Bitmap (page 164).

AccessMode
Desired access and deny modes, specified by any combination of the following bits: 0 = Read —
allows the fork to be read 1 = Write — allows the fork to be written 4 = DenyRead — prevents others
from reading the fork while it is open 5 = DenyWrite — prevents others from writing the fork while
it is open For more information on access and deny modes, see “File Sharing Modes” in the
“Introduction” section.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired file (cannot be null). Pathname is a string if it contains Short or Long Names
or an AFPName if it contains a UTF-8–encoded path.

Functions 121
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Result
kFPNoErr if no error occurred. See Table 53 (page 122) for the possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 54 (page 123) for the format
of the reply block.

Discussion
The server opens the specified fork if the user has the access rights for the requested access mode and if the
access mode does not conflict with already-open access paths to the fork.

If the fork is opened, the server returns in the reply block a copy of the input bitmap, an open fork reference
number for use with all subsequent commands involving the opened fork, and followed by file parameters
packed in bitmap order.

File parameters are returned only if the command completes without error or if the command returns with
a kFPDenyConflict result code. In the latter case, the server returns a fork reference of zero.

A kFPBitmapErr result code is returned if an attempt is made to retrieve the length of the file’s other fork.

The server needs to keep variable-length parameters, such as Long Name or Short Name, at the end of the
reply block. In order to do this, the server represents variable-length parameters in bitmap order as fixed-length
offsets (integer) to the start of the variable-length parameters. The actual variable-length fields are then
packed after all fixed-length parameters.

If the fork is opened and the user has requested the file’s attributes in the file bitmap, the appropriate
DAlreadyOpen or RAlreadyOpen bit is set.

To open a fork for read or no access (when neither read or write access is requested), the user must have
search access to all ancestors, except the parent directory, as well as read access to the parent directory. For
information about access modes, see “File Sharing Modes” in the “Introduction” section.

To open a fork for write access, the volume must not be designated for read-only access. If both forks are
currently empty, the user must have search or write access to all ancestors, except the parent directory, as
well as write access to the parent directory. If either fork is not empty and one of the forks is being opened
for writing, the user must have search access to all ancestors, except the parent directory, as well as read and
write access to the parent directory.

The user must have previously called FPOpenVol (page 124) for this volume. Each fork must be opened
separately; a unique fork reference is returned for each fork.

Table 53 lists the result codes for the FPOpenFork command.

Table 53 Result codes for the FPOpenFork command

ExplanationResult code

User does not have the access privileges required to open the specified fork.kFPAccessDenied

Attempt was made to retrieve a parameter that cannot be obtained with this
command (the fork is not opened).

kFPBitmapErr

File or fork cannot be opened because of a deny modes conflict.kFPDenyConflict

Non-AFP error occurred.kFPMiscErr

122 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Input parameters do not point to an existing file.kFPObjectNotFound

Attempt was made to open a file for writing that is marked WriteInhibit.kFPObjectLocked

Input parameters point to a directory.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; a pathname
is invalid.

kFPParamErr

Server cannot open another fork.KFPTooManyFilesOpen

Attempt was made to open for writing a file on a volume that is marked
ReadOnly.

kFPVolLocked

Table 54 describes the reply block for the FPOpenForkcommand.

Table 54 Reply block for the FPOpenFork command

DataName and size

Copy of the input parameter.Bitmap (short)

Open fork reference number for use when referring to this fork in when sending
subsequent commands.

OForkRefNum (short)

Requested parameters.FileParameters

Figure 62 shows the request and reply blocks for the FPOpenFork command.

Functions 123
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 62 Request and reply blocks for the FPOpenFork command

Request

FPOpenFork

VolumeID

Reply

Bitmap
ResourceDataFlag

DirectoryID

Bitmap

AccessMode

PathType

Pathname

OForkRefNum

FileParameters

AccessMode

0 0 0 0

0 0 0

DenyWrite

DenyRead

Write

Read

0 0 0 0

0

FPOpenVol
Opens a volume.

byte CommandCode
byte Pad
short Bitmap
string VolumeName
8 bytes Password

Parameters
CommandCode

kFPOpenVol (24).

Pad
Pad byte.

VolumeID
Volume ID.

Bitmap
Bitmap describing the parameters that are to be returned. Set the bit that corresponds to each desired
parameter. The bitmap is the same as the Volume bitmap used by the FPGetVolParms (page 101)
command and cannot be null. For bit definitions, see Volume Bitmap (page 168).

VolumeName
Name of the volume as returned by FPGetSrvrParms (page 98).

124 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Password
Optional volume password.

Result
kFPNoErr if no error occurred. See Table 55 (page 125) for the possible result codes.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 56 (page 125) for the format
of the reply block.

Discussion
This command must be made before any other command can be made to obtain access to CNodes on the
specified volume.

If a password is required to gain access to the volume, it is sent as the Password parameter in cleartext.
Append null bytes to the password as necessary to obtain a length of eight bytes. Password comparison is
case-sensitive. If the supplied password does not match the password kept with the volume, or if a password
is not supplied when a password is required, the server returns a result code of kFPAccessDenied.

If the passwords match, or if the volume is not password-protected, the server packs the requested parameters
in the reply block The user can now send commands related to CNodes on the volume.

The Bitmap parameter must request that the Volume ID be returned. There is no other way to retrieve the
Volume ID, which is required by most subsequent commands related to this volume.

Table 55 lists the result codes for the FPOpenVol command.

Table 55 Result codes for the FPOpenVol command

ExplanationResult code

Password is not supplied or does not match.kFPAccessDenied

Attempt was made to retrieve a parameter that cannot be obtained with this
command. (The bitmap is null.)

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing volume.kFPObjectNotFound

Session reference number or volume name is unknown.kFPParamErr

Table 56 describes the reply block for the FPOpenVol command.

Table 56 Reply block for the FPOpenVol command

DataName and size

Copy of the input parameter.Bitmap (short)

Requested parameters, including the Volume ID, for the opened volume.VolumeParameters

Figure 63 shows the request and reply blocks for the FPOpenVol command.

Functions 125
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 63 Request and reply blocks for the FPOpenVol command

Request

FPOpenVol

Bitmap

Reply

Bitmap

Name

VolumeParameters

0

0

Password
(optional)

Add a null byte
if necessary to round
to an even byte.

FPRead
Reads a block of data.

byte CommandCode
byte Pad
short OForkRefNum
long Offset
long ReqCount
byte NewLineMask
byte NewLineChar

Parameters
CommandCode

kFPRead (27).

Pad
Pad byte.

OForkRefNum
Open fork reference number.

Offset
Number of the first byte to read.

126 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReqCount
Number of bytes to read.

NewLineMask
Mask for determining where the read should terminate.

NewLineChar
Character for determining where the read should terminate.

Result
kFPNoErr if no error occurred. See Table 57 (page 127) for the possible result codes.

ActualCount
Number of bytes actually read from the fork. This long value is returned by the underlying transport
mechanism and is not a value in the reply block.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block containing the data that was read.

Discussion
This command retrieves the specified range of bytes from an open fork. Call FPOpenFork (page 121) to open
the fork. The server begins reading at the byte number specified by the Offset parameter. Reading stops
when one of the following occur:

 ■ The server encounters the character specified by the combination of the NewLineMask and NewLineChar
parameters

 ■ The server reaches the end of the fork

 ■ The server encounters the start of a range locked by another user

 ■ The server reads the number of bytes specified by the ReqCount parameter

If the server reaches the end of fork or the start of a locked range, it returns all data read to that point and a
result code of kFPEOFErr or kFPLockErr, respectively.

The NewLineMask parameter is a byte mask that is to be logically ANDed with a copy of each byte read. If
the result matches the NewLineChar parameter, the read terminates. Using a NewLineMask value of zero
essentially disables the Newline check feature.

If a user reads a byte that was never written to the fork, the result is undefined.

Lock the range to be read before sending this command. The underlying transport mechanism may force
the request to be broken into multiple smaller requests. If the range is not locked when this command begins
execution, it is possible for another user to lock some or all of the range before this command completes,
causing the read to succeed partially.

Table 57 (page 127) lists the result codes for the FPRead command.

Table 57 Result codes for the FPRead command

ExplanationResult code

Fork was not opened for read access.kFPAccessDenied

End of fork was reached.kFPEOFErr

Some or all of the requested range is locked by another user.kFPLockErr

Functions 127
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Session reference number or open fork reference number is unknown; ReqCount or
Offset is negative; NewLineMask is invalid.

kFPParamErr

Figure 64 shows the request and reply blocks for the FPRead command.

Figure 64 Request and reply blocks for the FPRead command

Request

FPRead

0

OForkRefNum

Offset

ReqCount

Reply

RequestedForkData

NewLineMask

NewLineChar

FPReadExt
Reads a block of data.

byte CommandCode
byte Pad
short OForkRefNum
long long Offset
long long ReqCount

Parameters
CommandCode

kFPReadExt (60).

Pad
Pad byte.

128 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

OForkRefNum
Open fork reference number.

Offset
Number of the first byte to read.

ReqCount
Number of bytes to read.

Result
kFPNoErr if no error occurred. See Table 58 (page 129) for the possible result codes.

ActualCount
Number of bytes actually read from the fork. This long long value is returned by the underlying
transport mechanism and is not a value in the reply block.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block containing the data that was read.

Discussion
This command retrieves the specified range of bytes from an open fork. Call FPOpenFork (page 121) to open
the fork.

This command differs from the FPRead (page 126) command in that this command is prepared to handle
large values that may be returned for files the reside in volumes larger than 4 GB in size. Also, this command
does not support the NewlineMask and NewlineChar parameters that FPRead supports.

The server begins reading at the byte number specified by the Offset parameter. Reading stops when one
of the following occur:

 ■ The server reaches the end of the fork

 ■ The server encounters the start of a range locked by another user

 ■ The server reads the number of bytes specified by the ReqCount parameter

If the server reaches the end of fork or the start of a locked range, it returns all data read to that point and a
result code of kFPEOFErr or kFPLockErr, respectively.

If a user reads a byte that was never written to the fork, the result is undefined.

Lock the range to be read before sending this command. The underlying transport mechanism may force
the request to be broken into multiple smaller requests. If the range is not locked when this command begins
execution, it is possible for another user to lock some or all of the range before this command completes,
causing the read to succeed partially.

Table 58 lists the result codes for the FPReadExt command.

Table 58 Result codes for the FPReadExt command

ExplanationResult code

Fork was not opened for read access.kFPAccessDenied

End of fork was reached.kFPEOFErr

Some or all of the requested range is locked by another user.kFPLockErr

Functions 129
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Session reference number or open fork reference number is unknown; ReqCount or
Offset is negative.

kFPParamErr

Figure 65 shows the request and reply blocks for the FPReadExt command.

Figure 65 Request and reply blocks for the FPReadExt command

Request

kFPReadExt

0

OForkRefNum

Offset

ReqCount

Reply

RequestedForkData

FPRemoveAPPL
Removes an APPL mapping from a volume’s Desktop database.

130 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short DTRefNum
long DirectoryID
long FileCreator
byte PathType
string Pathname

Parameters
CommandCode

kFPRemoveAPPL (54).

Pad
Pad byte.

DTRefNum
Desktop database reference number.

DirectoryID
Ancestor Directory ID.

FileCreator
File creator of the application corresponding to the APPL mapping that is to be removed.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired file (cannot be null). Pathname is a string if it contains Short or Long Names
or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 59 (page 131) for the possible result codes.

ReplyBlock
None.

Discussion
The server locates in the Desktop database the APPL mapping corresponding to the specified application
and file creator. If an APPL mapping is found, it is removed.

The user must have search access to all ancestors, except the parent directory, as well as read and write
access to the parent directory.

The user must have previously called FPOpenDT (page 120) for the corresponding volume. In addition, the
file must exist in the specified directory before this command is sent.

Table 59 lists the result codes for the FPRemoveAPPL command.

Table 59 Result codes for the FPRemoveAPPL command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

No APPL mapping corresponding to the input parameters was found in the Desktop
database.

kFPItemNotFound

Non-AFP error occurred.kFPMiscErr

Functions 131
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Input parameters do not point to an existing file.kFPObjectNotFound

Session reference number or Desktop database reference number is unknown.kFPParamErr

Figure 66 shows the request and reply blocks for the FPRemoveAPPL command.

Figure 66 Request and reply blocks for the FPRemoveAPPL command

Request

FPRemoveAPPL

0

DTRefNum

DirectoryID

FileCreator

PathType

Pathname

FPRemoveComment
Removes a comment from a volume’s Desktop database.

byte CommandCode
byte Pad
short DTRefNum
long DirectoryID
byte PathType
string Pathname

Parameters
CommandCode

kFPRemoveComment (57).

Pad
Pad byte.

132 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DTRefNum
Desktop database reference number.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the CNode whose comment is being removed (cannot be null). Pathname is a string if
it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 60 (page 133) for the possible result codes.

ReplyBlock
None.

Discussion
If the comment is associated with directory that is not empty, the user must have search access to all ancestors,
including the parent directory, plus write access to the parent directory. If the comment is associated with
an empty directory, the user must have search or write access to all ancestors, including the parent directory,
plus write access to the parent directory.

If the comment is associated with a file that is not empty, the user must have search access to all ancestors,
except the parent directory, plus read and write access to the parent directory. If the comment is associated
with an empty file, the user must have search or write access to all ancestors, except the parent directory,
plus write access to the parent directory.

The user must have previously called FPOpenDT (page 120) for the corresponding volume.

Table 60 lists the result codes for theFPRemoveComment command.

Table 60 Result codes for the FPRemoveComment command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Comment was not found in the Desktop database.kFPItemNotFound

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Session reference number, Desktop database reference number, or pathname type
is unknown; pathname is invalid.

kFPParamErr

Figure 67 shows the request and reply blocks for the FPRemoveComment command.

Functions 133
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 67 Request and reply blocks for the FPRemoveComment command

Request

FPRemoveComment

0

DTRefNum

DirectoryID

PathType

Pathname

FPRemoveExtAttr
Removes an extended attribute.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID unsigned short Bitmap
byte PathType
string Pathname
byte Pad
unsigned short NameLength
string Name

Parameters
CommandCode

kFPRemoveExtAttr (71).

Pad
Pad byte.

VolumeID
Volume identifier.

DirectoryID
Directory identifier.

Bitmap
Bitmap specifying the desired behavior when removing an extended attribute. For this command,
kAttrDontFollow is the only valid bit. For details, see Extended Attributes Bitmap (page 164).

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

134 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Pad
Optional pad byte if needed to pad to an even boundary.

NameLength
Length in bytes of the extended attribute name that follows.

Name
UTF-8–encoded name of the extended attribute that is to be removed.

Result
kFPNoErr if no error occurred. See Table 61 for other possible result codes.

Discussion
This command removes the specified extended attribute.

Support for this command, as well as FPGetExtAttr (page 77), FPListExtAttrs (page 103), and
FPSetExtAttr (page 145) is required in order to support extended attributes. UTF-8 support is also required
in order to support extended attributes.

Table 61 lists the possible result codes for the FPRemoveExtAttr command.

Table 61 Result codes for the FPRemoveExtAttr command

ExplanationResult code

User does not have the access privileges required to remove an extended attribute
for the specified file or directory.

kFPAccessDenied

Bitmap is null or specifies a value that is invalid for this command.kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Figure 68 shows the request block for the FPRemoveExtAttr command.

Functions 135
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 68 Request block for the FPRemoveExtAttr command

Request

FPRemoveExtAttr

0

VolumeID

DirectoryID

Bitmap

PathType

PathName

Pad

NameLength

Name

Optional pad byte if
needed to pad to an
even boundary

Version Notes
Introduced in AFP 3.2.

FPRename
Renames a file or directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
byte PathType
string Pathname
byte NewType
string NewName

Parameters
CommandCode

kFPRename (28).

Pad
Pad byte.

136 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the CNode whose name is being changed (cannot be null). Pathname is a string if it
contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

NewType
Type of names in NewName. See Path Type Constants (page 174) for possible values.

NewName
Pathname to the CNode, including its new name (cannot be null). NewName is a string if it contains
Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Result
kFPNoErr if no error occurred. See Table 62 (page 137) for the possible result codes.

ReplyBlock
None.

Discussion
The server assigns the new name to the file or directory. The other name (Long or Short) is generated as
described in the section “Catalog Node Names” in Chapter 1. The modification date of the parent directory
is set to the server’s clock.

To rename a directory, the user must have search access to all ancestors. including the CNode’s parent
directory, as well as write access to the parent directory. To rename a file, the user must have search access
to all ancestors, except the CNode’s parent directory, as well as read and write access to the parent directory.

Table 62 lists the result codes for the FPRename command.

Table 62 Result codes for the FPRename command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to rename a volume or root directory.kFPCantRename

Non-AFP error occurred.kFPMiscErr

File or directory having the name specified by NewName already exists.kFPObjectExists

File or directory is marked RenameInhibit.kFPObjectLocked

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Session reference number, Volume ID, or pathname type is unknown; pathname
or NewName is invalid.

kFPParamErr

Volume is ReadOnlykFPVolLocked

Figure 69 shows the request block for the FPRename command.

Functions 137
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 69 Request block for the FPRename command

Request

FPRename

0

VolumeID

DirectoryID

PathType

Pathname

NewType

NewName

FPResolveID
Gets parameters for a file by File ID.

byte CommandCode
byte Pad
short VolumeID
long FileID
short Bitmap

Parameters
CommandCode

kFPResolveID (41).

Pad
Pad byte.

VolumeID
Volume ID.

FileID
File ID to be resolved.

Bitmap
Bitmap describing the parameters to return. Set the bit that corresponds to each desired parameter.
This bitmap is the same as the FileBitmap parameter of the FPGetFileDirParms (page 80)
command. For bit definitions for the this bitmap, see File Bitmap (page 164).

Result
kFPNoErr if no error occurred. See Table 63 (page 139) for the possible result codes.

138 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block. See Table 64 (page 139) for the format
of the reply block.

Discussion
The parameters returned by this command can be any parameter specified in the FPGetFileDirParms (page
80) command.

The user must have the Read Only or the Read & Write privilege to use this command.

Table 63 lists the result codes for the FPResolveID command.

Table 63 Result codes for the FPResolveID command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

File ID is not valid.kFPBadIDErr

Server does not support this command.kFPCallNotSupported

File ID was not found. (No file thread exists.)kFPIDNotFound

Non-AFP error occurred.kFPMiscErr

Object defined was a directory, not a file.kFPObjectTypeErr

Session reference number, Volume ID, or File ID is unknown.kFPParamErr

Table 64 describes the reply block for the FPResolveID command.

Table 64 Reply block for the FPResolveID command

DataName and size

Copy of the input bitmap.Bitmap (short)

Requested file parameters.FileParameters

Figure 69 shows the request and reply blocks for the FPResolveID command.

Functions 139
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 70 Request and reply blocks for the FPResolveID command

Request

kFPResolveID

0

VolumeID

Reply

FileID

Bitmap

RequestedParameters

Bitmap

FPSetACL
Sets the UUID, Group UUID, and ACL for a file or directory and removes an ACL from a file or directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
unsigned short Bitmap
byte Pathtype
string Pathname
byte Pad
AdditionalInformation

Parameters
CommandCode

kFPSetACL (74).

Pad
Pad byte.

VolumeID
Volume identifier.

DirectoryID
Directory identifier.

140 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Bitmap
Bits that specify the values that are to be set. Specify kFileSec_UUID to set the UUID of the specified
file or directory. Specify kFileSec_GRPUUID to set the Group UUID of the specified file or directory.
Specify kFileSec_ACL to set the ACL of the specified file or directory or kFileSec_REMOVEACL to
remove the file or directory’s ACL. If sending this command is part of the creation of a new item, set
the kFileSec_Inherit bit. When the server receives an FPSetACL command having a Bitmap
parameter in which the kFileSec_Inherit bit is set, it scans the current item looking for access
control entries (ACEs) in which the KAUTH_ACE_INHERITED bit is set in its ace_flags field. The
server copies any currently inherited ACEs to the end of the incoming list of ACEs and sets the ACL
on the item. For declarations of these constants, see Access Control List Bitmap (page 169).

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname of the Open Directory domain for which UAMs are to be obtained. Pathname is a string if
it contains Short or Long Names or an AFPName if it contains a UTF-8–encoded path.

Pad
Pad byte if needed to pad to an even boundary.

AdditionalInformation
If kFileSec_UUID is set in the Bitmap parameter, the first item in this parameter is the UUID that is
to be set. If kFileSec_GRPUUID is set, the next item in this parameter is the Group UUID that is to
be set. If kFileSec_ACL is set, the next item in this parameter is a kauth_acl structure. For
information on this structure, see the section Access Control List Structure (page 161). If
kFileSec_REMOVEACL is set in the Bitmap parameter, this parameter does not contain a kauth_acl
structure.

Result
kFPNoErr if no error occurred. See Table 65 for other possible result codes.

Discussion
Depending on the bits that are set in the Bitmap parameter, this command sets the UUID, Group UUID, and
ACL for the specified file or directory or removes the ACL of the specified file or directory.

Support for this command, as well as FPAccess (page 11) and FPGetACL (page 70) is required in order to
support access control lists (ACLs). Support for UTF-8 and UUIDs is also required in order to support ACLs.

Table 65 lists the result codes for the FPSetACL command.

Table 65 Result codes for the FPSetACL command

ExplanationResult code

User does not have the access rights required to set the ACL for the specified file
or directory.

kFPAccessDenied

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Figure 35 shows the request block for the FPSetACL command.

Functions 141
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 71 Request block for the FPSetACL command

Request

FPSetACL

0

VolumeID

DirectoryID

Bitmap

MaxReplySize

PathType

PathName

Pad

Optional pad
byte if needed
to pad to an
even boundary

GRPUUID
(16 bytes)

UUID
(16 bytes)

Optional

Optional

kauth_ace
structure

kauth_acl
structure

acl_entrycount

acl_flags

ace_applicable
(16 bytes)

ace_flags

ace_rights

Request (continued)

Version Notes
Introduced in AFP 3.2.

FPSetDirParms
Sets parameters for a directory.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short Bitmap
byte PathType
string Pathname
DirectoryParameters

Parameters
CommandCode

kFPSetDirParms (29).

Pad
Pad byte.

142 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

Bitmap
Bitmap describing the parameters to set. Set the bit that corresponds to each desired parameter. This
bitmap is the same as the DirectoryBitmap parameter of the FPGetFileDirParms (page 80)
command. For bit definitions for this bitmap, see Directory Bitmap (page 162).

PathType
Type of name in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

DirectoryParameters
Parameters to be set, packed in bitmap order.

Result
kFPNoErr if no error occurred. See Table 66 (page 144) for the possible result codes.

ReplyBlock
None.

Discussion
This command sets or clears certain parameters and attributes that are common to both files and directories.
The parameters are the Invisible and System attributes, Creation Date, Modification Date, Backup Date, Finder
Info, and UNIX privileges.

The parameters must be packed, in bitmap order, in the request block. Variable-length parameters, such as
Long Name and Short Name, must be kept at the end of the block. To do this, variable-length parameters
are represented in bitmap order as fixed-length offsets (integers). These offsets are measured from the start
of the parameters to the start of the variable-length parameters. The actual variable-length parameters are
then packed after all fixed-length parameters.

Changing a directory’s access rights immediately affects other open sessions. If the user does not have the
access rights to set one of the parameters, a kFPAccessDenied result code is returned and no parameters
are set.

To set a directory’s access privileges, Owner ID, Group ID, or to change the DeleteInhibit, RenameInhibit,
WriteInhibit, or Invisible attributes, the user must have search or write access to all ancestors, including this
directory’s parent directory, and the user must be the owner of the directory. To set any parameter other
than the ones mentioned above for an empty directory, the user must have search or write access to all
ancestors, except the parent directory, as well as write access to the parent directory. To set any parameter
other than the ones mentioned above for a directory that is not empty, the user must have search access to
all ancestors, including the parent directory, as well as write access to the parent directory.

This command cannot be used to set a directory’s name; instead, use FPRename (page 136). This command
cannot be used to set a directory’s Parent Directory ID; instead, use FPMoveAndRename (page 115). This
command cannot be used to set a directory’s Directory ID or Offspring Count.

Table 66 lists the result codes for the FPSetDirParms command.

Functions 143
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 66 Result codes for the FPSetDirParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to set a parameter that cannot be set by this command; bitmap
is null.

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing directory.kFPObjectNotFound

Input parameters point to a file.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; pathname,
Owner ID, or Group ID is invalid.

kFPParamErr

Volume is ReadOnly.kFPVolLocked

Figure 72 shows the request block for the FPSetDirParms command.

Figure 72 Request block for the FPSetDirParms command

Request

kFPSetDirParms

0

VolumeID

DirectoryID

PathType

Pathname

DirectoryParameters

Bitmap

0 Add a null byte if necessary
to make DirectoryParameters
begin on an even boundary.

144 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

FPSetExtAttr
Sets the value of an extended attribute.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID unsigned short Bitmap
long long Offset
byte PathType
string Pathname
byte Pad
unsigned short NameLength
string Name
unsigned long AttributeDataLength
string AttributeData

Parameters
CommandCode

kFPSetExtAttr (70).

Pad
Pad byte.

VolumeID
Volume identifier.

DirectoryID
Directory identifier.

Bitmap
Bitmap specifying the desired behavior when setting the value of an extended attribute. For details,
see Extended Attributes Bitmap (page 164) for details.

Offset
Always zero; reserved for future use.

PathType
Type of names in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to desired file or directory. Pathname is a string if it contains Short or Long Names or an
AFPName if it contains a UTF-8–encoded path.

Pad
Optional pad byte if needed to pad to an even boundary.

NameLength
Length in bytes of the extended attribute name that follows.

Name
UTF-8–encoded name of the extended attribute that is to be set.

AttributeDataLength
Length in bytes of the extended attribute data that follows.

AttributeData
Value to which the extended attribute is to be set.

Result
kFPNoErr if no error occurred. See Table 67 for other possible result codes.

Functions 145
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
This command sets the value of the specified extended attribute. If the extended attribute does not already
exist, it is created.

Support for this command, as well as FPGetExtAttr (page 77), FPListExtAttrs (page 103) and
FPRemoveExtAttr (page 134) is required in order to support extended attributes. UTF-8 support is also
required in order to support extended attributes.

Table 67 lists the possible result codes for the FPSetExtAttr command.

Table 67 Result codes for the FPSetExtAttr command

ExplanationResult code

User does not have the access privileges required to set an extended attribute for
the file or directory.

kFPAccessDenied

Bitmap is null or specifies a value that is invalid for this command.kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

A parameter is invalid.kFPParamErr

Figure 73 shows the request block for the FPSetExtAttr command.

146 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 73 Request block for the FPSetExtAttr command

Request

FPSetExtAttr
0

VolumeID

DirectoryID

Bitmap

PathType

Offset

PathName

Pad

NameLength

Name

AttributeDataLength

AttributeData

Optional pad byte if
needed to pad to an
even boundary

Version Notes
Introduced in AFP 3.2.

FPSetFileDirParms
Sets parameters for a file or a directory.

Functions 147
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short Bitmap
byte PathType
string Pathname
FileDirParameters

Parameters
CommandCode

kFPSetFileDirParms (35).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

Bitmap
Bitmap describing the parameters to set. Set the bit that corresponds to each desired parameter. This
bitmap can be the same as the DirectoryBitmap or the FileBitmap parameter of the
FPGetFileDirParms (page 80) command, but this command can only set the parameters that are
common to both bitmaps. For bit definitions for the Directory and bitmap, see Directory Bitmap (page
162); for bit definitions for the File bitmap, see File Bitmap (page 164).

PathType
Type of name in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired file or directory. Pathname is a string if it contains Short or Long Names or
an AFPName if it contains a UTF-8–encoded path.

FileDirParameters
Parameters to be set, packed in bitmap order.

Result
kFPNoErr if no error occurred. See Table 68 (page 149) for the possible result codes.

ReplyBlock
None.

Discussion
This command sets or clears certain parameters and attributes that are common to both files and directories.
The parameters are the Invisible and System attributes, Creation Date, Modification Date, Backup Date, Finder
Info, and UNIX privileges.

The parameters must be packed, in bitmap order, in the request block. Variable-length parameters, such as
Long Name and Short Name, must be kept at the end of the block. To do this, variable-length parameters
are represented in bitmap order as fixed-length offsets (integers). These offsets are measured from the start
of the parameters to the start of the variable-length parameters. The actual variable-length parameters are
then packed after all fixed-length parameters.

If necessary, a null byte must be added between Pathname and DirectoryParameters in the request
block to make DirectoryParameters begin on an even boundary.

148 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

If the Attributes parameter is included, the Set/Clear bit indicates that the specified attributes are to be set
(1) or cleared (0). Therefore, it is not possible to set some attributes and clear other attributes in the same
command.

If this command changes the CNode's attributes or sets the CNode's dates (except modification date), Finder
Info, or UNIX privileges, the modification date of the CNode is set to the server's clock. If this command
changes the CNode’s Invisible attribute, the modification date of the CNode’s parent directory is set to the
server’s clock.

To set the parameters for a directory that is not empty, the user needs search access to all ancestors, including
the parent directory, as well as write access to the parent directory. To set parameters for an empty directory,
the user needs search or write access to all ancestors, except the parent directory, as well as write access to
the parent directory.

To set parameters for a file that is not empty, the user needs search access to all ancestors, except the parent
directory, as well as write access to the parent directory. To set parameters for an empty file, the user needs
search or write access to all ancestors, except the parent directory, as well as write access to the parent
directory.

For files, call FPSetFileParms (page 150) to set parameters and attributes that FPSetFileDirParms cannot
set. For directories, callFPSetDirParms (page 142) to set parameters and attributes thatFPSetFileDirParms
cannot set.

Table 68 lists the result codes for the FPSetFileDirParms command.

Table 68 Result codes for the FPSetFileDirParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to set a parameter that cannot be set by this command; bitmap
is null.

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file or directory.kFPObjectNotFound

Session reference number, Volume ID, or pathname type is unknown; pathname
is invalid.

kFPParamErr

Volume is ReadOnly.kFPVolLocked

Figure 74 shows the request block for the FPSetFileDirParms command.

Functions 149
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 74 Request block for the FPSetFileDirParms command

Request

FPSetFileDirParms

0

VolumeID

DirectoryID

PathType

Pathname

Parameters

Bitmap

0 Add a null byte if necessary
to make Parameters begin
on an even boundary.

FPSetFileParms
Sets parameters for a file.

byte CommandCode
byte Pad
short VolumeID
long DirectoryID
short Bitmap
byte PathType
string Pathname
FileParameters

Parameters
CommandCode

kFPSetFileParms (30).

Pad
Pad byte.

VolumeID
Volume ID.

DirectoryID
Ancestor Directory ID.

150 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Bitmap
Bitmap describing the parameters to set. Set the bit that corresponds to each desired parameter. This
bitmap can be the same as the FileBitmap parameter of the FPGetFileDirParms (page 80) command.
For bit definitions for the Directory bitmap, see Directory Bitmap (page 162); for bit definitions for the
File bitmap, see File Bitmap (page 164).

PathType
Type of name in Pathname. See Path Type Constants (page 174) for possible values.

Pathname
Pathname to the desired file or directory. Pathname is a string if it contains Short or Long Names or
an AFPName if it contains a UTF-8–encoded path.

FileParameters
Parameters to be set, packed in bitmap order.

Result
kFPNoErr if no error occurred. See Table 69 (page 152) for the possible result codes.

ReplyBlock
None.

Discussion
The parameters must be packed, in bitmap order, in the request block. Variable-length parameters must be
kept at the end of the block. To do this, variable-length parameters are represented in bitmap order as
fixed-length offsets (integers). These offsets are measured from the start of the parameters to the start of the
variable-length parameters. The actual variable-length parameters are then packed after all fixed-length
parameters.

If necessary, a null byte must be added between Pathname and FileParameters in the request block to
make FileParameters begin on an even boundary.

The following parameters may be set or cleared: Attributes (all attributes except DAlreadyOpen, RAlreadyOpen,
and CopyProtect), Creation Date, Modification Date, Backup Date, Finder Info, and UNIX privileges.

If the Attributes parameter is included, the Set/Clear bit indicates that the specified attributes are to be set
(1) or cleared (0). Therefore, it is not possible to set some attributes and clear other attributes in the same
call.

If this command changes the file’s Invisible attribute, the modification date of the file’s parent directory is
set to the server’s clock. If this command changes the file’s Attributes or sets any dates (except modification
date), or Finder Info, the file’s modification date is set to the server’s clock.

If the file is empty (both forks are zero length), the user must have search or write access to all ancestors,
except this file’s parent directory, as well as write access to the parent directory. If either fork is not empty,
the user must have search access to all ancestors except the parent directory, as well as read and write access
to the parent directory.

This command cannot be used to set a file’s name; instead, use FPRename (page 136). This command cannot
be used to set the file’s Parent Directory ID; instead, use FPMoveAndRename (page 115). This command cannot
be used to set a file’s fork lengths; instead, call FPSetForkParms (page 152). This command cannot be used
to set a file’s Node ID.

Table 69 lists the result codes for the FPSetFileParms command.

Functions 151
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Table 69 Result codes for the FPSetFileParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to set a parameter that cannot be set by this command; bitmap
is null.

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Input parameters do not point to an existing file.kFPObjectNotFound

Input parameters point to a directory.kFPObjectTypeErr

Session reference number, Volume ID, or pathname type is unknown; pathname
is invalid or null.

kFPParamErr

Figure 75 shows the request block for the FPSetFileParms command.

Figure 75 Request block for the FPSetFileParms command

Request

FPSetFileParms

0

VolumeID

DirectoryID

PathType

Pathname

FileParameters

Bitmap

0 Add a null byte if necessary
to make FileParameters
begin on an even boundary.

FPSetForkParms
Sets the length of a fork.

152 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Pad
short OForkRefNum
short Bitmap
long ForkLen

Parameters
CommandCode

kFPSetForkParms (31).

Pad
Pad byte.

OForkRefNum
Open fork reference number.

Bitmap
Bitmap describing the parameters to set. Set the bit that corresponds to each desired parameter. This
bitmap is the same as the FileBitmap of the FPGetFileDirParms (page 80) command, but only
the Data Fork Length, Resource Fork Length, Extended Data Fork Length, and Extended Resource
Fork Length parameters can be set. For bit definitions for this bitmap, see File Bitmap (page 164).

ForkLen
New end-of-fork value.

Result
kFPNoErr if no error occurred. See Table 70 (page 153) for the possible result codes.

ReplyBlock
None.

Discussion
The Bitmap and ForkLen parameters are passed to the server, which changes the length of the fork specified
by OForkRefNum. The server returns a kFPBitmapErr result code if the command tries to set the length of
the file’s other fork or if it tries to set any other file parameter.

The server returns a kFPLockErr result code if an attempt is made to truncate the fork in a way that would
eliminate a range or part of a range that is locked by another user.

The fork must be open for writing by the user.

This command cannot set a file’s name; instead, use FPRename (page 136). This command cannot set a file’s
Parent Directory ID; instead, use FPMoveAndRename (page 115). This command cannot set a file’s file number.

Table 70 lists the result codes for the FPSetForkParms command.

Table 70 Result codes for the FPSetForkParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to set a parameter that cannot be set by this command; bitmap
is null.

kFPBitmapErr

No more space exists on the volume.kFPDiskFull

Range lock conflict exists.kFPLockErr

Functions 153
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

ExplanationResult code

Non-AFP error occurred.kFPMiscErr

Session reference number or fork reference number is invalid.kFPParamErr

Volume is ReadOnly.kFPVolLocked

Figure 76 shows the request block for the FPSetForkParms command.

Figure 76 Request block for the FPSetForkParms command

Request

kFPSetForkParms

0

OForkRefNum

ForkLen

Bitmap

FPSetVolParms
Sets a volume’s backup date.

byte CommandCode
byte Pad
short VolumeID
short Bitmap
Date BackupDate

Parameters
CommandCode

kFPSetVolParms (32).

Pad
Pad byte.

VolumeID
Volume ID.

Bitmap
Bitmap describing the parameters to be set. This parameter is the same as the Bitmap parameter for
the FPGetVolParms (page 101) command, but only the Backup Date bit can be set. For bit definitions
for this bitmap, see Volume Bitmap (page 168).

154 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

BackupDate
New backup date.

Result
kFPNoErr if no error occurred. See Table 71 for the possible result codes.

ReplyBlock
None.

Discussion
This command sets a volume’s backup date.

Table 71 lists the result codes for the FPSetVolParms command.

Table 71 Result codes for the FPSetVolParms command

ExplanationResult code

User does not have the access privileges required to use this command.kFPAccessDenied

Attempt was made to set a parameter that cannot be set by this command; bitmap
is null.

kFPBitmapErr

Non-AFP error occurred.kFPMiscErr

Session reference number is unknown.kFPParamErr

Volume is ReadOnly.kFPVolLocked

Figure 77 shows the request block for the FPSetVolParms command.

Figure 77 Request block for the FPSetVolParms command

Request

kFPSetVolParms

0

VolumeID

BackupDate

Bitmap

FPWrite
Writes a block of data to an open fork.

Functions 155
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Flag
short OForkRefNum
long Offset
long ReqCount
ForkData

Parameters
CommandCode

kFPWrite (33).

Flag
Bit 7 is the StartEndFlag bit, and it indicates whether Offset is relative to the beginning or end
of the fork. A value of zero indicates that the start is relative to the beginning of the fork; a value of
1 indicates that the start is relative to the end of the fork.

OForkRefNum
Open fork reference number.

Offset
Byte offset from the beginning or the end of the fork indicating where the write is to begin; a negative
value indicates a byte within the fork relative to the end of the fork.

ReqCount
Number of bytes to be written.

ForkData
Data to be written, which is not a part of the request block. Instead, the data is transmitted to the
server in an intermediate exchange of DSI packets.

Result
kFPNoErr if no error occurred. See Table 72 (page 157) for the possible result codes.

ActualCount
Number of bytes actually written to the fork. This long value is returned by the underlying transport
mechanism and is not a value in the reply block.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block consisting of a long, called
LastWritten, containing the number of the byte just past the last byte written.

Discussion
The server writes data to the open fork, starting at the number of bytes from the beginning or end of the
fork as specified by Offset. The StartEndFlag bit indicates whether the block of data is to be written at
an offset relative to the beginning or the end of the fork. When the offset is relative to the end of the fork,
data can be written without knowing the exact end of the fork, which is useful when multiple writers modify
a fork concurrently. The server returns the number of the byte just past the last byte written.

This command differs from the FPWriteExt (page 157) command in that the FPWriteExt command is
prepared to handle the large values that may be required for writing to files that reside in volumes larger
than 4 GB in size.

If the block of data to be written extends beyond the end of the fork, the fork is extended. If part of the range
is locked by another user, the server returns a kFPLockErr result code and does not write any data to the
fork.

The file’s Modification Date is not changed until the fork is closed.

The fork must be open for writing by the user sending this command.

156 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Lock the range before sending this command. The underlying transport mechanism may force the request
to be broken into multiple smaller requests. If the range is not locked when this command begins execution,
it is possible for another user to lock some or all of the range before this command completes, causing the
write to succeed partially.

Table 72 lists the result codes for the FPWrite command.

Table 72 Result codes for the FPWrite command

ExplanationResult code

Fork is not open for writing by this user.kFPAccessDenied

No space exists on the volume.kFPDiskFull

Some or all of the requested range is locked by another user.kFPLockErr

Non-AFP error occurred.kFPMiscErr

Session reference number or open fork reference number is unknown.kFPParamErr

Figure 78 shows the request and reply blocks for the FPWrite command.

Figure 78 Request and reply blocks for the FPWrite command

Request

kFPWrite

OForkRefNum

Offset

ReqCount

Reply

StartEndFlag
LastWritten

FPWriteExt
Writes a block of data to an open fork.

Functions 157
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

byte CommandCode
byte Flag
short OForkRefNum
long long Offset
long long ReqCount
ForkData

Parameters
CommandCode

kFPWriteExt (61).

Flag
Bit 7 of the Flag parameter is the StartEndFlag bit, and it indicates whether Offset is relative to
the beginning or end of the fork. A value of zero indicates that the start is relative to the beginning
of the fork; a value of 1 indicates that the start is relative to the end of the fork.

OForkRefNum
Open fork reference number.

Offset
Byte offset from the beginning or the end of the fork indicating where the write is to begin; a negative
value indicates a byte within the fork relative to the end of the fork.

ReqCount
Number of bytes to be written.

ForkData
Data to be written, which is not a part of the request block. Instead, the data is transmitted to the
server in an intermediate exchange of DSI packets.

Result
kFPNoErr if no error occurred. See Table 73 (page 159)for the possible result codes.

ActualCount
Number of bytes actually written to the fork. This long long value is returned by the underlying
transport mechanism and is not a value in the reply block.

ReplyBlock
If the result code is kFPNoErr, the server returns a reply block consisting of a long, called
LastWritten, containing the number of the byte just past the last byte written.

Discussion
The server writes data to the open fork, starting at the number of bytes from the beginning or end of the
fork as specified by Offset.

This command differs from the FPWrite (page 155) command in that this command is prepared to handle
the large values that may be required for writing to files that reside in volumes larger than 4 GB in size.

The StartEndFlag bit indicates whether the block of data is to be written at an offset relative to the
beginning or the end of the fork. When the offset is relative to the end of the fork, data can be written without
knowing the exact end of the fork, which is useful when multiple writers modify a fork concurrently. The
server returns the number of the byte just past the last byte written.

If the block of data to be written extends beyond the end of the fork, the fork is extended. If part of the range
is locked by another user, the server returns a kFPLockErr result code and does not write any data to the
fork.

The file’s Modification Date is not changed until the fork is closed.

The fork must be open for writing by the user sending this command.

158 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Lock the range before sending this command. The underlying transport mechanism may force the request
to be broken into multiple smaller requests. If the range is not locked when this command begins execution,
it is possible for another user to lock some or all of the range before this command completes, causing the
write to success partially.

Table 73 lists the result codes for the FPWriteExt command.

Table 73 Result codes for the FPWriteExt command

ExplanationResult code

Fork is not open for writing by this user.kFPAccessDenied

No space exists on the volume.kFPDiskFull

Some or all of the requested range is locked by another user.kFPLockErr

Non-AFP error occurred.kFPMiscErr

Session reference number or open fork reference number is unknown.kFPParamErr

Figure 79 shows the request and reply blocks for the FPWriteExt command.

Functions 159
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Figure 79 Request and reply blocks for the FPWriteExt command

Request

kFPWriteExt

OForkRefNum

Offset

ReqCount

Reply

StartEndFlag

LastWritten

FPZzzzz
Notifies the server that the client is going to sleep.

byte CommandCode
byte Pad
unsigned long Flags

Parameters
CommandCode

kFPZzzzz (122).

Flag
Reserved.

ReplyBlock
None.

160 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
If an AFP sharepoint is mounted when the client goes to sleep (for example, an idle sleep or a demand sleep
such as when the lid of a PowerBook is closed), the client sends the FPZzzzz command. This command
notifies the AFP server that the client is going to sleep and that the server should not send any more packets
to the client. When the client is awakens, it will send AFP packets to the server, which notifies the server that
the client is now awake.

The AFP server should have a setting for the maximum time that a client can sleep — typically 24 hours. If
a client has been asleep longer than the maximum sleep time, the server assumes that the client has been
disconnected and may free client-related resources on the server.

The FPZzzzz command is supported by AFP 2.3 and later over AFP/TCP only.

Figure 80 shows the request block for the FPZzzzz command.

Figure 80 Request block for the FPZzzzz command

Request

kFPZzzzz

Flag

0

Data Types

Access Control List Structure
Structure that describes a file or directory’s access control list (ACL).

struct kauth_acl {
 u_int32_t acl_entrycount;
 u_int32_t = acl_flags;
 struct kauth_ace acl_ace[];
};

Constants
acl_entrycount

Number of acl_ace structures.

acl_flags
See the Core Foundation ACL documentation for definitions.

acl_ace
An acl_ace structure. See the Core Foundation ACL documentation for a description of this structure.

Data Types 161
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
The Access Control List structure is returned by the FPGetACL (page 70) command and set by the
FPSetACL (page 140) command.

Access Rights Bitmap
A 32-bit value whose bits indicate the ability of the directory’s Owner, Group, and Everyone to read, write,
and search a directory.

Discussion
Call FPGetFileDirParms (page 80) to get the Access Rights bitmap.

Figure 81 (page 162) shows the Access Rights bitmap.

Figure 81 Access Rights bitmap

Access Rights

0 0 0 0 0

Write

Read

Search

BlankAccessPrivileges

Owner 0 0 0

0 0 0 0 0
0 0 0 00

UARights
Everyone
Group
Owner

Directory Bitmap
A 16-bit value whose bits are used to get and set directory parameters.

162 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
 kFPAttributeBit = 0x1,
 kFPParentDirIDBit = 0x2,
 kFPCreateDateBit = 0x4,
 kFPModDateBit = 0x8,
 kFPBackupDateBit = 0x10,
 kFPFinderInfoBit = 0x20,
 kFPLongNameBit = 0x40,
 kFPShortNameBit = 0x80,
 kFPNodeIDBit = 0x100,
 kFPOffspringCountBit = 0x0200,
 kFPOwnerIDBit = 0x0400,
 kFPGroupIDBit = 0x0800,
 kFPAccessRightsBit = 0x1000,
 kFPProDOSInfoBit = 0x2000 // AFP version 2.2 and earlier
 kFPUTF8NameBit = 0x2000, // AFP version 3.0 and later
 kFPUnixPrivsBit = 0x8000 // AFP version 3.0 and later
};

Discussion
The Directory bitmap is used when calling FPGetFileDirParms (page 80) to indicate the directory parameters
you want to get. It is also used when calling FPSetDirParms (page 142) and FPSetFileDirParms (page
147) to set directory parameters.

Figure 82 (page 163) describes the Directory bitmap.

Figure 82 Directory bitmap

Directory Bitmap

0

Short Name
Long Name

Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes

Node ID
Offspring Count

Owner ID
Group ID

Access Rights
Unicode Name

UNIX Privileges

Directory Attributes Bitmap
A 16-bit value whose bits provide additional information about a directory.

Data Types 163
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
Use the bits in the Directory Attributes bitmap to inhibit renaming or deleting the directory. Other bits in
the Directory Attributes bitmap indicate whether the directory needs to be backed up, whether the directory
is mounted by a user, whether the directory is invisible or a system directory, and whether the directory is
in a shared area or is a share point. When calling FPSetDirParms (page 142) and FPGetFileDirParms (page
80) to set Directory Attributes, use the Set/Clear bit (bit 15) to indicate whether you are setting or clearing
a directory attribute.

Figure 83 (page 164) describes the Attributes bitmap for a directory.

Figure 83 Directory Attributes bitmap

Directory Attributes

0 0 0 0 0 0

0

RenameInhibit

BackupNeeded

InExpFolder

Mounted

System

IsExpFolder

Invisible

DeleteInhibit

Set/Clear

Extended Attributes Bitmap
Constants that control the behavior when setting extended attributes.

enum {
 kXAttrNoFollow = 0x1,
 kXAttrCreate = 0x2,
 kXAttrReplace = 0x4
};

Constants
kXAttrNoFollow

If set, do not follow symbolic links.

kXAttrCreate
If set, FPSetExtAttr (page 145) fails if the extended attribute already exists.

kXAttrReplace
If set, FPSetExtAttr (page 145) fails if the extended attribute does not exist.

Discussion
Use these constants in the Bitmap parameter of the FPGetExtAttr (page 77), FPSetExtAttr (page 145),
and FPRemoveExtAttr (page 134) commands to get, set, and remove extended attributes.

File Bitmap
A 16-bit value whose bits are used to get and set file parameters.

164 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
 kFPAttributeBit = 0x1,
 kFPParentDirIDBit = 0x2,
 kFPCreateDateBit = 0x4,
 kFPModDateBit = 0x8,
 kFPBackupDateBit = 0x10,
 kFPFinderInfoBit = 0x20,
 kFPLongNameBit = 0x40,
 kFPShortNameBit = 0x80,
 kFPNodeIDBit = 0x100,
 kFPDataForkLenBit = 0x0200,
 kFPRsrcForkLenBit = 0x0400,
 kFPExtDataForkLenBit = 0x0800, // AFP version 3.0 and later
 kFPLaunchLimitBit = 0x1000,
 kFPUTF8NameBit = 0x2000, // AFP version 3.0 and later
 kFPExtRsrcForkLenBit = 0x4000, // AFP version 3.0 and later
 kFPUnixPrivsBit = 0x8000 // AFP version 3.0 and later
};

Discussion
The File bitmap is used when calling FPGetFileDirParms (page 80) to indicate the file parameters you
want to get. It is also used when calling FPSetFileParms (page 150) and FPSetFileDirParms (page 147)
to set file parameters.

Figure 84 (page 165) describes the File bitmap.

Figure 84 File bitmap

File Bitmap

Long Name
Finder Info
Backup Date

Modification Date
Creation Date

Parent Directory ID
Attributes

Node ID
Data Fork Length

Resource Fork Length
Extended Data Fork Length

Launch Limit
Unicode Name

Extended Resource Fork Length
UNIX Privileges

Short Name

File Attributes Bitmap
A 16-bit value whose bits provide additional information about a file.

Data Types 165
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
 kFPInvisibleBit = 0x01,
 kFPMultiUserBit = 0x02,
 kFPSystemBit = 0x04,
 kFPDAlreadyOpenBit = 0x08,
 kFPRAlreadyOpenBit = 0x10,
 kFPWriteInhibitBit = 0x20,
 kFPBackUpNeededBit = 0x40,
 kFPRenameInhibitBit = 0x80,
 kFPDeleteInhibitBit = 0x100,
 kFPCopyProtectBit = 0x400,
 kFPSetClearBit = 0x8000
};

Discussion
Use the bits in the File Attributes bitmap to inhibit writing, renaming or deleting the file. Other bits in the
File Attributes bitmap indicate whether the file needs to be backed up, whether the file can be copied,
whether the file is invisible or a system file, whether the file’s data or resource fork is open, and whether the
file can be opened at the same time by multiple users. When calling FPSetFileParms (page 150) and
FPSetFileDirParms (page 147) to set File Attributes, use the Set/Clear bit (bit 15) to indicate whether you
are setting or clearing a file attribute.

Figure 85 (page 166) describes the Attributes bitmap for a file.

Figure 85 File Attributes bitmap

File Attributes

0 0 0 0 0

RenameInhibit

BackupNeeded

WriteInhibit

RAlreadyOpen

DAlreadyOpen

System

MultiUser

Invisible

DeleteInhibit

CopyProtect

Set/Clear

FPUnixPrivs
A structure the describes UNIX privileges for files and directories that reside on a volume that supports UNIX
privileges.

166 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

struct FPUnixPrivs {
 unsigned long uid;
 unsigned long gid;
 unsigned long permissions;
 unsigned long ua_permissions;
};

Fields
uid

User ID of the file or directory’s owner.

gid
Group ID of the file or directory’s owner.

permissions
Setting of the file or directory’s permission bits.

ua_permissions
User’s access rights to the file or directory. Bit 31 is set if the user is the owner of the file or directory.

Discussion
A FPUnixPrivs structure is returned when you call FPGetFileDirParms (page 80) and specify that you
want to get the UNIX privileges for a file or directory.

Server Flags Bitmap
A 16-bit value that describes server capabilities.

enum {
 kSupportsCopyfile = 0x01,
 kSupportsChgPwd = 0x02,
 kDontAllowSavePwd = 0x04,
 kSupportsSrvrMsg = 0x08,
 kSrvrSig = 0x10,
 kSupportsTCP = 0x20,
 kSupportsSrvrNotify = 0x40,
 kSupportsReconnect = 0x80,
 kSupportsDirServices = 0x100,
 kSupportsUTF8SrvrName = 0x200,
 kSupportsUUIDs = 0x400,
 kSupportsSuperClient = 0x8000
};

Discussion
The Server Flags bitmap is returned by the FPGetSrvrInfo (page 91) command.

Volume Attributes Bitmap
A 16-bit value whose bits describe how a volume is mounted and whether it supports certain AFP features.

Data Types 167
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
 kReadOnly = 0x01,
 kHasVolumePassword = 0x02,
 kSupportsFileIDs = 0x04,
 kSupportsCatSearch = 0x08,
 kSupportsBlankAccessPrivs = 0x10,
 kSupportsUnixPrivs = 0x20,
 kSupportsUTF8Names = 0x40,
 kNoNetworkUserIDs = 0x80,
 kDefaultPrivsFromParent = 0x10,
 kNoExchangeFiles = 0x20,
 kSupportsExtAttrs = 0x40,
 kSupportsACLs = 0x80
};

Discussion
Figure 86 describes the Attributes bitmap for a volume.

Figure 86 Volume Attributes bitmap

Volume Attributes

0 0 00

Can Disable Traditional ID Mapping

Supports Unicode Names

Supports UNIX Privileges

Supports Blank Access Privileges

Supports Catalog Search

Supports FileIDs

Has a Password

Read Only

Default Privileges From Parent

Does not support File Exchange

Supports Extended Attributes

Supports ACLs

Volume Bitmap
A 16-bit value whose bits are used to get and set volume parameters.

168 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
 kFPBadVolPre222Bitmap = 0xFe00,
 kFPBadVolBitmap = 0xF000,
 kFPVolAttributeBit = 0x1,
 kFPVolSignatureBit = 0x2,
 kFPVolCreateDateBit = 0x4,
 kFPVolModDateBit = 0x8,
 kFPVolBackupDateBit = 0x10,
 kFPVolIDBit = 0x20,
 kFPVolBytesFreeBit = 0x40,
 kFPVolBytesTotalBit = 0x80,
 kFPVolNameBit = 0x100,
 kFPVolExtBytesFreeBit = 0x200,
 kFPVolExtBytesTotalBit = 0x400,
 kFPVolBlockSizeBit = 0x800
};

Discussion
The Volume bitmap is used when calling FPGetVolParms (page 101) to indicate the volume parameters you
want to get. It is also used when calling FPSetVolParms (page 154) to set a volume’s backup date, which is
the only Volume parameter that an AFP client can set. Figure 87 (page 169) describes the Volume bitmap.

Figure 87 Volume bitmap

Volume Bitmap

0 0 0 0

Bytes Total

Bytes Free

Volume ID

Backup Date

Modification Date

Creation Date

Signature

Attributes

Volume Name

Extended Bytes Free

Extended Bytes Total

Block Allocation Size

Constants

Access Control List Bitmap
Bitmap for getting and setting access control lists (ACLs).

Constants 169
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
kFileSec_UUID = 0x01,
kFileSec_GRPUUID = 0x02,
kFileSec_ACL = 0x04,
kFileSec_REMOVEACL = 0x08,
kFileSec_Inherit = 0x10
};

Constants
kFileSec_UUID

Set this bit to get or set a UUID.

kFileSec_GRPUUID
Set this bit to get or set a Group UUID.

kFileSec_ACL
Set this bit to get or set an ACL.

kFileSec_REMOVEACL
Set this bit toremove an ACL. This bit is not valid when used with the FPGetACL (page 70).

kFileSec_Inherit
Set this bit any access control entries (ACEs) that have already been inherited. This constant is used
only with the FPSetACL (page 140) command.

Discussion
Use the Access Control List bitmap with the FPGetACL (page 70) and FPSetACL (page 140) commands to
control the behavior of those commands.

AFP Version Strings
Strings that identify different AFP versions.

"AFPVersion 2.1"
"AFP2.2"
"AFP2.3"
"AFPX02"
"AFP3.1"
"AFP3.2"

Constants
AFPVersion 2.1

AFP version 2.1.

AFP2.2
AFP version 2.2.

AFP2.3
AFP version 2.3.

AFPX02
AFP version 3.0.

AFP3.1
AFP version 3.1.

AFP3.2
AFP version 3.2.

170 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

Discussion
AFP Version strings are returned by the FPGetSrvrInfo (page 91) command. AFP clients sent an AFP Version
string as a parameter to the FPLogin (page 105) and FPLoginExt (page 109) commands.

AFP UAM Strings
Strings that identify different UAM versions.

"No User Authent"
"Cleartxt Passwrd"
"Randnum Exchange"
"2-Way Randnum"
"DHCAST128"
"DHX2"
"Client Krb v2"
"Recon1"

Constants
No User Authent

UAM that does not require user authentication.

Cleartxt Passwrd
Cleartext Password UAM.

Randnum Exchange
Random Number Exchange UAM.

2-Way Randnum
Two-Way Random Number Exchange UAM.

DHCAST128
Diffie-Hellman Exchange UAM to be used during the log process.

DHX2
Causes the Diffie-Hellman Exchange 2 UAM.

Client Krb v2
Kerberos UAM.

Recon1
Reconnect UAM.

Discussion
AFP UAM strings are returned by the FPGetSrvrInfo (page 91) command. AFP clients sent an AFP UAM
string as a parameter to the FPLogin (page 105) and FPLoginExt (page 109) commands.

FPGetSessionToken Types
Values for the Type parameter of the FPGetSessionToken command.

Constants 171
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
kLoginWithoutID = 0,
kLoginWithID = 1,
kReconnWithID = 2,
kLoginWithTimeAndID = 3,
kReconnWithTimeAndID = 4,
kRecon1Login = 5,
kRecon1ReconnectLogin = 6,
kRecon1Refresh = 7, kGetKerberosSessionKey = 8
};

Constants
kLoginWithoutID

The FPGetSessionToken parameter block does not contain an ID parameter; specified by AFP clients
that support a version of AFP prior to AFP 3.1.

kLoginWithID
Deprecated.

kReconnWithID
Deprecated.

kLoginWithTimeAndID
The FPGetSessionTokenparameter block contains an ID and a time stamp parameter. The command
is sent to indicate that the client wants its old session to be discarded.

kReconnWithTimeAndID
The FPGetSessionTokenparameter block contains an ID and a time stamp parameter. The command
is sent to indicate that the client has successfully reconnected and wants the session to be updated
with the new value of ID.

kRecon1Login
Used after logging in to get a credential that can be used to reconnect using the Reconnect UAM.
Specifying kRecon1Login tells the server to destroy any old sessions that may be associated with
the ID parameter to the FPGetSessionToken command.

kRecon1ReconnectLogin
Used to get a new reconnect token after reconnecting using the Reconnect UAM.

kRecon1RefreshToken
Used to get a new credential when the current credential is about to expire.

kGetKerberosSessionKey
Used to get a Kerberos v5 session key.

Discussion
The value of the Type parameter determines the behavior of the server when it receives
theFPGetSessionToken (page 89) command.

FPMapID Constants
Values used in the Subfunction parameter of the FPMapID command.

172 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

enum {
kUserIDToName = 1,
kGroupIDToName = 2,
kUserIDToUTF8Name = 3,
kGroupIDToUTF8Name = 4,
kUserUUIDToUTF8Name = 5,
kGroupUUIDToUTF8Name = 6
};

Constants
kUserIDToName

Causes FPMapID to map the specified User ID to its respective Macintosh Roman user name.

kGroupIDToName
Causes FPMapID to map the specified Group ID to its respective Macintosh Roman group name.

kUserIDToUTF8Name
Causes FPMapID to map the specified User ID to its respective user name in UTF-8 encoding.

kGroupIDToUTF8Name
Causes FPMapID to map the specified Group ID to its respective group name in UTF-8 encoding.

kUserUUIDToUTF8Name
Causes FPMapID to map the specified User UUID to its respective user name in UTF-8 encoding.

kGroupUUIDToUTF8Name
Causes FPMapID to map the specified Group UUID to its respective group name in UTF-8 encoding.

Discussion
These constants are used with the FPMapID command to indicate the way in which mapping is to occur.

FPMapName Constants
Values used in the Subfunction parameter of the FPMapID command.

enum {
kNameToUserID = 1,
kNameToGroupID = 2,
kUTF8NameToUserID = 3,
kUTF8NameToGroupID = 4,
kUTF8NameToUserUUID = 5,
kUTF8NameToGroupUUID = 6
};

Constants
kNameToUserID

Causes FPMapName to map the specified Macintosh Roman user name to its respective User ID.

kNameToGroupID
Causes FPMapName to map the specified Macintosh Roman Group name to its respective Group ID.

kUTF8NameToUserID
Causes FPMapName to map the specified UTF-8-encoded user name to its respective User ID.

kUTF8NameToGroupID
Causes FPMapName to map the specified UTF-8-encoded group name to its respective Group ID.

kUTF8NameToUserUUID
Causes FPMapName to map the specified UTF-8-encoded user name to its respective user UUID.

Constants 173
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

kUTF8NameToGroupUUID
Causes FPMapName to map the specified UTF-8-encoded user name to its respective Group UUID.

Discussion
These constants are used with the FPMapName command to indicate the way in which mapping is to occur.

Path Type Constants
Constants indicating the type of names in a Pathname parameter

enum {
kFPShortName = 1,
kFPLongName = 2,
kFPUTF8Name = 3
};

Constants
kFPShortName

Indicates that a Pathname parameter contains Short Names.

kFPLongName
Indicates that a Pathname parameter contains Long Names.

kFPUTF8Name
Indicates that a Pathname parameter contains an AFPName, which consists of a four-byte text
encoding hint followed a two-byte length, followed by a UTF-8– encoded pathname.

Discussion
These constants are used in the PathType parameter for many AFP commands to specify the type of names
that appear in an associated Pathname parameter.

File Creation Constants
Constants used when creating files.

enum {
kFPSoftCreate = 0,
kFPHardCreate = 0x80
};

Constants
kFPSoftCreate

Indicates soft creation.

kFPLongCreate
Indicates indicates hard creation.

Discussion
These constants are used in the Flag parameter for the FPCreateFile (page 45) command.

ACL Access Rights
Access rights bit definitions.

174 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

 #define KAUTH_VNDOE_READ_DATA (1<<1)
 #define KAUTH_VNODE_LIST_DIRECTORY KAUTH_VNODE_READ_DATA
 #define KAUTH_VNODE_WRITE_DATA (1<<2)
 #define KAUTH_VNODE_ADD_FILE KAUTH_VNODE_WRITE_DATA
 #define KAUTH_VNODE_EXECUTE (1<<3)
 #define KAUTH_VNODE_SEARCH KAUTH_VNODE_EXECUTE
 #define KAUTH_VNODE_DELETE (1<<4)
 #define KAUTH_VNODE_APPEND_DATA (1<<5)
 #define KAUTH_VNODE_ADD_SUBDIRECTORY KAUTH_VNODE_APPEND_DATA
 #define KAUTH_VNODE_DELETE_CHILD (1<<6)
 #define KAUTH_VNODE_READ_ATTRIBUTES (1<<7)
 #define KAUTH_VNODE_WRITE_ATTRIBUTES (1<<8)
 #define KAUTH_VNODE_READ_EXTATTRIBUTES (1<<9)
 #define KAUTH_VNODE_WRITE_EXTATTRIBUTES (1<<10)
 #define KAUTH_VNODE_READ_SECURITY (1<<11)
 #define KAUTH_VNODE_WRITE_SECURITY (1<<12)
 #define KAUTH_VNODE_CHANGE_OWNER (1<<13)
 #define KAUTH_VNODE_SYNCHRONIZE (1<<20)
 #define KAUTH_VNODE_GENERIC_ALL (1<<21)
 #define KAUTH_VNODE_GENERIC_EXECUTE (1<<22)
 #define KAUTH_VNODE_GENERIC_WRITE (1<<23)
 #define KAUTH_VNODE_GENERIC_READ (1<<24)

Constants
KAUTH_VNODE_READ_DATA

For a file, the right to read a file’s data; for a directory, the right to list the contents of a directory.

KAUTH_VNODE_LIST_DIRECTORY
For a directory, the same as KAUTH_VNODE_LIST_DIRECTORY, which is the right to list the contents
of a directory.

KAUTH_VNODE_WRITE_DATA
For a file, the right to write to a file; for a directory, the right to create a file in a directory.

KAUTH_VNODE_ADD_FILE
For a file, the same as KAUTH_VNODE_WRITE_DATA; the right to write to a file.

KAUTH_VNODE_EXECUTE
Right to execute a program.

KAUTH_VNODE_SEARCH
Same as KAUTH_VNODE_EXECUTE.

KAUTH_VNODE_DELETE
Right to delete a file.

KAUTH_VNODE_APPEND_DATA
For a file, the right to append data to a file; for a directory, the right to create a subdirectory in a
directory.

KAUTH_VNODE_ADD_SUBDIRECTORY
For a directory, the same as kAUTH_VNODE_APPEND_DATA, which is the right to create a subdirectory
in a directory.

KAUTH_VNODE_DELETE_CHILD
Right to delete a directory and all the files it contains.

KAUTH_VNODE_READ_ATTRIBUTES
Right to read a file’s hidden attributes, such as hidden, read-only, system, and archive.

KAUTH_VNODE_WRITE_ATTRIBUTES
Right to write a file’s attributes, such as hidden, read-only, system, and archive.

Constants 175
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

KAUTH_VNODE_READ_EXTATTRIBUTES
Right to read a file or directory’s extended attributes.

KAUTH_VNODE_WRITE_EXTATTRIBUTES
Right to write extended attributes.

KAUTH_VNODE_READ_SECURITY
Right to get a file or directory’s access rights.

KAUTH_VNODE_WRITE_SECURITY
Right to set a file or directory’s access rights.

KAUTH_VNODE_CHANGE_OWNER
Right to change the owner of a file or directory.

KAUTH_VNODE_SYNCHRONIZE
Right to block until the file or directory is put in the signaled state; provided for Windows
interoperability.

KAUTH_VNODE_GENERIC_ALL
Windows NT right that includes all rights specified by KAUTH_VNODE_GENERIC_EXECUTE,
KAUTH_VNODE_GENERIC_WRITE, and KAUTH_VNODE_GENERIC_READ.

KAUTH_VNODE_GENERIC_EXECUTE
Windows NT right that in Windows 2000 became the right to read attributes, read permissions, traverse
folders, and execute files.

KAUTH_VNODE_GENERIC_WRITE
Windows NT right that in Windows 2000 became right to read access rights, create a subdirectory in
a directory, write data in a file, create files in a directory, append data to a file, write attributes, and
write extended attributes.

KAUTH_VNODE_GENERIC_READ
Windows NT right that in Windows 2000 became right to list directories, read file data, read attributes,
read extended attributes, and read access rights.

Discussion
These definitions are made in kauth.h. Use these definitions to specify access rights when calling
FPAccess (page 11), to parse the access rights returned by FPGetACL (page 70), and to set access rights
when calling FPSetExtAttr (page 145).

Result Codes

The result codes specific to the Apple Filing Protocol are listed in the table below.

DescriptionValueResult Code

ASP session closed.-1072kASPSessClosed

User does not have the access privileges required to use the command.-5000kFPAccessDenied

Authentication is not yet complete.-5001kFPAuthContinue

Specified UAM is unknown-5002kFPBadUAM

Server does not support the specified AFP version.-5003kFPBadVersNum

176 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DescriptionValueResult Code

Attempt was made to get or set a parameter that cannot be obtained
or set with this command, or a required bitmap is null

-5004kFPBitmapErr

Attempt was made to move a directory into one of its descendent
directories.

-5005kFPCantMove

Specified fork cannot be opened because of a deny modes conflict.-5006kFPDenyConflict

Directory is not empty.-5007kFPDirNotEmpty

No more space exists on the volume-5008kFPDiskFull

No more matches or end of fork reached.-5009kFPEOFErr

When attempting a hard create, the file already exists and is open.-5010kFPFileBusy

Volume is flat and does not support directories.-5011kFPFlatVol

Specified APPL mapping, comment, or icon was not found in the
Desktop database; specified ID is unknown.

-5012kFPItemNotFound

Some or all of the requested range is locked by another user; a lock
range conflict exists.

-5013kFPLockErr

Non-AFP error occurred.-5014kFPMiscErr

Server’s maximum lock count has been reached.-5015kFPNoMoreLocks

Server is not responding.-5016kFPNoServer

File or directory already exists.-5017kFPObjectExists

Input parameters do not point to an existing directory, file, or volume.-5018kFPObjectNotFound

Session reference number, Desktop database reference number, open
fork reference number, Volume ID, Directory ID, File ID, Group ID, or
subfunction is unknown; byte range starts before byte zero; pathname
is invalid; pathname type is unknown; user name is null, exceeds the
UAM’s user name length limit, or does not exist, MaxReplySize is too
small to hold a single offspring structure, ThisUser bit is not set,
authentication failed for an undisclosed reason, specified user is
unknown or the account has been disabled due to too many login
attempts; ReqCount or Offset is negative; NewLineMask is invalid.

-5019kFPParamErr

Attempt to unlock a range that is locked by another user or that is not
locked at all.

-5020kFPRangeNotLocked

User tried to lock some or all of a range that the user has already locked.-5021kFPRangeOverlap

Session is closed.-5022kFPSessClosed

UAM failed (the specified old password doesn’t match); no user is
logged in yet for the specified session; authentication failed; password
is incorrect.

-5023kFPUserNotAuth

Result Codes 177
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DescriptionValueResult Code

Server does not support this command.-5024kFPCallNotSupported

Input parameters point to the wrong type of object.-5025kFPObjectTypeErr

Server cannot open another fork.-5026kFPTooManyFilesOpen

Server is shutting down.-5027kFPServerGoingDown

Attempt was made to rename a volume or root directory.-5028kFPCantRename

Input parameters do not point to an existing directory.-5029kFPDirNotFound

New icon’s size is different from the size of the existing icon.-5030kFPIconTypeError

Volume is Read Only.-5031kFPVolLocked

File or directory is marked DeleteInhibit; directory being moved,
renamed, or moved and renamed is marked RenameInhibit; file being
moved and renamed is marked RenameInhibit; attempt was made to
open a file for writing that is marked WriteInhibit; attempt was made
to rename a file or directory that is marked RenameInhibit.

-5032kFPObjectLocked

Directory contains a share point.-5033kFPContainsSharedErr

File ID was not found. (No file thread exists.)-5034kFPIDNotFound

File already has a File ID.-5035kFPIDExists

Wrong volume.-5036kFPDiffVolErr

Catalog has changed.-5037kFPCatalogChanged

Two objects that should be different are the same object.-5038kFPSameObjectErr

File ID is not valid.-5039kFPBadIDErr

User attempted to change his or her password to the same password
that is currently set.

-5040kFPPwdSameErr

User password is shorter than the server’s minimum password length,
or user attempted to change password to a password that is shorter
than the server’s minimum password length.

-5041kFPPwdTooShortErr

User’s password has expired.-5042kFPPwdExpiredErr

Directory being moved contains a share point and is being moved into
a directory that is shared or is the descendent of a directory that is
shared.

-5043kFPInsideSharedErr

Shared directory is being moved into the Trash; a directory is being
moved to the trash and it contains a shared folder.

-5044kFPInsideTrashErr

User’s password needs to be changed.-5045kFPPwdNeedsChangeErr

178 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

DescriptionValueResult Code

New password does not conform to the server’s password policy.-5046kFPPwdPolicyErr

Disk quota exceeded.-5047kFPDiskQuotaExceeded

Result Codes 179
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

180 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Apple Filing Protocol Reference

This table describes the changes to Apple Filing Protocol Reference.

NotesDate

Updated the result code table.2006-05-23

First publication of this content as a separate document.2006-04-04

181
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

182
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Numerals

2-Way Randnum constant 171

A

Access Control List Bitmap 169
Access Control List Structure 161
Access Rights Bitmap 162
ACL Access Rights 174
acl_ace constant 161
acl_entrycount constant 161
acl_flags constant 161
AFP UAM Strings 171
AFP Version Strings 170
AFP2.2 constant 170
AFP2.3 constant 170
AFP3.1 constant 170
AFP3.2 constant 170
AFPVersion 2.1 constant 170
AFPX02 constant 170

C

Cleartxt Passwrd constant 171
Client Krb v2 constant 171

D

DHCAST128 constant 171
DHX2 constant 171
Directory Attributes Bitmap 163
Directory Bitmap 162

E

Extended Attributes Bitmap 164

F

File Attributes Bitmap 165
File Bitmap 164
File Creation Constants 174
FPAccess function 11
FPAddAPPL function 13
FPAddComment function 16
FPAddIcon function 17
FPByteRangeLock function 19
FPByteRangeLockExt function 21
FPCatSearch function 24
FPCatSearchExt function 29
FPChangePassword function 35
FPCloseDir function 37
FPCloseDT function 38
FPCloseFork function 39
FPCloseVol function 40
FPCopyFile function 40
FPCreateDir function 43
FPCreateFile function 45
FPCreateID function 47
FPDelete function 49
FPDeleteID function 50
FPDisconnectOldSession function 52
FPEnumerate function 53
FPEnumerateExt function 57
FPEnumerateExt2 function 61
FPExchangeFiles function 65
FPFlush function 68
FPFlushFork function 69
FPGetACL function 70
FPGetAPPL function 73
FPGetAuthMethods function 74
FPGetComment function 75
FPGetExtAttr function 77
FPGetFileDirParms function 80

183
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Index

FPGetForkParms function 84
FPGetIcon function 85
FPGetIconInfo function 87
FPGetSessionToken function 89
FPGetSessionToken Types 171
FPGetSrvrInfo function 91
FPGetSrvrMsg function 96
FPGetSrvrParms function 98
FPGetUserInfo function 100
FPGetVolParms function 101
FPListExtAttrs function 103
FPLogin function 105
FPLoginCont function 108
FPLoginExt function 109
FPLogout function 112
FPMapID Constants 172
FPMapID function 113
FPMapName Constants 173
FPMapName function 114
FPMoveAndRename function 115
FPOpenDir function 118
FPOpenDT function 120
FPOpenFork function 121
FPOpenVol function 124
FPRead function 126
FPReadExt function 128
FPRemoveAPPL function 130
FPRemoveComment function 132
FPRemoveExtAttr function 134
FPRename function 136
FPResolveID function 138
FPSetACL function 140
FPSetDirParms function 142
FPSetExtAttr function 145
FPSetFileDirParms function 147
FPSetFileParms function 150
FPSetForkParms function 152
FPSetVolParms function 154
FPUnixPrivs structure 166
FPWrite function 155
FPWriteExt function 157
FPZzzzz function 160

K

kASPSessClosed constant 176
KAUTH_VNODE_ADD_FILE constant 175
KAUTH_VNODE_ADD_SUBDIRECTORY constant 175
KAUTH_VNODE_APPEND_DATA constant 175
KAUTH_VNODE_CHANGE_OWNER constant 176
KAUTH_VNODE_DELETE constant 175
KAUTH_VNODE_DELETE_CHILD constant 175

KAUTH_VNODE_EXECUTE constant 175
KAUTH_VNODE_GENERIC_ALL constant 176
KAUTH_VNODE_GENERIC_EXECUTE constant 176
KAUTH_VNODE_GENERIC_READ constant 176
KAUTH_VNODE_GENERIC_WRITE constant 176
KAUTH_VNODE_LIST_DIRECTORY constant 175
KAUTH_VNODE_READ_ATTRIBUTES constant 175
KAUTH_VNODE_READ_DATA constant 175
KAUTH_VNODE_READ_EXTATTRIBUTES constant 176
KAUTH_VNODE_READ_SECURITY constant 176
KAUTH_VNODE_SEARCH constant 175
KAUTH_VNODE_SYNCHRONIZE constant 176
KAUTH_VNODE_WRITE_ATTRIBUTES constant 175
KAUTH_VNODE_WRITE_DATA constant 175
KAUTH_VNODE_WRITE_EXTATTRIBUTES constant 176
KAUTH_VNODE_WRITE_SECURITY constant 176
kFileSec_ACL constant 170
kFileSec_GRPUUID constant 170
kFileSec_Inherit constant 170
kFileSec_REMOVEACL constant 170
kFileSec_UUID constant 170
kFPAccessDenied constant 176
kFPAuthContinue constant 176
kFPBadIDErr constant 178
kFPBadUAM constant 176
kFPBadVersNum constant 176
kFPBitmapErr constant 177
kFPCallNotSupported constant 178
kFPCantMove constant 177
kFPCantRename constant 178
kFPCatalogChanged constant 178
kFPContainsSharedErr constant 178
kFPDenyConflict constant 177
kFPDiffVolErr constant 178
kFPDirNotEmpty constant 177
kFPDirNotFound constant 178
kFPDiskFull constant 177
kFPDiskQuotaExceeded constant 179
kFPEOFErr constant 177
kFPFileBusy constant 177
kFPFlatVol constant 177
kFPIconTypeError constant 178
kFPIDExists constant 178
kFPIDNotFound constant 178
kFPInsideSharedErr constant 178
kFPInsideTrashErr constant 178
kFPItemNotFound constant 177
kFPLockErr constant 177
kFPLongCreate constant 174
kFPLongName constant 174
kFPMiscErr constant 177
kFPNoMoreLocks constant 177
kFPNoServer constant 177

184
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kFPObjectExists constant 177
kFPObjectLocked constant 178
kFPObjectNotFound constant 177
kFPObjectTypeErr constant 178
kFPParamErr constant 177
kFPPwdExpiredErr constant 178
kFPPwdNeedsChangeErr constant 178
kFPPwdPolicyErr constant 179
kFPPwdSameErr constant 178
kFPPwdTooShortErr constant 178
kFPRangeNotLocked constant 177
kFPRangeOverlap constant 177
kFPSameObjectErr constant 178
kFPServerGoingDown constant 178
kFPSessClosed constant 177
kFPShortName constant 174
kFPSoftCreate constant 174
kFPTooManyFilesOpen constant 178
kFPUserNotAuth constant 177
kFPUTF8Name constant 174
kFPVolLocked constant 178
kGetKerberosSessionKey constant 172
kGroupIDToName constant 173
kGroupIDToUTF8Name constant 173
kGroupUUIDToUTF8Name constant 173
kLoginWithID constant 172
kLoginWithoutID constant 172
kLoginWithTimeAndID constant 172
kNameToGroupID constant 173
kNameToUserID constant 173
kRecon1Login constant 172
kRecon1ReconnectLogin constant 172
kRecon1RefreshToken constant 172
kReconnWithID constant 172
kReconnWithTimeAndID constant 172
kUserIDToName constant 173
kUserIDToUTF8Name constant 173
kUserUUIDToUTF8Name constant 173
kUTF8NameToGroupID constant 173
kUTF8NameToGroupUUID constant 174
kUTF8NameToUserID constant 173
kUTF8NameToUserUUID constant 173
kXAttrCreate constant 164
kXAttrNoFollow constant 164
kXAttrReplace constant 164

N

No User Authent constant 171

P

Path Type Constants 174

R

Randnum Exchange constant 171
Recon1 constant 171

S

Server Flags Bitmap 167

V

Volume Attributes Bitmap 167
Volume Bitmap 168

185
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Apple Filing Protocol Reference
	Contents
	Figures and Tables
	Apple Filing Protocol Reference
	Overview
	Functions
	FPAccess
	FPAddAPPL
	FPAddComment
	FPAddIcon
	FPByteRangeLock
	FPByteRangeLockExt
	FPCatSearch
	FPCatSearchExt
	FPChangePassword
	FPCloseDir
	FPCloseDT
	FPCloseFork
	FPCloseVol
	FPCopyFile
	FPCreateDir
	FPCreateFile
	FPCreateID
	FPDelete
	FPDeleteID
	FPDisconnectOldSession
	FPEnumerate
	FPEnumerateExt
	FPEnumerateExt2
	FPExchangeFiles
	FPFlush
	FPFlushFork
	FPGetACL
	FPGetAPPL
	FPGetAuthMethods
	FPGetComment
	FPGetExtAttr
	FPGetFileDirParms
	FPGetForkParms
	FPGetIcon
	FPGetIconInfo
	FPGetSessionToken
	FPGetSrvrInfo
	FPGetSrvrMsg
	FPGetSrvrParms
	FPGetUserInfo
	FPGetVolParms
	FPListExtAttrs
	FPLogin
	FPLoginCont
	FPLoginExt
	FPLogout
	FPMapID
	FPMapName
	FPMoveAndRename
	FPOpenDir
	FPOpenDT
	FPOpenFork
	FPOpenVol
	FPRead
	FPReadExt
	FPRemoveAPPL
	FPRemoveComment
	FPRemoveExtAttr
	FPRename
	FPResolveID
	FPSetACL
	FPSetDirParms
	FPSetExtAttr
	FPSetFileDirParms
	FPSetFileParms
	FPSetForkParms
	FPSetVolParms
	FPWrite
	FPWriteExt
	FPZzzzz

	Data Types
	Access Control List Structure
	Access Rights Bitmap
	Directory Bitmap
	Directory Attributes Bitmap
	Extended Attributes Bitmap
	File Bitmap
	File Attributes Bitmap
	FPUnixPrivs
	Server Flags Bitmap
	Volume Attributes Bitmap
	Volume Bitmap

	Constants
	Access Control List Bitmap
	AFP Version Strings
	AFP UAM Strings
	FPGetSessionToken Types
	FPMapID Constants
	FPMapName Constants
	Path Type Constants
	File Creation Constants
	ACL Access Rights

	Result Codes

	Revision History
	Index
	Numerals
	A
	C
	D
	E
	F
	K
	N
	P
	R
	S
	V

