
CFNetwork Reference Collection
Networking

2008-07-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk, Bonjour,
Keychain, Mac, and Mac OS are trademarks of
Apple Inc., registered in the United States and
other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 5

Part I Opaque Types 7

Chapter 1 CFFTPStream Reference 9

Overview 9
Functions 9
Constants 11

Chapter 2 CFHost Reference 17

Overview 17
Functions by Task 17
Functions 18
Callbacks 26
Data Types 27
Constants 28

Chapter 3 CFHTTPAuthentication Reference 31

Overview 31
Functions by Task 31
Functions 32
Data Types 37
Constants 38

Chapter 4 CFHTTPMessage Reference 41

Overview 41
Functions by Task 41
Functions 43
Data Types 55
Constants 55

Chapter 5 CFNetDiagnostics Reference 57

Overview 57
Functions by Task 57
Functions 58
Data Types 61

3
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

Constants 62

Chapter 6 CFNetServices Reference 65

Overview 65
Functions by Task 65
Functions 68
Callbacks 94
Data Types 97
Constants 99

Chapter 7 CFStream Socket Additions 103

Overview 103
Functions by Task 103
Functions 104
Constants 107

Part II Other References 119

Chapter 8 CFNetwork Error Codes Reference 121

Overview 121
Constants 121

Chapter 9 CFProxySupport Reference 129

Overview 129
Functions 129
Callbacks 132
Constants 133

Document Revision History 135

Index 137

4
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/CoreFoundation.framework

Header file directories /System/Library/Frameworks/CoreFoundation.framework/Headers

Declared in CFFTPStream.h
CFHTTPAuthentication.h
CFHTTPMessage.h
CFHost.h
CFNetDiagnostics.h
CFNetServices.h
CFNetworkErrors.h
CFProxySupport.h
CFSocketStream.h
CFStream.h

CFNetwork is a framework in the Core Services framework that provides a library of abstractions for network
protocols. These abstractions can be used to perform a variety of network tasks, such as working with BSD
sockets, creating encrypted connections using SSL or TLS, resolving DNS hosts, working with HTTP and FTP
servers, and managing Bonjour services.

5
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

6
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

7
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

PART I

Opaque Types

8
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFFTPStream.h

Companion guide CFNetwork Programming Guide

Overview

This document describes the CFStream functions for working with FTP connections. It is part of the CFFTP
API.

Functions

CFFTPCreateParsedResourceListing
Parses an FTP listing to a dictionary.

CFIndex CFFTPCreateParsedResourceListing (
 CFAllocatorRef alloc,
 const UInt8 *buffer,
 CFIndex bufferLength,
 CFDictionaryRef *parsed
);

Parameters
alloc

The allocator to use to allocate memory for the dictionary. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

buffer
A pointer to a buffer holding zero or more lines of resource listing.

bufferLength
The length in bytes of the buffer pointed to by buffer.

parsed
Upon return, contains a dictionary containing the parsed resource information. If parsing fails, a NULL
pointer is returned.

Return Value
The number of bytes parsed, 0 if no bytes were available for parsing, or -1 if parsing failed.

Overview 9
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Discussion
This function examines the contents of buffer as an FTP directory listing and parses into a CFDictionary the
information for a single file or folder. The CFDictionary is returned in the parsed parameter, and the number
of bytes used from buffer is returned.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

CFReadStreamCreateWithFTPURL
Creates an FTP read stream.

CFReadStreamRef CFReadStreamCreateWithFTPURL (
 CFAllocatorRef alloc,
 CFURLRef ftpURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ftpURL
A pointer to a CFURL structure for the URL to be downloaded that can be created by calling any of
the CFURLCreate functions, such as CFURLCreateWithString.

Return Value
A new read stream, or NULL if the call failed. Ownership follows the Create Rule.

Discussion
This function creates an FTP read stream for downloading data from an FTP URL. If the ftpURL parameter is
created with the user name and password as part of the URL (such as
ftp://username:password@ftp.example.com) then the user name and password will automatically be
set in the CFReadStream. Otherwise, call CFReadStreamSetProperty to set the steam’s properties, such
as kCFStreamPropertyFTPUserName and kCFStreamPropertyFTPPassword to associate a user name
and password with the stream that are used to log in when the stream is opened. See "Constants" (page 11)
for a description of all FTP stream properties.

To initiate a connection with the FTP server, call CFReadStreamOpen. To read the FTP stream, call
CFReadStreamRead. If the URL refers to a directory, the stream provides the listing results sent by the server.
If the URL refers to a file, the stream provides the data in that file.

To close a connection with the FTP server, call CFReadStreamClose.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

10 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

CFWriteStreamCreateWithFTPURL
Creates an FTP write stream.

CFWriteStreamRef CFWriteStreamCreateWithFTPURL (
 CFAllocatorRef alloc,
 CFURLRef ftpURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ftpURL
A pointer to a CFURL structure for the URL to be uploaded created by calling any of the CFURLCreate
functions, such as CFURLCreateWithString.

Return Value
A new write stream, or NULL if the call failed. Ownership follows the Create Rule.

Discussion
This function creates an FTP write stream for uploading data to an FTP URL. If the ftpURL parameter is created
with the user name and password as part of the URL (such as
ftp://username:password@ftp.example.com) then the user name and password will automatically be
set in the CFWriteStream. Call CFWriteStreamSetProperty to set the steam’s properties, such as
kCFStreamPropertyFTPUserName and kCFStreamPropertyFTPPassword to associate a user name and
password with the stream that are used to log in when the stream is opened. See "Constants" (page 11) for
a description of all FTP stream properties.

After creating the write stream, you can call CFWriteStreamGetStatus at any time to check the status of
the stream.

To initiate a connection with the FTP server, call CFWriteStreamOpen. If the URL specifies a directory, the
open is immediately followed by the event kCFStreamEventEndEncountered (and the stream passes to
the state kCFStreamStatusAtEnd). Once the stream reaches this state, the directory has been created.
Intermediary directories are not created.

To write to the FTP stream, call CFWriteStreamWrite.

To close a connection with the FTP server, call CFWriteStreamClose.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

Constants

CFStream FTP Property Constants
Constants for setting and copying CFStream FTP properties.

Constants 11
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

const CFStringRef kCFStreamPropertyFTPUserName;
const CFStringRef kCFStreamPropertyFTPPassword;
const CFStringRef kCFStreamPropertyFTPUsePassiveMode;
const CFStringRef kCFStreamPropertyFTPResourceSize;
const CFStringRef kCFStreamPropertyFTPFetchResourceInfo;
const CFStringRef kCFStreamPropertyFTPFileTransferOffset;
const CFStringRef kCFStreamPropertyFTPAttemptPersistentConnection;
const CFStringRef kCFStreamPropertyFTPProxy;
const CFStringRef kCFStreamPropertyFTPProxyHost;
extern const CFStringRef kCFStreamPropertyFTPProxyPort;
extern const CFStringRef kCFStreamPropertyFTPProxyUser;
extern const CFStringRef kCFStreamPropertyFTPProxyPassword;

Constants
kCFStreamPropertyFTPUserName

FTP User Name stream property key for set and copy operations. A value of type CFString for storing
the login user name. Don’t set this property when anonymous FTP is desired.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPPassword
FTP Password stream property key for set and copy operations. A value of type CFString for storing
the login password. Don’t set this property when anonymous FTP is desired.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPUsePassiveMode
FTP Passive Mode stream property key for set and copy operations. Set this property to
kCFBooleanTrue to enable passive mode; set this property to kCFBooleanFalse to disable passive
mode.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPResourceSize
FTP Resource Size read stream property key copy operations. This property stores a CFNumber of
type kCFNumberLongLongType representing the size of a resource in bytes.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPFetchResourceInfo
FTP Fetch Resource Information stream property key for set and copy operations. Set this property
to kCFBooleanTrue to require that resource information, such as size, must be provided before
download starts; set this property to kCFBooleanFalse to allow downloads to start without resource
information. For this version, size is the only resource information.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPFileTransferOffset
FTP File Transfer Offset stream property key for set and copy operations. The value of this property
is a CFNumber of type kCFNumberLongLongType representing the file offset at which to start the
transfer.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

12 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

kCFStreamPropertyFTPAttemptPersistentConnection
FTP Attempt Persistent Connection stream property key for set and copy operations. Set this property
to kCFBooleanTrue to enable the reuse of existing server connections; set this property to
kCFBooleanFalse to not reuse existing server connections. By default, this property is set to
kCFBooleanTrue.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxy
FTP Proxy stream property key for set and copy operations. The property is a value of type CFDictionary
that holds proxy dictionary key-value pairs. The dictionary returned by SystemConfiguration can also
be set as the value of this property.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyHost
FTP Proxy Host stream property key or an FTP Proxy dictionary key for set and copy operations. The
value of this property is a CFString containing the host name of a proxy server. This property can be
set and copied individually or via a CFDictionary. This property is the same as the
kSCPropNetProxiesFTPProxy property defined in SCSchemaDefinitions.h.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyPort
FTP Proxy Port stream property key or an FTP Proxy dictionary key for set and copy operations. The
value of this property is a CFNumber of type kCFNumberIntType containing the port number of a
proxy server. This property can be set and copied individually or via a CFDictionary. This property is
the same as the kSCPropNetProxiesFTPPort property defined in SCSchemaDefinitions.h.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyUser
FTP Proxy Host stream property key or FTP Proxy dictionary key for set and copy operations. The value
of this property is a CFString containing the username to be used when connecting to the proxy
server.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyPassword
FTP Proxy Port stream property key or FTP Proxy dictionary key for set and copy operations. The value
of this property is a CFString containing the password to be used when connecting to the proxy
server.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

Discussion
The CFStream property constants are used to specify the property to set when calling
CFReadStreamSetProperty or CFWriteStreamSetProperty and to copy when calling
CFReadStreamCopyProperty orCFWriteStreamCopyProperty. They can also be passed to a CFDictionary
creator or to an item accessor or mutator.

Availability
Available in Mac OS X version 10.3 and later.

Constants 13
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Declared In
CFNetwork/CFFTPStream.h

CFStream FTP Resource Constants
FTP resource constants.

const CFStringRef kCFFTPResourceMode;
const CFStringRef kCFFTPResourceName;
const CFStringRef kCFFTPResourceOwner;
const CFStringRef kCFFTPResourceGroup;
const CFStringRef kCFFTPResourceLink;
const CFStringRef kCFFTPResourceSize;
const CFStringRef kCFFTPResourceType;
const CFStringRef kCFFTPResourceModDate;

Constants
kCFFTPResourceMode

CFDictionary key for getting the CFNumber containing the access permissions, defined in
sys/types.h, of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceName
CFDictionary key for getting the CFString containing the name of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceOwner
CFDictionary key for getting the CFString containing the name of the owner of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceGroup
CFDictionary key for getting the CFString containing the name of a group that shares the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceLink
CFDictionary key for getting the CFString containing the symbolic link information. If the item is a
symbolic link, the CFString contains the path to the item that the link references.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceSize
CFDictionary key for getting the CFNumber containing the size in bytes of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

14 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

kCFFTPResourceType
CFDictionary key for getting the CFNumber containing the type of the FTP resource as defined in
sys/dirent.h.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceModDate
CFDictionary key for getting the CFDate containing the last date and time the FTP resource was
modified.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

Discussion
The values of FTP resource keys are extracted from a line of the directory list by the
CFFTPCreateParsedResourceListing (page 9) function.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetwork/CFFTPStream.h

Error Domains
Error domains specific to CFFTPStream calls.

extern const SInt32 kCFStreamErrorDomainFTP;

Constants
kCFStreamErrorDomainFTP

Error domain that returns the last result code returned by the FTP server.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Constants 15
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

16 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHost.h

Companion guide CFNetwork Programming Guide

Overview

The CFHost API allows you to create instances of the CFHost object that you can use to acquire host
information, including names, addresses, and reachability information.

The process of acquiring information about a host is known as resolution. Begin by calling
CFHostCreateWithAddress or CFHostCreateWithName to create an instance of a CFHost using an address
or a name, respectively. If you want to resolve the host asynchronously. call CFHostSetClient to associate
your client context and user-defined callback function with the host. Then call CFHostScheduleWithRunLoop
to schedule the host on a run loop.

To start resolution, call CFHostStartInfoResolution. If you set up for asynchronous resolution,
CFHostStartInfoResolution returns immediately. Your callback function will be called when resolution
is complete. If you didn’t set up for asynchronous resolution, CFHostStartInfoResolution blocks until
resolution is complete, an error occurs, or the resolution is cancelled.

When resolution is complete, call CFHostGetAddressing or CFHostGetNames to get an array of known
addresses or known names, respectively, for the host. Call CFHostGetReachability to get flags, declared
in SystemConfiguration/SCNetwork.h, that describe the reachability of the host.

When you no longer need a CFHost object, call CFHostUnscheduleFromRunLoop and CFHostSetClient
to disassociate the host from your user-defined client context and callback function (if it was set up for
asynchronous resolution). Then dispose of it.

Functions by Task

Creating a host

CFHostCreateCopy (page 19)
Creates a new host object by copying.

CFHostCreateWithAddress (page 19)
Uses an address to create an instance of a host object.

Overview 17
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostCreateWithName (page 20)
Uses a name to create an instance of a host object.

CFHost Functions

CFHostCancelInfoResolution (page 18)
Cancels the resolution of a host.

CFHostGetAddressing (page 21)
Gets the addresses from a host.

CFHostGetNames (page 21)
Gets the names from a CFHost.

CFHostGetReachability (page 22)
Gets reachability information from a host.

CFHostStartInfoResolution (page 24)
Starts resolution for a host object.

CFHostSetClient (page 24)
Associates a client context and a callback function with a CFHost object or disassociates a client
context and callback function that were previously set.

CFHostScheduleWithRunLoop (page 23)
Schedules a CFHost on a run loop.

CFHostUnscheduleFromRunLoop (page 25)
Unschedules a CFHost from a run loop.

Getting the CFHost Type ID

CFHostGetTypeID (page 23)
Gets the Core Foundation type identifier for the CFHost opaque type.

Functions

CFHostCancelInfoResolution
Cancels the resolution of a host.

void CFHostCancelInfoResolution (
 CFHostRef theHost,
 CFHostInfoType info
);

Parameters
theHost

The host for which a resolution is to be cancelled. This value must not be NULL.

18 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

info
A value of type CFHostInfoType specifying the type of resolution that is to be cancelled. See
CFHostInfoType Constants (page 28) for possible values.

Discussion
This function cancels the asynchronous or synchronous resolution specified by info for the host specified
by theHost.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateCopy
Creates a new host object by copying.

CFHostRef CFHostCreateCopy (
 CFAllocatorRef alloc,
 CFHostRef host
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

addr
The host to copy. This value must not be NULL.

Return Value
A valid CFHost object or NULL if the copy could not be created. The new host contains a copy of all previously
resolved data from the original host. Ownership follows the Create Rule.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateWithAddress
Uses an address to create an instance of a host object.

Functions 19
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostRef CFHostCreateWithAddress (
 CFAllocatorRef allocator,
 CFDataRef addr
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

addr
A CFDataRef object containing a sockaddr structure for the address of the host. This value must not
be NULL.

Return Value
A valid CFHostRef object that can be resolved, or NULL if the host could not be created. Ownership follows
the Create Rule.

Discussion
Call CFHostStartInfoResolution (page 24) to resolve the return object’s name and reachability
information.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateWithName
Uses a name to create an instance of a host object.

CFHostRef CFHostCreateWithName (
 CFAllocatorRef allocator,
 CFStringRef hostname
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

hostname
A string representing the name of the host. This value must not be NULL.

Return Value
A valid CFHostRef object that can be resolved, or NULL if the host could not be created. Ownership follows
the Create Rule.

Discussion
Call CFHostStartInfoResolution (page 24) to resolve the object’s addresses and reachability information.

20 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetAddressing
Gets the addresses from a host.

CFArrayRef CFHostGetAddressing (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The CFHost whose addresses are to be obtained. This value must not be NULL.

hasBeenResolved
On return, a pointer to a Boolean that is TRUE if addresses were available and FALSE if addresses
were not available. This parameter can be null.

function result
A CFArray of addresses where address is a sockaddr structure wrapped by a CFDataRef, or null if no
addresses were available.

Discussion
This function gets the addresses from a CFHost. The CFHost must have been previously resolved. To resolve
a CFHost, call CFHostStartInfoResolution (page 24).

Special Considerations

This function gets the addresses in a thread-safe way, but the resulting data is not thread-safe. The data is
returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from another thread.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetNames
Gets the names from a CFHost.

Functions 21
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFArrayRef CFHostGetNames (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The host to examine. The host must have been previously resolved. (To resolve a host, call
CFHostStartInfoResolution (page 24).) This value must not be NULL.

hasBeenResolved
On return, contains TRUE if names were available, otherwise FALSE. This value may be NULL.

Return Value
An array containing the of names of theHost, or NULL if no names were available.

Special Considerations

This function gets the names in a thread-safe way, but the resulting data is not thread-safe. The data is
returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from another thread.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetReachability
Gets reachability information from a host.

CFDataRef CFHostGetReachability (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The host whose reachability is to be obtained. The host must have been previously resolved. (To
resolve a host, call CFHostStartInfoResolution (page 24).) This value must not be NULL.

hasBeenResolved
On return, contains TRUE if the reachability was available, otherwise FALSE. This value may be NULL.

Return Value
A CFData object that wraps the reachability flags (SCNetworkConnectionFlags) defined in
SystemConfiguration/SCNetwork.h, or NULL if reachability information was not available.

Special Considerations

This function gets reachability information in a thread-safe way, but the resulting data is not thread-safe.
The data is returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from
another thread.

Availability
Available in Mac OS X version 10.3 and later.

22 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Declared In
CFHost.h

CFHostGetTypeID
Gets the Core Foundation type identifier for the CFHost opaque type.

CFTypeID CFHostGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHost opaque type.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostScheduleWithRunLoop
Schedules a CFHost on a run loop.

void CFHostScheduleWithRunLoop (
 CFHostRef theHost,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theHost

The host to be schedule on a run loop. This value must not be NULL.

runLoop
The run loop on which to schedule theHost. This value must not be NULL.

runLoopMode
The mode on which to schedule theHost. This value must not be NULL.

Discussion
Schedules theHost on a run loop, which causes resolutions of the host to be performed asynchronously.
The caller is responsible for ensuring that at least one of the run loops on which the host is scheduled is
being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

Functions 23
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostSetClient
Associates a client context and a callback function with a CFHost object or disassociates a client context and
callback function that were previously set.

Boolean CFHostSetClient (
 CFHostRef theHost,
 CFHostClientCallBack clientCB,
 CFHostClientContext *clientContext
);

Parameters
theHost

The host to modify. The value must not be NULL.

clientCB
The callback function to associate with theHost. The callback function will be called when a resolution
completes or is cancelled. If you are calling this function to disassociate a client context and callback
from theHost, pclientCBass NULL.

clientContext
A CFHostClientContext (page 27) structure whose info field will be passed to the callback
function specified by clientCB when clientCB is called. This value must not be NULL when setting
an association.

Pass NULL when disassociating a client context and a callback from a host.

Return Value
TRUE if the association could be set or unset, otherwise FALSE.

Discussion
The callback function specified by clientCB will be called when a resolution completes or is cancelled.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostStartInfoResolution
Starts resolution for a host object.

Boolean CFHostStartInfoResolution (
 CFHostRef theHost,
 CFHostInfoType info,
 CFStreamError *error
);

Parameters
theHost

The host, obtained by previously calling CFHostCreateCopy (page 19),
CFHostCreateWithAddress (page 19), or CFHostCreateWithName (page 20), that is to be resolved.
This value must not be NULL.

24 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

info
A value of type CFHostInfoType specifying the type of information that is to be retrieved. See
CFHostInfoType Constants (page 28) for possible values.

error
A pointer to a CFStreamError structure, that, if an error occurs, is set to the error and the error’s
domain. In synchronous mode, the error indicates why resolution failed, and in asynchronous mode,
the error indicates why resolution failed to start.

Return Value
TRUE if the resolution was started (asynchronous mode); FALSE if another resolution is already in progress
for theHost or if an error occurred.

Discussion
This function retrieves the information specified by info and stores it in the host.

In synchronous mode, this function blocks until the resolution has completed, in which case this function
returns TRUE, until the resolution is stopped by calling CFHostCancelInfoResolution (page 18) from
another thread, in which case this function returns FALSE, or until an error occurs.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostUnscheduleFromRunLoop
Unschedules a CFHost from a run loop.

void CFHostUnscheduleFromRunLoop (
 CFHostRef theHost,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The host to unschedule. This value must not be NULL.

runLoop
The run loop. This value must not be NULL.

runLoopMode
The mode from which the service is to be unscheduled. This value must not be NULL.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Functions 25
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Declared In
CFHost.h

Callbacks

CFHostClientCallBack
Defines a pointer to the callback function that is called when an asynchronous resolution of a CFHost completes
or an error occurs for an asynchronous CFHost resolution.

typedef void (CFHostClientCallBack) (
 CFHostRef theHost,
 CFHostInfoType typeInfo,
 const CFStreamError *error,
 void *info);

If you name your callback MyHostClientCallBack, you would declare it like this:

void MyHostClientCallBack (
 CFHostRef theHost,
 CFHostInfoType typeInfo,
 const CFStreamError *error,
 void *info
);

Parameters
theHost

The host for which an asynchronous resolution has been completed.

typeInfo
Value of type CFHostInfoType representing the type of information (addresses, names, or reachability
information) obtained by the completed resolution. See CFHostInfoType Constants (page 28) for
possible values.

error
If the resolution failed, contains a CFStreamError structure whose error field contains an error
code.

info
User-defined context information. The value pointed to by info is the same as the value pointed to
by the info field of the CFHostClientContext (page 27) structure that was provided when the
host was associated with this callback function.

Discussion
The callback function for a CFHost object is called one or more times when an asynchronous resolution
completes for the specified host, when an asynchronous resolution is cancelled, or when an error occurs
during an asynchronous resolution.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

26 Callbacks
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Data Types

CFHostRef
An opaque reference representing an CFHost object.

typedef struct __CFHost* CFHostRef;

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostClientContext
A structure containing user-defined data and callbacks for CFHost objects.

struct CFHostClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
} CFHostClientContext;
typedef struct CFHostClientContext CFHostClientContext;

Fields
version

The version number of the structure type passed as a parameter to the host client function. The only
valid version number is 0.

info
An arbitrary pointer to allocated memory containing user-defined data that can be associated with
the host and that is passed to the callbacks.

retain
The callback used to add a retain for the host on the info pointer for the life of the host, and may be
used for temporary references the host needs to take. This callback returns the actual info pointer to
store in the host, almost always just the pointer passed as the parameter.

release
The callback used to remove a retain previously added for the host on the info pointer.

copyDescription
The callback used to create a descriptive string representation of the info pointer (or the data pointed
to by the info pointer) for debugging purposes. This callback is called by the CFCopyDescription
function.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

Data Types 27
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Constants

CFHostInfoType Constants
Values indicating the type of data that is to be resolved or the type of data that was resolved.

enum CFHostInfoType {
 kCFHostAddresses = 0,
 kCFHostNames = 1,
 kCFHostReachability = 2
};
typedef enum CFHostInfoType CFHostInfoType;

Constants
kCFHostAddresses

Specifies that addresses are to be resolved or that addresses were resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFHostNames
Specifies that names are to be resolved or that names were resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFHostReachability
Specifies that reachability information is to be resolved or that reachability information was resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetwork/CFHost.h

Error Domains
Error domains specific to CFHost calls.

extern const SInt32 kCFStreamErrorDomainNetDB;
extern const SInt32 kCFStreamErrorDomainSystemConfiguration;

Constants
kCFStreamErrorDomainNetDB

The error domain that returns errors from the network database (DNS resolver) layer (described in
/usr/include/netdb.h).

Available in Mac OS X version 10.5 and later.

Declared in CFHost.h.

28 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

kCFStreamErrorDomainSystemConfiguration
The error domain that returns errors from the system configuration layer (described in System
Configuration Framework Reference).

Available in Mac OS X version 10.5 and later.

Declared in CFHost.h.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Constants 29
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

30 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHTTPAuthentication.h

Companion guide CFNetwork Programming Guide

Overview

The CFHTTPAuthentication opaque type provides an abstraction of HTTP authentication information.

Functions by Task

Creating an HTTP authentication

CFHTTPAuthenticationCreateFromResponse (page 34)
Uses an authentication failure response to create a CFHTTPAuthentication object.

CFHTTP Authentication Functions
This section describes the CFNetwork authentication functions that are used to manage authentication
information associated with a request. The functions work with a CFHTTPAuthentication object, which is
created from an HTTP response that failed with a 401 or 407 error code.

When you have analyzed the CFHTTPAuthentication object and acquired the necessary credentials to perform
the authentication, call CFHTTPMessageApplyCredentials (page 45) or
CFHTTPMessageApplyCredentialDictionary (page 44) to perform the authentication.

CFHTTPAuthenticationAppliesToRequest (page 32)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is associated with a
CFHTTPMessage object.

CFHTTPAuthenticationCopyDomains (page 33)
Returns an array of domain URLs to which a given CFHTTPAuthentication object can be applied.

CFHTTPAuthenticationCopyMethod (page 33)
Gets the strongest authentication method that will be used when a CFHTTPAuthentication object is
applied to a request.

Overview 31
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFHTTPAuthenticationCopyRealm (page 33)
Gets an authentication information’s namespace.

CFHTTPAuthenticationIsValid (page 35)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is valid.

CFHTTPAuthenticationRequiresAccountDomain (page 36)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication
method that requires an account domain.

CFHTTPAuthenticationRequiresOrderedRequests (page 36)
Returns a Boolean value that indicates whether authentication requests should be made one at a
time.

CFHTTPAuthenticationRequiresUserNameAndPassword (page 37)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication
method that requires a username and a password.

Getting the CFHTTPAuthentication type ID

CFHTTPAuthenticationGetTypeID (page 35)
Gets the Core Foundation type identifier for the CFHTTPAuthentication opaque type.

Functions

CFHTTPAuthenticationAppliesToRequest
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is associated with a
CFHTTPMessage object.

Boolean CFHTTPAuthenticationAppliesToRequest (
 CFHTTPAuthenticationRef auth,
 CFHTTPMessageRef request
);

Parameters
auth

The CFHTTPAuthentication object to examine.

request
Request that auth is to be tested against.

Return Value
TRUE if auth is associated with request, otherwise FALSE.

Discussion
If this function returns TRUE, you can use auth to provide authentication information when using request.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFHTTPAuthentication.h

32 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFHTTPAuthenticationCopyDomains
Returns an array of domain URLs to which a given CFHTTPAuthentication object can be applied.

CFArrayRef CFHTTPAuthenticationCopyDomains (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
A CFArray object that contains the domain URL’s to which auth should be applied. Ownership follows the
Create Rule.

Discussion
This function is provided for informational purposes only.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCopyMethod
Gets the strongest authentication method that will be used when a CFHTTPAuthentication object is applied
to a request.

CFStringRef CFHTTPAuthenticationCopyMethod (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
A string containing the authentication method that will be used auth is applied to a request. If more than
one authentication method is available, the strongest authentication method is returned. Ownership follows
the Create Rule.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCopyRealm
Gets an authentication information’s namespace.

Functions 33
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFStringRef CFHTTPAuthenticationCopyRealm (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
The namespace, if there is one; otherwise NULL. Ownership follows the Create Rule.

Discussion
Some authentication methods provide a namespace, and it is usually used to prompt the user for a name
and password.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCreateFromResponse
Uses an authentication failure response to create a CFHTTPAuthentication object.

CFHTTPAuthenticationRef CFHTTPAuthenticationCreateFromResponse (
 CFAllocatorRef alloc,
 CFHTTPMessageRef response
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

response
Response indicating an authentication failure; usually a 401 or a 407 response.

Return Value
CFHTTPAuthentication object that can be used for adding credentials to future requests. Ownership follows
the Create Rule.

Discussion
This function uses a response containing authentication failure information to create a reference to a
CFHTTPAuthentication object. You can use the object to add credentials to future requests. You can query
the object to get the following information:

 ■ whether it can be used and re-used to authenticate with its corresponding server
[CFHTTPAuthenticationIsValid (page 35)]

 ■ the authentication method that will be used when it is used to perform an authentication
[CFHTTPAuthenticationCopyMethod (page 33)]

 ■ whether it is associated with a particular CFHTTPMessageRef
[CFHTTPAuthenticationAppliesToRequest (page 32)

34 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

 ■ whether a user name and a password will be required when it is used to perform an authentication
[CFHTTPAuthenticationRequiresUserNameAndPassword (page 37)]

 ■ whether an account domain will be required when it is used to perform an authentication
[CFHTTPAuthenticationRequiresAccountDomain (page 36)]

 ■ whether authentication requests should be sent one at a time to the corresponding server
[CFHTTPAuthenticationRequiresOrderedRequests (page 36)]

 ■ the namespace (if any) that the domain uses to prompt for a name and password
[CFHTTPAuthenticationCopyRealm (page 33)]

 ■ the domain URLs the instance applies to [CFHTTPAuthenticationCopyDomains (page 33)]

When you have determined what information will be needed to perform the authentication and accumulated
that information, call CFHTTPMessageApplyCredentials (page 45) or
CFHTTPMessageApplyCredentialDictionary (page 44) to perform the authentication.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationGetTypeID
Gets the Core Foundation type identifier for the CFHTTPAuthentication opaque type.

CFTypeID CFHTTPAuthenticationGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHTTPAuthentication opaque type.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationIsValid
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is valid.

Boolean CFHTTPAuthenticationIsValid (
 CFHTTPAuthenticationRef auth,
 CFStreamError *error
);

Parameters
auth

The CFHTTPAuthentication object to examine.

error
Pointer to a CFStreamError structure, whose fields, if an error has occurred, are set to the error and
the error’s domain.

Functions 35
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Return Value
TRUE if auth contains enough information to be applied to a request.

If this function returns FALSE, the CFHTTPAuthentication object may still contain useful information, such
as the name of an unsupported authentication method.

Discussion
If this function returns TRUE for auth, the object is good for use with functions such as
CFHTTPMessageApplyCredentials (page 45) andCFHTTPMessageApplyCredentialDictionary (page
44). If this function returns FALSE, auth is invalid, and authentications using it will not succeed.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresAccountDomain
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication method
that requires an account domain.

Boolean CFHTTPAuthenticationRequiresAccountDomain (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth uses an authentication method that requires an account domain, otherwise FALSE.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresOrderedRequests
Returns a Boolean value that indicates whether authentication requests should be made one at a time.

Boolean CFHTTPAuthenticationRequiresOrderedRequests (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth requires ordered requests, otherwise FALSE.

36 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Discussion
Some authentication methods require that future requests must be performed in an ordered manner. If this
function returns TRUE, clients can improve their chances of authenticating successfully by issuing requests
one at a time as responses come back from the server.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresUserNameAndPassword
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication method
that requires a username and a password.

Boolean CFHTTPAuthenticationRequiresUserNameAndPassword (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth requires a username and password when it is applied to a request; otherwise, FALSE.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

Data Types

CFHTTPAuthenticationRef
An opaque reference representing HTTP authentication information.

typedef struct __CFHTTPAuthentication *CFHTTPAuthenticationRef;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

Data Types 37
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Constants

CFHTTP Authentication Scheme Constants
Specifies the authentication scheme when adding authentication information to a CFHTTP request message
object.

const CFStringRef kCFHTTPAuthenticationSchemeBasic;
const CFStringRef kCFHTTPAuthenticationSchemeDigest;
const CFStringRef kCFHTTPAuthenticationSchemeNegotiate;
const CFStringRef kCFHTTPAuthenticationSchemeNTLM;

Constants
kCFHTTPAuthenticationSchemeBasic

Specifies basic authentication consisting of a user name and a password.

Available in Mac OS X v10.1 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeDigest
Reserved.

Available in Mac OS X v10.1 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNegotiate
Specifies the Negotiate authentication scheme.

Available in Mac OS X v10.5 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNTLM
Specifies the NTLM authentication scheme.

Available in Mac OS X v10.5 and later.

Declared in CFHTTPMessage.h.

Discussion
The authentication scheme constants are used to specify the authentication scheme when calling
CFHTTPMessageAddAuthentication (page 43).

CFStream HTTP Authentication Error Constants
Authentication error codes that may be returned when trying to apply authentication to a request.

38 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

enum CFStreamErrorHTTPAuthentication{
 kCFStreamErrorHTTPAuthenticationTypeUnsupported = -1000,
 kCFStreamErrorHTTPAuthenticationBadUserName = -1001,
 kCFStreamErrorHTTPAuthenticationBadPassword = -1002
};
typedef enum CFStreamErrorHTTPAuthentication CFStreamErrorHTTPAuthentication;

Constants
kCFStreamErrorHTTPAuthenticationTypeUnsupported

Specified authentication type is not supported.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFStreamErrorHTTPAuthenticationBadUserName
User name is in a format that is not suitable for the request. Currently, user names are decoded using
kCFStringEncodingISOLatin1.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFStreamErrorHTTPAuthenticationBadPassword
Password is in a format that is not suitable for the request. Currently, passwords are decoded using
kCFStringEncodingISOLatin1.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

CFHTTPMessageApplyCredentialDictionary Keys
Constants for keys in the dictionary passed to CFHTTPMessageApplyCredentialDictionary (page 44).

const CFStringRef kCFHTTPAuthenticationUserName;
const CFStringRef kCFHTTPAuthenticationPassword;
const CFStringRef kCFHTTPAuthenticationAccountDomain;

Constants
kCFHTTPAuthenticationUserName

Username to use for authentication.

kCFHTTPAuthenticationPassword
Password to use for authentication.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFHTTPAuthenticationAccountDomain
Account domain to use for authentication.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

Constants 39
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

40 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHTTPMessage.h

Companion guides Getting Started with Networking
CFNetwork Programming Guide

Overview

The CFHTTPMessage opaque type represents an HTTP message.

Functions by Task

Creating a Message

CFHTTPMessageCreateCopy (page 50)
Gets a copy of a CFHTTPMessage object.

CFHTTPMessageCreateEmpty (page 50)
Creates and returns a new, empty CFHTTPMessage object.

CFHTTPMessageCreateRequest (page 51)
Creates and returns a CFHTTPMessage object for an HTTP request.

CFHTTPMessageCreateResponse (page 52)
Creates and returns a CFHTTPMessage object for an HTTP response.

Modifying a message

CFHTTPMessageAppendBytes (page 44)
Appends data to a CFHTTPMessage object.

CFHTTPMessageSetBody (page 54)
Sets the body of a CFHTTPMessage object.

CFHTTPMessageSetHeaderFieldValue (page 54)
Sets the value of a header field in an HTTP message.

Overview 41
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Getting information from a message

CFHTTPMessageCopyBody (page 47)
Gets the body from a CFHTTPMessage object.

CFHTTPMessageCopyAllHeaderFields (page 46)
Gets all header fields from a CFHTTPMessage object.

CFHTTPMessageCopyHeaderFieldValue (page 47)
Gets the value of a header field from a CFHTTPMessage object.

CFHTTPMessageCopyRequestMethod (page 48)
Gets the request method from a CFHTTPMessage object.

CFHTTPMessageCopyRequestURL (page 48)
Gets the URL from a CFHTTPMessage object.

CFHTTPMessageCopySerializedMessage (page 49)
Serializes a CFHTTPMessage object.

CFHTTPMessageCopyVersion (page 49)
Gets the HTTP version from a CFHTTPMessage object.

CFHTTPMessageIsRequest (page 54)
Returns a boolean indicating whether the CFHTTPMessage is a request or a response.

CFHTTPMessageIsHeaderComplete (page 53)
Determines whether a message header is complete.

CFHTTPMessageGetResponseStatusCode (page 53)
Gets the status code from a CFHTTPMessage object representing an HTTP response.

CFHTTPMessageCopyResponseStatusLine (page 49)
Gets the status line from a CFHTTPMessage object.

Message authentication

CFHTTPMessageApplyCredentials (page 45)
Performs the authentication method specified by a CFHTTPAuthentication object.

CFHTTPMessageApplyCredentialDictionary (page 44)
Use a dictionary containing authentication credentials to perform the authentication method specified
by a CFHTTPAuthentication object.

CFHTTPMessageAddAuthentication (page 43)
Adds authentication information to a request.

Getting the CFHTTPMessage type identifier

CFHTTPMessageGetTypeID (page 53)
Returns the Core Foundation type identifier for the CFHTTPMessage opaque type.

42 Functions by Task
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Functions

CFHTTPMessageAddAuthentication
Adds authentication information to a request.

Boolean CFHTTPMessageAddAuthentication (
 CFHTTPMessageRef request,
 CFHTTPMessageRef authenticationFailureResponse,
 CFStringRef username,
 CFStringRef password,
 CFStringRef authenticationScheme,
 Boolean forProxy
);

Parameters
request

The message to which to add authentication information.

authenticationFailureResponse
The response message that contains authentication failure information.

username
The username to add to the request.

password
The password to add to the request.

authenticationScheme
The authentication scheme to use (kCFHTTPAuthenticationSchemeBasic,
kCFHTTPAuthenticationSchemeNegotiate, kCFHTTPAuthenticationSchemeNTLM, or
kCFHTTPAuthenticationSchemeDigest), or pass NULL to use the strongest supported
authentication scheme provided in the authenticationFailureResponse parameter.

forProxy
A flag indicating whether the authentication data that is being added is for a proxy’s use (TRUE) or
for a remote server’s use (FALSE). If the error code provided by the
authenticationFailureResponse parameter is 407, set forProxy to TRUE. If the error code is
401, set forProxy to FALSE.

Return Value
TRUE if the authentication information was successfully added, otherwise FALSE.

Discussion
This function adds the authentication information specified by the username, password,
authenticationScheme, and forProxy parameters to the specified request message. The message referred
to by the authenticationFailureResponse parameter typically contains a 401 or a 407 error code.

This function is best suited for sending a single request to the server. If you need to send multiple requests,
use CFHTTPMessageApplyCredentials (page 45).

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Functions 43
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFHTTPMessageAppendBytes
Appends data to a CFHTTPMessage object.

Boolean CFHTTPMessageAppendBytes (
 CFHTTPMessageRef message,
 const UInt8 *newBytes,
 CFIndex numBytes
);

Parameters
message

The message to modify.

newBytes
A reference to the data to append.

numBytes
The length of the data pointed to by newBytes.

Return Value
TRUE if the data was successfully appended, otherwise FALSE.

Discussion
This function appends the data specified by newBytes to the specified message object which was created
by calling CFHTTPMessageCreateEmpty (page 50). The data is an incoming serialized HTTP request or
response received from a client or a server. While appending the data, this function deserializes it, removes
any HTTP-based formatting that the message may contain, and stores the message in the message object.
You can then call CFHTTPMessageCopyVersion (page 49), CFHTTPMessageCopyBody (page 47),
CFHTTPMessageCopyHeaderFieldValue (page 47), and CFHTTPMessageCopyAllHeaderFields (page
46) to get the message’s HTTP version, the message’s body, a specific header field, and all of the message’s
headers, respectively.

If the message is a request, you can also call CFHTTPMessageCopyRequestURL (page 48) and
CFHTTPMessageCopyRequestMethod (page 48) to get the message’s request URL and request method,
respectively.

If the message is a response, you can also call CFHTTPMessageGetResponseStatusCode (page 53) and
CFHTTPMessageCopyResponseStatusLine (page 49) to get the message’s status code and status line,
respectively.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageApplyCredentialDictionary
Use a dictionary containing authentication credentials to perform the authentication method specified by a
CFHTTPAuthentication object.

44 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Boolean CFHTTPMessageApplyCredentialDictionary (
 CFHTTPMessageRef request,
 CFHTTPAuthenticationRef auth,
 CFDictionaryRef dict,
 CFStreamError *error
);

Parameters
request

The request for which the authentication method is to be performed.

auth
A CFHTTPAuthentication object specifying the authentication method to perform.

dict
A dictionary containing authentication credentials to be applied to the request. For information on
the keys in this dictionary, see CFHTTPAuthenticationRef (page 37).

error
If an error occurs, upon return contains a CFStreamError object that describes the error and the
error’s domain. Pass NULL if you don’t want to receive error information.

Return Value
TRUE if the authentication was successful, otherwise, FALSE.

Discussion
This function performs the authentication method specified by auth on behalf of the request specified by
request using the credentials contained in the dictionary specified by dict. The dictionary must contain
values for the kCFHTTPAuthenticationUsername and kCFHTTPAuthenticationPassword keys. If
CFHTTPAuthenticationRequiresAccountDomain (page 36) returns TRUE for auth, the dictionary must
also contain a value for the kCFHTTPAuthenticationAccountDomain key.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFHTTPAuthentication
object at the same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPMessageApplyCredentials
Performs the authentication method specified by a CFHTTPAuthentication object.

Functions 45
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Boolean CFHTTPMessageApplyCredentials (
 CFHTTPMessageRef request,
 CFHTTPAuthenticationRef auth,
 CFStringRef username,
 CFStringRef password,
 CFStreamError *error
);

Parameters
request

Request for which the authentication method is to be performed.

auth
A CFHTTPAuthentication object specifying the authentication method to perform.

username
Username for performing the authentication.

password
Password for performing the authentication.

error
If an error occurs, upon return contains a CFStreamError object that describes the error and the
error’s domain. Pass NULL if you don’t want to receive error information.

Return Value
TRUE if the authentication was successful, otherwise, FALSE.

Discussion
This function performs the authentication method specified by auth on behalf of the request specified by
request using the credentials specified by username and password. If, in addition to a username and
password, you also need to specify an account domain, call
CFHTTPMessageApplyCredentialDictionary (page 44) instead of this function.

This function is appropriate for performing several authentication requests. If you only need to make a single
authentication request, consider using CFHTTPMessageAddAuthentication (page 43) instead.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFHTTPMessage object at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPMessageCopyAllHeaderFields
Gets all header fields from a CFHTTPMessage object.

46 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFDictionaryRef CFHTTPMessageCopyAllHeaderFields (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFDictionary object containing keys and values that are CFString objects, where the key is the header
fieldname and the dictionary value is the header field’s value. Returns NULL if the header fields could not be
copied. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyBody
Gets the body from a CFHTTPMessage object.

CFDataRef CFHTTPMessageCopyBody (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFData object or NULL if there was a problem creating the object or if the there is no message body.
Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyHeaderFieldValue
Gets the value of a header field from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyHeaderFieldValue (
 CFHTTPMessageRef message,
 CFStringRef headerField
);

Parameters
message

The message to examine.

Functions 47
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

headerField
The header field to copy.

Return Value
A CFString object containing a copy of the field specified by headerField, or NULL if there was a problem
creating the object of if the specified header does not exist. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyRequestMethod
Gets the request method from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyRequestMethod (
 CFHTTPMessageRef request
);

Parameters
request

The message to examine. This must be a request message.

Return Value
A CFString object containing a copy of the message’s request method, or NULL if there was a problem
creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyRequestURL
Gets the URL from a CFHTTPMessage object.

CFURLRef CFHTTPMessageCopyRequestURL (
 CFHTTPMessageRef request
);

Parameters
request

The message to examine. This must be a request message.

Return Value
A CFURLRef object containing the URL or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

48 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyResponseStatusLine
Gets the status line from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyResponseStatusLine (
 CFHTTPMessageRef response
);

Parameters
response

The message to examine. This must be a response message.

Return Value
A string containing the message’s status line, or NULL if there was a problem creating the object. The status
line includes the message’s protocol version and a success or error code. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopySerializedMessage
Serializes a CFHTTPMessage object.

CFDataRef CFHTTPMessageCopySerializedMessage (
 CFHTTPMessageRef request
);

Parameters
request

The message to serialize.

Return Value
A CFData object containing the serialized message, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Discussion
This function returns a copy of a CFHTTPMessage object in serialized format that is ready for transmission.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyVersion
Gets the HTTP version from a CFHTTPMessage object.

Functions 49
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFStringRef CFHTTPMessageCopyVersion (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFString object or NULL, if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateCopy
Gets a copy of a CFHTTPMessage object.

CFHTTPMessageRef CFHTTPMessageCreateCopy (
 CFAllocatorRef alloc,
 CFHTTPMessageRef message
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

message
The message to copy.

Return Value
A CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the Create
Rule.

Discussion
This function returns a copy of a CFHTTPMessage object that you can modify, for example, by calling
CFHTTPMessageCopyHeaderFieldValue (page 47) or by callingCFHTTPMessageSetBody (page 54).
Then serialize the message by callingCFHTTPMessageCopySerializedMessage (page 49) and send the
serialized message to a client or a server.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateEmpty
Creates and returns a new, empty CFHTTPMessage object.

50 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFHTTPMessageRef CFHTTPMessageCreateEmpty (
 CFAllocatorRef alloc,
 Boolean isRequest
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

isRequest
A flag that determines whether to create an empty message request or an empty message response.
Pass TRUE to create an empty request message; pass FALSE to create an empty response message.

Return Value
A new CFHTTPMessage object or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
Call CFHTTPMessageAppendBytes (page 44) to store an incoming, serialized HTTP request or response
message in the empty message object.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateRequest
Creates and returns a CFHTTPMessage object for an HTTP request.

CFHTTPMessageRef CFHTTPMessageCreateRequest (
 CFAllocatorRef alloc,
 CFStringRef requestMethod,
 CFURLRef url,
 CFStringRef httpVersion
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

requestMethod
The request method for the request. Use any of the request methods allowed by the HTTP version
specified by httpVersion.

url
The URL to which the request will be sent.

httpVersion
The HTTP version for this message. Pass kCFHTTPVersion1_0 or kCFHTTPVersion1_1.

Return Value
A new CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Functions 51
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Discussion
This function returns a CFHTTPMessage object that you can use to build an HTTP request. Continue building
the request by callingCFHTTPMessageSetBody (page 54) to set the message’s body. Call
CFHTTPMessageCopyHeaderFieldValue (page 47) to set the message’s headers.

If you are using a CFReadStream object to send the message, call CFReadStreamCreateForHTTPRequest
to create a read stream for the request. If you are not using CFReadStream, call
CFHTTPMessageCopySerializedMessage (page 49) to make the message ready for transmission by
serializing it.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateResponse
Creates and returns a CFHTTPMessage object for an HTTP response.

CFHTTPMessageRef CFHTTPMessageCreateResponse (
 CFAllocatorRef alloc,
 CFIndex statusCode,
 CFStringRef statusDescription,
 CFStringRef httpVersion
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

statusCode
The status code for this message response. The status code can be any of the status codes defined
in section 6.1.1 of RFC 2616.

statusDescription
The description that corresponds to the status code. Pass NULL to use the standard description for
the given status code, as found in RFC 2616.

httpVersion
The HTTP version for this message response. Pass kCFHTTPVersion1_0 or kCFHTTPVersion1_1.

Return Value
A new CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
This function returns a CFHTTPMessage object that you can use to build an HTTP response. Continue building
the response by callingCFHTTPMessageSetBody (page 54) to set the message’s body. Call
CFHTTPMessageSetHeaderFieldValue (page 54) to set the message’s headers. Then call
CFHTTPMessageCopySerializedMessage (page 49) to make the message ready for transmission by
serializing it.

Availability
Available in Mac OS X version 10.1 and later.

52 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Declared In
CFHTTPMessage.h

CFHTTPMessageGetResponseStatusCode
Gets the status code from a CFHTTPMessage object representing an HTTP response.

CFIndex CFHTTPMessageGetResponseStatusCode (
 CFHTTPMessageRef response
);

Parameters
response

The message to examine. This must be a response message.

function result
The status code as defined by RFC 2616, section 6.1.1.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageGetTypeID
Returns the Core Foundation type identifier for the CFHTTPMessage opaque type.

CFTypeID CFHTTPMessageGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHTTPMessage opaque type.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageIsHeaderComplete
Determines whether a message header is complete.

Boolean CFHTTPMessageIsHeaderComplete (
 CFHTTPMessageRef message
);

Parameters
message

The message to verify.

function result
TRUE if the message header is complete, otherwise FALSE.

Functions 53
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Discussion
After calling CFHTTPMessageAppendBytes (page 44), call this function to see if the message header is
complete.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageIsRequest
Returns a boolean indicating whether the CFHTTPMessage is a request or a response.

extern Boolean CFHTTPMessageIsRequest(CFHTTPMessageRef message);

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageSetBody
Sets the body of a CFHTTPMessage object.

void CFHTTPMessageSetBody (
 CFHTTPMessageRef message,
 CFDataRef bodyData
);

Parameters
message

The message to modify.

bodyData
The data that is to be set as the body of the message.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageSetHeaderFieldValue
Sets the value of a header field in an HTTP message.

54 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

void CFHTTPMessageSetHeaderFieldValue (
 CFHTTPMessageRef message,
 CFStringRef headerField,
 CFStringRef value
);

Parameters
message

The message to modify.

headerField
The header field to set.

value
The value to set.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Data Types

CFHTTPMessageRef
An opaque reference representing an HTTP message.

typedef struct __CFHTTPMessage *CFHTTPMessageRef;

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Constants

CFHTTP Version Constants
Sets the HTTP version in a CFHTTPMessage request or response object.

const CFStringRef kCFHTTPVersion1_0;
const CFStringRef kCFHTTPVersion1_1;

Constants
kCFHTTPVersion1_0

Specifies HTTP version 1.0.

Available in Mac OS X version 10.1 and later.

Data Types 55
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

kCFHTTPVersion1_1
Specifies HTTP version 1.1.

Available in Mac OS X version 10.1 and later.

Discussion
The HTTP version constants are used when you call CFHTTPMessageCreateRequest (page 51) and
CFHTTPMessageCreateResponse (page 52) to create a request or response message.

Declared In
CFNetwork/CFHTTPMessage.h

Authentication Schemes
Constants used to specify the desired authentication scheme for a request.

extern const CFStringRef kCFHTTPAuthenticationSchemeBasic;
extern const CFStringRef kCFHTTPAuthenticationSchemeDigest;
extern const CFStringRef kCFHTTPAuthenticationSchemeNTLM;
extern const CFStringRef kCFHTTPAuthenticationSchemeNegotiate;

Constants
kCFHTTPAuthenticationSchemeBasic

Request the HTTP basic authentication scheme.

Available in Mac OS X version 10.2 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeDigest
Request the HTTP digest authentication scheme.

Available in Mac OS X version 10.2 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNTLM
Request the HTTP NTLM authentication scheme.

Available in Mac OS X version 10.5 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNegotiate
Request an automatically negotiated authentication scheme.

Available in Mac OS X version 10.5 and later.

Declared in CFHTTPMessage.h.

56 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFNetDiagnostics.h

Companion guide CFNetwork Programming Guide

Overview

The CFNetDiagnostics opaque type allows you to diagnose network-related problems.

Functions by Task

Creating a net diagnostics object

CFNetDiagnosticCreateWithStreams (page 58)
Creates a network diagnostic object from a pair of CFStreams.

CFNetDiagnosticCreateWithURL (page 59)
Creates a CFNetDiagnosticRef from a CFURLRef.

CFNetDiagnostics Functions

CFNetDiagnosticSetName (page 61)
Overrides the displayed application name.

CFNetDiagnosticDiagnoseProblemInteractively (page 60)
Opens a Network Diagnostics window.

CFNetDiagnosticCopyNetworkStatusPassively (page 58)
Gets a network status value.

Overview 57
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Functions

CFNetDiagnosticCopyNetworkStatusPassively
Gets a network status value.

CFNetDiagnosticStatus CFNetDiagnosticCopyNetworkStatusPassively (
 CFNetDiagnosticRef details,
 CFStringRef *description
);

Parameters
details

CFNetDiagnosticRef, created by CFNetDiagnosticCreateWithStreams (page 58) or
CFNetDiagnosticCreateWithURL (page 59), for which the Network Diagnostics status is to be
obtained.

description
If not NULL, upon return contains a localized string containing a description of the current network
status. Ownership follows the Create Rule.

Return Value
A network status value.

Discussion
This function returns a status value that can be used to display basic information about the connection, and
optionally gets a localized string containing a description of the current network status.

This function is guaranteed not to generate network activity.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticCreateWithStreams
Creates a network diagnostic object from a pair of CFStreams.

58 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

CFNetDiagnosticRef CFNetDiagnosticCreateWithStreams (
 CFAllocatorRef alloc,
 CFReadStreamRef readStream,
 CFWriteStreamRef writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

readStream
Reference to a read stream whose connection has failed, or NULL if you do not want the
CFNetDiagnosticRef to have a read stream.

writeStream
Reference to a write stream whose connection has failed, or NULL if you do not want the
CFNetDiagnosticRef to have a write stream.

function result
CFNetDiagnosticRef that you can pass toCFNetDiagnosticDiagnoseProblemInteractively (page
60) or CFNetDiagnosticCopyNetworkStatusPassively (page 58). Ownership follows the Create
Rule.

Discussion
This function uses references to a read steam and a write stream (or just a read stream or just a write stream)
to create a reference to an instance of a CFNetDiagnostic object. You can pass the reference to
CFNetDiagnosticDiagnoseProblemInteractively (page 60) to open a Network Diagnostics window
or to CFNetDiagnosticCopyNetworkStatusPassively (page 58) to get a description of the connection
referenced by readStream and writeStream.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticCreateWithURL
Creates a CFNetDiagnosticRef from a CFURLRef.

CFNetDiagnosticRef CFNetDiagnosticCreateWithURL (
 CFAllocatorRef alloc,
 CFURLRef url
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Functions 59
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

url
CFURLRef that refers to the failed connection.

Return Value
CFNetDiagnosticRef that you can pass to CFNetDiagnosticDiagnoseProblemInteractively (page 60)
or CFNetDiagnosticCopyNetworkStatusPassively (page 58). Ownership follows the Create Rule.

Discussion
This function uses a URL to create a reference to an instance of a CFNetDiagnostic object. You can pass the
reference toCFNetDiagnosticDiagnoseProblemInteractively (page 60) to open a Network Diagnostics
window or to CFNetDiagnosticCopyNetworkStatusPassively (page 58) to get a description of the
connection referenced by readStream and writeStream.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticDiagnoseProblemInteractively
Opens a Network Diagnostics window.

CFNetDiagnosticStatus CFNetDiagnosticDiagnoseProblemInteractively (
 CFNetDiagnosticRef details
);

Parameters
details

A network diagnostics object, created by CFNetDiagnosticCreateWithStreams (page 58) or
CFNetDiagnosticCreateWithURL (page 59), for which the window is to be opened.

Return Value
CFNetDiagnosticNoErr if no error occurred, or CFNetDiagnosticErr if an error occurred that prevented
this call from completing successfully.

Discussion
This function opens the Network Diagnostics window and returns immediately once the window is open.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

60 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

CFNetDiagnosticSetName
Overrides the displayed application name.

void CFNetDiagnosticSetName (
 CFNetDiagnosticRef details,
 CFStringRef name
);

Parameters
details

The network diagnostics object for which the application name is to be set.

name
Name that is to be set.

Discussion
Frameworks requiring that an application name be displayed to the user derive the application name from
the bundle identifier of the currently running application, in that application’s localization. If you want to
override the derived application name, use this function to set the name that is displayed.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

Data Types

CFNetDiagnosticRef
An opaque reference representing a CFNetDiagnostic.

typedef struct __CFNetDiagnostic* CFNetDiagnosticRef;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticStatus
A CFIndex type that is used to return status values from CFNetDiagnostic status and diagnostic functions.
For a list of possible values, see “CFNetDiagnosticStatusValues Constants” (page 62).

Data Types 61
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

typedef CFIndex CFNetDiagnosticStatus;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

Constants

CFNetDiagnosticStatusValues Constants
Constants for diagnostic status values.

enum CFNetDiagnosticStatusValues {
 kCFNetDiagnosticNoErr = 0,
 kCFNetDiagnosticErr = -66560L,
 kCFNetDiagnosticConnectionUp = -66559L,
 kCFNetDiagnosticConnectionIndeterminate = -66558L,
 kCFNetDiagnosticConnectionDown = -66557L
};
typedef enum CFNetDiagnosticStatusValues CFNetDiagnosticStatusValues;

Constants
kCFNetDiagnosticNoErr

No error occurred but there is no status.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticErr
An error occurred that prevented the call from completing.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionUp
The connection appears to be working.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionIndeterminate
The status of the connection is not known.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionDown
The connection does not appear to be working.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

Discussion
Diagnostic status values are returned by CFNetDiagnosticDiagnoseProblemInteractively (page 60)
and CFNetDiagnosticCopyNetworkStatusPassively (page 58).

62 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetwork/CFNetDiagnostics.h

Constants 63
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

64 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFNetServices.h

Companion guides Bonjour Overview
CFNetwork Programming Guide
NSNetServices and CFNetServices Programming Guide

Overview

The CFNetServices API is part of Bonjour, Apple’s implementation of zero-configuration networking
(ZEROCONF). The CFNetServices API allows you to register a network service, such as a printer or file server,
so that it can be found by name or browsed for by service type and domain. Applications can use the
CFNetServices API to discover the services that are available on the network and to find all access information
— such as name, IP address, and port number — needed to use each service.

In effect, Bonjour registration and discovery combine the functions of a local DNS server and AppleTalk,
allowing applications to provide the kind of user-friendly browsing available in the AppleTalk Chooser using
open protocols, such as Multicast DNS (mDNS). Bonjour gives applications easy access to services over local
IP networks without requiring the service to support an AppleTalk stack, and without requiring a DNS server
on the local network.

For a full description of Bonjour, see Bonjour Overview.

Functions by Task

Creating net service objects

CFNetServiceCreate (page 74)
Creates an instance of a Network Service object.

CFNetServiceCreateCopy (page 76)
Creates a copy of a CFNetService object.

CFNetServiceMonitorCreate (page 82)
Creates an instance of a NetServiceMonitor object that watches for record changes.

CFNetServiceBrowserCreate (page 68)
Creates an instance of a Network Service browser object.

Overview 65
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServices Functions

CFNetServiceBrowserInvalidate (page 69)
Invalidates an instance of a Network Service browser object.

CFNetServiceBrowserScheduleWithRunLoop (page 70)
Schedules a CFNetServiceBrowser on a run loop.

CFNetServiceBrowserSearchForDomains (page 70)
Searches for domains.

CFNetServiceBrowserSearchForServices (page 71)
Searches a domain for services of a specified type.

CFNetServiceBrowserStopSearch (page 72)
Stops a search for domains or services.

CFNetServiceBrowserUnscheduleFromRunLoop (page 73)
Unschedules a CFNetServiceBrowser from a run loop and mode.

CFNetServiceCancel (page 74)
Cancels a service registration or a service resolution.

CFNetServiceCreateDictionaryWithTXTData (page 76)
Uses TXT record data to create a dictionary.

CFNetServiceCreateTXTDataWithDictionary (page 77)
Flattens a set of key/value pairs into a CFDataRef suitable for passing to
CFNetServiceSetTXTData (page 93).

CFNetServiceGetAddressing (page 78)
Gets the IP addressing from a CFNetService.

CFNetServiceGetTargetHost (page 80)
Queries a CFNetService for its target hosts.

CFNetServiceGetDomain (page 78)
Gets the domain from a CFNetService.

CFNetServiceGetName (page 79)
Gets the name from a CFNetService.

CFNetServiceGetTXTData (page 81)
Queries a network service for the contents of its TXT records.

CFNetServiceGetType (page 81)
Gets the type from a CFNetService.

CFNetServiceMonitorInvalidate (page 84)
Invalidates an instance of a Network Service monitor object.

CFNetServiceMonitorScheduleWithRunLoop (page 84)
Schedules a CFNetServiceMonitor on a run loop.

CFNetServiceMonitorStart (page 85)
Starts monitoring.

CFNetServiceMonitorStop (page 86)
Stops a CFNetServiceMonitor.

CFNetServiceMonitorUnscheduleFromRunLoop (page 87)
Unschedules a CFNetServiceMonitor from a run loop.

66 Functions by Task
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceRegisterWithOptions (page 88)
Makes a CFNetService available on the network.

CFNetServiceResolveWithTimeout (page 90)
Gets the IP address or addresses for a CFNetService.

CFNetServiceScheduleWithRunLoop (page 91)
Schedules a CFNetService on a run loop.

CFNetServiceSetClient (page 92)
Associates a callback function with a CFNetService or disassociates a callback function from a
CFNetService.

CFNetServiceSetTXTData (page 93)
Sets the TXT record for a CFNetService.

CFNetServiceUnscheduleFromRunLoop (page 94)
Unschedules a CFNetService from a run loop.

CFNetServiceGetPortNumber (page 79) Deprecated in Mac OS X version 10.4
This function gets the port number from a CFNetService.

CFNetServiceGetProtocolSpecificInformation (page 80) Deprecated in Mac OS X version 10.4
This function gets protocol-specific information from a CFNetService. (Deprecated. Use
CFNetServiceGetTXTData (page 81) instead.)

CFNetServiceRegister (page 87) Deprecated in Mac OS X version 10.4
Makes a CFNetService available on the network. (Deprecated. Use
CFNetServiceRegisterWithOptions (page 88) instead.)

CFNetServiceResolve (page 89) Deprecated in Mac OS X version 10.4
This function updates the specified CFNetService with the IP address or addresses associated with
the service. Call CFNetServiceGetAddressing (page 78) to get the addresses. (Deprecated. Use
CFNetServiceResolveWithTimeout (page 90) instead.)

Modifying a net service

CFNetServiceSetProtocolSpecificInformation (page 93) Deprecated in Mac OS X version 10.4
Sets protocol-specific information for a CFNetService. (Deprecated. Use CFNetServiceSetTXTData
instead.)

Getting the net service type IDs

CFNetServiceGetTypeID (page 82)
Gets the Core Foundation type identifier for the Network Service object.

CFNetServiceMonitorGetTypeID (page 84)
Gets the Core Foundation type identifier for all CFNetServiceMonitor instances.

CFNetServiceBrowserGetTypeID (page 69)
Gets the Core Foundation type identifier for the Network Service browser object.

Functions by Task 67
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Functions

CFNetServiceBrowserCreate
Creates an instance of a Network Service browser object.

CFNetServiceBrowserRef CFNetServiceBrowserCreate (
 CFAllocatorRef alloc,
 CFNetServiceBrowserClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

clientCB
Callback function that is to be called when domains and services are found; cannot be NULL. For
details, see CFNetServiceBrowserClientCallBack (page 94).

clientContext
Context information to be used when clientCB is called; cannot be NULL. For details, see
CFNetServiceClientContext (page 97).

Return Value
A new browser object, or NULL if the instance could not be created. Ownership follows the Create Rule.

Discussion
This function creates an instance of a Network Service browser object, called a CFNetServiceBrowser, that
can be used to search for domains and for services.

To use the resulting CFNetServiceBrowser in asynchronous mode, call
CFNetServiceBrowserScheduleWithRunLoop (page 70). Then call
CFNetServiceBrowserSearchForDomains (page 70) and
CFNetServiceBrowserSearchForServices (page 71) to use the CFNetServiceBrowser to search for
services and domains, respectively. The callback function specified by clientCB is called from a run loop to
pass search results to your application. The search continues until you stop the search by calling
CFNetServiceBrowserStopSearch (page 72).

If you do not call CFNetServiceBrowserScheduleWithRunLoop (page 70), searches with the resulting
CFNetServiceBrowser are made in synchronous mode. Calls made to
CFNetServiceBrowserSearchForDomains (page 70) and
CFNetServiceBrowserSearchForServices (page 71) block until there are search results, in which case
the callback function specified by clientCB is called, until the search is are stopped by calling
CFNetServiceBrowserStopSearch (page 72) from another thread, or an error occurs.

To shut down a CFNetServiceBrowser that is running in asynchronous mode, call
CFNetServiceBrowserUnscheduleFromRunLoop (page 73), followed by
CFNetServiceBrowserInvalidate (page 69), and then CFNetServiceBrowserStopSearch (page 72).

Special Considerations

This function is thread safe.

68 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserGetTypeID
Gets the Core Foundation type identifier for the Network Service browser object.

CFTypeID CFNetServiceBrowserGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserInvalidate
Invalidates an instance of a Network Service browser object.

void CFNetServiceBrowserInvalidate (
 CFNetServiceBrowserRef browser
);

Parameters
browser

The CFNetServiceBrowser to invalidate, obtained by a previous call to
CFNetServiceBrowserCreate (page 68).

Discussion
This function invalidates the specified instance of a Network Service browser object. Any searches using the
specified instance that are in progress when this function is called are stopped. An invalidated browser cannot
be scheduled on a run loop and its callback function is never called.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetServiceBrowserRef at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Functions 69
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceBrowserScheduleWithRunLoop
Schedules a CFNetServiceBrowser on a run loop.

void CFNetServiceBrowserScheduleWithRunLoop (
 CFNetServiceBrowserRef browser,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
browser

The CFNetServiceBrowser that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the browser is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the browser; cannot be NULL.

Discussion
This function schedules the specified CFNetServiceBrowser on the run loop, thereby placing the browser in
asynchronous mode. The run loop will call the browser’s callback function to deliver the results of domain
and service searches. The caller is responsible for ensuring that at least one of the run loops on which the
browser is scheduled is being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserSearchForDomains
Searches for domains.

Boolean CFNetServiceBrowserSearchForDomains (
 CFNetServiceBrowserRef browser,
 Boolean registrationDomains,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser, obtained by previously calling CFNetServiceBrowserCreate (page 68),
that is to perform the search; cannot be NULL.

registrationDomains
TRUE to search for only registration domains; FALSE to search for domains that can be browsed for
services. For this version of the CFNetServices API, the registration domain is the local domain
maintained by the mDNS responder running on the same machine as the calling application.

70 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure, that, if an error occurs, will be set to the error and the error’s
domain and passed to your callback function. Pass NULL if you don’t want to receive the error that
may occur as a result of this particular call.

Return Value
TRUE if the search was started (asynchronous mode); FALSE if another search is already in progress for this
CFNetServiceBrowser or if an error occurred.

Discussion
This function uses a CFNetServiceBrowser to search for domains. The search continues until the search is
canceled by calling CFNetServiceBrowserStopSearch (page 72). If registrationDomains is TRUE,
this function searches only for domains in which services can be registered. If registrationDomains is
FALSE, this function searches for domains that can be browsed for services. When a domain is found, the
callback function specified when the CFNetServiceBrowser was created is called and passed an instance of
a CFStringRef containing the domain that was found.

In asynchronous mode, this function returns TRUE if the search was started. Otherwise, it returns FALSE.

In synchronous mode, this function blocks until the search is stopped by calling
CFNetServiceBrowserStopSearch (page 72) from another thread, in which case it returns FALSE, or
until an error occurs.

Special Considerations

This function is thread safe.

For any one CFNetServiceBrowser, only one domain search or one service search can be in progress at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserSearchForServices
Searches a domain for services of a specified type.

Boolean CFNetServiceBrowserSearchForServices (
 CFNetServiceBrowserRef browser,
 CFStringRef domain,
 CFStringRef serviceType,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser, obtained by previously calling CFNetServiceBrowserCreate (page 68),
that is to perform the search; cannot be NULL.

domain
The domain to search for the service type; cannot be NULL. To get the domains that are available for
searching, call CFNetServiceBrowserSearchForDomains (page 70).

Functions 71
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

type
The service type to search for; cannot be NULL. For a list of valid service types, see
http://www.iana.org/assignments/port-numbers.

error
A pointer to a CFStreamError structure, that, if an error occurs, will be set to the error and the error’s
domain and passed to your callback function. Pass NULL if you don’t want to receive the error that
may occur as a result of this particular call.

Return Value
TRUE if the search was started (asynchronous mode); FALSE if another search is already in progress for this
CFNetServiceBrowser or if an error occurred.

Discussion
This function searches the specified domain for services that match the specified service type. The search
continues until the search is canceled by calling CFNetServiceBrowserStopSearch (page 72). When a
match is found, the callback function specified when the CFNetServiceBrowser was created is called and
passed an instance of a CFNetService representing the service that was found.

In asynchronous mode, this function returns TRUE if the search was started. Otherwise, it returns FALSE.

In synchronous mode, this function blocks until the search is stopped by calling
CFNetServiceBrowserStopSearch (page 72) from another thread, in which case this function returns
FALSE, or until an error occurs.

Special Considerations

This function is thread safe.

For any one CFNetServiceBrowser, only one domain search or one service search can be in progress at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserStopSearch
Stops a search for domains or services.

void CFNetServiceBrowserStopSearch (
 CFNetServiceBrowserRef browser,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser that was used to start the search; cannot be NULL.

72 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

http://www.iana.org/assignments/port-numbers

error
A pointer to a CFStreamError structure that will be passed to the callback function associated with
this CFNetServiceBrowser (if the search is being conducted in asynchronous mode) or that is pointed
to by the error parameter when CFNetServiceBrowserSearchForDomains (page 70) or
CFNetServiceBrowserSearchForServices (page 71) returns (if the search is being conducted
in synchronous mode). Set the domain field to kCFStreamErrorDomainCustom and the error
field to an appropriate value.

Discussion
This functions stops a search started by a previous call to CFNetServiceBrowserSearchForDomains (page
70) or CFNetServiceBrowserSearchForServices (page 71). For asynchronous and synchronous searches,
calling this function causes the callback function associated with the CFNetServiceBrowser to be called once
for each domain or service found. If the search is asynchronous, error is passed to the callback function. If
the search is synchronous, calling this function causes CFNetServiceBrowserSearchForDomains or
CFNetServiceBrowserSearchForServices to return FALSE. If the error parameter for either call pointed
to a CFStreamError structure, the CFStreamError structure contains the error code and the error code’s
domain as set when this function was called.

Special Considerations

This function is thread safe.

If you are stopping an asynchronous search, before calling this function, call
CFNetServiceBrowserUnscheduleFromRunLoop (page 73), followed by
CFNetServiceBrowserInvalidate (page 69).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserUnscheduleFromRunLoop
Unschedules a CFNetServiceBrowser from a run loop and mode.

void CFNetServiceBrowserUnscheduleFromRunLoop (
 CFNetServiceBrowserRef browser,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
browser

The CFNetServiceBrowser that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the browser is to be unscheduled; cannot be NULL.

Discussion
Call this function to shut down a browser that is running asynchronously. To complete the shutdown, call
CFNetServiceBrowserInvalidate (page 69) followed by CFNetServiceBrowserStopSearch (page
72).

Functions 73
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceCancel
Cancels a service registration or a service resolution.

void CFNetServiceCancel (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService, obtained by previously calling CFNetServiceCreate (page 74), for which a
registration or a resolution is to be canceled.

Discussion
This function cancels service registrations, started by CFNetServiceRegister (page 87), thereby making
the service unavailable. It also cancels service resolutions, started by CFNetServiceResolve (page 89).

If you are shutting down an asynchronous service, you should first call
CFNetServiceUnscheduleFromRunLoop (page 94) and CFNetServiceSetClient (page 92) with
clientCB set to NULL. Then call this function.

If you are shutting down a synchronous service, call this function from another thread.

This function also cancels service resolutions. You would want to cancel a service resolution if your callback
function has received an IP address that you’ve successfully used to connect to the service. In addition, you
might want to cancel a service resolution if the resolution is taking longer than a user would want to wait or
if the user canceled the operation.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceCreate
Creates an instance of a Network Service object.

74 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceRef CFNetServiceCreate (
 CFAllocatorRef alloc,
 CFStringRef domain,
 CFStringRef serviceType,
 CFStringRef name,
 SInt32 port
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

domain
The domain in which the CFNetService is to be registered; cannot be NULL. Call
CFNetServiceBrowserCreate (page 68) and CFNetServiceBrowserSearchForDomains (page
70) to get the registration domain.

type
The type of service being registered; cannot be NULL. For a list of valid service types, see
http://www.iana.org/assignments/port-numbers.

name
A unique name if the instance will be used to register a service. The name will become part of the
instance name in the DNS records that will be created when the service is registered. If the instance
will be used to resolve a service, the name should be the name of the machine or service that will be
resolved.

port
Local IP port, in host byte order, on which this service accepts connections. Pass zero to get placeholder
service. With a placeholder service, the service will not be discovered by browsing, but a name conflict
will occur if another client tries to register the same name. Most applications do not need to use
placeholder service.

Return Value
A new net service object, or NULL if the instance could not be created. Ownership follows the Create Rule.

Discussion
If the service depends on information in DNS TXT records, call
CFNetServiceSetProtocolSpecificInformation (page 93).

If the CFNetService is to run in asynchronous mode, call CFNetServiceSetClient (page 92) to prepare
the service for running in asynchronous mode. Then call CFNetServiceScheduleWithRunLoop (page 91)
to schedule the service on a run loop. Then call CFNetServiceRegister (page 87) to make the service
available.

If the CFNetService is to run in synchronous mode, call CFNetServiceRegister (page 87).

To terminate a service that is running in asynchronous mode, call CFNetServiceCancel (page 74) and
CFNetServiceUnscheduleFromRunLoop (page 94).

To terminate a service that is running in synchronous mode, call CFNetServiceCancel (page 74).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Functions 75
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

http://www.iana.org/assignments/port-numbers

Declared In
CFNetServices.h

CFNetServiceCreateCopy
Creates a copy of a CFNetService object.

CFNetServiceRef CFNetServiceCreateCopy (
 CFAllocatorRef alloc,
 CFNetServiceRef service
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

service
CFNetServiceRef to be copied; cannot be NULL. If service is not a valid CFNetServiceRef, the behavior
of this function is undefined.

Return Value
Copy of service, including all previously resolved data, or NULL if service could not be copied. Ownership
follows the Create Rule.

Discussion
This function creates a copy of the CFNetService specified by service.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetServices.h

CFNetServiceCreateDictionaryWithTXTData
Uses TXT record data to create a dictionary.

CFDictionaryRef CFNetServiceCreateDictionaryWithTXTData (
 CFAllocatorRef alloc,
 CFDataRef txtRecord
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

txtRecord
TXT record data as returned by CFNetServiceGetTXTData (page 81).

76 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
A dictionary containing the key/value pairs parsed from txtRecord, or NULL if txtRecord cannot be parsed.
Each key in the dictionary is a CFString object, and each value is a CFData object. Ownership follows the
Create Rule.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceCreateTXTDataWithDictionary
Flattens a set of key/value pairs into a CFDataRef suitable for passing to CFNetServiceSetTXTData (page
93).

CFDataRef CFNetServiceCreateTXTDataWithDictionary (
 CFAllocatorRef alloc,
 CFDictionaryRef keyValuePairs
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

keyValuePairs
CFDictionaryRef containing the key/value pairs that are to be placed in a TXT record. Each key must
be a CFStringRef and each value should be a CFDataRef or a CFStringRef. (See the discussion below
for additional information about values that are CFStringRefs.) This function fails if any other data
types are provided. The length of a key and its value should not exceed 255 bytes.

Return Value
A CFData object containing the flattened form of keyValuePairs, or NULL if the dictionary could not be
flattened. Ownership follows the Create Rule.

Discussion
This function flattens the key/value pairs in the dictionary specified by keyValuePairs into a CFDataRef
suitable for passing to CFNetServiceSetTXTData (page 93). Note that this function is not a general purpose
function for flattening CFDictionaryRefs.

The keys in the dictionary referenced by keyValuePairs must be CFStringRefs and the values must be
CFDataRefs. Any values that are CFStringRefs are converted to CFDataRefs representing the flattened UTF-8
bytes of the string. The types of the values are not encoded in the CFDataRefs, so any CFStringRefs that are
converted to CFDataRefs remain CFDataRefs when the CFDataRef produced by this function is processed by
CFNetServiceCreateDictionaryWithTXTData (page 76).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Functions 77
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Declared In
CFNetServices.h

CFNetServiceGetAddressing
Gets the IP addressing from a CFNetService.

CFArrayRef CFNetServiceGetAddressing (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose IP addressing is to be obtained; cannot be NULL.

Return Value
A CFArray containing a CFDataRef for each IP address returned, or NULL. Each CFDataRef consists of a
sockaddr structure containing the IP address of the service. This function returns NULL if the service’s
addressing is unknown because CFNetServiceResolve (page 89) has not been called for theService.

Discussion
This function gets the IP addressing from a CFNetService. Typically, the CFNetService was obtained by calling
CFNetServiceBrowserSearchForServices (page 71). Before calling this function, call
CFNetServiceResolve (page 89) to update the CFNetService with its IP addressing.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetDomain
Gets the domain from a CFNetService.

CFStringRef CFNetServiceGetDomain (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose domain is to be obtained; cannot be NULL.

Return Value
A CFString object containing the domain of the CFNetService.

Discussion
This function gets the domain from a CFNetService.

78 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetName
Gets the name from a CFNetService.

CFStringRef CFNetServiceGetName (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose name is to be obtained; cannot be NULL.

Return Value
A CFString object containing the name of the service represented by the CFNetService.

Discussion
This function gets the name from a CFNetService.

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetPortNumber
This function gets the port number from a CFNetService. (Deprecated in Mac OS X version 10.4.)

extern SInt32 CFNetServiceGetPortNumber(
 CFNetServiceRef theService);

Parameters
theService

The CFNetService whose protocol-specific information is to be obtained; cannot be NULL. Note that
in order to get protocol-specific information, you must resolve theService by calling
CFNetServiceResolve (page 89) or CFNetServiceResolveWithTimeout (page 90) before
calling this function.

Return Value
A CFString object containing the protocol-specific information, or NULL if there is no information.

Functions 79
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceGetProtocolSpecificInformation
This function gets protocol-specific information from a CFNetService. (Deprecated in Mac OS X version 10.4.
Use CFNetServiceGetTXTData (page 81) instead.)

CFStringRef CFNetServiceGetProtocolSpecificInformation (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose protocol-specific information is to be obtained; cannot be NULL. Note that
in order to get protocol-specific information, you must resolve theService by calling
CFNetServiceResolve (page 89) or CFNetServiceResolveWithTimeout (page 90) before
calling this function.

Return Value
A CFString object containing the protocol-specific information, or NULL if there is no information.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceGetTargetHost
Queries a CFNetService for its target hosts.

CFStringRef CFNetServiceGetTargetHost (
 CFNetServiceRef theService
);

Parameters
theService

Network service to be queried.

80 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
The target host name of the machine providing the service or NULL is of the service’s target host is not known.
(The target host will not be known if it has not been resolved.)

Special Considerations

This function is thread safe, but the target host name is not safe if the service is altered from another thread.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceGetTXTData
Queries a network service for the contents of its TXT records.

CFDataRef CFNetServiceGetTXTData (
 CFNetServiceRef theService
);

Parameters
theService

Reference for the network service whose TXT record data is to be obtained; cannot be NULL. Note
that in order to get TXT record data, you must resolve theService by calling
CFNetServiceResolve (page 89) or CFNetServiceResolveWithTimeout (page 90) before
calling this function.

Return Value
CFDataRef object containing the requested TXT data and suitable for passing to
CFNetServiceCreateDictionaryWithTXTData (page 76), or NULL if the service’s TXT data has not been
resolved.

Discussion
This function gets the data from the service’s TXT records.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceGetType
Gets the type from a CFNetService.

Functions 81
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFStringRef CFNetServiceGetType (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose type is to be obtained; cannot be NULL.

Return Value
A CFString object containing the type from a CFNetService.

Discussion
This function gets the type of a CFNetService.

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetTypeID
Gets the Core Foundation type identifier for the Network Service object.

CFTypeID CFNetServiceGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorCreate
Creates an instance of a NetServiceMonitor object that watches for record changes.

82 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceMonitorRef CFNetServiceMonitorCreate (
 CFAllocatorRef alloc,
 CFNetServiceRef theService,
 CFNetServiceMonitorClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theService
CFNetService to be monitored.

clientCB
Pointer to callback function that is to be called when a record associated with theService changes;
cannot be NULL.

clientContext
Pointer to user-defined contextual information that is to be passed to the callback specified by
clientCBwhen the callback is called; cannot be NULL. For details, see CFNetServiceClientContext (page
97).

Return Value
A new instance of a CFNetServiceMonitor, or NULL if the monitor could not be created. Ownership follows
the Create Rule.

Discussion
This function creates a CFNetServiceMonitor that watches for changes in records associated with theService.

If the CFNetServiceMonitor is to run in asynchronous mode, call
CFNetServiceMonitorScheduleWithRunLoop (page 84) to schedule the monitor on a run loop. Then
call CFNetServiceMonitorStart (page 85) to start monitoring. When a change occurs, the callback
function specified by clientCB will be called. For details, see CFNetServiceMonitorClientCallBack (page 96).

If the CFNetServiceMonitor is to run in synchronous mode, call CFNetServiceMonitorStart (page 85).

To stop a monitor that is running in asynchronous mode, call CFNetServiceMonitorStop (page 86) and
CFNetServiceMonitorUnscheduleFromRunLoop (page 87).

To stop a monitor that is running in synchronous mode, call CFNetServiceMonitorStop (page 86).

If you no longer need to monitor record changes, call CFNetServiceMonitorStop (page 86) to stop the
monitor and then call CFNetServiceMonitorInvalidate (page 84)to invalidate the monitor so it cannot
be used again. Then call CFRelease to release the memory associated with CFNetServiceMonitorRef.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

Functions 83
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceMonitorGetTypeID
Gets the Core Foundation type identifier for all CFNetServiceMonitor instances.

CFTypeID CFNetServiceMonitorGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Version Notes
Introduced in Mac OS X v10.4.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorInvalidate
Invalidates an instance of a Network Service monitor object.

void CFNetServiceMonitorInvalidate (
 CFNetServiceMonitorRef monitor
);

Parameters
monitor

CFNetServiceMonitor to invalidate; cannot be NULL.

Discussion
This function invalidates the specified Network Service monitor so that it cannot be used again. Before you
call this function, you should call CFNetServiceMonitorStop (page 86). If the monitor has not already
been stopped, this function stops the monitor for you.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorScheduleWithRunLoop
Schedules a CFNetServiceMonitor on a run loop.

84 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

void CFNetServiceMonitorScheduleWithRunLoop (
 CFNetServiceMonitorRef monitor,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetServiceMonitor that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the monitor is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the monitor; cannot be NULL.

Discussion
Schedules the specified monitor on a run loop, which places the monitor in asynchronous mode. The caller
is responsible for ensuring that at least one of the run loops on which the monitor is scheduled is being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorStart
Starts monitoring.

Boolean CFNetServiceMonitorStart (
 CFNetServiceMonitorRef monitor,
 CFNetServiceMonitorType recordType,
 CFStreamError *error
);

Parameters
monitor

CFNetServiceMonitor, created by calling CFNetServiceMonitorCreate (page 82), that is to be
started.

recordType
CFNetServiceMonitorType that specified the type of record to monitor. For possible values, see
CFNetServiceMonitorType Constants (page 100).

error
Pointer to a CFStreamError structure. If an error occurs, on output, the structure’s domain field will
be set to the error code’s domain and the error field will be set to an appropriate error code. Set
this parameter to NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous monitor was started successfully. FALSE if an error occurred when starting an
asynchronous or synchronous monitor, or if CFNetServiceMonitorStop (page 86) was called for an
synchronous monitor.

Functions 85
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Discussion
This function starts monitoring for changes to records of the type specified by recordType. If a monitor is
already running for the service associated with the specified CFNetServiceMonitorRef, this function returns
FALSE.

For synchronous monitors, this function blocks until the monitor is stopped by calling
CFNetServiceMonitorStop (page 86), in which case, this function returns FALSE.

For asynchronous monitors, this function returns TRUE or FALSE, depending on whether monitoring starts
successfully.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorStop
Stops a CFNetServiceMonitor.

void CFNetServiceMonitorStop (
 CFNetServiceMonitorRef monitor,
 CFStreamError *error
);

Parameters
monitor

CFNetServiceMonitor, started by calling CFNetServiceMonitorStart (page 85), that is to be
stopped.

error
Pointer to a CFStreamError structure or NULL. For synchronous monitors, set the error field of this
structure to the non-zero value you want to be set in the CFStreamError structure when
CFNetServiceMonitorStart (page 85) returns. Note that when it returns,
CFNetServiceMonitorStart returns FALSE. If the monitor was started asynchronously, set the
error field to the non-zero value you want the monitor’s callback to receive when it is called. If this
parameter is NULL, default values for the CFStreamError structure are used: the domain is set to
kCFStreamErrorDomainNetServices and the error code is set to kCFNetServicesErrorCancel.

Discussion
This function stops the specified monitor. Call CFNetServiceMonitorStart (page 85) if you want to start
monitoring again.

If you want to stop monitoring and no longer need to monitor record changes, call
CFNetServiceMonitorInvalidate (page 84) instead of this function.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

86 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Declared In
CFNetServices.h

CFNetServiceMonitorUnscheduleFromRunLoop
Unschedules a CFNetServiceMonitor from a run loop.

void CFNetServiceMonitorUnscheduleFromRunLoop (
 CFNetServiceMonitorRef monitor,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
monitor

The CFNetServiceMonitor that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the monitor is to be unscheduled; cannot be NULL.

Discussion
Unschedules the specified monitor from the specified run loop and mode. Call this function to shut down a
monitor that is running asynchronously.

To change a monitor so that it cannot be scheduled and so that its callback will never be called, call
CFNetServiceMonitorInvalidate (page 84).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceRegister
Makes a CFNetService available on the network. (Deprecated in Mac OS X version 10.4. Use
CFNetServiceRegisterWithOptions (page 88) instead.)

Boolean CFNetServiceRegister (
 CFNetServiceRef theService,
 CFStreamError *error
);

Parameters
theService

The CFNetService to register; cannot be NULL. The registration will fail if the service doesn’t have a
domain, a type, a name, and an IP address.

Functions 87
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service registration was started; FALSE if an asynchronous or synchronous registration
failed or if a synchronous registration was canceled.

Discussion
If the service is to run in asynchronous mode, you must call CFNetServiceSetClient (page 92) to associate
a callback function with this CFNetService before calling this function.

When registering a service that runs in asynchronous mode, this function returns TRUE if the service contains
all of the required attributes and the registration process can start. If the registration process completes
successfully, the service is available on the network until you shut down the service by calling
CFNetServiceUnscheduleFromRunLoop (page 94), CFNetServiceSetClient (page 92), and
CFNetServiceCancel (page 74). If the service does not contain all of the required attributes or if the
registration process does not complete successfully, this function returns FALSE.

When registering a service that runs in synchronous mode, this function blocks until an error occurs, in which
case this function returns FALSE. Until this function returns FALSE, the service is available on the network.
To force this function to return FALSE, thereby shutting down the service, call CFNetServiceCancel (page
74) from another thread.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceRegisterWithOptions
Makes a CFNetService available on the network.

Boolean CFNetServiceRegisterWithOptions (
 CFNetServiceRef theService,
 CFOptionFlags options,
 CFStreamError *error
);

Parameters
theService

Network service to register; cannot be NULL. The registration will fail if the service doesn’t have a
domain, a type, a name, and an IP address.

options
Bit flags for specifying registration options. Currently, the only registration option is
kCFNetServiceFlagNoAutoRename. For details, see CFNetService Registration Options (page 99).

88 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
Pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service registration was started; FALSE if an asynchronous or synchronous registration
failed or if a synchronous registration was canceled.

Discussion
If the service is to run in asynchronous mode, you must call CFNetServiceSetClient (page 92) to associate
a callback function with this CFNetService before calling this function.

When registering a service that runs in asynchronous mode, this function returns TRUE if the service contains
all of the required attributes and the registration process can start. If the registration process completes
successfully, the service is available on the network until you shut down the service by calling
CFNetServiceUnscheduleFromRunLoop (page 94), CFNetServiceSetClient (page 92), and
CFNetServiceCancel (page 74). If the service does not contain all of the required attributes or if the
registration process does not complete successfully, this function returns FALSE.

When registering a service that runs in synchronous mode, this function blocks until an error occurs, in which
case this function returns FALSE. Until this function returns FALSE, the service is available on the network.
To force this function to return FALSE, thereby shutting down the service, call CFNetServiceCancel (page
74) from another thread.

The options parameter is a bit flag for specifying service registration options. Currently,
kCFNetServiceFlagNoAutoRename is the only supported registration option. If this bit is set and a service
of the same name is running, the registration will fail. If this bit is not set and a service of the same name is
running, the service that is being registered will be renamed automatically by appending (n) to the service
name, where n is a number that is incremented until the service can be registered with a unique name.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceResolve
This function updates the specified CFNetService with the IP address or addresses associated with the service.
Call CFNetServiceGetAddressing (page 78) to get the addresses. (Deprecated in Mac OS X version 10.4.
Use CFNetServiceResolveWithTimeout (page 90) instead.)

Boolean CFNetServiceResolve (
 CFNetServiceRef theService,
 CFStreamError *error
);

Parameters
theService

The CFNetService to resolve; cannot be NULL. The resolution will fail if the service doesn’t have a
domain, a type, and a name.

Functions 89
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service resolution was started or if a synchronous service resolution updated the
CFNetService; FALSE if an asynchronous or synchronous resolution failed or if a synchronous resolution was
canceled.

Discussion
When resolving a service that runs in asynchronous mode, this function returns TRUE if the CFNetService
has a domain, type, and name, and the underlying resolution process was started. Otherwise, this function
returns FALSE. Once started, the resolution continues until it is canceled by calling
CFNetServiceCancel (page 74).

When resolving a service that runs in synchronous mode, this function blocks until the CFNetService is
updated with at least one IP address, until an error occurs, or until CFNetServiceCancel (page 74) is called.

Special Considerations

This function is thread safe.

If the service will be used in asynchronous mode, you must call CFNetServiceSetClient (page 92) before
calling this function.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceResolveWithTimeout
Gets the IP address or addresses for a CFNetService.

Boolean CFNetServiceResolveWithTimeout (
 CFNetServiceRef theService,
 CFTimeInterval timeout,
 CFStreamError *error
);

Parameters
theService

The CFNetService to resolve; cannot be NULL. The resolution will fail if the service doesn’t have a
domain, a type, and a name.

timeout
Value of type CFTimeInterval specifying the maximum amount of time allowed to perform the
resolution. If the resolution is not performed within the specified amount of time, a timeout error will
be returned. If timeout is less than or equal to zero, an infinite amount of time is allowed.

error
Pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

90 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
TRUE if an asynchronous service resolution was started or if a synchronous service resolution updated the
CFNetService; FALSE if an asynchronous or synchronous resolution failed or timed out, or if a synchronous
resolution was canceled.

Discussion
This function updates the specified CFNetService with the IP address or addresses associated with the service.
Call CFNetServiceGetAddressing (page 78) to get the addresses.

When resolving a service that runs in asynchronous mode, this function returns TRUE if the CFNetService
has a domain, type, and name, and the underlying resolution process was started. Otherwise, this function
returns FALSE. Once started, the resolution continues until it is canceled by calling
CFNetServiceCancel (page 74).

When resolving a service that runs in synchronous mode, this function blocks until the CFNetService is
updated with at least one IP address, until an error occurs, or until CFNetServiceCancel (page 74) is called.

Special Considerations

This function is thread safe.

If the service will be used in asynchronous mode, you must call CFNetServiceSetClient (page 92) before
calling this function.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceScheduleWithRunLoop
Schedules a CFNetService on a run loop.

void CFNetServiceScheduleWithRunLoop (
 CFNetServiceRef theService,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetService that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the service is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the service; cannot be NULL.

Discussion
Schedules the specified service on a run loop, which places the service in asynchronous mode. The caller is
responsible for ensuring that at least one of the run loops on which the service is scheduled is being run.

Special Considerations

This function is thread safe.

Functions 91
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Before calling this function, call CFNetServiceSetClient (page 92) to prepare a CFNetService for use in
asynchronous mode.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceSetClient
Associates a callback function with a CFNetService or disassociates a callback function from a CFNetService.

Boolean CFNetServiceSetClient (
 CFNetServiceRef theService,
 CFNetServiceClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
theService

The CFNetService; cannot be NULL.

clientCB
The callback function that is to be associated with this CFNetService. If you are shutting down the
service, set clientCB to NULL to disassociate from this CFNetService the callback function that was
previously associated.

clientContext
Context information to be used when clientCB is called; cannot be NULL.

Return Value
TRUE if the client was set; otherwise, FALSE.

Discussion
The callback function specified by clientCB will be called to report IP addresses (in the case of
CFNetServiceResolve) or to report registration errors (in the case of CFNetServiceRegister).

Special Considerations

This function is thread safe.

For a CFNetService that will operate asynchronously, call this function and then call
CFNetServiceScheduleWithRunLoop (page 91) to schedule the service on a run loop. Then call
CFNetServiceRegister (page 87) or CFNetServiceResolve (page 89).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

92 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceSetProtocolSpecificInformation
Sets protocol-specific information for a CFNetService. (Deprecated in Mac OS X version 10.4. Use
CFNetServiceSetTXTData instead.)

void CFNetServiceSetProtocolSpecificInformation (
 CFNetServiceRef theService,
 CFStringRef theInfo
);

Parameters
theService

The CFNetService whose protocol-specific information is to be set; cannot be NULL.

theInfo
The protocol-specific information to be set. Pass NULL to remove protocol-specific information from
the service.

Discussion
The protocol-specific information appears in DNS TXT records for the service. Each TXT record consists of
zero or more strings, packed together without any intervening gaps or padding bytes for word alignment.
The format of each constituent string is a single length byte, followed by zero to 255 bytes of text data.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceSetTXTData
Sets the TXT record for a CFNetService.

Boolean CFNetServiceSetTXTData (
 CFNetServiceRef theService,
 CFDataRef txtRecord
);

Parameters
theService

CFNetServiceRef for which a TXT record is to be set; cannot be NULL.

txtRecord
Contents of the TXT record that is to be set. The contents must not exceed 1450 bytes.

Return Value
TRUE if the TXT record was set; otherwise, FALSE.

Discussion
This function sets a TXT record for the specified service. If the service is currently registered on the network,
the record is broadcast. Setting a TXT record on a service that is still being resolved is not allowed.

Functions 93
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceUnscheduleFromRunLoop
Unschedules a CFNetService from a run loop.

void CFNetServiceUnscheduleFromRunLoop (
 CFNetServiceRef theService,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetService that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the service is to be unscheduled; cannot be NULL.

Discussion
Unschedules the specified service from the specified run loop and mode. Call this function to shut down a
service that is running asynchronously. To complete the shutdown, call CFNetServiceSetClient (page
92) and set clientCB to NULL. Then call CFNetServiceCancel (page 74).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Callbacks

CFNetServiceBrowserClientCallBack
Defines a pointer to the callback function for a CFNetServiceBrowser.

94 Callbacks
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

typedef void (*CFNetServiceBrowserClientCallBack) (
 CFNetServiceBrowserRef browser,
 CFOptionFlags flags,
 CFTypeRef domainOrService,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceBrowserClientCallBack, you would declare it like this:

void MyNetServiceBrowserClientCallBack (
 CFNetServiceBrowserRef browser,
 CFOptionFlags flags,
 CFTypeRef domainOrService,
 CFStreamError* error,
 void* info);

Parameters
browser

The CFNetServiceBrowser associated with this callback function.

flags
Flags conveying additional information. The kCFNetServiceFlagIsDomain bit is set if
domainOrService contains a domain; if this bit is not set, domainOrService contains a
CFNetService instance. For additional bit values, see CFNetServiceBrowserClientCallBack Bit Flags (page
99).

domainOrService
A string containing a domain name if this callback function is being called as a result of calling
CFNetServiceBrowserSearchForDomains (page 70), or a CFNetService instance if this callback
function is being called as a result calling CFNetServiceBrowserSearchForServices (page 71).

error
A pointer to a CFStreamError structure whose error field may contain an error code.

info
User-defined context information. The value of info is the same as the value of the info field of the
CFNetServiceClientContext (page 97) structure that was provided when
CFNetServiceBrowserCreate (page 68) was called to create the CFNetServiceBrowser associated
with this callback function.

Discussion
The callback function for a CFNetServiceBrowser is called one or more times when domains or services are
found as the result of calling CFNetServiceBrowserSearchForDomains (page 70) and
CFNetServiceBrowserSearchForServices (page 71).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceClientCallBack
Defines a pointer to the callback function for a CFNetService.

Callbacks 95
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

typedef void (*CFNetServiceClientCallBack) (
 CFNetServiceRef theService,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceClientCallBack, you would declare it like this:

void MyNetServiceClientCallBack (
 CFNetServiceRef theService,
 CFStreamError* error,
 void* info);

Parameters
theService

CFNetService associated with this callback function.

error
Pointer to a CFStreamError structure whose error field contain may contain an error code.

info
User-defined context information. The value of info is the same as the value of the info field of the
CFNetServiceClientContext (page 97) structure that was provided when
CFNetServiceSetClient (page 92) was called for the CFNetService associated with this callback
function.

Discussion
Your callback function will be called when there are results of resolving a CFNetService to report or when
there are registration errors to report. In the case of resolution, if the service has more than one IP address,
your callback will be called once for each address.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorClientCallBack
Defines a pointer to the callback function that is to be called when a monitored record type changes.

typedef void (*CFNetServiceMonitorClientCallBack) (
 CFNetServiceMonitorRef theMonitor,
 CFNetServiceRef theService,
 CFNetServiceMonitorType typeInfo,
 CFDataRef rdata,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceMonitorClientCallBack, you would declare it like this:

void MyNetServiceMonitorClientCallBack (
 CFNetServiceMonitorRef theMonitor,
 CFNetServiceRef theService,
 CFNetserviceMonitorType typeInfo,
 CFDataRef rdata,
 CFStreamError *error,

96 Callbacks
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

 void *info);

Parameters
theMonitor

CFNetServiceMonitor for which the callback is being called.

theService
CFNetService for which the callback is being called.

typeInfo
Type of record that changed. For possible values, see CFNetServiceMonitorType Constants (page 100).

rdata
Contents of the record that changed.

error
Pointer to CFStreamError structure whose error field contains an error code if an error occurred.

info
Arbitrary pointer to the user-defined data that was specified in the info field of the
CFNetServiceClientContext structure when the monitor was created by
CFNetServiceMonitorCreate (page 82).

Discussion
The callback function will be called when the monitored record type changes or when the monitor is stopped
by calling CFNetServiceMonitorStop (page 86).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Data Types

CFNetServiceBrowserRef
An opaque reference representing a CFNetServiceBrowser.

typedef struct __CFNetServiceBrowser* CFNetServiceBrowserRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceClientContext
A structure provided when a CFNetService is associated with a callback function or when a CFNetServiceBrowser
is created.

Data Types 97
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

struct CFNetServiceClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFNetServiceClientContext CFNetServiceClientContext;

Fields
version

Version number for this structure. Currently the only valid value is zero.

info
Arbitrary pointer to user-allocated memory containing user-defined data that is associated with the
service, browser, or monitor and is passed to their respective callback functions. The data must be
valid for as long as the CFNetService, CFNetServiceBrowser, or CFNetServiceMonitor is valid. Set this
field to NULL if your callback function doesn’t want to receive user-defined data.

retain
The callback used to add a retain for the service or browser using info for the life of the service or
browser. This callback may be used for temporary references the service or browser needs to take.
This callback returns the actual info pointer so it can be stored in the service or browser. This field
can be NULL.

release
Callback that removes a retain previously added for the service or browser on the info pointer. This
field can be NULL, but setting this field to NULL may result in memory leaks.

copyDescription
Callback used to create a descriptive string representation of the data pointed to by info. In
implementing this function, return a reference to a CFString object that describes your allocator and
some characteristics of your user-defined data, which is used by CFCopyDescription(). You can
set this field to NULL, in which case Core Foundation will provide a rudimentary description.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorRef
An opaque reference for a service monitor.

typedef struct __CFNetServiceMonitor* CFNetServiceMonitorRef;

Discussion
Service monitor references are used to monitor record changes on a CFNetServiceRef.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

98 Data Types
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceRef
An opaque reference representing a CFNetService.

typedef struct __CFNetService* CFNetServiceRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Constants

CFNetService Registration Options
Bit flags used when registering a service.

enum {
 kCFNetServiceFlagNoAutoRename = 1
};

Constants
kCFNetServiceFlagNoAutoRename

Causes registrations to fail if a name conflict occurs.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetServiceBrowserClientCallBack Bit Flags
Bit flags providing additional information about the result returned when a client’s
CFNetServiceBrowserClientCallBack function is called.

Constants 99
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

enum {
kCFNetServiceFlagMoreComing = 1,
kCFNetServiceFlagIsDomain = 2,
kCFNetServiceFlagIsDefault = 4,
kCFNetServiceFlagIsRegistrationDomain = 4, /* For compatibility */
kCFNetServiceFlagRemove = 8
};

Constants
kCFNetServiceFlagMoreComing

If set, a hint that the client’s callback function will be called again soon; therefore, the client should
not do anything time-consuming, such as updating the screen.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagIsDomain
If set, the results pertain to a search for domains. If not set, the results pertain to a search for services.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagIsDefault
If set, the resulting domain is the default registration or browse domain, depending on the context.
For this version of the CFNetServices API, the default registration domain is the local domain. In
previous versions of this API, this constant was kCFNetServiceFlagIsRegistrationDomain,
which is retained for backward compatibility.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagRemove
If set, the client should remove the result item instead of adding it.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

Discussion
See CFNetServiceBrowserClientCallBack for additional information.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetServiceMonitorType Constants
Record type specifier used to tell a service monitor the type of record changes to watch for.

100 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

enum {
kCFNetServiceMonitorTXT = 1
} typedef enum CFNetServiceMonitorType CFNetServiceMonitorType;

Constants
kCFNetServiceMonitorTXT

Watch for TXT record changes.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetService Error Constants
Error codes that may be returned by CFNetServices functions or passed to CFNetServices callback functions.

typedef enum {
 kCFNetServicesErrorUnknown = -72000,
 kCFNetServicesErrorCollision = -72001,
 kCFNetServicesErrorNotFound = -72002,
 kCFNetServicesErrorInProgress = -72003,
 kCFNetServicesErrorBadArgument = -72004,
 kCFNetServicesErrorCancel = -72005,
 kCFNetServicesErrorInvalid = -72006,
 kCFNetServicesErrorTimeout = -72007
} CFNetServicesError;

Constants
kCFNetServicesErrorUnknown

An unknown CFNetService error occurred.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorCollision
An attempt was made to use a name that is already in use.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorNotFound
Not used.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorInProgress
A search is already in progress.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

Constants 101
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

kCFNetServicesErrorBadArgument
A required argument was not provided.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorCancel
The search or service was canceled.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorInvalid
Invalid data was passed to a CFNetServices function.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorTimeout
Resolution failed because the timeout was reached.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

Error Domains
Error domains.

extern const SInt32 kCFStreamErrorDomainMach;
extern const SInt32 kCFStreamErrorDomainNetServices;

Constants
kCFStreamErrorDomainMach

Error domain returning errors reported by Mach. For more information, see the header file
/usr/include/mach/error.h.

Available in Mac OS X version 10.5 and later.

Declared in CFNetServices.h.

kCFStreamErrorDomainNetServices
Error domain returning errors reported by the service discovery APIs. These errors are only returned
if you use the CFNetServiceBrowser API or any APIs introduced in Mac OS X v10.4 or later.

Available in Mac OS X version 10.5 and later.

Declared in CFNetServices.h.

102 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFSocketStream.h

Companion guide CFNetwork Programming Guide

Overview

This document describes the CFStream functions for working with sockets. It is part of the CFSocketStream
API.

Functions by Task

Creating Socket Pairs

CFStreamCreatePairWithSocketToCFHost (page 106)
Creates readable and writable streams connected to a given CFHost object.

CFStreamCreatePairWithSocketToNetService (page 106)
Creates a pair of streams for a CFNetService.

Setting the Security Protocol

CFSocketStreamPairSetSecurityProtocol (page 104) Deprecated in Mac OS X v10.2
This function sets the security protocol for the specified pair of socket streams. (Deprecated. Use
CFReadStreamSetProperty and CFWriteStreamSetProperty in conjunction with the security
constants defined in CFSocketStream.)

Obtaining Errors

CFSocketStreamSOCKSGetError (page 104)
This function gets error codes in thekCFStreamErrorDomainSOCKSdomain from theCFStreamError
returned by a stream operation.

Overview 103
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

CFSocketStreamSOCKSGetErrorSubdomain (page 105)
Gets the error subdomain associated with errors in the kCFStreamErrorDomainSOCKS domain from
the CFStreamError returned by a stream operation.

Functions

CFSocketStreamPairSetSecurityProtocol
This function sets the security protocol for the specified pair of socket streams. (Deprecated in Mac OS X
v10.2. Use CFReadStreamSetProperty and CFWriteStreamSetProperty in conjunction with the security
constants defined in CFSocketStream.)

Boolean CFSocketStreamPairSetSecurityProtocol (
 CFReadStreamRef socketReadStream,
 CFWriteStreamRef socketWriteStream,
 CFStreamSocketSecurityProtocol securityProtocol
);

Parameters
socketReadStream

The read stream.

socketWriteStream
The write stream.

securityProtocol
The security protocol to be set. See CFStream Socket Security Protocol Constants (page 111) for possible
values.

function result
TRUE if specified security protocol was set; otherwise, FALSE.

Discussion
Call this function before you call CFReadStreamOpen to open the read stream or CFWriteStreamOpen to
open the write stream.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.2.

Declared In
CFSocketStream.h

CFSocketStreamSOCKSGetError
This function gets error codes in the kCFStreamErrorDomainSOCKS domain from the CFStreamError
returned by a stream operation.

104 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

SInt32 CFSocketStreamSOCKSGetError(CFStreamError* error);

Parameters
error

The error value to decode.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetError (page 104) returns the error code itself, which must be interpreted
in the context of the result of a call to CFSocketStreamSOCKSGetErrorSubdomain (page 105). Possible
return values (beyond subdomain-specific values such as client versions and HTTP error codes) are listed in
“CFStream Errors” (page 116).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFSocketStream.h

CFSocketStreamSOCKSGetErrorSubdomain
Gets the error subdomain associated with errors in the kCFStreamErrorDomainSOCKS domain from the
CFStreamError returned by a stream operation.

SInt32 CFSocketStreamSOCKSGetErrorSubdomain(CFStreamError* error);

Parameters
error

The error value to decode.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 105) returns an identifier that tells which layer
of the protocol stack produced the error. The possible values are listed in “Error Subdomains” (page 115).
With this information, you can interpret the error codes returned by CFSocketStreamSOCKSGetError (page
104).

Availability
Available in Mac OS X v10.2 and later.

Functions 105
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Declared In
CFSocketStream.h

CFStreamCreatePairWithSocketToCFHost
Creates readable and writable streams connected to a given CFHost object.

void CFStreamCreatePairWithSocketToCFHost (
 CFAllocatorRef alloc,
 CFHostRef host,
 SInt32 port,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the CFReadStream and CFWriteStream objects. Pass
NULL or kCFAllocatorDefault to use the current default allocator.

host
A CFHost object to which the streams are connected. If unresolved, the host will be resolved prior
to connecting.

port
The TCP port number to which the socket streams should connect.

readStream
Upon return, contains a CFReadStream object connected to the host host on port port, or NULL if
there is a failure during creation. If you pass NULL, the function will not create a readable stream.
Ownership follows the Create Rule.

writeStream
Upon return, contains a CFWriteStream object connected to the host host on port port, or NULL
if there is a failure during creation. If you pass NULL, the function will not create a writable stream.
Ownership follows the Create Rule.

Discussion
The streams do not open a connection to the specified host until one of the streams is opened.

Most properties are shared by both streams. Setting the property for one stream automatically sets the
property for the other.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFSocketStream.h

CFStreamCreatePairWithSocketToNetService
Creates a pair of streams for a CFNetService.

106 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

void CFStreamCreatePairWithSocketToNetService (
 CFAllocatorRef alloc,
 CFNetServiceRef service,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the CFReadStream and CFWriteStream objects. Pass
NULL or kCFAllocatorDefault to use the current default allocator.

service
Reference to the CFNetService to which the streams are to be connected. If the service is not
resolved, the service will be resolved before the streams are connected.

readstream
Upon return, contains a CFReadStream object connected to the service specified by service, or
NULL if there is a failure during creation. If you pass NULL, the function will not create a readable
stream. Ownership follows the Create Rule.

writeStream
Upon return, contains a CFWriteStream object connected to the service specified by service, or
NULL if there is a failure during creation. If you pass NULL, the function will not create a writable
stream. Ownership follows the Create Rule.

Discussion
Read and write operations on sockets can block. To prevent blocking, you can call CFReadStreamSetClient
and CFWriteStreamSetClient to register to receive stream-related event notifications. Then call
CFReadStreamScheduleWithRunLoop and CFWriteStreamScheduleWithRunLoop to schedule the
stream on a run loop for receiving stream-related event notifications. Then call CFReadStreamOpen and
CFWriteStreamOpen to open each stream.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFSocketStream.h

Constants

CFStream Property Keys
Constants for CFStream property keys

Constants 107
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

const CFStringRef kCFStreamPropertyShouldCloseNativeSocket;
const CFStringRef kCFStreamPropertySocketSecurityLevel;
const CFStringRef kCFStreamPropertySOCKSProxy;
const CFStringRef kCFStreamPropertySSLPeerCertificates;
const CFStringRef kCFStreamPropertySSLSettings;
const CFStringRef kCFStreamPropertyProxyLocalByPass;
extern const CFStringRef kCFStreamPropertySocketRemoteHost;
extern const CFStringRef kCFStreamPropertySocketRemoteNetService;

Constants
kCFStreamPropertyShouldCloseNativeSocket

Should Close Native Socket property key.

If set to kCFBooleanTrue, the stream will close and release the underlying native socket when the
stream is released. If set to kCFBooleanFalse, the stream will not close and release the underlying
native socket when the stream is released. If a stream is created with a native socket, the default value
of this property is kCFBooleanFalse. This property is only available for socket streams. It can be set
by calling CFReadStreamSetProperty and CFWriteStreamSetProperty, and it can be copied
by CFReadStreamCopyProperty and CFWriteStreamCopyProperty.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketNativeHandle
Socket Native Handle property key.

Causes CFReadStreamCopyProperty or CFWriteStreamCopyProperty to return CFData object
that contains the native handle for a socket stream. This property is only available for socket streams.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamPropertySocketSecurityLevel
Socket Security Level property key.

See CFStream Socket Security Level Constants (page 112) for specific security level constants to use.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySSLPeerCertificates
SSL Peer Certificates property key for copy operations, which return a CFArray object containing
SecCertificateRef objects.

For more information, see SSLGetPeerCertificates in Security/SecureTransport.h.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSProxy
SOCKS proxy property key.

To set a CFStream object to use a SOCKS proxy, call CFReadStreamSetProperty or
CFWriteStreamSetProperty with the property name set to kCFStreamPropertySOCKSProxy
and its value set to a CFDictionary object having at minimum a
kCFStreamPropertySOCKSProxyHost key and a kCFStreamPropertySOCKSProxyPort key. For
information on these keys, see CFStream SOCKS Proxy Key Constants (page 113). SystemConfiguration
returns a CFDictionary for SOCKS proxies that is usable without modification.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

108 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamPropertySSLSettings
SSL Settings property key for set operations.

The key’s value is a CFDictionary object containing security settings. For information on the
dictionary’s keys and values, see CFStream Property SSL Settings Constants (page 109). By default,
there are no security settings.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertyProxyLocalBypass
Proxy Local Bypass property key.

The key’s value is CFBoolean object whose value indicates whether local hostnames should be subject
to proxy handling.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketRemoteHost
The key’s value is a CFHostRef for the remote host if it is known. If not, its value is NULL.

Available in Mac OS X version 10.3 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketRemoteNetService
The key’s value is a CFNetServiceRef for the remote network service if it is known. If not, its value
is NULL.

Available in Mac OS X version 10.3 and later.

Declared in CFSocketStream.h.

Declared In
CFNetwork/CFSocketStream.h

CFStream Property SSL Settings Constants
Constants for use in a CFDictionary object that is the value of the kCFStreamPropertySSLSettings
stream property key.

const CFStringRef kCFStreamSSLLevel;
const CFStringRef kCFStreamSSLAllowsExpiredCertificates;
const CFStringRef kCFStreamSSLAllowsExpiredRoots;
const CFStringRef kCFStreamSSLAllowsAnyRoot;
const CFStringRef kCFStreamSSLValidatesCertificateChain;
const CFStringRef kCFStreamSSLPeerName;
const CFStringRef kCFStreamSSLCertificates;
const CFStringRef kCFStreamSSLIsServer;

Constants
kCFStreamSSLLevel

Security property key whose value specifies the stream’s security level.

By default, a stream’s security level is kCFStreamSocketSecurityLevelNegotiatedSSL. For other
possible values, see CFStream Socket Security Level Constants (page 112).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

Constants 109
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSSLAllowsExpiredCertificates
Security property key whose value indicates whether expired certificates are allowed.

By default, the value of this key is kCFBooleanFalse (expired certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLAllowsExpiredRoots
Security property whose value indicates whether expired root certificates are allowed.

By default, the value of this key is kCFBooleanFalse (expired root certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLAllowsAnyRoot
Security property key whose value indicates whether root certificates should be allowed.

By default, the value of this key is kCFBooleanFalse (root certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLValidatesCertificateChain
Security property key whose value indicates whether the certificate chain should be validated.

By default, the value of this key is kCFBooleanTrue (the certificate chain should be validated).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLPeerName
Security property key whose value overrides the name used for certificate verification.

By default, the host name that was used when the stream was created is used; if no host name was
used, no peer name will be used. Set the value of this key to kCFNull to prevent name verification.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLCertificates
Security property key whose value is a CFArray of SecCertificateRefs except for the first element in
the array, which is a SecIdentityRef.

For more information, see SSLSetCertificate() in Security/SecureTransport.h.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLIsServer
Security property key whose value indicates whether the connection is to act as a server in the SSL
process.

By default, the value of this key is kCFBooleanFalse (the connection is not to act as a server). If the
value of this key is kCFBooleanTrue, the kCFStreamSSLCertificates key must contain a valid
value.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

Discussion
This enumeration defines the constants for keys in a CFDictionary object that is the value of the
kCFStreamPropertySSLSettings key.

110 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Declared In
CFNetwork/CFSocketStream.h

CFStream Socket Security Protocol Constants
Specifies constants for setting the security protocol for a socket stream.

typedef enum {
 kCFStreamSocketSecurityNone = 0,
 kCFStreamSocketSecuritySSLv2,
 kCFStreamSocketSecuritySSLv3,
 kCFStreamSocketSecuritySSLv23,
 kCFStreamSocketSecurityTLSv1
} CFStreamSocketSecurityProtocol;

Constants
kCFStreamSocketSecurityNone

Specifies that no security protocol be set for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelNone.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv2

Specifies that SSL version 2 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelSSLv2.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv3

Specifies that SSL version 3 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelSSLv3.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv23

Specifies that SSL version 3 be set as the security protocol for a socket stream pair. If that version is
not available, specifies that SSL version 2 be set as the security protocol for a socket stream.
(Deprecated. Use kCFStreamSocketSecurityLevelNegotiatedSSL.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

Constants 111
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSecurityTLSv1

Specifies that TLS version 1 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelTLSv1.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

Discussion
This enumeration defines constants for setting the security protocol for a socket stream pair when calling
CFSocketStreamPairSetSecurityProtocol (page 104).

Special Considerations

This enumeration is deprecated in favor of the constants described in CFStream Socket Security Level
Constants (page 112).

Declared In
CFNetwork/CFSocketStream.h

CFStream Socket Security Level Constants
Constants for setting the security level of a socket stream.

const CFStringRef kCFStreamSocketSecurityLevelNone;
const CFStringRef kCFStreamSocketSecurityLevelSSLv2;
const CFStringRef kCFStreamSocketSecurityLevelSSLv3;
const CFStringRef kCFStreamSocketSecurityLevelTLSv1;
const CFStringRef kCFStreamSocketSecurityLevelNegotiatedSSL;

Constants
kCFStreamSocketSecurityLevelNone

Specifies that no security level be set.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelSSLv2
Specifies that SSL version 2 be set as the security protocol for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelSSLv3
Specifies that SSL version 3 be set as the security protocol for a socket stream pair.

If SSL version 3 is not available, specifies that SSL version 2 be set as the security protocol for a socket
stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelTLSv1
Specifies that TLS version 1 be set as the security protocol for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

112 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSecurityLevelNegotiatedSSL
Specifies that the highest level security protocol that can be negotiated be set as the security protocol
for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Discussion
This enumeration defines the preferred constants for setting the security protocol for a socket stream pair
when calling CFReadStreamSetProperty or CFWriteStreamSetProperty.

Declared In
CFNetwork/CFSocketStream.h

CFStream SOCKS Proxy Key Constants
Constants for SOCKS Proxy CFDictionary keys.

const CFStringRef kCFStreamPropertySOCKSProxyHost;
const CFStringRef kCFStreamPropertySOCKSProxyPort;
const CFStringRef kCFStreamPropertySOCKSVersion;
const CFStringRef kCFStreamSocketSOCKSVersion4;
const CFStringRef kCFStreamSocketSOCKSVersion5;
const CFStringRef kCFStreamPropertySOCKSUser;
const CFStringRef kCFStreamPropertySOCKSPassword;

Constants
kCFStreamPropertySOCKSProxyHost

Constant for the SOCKS proxy host key.

This key contains a CFString object that represents the SOCKS proxy host. Defined to match
kSCPropNetProxiesSOCKSProxy.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSProxyPort
Constant for the SOCKS proxy host port key.

This key contains a CFNumberRef object of type kCFNumberSInt32Type whose value represents
the port on which the proxy listens.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSVersion
Constant for the SOCKS version key.

Its value must be kCFStreamSocketSOCKSVersion4 or kCFStreamSocketSOCKSVersion5 to
set SOCKS4 or SOCKS5, respectively. If this key is not present, SOCKS5 is used by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSOCKSVersion4
Constant used in the kCFStreamSockerSOCKSVersion key to specify SOCKS4 as the SOCKS version
for the stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Constants 113
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSOCKSVersion5
Constant used in the kCFStreamSOCKSVersion key to specify SOCKS5 as the SOCKS version for the
stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSUser
Constant for the key required to set a user name.

The value is a CFString object containing the user’s name.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSPassword
Constant for the key required to set a user’s password.

The value is a CFString object containing the user’s password.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Discussion
When setting the stream's SOCKS Proxy property, the property’s value is a CFDictionary object containing
at minimum the kCFStreamPropertySOCKSProxyHost and kCFStreamPropertySOCKSProxyPort keys.
The dictionary may also contain the other keys described in this section.

Error Domains
Error domains specific to CFSocketStream calls.

extern const int kCFStreamErrorDomainSOCKS;
extern const int kCFStreamErrorDomainSSL;
extern const CFIndex kCFStreamErrorDomainWinSock;

Constants
kCFStreamErrorDomainSOCKS

This domain returns error codes from the SOCKS layer. The errors are described in

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorDomainSSL
This domain returns error codes associated with the SSL layer. For a list of error codes, see the header
SecureTransport.h in Security.framework.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorDomainWinSock
When running CFNetwork code on Windows, this domain returns error codes associated with the
underlying TCP/IP stack. You should also note that non-networking errors such as ENOMEM are delivered
through the POSIX domain. See the header winsock2.h for relevant error codes.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

114 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Error Subdomains
Subdomains used to determine how to interpret an error in the kCFStreamErrorDomainSOCKS domain.

enum {
 kCFStreamErrorSOCKSSubDomainNone = 0,
 kCFStreamErrorSOCKSSubDomainVersionCode = 1,
 kCFStreamErrorSOCKS4SubDomainResponse = 2,
 kCFStreamErrorSOCKS5SubDomainUserPass = 3,
 kCFStreamErrorSOCKS5SubDomainMethod = 4,
 kCFStreamErrorSOCKS5SubDomainResponse = 5
};

Constants
kCFStreamErrorSOCKSSubDomainNone

The error code returned is a SOCKS error number.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKSSubDomainVersionCode
The error returned contains the version of SOCKS that the server wishes to use.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS4SubDomainResponse
The error returned is the status code that the server returned after the last operation.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainUserPass
This subdomain returns error codes associated with the last authentication attempt.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainMethod
This subdomain returns the server’s desired negotiation method.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainResponse
This subdomain returns the response code sent by the server when replying to a connection request.

Available in Mac OS X version 10.5 and later.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 105) returns an identifier that tells which layer
of the protocol stack produced the error. This list of constants contains the possible values that this function
will return.

Constants 115
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Calling CFSocketStreamSOCKSGetError (page 104) returns the actual error code that the subdomain
describes.

CFStream Errors
Error codes returned by the kCFStreamErrorDomainSOCKS error domain.

/* kCFStreamErrorSOCKSSubDomainNone*/
enum {
 kCFStreamErrorSOCKS5BadResponseAddr = 1,
 kCFStreamErrorSOCKS5BadState = 2,
 kCFStreamErrorSOCKSUnknownClientVersion = 3
};

/* kCFStreamErrorSOCKS4SubDomainResponse*/
enum {
 kCFStreamErrorSOCKS4RequestFailed = 91,
 kCFStreamErrorSOCKS4IdentdFailed = 92,
 kCFStreamErrorSOCKS4IdConflict = 93
};

/* kCFStreamErrorSOCKS5SubDomainMethod*/
enum {
 kSOCKS5NoAcceptableMethod = 0xFF
};

Constants
kCFStreamErrorSOCKS5BadResponseAddr

The address returned is not of a known type. This error code is only valid for errors in the
kCFStreamErrorSOCKSSubDomainNone subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS5BadState
The stream is not in a state that allows the requested operation. This error code is only valid for errors
in the kCFStreamErrorSOCKSSubDomainNone subdomain..

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKSUnknownClientVersion
The SOCKS server rejected access because it does not support connections with the requested SOCKS
version. SOCKS client version. You can query the kCFSOCKSVersionKey key to find out what version
the server requested. This error code is only valid for errors in the
kCFStreamErrorSOCKSSubDomainNone subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

116 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamErrorSOCKS4RequestFailed
Request rejected by the server or request failed. This error is specific to SOCKS4. This error code is
only valid for errors in the kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS4IdentdFailed
Request rejected by the server because it could not connect to the identd daemon on the client.
This error is specific to SOCKS4. This error code is only valid for errors in the
kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS4IdConflict
Request rejected by the server because the client program and the identd daemon reported different
user IDs. This error is specific to SOCKS4. This error code is only valid for errors in the
kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kSOCKS5NoAcceptableMethod
The client and server could not find a mutually agreeable authentication method. This error code is
only valid for errors in the kCFStreamErrorSOCKS5SubDomainMethod subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 105) returns an identifier that tells which layer
of the protocol stack produced the error.

Calling CFSocketStreamSOCKSGetError (page 104) returns the actual error code that the subdomain
describes. This list of constants contains the possible values that this function will return. They must be
interpreted within the context of the relevant error subdomain.

Constants 117
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

118 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

119
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

PART II

Other References

120
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

PART II

Other References

Framework: CoreServices

Declared in CFNetwork/CFNetworkErrors.h

Companion guide CFNetwork Programming Guide

Overview

Many functions in the CFNetwork API return error codes to indicate the cause of a failure. This document
explains these error codes.

Constants

CFNetworkErrors Constants
This enumeration contains error codes returned under the error domain kCFErrorDomainCFNetwork.

enum CFNetworkErrors {
 kCFHostErrorHostNotFound = 1,
 kCFHostErrorUnknown = 2,

/* SOCKS errors */
 kCFSOCKSErrorUnknownClientVersion = 100,
 kCFSOCKSErrorUnsupportedServerVersion = 101,

/* SOCKS4-specific errors*/
 kCFSOCKS4ErrorRequestFailed = 110,
 kCFSOCKS4ErrorIdentdFailed = 111,
 kCFSOCKS4ErrorIdConflict = 112,
 kCFSOCKS4ErrorUnknownStatusCode = 113,

/* SOCKS5-specific errors*/
 kCFSOCKS5ErrorBadState = 120,
 kCFSOCKS5ErrorBadResponseAddr = 121,
 kCFSOCKS5ErrorBadCredentials = 122,
 kCFSOCKS5ErrorUnsupportedNegotiationMethod = 123,
 kCFSOCKS5ErrorNoAcceptableMethod = 124,

Overview 121
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

/* Errors originating from CFNetServices*/
 kCFNetServiceErrorUnknown = -72000L,
 kCFNetServiceErrorCollision = -72001L,
 kCFNetServiceErrorNotFound = -72002L,
 kCFNetServiceErrorInProgress = -72003L,
 kCFNetServiceErrorBadArgument = -72004L,
 kCFNetServiceErrorCancel = -72005L,
 kCFNetServiceErrorInvalid = -72006L,
 kCFNetServiceErrorTimeout = -72007L,
 kCFNetServiceErrorDNSServiceFailure = -73000L,

/* FTP errors */
 kCFFTPErrorUnexpectedStatusCode = 200,

/* HTTP errors*/
 kCFErrorHTTPAuthenticationTypeUnsupported = 300,
 kCFErrorHTTPBadCredentials = 301,
 kCFErrorHTTPConnectionLost = 302,
 kCFErrorHTTPParseFailure = 303,
 kCFErrorHTTPRedirectionLoopDetected = 304,
 kCFErrorHTTPBadURL = 305,
 kCFErrorHTTPProxyConnectionFailure = 306,
 kCFErrorHTTPBadProxyCredentials = 307,
 kCFErrorPACFileError = 308
};
typedef enum CFNetworkErrors CFNetworkErrors;

Constants
kCFHostErrorHostNotFound

Indicates that the DNS lookup failed.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFHostErrorUnknown
An unknown error occurred (a name server failure, for example). For additional information, you can
query the kCFGetAddrInfoFailureKey key to obtain the value returned by getaddrinfo(3) and
look up the value in /usr/include/netdb.h.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKSErrorUnknownClientVersion
The SOCKS server rejected access because it does not support connections with the requested SOCKS
version. SOCKS client version. You can query the kCFSOCKSVersionKey key to find out what version
the server requested.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKSErrorUnsupportedServerVersion
The version of SOCKS requested by the server is not supported. You can query the
kCFSOCKSVersionKey key to find out what version the server requested.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

122 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

kCFSOCKS4ErrorRequestFailed
Request rejected by the server or request failed. This error is specific to SOCKS4.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS4ErrorIdentdFailed
Request rejected by the server because it could not connect to the identd daemon on the client.
This error is specific to SOCKS4.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS4ErrorIdConflict
Request rejected by the server because the client program and the identd daemon reported different
user IDs. This error is specific to SOCKS4.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS4ErrorUnknownStatusCode
The status code returned by the server is unknown. This error is specific to SOCKS4.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS5ErrorBadState
The stream is not in a state that allows the requested operation.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS5ErrorBadResponseAddr
The address type returned is not supported

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS5ErrorBadCredentials
The SOCKS server refused the client connection because of bad login credentials.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS5ErrorUnsupportedNegotiationMethod
The requested method is not supported. You can query the kCFSOCKSNegotiationMethodKey key
to find out which method the server requested.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKS5ErrorNoAcceptableMethod
The client and server could not find a mutually agreeable authentication method.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFNetServiceErrorUnknown
An unknown error occurred.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

Constants 123
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

kCFNetServiceErrorCollision
An attempt was made to use a name that is already in use.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorNotFound
Not used.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorInProgress
A new search could not be started because a search is already in progress.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorBadArgument
A required argument was not provided or was not valid.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorCancel
The search or service was cancelled.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorInvalid
Invalid data was passed to a CFNetServices function.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorTimeout
A search failed because it timed out.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.2 and later.

kCFNetServiceErrorDNSServiceFailure
DNS service discovery returned an error. You can query the kCFDNSServiceFailureKey key to find
out the error returned by DNS service discovery and look up the code in /usr/include/dns_ds.h
or DNS Service Discovery C Reference.

Declared in CFNetworkErrors.h.

Available in Mac OS X v10.5 and later.

kCFFTPErrorUnexpectedStatusCode
The server returned an unexpected status code.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPAuthenticationTypeUnsupported
The client and server could not agree on a supported authentication type.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

124 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

kCFErrorHTTPBadCredentials
The credentials provided for an authenticated connection were rejected by the server.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPConnectionLost
The connection to the server was dropped. This usually indicates a highly overloaded server.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPParseFailure
The HTTP server response could not be parsed.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPRedirectionLoopDetected
Too many HTTP redirects occurred before reaching a page that did not redirect the client to another
page. This usually indicates a redirect loop.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPBadURL
The requested URL could not be retrieved.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPProxyConnectionFailure
A connection could not be established to the specified HTTP proxy.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFErrorHTTPBadProxyCredentials
The authentication credentials provided for logging into the proxy were rejected.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read. These errors are all part of the kCFErrorDomainCFNetwork domain.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CFNetwork/CFHost.h

Property Keys
Keys for calls to property get/set functions such as CFReadStreamSetProperty and
CFReadStreamCopyProperty.

Constants 125
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

extern const CFStringRef kCFGetAddrInfoFailureKey;
extern const CFStringRef kCFSOCKSStatusCodeKey;
extern const CFStringRef kCFSOCKSVersionKey;
extern const CFStringRef kCFSOCKSNegotiationMethodKey;
extern const CFStringRef kCFDNSServiceFailureKey;
extern const CFStringRef kCFFTPStatusCodeKey;

Constants
kCFGetAddrInfoFailureKey

Querying this key returns the last error code returned by getaddrinfo(3) in response to a DNS
lookup. To interpret the results, look up the error code in /usr/include/netdb.h.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKSStatusCodeKey
Querying this key returns the last status code sent by the SOCKS server in response to the previous
operation.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKSVersionKey
Querying this key returns the SOCKS version in use by the current connection.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFSOCKSNegotiationMethodKey
Querying this key returns the negotiation method requested by the SOCKS server.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFDNSServiceFailureKey
Querying this key returns the last error returned by the DNS resolver libraries in response to the
previous operation. To interpret the results, look up the error codes in /usr/include/dns_sd.h or
DNS Service Discovery C Reference.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

kCFFTPStatusCodeKey
Querying this key returns the last status code sent by the FTP server in response to the previous
operation.

Available in Mac OS X v10.5 and later.

Declared in CFNetworkErrors.h.

Error Domains
High-level error domains.

126 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

extern const CFStringRef kCFErrorDomainCFNetwork;
extern const CFStringRef kCFErrorDomainWinSock;

Constants
kCFErrorDomainCFNetwork

Error domain that returns error codes specific to the CFNetwork stack.

Declared in CFNetworkErrors.h.

Available in Mac OS X version 10.5 and later.

kCFErrorDomainWinSock
Error domain that returns error codes specific to the underlying network layer when running CFNetwork
code on Windows.

Declared in CFNetworkErrors.h.

Available in Mac OS X version 10.5 and later.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Constants 127
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

128 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CFNetwork Error Codes Reference

Framework: CoreServices

Declared in CFNetwork/CFProxySupport.h

Companion guide CFNetwork Programming Guide

Overview

The CFProxySupport API enables you to take advantage of global proxy configuration settings in your
application.

The CFProxySupport functions return arrays of dictionaries, where each dictionary describes a single proxy.
The arrays represent the order in which the proxies should be tried. In general, you should try to download
a URL using the first proxy in the array, try the second proxy if the first one fails, and so on.

Every proxy dictionary has an entry for kCFProxyTypeKey. If the type is anything except
kCFProxyTypeAutoConfigurationURL, the dictionary also has entries for the proxy's host and port (under
kCFProxyHostNameKey and kCFProxyPortNumberKey respectively). If the type is
kCFProxyTypeAutoConfigurationURL, it has an entry for kCFProxyAutoConfigurationURLKey.

The keys for username and password are optional and are present only if the username or password could
be extracted from the information passed in (either from the URL itself or from the proxy dictionary supplied).
These APIs do not consult any external credential stores such as the Keychain.

Functions

CFNetworkCopyProxiesForAutoConfigurationScript
Executes a proxy autoconfiguration script determine the best proxy to use to retrieve the specified URL

extern CFArrayRef
CFNetworkCopyProxiesForAutoConfigurationScript(
 CFStringRef proxyAutoConfigurationScript,
 CFURLRef targetURL);

Parameters
proxyAutoConfigurationScript

A CFString containing the code of the autoconfiguration script to execute.

targetURL
The URL your application intends to access.

Overview 129
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFProxySupport.h

CFNetworkCopyProxiesForURL
Returns the list of proxies that should be used to download a given URL.

extern CFArrayRef
CFNetworkCopyProxiesForURL(
 CFURLRef url,
 CFDictionaryRef proxySettings
);

Parameters
url

The URL your application intends to access.

proxySettings
A dictionary describing the available proxy settings. The dictionary should be in the format returned
by SystemConfiguration.framework. (See System Configuration Framework Reference for more
information.)

Return Value
Returns an array of dictionaries. Each dictionary describes a single proxy. The array is ordered optimally for
requesting the URL specified.

Availability
AvailabilityItem

Declared In
CFProxySupport.h

CFNetworkExecuteProxyAutoConfigurationScript
Downloads a proxy autoconfiguration script and executes it.

CFRunLoopSourceRef
CFNetworkExecuteProxyAutoConfigurationScript(
 CFStringRef proxyAutoConfigurationScript,
 CFURLRef targetURL,
 CFProxyAutoConfigurationResultCallback cb,
 CFStreamClientContext *clientContext);

Parameters
proxyAutoConfigurationScript

A CFString containing the code of the autoconfiguration script to be executed.

targetURL
The URL that your application intends to eventually download using the proxies.

cb
A callback to be called when execution of the script is finished.

130 Functions
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

clientContext
A stream context containing a client info object and optionally retain and release callbacks for that
object.

Discussion
This function returns a run loop source that the caller should schedule. Once execution of the script has
completed, the specified callback function is called.

Note: If you want to terminate the request before completion, you should invalidate the run loop source.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFProxySupport.h

CFNetworkExecuteProxyAutoConfigurationURL
Downloads a proxy autoconfiguration script and executes it.

extern CFRunLoopSourceRef
CFNetworkExecuteProxyAutoConfigurationURL(
 CFURLRef proxyAutoConfigURL,
 CFURLRef targetURL,
 CFProxyAutoConfigurationResultCallback cb,
 CFStreamClientContext *clientContext);

Parameters
proxyAutoConfigURL

The URL of the autoconfiguration script.

targetURL
The URL that your application intends to eventually download using the proxies.

cb
A callback to be called when execution of the script is finished.

clientContext
A stream context containing a client info object and optionally retain and release callbacks for that
object.

Discussion
This function returns a run loop source that the caller should schedule. Once downloading and execution of
the script has completed, the specified callback function is called.

Note: If you want to terminate the request before completion, you should invalidate the run loop source.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFProxySupport.h

Functions 131
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

Callbacks

CFProxyAutoConfigurationResultCallback
Callback function called when a proxy autoconfiguration computation has completed.

typedef CALLBACK_API_C(
 void,
 CFProxyAutoConfigurationResultCallback
)(
 void *client,
 CFArrayRef proxyList,
 CFErrorRef error
);

void myFunction(
 void *client,
 CFArrayRef proxyList,
 CFErrorRef error
);

Parameters
client

The client reference originally passed in the clientContext parameter of the
CFNetworkExecuteProxyAutoConfigurationScript or
CFNetworkExecuteProxyAutoConfigurationURL call that triggered this callback.

proxyList
The list of proxies returned by the autoconfiguration script. This list is in a format suitable for passing
to CFProxyCopyProxiesForURL (with the added guarantee that no entries will ever be
autoconfiguration URL entries). If an error occurs, this value will be NULL.

Note: If you want to keep this list, you must retain it when your callback receives it.

error
An error object that indicates any error that may have occurred. If no error occurred, this value will
be NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFProxySupport.h

132 Callbacks
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

Constants

Property Keys
Keys for calls to property get/set functions such as CFReadStreamSetProperty and
CFReadStreamCopyProperty.

extern const CFStringRef kCFProxyAutoConfigurationURLKey;
extern const CFStringRef kCFProxyHostNameKey;
extern const CFStringRef kCFProxyPortNumberKey;
extern const CFStringRef kCFProxyTypeKey;
extern const CFStringRef kCFProxyUsernameKey;
extern const CFStringRef kCFProxyPasswordKey;

Constants
kCFProxyAutoConfigurationURLKey

A CFURL value specifying the location of the proxy autoconfiguration (PAC) file. This key is only present
for proxies of type kCFProxyTypeAutoConfigurationURL.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyHostNameKey
A CFString value containing either the hostname or IP number of the proxy host.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyPortNumberKey
A CFNumber value specifying the port that should be used to contact the proxy.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeKey
Specifies the type of proxy. The value can be any of the values listed in “Proxy Types” (page 134).

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyUsernameKey
The username to be used when contacting the proxy. This key is only present if the username can be
determined from the information passed in. (External credential stores such as the keychain are not
consulted.)

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyPasswordKey
The password to be used when contacting the proxy. This key is only present if the password can be
determined from the information passed in. (External credential stores such as the keychain are not
consulted.)

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

Constants 133
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

Proxy Types
Para

extern const CFStringRef kCFProxyTypeNone;
extern const CFStringRef kCFProxyTypeAutoConfigurationURL;
extern const CFStringRef kCFProxyTypeFTP;
extern const CFStringRef kCFProxyTypeHTTP;
extern const CFStringRef kCFProxyTypeHTTPS;
extern const CFStringRef kCFProxyTypeSOCKS;

Constants
kCFProxyTypeNone

Specifies that no proxy should be used.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeAutoConfigurationURL
Specifies the URL of an autoconfiguration file from which the proxy information should be obtained.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeFTP
Specifies an FTP proxy.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeHTTP
Specifies an HTTP proxy.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeHTTPS
Specifies an HTTPS proxy.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

kCFProxyTypeSOCKS
Specifies a SOCKS proxy.

Available in Mac OS X v10.5 and later.

Declared in CFProxySupport.h.

134 Constants
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CFProxySupport Reference

This table describes the changes to CFNetwork Reference Collection.

NotesDate

Added CFHTTPStream, CFProxySupport, and CFNetworkErrors to the collection.2008-07-15

First publication of this content as a collection of separate documents.2006-05-23

First publication of this content as a collection of separate documents.

135
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

136
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Authentication Schemes 56

C

CFFTPCreateParsedResourceListing function 9
CFHostCancelInfoResolution function 18
CFHostClientCallBack callback 26
CFHostClientContext structure 27
CFHostCreateCopy function 19
CFHostCreateWithAddress function 19
CFHostCreateWithName function 20
CFHostGetAddressing function 21
CFHostGetNames function 21
CFHostGetReachability function 22
CFHostGetTypeID function 23
CFHostInfoType Constants 28
CFHostRef structure 27
CFHostScheduleWithRunLoop function 23
CFHostSetClient function 24
CFHostStartInfoResolution function 24
CFHostUnscheduleFromRunLoop function 25
CFHTTP Authentication Scheme Constants 38
CFHTTP Version Constants 55
CFHTTPAuthenticationAppliesToRequest function

32
CFHTTPAuthenticationCopyDomains function 33
CFHTTPAuthenticationCopyMethod function 33
CFHTTPAuthenticationCopyRealm function 33
CFHTTPAuthenticationCreateFromResponse function

34
CFHTTPAuthenticationGetTypeID function 35
CFHTTPAuthenticationIsValid function 35
CFHTTPAuthenticationRef structure 37
CFHTTPAuthenticationRequiresAccountDomain

function 36
CFHTTPAuthenticationRequiresOrderedRequests

function 36

CFHTTPAuthenticationRequiresUserNameAndPassword
function 37

CFHTTPMessageAddAuthentication function 9, 10,
11, 42, 43

CFHTTPMessageAppendBytes function 41, 44
CFHTTPMessageApplyCredentialDictionary function

44
CFHTTPMessageApplyCredentialDictionary Keys 39
CFHTTPMessageApplyCredentials function 45
CFHTTPMessageCopyAllHeaderFields function 42,

46
CFHTTPMessageCopyBody function 42, 47
CFHTTPMessageCopyHeaderFieldValue function 42,

47
CFHTTPMessageCopyRequestMethod function 48
CFHTTPMessageCopyRequestURL function 42, 48
CFHTTPMessageCopyResponseStatusLine function

49
CFHTTPMessageCopySerializedMessage function 42,

49
CFHTTPMessageCopyVersion function 42, 49
CFHTTPMessageCreateCopy function 41, 50
CFHTTPMessageCreateEmpty function 41, 50
CFHTTPMessageCreateRequest function 41, 51
CFHTTPMessageCreateResponse function 41, 52
CFHTTPMessageCreateResponse function 52
CFHTTPMessageGetResponseStatusCode function 42,

49, 53
CFHTTPMessageGetTypeID function 42, 53
CFHTTPMessageHeaderComplete function 42, 53
CFHTTPMessageIsHeaderComplete function 53
CFHTTPMessageIsRequest function 54
CFHTTPMessageRef structure 55
CFHTTPMessageSetBody function 41, 54
CFHTTPMessageSetHeaderFieldValue function 41,

54
CFNetDiagnosticCopyNetworkStatusPassively

function 58
CFNetDiagnosticCreateWithStreams function 58
CFNetDiagnosticCreateWithURL function 59
CFNetDiagnosticDiagnoseProblemInteractively

function 60

137
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

Index

CFNetDiagnosticRef structure 61
CFNetDiagnosticSetName function 61
CFNetDiagnosticStatus structure 61
CFNetDiagnosticStatusValues Constants 62
CFNetService Error Constants 101
CFNetService Registration Options 99
CFNetServiceBrowserClientCallBack Bit Flags 99
CFNetServiceBrowserClientCallBack callback 94
CFNetServiceBrowserCreate function 68
CFNetServiceBrowserGetTypeID function 69
CFNetServiceBrowserInvalidate function 69
CFNetServiceBrowserRef structure 97
CFNetServiceBrowserScheduleWithRunLoop function

70
CFNetServiceBrowserSearchForDomains function

70
CFNetServiceBrowserSearchForServices function

71
CFNetServiceBrowserStopSearch function 72
CFNetServiceBrowserUnscheduleFromRunLoop

function 73
CFNetServiceCancel function 74
CFNetServiceClientCallBack callback 95
CFNetServiceClientContext structure 97
CFNetServiceCreate function 74
CFNetServiceCreateCopy function 76
CFNetServiceCreateDictionaryWithTXTData

function 76
CFNetServiceCreateTXTDataWithDictionary

function 77
CFNetServiceGetAddressing function 78
CFNetServiceGetDomain function 78
CFNetServiceGetName function 79
CFNetServiceGetPortNumber function (Deprecated in

Mac OS X version 10.4) 79
CFNetServiceGetProtocolSpecificInformation

function (Deprecated in Mac OS X version 10.4) 80
CFNetServiceGetTargetHost function 80
CFNetServiceGetTXTData function 81
CFNetServiceGetType function 81
CFNetServiceGetTypeID function 82
CFNetServiceMonitorClientCallBack callback 96
CFNetServiceMonitorCreate function 82
CFNetServiceMonitorGetTypeID function 84
CFNetServiceMonitorInvalidate function 84
CFNetServiceMonitorRef structure 98
CFNetServiceMonitorScheduleWithRunLoop function

84
CFNetServiceMonitorStart function 85
CFNetServiceMonitorStop function 86
CFNetServiceMonitorType Constants 100
CFNetServiceMonitorUnscheduleFromRunLoop

function 87

CFNetServiceRef structure 99
CFNetServiceRegister function (Deprecated in

Mac OS X version 10.4) 87
CFNetServiceRegisterWithOptions function 88
CFNetServiceResolve function (Deprecated in

Mac OS X version 10.4) 89
CFNetServiceResolveWithTimeout function 90
CFNetServiceScheduleWithRunLoop function 91
CFNetServiceSetClient function 92
CFNetServiceSetProtocolSpecificInformation

function (Deprecated in Mac OS X version 10.4) 93
CFNetServiceSetTXTData function 93
CFNetServiceUnscheduleFromRunLoop function 94
CFNetworkCopyProxiesForAutoConfigurationScript

function 129
CFNetworkCopyProxiesForURL function 130
CFNetworkErrors Constants 121
CFNetworkExecuteProxyAutoConfigurationScript

function 130
CFNetworkExecuteProxyAutoConfigurationURL

function 131
CFProxyAutoConfigurationResultCallback callback

132
CFReadStreamCreateWithFTPURL function 10
CFSocketStreamPairSetSecurityProtocol function

(Deprecated in Mac OS X v10.2) 104
CFSocketStreamSOCKSGetError function 104
CFSocketStreamSOCKSGetErrorSubdomain function

105
CFStream Errors 116
CFStream FTP Property Constants 11
CFStream FTP Resource Constants 14
CFStream HTTP Authentication Error Constants 38
CFStream Property Keys 107
CFStream Property SSL Settings Constants 109
CFStream Socket Security Level Constants 112
CFStream Socket Security Protocol Constants 111
CFStream SOCKS Proxy Key Constants 113
CFStreamCreatePairWithSocketToCFHost function

106
CFStreamCreatePairWithSocketToNetService

function 106
CFWriteStreamCreateWithFTPURL function 11
CFWriteStreamScheduleWithRunLoop function 103,

104

E

Error Domains 15, 28, 102, 114, 126
Error Subdomains 115

138
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

F

functions
CFHTTPMessageAddAuthentication 9, 10, 11, 42,

43
CFHTTPMessageAppendBytes 41, 44
CFHTTPMessageCopyAllHeaderFields 42, 46
CFHTTPMessageCopyBody 42, 47
CFHTTPMessageCopyHeaderFieldValue 42, 47
CFHTTPMessageCopyRequestURL 42, 48
CFHTTPMessageCopySerializedMessage 42, 49
CFHTTPMessageCopyVersion 42, 49
CFHTTPMessageCreateCopy 41, 50
CFHTTPMessageCreateEmpty 41, 50
CFHTTPMessageCreateRequest 41, 51
CFHTTPMessageCreateResponse 41, 52
CFHTTPMessageGetResponseStatusCode 42, 49, 53
CFHTTPMessageGetTypeID 42, 53
CFHTTPMessageHeaderComplete 42, 53
CFHTTPMessageSetBody 41, 54
CFHTTPMessageSetHeaderFieldValues 41, 54
CFWriteStreamScheduleWithRunLoop 103, 104

K

kCFDNSServiceFailureKey constant 126
kCFErrorDomainCFNetwork constant 127
kCFErrorDomainWinSock constant 127
kCFErrorHTTPAuthenticationTypeUnsupported

constant 124
kCFErrorHTTPBadCredentials constant 125
kCFErrorHTTPBadProxyCredentials constant 125
kCFErrorHTTPBadURL constant 125
kCFErrorHTTPConnectionLost constant 125
kCFErrorHTTPParseFailure constant 125
kCFErrorHTTPProxyConnectionFailure constant

125
kCFErrorHTTPRedirectionLoopDetected constant

125
kCFFTPErrorUnexpectedStatusCode constant 124
kCFFTPResourceGroup constant 14
kCFFTPResourceLink constant 14
kCFFTPResourceModDate constant 15
kCFFTPResourceMode constant 14
kCFFTPResourceName constant 14
kCFFTPResourceOwner constant 14
kCFFTPResourceSize constant 14
kCFFTPResourceType constant 15
kCFFTPStatusCodeKey constant 126
kCFGetAddrInfoFailureKey constant 126
kCFHostAddresses constant 28
kCFHostErrorHostNotFound constant 122

kCFHostErrorUnknown constant 122
kCFHostNames constant 28
kCFHostReachability constant 28
kCFHTTPAuthenticationAccountDomain constant 39
kCFHTTPAuthenticationPassword constant 39
kCFHTTPAuthenticationSchemeBasic constant 38,

56
kCFHTTPAuthenticationSchemeDigest constant 38,

56
kCFHTTPAuthenticationSchemeNegotiate constant

38, 56
kCFHTTPAuthenticationSchemeNTLM constant 38, 56
kCFHTTPAuthenticationUserName constant 39
kCFHTTPVersion1_0 constant 55
kCFHTTPVersion1_1 constant 56
kCFNetDiagnosticConnectionDown constant 62
kCFNetDiagnosticConnectionIndeterminate

constant 62
kCFNetDiagnosticConnectionUp constant 62
kCFNetDiagnosticErr constant 62
kCFNetDiagnosticNoErr constant 62
kCFNetServiceErrorBadArgument constant 124
kCFNetServiceErrorCancel constant 124
kCFNetServiceErrorCollision constant 124
kCFNetServiceErrorDNSServiceFailure constant

124
kCFNetServiceErrorInProgress constant 124
kCFNetServiceErrorInvalid constant 124
kCFNetServiceErrorNotFound constant 124
kCFNetServiceErrorTimeout constant 124
kCFNetServiceErrorUnknown constant 123
kCFNetServiceFlagIsDefault constant 100
kCFNetServiceFlagIsDomain constant 100
kCFNetServiceFlagMoreComing constant 100
kCFNetServiceFlagNoAutoRename constant 99
kCFNetServiceFlagRemove constant 100
kCFNetServiceMonitorTXT constant 101
kCFNetServicesErrorBadArgument constant 102
kCFNetServicesErrorCancel constant 102
kCFNetServicesErrorCollision constant 101
kCFNetServicesErrorInProgress constant 101
kCFNetServicesErrorInvalid constant 102
kCFNetServicesErrorNotFound constant 101
kCFNetServicesErrorTimeout constant 102
kCFNetServicesErrorUnknown constant 101
kCFProxyAutoConfigurationURLKey constant 133
kCFProxyHostNameKey constant 133
kCFProxyPasswordKey constant 133
kCFProxyPortNumberKey constant 133
kCFProxyTypeAutoConfigurationURL constant 134
kCFProxyTypeFTP constant 134
kCFProxyTypeHTTP constant 134
kCFProxyTypeHTTPS constant 134

139
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCFProxyTypeKey constant 133
kCFProxyTypeNone constant 134
kCFProxyTypeSOCKS constant 134
kCFProxyUsernameKey constant 133
kCFSOCKS4ErrorIdConflict constant 123
kCFSOCKS4ErrorIdentdFailed constant 123
kCFSOCKS4ErrorRequestFailed constant 123
kCFSOCKS4ErrorUnknownStatusCode constant 123
kCFSOCKS5ErrorBadCredentials constant 123
kCFSOCKS5ErrorBadResponseAddr constant 123
kCFSOCKS5ErrorBadState constant 123
kCFSOCKS5ErrorNoAcceptableMethod constant 123
kCFSOCKS5ErrorUnsupportedNegotiationMethod

constant 123
kCFSOCKSErrorUnknownClientVersion constant 122
kCFSOCKSErrorUnsupportedServerVersion constant

122
kCFSOCKSNegotiationMethodKey constant 126
kCFSOCKSStatusCodeKey constant 126
kCFSOCKSVersionKey constant 126
kCFStreamErrorDomainFTP constant 15
kCFStreamErrorDomainMach constant 102
kCFStreamErrorDomainNetDB constant 28
kCFStreamErrorDomainNetServices constant 102
kCFStreamErrorDomainSOCKS constant 114
kCFStreamErrorDomainSSL constant 114
kCFStreamErrorDomainSystemConfiguration

constant 29
kCFStreamErrorDomainWinSock constant 114
kCFStreamErrorHTTPAuthenticationBadPassword

constant 39
kCFStreamErrorHTTPAuthenticationBadUserName

constant 39
kCFStreamErrorHTTPAuthenticationTypeUnsupported

constant 39
kCFStreamErrorSOCKS4IdConflict constant 117
kCFStreamErrorSOCKS4IdentdFailed constant 117
kCFStreamErrorSOCKS4RequestFailed constant 117
kCFStreamErrorSOCKS4SubDomainResponse constant

115
kCFStreamErrorSOCKS5BadResponseAddr constant

116
kCFStreamErrorSOCKS5BadState constant 116
kCFStreamErrorSOCKS5SubDomainMethod constant

115
kCFStreamErrorSOCKS5SubDomainResponse constant

115
kCFStreamErrorSOCKS5SubDomainUserPass constant

115
kCFStreamErrorSOCKSSubDomainNone constant 115
kCFStreamErrorSOCKSSubDomainVersionCode

constant 115

kCFStreamErrorSOCKSUnknownClientVersion
constant 116

kCFStreamPropertyFTPAttemptPersistentConnection
constant 13

kCFStreamPropertyFTPFetchResourceInfo constant
12

kCFStreamPropertyFTPFileTransferOffset
constant 12

kCFStreamPropertyFTPPassword constant 12
kCFStreamPropertyFTPProxy constant 13
kCFStreamPropertyFTPProxyHost constant 13
kCFStreamPropertyFTPProxyPassword constant 13
kCFStreamPropertyFTPProxyPort constant 13
kCFStreamPropertyFTPProxyUser constant 13
kCFStreamPropertyFTPResourceSize constant 12
kCFStreamPropertyFTPUsePassiveMode constant 12
kCFStreamPropertyFTPUserName constant 12
kCFStreamPropertyProxyLocalBypass constant 109
kCFStreamPropertyShouldCloseNativeSocket

constant 108
kCFStreamPropertySocketNativeHandle constant

108
kCFStreamPropertySocketRemoteHost constant 109
kCFStreamPropertySocketRemoteNetService

constant 109
kCFStreamPropertySocketSecurityLevel constant

108
kCFStreamPropertySOCKSPassword constant 114
kCFStreamPropertySOCKSProxy constant 108
kCFStreamPropertySOCKSProxyHost constant 113
kCFStreamPropertySOCKSProxyPort constant 113
kCFStreamPropertySOCKSUser constant 114
kCFStreamPropertySOCKSVersion constant 113
kCFStreamPropertySSLPeerCertificates constant

108
kCFStreamPropertySSLSettings constant 109
kCFStreamSocketSecurityLevelNegotiatedSSL

constant 113
kCFStreamSocketSecurityLevelNone constant 112
kCFStreamSocketSecurityLevelSSLv2 constant 112
kCFStreamSocketSecurityLevelSSLv3 constant 112
kCFStreamSocketSecurityLevelTLSv1 constant 112
kCFStreamSocketSecurityNone constant (Deprecated

in Mac OS X v10.2) 111
kCFStreamSocketSecuritySSLv2 constant (Deprecated

in Mac OS X v10.2) 111
kCFStreamSocketSecuritySSLv23 constant

(Deprecated in Mac OS X v10.2) 111
kCFStreamSocketSecuritySSLv3 constant (Deprecated

in Mac OS X v10.2) 111
kCFStreamSocketSecurityTLSv1 constant (Deprecated

in Mac OS X v10.2) 112
kCFStreamSocketSOCKSVersion4 constant 113

140
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCFStreamSocketSOCKSVersion5 constant 114
kCFStreamSSLAllowsAnyRoot constant 110
kCFStreamSSLAllowsExpiredCertificates constant

110
kCFStreamSSLAllowsExpiredRoots constant 110
kCFStreamSSLCertificates constant 110
kCFStreamSSLIsServer constant 110
kCFStreamSSLLevel constant 109
kCFStreamSSLPeerName constant 110
kCFStreamSSLValidatesCertificateChain constant

110
kSOCKS5NoAcceptableMethod constant 117

P

Property Keys 125, 133
Proxy Types 134

141
2008-07-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	CFNetwork Reference Collection
	Contents
	Introduction
	Part I: Opaque Types
	CFFTPStream Reference
	Overview
	Functions
	CFFTPCreateParsedResourceListing
	CFReadStreamCreateWithFTPURL
	CFWriteStreamCreateWithFTPURL

	Constants
	CFStream FTP Property Constants
	CFStream FTP Resource Constants
	Error Domains

	CFHost Reference
	Overview
	Functions by Task
	Creating a host
	CFHost Functions
	Getting the CFHost Type ID

	Functions
	CFHostCancelInfoResolution
	CFHostCreateCopy
	CFHostCreateWithAddress
	CFHostCreateWithName
	CFHostGetAddressing
	CFHostGetNames
	CFHostGetReachability
	CFHostGetTypeID
	CFHostScheduleWithRunLoop
	CFHostSetClient
	CFHostStartInfoResolution
	CFHostUnscheduleFromRunLoop

	Callbacks
	CFHostClientCallBack

	Data Types
	CFHostRef
	CFHostClientContext

	Constants
	CFHostInfoType Constants
	Error Domains

	CFHTTPAuthentication Reference
	Overview
	Functions by Task
	Creating an HTTP authentication
	CFHTTP Authentication Functions
	Getting the CFHTTPAuthentication type ID

	Functions
	CFHTTPAuthenticationAppliesToRequest
	CFHTTPAuthenticationCopyDomains
	CFHTTPAuthenticationCopyMethod
	CFHTTPAuthenticationCopyRealm
	CFHTTPAuthenticationCreateFromResponse
	CFHTTPAuthenticationGetTypeID
	CFHTTPAuthenticationIsValid
	CFHTTPAuthenticationRequiresAccountDomain
	CFHTTPAuthenticationRequiresOrderedRequests
	CFHTTPAuthenticationRequiresUserNameAndPassword

	Data Types
	CFHTTPAuthenticationRef

	Constants
	CFHTTP Authentication Scheme Constants
	CFStream HTTP Authentication Error Constants
	CFHTTPMessageApplyCredentialDictionary Keys

	CFHTTPMessage Reference
	Overview
	Functions by Task
	Creating a Message
	Modifying a message
	Getting information from a message
	Message authentication
	Getting the CFHTTPMessage type identifier

	Functions
	CFHTTPMessageAddAuthentication
	CFHTTPMessageAppendBytes
	CFHTTPMessageApplyCredentialDictionary
	CFHTTPMessageApplyCredentials
	CFHTTPMessageCopyAllHeaderFields
	CFHTTPMessageCopyBody
	CFHTTPMessageCopyHeaderFieldValue
	CFHTTPMessageCopyRequestMethod
	CFHTTPMessageCopyRequestURL
	CFHTTPMessageCopyResponseStatusLine
	CFHTTPMessageCopySerializedMessage
	CFHTTPMessageCopyVersion
	CFHTTPMessageCreateCopy
	CFHTTPMessageCreateEmpty
	CFHTTPMessageCreateRequest
	CFHTTPMessageCreateResponse
	CFHTTPMessageGetResponseStatusCode
	CFHTTPMessageGetTypeID
	CFHTTPMessageIsHeaderComplete
	CFHTTPMessageIsRequest
	CFHTTPMessageSetBody
	CFHTTPMessageSetHeaderFieldValue

	Data Types
	CFHTTPMessageRef

	Constants
	CFHTTP Version Constants
	Authentication Schemes

	CFNetDiagnostics Reference
	Overview
	Functions by Task
	Creating a net diagnostics object
	CFNetDiagnostics Functions

	Functions
	CFNetDiagnosticCopyNetworkStatusPassively
	CFNetDiagnosticCreateWithStreams
	CFNetDiagnosticCreateWithURL
	CFNetDiagnosticDiagnoseProblemInteractively
	CFNetDiagnosticSetName

	Data Types
	CFNetDiagnosticRef
	CFNetDiagnosticStatus

	Constants
	CFNetDiagnosticStatusValues Constants

	CFNetServices Reference
	Overview
	Functions by Task
	Creating net service objects
	CFNetServices Functions
	Modifying a net service
	Getting the net service type IDs

	Functions
	CFNetServiceBrowserCreate
	CFNetServiceBrowserGetTypeID
	CFNetServiceBrowserInvalidate
	CFNetServiceBrowserScheduleWithRunLoop
	CFNetServiceBrowserSearchForDomains
	CFNetServiceBrowserSearchForServices
	CFNetServiceBrowserStopSearch
	CFNetServiceBrowserUnscheduleFromRunLoop
	CFNetServiceCancel
	CFNetServiceCreate
	CFNetServiceCreateCopy
	CFNetServiceCreateDictionaryWithTXTData
	CFNetServiceCreateTXTDataWithDictionary
	CFNetServiceGetAddressing
	CFNetServiceGetDomain
	CFNetServiceGetName
	CFNetServiceGetPortNumber
	CFNetServiceGetProtocolSpecificInformation
	CFNetServiceGetTargetHost
	CFNetServiceGetTXTData
	CFNetServiceGetType
	CFNetServiceGetTypeID
	CFNetServiceMonitorCreate
	CFNetServiceMonitorGetTypeID
	CFNetServiceMonitorInvalidate
	CFNetServiceMonitorScheduleWithRunLoop
	CFNetServiceMonitorStart
	CFNetServiceMonitorStop
	CFNetServiceMonitorUnscheduleFromRunLoop
	CFNetServiceRegister
	CFNetServiceRegisterWithOptions
	CFNetServiceResolve
	CFNetServiceResolveWithTimeout
	CFNetServiceScheduleWithRunLoop
	CFNetServiceSetClient
	CFNetServiceSetProtocolSpecificInformation
	CFNetServiceSetTXTData
	CFNetServiceUnscheduleFromRunLoop

	Callbacks
	CFNetServiceBrowserClientCallBack
	CFNetServiceClientCallBack
	CFNetServiceMonitorClientCallBack

	Data Types
	CFNetServiceBrowserRef
	CFNetServiceClientContext
	CFNetServiceMonitorRef
	CFNetServiceRef

	Constants
	CFNetService Registration Options
	CFNetServiceBrowserClientCallBack Bit Flags
	CFNetServiceMonitorType Constants
	CFNetService Error Constants
	Error Domains

	CFStream Socket Additions
	Overview
	Functions by Task
	Creating Socket Pairs
	Setting the Security Protocol
	Obtaining Errors

	Functions
	CFSocketStreamPairSetSecurityProtocol
	CFSocketStreamSOCKSGetError
	CFSocketStreamSOCKSGetErrorSubdomain
	CFStreamCreatePairWithSocketToCFHost
	CFStreamCreatePairWithSocketToNetService

	Constants
	CFStream Property Keys
	CFStream Property SSL Settings Constants
	CFStream Socket Security Protocol Constants
	CFStream Socket Security Level Constants
	CFStream SOCKS Proxy Key Constants
	Error Domains
	Error Subdomains
	CFStream Errors

	Part II: Other References
	CFNetwork Error Codes Reference
	Overview
	Constants
	CFNetworkErrors Constants
	Property Keys
	Error Domains

	CFProxySupport Reference
	Overview
	Functions
	CFNetworkCopyProxiesForAutoConfigurationScript
	CFNetworkCopyProxiesForURL
	CFNetworkExecuteProxyAutoConfigurationScript
	CFNetworkExecuteProxyAutoConfigurationURL

	Callbacks
	CFProxyAutoConfigurationResultCallback

	Constants
	Property Keys
	Proxy Types

	Revision History
	Index
	A
	C
	E
	F
	K
	P

