
Shell Scripting Primer
Open Source > Scripting & Automation

2009-04-08

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, eMac, Mac,
Mac OS, and Pages are trademarks of Apple
Inc., registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

AIX is a trademark of IBM Corp., registered in
the U.S. and other countries, and is being used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Organization of This Document 11

Chapter 1 Shell Script Basics 13

Shell Script Dialects 13
She Sells C Shells 14
Tips for Shell Users 15

The alias Builtin 15
Entering Special Characters 15

Shell Variables and Printing 16
Exporting Shell Variables 18

Using the export Builtin (Bourne Shell) 19
Overriding Environment Variables for Child Processes (Bourne Shell) 20
Using the setenv Builtin (C shell) 21
Overriding Environment Variables for Child Processes (C Shell) 22

Shell Script Input and Output Using printf and read 22
Bulk I/O Using the cat Command 24
Pipes and Redirection 26

Basic File Redirection 26
Pipes and File Descriptor Redirection (Bourne Shell) 27
Pipes and File Descriptor Redirection (C Shell) 28

Basic Control Statements 29
The if Statement 29
The test Command and Bracket Notation 30
The while Statement 32
The for Statement 32
The case statement 34
The expr Command 36

Variables, Expansion, and Quoting 38
Variable Expansion and Field Separators 39
Special Characters Explained 40
Quoting Special Characters 42
Inline Execution 43

Chapter 2 Result Codes, Subroutines, Scoping, and Sourcing 45

Working with Result Codes 45
Chaining Execution 46
Subroutine Basics 47
Anonymous Subroutines 48

3
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

Variable Scoping 49
Including One Shell Script Inside Another (Sourcing) 50
Background Jobs and Job Control 51

Chapter 3 Paint by Numbers 57

The expr Command Also Does Math 57
The Easy Way: Parentheses 58
Common Mistakes 59
Beyond Basic Math 60

Floating Point Math Using Inline Perl 61
Floating Point Math Using the bc Command 61

Chapter 4 Regular Expressions Unfettered 63

Types of Regular Expressions 63
Regular Expression Syntax 64
Positional Anchors and Flags 65
Wildcards and Repetition Operators 66
Character Classes and Groups 67

Predefined Character Classes 67
Custom Character Classes 68
Grouping Operators 68
Using Empty Subexpressions 69

Quoting Special Characters 70
Capturing Operators and Variables 71
Mixing Capturing and Grouping Operators 72
Using Modifiers 72
Perl and Python Extensions 73

Character Class Shortcuts 74
Nongreedy Wildcard Matching 75
Noncapturing Parentheses 76
For More Information 76

Chapter 5 How AWK-ward 77

What Is AWK? 77
A Simple AWK Script 77
Conditional Filter Rules in AWK 78

Regular Expressions in AWK 79
Expression Ranges in awk 80
Relational Expressions in AWK 80
Special Patterns in AWK:BEGIN and END 81
Conditional Pattern Matching with Variables 81

Changing the Record and Field Separators in AWK Scripts 82
Control Statements in AWK 83

4
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

The if Statement 83
The while Statement 83
The for Statement 84
Skipping Records and Files 84

Functions in AWK 85
Working with Arrays in AWK 85

Array Basics 86
Creating Arrays with split 87
Copying and Joining an Array 87
Deleting Array Elements 89

File Input and Output 90

Chapter 6 Designing Scripts for Cross-Platform Deployment 93

Bourne Shell Version 93
Managing Users and Groups 93
Working with Device I/O 94
Disk Management and Partitioning 94
File System Hierarchy 94
General Command-Line Tool Differences 95

awk 96
chown 96
cp 96
crontab 97
date 97
df 97
du 98
echo 98
file 98
grep 99
head 99
join 100
less 100
ls 100
mkfifo 101
more or less 101
mv 101
pr 101
ps 101
sed 102
sort 102
stty 103
tail 104
uudecode, uuencode 105
which 106
who 106

5
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

xargs 106

Chapter 7 Advanced Techniques 107

Data Structures, Arrays, and Indirection 107
A Complex Example: Setting and Printing Values of Arbitrary Variables 107
A Practical Example: Using eval to Simulate an Array 108
A Data Structure Example: Linked Lists 109

Nonblocking I/O 110
Timing Loops 112
Trapping Signals 114
Special Shell Variables 116
Shell Text Formatting 117

Using the printf Command for Tabular Layout 118
Truncating Strings 119
Using ANSI Escape Sequences 120
ANSI Escape Sequence Tables 122

Finding the Absolute Path of the Current Script 129
Application Scripting With osascript 129

Chapter 8 Performance Tuning 135

Avoiding Unnecessary External Commands 135
Finding the Ordinal Rank of a Character (More Quickly) 135
Reducing Use of the eval Builtin 138

Other Performance Tips 139
Background or Defer Output 140
Defer Potentially Unnecessary Work 140
Perform Comparisons Only Once 140
Choose Control Statements Carefully 141
Perform Computations Only Once 141
Use Shell Builtins Wherever Possible 142
For Maximum Performance, Use Shell Math, Not External Tools 142
Combine Multiple Expressions with sed 142

Appendix A Other Tools and Information 145

General Tools 145
Text Processing Tools 145
File Commands 146
Disk Commands 147
Archiving and Compression Commands 148
For More Information 149

6
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Appendix B An Extreme Example: The Monte Carlo (Bourne) Method for Pi 151

Obtaining Random Numbers 151
Finding The Ordinal Rank of a Character 152

Finding Ordinal Rank Using Perl 152
Finding Ordinal Rank Using AWK 152
Finding Ordinal Rank Using tr And sed 153

Complete Code Sample 155

Document Revision History 161

Index 163

7
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

8
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 6 Designing Scripts for Cross-Platform Deployment 93

Listing 6-1 Emulating head -c using AWK: 01_head_c.sh 99

Chapter 7 Advanced Techniques 107

Table 7-1 Special shell variables 116
Table 7-2 Cursor and scrolling manipulation escape sequences 123
Table 7-3 Attribute escape sequences 125
Table 7-4 Color escape sequences 126
Table 7-5 Other escape codes 127
Listing 7-1 A simple one-second timing loop 112
Listing 7-2 Installing a signal handler trap 115
Listing 7-3 Ignoring a signal 115
Listing 7-4 ipc1.sh: Script interprocess communication example, part 1 of 2 115
Listing 7-5 ipc2.sh: Script interprocess communication example, part 2 of 2 115
Listing 7-6 Columnar printing using printf 119
Listing 7-7 Truncating text to column width 120
Listing 7-8 Obtaining terminal size using stty or tput 123
Listing 7-9 Using ANSI color 124
Listing 7-10 Setting tab stops 127
Listing 7-11 Opening a file using AppleScript and osascript: 07_osascript_simple.sh 130
Listing 7-12 Working with a file using AppleScript and osascript: 08_osascript_para.sh 130
Listing 7-13 Resizing an image using Image Events and osascript: 09_osascript_images.sh 132

Chapter 8 Performance Tuning 135

Table 8-1 Performance (in seconds) impact of duplicating common code to avoid redundant
tests 140

Table 8-2 Performance (in seconds) comparisons of 1000 executions of various control
statement sequences 141

Table 8-3 Performance (in seconds) of 1000 iterations, performing each computation once
or twice 141

Table 8-4 Relative performance (in seconds) of 1000 iterations of the echo builtin and the
echo command 142

Table 8-5 Relative performance (in seconds) of 1000 iterations of shell math, expr, and bc
142

Table 8-6 Relative performance (in seconds) of different use cases for sed 143
Listing 8-1 A binary search version of the Bourne shell ord function 137

9
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

Appendix A Other Tools and Information 145

Table A-1 Commonly used general scripting tools 145
Table A-2 Commonly used text processing tools 146
Table A-3 Commonly used file manipulation tools 146
Table A-4 Commonly used disk-related and partition-related tools 147
Table A-5 Commonly used archiving and compression tools 148

Appendix B An Extreme Example: The Monte Carlo (Bourne) Method for Pi 151

Listing B-1 An Integer to Octal Conversion Function 153

10
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Shell scripts are a fundamental part of the Mac OS X programming environment. As a ubiquitous feature of
UNIX-based, Linux, and UNIX-like operating systems, they represent a way of writing certain types of
command-line tools in a way that works on a fairly broad spectrum of computing platforms.

Because shell scripts are written in an interpreted language whose power comes from executing external
programs to perform processing tasks, their performance can be somewhat limited. However, because they
can execute without any additional effort on nearly any modern operating system, they represent a powerful
tool for bootstrapping other technologies. For example, the autoconf tool, used for configuring software
prior to compilation, is a series of shell scripts.

You should read this document if you are interested in learning the basics of shell scripting. This document
assumes that you already have some basic understanding of at least one procedural programming language
such as C. It does not assume that you have very much knowledge of commands executed from the terminal,
though, and thus should be readable even if you have never run the Terminal application before.

The techniques in this document are not specific to Mac OS X, although this document does note various
quirks of certain command-line utilities in various operating systems. In particular, it includes information
about some cases where the Mac OS X versions of command-line utilities behave differently than other
commonly available versions such as the GNU equivalents commonly used in Linux and some BSD systems.

This document is not intended to be a complete reference for shell scripting, as such a subject could fill entire
libraries. However, it is intended to provide enough information to get you started writing and comprehending
shell scripts. Along the way, it provides links to documentation for various additional tools that you may find
useful when writing shell scripts.

For your convenience, many of the scripts in this document are also included in the companion files zip
archive. You can find this archive in the table of contents when viewing this document in HTML form on the
ADC Reference Library website.

Organization of This Document

This document is organized in a series of topics. These topics can be read linearly as a tutorial, but are also
organized with the intent to be a quick reference on key subjects.

 ■ “Shell Script Basics” (page 13)—introduces basic concepts of shell scripting, including variables, control
statements, file I/O, pipes, and redirection.

 ■ “Result Codes, Subroutines, Scoping, and Sourcing” (page 45)—describes how to obtain result codes
from outside executables, how to write and call subroutines, subroutine variable scoping, and how to
include one shell script inside another.

 ■ “Paint by Numbers” (page 57)—explains how to use integer math in shell scripts. This section also
explains how to use the bc command-line utility or Perl to handle more complex math, such as
floating-point calculations.

Organization of This Document 11
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Regular Expressions Unfettered” (page 63)—describes basic and extended regular expressions and
how to use them. This section also describes the differences between these regular expression dialects
and the dialect supported by Perl, and shows how to use Perl regular expressions through inline scripting.

 ■ “Other Tools and Information” (page 145)—provides a basic summary of various commands that may be
useful to shells script developers, including links to Mac OS X documentation on each of them.

 ■ “An Extreme Example: The Monte Carlo (Bourne) Method for Pi” (page 151)—this appendix provides a
complex example to showcase the power of shell scripts to perform complex tasks (slowly). The code
example shows a shell script implementation of the Monte Carlo method for approximating the value
of Pi. The code example takes advantage of all of the techniques described in the previous chapters. By
showing some of the same calculations written in multiple ways, it also illustrates why it is often beneficial,
performance-wise, to embed scripts written in other languages such as Perl or AWK when attempting
tasks that suit those languages better.

Happy scripting!

12 Organization of This Document
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Writing a shell script is like riding a bike. You fall off and scrape your knees a lot at first. With a bit more
experience, you become comfortable riding them around town, but also quickly discover why most people
drive cars for longer trips.

Shell scripting is generally considered to be a glue language, ideal for creating small pieces of code that
connect other tools together. While shell scripts can be used for more complex tasks, they are usually not
the best choice.

If you have ever successfully trued a bicycle wheel (or paid someone else to do so), that’s similar to learning
the basics of shell scripting. If you don’t true your scripts, they wobble. Put another way, it is often easy to
write a script, but it can be more challenging to write a script that consistently works well.

This chapter introduces the basic concepts of shell scripting. It was not intended to be a complete reference
on writing shell scripts, nor could it be. It does, however, provide a good starting point for beginners first
learning this black art. The other chapters in this document provide additional breadth and depth.

Shell Script Dialects

There are many different dialects of shell scripts, each with their own quirks, and some with their own syntax
entirely. Because of these differences, the road to good shell scripting can be fraught with peril, leading to
script failures, misbehavior, and even outright data loss.

To that end, the first lesson you must learn before writing a shell script is that there are two fundamentally
different sets of shell script syntax: the Bourne shell syntax and the C shell syntax. The C shell syntax is more
comfortable to many C programmers because the syntax is somewhat similar. However, the Bourne shell
syntax is significantly more flexible and thus more widely used. For this reason, this document only covers
the Bourne shell syntax.

The second hard lesson you will invariably learn is that each dialect of Bourne shell syntax differs slightly.
This document includes only pure Bourne shell syntax and a few BASH-specific extensions. Where BASH-specific
syntax is used, it is clearly noted.

The terminology and subtle syntactic differences can be confusing—even a bit overwhelming at times; had
Dorothy in The Wizard of Oz been a programmer, you might have heard her exclaim, "BASH and ZSH and
CSH, Oh My!" Fortunately, once you get the basics, things generally fall into place as long as you avoid using
shell-specific features. Stay on the narrow road and your code will be portable.

Some common shells are listed below, grouped by script syntax:

Bourne-compatible shells

 ■ sh

 ■ bash

Shell Script Dialects 13
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

 ■ zsh

 ■ ksh

C-shell-compatible shells

 ■ csh

 ■ tcsh

 ■ bcsh (C shell to Bourne shell translator/emulator)

Many of these shells have more than one variation. Most of these variations are denoted by prefixing the
name of an existing shell with additional letters that are short for whatever differentiates them from the
original shell. For example:

 ■ The shell pdksh is a variant of ksh. Being a public domain rewrite of AT&T's ksh, it stands for "Public
Domain Korn SHell." (This is a bit of a misnomer, as a few bits are under a BSD-like open source license.
However, the name remains.)

 ■ The shell tcsh is an extension of csh. It stands for the TENEX C SHell, as some of its enhancements were
inspired by the TENEX operating system.

 ■ The shell bash is an extension of sh. It stands for the Bourne Again SHell. (Oddly enough, it is not a
variation of ash, the Almquist SHell, though both are Bourne shell variants. This should not be confused
with the dash shell—an ash-derived shell used in some Linux distributions—whose name stands for
the Debian Almquist SHell.)

And so on. In general, with the exception of csh and tcsh, it is usually safe to assume that any modern login
shell is compatible with Bourne shell syntax.

Note: Because the C shell syntax is not well suited to scripting beyond a very basic level, this document does
not cover C shell variants in depth. For more information, see “She Sells C Shells” (page 14).

She Sells C Shells

The C shell is popular among some users as a shell for interacting with the computer because it allows simple
scripts to be written more easily. However, the C shell scripting language is limited in a number of ways,
many of which are hard to work around. For this reason, use of the C shell scripting language for writing
complex scripts is not recommended. For more information, read “CSH Programming Considered Harmful”
at http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/. While many of the language flaws it describes are
fixed by some modern C shells, if you are writing a script that must work on multiple computers across
different operating systems, you cannot always guarantee that the installed C shell will support those
extensions.

However, the C shell scripting language has its uses, particularly for writing scripts that set up environment
variables for interactive shell environments, execute a handful of commands in order, or perform other
relatively lightweight chores. To support such uses, the C shell syntax is presented alongside the Bourne shell
syntax within this "basics” chapter where possible.

14 She Sells C Shells
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Outside of this chapter, this document does not generally cover the C shell syntax. If after reading this, you
still want to write a more complex script using the C shell programming language, you can find more
information in on the C shell in the manual page for csh.

Tips for Shell Users

While this document is primarily focused on writing shell scripts, there are a few helpful tips that can be
useful to shell users and programmers alike. This section includes a few of those tips.

The alias Builtin

Various Bourne shells also offer a number of other builtin commands that you may find useful, one of the
more useful for command-line users being alias. This command allows you to assign a short name to replace
a longer command. While the alias builtin is not frequently used in shell scripts (unless you are intentionally
trying to obfuscate your code), it is very convenient when using the shell interactively. For example:

alias listsource="ls *.c *.h"

Typing the command listsource after entering this line will result in listing all of the .c and .h files in the
current directory.

For more information, see the man page builtins, or for ZSH, zshbuiltins.

C Shell Note: The C shell syntax is similar, but not identical. In the C shell, the equals sign is replaced with
a space. For example:

alias listsource "ls *.c *.h"

Entering Special Characters

Some shells treat tabs and other control characters in special ways. When writing a script in a text file, the
reuse of these characters for shell-specific purposes is not generally an issue. However, when entering
commands on the command line, it may get in the way if you need to enter any of these characters as part
of a command for some reason.

To enter a tab or other control character on the command line, type control-v followed by the tab key or
other control character. The control-v tells the shell to treat whatever character comes next literally without
interpreting it in any way during entry.

For example, to enter the ASCII bell character (control-G), you can type the following:

echo "control-V control-G"

This will be seen on your screen as:

echo "^G"

When you press return, your computer should beep.

Tips for Shell Users 15
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Shell Variables and Printing

What follows is a very basic shell script that prints “Hello, world!” to the screen:

#! /bin/sh

echo "Hello, world!"

The first thing you should notice is that the script starts with ‘#!’. This is known as an interpreter line. If you
don’t specify an interpreter line, the default is usually the Bourne shell (/bin/sh). However, it is best to
specify this line anyway for consistency.

The second thing you should notice is the echo command. The echo command is nearly universal in shell
scripting as a means for printing something to the user’s screen. (Technically speaking, echo is generally a
shell builtin, but it also exists as as standalone command, /bin/echo. You can read more about the difference
between the builtin version and the standalone version in “echo” (page 98) and “Use Shell Builtins Wherever
Possible” (page 142).)

If you’d like, you can try this script by saving those lines in a text file (say “hello_world.sh”) in your home
directory. Then, in Terminal, type:

chmod u+x hello_world.sh
./hello_world.sh

Of course, this script isn’t particularly useful. It just prints the words “Hello, world!“ to your screen. To make
this more interesting, the next script throws in a few variables.

#! /bin/sh

FIRST_ARGUMENT="$1"
echo "Hello, world $FIRST_ARGUMENT!"

Type or paste this script into the text editor of your choice (TextEdit, for example) and save the file in your
home directory in a file called test.sh. Then type ‘chmod a+x test.sh’ in Terminal to make it executable.
Finally, run it with ‘./test.sh leaders’. You should see “Hello, world leaders!” printed to your screen.

This script provides an example of a variable assignment. The variable $1 contains the first argument passed
to the shell script. In this example, the script makes a copy and stores it into a variable called FIRST_ARGUMENT,
then prints that variable.

You should immediately notice that, depending on use, variables may or may not begin with a dollar sign.
If you are dereferencing the variable, you precede it with a dollar sign. The shell inserts the contents of the
variable at that point in the script.

16 Shell Variables and Printing
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Important: You generally do not want to prefix the variable on the left side of an assignment statement
with a dollar sign. Because FIRST_ARGUMENT starts out empty, if you used a dollar sign, the first line:

$FIRST_ARGUMENT="$1" # DO NOT DO THIS!

would evaluate to the following completely gibberish:

="myfirstcommandlineargument"

This is clearly not what you want (and produces an error). Because of the order in which the statement is
evaluated, the above assignment statement would still fail with an error even if FIRST_ARGUMENT were
nonempty.

You should also notice the double quotation marks. These are important, as any command-line argument
could potentially contain spaces. Normally, when executing a command, spaces are treated as separating
multiple arguments, and thus, shell scripts can behave differently when variables containing spaces are
involved. By enclosing the variables in double quotes, they are treated as part of a single argument even if
the value stored in the variable contains a space.

Had you omitted those quotes, if the first argument contained spaces (for example, the phrase “leaders and
citizens” in the previous example), that statement might evaluate to something like this:

FIRST_ARGUMENT=This is a test

The shell interprets this as two statements: an assignment statement (FIRST_ARGUMENT=This) and a
command (is) with two arguments (a and test). Because there is no semicolon between the two statements,
it further interprets the assignment statement as an attempt to modify the environment passed to the is
command (a technique described in “Overriding Environment Variables for Child Processes (Bourne
Shell)” (page 20)). This is clearly not what you intended to do.

Compatibility Note: In zsh, if you omit the quotation marks in the original assignment statement, the script
still works because ZSH does not split the contents of variables into separate words. When run as /bin/sh,
however, ZSH emulates the Bourne shell behavior for compatibility.

For another example, if you typed the command:

./test.sh "leaders and citizens"

the script prints “Hello, world leaders and citizens!” because the quotation marks on the command line cause
everything within them to be grouped as a single argument and the quotation marks in the first line of the
script create a similar grouping. If you omit the quotes on the command line, the first argument is “leaders”,
and the script prints “Hello, world leaders!” instead.

Shell Variables and Printing 17
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Note: Expansion of variables, occurs after the statement itself is fully parsed by the shell. Thus, as long as
the variable is enclosed in double quote marks, you will not get any execution errors even if the variable’s
value contains double-quote marks.

However, if you are using double quote marks within a literal string, you must quote that string properly.
For example:

MYSTRING="The word of the day is \"sedentary\"."

This also applies to literal strings within commands entered on the command line. For example, the command:

./test.sh "\"leaders\""

prints the phrase “Hello, world “leaders”!”

The details of quotes as they apply to variable expansion are explained in “Variables, Expansion, and
Quoting” (page 38).

Shell scripts also allow the use of single quote marks. Variables between single quotes are not replaced by
their contents. Be sure to use double quotes unless you are intentionally trying to display the actual name
of the variable. You can also use single quotes as a way to avoid the shell interpreting the contents of the
string in any way. These differences are described further in “Variables, Expansion, and Quoting” (page 38).

C Shell Note: The syntax for assignment statements in the C shell is rather different. Instead of an assignment
statement, the C shell uses the set and setenv builtins to set variables as shown below:

set VALUE = "Four"
or...
setenv VALUE "Four"

echo "$VALUE score and seven years ago...."

The functional difference between set and setenv is described in “Exporting Shell Variables” (page 18).

Also, the C shell handling of backslashes within double-quoted strings is different. In the C shell, the previous
example should be changed to:

MYSTRING="The word of the day is "\""sedentary"\""."
./test.sh \""leaders"\"

to achieve the desired effect. This difference is described further in “Variables, Expansion, and Quoting” (page
38).

Exporting Shell Variables

One key feature of shell scripts is that variables are typically limited in their scope to the currently running
script. The scoping of variables is described in more detail in “Result Codes, Subroutines, Scoping, and
Sourcing” (page 45). For now, though, it suffices to say that variables generally do not get passed on to
scripts or tools that they execute.

Normally, this is what you want. Most variables in a shell script do not have any meaning to the tools that
they execute, and thus represent clutter and the potential for variable namespace collisions if they are
exported. Occasionally, however, you will find it necessary to make a variable's value available to an outside
tool. To do this, you must export the variable. These exported variables are commonly known as environment
variables because they are outside the scope of the script itself, but affect its execution.

18 Exporting Shell Variables
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

A classic example of an environment variable that is significant to scripts and tools is the PATH variable. This
variable specifies a list of locations that the shell searches when executing programs by name (without
specifying a complete path). For example, when you type ls on the command line, the shell searches in the
locations specified in PATH (in the order specified) until it finds an executable called ls (or runs out of
locations, whichever comes first).

The details of exporting shell variables differ considerably between the Bourne shell and the C shell. Thus,
the following sections explain these details in a shell-specific fashion.

Using the export Builtin (Bourne Shell)

Generally speaking, the first time you assign a value to an environment variable such as the PATH variable,
the Bourne shell creates a new, local copy of this shell variable that is specific to your script. Any tool executed
from your script is passed the original value of PATH inherited from whatever script, tool, or shell that launched
it.

With the BASH shell, however, any variable inherited from the environment is automatically exported by the
shell. Thus, in some versions of Mac OS X, if you modify inherited environment variables (such as PATH) in a
script, your local changes will be seen automatically by any tool or script that your script executes. Thus, in
these versions of Mac OS X, you do not have to explicitly use the export statement when modifying the
PATH variable.

Because different Bourne shell variants handle these external environment variables differently (even among
different versions of Mac OS X), this creates two minor portability problems:

 ■ A script written without the export statement may work on some versions of Mac OS X, but will fail on
others. You can solve this portability problem by using the export builtin, as described in this section.

 ■ A shell script that changes variables such as PATH will alter the behavior of any script that it executes,
which may or may not be desirable. You can solve this problem by overriding the PATH environment
variable when you execute each individual tool, as described in “Overriding Environment Variables for
Child Processes (Bourne Shell)” (page 20).

To guarantee that your modifications to a shell variable are passed to any script or tool that your shell script
calls, you must use the export builtin. You do not have to use this command every time you change the
value; the variable remains exported until the shell script exits.

For example:

export PATH="/usr/local/bin:$PATH"
or
PATH="/usr/local/bin:$PATH"
export PATH

Either of these statements has the same effect—specifically, they export the local notion of the PATH
environment variable to any command that your script executes from now on. There is a small catch, however.
You cannot later undo this export to restore the original global declaration. Thus, if you need to retain the
original value, you must store it somewhere yourself.

In the following example, the script stores the original value of the PATH environment variable, exports an
altered version, executes a command, and restores the old version.

ORIGPATH="$PATH"
PATH="/usr/local/bin:$PATH"

Exporting Shell Variables 19
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

export PATH
Execute some command here---perhaps a
modified ls command....
ls
PATH="$ORIGPATH"

If you need to find out whether an environment variable (whether inherited by your script or explicitly set
with the export directive) was set to empty or was never set in the first place, you can use the printenv
command to obtain a complete list of defined variables and use grep to see if it is in the list. (You should
note that although printenv is a csh builtin, it is also a standalone command in /usr/bin.)

For example:

DEFINED=`printenv | grep -c '^VARIABLE='`

The resulting variable will contain 1 if the variable is defined in the environment or 0 if it is not.

Overriding Environment Variables for Child Processes (Bourne Shell)

Because the BASH Bourne shell variant automatically exports all variables inherited from its environment,
any changes you make to preexisting environment variables such as PATH are automatically inherited by
any tool or script that your script executes. (This is not true for other Bourne shell variants; see “Using the
export Builtin (Bourne Shell)” (page 19) for further explanation.)

While automatic export is usually convenient, you may sometimes wish to change a preexisting environment
variable without modifying the environment of any script or tool that your script executes. For example, if
your script executes a number of tools in /usr/local/bin, it may be convenient to change the value of
PATH to include /usr/local/bin. However, you may not want child processes to also look in
/usr/local/bin.

This problem is easily solved by overriding the environment variable PATH on a per-execution basis. Consider
the following script:

#!/bin/sh

echo $MYVAR

This script prints the value of the variable MYVAR. Normally, this variable is empty, so this script just prints a
blank line. Save the script as printmyvar.sh, then type the following commands:

chmod a+x printmyvar.sh # makes the script executable
MYVAR=7 ./printmyvar.sh # runs the script
echo "MYVAR IS $MYVAR" # prints the variable

Notice that the assignment statement MYVAR=7 applies only to the command that follows it. The value of
MYVAR is altered in the environment of the command ./printmyvar.sh, so the script prints the number
7. However, the original (empty) value is restored after executing that command, so the echo statement
afterwards prints an empty string for the value of MYVAR.

Thus, to modify the PATH variable locally but execute a command with the original PATH value, you can write
a script like this:

#!/bin/sh
GLOBAL_PATH="$PATH"
PATH=/usr/local/bin

20 Exporting Shell Variables
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

PATH="$GLOBAL_PATH" /bin/ls

Using the setenv Builtin (C shell)

In the C shell, variables are exported if you set them with setenv, but not it you set them with set. Thus, if
you want your shell variable modifications to be seen by any tool or script that you call, you should use the
setenv builtin. This builtin is the C shell equivalent to issuing an assignment statement with the export
builtin in the Bourne shell.

setenv VALUE "Four"
echo "VALUE is '$VALUE'."

If you want your shell variables to only be available to your script, you should use the set builtin (described
in “Shell Variables and Printing” (page 16)). The set builtin is equivalent to a simple assignment statement
in the Bourne shell.

set VALUE = "Four"
echo "VALUE is '$VALUE'."

Notice that the local variable version requires an equals sign (=), but the exported environment version does
not (and produces an error if you put one in).

To remove variables in the C shell, you can use the unsetenv or unset builtin. For example:

setenv VALUE "Four"
unsetenv VALUE

set VALUE = "Four"
unset VALUE

echo "VALUE is '$VALUE'."

This will generate an error message. In the C shell, it is not possible to print the value of an undefined variable,
so if you think you may need to print the value later, you should set it to an empty string rather than using
unset or unsetenv.

If you need to test an environment variable (not a shell-local variable) that may or may not be part of your
environment (a variable set by whatever process called your script), you can use the printenv builtin. This
prints the value of a variable if set, but prints nothing if the variable is not set, and thus behaves just like the
variable behaves in the Bourne shell.

For example:

set X = `printenv VALUE`
echo "X is "\"$X\"

This prints X is "" if the variable is either empty or undefined. Otherwise, it prints the value of the variable
between the quotation marks.

If you need to find out if a variable is simply empty or is actually not set, you can also use printenv to obtain
a complete list of defined variables and use grep to see if it is in the list. For example:

set DEFINED = `printenv | grep -c '^VARIABLE='`

Exporting Shell Variables 21
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

The resulting variable will contain 1 if the variable is defined in the environment or 0 if it is not.

Overriding Environment Variables for Child Processes (C Shell)

Unlike the Bourne shell, the C shell does not provide a built-in syntax for overriding environment variables
when executing external commands. However, it is possible to simulate this either by using the env command.

The best and simplest way to do this is with the env command. For example:

env PATH="/usr/local/bin" /bin/ls

As an alternative, you can use the set builtin to make a temporary copy of any variable you need to override,
change the value, execute the command, and restore the value from the temporary copy.

You should notice, however, that whether you use the env command or manually make a copy, the PATH
variable is altered prior to searching for the command. Because the PATH variable controls where the shell
looks for programs to execute, you must therefore explicitly provide a complete path to the ls command or
it will not be found (unless you have a copy in /usr/local/bin, of course). The PATH environment variable
is explained in “Special Shell Variables” (page 116).

As a workaround, you can determine the path of the executable using the which command prior to altering
the PATH environment variable.

set GLOBAL_PATH = "$PATH"
set LS = `which ls`
setenv PATH "/usr/local/bin"
$LS
setenv PATH "$GLOBAL_PATH"
unset GLOBAL_PATH

Or, using env:

set LS = `which ls`
env PATH='/usr/local/bin' $LS

The use of the backtick (`) operator in this fashion is described in “Inline Execution” (page 43).

Security Note: If your purpose for overriding an environment variable is to prevent disclosure of sensitive
information to a potentially untrusted process, you should be aware that if you use setenv for the copy, the
called process has access to that temporary copy just as it had access to the original variable. To avoid this,
be sure to create the temporary copy using the set builtin instead of setenv.

Shell Script Input and Output Using printf and read

Next, you might ask what to do if you need to get input from the user. The Bourne shell syntax provides basic
input with very little effort.

#!/bin/sh
printf "What is your name? -> "
read NAME
echo "Hello, $NAME. Nice to meet you."

22 Shell Script Input and Output Using printf and read
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

You will notice two things about this script. The first is that it introduces the printf command. This command
is used because, unlike echo, the printf command does not automatically add a newline to the end of the
line of output. This behavior is useful when you need to use multiple lines of code to output a single line of
text. It also just happens to be handy for prompts.

Note: In most operating systems, you can tell echo to suppress the newline. However, the syntax for doing
so varies. Thus, printf is recommended for printing prompts. See “Designing Scripts for Cross-Platform
Deployment” (page 93) for more information and other alternatives.

The second thing you'll notice is the read command. This command takes a line of input and separates it
into a series of arguments. Each of these arguments is assigned to the variables in the read statement in the
order of appearance. Any additional input fields are appended to the last entry.

You can modify the behavior of the read command by modifying the shell variable IFS (short for internal
field separators). The default behavior is to split inputs everywhere there is a space, tab, or newline. By
changing this variable, you can make the shell split the input fields by tabs, newlines, semicolons, or even
the letter 'q'. This change in behavior is demonstrated in the following example:

#!/bin/sh
printf "Type three numbers separated by 'q'. -> "
IFS="q"
read NUMBER1 NUMBER2 NUMBER3
echo "You said: $NUMBER1, $NUMBER2, $NUMBER3"

If, for example, you run this script and enter 1q3q57q65, the script replies with You said: 1, 3, 57q65.
The third value contains 57q65 because only three values are requested in the read statement.

Note: The read statement always stops reading at the first newline encountered. Thus, if you set IFS to a
newline, you cannot read multiple entries with a single read statement.

Warning: Changing IFS may cause unexpected consequences for variable expansion. For more
information, see “Variable Expansion and Field Separators” (page 39).

But what if you don’t know how many parameters the user will specify? Obviously, a single read statement
cannot split the input up into an arbitrary number of variables, and the Bourne shell does not contain true
arrays. Fortunately, the eval builtin can be used to simulate an array using multiple shell variables. This
technique is described in “Data Structures, Arrays, and Indirection” (page 107).

Alternatively, you can use the for statement, which splits a single variable into multiple pieces based on the
internal field separators. This statement is described in “The for Statement” (page 32).

Shell Script Input and Output Using printf and read 23
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

C Shell Note: In the C shell, the syntax for reading is completely different. The following script is the C shell
equivalent of the script earlier in this section:

printf "What is your name? -> "
set NAME = "$<"
echo "Hello, $NAME. Nice to meet you."

The C shell does not provide a way to read multiple values in a single command, though you can approximate
this with careful use of sed as described in “Regular Expressions Unfettered” (page 63) or cut. For example:

#!/bin/csh
printf "Type three numbers separated by 'q'. -> "

set LINE = "$<"

set NUMBER1 = `echo "$LINE" | cut -f 1 -d 'q'`
set NUMBER2 = `echo "$LINE" | cut -f 2 -d 'q'`
set NUMBER3 = `echo "$LINE" | cut -f 3 -d 'q'`

echo "You said: $NUMBER1, $NUMBER2, $NUMBER3"

Bulk I/O Using the cat Command

For small I/O, the echo command is well suited. However, when you need to create large amounts of data,
it may be convenient to send multiple lines to a file simultaneously. For these purposes, the cat command
can be particularly useful.

By itself, the cat command really doesn’t do anything that can’t be done using redirect operators (except
for printing the contents of a file to the user’s screen). However, by combining it with the special operator
<<, you can use it to send a large quantity of text to a file (or to the screen) without having to use the echo
command on every line.

For example:

cat > mycprogram.c << EOF
#include <stdio.h>
int main(int argc, char *argv[])
{
 char array[] = { 0x25, 115, 0 };
 char array2[] = { 68, 0x61, 118, 0x69, 0144, 040,
 0107, 97, 0x74, 119, 0157, 0x6f,
 100, 0x20, 0x72, 117, 'l', 0x65,
 115, 041, 012, 0 };
 printf(array, array2);
}
EOF

This example script takes the text after the line containing the cat command up to (but not including) the
line that begins with EOF and stores it into the file mycprogram.c. Note that the token EOF can be replaced
with any token, so long as the following conditions are met:

 ■ The token must not contain spaces unless you surround it with quotation marks. (These outer quotation
marks are not considered part of the token unless you quote them.)

24 Bulk I/O Using the cat Command
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

 ■ Shell variables in the name of the token are not expanded, so the $ character is just like any other ordinary
character.

 ■ The token after the << in the starting line must match the token at the beginning of the last line.

 ■ The end-of-block token must be the only thing that appears on the line. If it shares the line with any
other characters (including whitespace), it will be treated as part of the text to be output.

 ■ The end-of-block token you choose must never appear as a line in the intended output string.

This technique is also frequently used for printing instructions to the user from an interactive shell script.
This avoids the clutter of dozens of lines of echo commands and makes the text much easier to read and
edit in an external text editor (if desired).

Note: Although shell variables cannot be used to define the token itself, by default, shell variables are
expanded within the string to be printed. To disable this expansion, surround the token with single or double
quote marks. For example:

cat << 'EOF'
The variable in this line will not be expanded: $PATH
EOF

Notice that EOF does not appear in quotes in the actual text. This is a key difference between the Bourne
shell and C shell behavior. If you want to explicitly look for EOF within single quotes, you would write it like
this:

cat << "'EOF'"
...
'EOF'

or

cat << \''EOF'\'
...
'EOF'

Another classic example of this use of cat in action is the .shar file format, created by the tool shar (short
for SHell ARchive). This tool takes a list of files as input and uses them to create a giant shell script which,
when executed, recreates those original files. To avoid the risk of the end-of-block token appearing in the
input file, it prepends each line with a special character, then strips that character off on output.

Bulk I/O Using the cat Command 25
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

C Shell Note: The multiline cat syntax in the C shell is the same as in the Bourne shell, with one key difference:
the entire token is treated as literal text for matching purposes, including backslashes and quotation marks.
For example:

cat << 'EOF'
The variable in this line will not be expanded: $PATH
'EOF'

For another example:

cat << \''EOF'\'
The variable in this line will not be expanded: $PATH
\''EOF'\'

In both cases, the quotation marks still behave as a switch to control whether or not to expand variables
within the output.

Pipes and Redirection

As you may already be aware, the true power of shell scripting lies not in the scripts themselves, but in the
ability to read and write files and chain multiple programs together in interesting ways.

Each program in a UNIX-based or UNIX-like system has three basic file descriptors (normally a reference to
a file or socket) reserved for basic input and output: standard input (often abbreviated stdin), standard output
(stdout), and standard error (stderr).

The first, standard input, normally takes input from the user's keyboard (when the shell window is in the
foreground, of course). The second, standard output, normally contains the output text from the program.
The third, standard error, is generally reserved for warning or error messages that are not part of the normal
output of the program. This distinction between standard output and standard error is a very important one,
as explained in “Pipes and File Descriptor Redirection (Bourne Shell)” (page 27).

Basic File Redirection

One of the most common types of I/O in shell scripts is reading and writing files. Fortunately, it is also relatively
simple to do. Reading and writing files in shell scripts works exactly like getting input from or sending output
to the user, but with the standard input redirected to come from a file or with the standard output redirected
to a file.

For example, the following command creates a file called MyFile and fills it with a single line of text:

echo "a single line of text" > MyFile

Appending data is just as easy. The following command appends another line of text to the file MyFile.

echo "another line of text" >> MyFile

You should notice that the redirect operator (>) creates a file, while the append operator (>>) appends to
the file.

26 Pipes and Redirection
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Many (but not all) Bourne-compatible shells support a third operator in this family, the merging redirect
operator (>&). The most common use of this merging redirect operator is to redirect standard error and
standard output simultaneously to a file. For example:

ls . THISISNOTAFILE >& filelistwitherrors

This creates a file called filelistwitherrors, containing both a listing of the current directory and an
error message about the nonexistence of the file THISISNOTAFILE. The standard output and standard error
streams are merged and written out to the resulting file.

Compatibility Note: Not all Bourne shell variants support the >& operator when used in this way. This
simplified behavior is not specified by POSIX, and a few shells (most notably ash and its Debian derivative,
dash) generate an error if you try to use this operator without specifying a file descriptor number after the
>&. For maximum portability, you should redirect standard output to a file, then separately combine standard
error into standard output like this:

ls . THISISNOTAFILE > filelistwitherrors 2>&1

See “Pipes and File Descriptor Redirection (Bourne Shell)” (page 27) for more information about using file
descriptor redirection to combine file descriptors.

Note: The merging redirect operator (>&) is a very powerful operator. Additional uses beyond basic use are
described in more detail in “Pipes and File Descriptor Redirection (Bourne Shell)” (page 27).

Pipes and File Descriptor Redirection (Bourne Shell)

The simplest example of the use of pipes is to pipe the standard output of one program to the standard
input of another program. Type the following on the command line:

ls -l | grep 'rwx'

You will see all of the files whose permissions (or name) contain the letters rwx in order. The ls command
lists files to its standard output, and the grep command takes its input and sends any lines that match a
particular pattern to its standard output. Between those two commands is the pipe operator (|). This tells
the shell to connect the standard output of ls to the standard input of grep.

Where the distinction between standard output becomes significant is when the ls command gives an error.

ls -l THISFILEDOESNOTEXIST | grep 'rwx'

You should notice that the ls command issued an error message (unless you have a file called
THISFILEDOESNOTEXIST in your home directory, of course). If the ls command had sent this error message
to its standard output, it would have been gobbled up by the grep command, since it does not match the
pattern rwx. Instead, the ls command sent the message to its standard error descriptor, which resulted in
the message going directly to your screen.

In some cases, however, it can be useful to redirect the error messages along with the output. You can do
this by using a special form of the combining redirection operator (>&).

Before you can begin, though, you need to know the file descriptor numbers. Descriptor 0 is standard input,
descriptor 1 is standard output, and descriptor 2 is standard error. Thus, the following command combines
standard error into standard output, then pipes the result to grep:

Pipes and Redirection 27
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

ls -l THISFILEDOESNOTEXIST 2>&1 | grep 'rwx'

This operator is also often useful if your script needs to send a message to standard error. The following
command sends “an error message” to standard error:

echo "an error message" 1>&2

This works by taking the standard output (descriptor 1) of the echo command and redirects it to standard
error (descriptor 2).

You should notice that the ampersand (&) appears to behave somewhat differently than it did in “Basic File
Redirection” (page 26). Because the ampersand is followed immediately by a number, this causes the output
of one data stream to be merged into another stream. In actuality, however, the effect is the same (assuming
your shell supports the use of >& by itself).

The redirect (>) operator implicitly redirects standard output. When combined with an ampersand and
followed by a filename, in some shells, it merges standard output and standard error and writes the result
to a file, though this behavior is not portable. By specifying numbers, your script is effectively overriding
which file descriptor to use as its source and specifying a file descriptor to receive the result instead of a file.

Note: Be careful when mixing normal redirection with file descriptor merging. The following command
combines standard output and standard error into a single output file.

ls . BOGUSFILENAME > filelistwitherrors 2>&1

If you reverse the order of the redirects, however, only standard output is written into the file.

ls . BOGUSFILENAME 2>&1 > just the file

Further, if you pipe the result of the second version above into another utility, it will receive the standard
error output from the ls command.

Pipes and File Descriptor Redirection (C Shell)

The C shell does not support the full set of file descriptor redirection that the Bourne shell supports. In some
cases, alternatives are provided. For example, you can pipe standard output and standard error to the same
process using the |& operator as shown in the following snippet:

ls -l THISFILEDOESNOTEXIST |& grep 'rwx'

Some other operations, however, are not possible. You cannot, for example, redirect standard error without
redirecting standard output. At best, if you can determine that your standard output will always be /dev/tty,
you can work around this by redirecting standard output to /dev/tty first, then redirecting both the
now-empty standard output and standard error using the >& operator. For example, to redirect only standard
error to /dev/null, you could do this:

(ls > /dev/tty) >& /dev/null

This technique is not recommended for general use, however, as it will send output to your screen if anyone
runs your script with standard output set to a file or pipe.

You can also work around this using a file, but not in an interactive way. For example:

(ls > /tmp/mytemporarylslisting) >& /dev/null
cat /tmp/mytemporarylslisting

28 Pipes and Redirection
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

It is, however, possible to discard standard output and capture standard input. For example:

(ls / /bogusfile > /dev/null) |& more

It is not possible to redirect messages to standard error using the C shell unless you write a Bourne shell
script or C program to do the redirection for you.

Basic Control Statements

The examples up to this point have been very basic, linear programs. This section introduces some control
flow statements that allow for more complex programs.

The if Statement

The first control statement you should be aware of in shell scripting is the if statement. This statement
behaves very much like the if statement in other programming languages, with a few subtle distinctions.

The first distinction is that the test performed by the if statement is actually the execution of a command.
When the shell encounters an if statement, it executes the statement that immediately follows it. Depending
on the return value, it will execute whatever follows the then statement. Otherwise, it will execute whatever
follows the else statement.

The second distinction is that in shell scripts, many things that look like language keywords are actually
programs. For example, the following code executes /bin/true and /bin/false.

always execute
if true; then
 ls
else
 echo "true is false."
fi
never execute
if false; then
 ls
fi

In both of these cases, an executable is being run—specifically, /bin/true and /bin/false. Any executable
could be used here.

A return of zero (0) is considered to be true (success), and any other value is considered to be false (failure).
Thus, if the executable returns zero (0), the commands following the then statement will be executed.
Otherwise, the statements following the else clause (if one exists) will be executed.

The reason for this seemingly backwards definition of true and false is that most UNIX tools exit with an
exit status of zero upon success and a nonzero exit status on failure, with positive numbers usually indicating
a user mistake and negative numbers usually indicating a more serious failure of some sort. Thus, you can
easily test to see if a program completed successfully by seeing if the exit status is the same as that of true.

One related statement that you should be familiar with is elif. This statement is similar to saying else if
except that it does not require an additional fi at the end of the conditional, and thus results in more readable
code.

Basic Control Statements 29
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

For example:

#/bin/sh

read A
if ["x$A" = "xfoo"] ; then
 echo "Foo"
elif ["x$A" = "xbar"] ; then
 echo "Bar"
else
 echo "Other"
fi

This example reads a string from standard input and prints one of three things, depending on whether you
typed “foo”, “bar’, or anything else. (The bracket syntax used in this example is explained in the next section,
“The test Command and Bracket Notation” (page 30).)

C Shell Note: The C shell syntax is similar to C. There are two forms:

#!/bin/csh

set A = "$<"

if ("x${A}" == "xfoo") echo "Foo (single line)"

if ("x${A}" == "xfoo") then
 echo "Foo"
else if ("x${A}" == "xbar") then
 echo "Bar"
else
 echo "Other"
endif

Note that the echo "x" or then statement must appear on the same line as the if statement. If it does not,
you get an “empty if” error and the script terminates.

The test Command and Bracket Notation

While the if statement can be used to run any executable, the most common use of the if statement is to
test whether some condition is true or false, much like you would in a C program or other programming
language. For example, the if statement is commonly used to see if two strings are equal.

Because the if statement runs a command, in order to use the if statement in this fashion, you will need
a program to run that performs the comparison desired. Fortunately, one is built into the OS: test. The test
executable is rarely run directly, however. Generally, it is invoked by running [, which is just a symbolic link
or hard link to /bin/test.

30 Basic Control Statements
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Note: While the open bracket is a command, and there is a man page, you will have a hard time getting to
it on the command line. Use:

man \\[

to see it (or just look at the man page for test).

In this form, the syntax of an if statement more closely resembles other languages. Consider the following
example:

#! /bin/sh

FIRST_ARGUMENT="$1"
if [x$FIRST_ARGUMENT = "xSilly"] ; then
 echo "Silly human, scripts are for kiddies."
else
 echo "Hello, world $FIRST_ARGUMENT!"
fi

There are two things you should notice. First, the space before the equal sign is critical. This space is the
difference between assignment (no space) and comparison (space). The spaces around the brackets are also
critical, as failure to include these spaces will result in a syntax error. (Remember, the open bracket is really
just a command, and it expects that its last argument will be a close bracket by itself.)

Second, you should notice that the two arguments to the comparison are preceded by an ‘x’. The reason for
this is that the variable substitution occurs before this statement is executed. If you omit the ‘x’ and the value
in $FIRST_ARGUMENT is empty this statement evaluates to “if [= "Silly"]”, which is a blatant syntax
error.

Another way to solve the empty variable problem is through the use of double quote marks. That way, even
if the variable is empty, there is a placeholder. The following example uses double quote marks to test to
see if a variable is empty:

if ["$VARIABLE" = ""] ; then
 echo "Empty variable \$VARIABLE"
fi

Now this example introduces another special character, the backslash. It is also known as a quote character
because the character immediately after it is treated as though it were within quotes. Thus, in this case, the
snippet prints the name of the variable $VARIABLE rather than its contents. The use of backslash (and other
similar characters) is described further in “Quoting Special Characters” (page 42).

The test command can also be used for various other tests, including the testing for the existence of a file,
basic numerical comparisons, checking whether a path points to a directory, an executable, or a symbolic
link, and so on. For example, the -d flag checks whether its argument is a directory, as shown in this snippet:

if [-d "/System/Library/Frameworks"] ; then
 echo "/System/Library/Frameworks is a directory."
fi

A complete list of flags and operators supported by the test command can be found in the man page test.

Basic Control Statements 31
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

C Shell Note: While the test command can be used in the C shell, it is somewhat unusual to do so; the if
and while statements in the C shell do not use it as part of their normal syntax.

The while Statement

In addition to the if statement, the Bourne shell also supports a while statement. Its syntax is similar.

while true; do
 ls
done

Like the if statement’s then and fi, the while statement is bracketed by do and done. Much like the if
statement, the while statement takes a single argument, which contains a command to execute. Thus, it is
common to use the bracket command with while just as you do with if (as described in “The test Command
and Bracket Notation” (page 30)). For example:

while ["x$FOO" != "x"] ; do
 FOO="$(cat)";
done

Of course, this is a rather silly example. However, it does demonstrate one of the more powerful features in
the Bourne shell scripting language: the $() operator, which inserts the output of one command into the
middle of a statement. In the case above, the cat command is executed, and its standard output is stored
in the variable FOO. This technique is described more in “Inline Execution” (page 43).

At any time during a loop, you can terminate the loop early with the break statement or skip ahead to the
next iteration of the loop with the continue statement. When working with nested loops, these statements
may be followed by an optional numerical argument to alter execution of the enclosing loops. For example,
consider the following statements:

break 2
continue 2

The first statement breaks out of not only the top level while or for statement, but also the while or for
statement that contains it. The second statement not only causes the remainder of the current loop to be
skipped, but also causes the remainder of the loop that encloses it to be skipped.

C Shell Note: The C shell syntax is similar:

set FOO = "x"
while (${FOO} != "")
 set FOO = `cat`
end

Just as in C, the break and continue statements are also supported for further loop control. However, it
does not support breaking or continuing at any nesting level other than the topmost level.

The for Statement

The most unusual control structure in this chapter is the for statement. It can take two very different forms
depending on what you want to do.

32 Basic Control Statements
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

In a standard Bourne shell, the for statement in shell scripts is completely unlike its C equivalent (which
requires numerical computation, as described in “Paint by Numbers” (page 57)), and actually behaves much
like the foreach statement in various languages.

In some modern Bourne shell variants, you can also do a numerical version of a for loop. The syntax is nearly
identical to the C syntax for for loops.

The two syntaxes are covered in the following sections.

Standard for Loops

The for statement in Bourne shell scripts iterates through the items in a list. For each item, it sets the loop
variable to the item, then executes a series of statements.

In the next example, the list is *.JPG. When the shell performs globbing on this (see “Special Characters
Explained” (page 40) for more information), it replaces the *.JPG with a list of files in the current directory
that end in .JPG.

Without going into details about the regular expression syntax used by the sed command (this syntax is
described in more detail in “Regular Expressions Unfettered” (page 63)), the following script renames every
file in the current directory that ends with .JPG to end in .jpg.

#!/bin/sh
for i in *.JPG ; do
 mv "$i" "$(echo $i | sed 's/\.JPG$/.x/')"
 mv "$(echo $i | sed 's/\.JPG$/.x/')" "$(echo $i | sed 's/\.JPG$/.jpg/')"
done

The for statement (by default) splits the file list on unquoted spaces. For example, the following script will
print the letters “a” and “b” on separate lines, then print “c d” on a third line:

#!/bin/sh
for i in a b c\ d ; do
 echo $i
done

Under certain circumstances, you can change the way that the for statement splits lists by changing the
contents of the variable IFS. The details of when this does and does not work are described in “Variable
Expansion and Field Separators” (page 39).

At any time during a loop, you can terminate the loop early with the break statement or skip ahead to the
next iteration of the loop with the continue statement. When working with nested loops, these statements
may be followed by an optional numerical argument to alter execution of the enclosing loops. For example,
consider the following statements:

break 2
continue 2

The first statement breaks out of not only the top level while or for statement, but also the while or for
statement that contains it. The second statement not only causes the remainder of the current loop to be
skipped, but also causes the remainder of the loop that encloses it to be skipped.

Basic Control Statements 33
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

C Shell Note: The C shell foreach statement is similar.

#!/bin/csh

foreach i (*.JPG)
 mv "${i}" `echo ${i} | sed 's/\.JPG$/.x/'`
 mv `echo ${i} | sed 's/\.JPG$/.x/'` `echo ${i} | sed 's/\.JPG$/.jpg/'`
end

While the C shell supports the break and continue statements in a foreach loop, it does not support
breaking or continuing at any nesting level other than the topmost level.

Extended for Loops

Most modern Bourne shells (including BASH) provide an extension for numerical for loops using a variant of
the built-in math operator (double parentheses). You can see this style of for loop in the following script. It
takes a single argument and counts from 1 up to the number specified in that argument. To demonstrate
the concept as succinctly as possible, it makes no attempt to validate its input. You, however, should always
do so in your scripts.

#!/bin/bash

This is an extension that is supported in
bash, zsh, and many other recent sh variants,
but is not always valid.
#
Usage: for5.sh <number>

for ((i = 1 ; i <= $1 ; i++)) ; do
 echo "I is $i"
done

For maximum portability, however, you should use a while loop, as shown below:

i=1
while [$i -le $1] ; do
 echo "I is $i"
 i=`expr $i '+' 1`
done

The case statement

The final control statement in this chapter is the case statement. The case statement in shell scripts is similar
to the C switch statement. It allows you to execute multiple commands depending on the value of a variable.
The syntax is as follows:

case expression in
 [(] value | value | value | ...) command; command; ... ;;
 [(] value | value | value | ...) command; command; ... ;;
 ...
esac

34 Basic Control Statements
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

You should notice three things about this syntax. First, each case is terminated by a double semicolon. Second,
the opening parenthesis is optional and is frequently dropped by script authors. Third, a single set of
commands can be applied to any number of values separated by the pipe (vertical bar) character (|).

For example, the following code sample prints the English names for the numbers 0–9, then prints them
again.

#!/bin/sh

LOOP=0

while [$LOOP -lt 20] ; do
 # The next line is explained in the
 # math chapter.
 VAL=`expr $LOOP % 10`

 case "$VAL" in
 (0) echo "ZERO" ;;
 (1) echo "ONE" ;;
 (2) echo "TWO" ;;
 (3) echo "THREE" ;;
 (4) echo "FOUR" ;;
 (5) echo "FIVE" ;;
 (6) echo "SIX" ;;
 (7) echo "SEVEN" ;;
 (8) echo "EIGHT" ;;
 (9) echo "NINE" ;;
 (*) echo "This shouldn't happen." ;;
 esac

 # The next line is explained in the
 # math chapter.
 LOOP=$((LOOP + 1))
done

You should notice the (*) case at the end. It is equivalent to the default case in C. While that case will
never be reached in this example, if you change the value of the modulo from 10 to any larger value, you
will see that this case executes when no previous case matches the value of the expression.

Basic Control Statements 35
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

C Shell Note: The C shell switch statement is functionally equivalent, but behaves somewhat differently.

Like in C, each case statement falls through into the following case statement until the shell encounters a
breaksw statement, which causes execution to immediately jump out of the entire switch statement.

#!/bin/csh

set LOOP = 0

while (${LOOP} <= 20)
 set VAL = `expr ${LOOP} % 10`
 switch (${VAL})
 case 0:
 echo "ZERO" ; breaksw
 case 1:
 echo "ONE" ; breaksw
 case 2:
 echo "TWO" ; breaksw
 case 3:
 echo "THREE" ; breaksw
 case 4:
 echo "FOUR" ; breaksw
 case 5:
 echo "FIVE" ; breaksw
 case 6:
 echo "SIX" ; breaksw
 case 7:
 echo "SEVEN" ; breaksw
 case 8:
 echo "EIGHT" ; breaksw
 case 9:
 echo "NINE" ; breaksw
 default:
 echo "This shouldn't happen."
 endsw

 set LOOP = `expr ${LOOP} + 1`

end

The expr Command

No discussion of tests and comparisons would be complete without mentioning the expr command. This
command can perform various string comparisons and basic integer math. The math portions of the expr
command are described in “The expr Command Also Does Math” (page 57).

The expr command is fairly straightforward. Each expression or token passed to the command must be
surrounded by quotes if it may contain multiple words or characters that the shell considers special. For
example, to compare two strings alphabetically, you could use the following command:

expr "This is a test" '<' "I am a person"

The following version fails miserably because the shell interprets the less-than sign as a redirect and tries to
read from a file called “I am a person”:

36 Basic Control Statements
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

expr "This is a test" < "I am a person"

The details of quoting are described further in “Variables, Expansion, and Quoting” (page 38).

Note: Be careful when using the expr command. Any expression that generates a numerical value (including
the string comparison in the previous example) effectively generates two seemingly contradictory results. It
returns one value through its exit status and a different numerical value by way of its standard output.

The exit status is zero if a logical expression evaluates to true and one if the expression evaluates to false.
The output printed to standard output is one if a logical expression evaluates to true and zero if the expression
evaluates to false. Notice that these values are reversed. Be sure to use the exit status when comparing the
result to the output of commands like true, not the value printed to standard output.

This disparity is only really confusing for computations that return a logical true or false value, of course. The
behavior can be explained fairly simply: the expr command returns a “success” exit status, zero, if the
command prints a value other than zero or an empty string. If it prints a zero or an empty string, its exit status
is one (failure).

The expr command supports the usual complement of string comparisons (equality, inequality, less-than,
greater-than, less-than-or-equal, and greater-than-or-equal).

In addition to these comparisons, the expr command can do several other tests: a logical “or” operator, a
logical “and” operator, and a (fairly limited) basic regular expression matching operator.

While normally used for logic purposes, you can use the “or” operator to substitute a default string using the
or operator like this:

#!/bin/sh

NAME=`expr "$1" '|' "Untitled"`
echo "The chosen name was $NAME"

The “or” operator (|) prints the value of the first expression ("$1" in this example) if it is nonempty and
contains something other than the number zero (0). Otherwise, if the second string is nonempty and contains
something other than the number zero, it prints the second expression ("Untitled" in this example). If
both strings are empty or zero, it prints the number zero. The exit status of the command is zero on success,
one if both strings are empty or zero.

Note: Because the expr command does not distinguish between the number zero (0) and an empty string,
you should not use expr to test for an empty string if there is a possibility that the string might be "0".

The “and” operator (&) is similar, returning either the first string (if both strings are nonempty) or zero (if
either string is empty).

Finally, the expr command can work with basic regular expressions (not extended regular expressions) to a
limited degree.

To count the number of characters from the beginning of the string (all expressions are implicitly anchored
to the start of the string) up to and including the last letter ‘i’, you could write an expression like this:

STRING="This is a test"
expr "$STRING" : ".*i"

Basic Control Statements 37
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

The string to the right side of the colon is a relatively simple regular expression. The period character matches
a single character. The asterisk modifies the behavior of the period so that it matches zero or more characters.
(Read “Regular Expressions Unfettered” (page 63) for further explanation.) If the string does not match the
expression, the expr command returns zero (0), which corresponds with the number of characters matched.

The most common use for this syntax is obtaining the length of a string, as shown in this snippet:

STRING="This is a test"
expr "$STRING" : ".*"

This same syntax can be used to return the text captured by the first set of parentheses in a basic regular
expression. For example, to print the four characters immediately prior to the last occurrence of “est”, you
could write an expression like this one:

STRING="This is a test" expr "$STRING" : '.*\(....\)est'

Because this expression contains capturing parentheses, if the first string does not match the expression, the
expr command prints an empty string.

For more information about writing basic regular expressions, read “Regular Expressions Unfettered” (page
63).

C Shell Note: This behaves the same in C shell as it does in the Bourne shell (apart from the usual syntax
differences). For example:

#!/bin/csh

set NAME = `expr "${1}" '|' "Untitled"`

echo "The chosen name was ${NAME}"

Variables, Expansion, and Quoting

In both the Bourne shell and the C shell, lines of code are processed in multiple passes. The first pass is a
parsing pass in which the basic structure of the line of code is extracted. In this pass, quotation marks serve
as delimiters between individual pieces of information. For example, you can print a letter immediately after
the contents of a variable without a space by closing (and reopening if necessary) the enclosing double
quotes immediately after the variable name.

The second pass is an expansion pass. In this pass, any variable is expanded and any inline execution is
performed. If a variable contains special characters, the resulting text is further expanded unless that variable
is surrounded by double quotes. This may cause unexpected behavior if, for example, a variable contains a
wildcard character.

Note: While the expansion of a variable or command inline will not cause a syntax error by itself, it can
change the behavior of the eval builtin. See “Data Structures, Arrays, and Indirection” (page 107) for more
information.

Finally, the third pass is an execution pass. In this pass, the code is actually executed.

38 Variables, Expansion, and Quoting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

In some cases, you may need to change the way variable expansion takes place. You might want to use a
nonstandard character to split a variable containing a list, change the way the shell handles special characters,
or execute a command and substitute its output in the middle of another command. These techniques are
described in the sections that follow.

Variable Expansion and Field Separators

In Bourne shell scripts, two operations are affected by the value of the IFS (internal field separators) shell
variable: the read statement and variable expansion. The effect on the read statement is described separately
in “Shell Script Input and Output Using printf and read” (page 22).

Whenever the shell expands a variable, the value of IFS comes into play. For example, the following script
will print “a” and “b” on separate lines, then “c d” on a third line:

#!/bin/sh

IFS=":"
LIST="a:b:c d"
for i in $LIST ; do
 echo $i
done

This occurs only because the value on the right side of the for statement contains a variable (LIST) that is
expanded by the shell. When the shell expands the variable, it replaces the colon with a space and quotes
any spaces in the original string. In effect, by the time the for statement sees the values, the right side of
the for statement contains a b c\ d, just as in the example shown in “The for Statement” (page 32).

If you insert the exact contents of LIST on the right side of the variable, this script will instead print “a:b:c”
on one line and “d” on the other. This demonstrates why it is very important to choose record separators
correctly.

Variables, Expansion, and Quoting 39
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Cross-Platform Compatibility Note: This treatment of record separators is consistent in all modern Bourne
shell variants (ASH, BASH, DASH, KSH, ZSH, newer versions of the sh interpreter, and so on). Some earlier
Bourne shell variants use IFS when the shell splits a list even if no expansion is involved.

To avoid unexpected behavior, you should avoid setting nonstandard values for IFS except when you are
expanding a shell variable that depends on this.

As an exception, it is safe to modify IFS during a read statement. Be sure to save the original value in another
variable and restore it afterwards, however, to avoid unexpected behavior elsewhere in the script.

C Shell Note: Most versions of csh do not allow you to alter the field separator. If you need more precise
control over field separators, you can use the cut command in a while loop, incrementing a counter.

#!/bin/csh

set IFS = ":"
set LIST = "a:b:c d"
set POS = 1
set i = `echo "${LIST}" | cut -f ${POS} -d ':'`

Repeat until you get an empty field. This only works if
you know you should never encounter an empty field. Otherwise,
you must know the number of fields.

while ("x${i}" != "x")
 echo $i
 set POS = `expr ${POS} '+' 1`
 set i = `echo "${LIST}" | cut -f ${POS} -d ':'`
end

If you cannot guarantee that there are no empty fields in the list, you must first count the fields and use a
counter in your loop test. To learn how to count the fields, see “The expr Command” (page 36). To learn how
to use counters, read “The expr Command Also Does Math” (page 57), substituting the C shell syntax as
described in “Shell Variables and Printing” (page 16) and “Inline Execution” (page 43) as appropriate.

Special Characters Explained

There are several special characters in shell scripts: a dollar sign ($), an asterisk (*), a question mark (?), curly
braces ({ and }), square brackets ([and]), parentheses ((and)), single and double quote marks (' and "),
the backtick mark (`, sometimes called the left single quote mark), and the backslash (\). These characters
are treated differently by the shell.

Most of these special characters are used in filename expansion, also known as globbing. Globbing characters
obey different expansion rules than other characters.

The characters behave as follows:

 ■ Dollar sign ($)—the first character in variable expansion, shell builtin math, and inline execution. Variable
names beginning with a dollar sign are expanded regardless of whether they appear inside double
quotes. If used outside of double quotes, any globbing characters within the contents of the variable
are also expanded. Variable names within the contents are not expanded, however.

 ■ Asterisk (*)—a wildcard character that matches any number of characters in a filename. For example, ls
*.jpg matches all files that end with the extension .jpg. The asterisk is used in globbing.

40 Variables, Expansion, and Quoting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

 ■ Question mark (?)—a wildcard character that matches a single character in a filename. For example, ls
a?t.jpg matches both ant.jpg and art.jpg. The question mark is used in globbing.

 ■ Curly braces—matches any of a series of options in a filename. For example, ls *.{jpg,gif} matches
every file ending with either .jpg or .gif. Curly braces are used in globbing.

 ■ Square brackets—matches any of a series of characters in a filename. For example, ls a[rn]t.jpg
matches art.jpg and ant.jpg, but does not match aft.jpg. If the first character is a caret (^), it
matches every character except for the characters listed.

The syntax of these character classes is similar to character classes in regular expressions, but there are
a number of subtle differences. For more information, see the Open Group’s page on pattern matching
notation at http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13.

Square brackets are used in globbing.

 ■ Parentheses—these characters serve multiple purposes, depending on context:

 ❏ Used to mark the beginning of a new subroutine. This is described in “Result Codes, Subroutines,
Scoping, and Sourcing” (page 45).

 ❏ Used to group a chain of operations. This is described in “Chaining Execution” (page 46).

 ❏ Used for math in some Bourne shell variants. This is described in “The Easy Way: Parentheses” (page
58).

 ❏ Used in for loop iterators supported by some Bourne shell variants. This is described in “Extended
for Loops” (page 34).

 ■ Double-quote marks—disables argument splitting on word boundaries (spaces) and shell expansion of
most special characters within the quote marks, with a few exceptions:

 ❏ Variables are expanded within double quote marks. The contents of variables, however, are not
expanded in any way even if they contain globbing characters.

 ❏ Inline execution is also expanded within double quote marks.

 ❏ The backslash character still functions within double quote marks in the Bourne shell and variants
thereof, but not in C shell variants.

Note: Although globbing-related characters are not generally expanded within double quotes, expansion
of globbing characters within strings enclosed in double quotes may still occur if the double quotes are
on the right side of a variable assignment and the variable is later used without double quotes. For
example:

FOO="*.c" # *.c does not get expanded here
ls $FOO # *.c DOES get expanded here

 ■ Single-quote marks—disables argument splitting on word boundaries (spaces) and disables all shell
expansion (including variables). The backslash is treated just like any other literal character when it
appears within single quotes. For example, '\"' is a string that contains a backslash and a double quote
mark.

 ■ Backtick marks—roughly equivalent to $(), these are used to delimit code for inline execution. This
technique is described in “Inline Execution” (page 43).

 ■ Backslash—causes the next character to be treated as a literal character, overriding the special behaviors
explained in this section. This technique is described further in “Quoting Special Characters” (page 42).

Variables, Expansion, and Quoting 41
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13

If your script accepts user input, these characters can produce unexpected results if you do not quote them
properly. Consider the following example:

#!/bin/sh
echo "Filename?"
read NAME
ls $NAME
ls "$NAME"

If a user types *.jpg at the prompt, the first command lists all files ending in .jpg because the variable is
expanded first, and then the expression within it is expanded. The second command lists a single file (or
prints an error if you don’t have a file named *.jpg).

C Shell Note: In Bourne shell variants, globbing occurs anywhere a variable is expanded or a globbing
character appears as literal text outside of quotation marks. In the C shell, it is slightly more limited.

Within expressions such as the right half of an if statement, the C shell provides two additional operators:
the =~ and !~ operators. These are similar to string comparison operators, except that the right side is treated
using filename globbing rules (for example, foo* matches files named foo, foot, fool, and so on). Although
this operator visually resembles the regular expression operator in Perl, this C shell operator does not perform
a regular expression comparison.

Quoting Special Characters

Sometimes, when writing shell scripts, you may need to explicitly include quotation marks, dollar signs, or
other special characters in your output. The way that you do this depends on the context.

If the string you wish to quote is not within quote marks, it probably should be. Otherwise, you have to deal
with all of the shell special characters (described in “Special Characters Explained” (page 40)) plus any new
special characters that might be added in the future. Protecting against special characters is particularly
important if your script takes arbitrary user input and passes it as an argument to a command.

However, if your script is not handling user input, you can quote a single character by simply preceding it
with a backslash (\). This tells the shell to treat it as a literal character instead of interpreting it normally. For
example, the following code sample prints the word “Hello” enclosed in double-quotation marks.

echo \"Hello\"

If the character you wish to quote is within double quotes, the same rules apply. The only difference is that
with the exception of dollar signs and the double-quote marks themselves, you don’t need to quote special
characters in this context. For example, to print the name of a variable followed by its value, you could write
a statement like the following, which prints “The value of $VAR is 3” (with no quotes):

VAR=3
echo "The value of \$VAR is $VAR"

Similarly, you can quote a backslash with another backslash if you need to print it. For example, the following
statement prints “This \ is a backslash.“ (again, without quotes):

echo "This \\ is a backslash."

If the character you wish to quote is within single quotes, shell expansion of special characters is disabled
entirely. Thus, the only characters that are special are the single-quote marks themselves, because they
terminate the single-quote context.

42 Variables, Expansion, and Quoting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

Because special character handling is disabled, a backslash does not quote anything between single-quote
marks. Instead, a backslash is interpreted as literal text. Thus, to include a literal single quote within a
double-quote context, you must terminate the single-quote context, then include the single quote (either
by quoting it with a backslash or by surrounding it with double quotes), then start a new single-quote context.

For example, the following lines of code both print a popular phrase from an American children’s television
show:

echo 'It'\''s a beautiful day in the neighborhood.'
echo 'Won'"'"'t you be my neighbor?'

C Shell Note: The C shell does not support using a backslash to quote a character within a double-quoted
string. Thus, in the C shell, you print a backslash like this:

echo "This \ is a backslash."

To print a literal dollar sign for a variable name, you must either put the dollar sign in single quotes or quote
it with a backslash outside of any quote marks. For example:

echo "This is "'$'"FOO"
echo "This is "\$"FOO"

Both statements print the words “This is $FOO”.

Similarly, to print a quotation mark, you must either surround it with the opposite type of quotation mark
or quote it outside of quotation marks. For example, the following statement will not work:

echo "This is \"wrong\" and will cause csh to exit with an error"

This fails because the first backslash is treated as part of the string, which is terminated with the quotation
mark immediately after it. Because the third quotation mark is not within a string, however, the backslash
quotes it, turning it into a literal character. Thus, it does not start a new string. The fourth quotation mark (at
the end of the line) then begins a string. As a result, there is no matching double quote mark to end the
string and CSH exits with an unmatched quotation mark error.

Instead, you can use either of the following syntaxes:

echo "You probably meant "\""this"\"" or "'"'" this"'"'"."

In the first part, the string is terminated with a double quote mark followed by a quoted double quote mark
(displayed literally), followed by opening a new string with a double quote mark. In the second part, the
string is terminated with a double quote mark, followed by a double quote mark within single quotes, followed
by opening a new string with a double quote mark.

The construction of code that takes advantage of this parsing difference to execute different code depending
on whether it is executing in a Bourne shell or a C shell is left as an exercise for the reader.

Inline Execution

The Bourne shell provides two operators for executing a command and placing its output in the middle of
another command or string. These operators are the $() operator and the backtick (`) operator (not to be
confused with a normal single quote).

Variables, Expansion, and Quoting 43
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

These operators are often used with commands that generate a list of filenames to pass them as the argument
list to another command. For example, the grep command, when passed the -l flag, returns a list of files
that match. This technique is often combined with the -r flag, which makes grep search recursively for files
within any directories that it encounters in its file list. Thus, if you want to edit any files whose contents
contain the word "myname" with vi, for example, you could do it like this:

vi $(grep -rl myname directory_of_files)

You can, however, use this to execute any command. There is one small caveat you should be aware of,
however. The backtick operator cannot be nested. For example, the following command produces an error:

FOO=1; BAR=3
echo "Try this command: `echo $FOO + "`expr $BAR + 1`"`"

This fails because the echo command ends at the second backtick. Thus, the command executed is echo
$FOO + ". If you need to nest inline execution, you can use the $() operator for the nested command. For
example, the previous example can be written correctly as follows:

FOO=1; BAR=3
echo "Try this command: `echo $FOO + "$(expr $BAR + 1)"`"

You should notice that double-quotation marks can be safely nested within a command enclosed by either
backticks or the $() operator.

Note: Evaluation of inline commands, much like expansion of variables, occurs after the statement itself is
fully parsed. Thus, it is safe to use either the backtick (`) or $() operator even if the command may produce
double-quote marks in its output. You do not need to quote the resulting content in any way.

C Shell Note: The C shell only partially supports this.

The C shell does not support the $() syntax.

The C shell support for the backtick syntax is somewhat limited in that newline characters in the result are
always stripped and replaced with spaces. If you need to preserve newlines, you should store the results in
a temporary file instead of in a shell variable, then operate on the resulting file.

44 Variables, Expansion, and Quoting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Shell Script Basics

No procedural programming language would be complete without some notion of subroutines, functions,
or other such constructs. The Bourne shell is no exception.

In the Bourne shell, there are two basic ways to approach subroutines. The first is through executing outside
tools (which may include a script executing itself recursively). This was described briefly in “Basic Control
Statements” (page 29). However, there are other techniques for obtaining result code information from
external scripts. These are described in “Working with Result Codes” (page 45). You can also make execution
of one command be conditional upon the result code returned by another command as described in “Chaining
Execution” (page 46).

The second way to approach subroutines (and one which generally results in better performance) is through
the use of actual subroutines. These are described in “Subroutine Basics” (page 47). You can also write short,
simple subroutines inline as described in “Anonymous Subroutines” (page 48).

The scoping rules for shell subroutines differ from the scoping rules for most other programming languages.
Shell script variable scoping is explained in “Variable Scoping” (page 49).

You may find it useful to include one entire shell script inside another. This subject is covered in “Including
One Shell Script Inside Another (Sourcing)” (page 50).

Finally, you may find it useful to execute outside scripts in the background and check their status at a later
time. You can learn about this in “Background Jobs and Job Control” (page 51).

Working with Result Codes

Result codes, also known as return values, exit statuses, and probably several other names, are one of the
more critical features of shell scripting, as they play a role in almost every aspect of script execution.

Whenever a command executes (including the open bracket shell builtin used as part of the if and while
statements), a result code is generated. If the command exits successfully, the result is usually zero (0). If the
command exits with an error, the result code will vary according to the tool. (See the documentation for the
tool in question for a list of result codes.) The possible range of result codes is 0-255.

There are three ways of testing to see if a script executes correctly. The first is with an immediate test using
the if statement. For example:

if ls mysillyfilename ; then
 echo "File exists."
fi

Working with Result Codes 45
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and
Sourcing

Note: This example is not the best way of testing whether a file exists. It is only intended as an example of
a tool that returns a different exit status depending on whether it was successful at performing a task.

For more information about how to test for file existence using the if statement, see “The test Command and
Bracket Notation” (page 30).

The second way is by testing the last exit status returned. The exit status is stored in the shell variable $?.
For example:

ls mysillyfilename
if [$? = 0] ; then
 echo "File exists."
fi

The third way is by taking advantage of the “and” operator:

ls mysillyfilename && echo "File exists."

These three code examples should generate the same output. The third technique is explained further in
“Chaining Execution” (page 46).

C Shell Note: The C shell supports the exit status variable (with different syntax described in “The if
Statement” (page 29)) and the chaining method.

Chaining Execution

The shell provides three operators for chaining execution:and (&&), or (||) and not (!).

And (&&)
If the command to the left succeeds (has a zero exit status), the command to the right executes.
Otherwise, it does not. The result code returned by this operation is success (zero) only if both
commands return zero. Otherwise, its result code is whatever was returned by whichever command
failed.

Or (||)
If the command to the left succeeds (has a zero exit status), the command to the right does not
execute. If the command to the left fails, the command to the right does execute. If the leftmost
command succeeds, the exit status returned by this operator is zero. Otherwise, the exit status returned
is the exit status of the command to the right of the operator.

Not (!)
Executes the command to the right of the operator. If the command returns a zero exit status, the
operator returns a nonzero exit status. If the command returns a nonzero exit status, the operator
returns a zero exit status.

The three operators are shown in the following snippet:

ls / || ! ls mysillyfilename && echo "Whatever."

The operator precedence rules in Bourne shell scripts are very different from those in C. Parentheses are
evaluated first, as they can be used to override grouping of operators. After that, however, evaluation of
operators occurs in order from left to right.

46 Chaining Execution
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

For example, the following line lists all of the files in the root directory, then echoes “It’s a boy”:

 ls / || ls /xy && echo "It's a boy"

The || operator takes precedence over the && operator because of left-to-right evaluation rules. The shell
shortcuts evaluation of the || operator. Thus, because ls / always succeeds, the || operator causes the
second ls to be skipped entirely, and the statement up to the && operator evaluates to true (0). This value
is then combined with the echo statement after it by the && operator. Thus, the echo statement executes
afterwards.

Note: These rules are very different from the rules in C or most other programming languages. If you substitute
function calls in C with the same return values (true, false, and true), the resulting statement behaves
very differently. Consider the following statement:

if (a() || b() && c()) { ... }

If functions a and c return true and function b returns false, the && operator takes precedence over the
|| operator. Thus, when the first function call (a) executes and returns true, the || operator shortcuts the
rest of the statement. However, the expression as a whole still evaluates to true in this case. The reason for
this is easier to see if you rewrite the statement with parentheses to show the operator precedence like this:

if (a() ||
 (b() && c())
) { ... }

You can modify the order of operations (or clarify it to avoid confusing people who are not used to languages
without operator precedence) by adding parentheses, as shown in the next snippet:

ls / || (ls /nonexistentfile && echo "file exists")

In this case, because the first ls statement is successful, the remainder of the statement is skipped. If you
replace the ls / with false, the failed listing of nonexistentfile generates an error message and a
nonzero exit status, which in turn causes the echo statement to still be skipped.

Of course, the existence of these operators also means that you could write an if statement without actually
using the if keyword, as shown in the following snippet:

FOO=3
[$FOO -eq 3] && echo "three"

Because this decreases readability, however, this syntax is not recommended. This form is presented here
only to help with comprehension of existing scripts.

C Shell Note: The C shell syntax for chaining is identical to the Bourne shell syntax. However, you should be
aware that some versions of the C shell have subtle bugs in their logic behavior. If you run into these bugs,
adding parentheses around single statements can sometimes help.

Subroutine Basics

Subroutines in the Bourne shell look very much like C functions without the argument list. You call these
subroutines just like you run a program, and subroutines can be used anywhere that you can use an executable.

Subroutine Basics 47
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

Here is a simple example that prints "Arg 1: This is an arg" using a shell subroutine:

#!/bin/sh

mysub()
{
 echo "Arg 1: $1"
}

mysub "This is an arg"

Just as shell script arguments are stored in shell-local variables named $1, $2, and so on, so too are the
arguments to shell subroutines. In fact, in most ways, shell subroutines behave exactly like executing an
external script. One place where they behave differently is in variable scoping. See “Variable Scoping” (page
49) for more information.

In general, a subroutine can do anything that a shell script can do. It can even return an exit status to the
calling part of the shell script. For example:

#!/bin/sh

mysub()
{

return 3
}

mysub "This is an arg"
echo "Subroutine returned $?"

Note: Be careful not to use exit in the subroutine. If you do, the entire script will exit, not just the subroutine.
This is one way in which subroutines behave differently than separate scripts behave.

C Shell Note: The C shell does not support subroutines. You can, however, use additional external scripts
to simulate them. For very simple subroutines, you can also approximate the functionality with aliases as
described in “The alias Builtin” (page 15).

Anonymous Subroutines

The Bourne shell allows you to group more than one command together and treat them both as a separate
command. In effect, you are creating an anonymous subroutine inline.

For example, if you want to copy a large number of files from one place to another, you could use cp, but
this may not be semantically ideal for any number of reasons. Another option is to use tar to create an
archive on standard output, then pipe that to a second instance of tar that extracts the archive.

The basic commands needed are show below. The first command in this example archives the listed files
and prints the archive contents to standard output. The second command takes an archive form standard
output and extracts the files.

tar -cf - file1 file2 file3 ...
tar -xf -

48 Anonymous Subroutines
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

Thus, to copy files from one place to another, you could pipe the first tar command to the second one.
However, there’s a problem with that: because the second tar is running in the same directory, you are
extracting the files on top of themselves. If you’re lucky, nothing happens at all. In the worst case scenario,
you could lose files this way.

Thus, you need run two commands on the right side of the pipe: a cd command to change directories before
extracting the archive and the tar command itself. You can do this with an anonymous subroutine.

Here is a simple example:

tar -cf - file1 file2 file3 | \
{ cd "/destination" ; tar -xf - ; }

Notice the semicolon before the close curly brace. This semicolon is required. Also notice the space after the
opening curly brace. This space is also required. Forgetting either of these results in a syntax error.

Of course, as written, there is still some risk involved in using this code. If the destination directory does not
exist, the cd command fails, and the tar command executes in the wrong directory. To solve this problem,
you should check the exit status of the first command before running the second one.

For example:

tar -cf - file1 file2 file3 | \
 { if cd "/destination" ; then tar -xf - ; fi; }

This version will execute the cd command, then execute the second tar command only if the cd command
was successful.

C Shell Note: The C shell does not support anonymous subroutines. You can, however, use additional external
scripts to simulate them. You can also roughly approximate this functionality through careful use of chaining
as described in “Chaining Execution” (page 46). For example:

(cd / && ls) | more

Unfortunately, if you need the second command to execute even if the first command fails, you can quickly
end up with very unreadable code.

((ls /boguslocation || true) && (ls || true)) | more

Variable Scoping

Subroutines execute within the same shell instance as the main shell script. As a result, all shell variables are,
by default, shared between the subroutines and the main program body. This creates a bit of a problem
when writing recursive code.

Fortunately, variables do not have to remain global. To declare a variable local to a given subroutine, use the
local statement.

#!/bin/sh

mysub()
{
 local MYVAR

Variable Scoping 49
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

 MYVAR=3
 echo "SUBROUTINE: MYVAR IS $MYVAR";
}

MYVAR=4
echo "MYVAR INITIALLY $MYVAR"
mysub "This is an arg"
echo "MYVAR STILL $MYVAR"

This script will tell you that the initial value is 4, the value was changed to 3 in the subroutine, and remains
4 when the subroutine returns. Were it not for a local declaration of MYVAR in the subroutine, the subsequent
change to MYVAR would have propagated back to the main body of the script.

Much like the export statement, the local statement can be used at the beginning of an assignment
statement as well. For example, the previous subroutine could have contained the following line instead:

local MYVAR=3

In either case, any subsequent changes to the variable MYVAR remain local to the subroutine. If the subroutine
calls itself recursively, a new copy of MYVAR will be created for each call to the subroutine, resulting in a call
stack much like local variables in C or other languages.

Important: Changes to this variable in other subroutines without a local declaration of MYVAR will still
result in modifications to the global copy of MYVAR.

Including One Shell Script Inside Another (Sourcing)

As with any programming language that includes subroutines, it is often useful to build up a library of
common functions that your scripts can use. To avoid duplicating this content, the Bourne shell scripting
language supports a mechanism to include one shell script inside another by reference. This process is referred
to as sourcing.

For example, create a file containing the subroutine mysub from “Variable Scoping” (page 49). Call it mysub.sh.
To use this subroutine in another script, you can do the following:

#!/bin/sh
MYVAR=4
source /path/to/mysub.sh
echo "MYVAR INITIALLY $MYVAR"
mysub "This is an arg"
echo "MYVAR STILL $MYVAR"

This script will do exactly the same thing as the script in the previous section. The only difference is that the
subroutine used is in a different file.

There is another, shorter, way to write the same thing using the period (.) character. For example:

#!/bin/sh
MYVAR=4
. /path/to/mysub.sh
echo "MYVAR INITIALLY $MYVAR"
mysub "This is an arg"
echo "MYVAR STILL $MYVAR"

50 Including One Shell Script Inside Another (Sourcing)
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

This code does exactly the same thing as the previous example. The source builtin is more popular among
former C shell programmers, while the period (.) version is more popular among Bourne shell purists. Both
versions are perfectly cromulent, however.

These examples are not as straightforward as they seem, however. While this works very well for including
subroutines, you cannot always use this in place of executing an outside script, as execution and sourcing
behave very differently with respect to variables. The following example demonstrates this:

#!/bin/sh
Save as sourcetest1.sh
MYVAR=3
source sourcetest2.sh
echo "MYVAR IS $MYVAR"

#!/bin/sh
Save as sourcetest2.sh
MYVAR=4

You will notice that the second script changed the value of a variable that was local to the first script. Unlike
executing a script as a normal shell command, executing a script with the source builtin results in the second
script executing within the same overall context as the first script. Any variables that are modified by the
second script will be seen by the calling script. While this can be very powerful, it is easy to clobber variables
if you aren't careful.

C Shell Note: The C shell supports the source builtin, but does not support the period form (.).

Background Jobs and Job Control

For end-user convenience in the days of text terminals before the advent of tools like screen, the C shell
contains job control features that allow you to start a process in the background, then go off and work on
other things, bringing these background tasks into the foreground, suspending foreground tasks to complete
them later, and continuing these suspended tasks as background tasks.

Over the years, many modern Bourne shell variants including bash and zsh have added similar support. The
details of using these commands from the command line is beyond the scope of this document, but in brief,
control-Z suspends the foreground process, fg brings a suspended or background job to the foreground,
and bg causes a job to begin executing in the background.

Up until this point, all of the scripts have involved a single process operating in the foreground. Indeed, most
shell scripts operate in this fashion. Sometimes, though, parallelism can improve performance, particularly
if the shell script is spawning a processor-hungry task. For this reason, this section describes programmatic
ways to take advantage of background jobs in shell scripts.

Background Jobs and Job Control 51
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

Note: All Bourne shell variants support running a command in the background. However, the information
obtained about these jobs varies from shell to shell, and pure Bourne shell implementations do not provide
this information at all. Thus, when writing scripts that use this functionality, you should be aware that you
are significantly limiting the portability of your script when you use BASH-specific or ZSH-specific builtins.

Also note that these examples are specific to BASH. For ZSH, there are subtle differences in the formatting
of job status that will require changes to various bits of code. Making this code work in other shells is left as
an exercise for the reader.

To start a process running in the background, add an ampersand at the end of the statement. For example:

sleep 10 &

This will start a sleep process running in the background and will immediately return you to the command
line. Ten seconds later, the command will finish executing, and the next time you hit return after that, you
will see its exit status. Depending on your shell, it will look something like this:

[1]+ Done sleep 10

This indicates that the sleep command completed execution. A related feature is the wait builtin. This
command causes the shell to wait for a specified background job to complete. If no job is specified, it will
wait until all background jobs have finished.

The next example starts several commands in the background and waits for them to finish.

#!/bin/bash

function delayprint()
{
 local TIME;
 TIME=$1
 echo "Sleeping for $TIME seconds."
 sleep $TIME
 echo "Done sleeping for $TIME seconds."
}

delayprint 3 &
delayprint 5 &
delayprint 7 &
wait

This script is a relatively simple example. It executes three commands at once, then waits until all of them
have completed. This may be sufficient for some uses, but it leaves something to be desired, particularly if
you care about whether the commands succeed or fail.

The following example is a bit more complex. It shows two different techniques for waiting for jobs. You
should generally use the process ID when waiting for a child process. You can obtain the process ID of the
last command using the $! shell variable.

If, however, you need to inspect a job using the jobs builtin, you must use the job ID. It can be somewhat
clumsy to obtain a job ID because the job control mechanism in most Bourne shell variants was designed
primarily for interactive use rather than programmatic use. Fortunately, there are few things that a well-written
regular expression can’t fix.

52 Background Jobs and Job Control
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

Note: Regular expressions are described in “Regular Expressions Unfettered” (page 63). For the purposes
of this example, it is sufficient to understand that the function jobidfromstring takes a job string like the
one shown previously and prints out the first single digit or multidigit number by itself.

#!/bin/bash

function jobidfromstring()
{
 local STRING;
 local RET;

 STRING=$1;
 RET="$(echo $STRING | sed 's/^[^0-9]*//' | sed 's/[^0-9].*$//')"

 echo $RET;
}

function delayprint()
{
 local TIME;
 TIME=$1
 echo "Sleeping for $TIME seconds."
 sleep $TIME
 echo "Done sleeping for $TIME seconds."
}

Use the job ID for this one.
delayprint 3 &
DP3=`jobidfromstring $(jobs %%)`

Use the process ID this time.
delayprint 5 &
DP5=$!

delayprint 7 &
DP7=`jobidfromstring $(jobs %%)`

echo "Waiting for job $DP3";
wait %$DP3

echo "Waiting for process ID $DP5";
No percent because it is a process ID
wait $DP5

echo "Waiting for job $DP7";
wait %$DP7

echo "Done."

This example passes a job number or process ID argument to the jobs builtin to tell it which job you want
to find out information about. Job numbers begin with a percent (%) sign and are normally followed by a
number.

Background Jobs and Job Control 53
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

In the case, however, a second percent sign is used. The %% job is one of a number of special job “numbers”
that the shell provides. It tells the jobs builtin to output information about the last command that was
executed in the background. The result of this jobs command is a status string like the one shown earlier.
This string is passed as a series of arguments to the jobidfromstring subroutine, which then prints the
job ID by itself. The output of this subroutine, in turn, is stored into either the variable DP3 or DP7.

This example also demonstrates how to wait for a job based on process ID using a special shell variable, $!,
which contains the process ID of the last command executed. This value is stored into the variable DP5.
Process IDs are generally preferred over job IDs when using the jobs command in scripts (as opposed to
hand-entered use of the jobs command).

Finally, the script ends with a series of wait commands. Like the jobs command, these commands can take
a job ID. This job ID consists of a percent sign followed by the job number (obtained from either the variable
DP3 or DP7). These commands can also take a process ID (which is just the number itself).

C Shell Note: The C shell does not allow you to query the last job or wait for a single job or process ID. You
can, however, wait for all outstanding jobs to finish by running the wait builtin with no arguments.

The final example shows how to execute a limited number of concurrent jobs in which the order of job
completion is not important.

#!/bin/bash

MAXJOBS=3

function spawnjob()
{
 echo $1 | bash
}

function clearToSpawn
{
 local JOBCOUNT="$(jobs -r | grep -c .)"
 if [$JOBCOUNT -lt $MAXJOBS] ; then
 echo 1;
 return 1;
 fi

 echo 0;
 return 0;
}

JOBLIST=""

COMMANDLIST='ls
echo "sleep 3"; sleep 3; echo "sleep 3 done"
echo "sleep 10"; sleep 10 ; echo "sleep 10 done"
echo "sleep 1"; sleep 1; echo "sleep 1 done"
echo "sleep 5"; sleep 5; echo "sleep 5 done"
echo "sleep 7"; sleep 7; echo "sleep 7 done"
echo "sleep 2"; sleep 2; echo "sleep 2 done"
'

IFS="
"

54 Background Jobs and Job Control
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

for COMMAND in $COMMANDLIST ; do
 while [`clearToSpawn` -ne 1] ; do
 sleep 1
 done
 spawnjob $COMMAND &
 LASTJOB=$!
 JOBLIST="$JOBLIST $LASTJOB"
done

IFS=" "

for JOB in $JOBLIST ; do
 wait $JOB
 echo "Job $JOB exited with status $?"
done

echo "Done."

Most of the code here is straightforward. It is worth noting, however, that in the function clearToSpawn,
the -r flag must be passed to the jobs builtin to restrict output to currently running jobs. Without this flag,
the jobs builtin would otherwise return a list that included completed jobs, thus making the count of running
jobs incorrect.

Warning: While it is tempting to put the while loop inside the clearToSpawn subroutine, if you do
so, the program will wait forever. The status of jobs does not get updated by the shell until script
execution returns to the main body of the program.

The -c flag to grep causes it to return the number of matching lines rather than the lines themselves, and
the period causes it to match on any nonblank lines (those containing at least one character). Thus, the
JOBCOUNT variable contains the number of currently running jobs, which is, in turn, compared to the value
MAXJOBS to determine whether it is appropriate to start another job or not.

C Shell Note: A C shell version of this script is included in the accompanying Companion Files download.
To obtain this archive, see the web version of this document at http://developer.apple.com/.

Background Jobs and Job Control 55
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

http://developer.apple.com/

56 Background Jobs and Job Control
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Result Codes, Subroutines, Scoping, and Sourcing

Using math in shell scripts is one area that is often ignored by shell scripting documentation—probably
because so few people actually understand the subject. Shell scripts were designed more for string-based
processing, with numerical computation as a bit of an afterthought, so this should come as no surprise.

This chapter mainly covers basic integer math operations in shell scripts. More complicated math is largely
beyond the ability of shell scripting in general, though you can do such math through the use of inline Perl
scripts or by running the bc command. These two techniques are described in “Beyond Basic Math” (page
60).

The expr Command Also Does Math

In shell scripts, numeric calculations are done using the command expr. This command takes a series of
arguments, each of which must contain a single token from the expression to be evaluated. Each number,
or symbol must thus be a separate argument.

For example, the expression (3*4)+2 is written as:

expr '(' '3' '*' '4' ')' '+' '2'

The command will print the result (14) to its standard output,

Note: Each argument in this example is surrounded by single quotes. This prevents the shell from trying to
interpret the contents of the argument. Certain things like parentheses and comparison operators have
special meaning to the shell, so without these single quotes, the command would not behave as expected.

If an argument contains a shell variable, double quotes must be used because shell variables inside single
quotes are not expanded at all. Thus in some cases, you will see examples in this chapter containing double
quotes. However, for simplicity, the examples in this chapter will generally use single quotes unless there is
a specific reason that double quotes are necessary.

For numerical comparisons, the same basic syntax is used. To test the truth of the inequality 3 < -2, use
the following statement:

expr '3' '<' '-2'

This will return a zero (0) because the statement is not true. If it were true, it would return a one (1).

The expr Command Also Does Math 57
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

Warning: This mathematical expression of true is exactly the opposite of that returned by the commands
true and false. This difference is often confusing to people who are new to shell scripting. The values
returned by true and false are intended to represent return values for shell scripts and command-line
tools, not numerical computation. Command-line tools and scripts typically return 0 on success, 1 on
an invalid argument, or a negative value for serious failures. You should avoid comparing the results
returned by expr with the return value of true or false.

The most common place to use this command is as part of a loop in a shell script. What follows is a simple
example of a for-next loop written in a shell script:

COUNT=0
while [$COUNT -lt '4'] ; do
 echo "COUNT IS $COUNT"
 COUNT="$(expr "$COUNT" '+' '1')"
done

This script is equivalent to the following bit of C:

int i;
for (i=0; i<4; i++) {
 printf("COUNT IS %d\n", i);
}

Note: The expr command can also be used for string comparison. This use is described in the similarly titled
section “The expr Command” (page 36) in “Shell Script Basics” (page 13).

The Easy Way: Parentheses

Another way to do math operations in some Bourne shell dialects is with double parentheses inline. The
example below illustrates this technique:

echo $((3 + 4))

This form is much easier to use than the expr command because it is somewhat less strict in terms of
formatting. In particular, with the exception of variable decoding, shell expansion is disabled. Thus, operators
like less than and greater than do not need to be quoted.

This form is not without its problems, however. In particular, it is not as broadly compatible as the use of
expr. This form is an extension added by the Korn shell (ksh), and later adopted by the Z shell (zsh) and
the Bourne Again shell (bash). In a pure Bourne shell environment, this syntax will probably fail.

While most modern UNIX-based and UNIX-like operating systems use BASH to emulate the Bourne shell, if
you are trying to write scripts that are more generally usable, you should use expr to do integer math, as
described in “The expr Command Also Does Math” (page 57).

58 The Easy Way: Parentheses
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

Common Mistakes

As mentioned in,“Shell Script Basics” (page 13), the shell scripting language contains basic equality testing
without the use of the expr command. For example:

if [1 = 2] ; then
 echo "equal"
else
 echo "not equal"
fi

This code will work as expected. However, it isn't doing what you might initially think it is doing; it is performing
a string comparison, not a numeric comparison. Thus the following code will not behave the way you might
expect if you assumed a numerical comparison:

if [1 = "01"] ; then
 echo "equal"
else
 echo "not equal"
fi

It will print the words "not equal", as the strings "1" and "01" are not the same string.

Warning: Do not inadvertently perform a redirect instead of an inequality test. Take the following code
for example:

if [2 > 3] ; then
 echo greater
fi

This will be true even though the comparison should be false because no comparison is taking place.
Instead, this line of code is actually redirecting the output of the bracket command (an empty string)
into a file called 3, which is probably not what you want.

The same thing occurs if you use the expr command without enclosing the less than or greater than
operators in quotes.

C Shell Note: The C shell makes this even more difficult, as it does not provide operators for numerical
equality at all. Instead, you must do a test like this:

if ($A <= $B && !($A < B))

This can also be a problem even when working with the expr command if your script takes user input. The
expr command expects a number or symbol per argument. If you feed it something that isn't just a number
or symbol, it will treat it as a string, and will perform string comparison instead of numeric comparison.

The following code demonstrates this in action:

expr '1' '+' '2'
expr ' 1' '+' '2'
expr '2' '<' '1'
expr ' 2' '<' '1'

Common Mistakes 59
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

The first line will print the number 3. The second line produces an error message. When doing addition, this
mistake is easy to detect. When doing comparisons, however, as shown in the following two lines, the results
are more insidious. The number 2 is clearly greater than the number 1. In string comparison, however, a
space sorts before any letter or number. Thus, the third line prints a 0, while the fourth line prints a 1. This
is probably not what you want.

As with most things in shell scripting, there are many ways to solve this problem, depending on your needs.
If you are only worried about spaces, and if the purpose for the comparison is to control shell execution, you
can use the numeric evaluation routines built into test, as described in the test man page.

For example:

MYNUMBER=" 2" # Note this is a string, not a number.
Force an integer comparison.
if ["$MYNUMBER" -gt '1'] ; then
 echo 'greater'
fi

However, while this works for trivial cases, there are a number of places where this is not sufficient. For
example, this cannot be used if:

 ■ Floating point comparison is needed (as described in “Beyond Basic Math” (page 60)).

 ■ The value is preceded by a dollar sign or similar.

 ■ The intended use is as a numerical truth value in a more complicated mathematical expression (without
splitting the expression).

A common way to solve such problems is to process the arguments with a regular expression. For example,
to strip any nonnumeric characters from a number, you could do the following:

MYRAWNUMBER=" 2" # Note this is a string, not a number.

Strip off any characters that aren't in the range of 0-9
MYNUMBER="$(echo "$MYRAWNUMBER" | sed 's/[^0-9]//g')"

expr "$MYNUMBER" '<' '1'

This results in a comparison between the number 2 and the number 1, as expected.

For more information on regular expressions, see “Regular Expressions Unfettered” (page 63).

Beyond Basic Math

The shell scripting language provides only the most basic mathematical operations on integer values. In
most cases, integer operations are sufficient. However, sometimes you may need to exceed those limitations
to perform more complicated mathematical operations.

There are two main ways to do floating point math (and other, more sophisticated math). The first is through
the use of inline Perl code, the second is through the use of the bc command. This section presents both
forms briefly.

60 Beyond Basic Math
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

Floating Point Math Using Inline Perl

The first method of doing shell floating point math, inline Perl, is the easiest to grasp. To use this method,
you essentially write a short Perl script, then substitute shell variables into the script, then pass it to the perl
interpreter, either by writing it to a file or by passing it in as a command-line argument.

Note: Length limitations apply when passing in a Perl script by way of a command line argument. The exact
limitations vary from one OS to another, but are generally in the tens of kilobytes. If your script needs to be
longer, it should be written out to a file.

The following example demonstrates basic floating point math using inline Perl. It assumes a basic
understanding of the Perl programming language.

#!/bin/sh
PI=3.141592654
RAD=7
AREA=$(perl -e "print \"The value is \".($PI * ($RAD*$RAD)).\"\n\";")
echo $AREA

Under normal circumstances, you probably do not want to print an entire string when doing this. However,
the use of the string was to demonstrate an important point. Perl evaluates strings between single and double
quote marks differently, so when doing inline Perl, it is often necessary to use double quotes. However, the
shell only evaluates shell variables within double quotes. Thus, the double quote marks in the script have to
be quoted so that they actually get passed to the Perl interpreter instead of ending or beginning new
command-line arguments.

This need for quoting can prove to be a challenge for more complex inline code, particularly when regular
expressions is involved. In particular, it can often be tricky figuring out how many backslashes to use when
quoting the quoting of a quotation mark within a regular expression. Such issues are beyond the scope of
this document, however.

Floating Point Math Using the bc Command

The bc command, short for basic calculator, is a POSIX command for doing various mathematical operations.
The bc command offers arbitrary precision floating point math, along with a built-in library of common
mathematical functions to make programming easier.

Cross-Platform Compatibility Note: The most common version of bc (and the one included in Mac OS X)
is GNU bc, which offers a number of extensions beyond those available in the POSIX version. For cross-platform
compatibility, you should generally avoid these extensions if possible. If you specify the -s flag to GNU bc,
it will disable the GNU extensions and will thus emulate the POSIX version.

The bc command takes its input from its standard input, not from the command line. If you pass it command
line arguments, they are interpreted as file names to be executed, which is probably not what you want to
do when executing math operations inline in a shells script.

Here is an example of using bc in a shell script:

#!/bin/sh

Beyond Basic Math 61
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

PI=3.141592654
RAD=7
AREA=$(echo "$PI * ($RAD ^ 2)" | bc)
echo "The area is $AREA"

The bc command offers much more functionality than described in this section. This section is only intended
as a brief synopsis of the available functionality. For full usage notes, see the man page for bc.

62 Beyond Basic Math
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Paint by Numbers

Regular expressions are a powerful mechanism for text processing. You can use regular expressions to search
for a pattern within a block of text, to replace bits of that text with other bits of text, and to manipulate
strings in various other subtle and interesting ways.

For the purposes of this chapter, you should paste the following lines of text into a text file with UNIX line
endings (newline):

Mary had a little lamb,
its fleece was white as snow,
and everywhere that Mary went,
the lamb was sure to go.
A few more lines to confuse things:
Marylamb had a little.
This is a test. This is only a test.
Mary was married. A lamb was nearby.
Mary, a little lamb, and my grocer's freezer...
Mary a lamb.
Marry a lamb.
Mary had a lamb looked like a lamb.
I want chocolate for Valentine's day.
This line contains a slash (/).
This line contains a backslash (\).
This line contains brackets ([]).
Why is mary lowercase?
What about Mary, Mary, and Mary?
const people fox
constant turtles bear
constellation Libra
The quick brown fox jumped over the lazy dog.

Save this into a file called poem.txt.

Types of Regular Expressions

There are three basic types of regular expressions: basic regular expressions, extended regular expressions,
and Perl regular expressions. Throughout this chapter, the sections points out areas in which they diverge.
This section is just a summary of the differences. For more detail, see the appropriate section.

Basic regular expressions and extended regular expressions differ in the following areas:

 ■ Basic regular expressions use a backslash prior to grouping/capturing parentheses (and prior to pipe
operators within these parentheses). Extended regular expressions do not. These operators are described
in “Grouping Operators” (page 68).

Types of Regular Expressions 63
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

 ■ Basic regular expressions use a backslash prior to a plus sign when used to mean “one or more of the
previous character or group”. Extended regular expressions do not. This operator is described in “Wildcards
and Repetition Operators” (page 66).

 ■ Basic regular expressions use a backslash prior to a question mark when used to mean “zero or one of
the previous character or group”. Extended regular expressions do not. This operator is described in
“Wildcards and Repetition Operators” (page 66).

Perl regular expressions are equivalent to extended regular expressions with a few additional features:

 ■ Perl can (optionally) use a dollar sign instead of a backslash to represent variables in substitution patterns,
as described in “Capturing Operators and Variables” (page 71).

 ■ Perl supports noncapturing parentheses, as described in “Noncapturing Parentheses” (page 76).

 ■ The order of multiple options within parentheses can be important when substrings come into play, as
described in “Grouping Operators” (page 68).

 ■ Perl allows you to include a literal square bracket anywhere within a character class by preceding it with
a backslash, as described in “Quoting Special Characters” (page 70).

 ■ Perl adds a number of additional switches that are equivalent to certain special characters and character
classes. These are described in “Character Class Shortcuts” (page 74).

 ■ Perl supports a broader range of modifiers. These are described in “Using Modifiers” (page 72).

Regular Expression Syntax

The fundamental format for regular expressions is one of the following, depending on what you are trying
to do:

/search_pattern/modifiers
command/search_pattern/modifiers
command/search_pattern/replacement/modifiers

The first syntax is a basic search syntax. In the absence of a command prefix, such a regular expression returns
the lines matching the search pattern. In some cases, the slash marks may be (or must be) omitted—in the
pattern argument to the grep command, for example.

The second syntax is used for most commands. In this form, some operation occurs on lines matching the
pattern. This may be a form of matching, or it may involve removing the portions of the line that match the
pattern.

The third syntax is used for substitution commands. These can be thought of as a more complex form of
search and replace.

For example, the following command searches for the word 'test' within the specified file:

Expression: /test/
grep 'test' poem.txt

64 Regular Expression Syntax
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Note: Note that grep expects the leading and trailing slashes in the regular expression to be removed.

The availability of commands and flags varies somewhat between regular expression variants, and is described
in the relevant sections.

Positional Anchors and Flags

A common way to significantly alter regular expression matching is through the use of positional anchors
and flags.

Positional anchors allow you to specify the position within a line of text where an expression is allowed to
match. There are two positional anchors that are regularly used: caret (^) and dollar ($). When placed at the
beginning or end of an expression, these match the beginning and end of a line of text, respectively.

For example:

Expression: /^Mary/
grep "^Mary" < poem.txt

This matches the word "Mary", but only when it appears at the beginning of a line. Similarly, the following
matches the word "fox," but only at the end of a line:

Expression: /fox$/
grep "fox$" < poem.txt

The other common technique for altering the matching behavior of a regular expression is through the use
of flags. These flags, when placed at the end of a regular expression, can change whether a regular expression
is allowed to match across multiple lines, whether the matching is case sensitive or insensitive, and various
other aspects of matching.

Note: Different tools support different flags, and not all flags are supported with all tools. The grep
command-line tool uses command-line flags instead of flags in the expression itself.

The most commonly used flag is the global flag. By default, only the first occurrence of a search term is
matched. This is mainly of concern when performing substitutions. The global flag changes this so that a
substitution alters every match in the line instead of just the first one.

For example:

Expression: s/Mary/Joe/
sed "s/Mary/Joe/" < poem.txt

This replaces only the first occurrence of "Mary" with "Joe." By adding the global flag to the expression, it
instead replaces every occurrence, as shown in the following example:

Expression s/Mary/Joe/g
sed "s/Mary/Joe/g" < poem.txt

Positional Anchors and Flags 65
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Wildcards and Repetition Operators

One of the most common ways to enhance searching through regular expressions is with the use of wildcard
matching.

A wildcard is a symbol that takes the place of any other symbol. In regular expressions, a period (.) is
considered a wildcard, as it matches any single character. For example:

Expression: /wa./
grep 'wa.' poem.txt

This matches lines containing both "was" and "want" because the dot can match any character.

Wildcards are typically combined with repetition operators to match lines in which only a portion of the
content is known. For example, you might want to search for every line containing "Mary" with the word
"lamb" appearing later. You might specify the expression like this:

Expression: /Mary.*lamb/
grep "Mary.*lamb" poem.txt

This searches for Mary followed by zero or more characters, followed by lamb.

Of course, you probably want at least one character between those to avoid matches for strings containing
"Marylamb". The most common way to solve this is with the plus (+) operator. However, you can construct
this expression in several ways:

Expression (Basic): /Mary.\+lamb/
Expression (Extended): /Mary.+lamb/
Expression: /Mary..*lamb/
grep "Mary.\+lamb" poem.txt
grep -E "Mary.+lamb" poem.txt # extended regexp
grep "Mary..*lamb" poem.txt

Note: The appearance of the plus operator differs depending on whether you are using basic or extended
regular expressions; in basic regular expressions, it must be preceded by a backslash.

The first dot in the third expression matches a single character. The dot-asterisk afterwards matches be zero
or more additional characters. Thus, these three statements are equivalent.

The final useful repetition operator is the question mark operator (?). This operator matches zero or one
repetitions of whatever precedes it.

Note: Like the plus operator, this differs in appearance depending on whether you are using basic or extended
regular expressions; in basic regular expressions, it must be preceded by a backslash.

For example, if you want to match both Mary and Marry, you might use an expression like this:

Expression (Basic): /Marr\?y/
Expression (Extended): /Marr?y/
grep "Marr\?y" poem.txt
grep -E "Marr?y" poem.txt

66 Wildcards and Repetition Operators
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

The question mark causes the preceding r to be optional, and thus, this expression matches lines containing
either “Mary” or “Marry.”

In summary, the basic wildcard and repetition operators are:

period (.)—wildcard; matches a single character.
question mark (\? or ?)—matches 0 or 1 of the previous character, grouping, or wildcard. (This operator
differs depending on whether you are using basic or extended regular expressions.)
asterisk(*)—matches zero or more of the previous character, grouping, or wildcard.
plus(\+ or +)—matches one or more of the previous character, grouping, or wildcard. (This operator
differs depending on whether you are using basic or extended regular expressions.)

Character Classes and Groups

Searching for certain keywords can be useful, but it is often not enough. It is often useful to search for the
presence or absence of key characters at a given position in a search string.

For example, assume that you require the words Mary and lamb to be within the same sentence. To do this,
you need to only allow certain characters to appear between the two words. This can be achieved through
the use of character classes.

There are two basic types of character classes: predefined character classes and custom, or user-defined
character classes. These are described in the following sections.

Predefined Character Classes

Most regular expression languages support some form of predefined character classes. When used between
brackets, these define commonly used sets of characters.

:alnum:—all alphanumeric characters (a-z, A-Z, and 0-9).
:cntrl:—all control characters (ASCII 0-31).
:lower:—all lowercase letters (a-z).
:space:—all whitespace characters (space, tab, newline, carriage return, form feed, and vertical tab).
:alpha:—all alphabetic characters (a-z, A-Z).
:digit:—all numbers.
:print:—all printable characters (opposite of :cntrl:).
:upper:—all uppercase letters.
:blank:—all whitespace within a line (spaces or tabs).
:graph:—all alphanumeric or punctuation characters.
:punct:—all punctuation characters
:xdigit:—all hexadecimal digits (0-9, a-f, A-F).

For example, the following is another way to match any sentence containing Mary and lamb:

/Mary[:alpha::digit::blank:][:alpha::digit::blank:]*lamb/

Character Classes and Groups 67
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Custom Character Classes

In addition to the predefined character classes, regular expression languages also allow custom, user-defined
character classes. These custom character classes just look like a list of characters surrounded by square
brackets.

For example, if you only want to allow spaces and letters, you might create a character class like this one:

Expression: /Mary[a-z A-Z]*lamb/
grep "Mary[a-z A-Z]*lamb" poem.txt

In this example, there are two ranges (‘a’ through ‘z’ and ‘A’ through ‘Z’) allowed, as well as the space character.
Thus, any letter or space matches this pattern, but other things (including the period character) do not. Thus,
this line matches the first line of the poem, but does not match the later line that begins with "Mary was
married."

However, this pattern also did not match the line containing a comma, which was not really the intent. Listing
every reasonable range of characters with a single omission would be prohibitively large, particularly if you
want to include high ASCII characters, control characters, and other potentially unprintable characters.

Fortunately, there is another special operator, the caret (^). When placed as the first character of a character
class, matching is reversed. Thus, the following expression matches any character other than a period:

/Mary[^.]*lamb/
grep "Mary[^.]*lamb" poem.txt

Grouping Operators

As mentioned previously, regular expressions also have a notion of grouping. The purpose of grouping is to
treat multiple characters as a single entity, usually for the purposes of modifying that entity with a repeat
operator. This grouping is done using parentheses or quoted parentheses, depending on the regular expression
dialect being used.

Note: The syntax for grouping also results in a capture. This process is described in “Capturing Operators
and Variables” (page 71).

For example, say that you want to search for any string that contains the word “Mary” followed optionally
by the word “had", followed by the word “a”. You might write this expression like this:

#Expression (Basic): /Mary \(had \)\?a/
#Expression (Extended): /Mary (had)?a/
grep "Mary \(had \)\?a" poem.txt
grep -E "Mary (had)?a" poem.txt

68 Character Classes and Groups
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Note: The grouping operator and optional operator differ depending on which program is processing the
regular expression. The tools sed, awk, and grep use basic regular expressions (by default), and thus, these
operators must be quoted. Any tools that use extended regular expressions use the bare operators.

Also note that the -E flag enables extended regular expressions in grep.

The flag to enable extended regular expressions in sed differs among different versions of the tool. For this
reason, you should use basic regular expressions if at all possible when working with sed.

You can also use the grouping syntax to provide multiple options, any one of which is treated as a match.
Expressions enclosed in parentheses match any one of a series of smaller expressions separated by a pipe
(|) operator. For example, to search for Mary, lamb, or had, you might use this expression:

#Expression (Basic): /\(Mary\|had\|lamb\)/
#Expression (Extended): /(Mary|had|lamb)/
grep '\(Mary\|had\|lamb\)' poem.txt
grep -E '(Mary|had|lamb)' poem.txt

Because regular expressions generally match from left to right, you should be careful when working with
multiple options that are substrings of one another during substitution and be sure to place the larger of
the possible matches first. Some regular expression engines always take the longer match, while other regular
expression engines always take the leftmost match.

For example, the following lines give the same result:

sed -E 's/(lamb|lamb,)/orange/' poem.txt
sed -E 's/(lamb,|lamb)/orange/' poem.txt

However the following lines do not:

perl -pi.bak -e 's/(lamb|lamb,)/orange/' < poem.txt
perl -pi.bak -e 's/(lamb,|lamb)/orange/' < poem.txt

In Perl, when the input contains the word “lamb” followed by a comma, the regular expression engine matches
the word “lamb” first because it is the leftmost option. It replaces it with the word “orange” and leaves the
comma. In the second option, because the version with a comma matches first, the comma is deleted if it is
there.

You can, of course, also avoid this problem by writing the expression as:

perl -pi.bak -e 's/lamb,?/orange/' < poem.txt

Using Empty Subexpressions

Sometimes, when working with groups, you may find it necessary to include an optional group. It may be
tempting to write such an expression like this:

Expression (Extended): /const(ant|ellation|) (.*)/

In an odd quirk, however, some command-line tools do not appreciate an empty subexpression. There are
two ways to solve this.

The easiest way is to make the entire group optional like this:

Expression (Extended): /const(ant|ellation)? (.*)/

Character Classes and Groups 69
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

grep -E 'const(ant|ellation)? (.*)'

Alternately, an empty expression may be inserted after the vertical bar.

Expression (Extended): /const(ant|ellation|()) (.*)/
grep -E "const(ant|ellation|()) (.*)" poem.txt

Note: If you are mixing capturing with grouping, this method creates an empty capture, which ends up in
the buffer following the capture buffer for this group (more on this in “Capturing Operators and
Variables” (page 71)).

Quoting Special Characters

As seen in previous sections, a number of characters have special meaning in regular expressions. For example,
character classes are surrounded by square brackets, and the dash and caret characters have special meaning.
You might ask how you can search for one of these characters. This is where quoting comes in.

In regular expressions, certain nonletter characters may have some special meaning, depending on context.
To treat these characters as an ordinary character, you can prefix them with a backslash character (\). This
also means that the backslash character is special in any context, so to match a literal backslash character,
you must quote it with a second backslash.

There is one exception, however. To make a close bracket be a member of a character class, you do not quote
it. Instead, you make it be the first character in the class.

Note: Perl rules for extended regular expressions allow you to quote a close bracket anywhere within a
character class. Perl also recognizes the syntax shown here, however.

For example, to search for any string containing a backslash or a close bracket, you might use the following
regular expression:

Expression: /[]\\]/
grep '[]\\]' poem.txt

It looks a bit cryptic, but it is really relatively straightforward. The outer slashes delimit the regular expression.
The brackets immediately inside the outer slashes are character class delimiters. The first close bracket
immediately follows the open bracket, which makes it match an actual close bracket character instead of
ending the character class. The two backslashes afterwards are, in fact, a quoted backslash, which makes this
character class match the literal backslash character.

As a general rule, at least in extended regular expressions, any nonalphanumeric character can safely be
quoted whether it is necessary to do so or not. If quoting it is not necessary, the extra backslash is simply
ignored. However, it is not always safe to quote letters or numbers, as these have special meanings in certain
regular expression dialects, as described in “Capturing Operators and Variables” (page 71) and “Perl and
Python Extensions” (page 73). In addition, quoting parentheses may not do what you might expect in some
dialects, as described in “Capturing Operators and Variables” (page 71).

In basic regular expressions the behavior when quoting characters other than parentheses, curly braces,
numbers, and characters within a character class is undefined.

70 Quoting Special Characters
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Capturing Operators and Variables

In “Wildcards and Repetition Operators” (page 66), this chapter described ways to create more complicated
patterns to match for the search portion of a search and replace operation. This section describes more
powerful operations for the replacement portion of a search and replace operation.

Capturing operators and variables are used to take pieces of the original input text, capture them while
searching, and then substitute those bits into the middle of the replacement text.

The easiest way to explain capturing operators and variables is by example. Suppose you want to swap the
words quick and lazy in the string, "The quick brown fox jumped over the lazy dog." You might write an
expression like this:

Expression (Basic): s/The \(.*\) brown \(.*\) the \(.*\) dog/The \3 brown \2
 the \1 dog/
Expression (Extended): s/The (.*) brown (.*) the (.*) dog/The \3 brown \2 the
 \1 dog/

When you pass these expressions to sed, the last line of poem.txt should become "The lazy brown fox
jumped over the quick dog."

Expression (Basic): s/The (.*) brown (.*) the (.*) dog/The \3 brown \2 the \1
 dog/
sed "s/The \(.*\) brown \(.*\) the \(.*\) dog/The \3 brown \2 the \1 dog/" <
poem.txt

Expression (Extended): s/The \(.*\) brown \(.*\) the \(.*\) dog/The \3 brown
 \2 the \1 dog/
sed -E "s/The (.*) brown (.*) the (.*) dog/The \3 brown \2 the \1 dog/" < poem.txt

Perl supports extended form, but also supports
using a dollar sign for the variable name. (Note
the use of single quotes to prevent the shell from
doing variable substitution on $1, $2, and $3.)
perl -pi.bak -e "s/The (.*) brown (.*) the (.*) dog/The \3 brown \2 the \1 dog/"
 < poem.txt
perl -pi.bak -e 's/The (.*) brown (.*) the (.*) dog/The $3 brown $2 the $1 dog/'
 < poem.txt

Note: The syntax of the capturing operator differs depending on whether you are using basic, extended, or
Perl regular expressions.

Compatibility Note: The use of the -E flag with sed to enable extended regular expressions varies from
one operating system to another. For maximum portability, you should avoid using extended regular
expressions with sed.

The content between each pair of parentheses (in this case—see note) is captured into its own buffer,
numbered consecutively. Thus, in this expression, the content between “the” and “brown” is captured into
a buffer. Then, the content between “brown” and “the” is captured. Finally, the content between “the” and
“dog” is captured.

Capturing Operators and Variables 71
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

In the replacement string, the delimiter words (“The”, “brown”, “the”, and “dog”) are inserted, and the contents
of the capture buffers are inserted in the opposite order.

Note: By default, repetition operators (except the question mark operator) are greedy. By default, they match
the longest possible string that matches the expression as a whole. For example:

s/Mary.*lamb/Joe/
sed "s/Mary.*lamb/Joe/" < poem.txt

In the poem, the line “Mary had a lamb looked like a lamb.” becomes simply “Joe.”.

If you want to only match up to the first occurrence of “lamb”, you must either use a Perl regular expression
dialect extension, as described in “Nongreedy Wildcard Matching” (page 75) or use a greedy regular expression
from the other end of the string to replace the word “lamb” with another word that is known to not occur
elsewhere in the input.

For example:

sed 's/lamb\(.*\)$/UNMATCHABLE\1/' < poem.txt | sed 's/^.*UNMATCHABLE/Joe/'

This statement produces the line “Joe looked like a lamb.”

Mixing Capturing and Grouping Operators

Since parentheses serve both as capturing and grouping operators, use of grouping may result in unexpected
consequences when capturing text in the same expression. For example, the following expression will behave
very differently depending on input:

Expression /const(ant)? (.*)/

The text you probably intended to capture is in the second buffer, not the first.

Note: In the Perl version of extended regular expressions (as described in “Noncapturing Parentheses” (page
76)), you can use noncapturing parentheses to prevent the capture of the first portion, as show below:

/const(?:ant)? (.*)/

However, if you are using most command-line tools, this extended syntax is not supported.

Using Modifiers

The overall behavior of a regular expression can be tuned using a number of modifiers. For example:

/foo/i

In this example, the /i modifier makes the regular expression match in a case-insensitive fashion. Thus, this
matches both “Foo” and “fOo”.

Not all commands and languages support all modifiers. For example, most versions of the sed command
support only the /g modifier.

72 Mixing Capturing and Grouping Operators
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

The basic modifiers are:

 ■ /g—replace globally. Without this flag, a substitution command replaces only the first matching
occurrence per line. With this flag, a substitution command also replaces subsequent matches.

 ■ /i—use case insensitive matching (Perl extension; equivalent to grep -i).

 ■ /m—multiline matching (Perl extension). the $ and ^ anchors should match at newline boundaries in
addition to matching at the beginning an end of the string as a whole. The dot (.) does not match
newline characters.

 ■ /o—compile once (Perl extension). In Perl, if a regular expression includes a variable as part of the
pattern, the regular expression engine must recompile the expression every time it is used because the
variable contents might have changed.

If you know that the contents will not change after they are set the first time, the /o flag disables
recompilation of the expression. For regular expressions that do not contain variables, this switch has
no effect.

 ■ /s—single-line matching (Perl extension). The $ and ^ anchors should not match at newline boundaries.
With this modifier, they only match at the very beginning and end of the string as a whole. The dot (.)
matches newline characters just like any other character.

 ■ /x—extend readability (Perl extension). This mode causes matching to ignore all whitespace between
tokens in the expression unless quoted or wrapped in brackets (in most languages) and to treat a hash
mark (#) as the start of a single-line comment.

Note: Not all whitespace is ignored; multicharacter tokens like \d must not be split or they will be
interpreted differently.

The purpose of this mode is to allow you to split complex regular expressions into multiple lines. For
example, in Perl, you might detect a date like this:

if ($foo =~ /(\d\d\d\d) # year
 \s*-\s* # separator
 (\d\d) # month
 \s*-\s* # separator
 (\d\d) # day
 /x) {
 print "Date detected\n";
}

The syntactical details vary from language to language.

Perl and Python Extensions

The regular expression dialect used in Perl, Python, and many other languages, are a further extension of
extended regular expressions. Some of the major differences include:

 ■ Addition of shortcuts for character classes. See “Character Class Shortcuts” (page 74).

Perl and Python Extensions 73
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

 ■ Addition of quotation operators. In a regular expression, the contents of variables appearing between
\Q and \E are automatically quoted, and thus treated as literal text even if the variable contains characters
that ordinarily have special meaning in a regular expression. These operators are useful when user input,
stored in a Perl variable, is used as part of a regular expression.

 ■ Support for retrieving captured values outside the scope of the expression; the captured values are
stored in the variables $1, $2, and so on. (See “Capturing Operators and Variables” (page 71) for
information about capturing parts of a regular expression.)

Note: In PHP, these captured values are passed back in an array that you can provide as an optional
argument.

 ■ Addition of nongreedy matching. See “Nongreedy Wildcard Matching” (page 75) for more information.

 ■ Noncapturing parentheses. See “Noncapturing Parentheses” (page 76) for more information.

You can find links to additional resources that describe these extensions in “For More Information” (page
76).

Character Class Shortcuts

Perl regular expressions add a number of additional character class shortcuts. Some of these are listed below:

\A—anchors matching to the beginning of the string as a whole (but not the beginning of lines within
the string).
This shortcut is not broadly supported outside of Perl. In other languages, use ^ and add the /s modifier
(or do not specify the /m modifier, depending) to specify line-at-once matching.
\b—word boundary (see note).
\B—nonword boundary (see note).
\d—equivalent to [:digit:].
\D—equivalent to [^:digit:].
\f—form feed.
\n—newline.
\p—character matching a Unicode character property that follows. For example, \p{L} matches a
Unicode letter.
\P—character not matching a Unicode property that follows. For example, \P{L} matches any Unicode
character that is not a letter.
\r—carriage return.
\s—equivalent to [:space:].
\S—equivalent to [^:space:].
\t—tab.
\u—a single Unicode character in JavaScript regular expressions. This shortcut must be followed by four
hexadecimal digits.
\v—vertical tab.
\w—equivalent to [:word:].
\W—equivalent to [^:word:].
\x—start of an ASCII character code (in hex). For example, \x20 is a space.

74 Perl and Python Extensions
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

\X—a single Unicode character (not supported universally). This shortcut must be followed by four
hexadecimal digits.
\z—anchors matching to the end of the string as a whole (but not the end of lines within the string).
This shortcut is not broadly supported outside of Perl. In other languages, use $ and add the /s modifier
(or do not specify the /m modifier, depending) to specify line-at-once matching.
\Z—anchors matching to the end of the string as a whole (but not the end of lines within the string).
In some languages (including Perl), this matches prior to the closing line break if the string ends with a
line break. To avoid this, use \z instead.
This shortcut is not broadly supported outside of Perl. In other languages, use $ and add the /s modifier
to specify line-at-once matching.

These can be used anywhere on the left side of a regular expression, including within character classes.

Note: Word boundaries (the \b and \B switches) do not exist in basic or non-Perl extended regular
expressions. These match the position between two characters rather than an actual character.

A word boundary occurs before the first character of a line (if it is a word character), at the end of the line (if
it ends in a word character), and between any word character and nonword character that occur consecutively.

For substitution purposes, “replacing” a word boundary with text is equivalent to inserting that text, much
like replacing other anchors such as ^ or $.

Nongreedy Wildcard Matching

By default, repeat operators are greedy, matching as many times as possible before attempting to match
the next part of the string. This will generally result in the longest possible string that matches the expression
as a whole. In some cases, you may want the matching to stop at the shortest possible string that matches
the entire expression.

To support this, Perl regular expressions (along with many other dialects) supports nongreedy wildcard
matching. To convert a greedy repeat operator to a nongreedy repeat operator, you just add a question mark
after it.

For example, consider the nursery rhyme “Mary had a little lamb, its fleece was white as snow, and everywhere
that Mary went, the lamb was sure to go.” Assume that you apply the following expression:

/Mary.*lamb/

That expression matches “Mary had a little lamb, its fleece was white as snow, and everywhere that Mary
went, the lamb”.

Suppose that instead, you want to find the shortest possible string beginning with “Mary” and ending with
“lamb”. You might instead use the following expression:

/Mary.*?lamb/

That expression matches only the words “Mary had a little lamb”. The +? operator behaves similarly.

Perl and Python Extensions 75
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

Noncapturing Parentheses

You may notice that the syntax for capture is identical to the syntax for grouping described in “Wildcards
and Repetition Operators” (page 66). In most cases, the additional captures are not a problem. However, in
some cases (particularly when splitting strings into arrays in Perl), you may wish to avoid capturing content
if you are using parentheses merely as a grouping tool.

To turn off capturing for a given set of parentheses, add a question mark followed by a colon after the open
parenthesis.

Consider the following example:

Expression (Perl and Similar ONLY): /Mary (?:had)* a little lamb\./
perl -pi.bak -e "s/Mary (?:had)*a little lamb\./Lovely day, isn't it?/" <
poem.txt

This expression matches “Mary”, followed by zero (0) or more instances of “had” followed by “a little lamb”,
followed by a literal period, and replaces the offending line (“Mary had had a little lamb.”) with “Lovely day,
isn't it?”.

For More Information

This chapter covers regular expressions as they apply to shell scripts. While it covers some of the more
interesting extensions provided by languages such as Perl, it is by no means a complete reference to Perl
regular expressions.

For a thorough explanation of Perl regular expressions and additional features and quirks in various
programming languages, see http://perldoc.perl.org/perlre.html and http://www.regular-expressions.info/.

76 Perl and Python Extensions
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Regular Expressions Unfettered

http://perldoc.perl.org/perlre.html
http://www.regular-expressions.info/

This chapter is a primer to help you learn how to use the AWK programming language and the awk interpreter.
The awk interpreter, much like sed, grep, and perl, is a commonly used text processing tool based on
regular expressions.

For more detailed reference material, see the manual page for awk, the GNU AWK manual
(http://www.gnu.org/software/gawk/manual/), and Brian Kernighan’s book, TheAWKProgramming Language.

This chapter uses the file poem.txt from “Regular Expressions Unfettered” (page 63) as the basis for most
of its examples. Be sure to create that file before attempting any of these examples.

These examples are tested primarily on the Mac OS X version of AWK, which is derived from "The One True
AWK” by Brian Kernighan. Please report any compatibility problems with other versions of AWK using the
feedback links at the bottom of each page.

What Is AWK?

AWK is a language designed primarily for processing structured data records containing text. This language
is executed by the awk interpreter.

The design of AWK centers around dividing the input text into records, each one containing a number of
fields. Each time the awk interpreter encounters a record separator, it begins a new record. By default, the
record separator is a newline character, though you can change this as described in “Changing the Record
and Field Separators in AWK Scripts” (page 82).

After the awk interpreter has read a complete record from the input, it divides that record into fields. The
fields are delimited by a field separator, similar to the field separators described in “Variable Expansion and
Field Separators” (page 39).

An AWK script is divided into a series of rules. Once the awk interpreter has divided a record into fields, it
executes these rules in sequence. Each rule has access to variables that contain the record as a whole and
the individual fields of that record. The rules can then perform various modifications to that data, print the
data, and so on.

A Simple AWK Script

At its most basic, the syntax of an AWK script is very similar to C. The major differences are:

 ■ It is an interpreted language, so it is not as fast as C.

 ■ Semicolons at the end of a statement are generally optional. (They are required only if you need to put
more than one statement on a single line).

What Is AWK? 77
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

http://www.gnu.org/software/gawk/manual/
http://www.cs.princeton.edu/~bwk/btl.mirror/
http://www.cs.princeton.edu/~bwk/btl.mirror/

 ■ A newline (line break) ends a statement. Much like shell scripts or C preprocessor macros, if you put a
backslash at the end of one line, the statement continues onto the next line.

 ■ Instead of having a main function, the main body of code is divided into a series of filter actions
surrounded by curly braces. These filters are applied sequentially for each record in an input file. This
means that the code between curly braces may execute more than once.

 ■ Variables are all in the global scope except for parameters to functions. (Function-local variables are
described more in “Functions in AWK” (page 85).)

 ■ Variables maintain their value across multiple records and files. They are set until explicitly cleared.

Unlike shell scripts (but like C), variables in AWK scripts are not preceded by dollar signs when you use them.
This means that they cannot be inserted in the middle of strings.

There are a few special variables that are preceded by a dollar sign, however. The variable $0 represents an
entire record read from the input file. Similarly, AWK divides each record up into fields, which are represented
by special variables starting with $1 and numbering upwards.

Here is a simple AWK script:

{
 a=$0;
 print "This is a test: a is " a;
}

Save this file as 01_simple.awk, then run it by typing:

awk -f 01_simple.awk poem.txt

This executes the AWK script 01_simple.awk and passes the file poem.txt as its input. For each record (a
single line, by default) in the file, this will print the following:

This is a test: a is line from file

You should notice four things about this script:

 ■ Strings separated by spaces are concatenated automatically just as they are in C.

 ■ The print statement is much like the print statement in Perl. (The AWK language also supports printf,
whose syntax is like the command-line version, printf, except that the arguments are separated by
commas instead of spaces.)

 ■ The awk interpreter always requires an input file even if your script does not actually read anything from
it. If you want awk to read from standard input, you must pass a hyphen (-) as the filename.

 ■ The awk interpreter can take either a string of raw code or a file to execute. If you pass in a string of code
as the first argument, that code is executed. If you want awk to execute code from a file, you must pass
the -f flag followed by the path of the script file.

Conditional Filter Rules in AWK

You don’t always want to take an action based on every record in a file. Adding a pattern to a filter action is
the most efficient way to limit its scope. In AWK scripts, the action specified by such a conditional filter occurs
only if the specified pattern matches the record in question.

78 Conditional Filter Rules in AWK
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

The format for a conditional filter rule is as follows:

pattern { action }

The action here is a series of statements just like any other filter rule. The pattern can be blank (in which case
it matches every record), or it can contain any combination of regular expressions or relational expressions.
These two types of expressions are briefly explained in the following sections.

Regular Expressions in AWK

Conditional filter rules in AWK scripts may contain one or more regular expressions. These expressions must
be a simple search-style regular expression (beginning and ending with a slash). It cannot include a command
switch or modifier switches. For example, the following will not work the way you might expect:

/mary/i—Case-insensitive match for “mary” will actually match either the word “mary” or the letter “i”,
which is probably not what you want.
s/lamb//—Substitutions are not allowed here and will cause a syntax error.

The following AWK script will print every line that contains “lamb”.

/lamb/ {
 a=$0;
 print "This is a test: a is " a;
}

Save this file as 02_conditional_regex.awk, then run it using the awk interpreter by typing:

awk -f 02_conditional_regex.awk poem.txt

As with conditionals in C, you can combine multiple regular expressions with the Boolean operators ! (not),
|| (or), and && (and). For example, the following rule searches for any line that contains “Mary” but contains
neither “lamb” nor “had”:

/Mary/ && !(/lamb/ || /had/){
 a=$0;
 print "This is a test: a is " a;
}

Save this file as 03_conditional_multiregex.awk, then run it by typing:

awk -f 03_conditional_multiregex.awk poem.txt

It prints the following text:

This is a test: a is and everywhere that Mary went,
This is a test: a is What about Mary, Mary, and Mary?

For more information about regular expressions, read “Regular Expressions Unfettered” (page 63).

Conditional Filter Rules in AWK 79
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

Expression Ranges in awk

In AWK scripts, when you combine two expressions with a comma (,), the action is applied to all records
beginning with a record that matches the first pattern and continuing through a record that matches the
second one.

Consider the following awk script:

/married/,/lowercase/{ print $0; }

Save this file as 05_conditional_range.awk, then run it by typing:

awk -f 05_conditional_range.awk poem.txt

The awk interpreter prints every line in the poem file beginning with the line containing “married” and ending
with the line containing “lowercase”.

Note: For examples using arrays, see “Working with Arrays in AWK” (page 85).

Relational Expressions in AWK

In addition to regular expressions, AWK scripts support relational expressions. You can use relational
expressions to perform more fine-grained matching, such as matching based on the content of a particular
field or variable.

AWK scripts support five basic forms of relational expression:

 ■ expression ~ /regexp/—Expression matches the regular expression.

 ■ expression !~ /regexp/—Expression does not match the regular expression.

 ■ expression comparison_operator expression—Basic string or numeric comparison between two expressions.

 ■ expression in array_name—Expression is a key in the specified array. (See “Working with Arrays in
AWK” (page 85) for more information on working with arrays.)

The comparison_operator can be any of the standard C comparison operators, such as ==, !=, and so on.

The expression is generally either one of the fields or the result of an operation on one of the fields. For
example, the following AWK filter rules show, respectively, how to compare the first field to “mary” in a
case-insensitive fashion, how to match all records that do not contain “Mary”, and how to do an exact
comparison of the first field against “Mary”:

tolower($1) ~ /mary/ { print "CI Record: " $0; }
$0 !~ /Mary/ { print "Not Mary: " $0; }
$1 == "Mary" { print "Mary Record: " $0; }

Save this file as 04_conditional_insensitive.awk, then run it with the awk interpreter by typing:

awk -f 04_conditional_insensitive.awk poem.txt

The script outputs a series of lines beginning with the following:

CI Record: Mary had a little lamb,

80 Conditional Filter Rules in AWK
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

Mary Record: Mary had a little lamb,
Not Mary: its fleece was white as snow,
Mary Record: Mary fleece was white as snow,
Mary Record: Mary everywhere that Mary went,

Special Patterns in AWK:BEGIN and END

AWK scripts support two special patterns:BEGIN and END.

Any action associated with the BEGIN pattern executes before the first record is read from the file. You should,
for example, make any changes to the record or field separators in a BEGIN action, as described in “Changing
the Record and Field Separators in AWK Scripts” (page 82).

Similarly, any action associated with the END pattern executes after the last record is read and processed.
You could use this to output a special end of data record, for example.

The following example shows the use of BEGIN and END patterns.

BEGIN { print "Here is the line we care about."; }
/chocolate/ { print "Mmm. Chocolate. " $0; }
END { print "That's all that matters."; }

Save this file as 06_beginend.awk, then run it with the awk interpreter by typing:

awk -f 06_beginend.awk poem.txt

It prints the following:

Here is the line we care about.
Mmm. Chocolate. I want chocolate for Valentine's day.
That's all that matters.

Note: The position of the BEGIN and END rules is not important. In this example, they were placed at the
beginning and end for ease of readability. You can have as many BEGIN or END rules as needed. The awk
tool executes these rules in the order in which they appear in the file.

Conditional Pattern Matching with Variables

In addition to matching against input fields, AWK scripts also allow you to use arbitrary variables in conditional
pattern matches. Consider the following script:

BEGIN { lastwasmary = 0; }
(tolower($1) ~ /mary/ && !lastwasmary) { print "Mary appeared."; lastwasmary =
 1; }
(tolower($1) ~ /mary/ && lastwasmary) { print "Mary appeared again"; lastwasmary
 = 1; }
(tolower($1) !~ /mary/ && lastwasmary) { print "No Mary."; lastwasmary = 0; }

This script prints the words “Mary appeared” on the first line in which “Mary” is the first word, but performs
the matching in a case-insensitive fashion. It prints “Mary appeared again” for each consecutive line in which
“Mary” appears as the first word.

Conditional Filter Rules in AWK 81
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

If “Mary” does not appear as the first word in a line, it prints “No Mary” and the variable lastwasmary is
reset to zero. Thus, the next time “Mary” appears after that, it prints “Mary appeared” instead of “Mary appeared
again”.

Of course, in this particular case, you may be better off conditionalizing the pattern using an if/then
statement as described in “Control Statements in AWK” (page 83).

You can also use variables to store the pattern for matching by replacing the entire pattern (including slashes)
with the name of a variable. For example:

BEGIN { maryword = "mary"; keyword=maryword "lamb"; }
(tolower($1) ~ keyword) { print "Mary appeared."; }
(tolower($1) !~ keyword) { print "No mary."; }

This searches for any string in which “marylamb” appears as the first word (in a case-insensitive comparison).

You should notice that strings (and variables containing strings) separated by a space are concatenated
automatically in the assignment statement. This effectively allows you to synthesize patterns containing
variables.

You can also do the concatenation inline if desired. For example:

BEGIN { maryword = "mary"; }
(tolower($1) ~ maryword "lamb") { print "Mary appeared."; }
(tolower($1) !~ maryword "lamb") { print "No mary."; }

This code behaves identically to the previous example, but without the intermediate variable assignment.

Changing the Record and Field Separators in AWK Scripts

In AWK scripts, the default record separator is a newline, but you can change this by modifying the regular
expression stored in the variable RS. Likewise, the default field separator, stored in the variable FS, is a regular
expression that matches spaces and tabs.

Unless you are doing something particularly unusual, you should generally change the record separator
before the first record is read. To do this, you use the special pattern BEGIN, as described in “Special Patterns
in AWK:BEGIN and END” (page 81).

By the time any other filter rule executes, the awk interpreter has already read the first record and divided it
into fields, using whatever record and field separators were in place at the time. Thus, if you change the
record or field separator in a normal rule, that new record separator is not active until the next record is
processed.

For example, the following script sets the record separator to the letter “i” and then prints each record:

BEGIN {RS="i"; FS=/r/}
{
 print "Record is: " $0;
 print "First field is " $1;
}

The BEGIN filter rule is evaluated before the first record in the file, thus setting the record separator to the
letter “i” and the field separator to the letter “r”. Then, after the first record is read, the second filter rule is
evaluated against it based on the altered record separator.

82 Changing the Record and Field Separators in AWK Scripts
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

Note: Both RS and FS can contain either a regular expression or a literal string if desired.

The AWK language also supports separate output separators for both records and fields. The output record
and field separator variables are ORS and OFS, respectively.

The output field separator is automatically printed between fields whenever you print the value of $0 (the
“whole record” variable), and the output record separator is similarly printed at the end of $0.

Control Statements in AWK

Control statements in AWK scripts are syntactically almost identical to C control statements.

The if Statement

As in C, the if statement looks like this:

if (expression) statement;

Note: The expression format is described in “Relational Expressions in AWK” (page 80).

Just as in C, you can create compound statements by wrapping them in curly braces. For example, if you
want to execute two statements when a given record contains the word Mary, you might write an AWK script
that looks like this:

{
 if ($0 ~ /Mary/) {
 print "Mary is in this line:";
 print $0;
 } else {
 print "NOMATCH: " $0;
 }
}

The while Statement

The while statement looks just like the if statement. For example:

{
 i=4
 if ($0 ~ /Mary/) {
 while (i) {
 print i ":" $0;
 i--;
 }
 }
}

Control Statements in AWK 83
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

As in C, you can skip the remaining code in the body of a while loop by calling the continue function.

The for Statement

The for statement syntax has aspects of both the C syntax and the shell script syntax. The C language form
of the for statement is as follows:

for (pre_expression; while_expression; post_expression) statement

This statement is equivalent to the following:

pre_expression;
while (while_expression) {

statement;
post_expression;

}

The first expression, which executes before entering the while loop, usually initializes one or more loop
iterators. The second expression is then tested for truth. While it is true, the statement executes. After each
iteration through the loop, the third expression executes. This usually increments or decrements the loop
iterator.

As in C, you can skip the remaining code in the body of a for loop by calling the continue function.

For example, the following code prints each line that matches “Mary” three times. These are numbered 1, 2,
and 4. It skips the case where i==2, and thus the number 3 is never printed.

{
 if ($0 ~ /Mary/) {
 for (i=0; i<4; i++) {
 if (i==2) continue;
 print i+1 ":" $0;
 }
 }
}

In addition, AWK supports a shell-like (really, Perl-like) version of the for loop, in which it acts as an array
iterator. The array iteration syntax is:

for (key_variable in array) statement

This syntax is described in more detail in “Working with Arrays in AWK” (page 85).

Skipping Records and Files

At any point in your filter rules, you can skip processing of all remaining rules (effectively skipping to the
next record) by using the next statement. For example:

if (i > 4) next;

Likewise, at any time, you can skip processing of the remainder of an input file by using the nextfile
statement. For example:

if (i > 4) nextfile;

84 Control Statements in AWK
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

The if statement syntax is described in “Control Statements in AWK” (page 83).

Functions in AWK

In addition to providing a number of standard functions (described in the manual page for awk), the AWK
language allows you to define your own custom functions. The syntax for a function declaration is:

function function_name(parameter1 [, parameter2, ...]) {
action

}

Because variables are in the global scope except for function parameters, if you want to define a local variable
in a function, you must declare it as an extra parameter to the function. You do not have to pass in a value.
If you do not declare the variable as a parameter, it affects execution outside of the function and its value is
persistent across multiple invocations of the function.

For example, this function takes two parameters, subtracts them, and then adds one (1):

function subtractAndAddOne(a, b, c) {
 c = 1
 return (a-b+c);
}
BEGIN {
 print subtractAndAddOne(3, 2);
}

Important: When you call a function, you must not put a space before the opening parenthesis. In AWK
scripts, a space is used for string concatenation, so adding a space is likely to cause a syntax error. However,
it might instead result in rather strange behavior in certain contexts.

Working with Arrays in AWK

Arrays in AWK scripts are syntactically very similar to arrays in C. Don’t let that fool you, though. Under the
hood, they behave very differently.

Arrays in AWK scripts are associative. This means that each array element is stored as a key-value pair, resulting
in three major differences when compared to C:

 ■ Arrays are allocated and grow dynamically as space is needed.

 ■ Arrays can be sparse; you can have an array with a value at index 711 and a value at index 1116 with
nothing between them.

 ■ You cannot populate an array in a single operation except by splitting a string.

There are two ways to create an array. The first is by simply using it. The second is by using the split function.
These methods are described in the sections that follow, along with useful tips about working with arrays.

Functions in AWK 85
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

Array Basics

The following code creates and prints an array called my_array containing the values “Partridge”, “tree”,
“pear”, and “Cassidy”:

BEGIN {
 my_array[0] = "Partridge";
 my_array[1] = "pear";
 my_array[2] = "tree";
 my_array["David"] = "Cassidy";

 for (my_index in my_array) {
 print my_index "=" my_array[my_index];
 }
}

The first thing you will notice is that the array is not printed in order. In fact, it is printed in the order in which
the underlying data is stored internally. If you want to print the values in key order, you must walk through
the index numerically instead.

The second thing you will notice is that the for statement can be used to iterate through all of the keys in
the array. In this usage, the for statement in AWK scripts is like the for statement in a shell script. The for
statement array-iterator usage is:

for (key_variable in array_name) statement

Note: Unlike the for or foreach statements in most other languages, the array-iterator-style for statement
in AWK scripts iterates through the array keys (indices) rather than through the array values. Thus, it is similar
to the following Perl statement:

foreach my $key_variable (keys %assoc_array) { ... }

Because key_variable contains the key from each key-value pair rather than the value, you must explicitly
use the key as an array index if you want to to obtain the values in the array. For example:

for (i in arr) {
 print arr[i];
}

The third thing you will notice is that, unlike C, array elements can take arbitrary strings as their key (array
index). If you need to iterate through the array in key order, however, you should limit yourself to numeric
keys.

As a side effect, the keys are always stored as a string even if they only contain numbers. Thus, if you want
to compare them numerically to each other (for example, to find the smallest key for which a value exists),
you must add zero (0) to the key prior to making the comparison.

For example, the following code iterates through this sparse array in key order by finding the minimum and
maximum key values and then iterating from the minimum to the maximum:

BEGIN {
 my_array[0] = "Partridge";
 my_array[1] = "pear";
 my_array[2] = "tree";
 my_array[13] = "Cassidy";

86 Working with Arrays in AWK
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

 min = 0; max = 0;
 for (my_index in my_array) {
 if (my_index+0 < min) min = my_index;
 if (my_index+0 > max) max = my_index;
 }
 for (i=min; i<= max; i++) {
 if (i in my_array) {
 print i "=" my_array[i];
 }
 if (!(i in my_array)) {
 print i " is unset.";
 }
 }
}

In this example, you should note the if statement syntax near the end. Before printing an array value, the
example checks to see if a value has ever been stored for that key value:

if (i in my_array) { ... }

As with any expression, you can invert matching with an exclamation point. For example, to check to see if
a particular index has never been stored in an array, you could write the following:

if (!(i in my_array)) { ... }

Note: Generally speaking, the AWK language is designed under the assumption that you will do any array
sorting externally (after the awk interpreter has finished) using the sort tool or similar tools; for performance
reasons, you should generally do so.

Creating Arrays with split

Assigning array elements individually can be very tedious. A more common (read “less painful”) way to create
an array is with the split function. The split syntax is as follows:

count = split(string, array_name, regexp);

For example, the following code splits the string “Mary lamb freezer” into words separated by spaces.

BEGIN {
 arr_len = split("Mary lamb freezer", my_array, / /);
}

The result is that arr_len contains the number three (3). The variable my_array[1] contains “Mary”,
my_array[2] contains “lamb”, and so on.

Copying and Joining an Array

The AWK language does not support assignment of arrays. Thus, to copy an array, you must copy the individual
values from one array to the next. For example, the following code initializes my_array and then copies its
contents to copy_array before printing the array:

Working with Arrays in AWK 87
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

BEGIN {
 arr_len = split("Mary lamb freezer", my_array, / /);
 for (word in my_array) {
 copy_array[word] = my_array[word];
 }
 for (word in copy_array) {
 print copy_array[word];
 }
}

Similarly, the AWK language does not provide functions to join an array. To join an array, you should write
a simple function like this one:

function join(input_array, separator) {
 string = "";
 first = 1;

 # Note: the array items are in no particular
 # order when joined with this function.
 for (i in input_array) {
 if (first) first = 0;
 else string = string separator;
 string = string input_array[i];
 }
 return string;
}
BEGIN {
 arr_len = split("foo bar baz", my_array, / /);

 for (word in my_array) {
 print my_array[word];
 }

 print join(my_array, " ");
}

Like all array functions written using the array-iterator form of the for statement, this join does not occur
in any particular order. If you need to join the array values in a particular order, you must write your own
custom join function either using a numeric iterator or a manually specified list of fields. For example:

function count_elements(input_array)
{
 counter=0;
 for (word in input_array) {
 counter++;
 }
 return counter;
}
function join(input_array, separator) {
 string = "";
 first = 1;

 # Note: this preserves order, but does not
 # work with nonnumeric or sparse arrays.
 for (i=1; i<=count_elements(input_array); i++) {
 if (first) first = 0;
 else string = string separator;
 string = string input_array[i];

88 Working with Arrays in AWK
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

 }
 return string;
}
BEGIN {
 arr_len = split("foo bar baz", my_array, / /);

 for (word in my_array) {
 print my_array[word];
 }

 print join(my_array, " ");
}

Compatibility Note: Previous versions of this script used the built-in length function to obtain the number
of elements in an array (instead of the count_elements function). While this technique works in most
versions of AWK released since 2002, it does not work in GNU AWK or its derivatives within the context of a
function if the array was passed as one of the function’s arguments.

Although this bug has been fixed in the official GNU AWK source repository and should be fixed in versions
of GNU AWK after version 3.1.6, for maximum portability, you should still avoid using the length function
in this way.

Deleting Array Elements

As you saw in “Array Basics” (page 86), you can add values to an array using arbitrary keys. You can also
check to see if a value exists for a given key using the if (key in array) syntax.

If you need to delete a key-value pair, you could assign an empty value. However, the if (key in array)
syntax still evaluates to true because there is still a value for that key (albeit an empty value). Thus, you
probably want to remove the key entirely.

The AWK programming language solves this problem with the delete function. The syntax for delete is:

delete array_name[key];

For example, the following script prints only the key-value pairs “purple = Partridge” and “majesties = tree”.

BEGIN {
 my_array["purple"] = "Partridge";
 my_array["mountain"] = "pear";
 my_array["majesties"] = "tree";
 my_array["fruited"] = "Cassidy";

 mykey = "fruited";
 delete my_array["mountain"];
 delete my_array[mykey];

 for (i in my_array) {
 print i "=" my_array[i];
 }
}

If you need to clear all values from an array simultaneously, though, you don’t have to delete them one at a
time. Instead, you can simply do the following:

Working with Arrays in AWK 89
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

delete array_name;

This statement leaves the array specified by array_name empty for future use. You might do this if, for
example, you want an array to be reset for each record.

File Input and Output

The AWK programming language was primarily intended as a filter between one or more input files (or
standard input) and standard output. However, it does provide some basic input and output capability.

As in shell scripts, any print statement can be written to a file using the redirection (>) operator (which
destroys any previous contents of the file) or concatenated onto the end of an existing file using the
concatenation (>>) operator.

Also, as in shell scripts, any print statement can be piped to an outside tool using the pipe (|) operator.

Pipes and redirections, however, behave differently in AWK scripts than in shell scripts; they remain open for
future use until you explicitly close them or awk exits. This means, among other things, that the concatenation
(>>) operator is only necessary if you want to retain an existing file and is not necessary to continue adding
to a file that you create in awk.

For example, this script does the following:

 ■ Sends two strings to /bin/tail -n 1. The tail tool prints the last line sent (which contains the second
string). This demonstrates that the first two print statements both sent their output to the same instance
of tail.

 ■ Closes the output to that pipe and sends another message to tail. This shows that a new instance of
tail processed this command (because otherwise, the previous line would not have been printed).

 ■ Writes two lines to the file /tmp/testfile-awk. If this file exists, it is overwritten. By using the redirect
operator, the script demonstrates that additional output (after the first redirect) is appended to the file
until the file is closed (regardless of whether you use the redirect or concatenation operator).

BEGIN {
 print "This is a test." | "/usr/bin/tail -n 1";
 print "This is only a test." | "/usr/bin/tail -n 1";
 close("/usr/bin/tail -n 1");
 print "Yikes!" | "/usr/bin/tail -n 1";

 print "This is another test" > "/tmp/testfile-awk"
 print "This is yet another test entirely" > "/tmp/testfile-awk"
}

Note: In AWK scripts (unlike in shell scripts), paths for redirects and pipes are considered strings. Thus, paths
should be surrounded by double quotes so that they do not resemble regular expressions.

In a similar way, you can read input from a file using the redirection or pipe operator by combining the
operator with the getline function. The getline reads a record from an outside file or pipe under
programmatic control.

90 File Input and Output
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

When you call getline, the awk interpreter sets the variable $0 to the next record from the specified file.
The function returns 1 if a record was read, 0 if the end of file was reached, or -1 if an error occurred (for
example, if the file does not exist).

The following AWK script reads a record from /tmp/testfile-awk, and then reads a record from the output
of the echo command:

BEGIN {
 getline < "/tmp/testfile-awk";
 print "The record was " $0;

 "/bin/echo 'This is a test line'" | getline
 print "The second record was " $0;
}

Warning: The getline function overwrites any value of $0 read from the input file. Be sure you don’t
need it again before you call this function.

File Input and Output 91
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

92 File Input and Output
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

How AWK-ward

For the most part, scripts that run on other UNIX-based or UNIX-like platforms (Linux, for example) also run
correctly on Mac OS X and vice versa. There are differences, however.

In addition to finding subtle variations in the file system hierarchy and the behavior of common command-line
tools, you will also find different tools and technologies for device I/O and for adding and removing users
and groups.

Bourne Shell Version

Mac OS X provides BASH as its Bourne shell implementation. When executed as /bin/sh, it should be fully
compatible with other implementations. However, occasionally differences may arise. The same is true of
other operating systems that use BASH or ZSH as their Bourne shell implementation.

For maximum compatibility, you should carefully avoid using any BASH-specific extensions in shell scripts.
If you cannot avoid BASH extensions, you should explicitly make the script execute in BASH by changing the
first line to the following:

#!/bin/bash

You should use a similar first line for scripts written using ZSH extensions.

Compatibility Note: For detailed lists of places where BASH and ZSH differ from pure Bourne shell variants,
see http://www.gnu.org/software/bash/manual/bashref.html#Major-Differences-From-The-Bourne-Shell and
http://zsh.dotsrc.org/FAQ/zshfaq02.html.

For more information about BASH and ZSH, see the manual pages for bash and zsh.

Managing Users and Groups

In the default configuration of Mac OS X, users and groups are not stored in a password file on disk. Thus,
you cannot modify the password file directly.

Mac OS X supports a number of data stores for user and group information, including LDAP and flat files.
Depending on the configuration, users could potentially be stored locally or remotely and accessed through
any of these methods. Thus, to add users and groups through shell scripts in a general way, you must use
the Directory Service command-line utility, dscl (or the Directory Service API upon which that utility is based).

Because the dscl tool is specific to Mac OS X, if you are writing scripts for cross-platform deployment, you
should test for its existence and fall back to traditional password file modification if it is not there. To learn
how to do this, read “The if Statement” (page 29).

Bourne Shell Version 93
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform
Deployment

http://www.gnu.org/software/bash/manual/bashref.html#Major-Differences-From-The-Bourne-Shell
http://zsh.dotsrc.org/FAQ/zshfaq02.html

For sample code that shows how to add a new user from the command line, read the Additional Features
chapter of Porting UNIX/Linux Applications to Mac OS X.

To learn more about Directory Service records at a high level, read Open Directory Programming Guide. To
learn how to use the Directory Service command line utility to alter those records, read the manual page for
dscl.

Working with Device I/O

Mac OS X uses the I/O Kit for device drivers. Unlike most UNIX-based and UNIX-like operating systems, most
devices are not exposed through device files in /dev. (Disks and serial ports are notable exceptions.)

In general, device I/O must be written in a C-derived language using the functionality in the I/O Kit framework.
However, if you are writing your own device driver, you can expose a device file in /dev if desired.

Note: Devices cannot be accessed through /dev/mem in Mac OS X.

See I/O Kit Fundamentals for general information, Accessing Hardware From Applications to learn how to write
an application to access device drivers from user space, or Kernel ProgrammingGuide to learn how to support
device files and the ioctl system call in the kernel.

Disk Management and Partitioning

Disk management and partitioning tools vary widely from one UNIX-based or UNIX-like OS to the next. It is
impractical for this document to cover the subject in depth.

For information on other UNIX-based and UNIX-like operating systems, a good place to start is the UNIX
System Administration Handbook by Nemeth and others.

For information about Mac OS X command-line tools for disk management and partitioning, see section 8
of Mac OS XMan Pages. In particular, you should look at the man pages for hdiutil, pdisk, and diskutil.

File System Hierarchy

A number of files are in different places in Mac OS X than in other operating systems. For more information
about the Mac OS X layout, read File System Overview. For more information about other operating systems,
read the following:

 ■ hier—The Mac OS X manual page hier(7) describes the Mac OS X file-system hierarchy.

 ■ http://www.FreeBSD.org/cgi/man.cgi?query=hier&sektion=7—The FreeBSD manual page hier(7)
describes the FreeBSD file-system hierarchy. It is similar to the hierarchy used by most BSD-based operating
systems. (No, the spelling of section is not a typo.)

94 Working with Device I/O
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

http://www.FreeBSD.org/cgi/man.cgi?query=hier&sektion=7

 ■ http://www.pathname.com/fhs/—The Filesystem Hierarchy Standard describes the file system hierarchy
used by Linux-based operating systems, and is derived from the hierarchy used by AT&T UNIX-based
operating systems.

 ■ http://docs.hp.com/en/B2355-60130/hier.5.html—This appendix from the HP-UX documentation describes
the hierarchy of AT&T UNIX-based operating systems.

 ■ http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?top-
ic=/com.ibm.aix.baseadmn/doc/baseadmndita/fs_tree_org.htm—This page in the IBM pSeries and AIX
Information Center describes the hierarchy of AIX.

General Command-Line Tool Differences

A number of command-line tools behave differently across various UNIX-based and UNIX-like operating
systems. This chapter explains some of the key differences in those tools.

UNIX-based and UNIX-like operating systems generally fall into one of three camps:

 ■ AT&T UNIX: Also known as UNIX System V (in its latest incarnation), AT&T UNIX was the original UNIX
operating system. Its descendants include most operating systems that are commonly referred to as
UNIX.

 ■ BSD: Short for Berkeley Software Distribution, BSD is the name given to a family of operating systems
descended from a derivative of UNIX that was originally distributed by the University of California,
Berkeley, in the 1970s.

Over the years, the Berkeley distribution and the AT&T distribution continued to diverge. The result is
that there are a number of subtle syntax differences between shell scripts written for systems that follow
AT&T semantics versus those that follow BSD semantics.

In the 1990s, BSDi (a commercial company formed as a result of the UC Berkeley research) released the
BSD operating system as open source. Most modern BSD operating systems are derived from this source
base, known as 4.4BSD-Lite release 2.

Because of licensing restrictions on the original UNIX source code, the portions that were originally
written by AT&T had to be rewritten under a more permissive license in order to release it as open source.
This contributed further to the differences in syntax between BSD-based and AT&T UNIX-based operating
systems.

 ■ Linux and GNU: During the 1990s, a new operating system, Linux, was born. Combining a kernel written
by Linus Torvalds and a number of utilities written by the Free Software Foundation (FSF) for their own
operating system project (GNU Hurd), this operating system quickly grew into a very important third
UNIX-like operating system.

Adding to the importance of Linux and the GNU tools was the advent of MacBSD, FreeBSD, NetBSD,
OpenBSD, and other BSD variants. Although BSD-based operating systems had many common utilities,
they had no replacements for a few of the missing AT&T pieces. For this reason, many of these tools
have also made their way into these BSD-based operating systems. In a similar way, BSD-derived tools
frequently appear as part of Linux distributions.

Over the years, a number of standards have emerged to mitigate the differences in syntax between these
operating systems, including POSIX and the Single Unix Specification (SUS). As operating systems work
towards compliance with these specifications, many of the differences in syntax are gradually fading into
irrelevance. However, for true cross-platform compatibility, you should still be aware of these differences.

General Command-Line Tool Differences 95
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

http://www.pathname.com/fhs/
http://docs.hp.com/en/B2355-60130/hier.5.html
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.baseadmn/doc/baseadmndita/fs_tree_org.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.baseadmn/doc/baseadmndita/fs_tree_org.htm

Mac OS X prior to version 10.5 provided tools that generally follow BSD semantics (or, in some cases, Linux
or GNU semantics). Beginning in Mac OS X v10.5, many of these tools instead obey AT&T semantics (most of
the time; see note below for exceptions). Thus, some tools behave differently depending on the version of
Mac OS X. These differences are described in the manual pages for the individual tools.

Note: While tools in Mac OS X v10.5 and later generally obey AT&T semantics, this is not always true. In
particular, when executed from installer scripts or startup items, they obey BSD semantics for backwards
compatibility with existing scripts.

As a convenience to script developers, you can also obtain legacy behavior from most command-line tools
by setting certain environment variables as described in the compat manual page.

For more information on legacy-mode command support, seeUnix 03ConformanceReleaseNotes, the compat
manual page, and the manual pages for individual commands.

awk

In operating systems that follow AT&T semantics, the awk command supports certain forms of extended
regular expressions (such as {n,m}, [[==]], and [[..]]) without explicitly setting flags to enable extended
regular expression support. Because this behavior is not portable, you should not depend on it.

Because of this difference, if you find a regular expression that a particular awk interpreter cannot handle,
you should first try enabling extended regular expression support and then see if the problem goes away.
This will usually break other parts of the expression, however. If so, you must rewrite the regular expression
to fully use the extended regular expression syntax.

To learn about basic and extended regular expressions, read “Regular Expressions Unfettered” (page 63). To
learn more about the awk interpreter, read the manual page for awk. To learn more about the AWK scripting
language, read “How AWK-ward” (page 77).

chown

If you pass the -P flag to chown, it does not follow symbolic links. Thus, the file that a symbolic link points
to is never modified if you specify the -P flag.

However, in operating systems that follow AT&T semantics, when you issue the command chown -RP
directory_name, the user ID of the symbolic link itself is modified. In operating systems that follow BSD
semantics, the symbolic link itself is not modified.

cp

If you pass both the -i and -f flags to cp, the flag that takes precedence varies among operating systems.
These flags specify opposite behavior, so you should never use them together.

Also, the -f option has different behavior depending on the operating system:

96 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

AT&T semanticsBSD semanticsFlags

Destination file permissions set to default
permissions.

Destination file permissions unchanged.-f without -p

Destination file permissions set to permissions
of source file.

Destination file permissions set to
permissions of source file.

-f with -p

Finally, in operating systems that follow AT&T semantics, when copying recursively, the copy operation stops
as soon as any error occurs. In operating systems that follow BSD semantics, copy operation completes to
the maximum extent possible. In either case, the command exits with a nonzero result code.

If you need to ensure that a copy operation does not stop on first failure, you can use tar instead. For an
example of how to use tar to copy files, see “Anonymous Subroutines” (page 48).

crontab

In AT&T-based UNIX systems, the crontab(1) command reads from standard input by default, but on
BSD-based systems, it does not. For cross-platform compatibility, you should specify a hyphen (-) for the
filename instead. This works on with versions of crontab that obey both AT&T and BSD semantics.

date

The result codes returned by date vary depending on the operating system. For cross-platform compatibility,
you can only assume that a result code of zero (0) indicates success and any other value indicates some sort
of failure.

df

The df(1) command has two different meanings for the -t flag beginning in Mac OS X v10.5. They are as
follows:

 ■ If you include a value afterwards (for example, -t hfs), it behaves like the -T flag. This usage is
deprecated.

 ■ Without an argument, it tells df to print the total allocated space. Because this option is the default, this
use of the -t flag is unnecessary.

The default block size varies on different operating systems. Linux and most BSD-based operating systems
default to a 1k block size, while AT&T UNIX-based operating systems default to a 512-byte block size.

For consistent behavior across multiple operating systems, you should always specify a block size explicitly.
For example, the -k flag specifies that the block size should be reported in kilobytes.

Finally, the capacity percentage reported by df may be rounded differently in different operating systems.

General Command-Line Tool Differences 97
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

du

Operating systems that follow AT&T semantics allow you to pass a combination of the -L, -H, and -P options
to du(1). The last flag encountered determines the command's behavior. In operating systems that follow
BSD semantics, specifying more than one of these options results in an error. To fix this problem, delete all
but the last of these options.

Also, many BSD-based operating systems cannot detect symbolic link loops. For cross-platform compatibility,
you should generally not tell du to follow symbolic links unless you are certain that no cycles can occur.

echo

Of particular interest is the difference in behavior of the echo builtin and the corresponding standalone
command. If you want to issue a prompt, in BSD-derived operating systems you can leave off the trailing
newline by typing the following:

echo -n "Prompt: "

In AT&T UNIX-derived operating systems, the equivalent is:

echo "Prompt: \c"

Unfortunately, this difference makes it very difficult to write scripts that depend on this behavior in a
cross-platform way. For portability, you should avoid either of these constructions. As an alternative, you can
either use the printf command instead of echo or use the tr command to remove the newline.

For example, the following lines both print "Prompt: “ followed by the word “newline” immediately afterward
on the same line:

echo "Prompt: " | tr -d '\n'; echo "newline"
printf "Prompt: "; printf "newline\n";

The echo command also varies in the way it handles control-character escape sequences such as \r. Because
these are handled differently in different operating systems, you should avoid using them with echo. As an
alternative, use the printf command to print these sequences, or store the desired control character in a
shell variable using tr.

For example, the following code sends an XON (Control-Q) byte to standard output:

XON=$(echo 'x' | tr 'x' "\\021");
echo "Here is an XON: $XON"

Note: The behavior of -n, \c, and other escape sequences may also vary between shell builtin versions of
echo and the /bin/echo executable, depending on the operating system and the shell you are using.

file

The file command has two switches that behave differently in different operating systems: -i and -r (or
--raw). For consistent behavior, you should avoid these switches.

98 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

In AT&T UNIX-based operating systems, the -i option tells the file command to not classify the contents
of regular files using the external mime.types file. This results in faster performance but provides less detailed
analysis.

In BSD-derived operating systems, the -i flag tells the file command to output raw mime type strings
rather than the more traditional human readable ones. For this behavior, you should use the --mime flag
instead, though that option is also not supported universally.

The -r and --raw options are supported only in BSD-derived operating systems. These flags tell the file
command not to translate unprintable characters to their octal representations. AT&T-derived operating
systems never do this.

grep

In some operating systems, grep fails silently if you try to match a caret in the middle of a line, while other
versions of grep warn about the mistake. Such an expression is not a legal regular expression, of course, but
if your script depends on getting an error in this case (or not getting an error), the script is not fully portable.

head

The head command exists across most operating systems. However, different versions provide several flags
that are nonstandard.

The only flag that can be used portably is the -n flag, which takes a line count.

Most operating systems (including Mac OS X) also support the -c flag, which specifies a byte count, but this
support is not guaranteed to be portable. It is possible to emulate this functionality portably with the help
of an AWK script, however, as follows:

Listing 6-1 Emulating head -c using AWK: 01_head_c.sh

#!/bin/sh

Usage: ./head_c filename bytecount
FILENAME=$1
COUNT=$2

SCRIPT="$(mktemp '/tmp/head_c.XXXXXXXXXX')"

cat << EOF > "$SCRIPT"
BEGIN {
 FS="";
 my_string = ""
}
{
 my_string = my_string "\n" \$0;
}
END {
 # Start from character 2 to skip the bogus leading newline.
 print substr(my_string, 2, $COUNT);
}
EOF

General Command-Line Tool Differences 99
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

awk -f "$SCRIPT" "$FILENAME"

rm "$SCRIPT"

You may also run into a minor compatibility problem when porting scripts from Linux to Mac OS X. When
you pass multiple filenames to the head command, it prints a heading line for each file name in the form

==> filename <==

The Linux version of head provides a -q flag that disables printing the header marker even if you specify
multiple files. It also provides a -v flag that forces header printing even when only one file is specified.

As an alternative to the -v flag, you can output the filename marker in your script with a simple echo
statement like this one:

echo "==> $FILENAME <=="

As an alternative to the -q flag, provided that there is no possibility of your files’ contents actually matching
the pattern, you can strip out the markers with grep like this:

head -n 1 file1 file2 ... | grep -v '^==>.*<==$'

In addition to these flag differences, POSIX specifies that the input files for head must be valid text files,
which means that all byte sequences must be valid for the current locale. Although not all versions of head
enforce this restriction, versions that do may fail when used with binary files in some operating systems
unless you change the local settings.

If your scripts must process binary files, be sure to specify the “C” locale before executing commands that
work with these binary files. To change the locale, issue the following statement:

export LANG="C"

join

The -e option tells the join command to insert the specified string into empty fields. In operating systems
that follow BSD semantics, substitution occurs only if there are no nonempty fields after the empty field. In
operating systems that follow AT&T UNIX semantics, substitution always occurs.

Not all join flags are supported on all operating systems. For portability, you should limit yourself to -a, -e,
-o, -t, -v, -1, and -2.

less

See “more or less” (page 101).

ls

When -H is specified (and is not overridden by -L or -P) and a file argument is a symbolic link that resolves
to a non-directory file, the output reflects the nature of the link, rather than that of the file. In operating
systems that follow BSD semantics, the output describes the file.

100 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

The -f option turns on the -a option (show files whose names have a period (.) as the first character). In
operating systems that follow BSD semantics, it does not.

The -o option causes the listing to be in long format, but to omit the group id. In operating systems that
follow BSD semantics, the -o option modifies the -l option, causing file flags to be listed.

The -g, -n, and -o options turn on the -l option (causing the listing to be in long format). In operating
systems that follow BSD semantics, they do not.

mkfifo

In operating systems that follow BSD semantics, the mkfifo command applies a mask of 0666 to the mode
passed in for the -m option. In operating systems that follow AT&T semantics, no mask is applied.

more or less

Different operating systems handle the -n and -p flags to the more(1) command differently.

In operating systems that follow the BSD and AT&T semantics, the -n option specifies the number of lines
per screen, and the -p option allows you to specify commands (such as :p) to execute each time a new
screenful of text is displayed.

In operating systems that follow Linux semantics (and for the less(1) command on all operating systems),
the -n flag tells the more command to to suppress line numbering, and the -p flag specifies a search pattern.

mv

If you tell the mv command to move a subdirectory into its current parent directory (by typing mv foo/bar
foo, for example), the behavior varies in a subtle way. No action occurs in any operating system because
you are effectively moving a directory on top of itself. However, operating systems that follow BSD semantics
exit with a zero (success) result code, whereas operating systems that follow AT&T semantics display an error
message and exit with a nonzero (failure) result code.

pr

In AT&T UNIX semantics, the last space before the tab stop is replaced with a tab character. This replacement
does not occur in most open source (BSD or Linux) implementations. For cross-platform consistency, you
can globally replace the tab with a space by piping the output to trwith appropriate arguments. For example:

pr [arguments...] | tr '\t' ' '

ps

While not frequently used in shell scripts, the ps command behaves very differently between operating
systems that follow BSD and AT&T semantics. The differences are summarized in the following table:

General Command-Line Tool Differences 101
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

BSDAT&TFlag

Display the environment variable settings for
each process; same as -E.

Display information about other users’ processes,
including those without controlling terminals; same
as -A.

-e

Unused option.Display information about processes with the
specified session leaders.

-g

"Long” display format; does not include the
paddr field.

"Long” display format; includes the paddr field.-l

Display the fields user, pid, %cpu, %mem, vsz,
rss, tt, state, start, time and command.
Also implies the -r option (sort by CPU usage).

Display processes belonging to a particular user. For
example, ps -u root displays all processes
belonging to the root user.

-u

Note: For the most part, the information available from ps is similar in all variants (with the exception of
the -u flag). The headings themselves, however, differ somewhat among BSD, AT&T, and Linux variants of
the ps command. Similarly, column order is not guaranteed to be consistent across platforms. For this reason,
programmatic use of ps is generally discouraged.

Most BSD and Linux variants have deprecated the use of BSD variants of flags when they are preceded by a
dash. Passing these flags without a dash in these operating systems will generate the BSD behavior more
consistently (at least on BSD and Linux-based operating systems). However, because this behavior is not
portable, you should generally not depend on the specific quirks of a particular ps implementation.

sed

Most GNU versions of sed generate warnings for unused labels. Most other implementations do not.

Also, when the y function is specified (for example, sed y/string1/string2/), most GNU versions convert
double backslashes to single backslashes. This behavior is not portable, so you should not depend on it.

Because of this incompatibility, if you need to construct an expression containing user-entered strings that
could potentially include a backslash, you should avoid the problem entirely by using the s function (for
example, sed s/string1/string2/) instead of the y function.

sort

The form sort +POS1 -POS2 ... is a syntax specific to the GNU version of sort and is considered obsolete.
This syntax is not portable and is not supported in Mac OS X beginning in version 10.5.

For example:

$ cat data
b a
a b

$ sort data

102 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

a b
b a

$ sort +1 -2 data
sort: invalid option -- 2
Try `sort --help' for more information.

Instead, you should use the -k flag to do the same thing. For example:

$ sort -k 2,3 data
b a
a b

Note: The field and character positions are numbered differently with this syntax. Numbering for the -k
syntax starts at one (1), while the obsolete plus and minus syntax starts at zero (0).

Compatibility Note: Mac OS X v10.5 and later does not support this legacy GNU sort syntax. However, as a
temporary workaround while you rewrite the offending scripts, you can set the _POSIX2_VERSION
environment variable as show in the following snippet:

export _POSIX2_VERSION=200111
or in CSH
setenv _POSIX2_VERSION 200111

Do not rely on this workaround for production code; its continued support is not guaranteed.

For more information on compatibility issues with the sort command, see the manual page for sort.

stty

Prior to Mac OS X v10.5, the stty command did not support the following control modes:

 ■ bs0 and bs1

 ■ cr0, cr1, cr2, and cr3

 ■ ff0 and ff1

 ■ nl0 and nl1

 ■ tab0, tab1, tab2, and tab3

 ■ vt0 and vt1

In addition, prior to Mac OS X v10.5, stty did not support the following options:

 ■ ocrnl and -ocrnl

 ■ ofdel and -ofdel

 ■ ofill and -ofill

 ■ onlret and -onlret

 ■ onocr and -onocr

General Command-Line Tool Differences 103
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

In legacy mode, these modes and options are still not accepted. For more information, see the manual page
for stty.

tail

The tail command differs significantly between Linux and Mac OS X. The GNU variant of tail provides
options that the Mac OS X version does not and vice versa. Both provide features that are not part of the
POSIX specification, and thus may not be portable.

According to the POSIX specification, the following flags are portable: -f (continue to wait for the file to
grow or for the FIFO to provide additional data), -c (byte count), and -n (line count).

Further, POSIX only explicitly requires the tail command to accept a single filename as an argument. Any
use with multiple files is inherently not portable.

-b (Mac OS X)
Mac OS X provides a -b flag that allows you to specify a location in 512-byte block increments. For
maximum portability, multiply the number by 512 yourself and use the -c flag instead.

-F (Mac OS X and Linux)
Both Linux and Mac OS X provide a -F flag that is equivalent to -f --retry. This is easily avoided
with the workarounds described as part of the entries for the individual --follow and --retry
flags.

--follow (Linux)
Linux also provides a --follow flag, which is equivalent to -f except when used with file descriptors.

When working with files, use -f instead.

The file descriptor syntax is not portable and is not supported except in Linux. Use a named pipe
(FIFO) instead.

--max-unchanged-stat (Linux)
Linux provides a --max-unchanged-stat that tries reopening a file if you are using the -f flag and
the file hasn’t changed in a while. This allows it to handle the case here the file is renamed and a new
file with the same name is created as often happens with log files. There is no easy portable
replacement for this feature.

--pid (Linux)
Linux provides a --pid flag that terminates the tail command after the specified process ID dies.

There is no easy portable replacement for this feature, though it could be replaced in a not-so-portable
fashion by a script running as a background job that uses the ps command to verify the existence of
the process.

Assuming the process being watched was originally started by the shell script in the background, it
could also be replaced by running the tail command in the background and using the wait shell
builtin to wait for the process ID to exit, then killing the tail command. For more information, see
“Background Jobs and Job Control” (page 51).

-q (Linux)
As with the head command, Linux provides -v and -q flags. See “head” (page 99) earlier in this
section for explanation of these flags and suggested alternatives.

104 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

-r (Mac OS X)
Mac OS X provides a -r flag that reverses the order of the lines printed. It also changes the behavior
of the leading plus (+) and minus (-) symbols when passed as part of arguments to the -b, -c, and
-n flags.

It is possible to write an AWK script to emulate this behavior by pushing each line in the input file
into an array, then printing the lines in reverse order and either skipping a given number of entries
in the array to skip lines or using substr call to skip a given number of bytes. The “head” (page 99)
section of this chapter provides an example of how to emulate head -c using an AWK script; this
example provides a good starting point for writing a script that emulates this tail feature.

--retry (Linux)
Linux provides a --retry flag to keep trying to open a file if it does not exists.

This is commonly used, with the -f flag, and in that usage, is equivalent to the -F flag, which Mac
OS X supports.

By itself, however, Mac OS X has no equivalent flag, though you can trivially approximate it in a more
portable fashion by writing a while loop in a shell script that repeatedly checks for the file until it finds
it, then runs the tail command.

-s and --sleep-interval (Linux)
Linux provides -s and --sleep-interval flags to lower CPU use by adding a delay between checks
to see if a file you are watching with -f has grown.

-v (Linux)
As with the head command, Linux provides -v and -q flags. See “head” (page 99) earlier in this
section for explanation of these flags and suggested alternatives.

In addition to these flag differences, POSIX specifies that the input files for tail must be valid text files,
which means that all byte sequences must be valid for the current locale. Although not all versions of tail
enforce this restriction, versions that do may fail when used with binary files in some operating systems
unless you change the local settings.

If your scripts must process binary files, be sure to specify the “C” locale before executing commands that
work with these binary files. To change the locale, issue the following statement:

export LANG="C"

Finally, unlike the head command, POSIX does not require that the tail command be able to store and
print a text block of arbitrary length. It requires only that the buffer size be at least 10 times the value of
LINE_MAX. The value of LINE_MAX is implementation dependent, but must be at least 2048 bytes.

While this theoretical 20,480 byte limit in the output of the tail command is not commonly enforced in
modern operating systems, the only guaranteed portable way to generate larger results from tail is to use
another tool such as AWK.

uudecode, uuencode

In most Linux and BSD-derived operating systems, uudecode applies a mask of 0666 to file modes, thus
preventing the creation of executable files (or files with other special modes). In operating systems that follow
AT&T semantics, no mask is applied.

For consistency, if you require the results of uudecode to be executable or have nonstandard modes, your
script should set the execute flag explicitly with chmod.

General Command-Line Tool Differences 105
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

In operating systems that follow AT&T semantics, if uudecode overwrites an existing file, it cannot necessarily
change its mode unless the file is owned by the current user or uudecode is running as the root user.

which

In Mac OS X, the which command can take the -s flag for “silent” behavior. In this mode, it does not output
any text and retursn an exit status of 0 if the command exists in any of the paths listed in the PATH environment
variable or 1 if it does not (or 2 if you pass an invalid flag).

This flag does not exist in many operating systems that obey AT&T semantics. The GNU version of which
used in Linux also does not support this flag. As an alternative, you can redirect the output of which to
/dev/null as described in “Pipes and Redirection” (page 26).

Also, some (not all) Linux distributions come with the GNU which command. This command differs significantly
in its behavior from other UNIX-like operating systems. In order to support searching for multiple commands
in a single which statement, its exit status contains the number of commands that were not found, or -1 if
you pass it unknown flags. (It also supports a number of formatting flags that are not broadly available.)

For reliable cross-platform use, you should specify exactly one command argument at a time, pass no flags
(except the ubiquitous -a flag, if desired), and assume that an exit status of either -1 or 2 indicates a usage
error.

who

In operating systems that follow AT&T semantics, if you use the -u flag, the who command displays the
process ID of the corresponding login process. In operating systems that follow BSD semantics, it does not
display the process ID.

Compatibility Note: You can get the BSD semantics in Mac OS X v10.5 by enabling legacy mode as described
in the compat manual page.

xargs

If you pass the -L flag to the xargs command, xargs calls the specified utility every time a certain number
of lines are read. However, some details differ slightly:

 ■ Counting: In operating systems that follow BSD semantics, the number of lines is based on the number
of newlines encountered. Every line (including blank lines) is counted. In operating systems that follow
AT&T UNIX semantics, blank lines are ignored for counting purposes.

 ■ Concatenation: In operating systems that follow AT&T UNIX semantics, any line ending with a space is
combined with the lines that follow it, up to and including the first nonblank line. This concatenation
does not occur in operating systems that follow BSD semantics.

 ■ Combining Options: In operating systems that follow BSD semantics, the -L and -n options can be
used together. In operating systems that follow AT&T UNIX semantics, the -L and -n options are mutually
exclusive, and the last one given on the command line will be used.

106 General Command-Line Tool Differences
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Designing Scripts for Cross-Platform Deployment

Shell scripts can be powerful tools for writing software. Graphical interfaces notwithstanding, they are capable
of performing nearly any task that could be performed with a more traditional language. This chapter describes
several techniques that will help you write more complex software using shell scripts.

Data Structures, Arrays, and Indirection

One of the more under-appreciated commands in shell scripting is the eval builtin. The eval builtin takes
a series of arguments, concatenates them into a single command, then executes it.

For example, the following script assigns the value 3 to the variable X and then prints the value:

#!/bin/sh
eval X=3
echo $X

For such simple examples, the eval builtin is superfluous. However, the behavior of the eval builtin becomes
much more interesting when you need to construct or choose variable names programmatically. For example,
the next script also assigns the value 3 to the variable X:

#!/bin/sh

VARIABLE="X"
eval $VARIABLE=3
echo $X

When the eval builtin evaluates its arguments, it does so in two steps. In the first step, variables are replaced
by their values. In the preceding example, the letter X is inserted in place of $VARIABLE. Thus, the result of
the first step is the following string:

X=3

In the second step, the eval builtin executes the statement generated by the first step, thus assigning the
value 3 to the variable X. As further proof, the echo statement at the end of the script prints the value 3.

The eval builtin can be particularly convenient as a substitute for arrays in shell script programming. It can
also be used to provide a level of indirection, much like pointers in C. Some examples of the eval builtin are
included in the sections that follow.

A Complex Example: Setting and Printing Values of Arbitrary Variables

The next example takes user input, constructs a variable based on the value entered using eval, then prints
the value stored in the resulting variable.

#!/bin/sh

Data Structures, Arrays, and Indirection 107
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

echo "Enter variable name and value separated by a space"
read VARIABLE VALUE
echo Assigning the value $VALUE to variable $VARIABLE
eval $VARIABLE=$VALUE

print the value
eval echo "$"$VARIABLE

export the value
eval export $VARIABLE

print the exported variables.
export

Warning: This script executes arbitrary user input. It is intended only as an example of the usage of the
eval builtin. In real-world code, you should never pass unsanitized user input directly to eval because
doing so can provide a vector for arbitrary code execution.

Run this script and type something like MYVAR 33. The script assigns the value 33 to the variable MYVAR (or
whatever variable name you entered).

You should notice that the echo command has an additional dollar sign ($) in quotes. The first time the eval
builtin parses the string, the quoted dollar sign is simplified to merely a dollar sign. You could also surround
this dollar sign with single quotes or quote it with a backslash, as described in “Quoting Special
Characters” (page 42). The result is the same.

Thus, the statement:

eval echo "$"$VARIABLE

evaluates to:

echo $MYVAR

Note: If you forget to quote the first dollar sign, you get a very strange result. The variable $$ is a special
shell variable that contains the process ID of the current shell. Thus, without quoting the first dollar sign, the
two dollar signs are interpreted as a variable, and thus the statement evaluates to something like:

echo 1492MYVAR

This is probably not what you want.

A Practical Example: Using eval to Simulate an Array

In “Shell Variables and Printing” (page 16), you learned how to read variables from standard input. This was
limited to some degree by the inability to read an unknown number of user-entered values.

The script below solves this problem using eval by creating a series of variables to hold the values of a
simulated array.

#!/bin/sh

COUNTER=0

108 Data Structures, Arrays, and Indirection
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

VALUE="-1"
echo "Enter a series of lines of test. Enter a blank line to end."

while ["x$VALUE" != "x"] ; do
 read VALUE
 eval ARRAY_$COUNTER=$VALUE
 eval export ARRAY_$COUNTER
 COUNTER=$(expr $COUNTER '+' 1) # More on this in Paint by Numbers
done
COUNTER=$(expr $COUNTER '-' 1) # Subtract one for the blank value at the end.

print the exported variables.
COUNTERB=0;

echo "Printing values."
while [$COUNTERB -lt $COUNTER] ; do
 echo "ARRAY[$COUNTERB] = $(eval echo "$"ARRAY_$COUNTERB)"
 COUNTERB=$(expr $COUNTERB '+' 1) # More on this in Paint by Numbers
done

This same technique can be used for splitting an unknown number of input values in a single line as shown
in the next listing:

#!/bin/sh

COUNTER=0
VALUE="-1"
echo "Enter a series of lines of numbers separated by spaces."

read LIST
IFS=" "
for VALUE in $LIST ; do
 eval ARRAY_$COUNTER=$VALUE
 eval export ARRAY_$COUNTER
 COUNTER=$(expr $COUNTER '+' 1) # More on this in Paint by Numbers
done

print the exported variables.
COUNTERB=0;

echo "Printing values."
while [$COUNTERB -lt $COUNTER] ; do
 echo "ARRAY[$COUNTERB] = $(eval echo '$'ARRAY_$COUNTERB)"
 COUNTERB=$(expr $COUNTERB '+' 1) # More on this in Paint by Numbers
done

A Data Structure Example: Linked Lists

In a complex shell script, you may need to keep track of multiple pieces of data and treat them like a data
structure. The eval builtin makes this easy. Your code needs to pass around only a single name from which
you build other variable names to represent fields in the structure.

Similarly, you can use the eval builtin to provide a level of indirection similar to pointers in C.

For example, the following script manually constructs a linked list with three items, then walks the list:

Data Structures, Arrays, and Indirection 109
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

#!/bin/sh

VAR1_VALUE="7"
VAR1_NEXT="VAR2"

VAR2_VALUE="11"
VAR2_NEXT="VAR3"

VAR3_VALUE="42"

HEAD="VAR1"
POS=$HEAD
while ["x$POS" != "x"] ; do
 echo "POS: $POS"
 VALUE="$(eval echo '$'$POS'_VALUE')"
 echo "VALUE: $VALUE"
 POS="$(eval echo '$'$POS'_NEXT')"
done

Using this technique, you could conceivably construct any data structure that you need (with the caveat that
manipulating large data structures in shell scripts is generally not conducive to good performance).

Nonblocking I/O

Most shell scripts do not need to accept user input at all during execution, and scripts that do require user
input can generally request it a line at a time. However, if you are writing a shell script that needs to interact
with the user while performing background activity, it can be convenient to simulate asynchronous timer
events and asynchronous input and output.

First, a warning: nonblocking I/O is not possible in a pure shell script. It requires the use of an external tool
that sets the terminal to nonblocking. Setting the terminal to nonblocking can seriously confuse the shell,
so you should not mix nonblocking I/O and blocking I/O in the same program.

With that caveat, you can perform nonblocking I/O by writing a small C helper such as this one:

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
 int ch;
 int flags = fcntl(STDIN_FILENO, F_GETFL);
 if (flags == -1) return -1; // error

 fcntl(STDIN_FILENO, F_SETFL, flags | O_NONBLOCK);

 ch = fgetc(stdin);
 if (ch == EOF) return -1;
 if (ch == -1) return -1;
 printf("%c", ch);
 return 0;
}

110 Nonblocking I/O
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

If you compile this tool and name it getch, you can then use it to perform nonblocking terminal input, as
shown in the following example:

#!/bin/bash

stty -icanon -isig
while true ; do
 echo -n "Enter a character: "
 CHAR=`./getch`
 if ["x$CHAR" = "x"] ; then
 echo "NO DATA";
 else
 if ["x$CHAR" = "xq"] ; then
 stty -cbreak
 exit
 fi
 echo "DATA: $CHAR";
 fi
 sleep 1;
done

never reached
stty -cbreak

This script prints “NO DATA” or “DATA: [some character]” depending on whether you have pressed a key in
the past second. (To stop the script, press the Q key.) Using the same technique, you can write fairly complex
shell scripts that can detect keystrokes while performing other tasks. For example, you might write a game
of ping pong that checks for a keystroke at the beginning of each ball drawing loop and if it detects one,
moves the user’s paddle by a few pixels.

This script also illustrates another useful technique: disabling input buffering. The stty command changes
three settings on the controlling terminal (a device file that represents the current Terminal window, console,
ssh session, or other communication channel):

 ■ The -icanon flag disables canonicalization of input. For example, if you press (in order) the keys A,
Delete, and Return, normally your shell script receives an empty line. With canonicalization disabled,
your application instead sees three bytes: the letter A, a control character representing the Delete key,
and a newline character representing the Return key.

 ■ The -isig flag disables automatic generation of signals based on input character. By specifying this
flag, you can trap arbitrary control characters, including characters that would otherwise halt, pause, or
resume execution (Control-C, for example). Because disabling these signals makes it harder to stop
execution of a shell script, you should generally avoid using this flag unless you intend to capture these
control characters as part of normal operation. If you merely need to execute cleanup code when these
keys are pressed, you should trap the resulting signals instead, as described in “Trapping Signals” (page
114).

 ■ The -cbreak flag sets some reasonable defaults for interactive shell use.

Depending on what you are doing, you may also find it useful to pass the -echo flag. This flag disables the
automatic echo of typed characters to the screen. If you are capturing characters for a full-screen game, for
example, echoing the typed characters to the screen tends to be disastrous, depending on how unlucky the
user’s timing is when pressing the key.

Nonblocking I/O 111
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Depending on what other flags you pass, you may want to reset the terminal more fully at the end by issuing
the command stty sane. In Mac OS X, this flag is identical to -cbreak, but in Linux and some other
operating systems, the sane flag is a superset of the -cbreak flag.

Timing Loops

On rare occasions, you may find the need to perform some operation on a periodic basis with greater than
the one second precision offered by sleep. Although the shell does not offer any precision timers, you can
closely approximate such behavior through the use of a calibrated delay loop.

The basic design for such a loop consists of two parts: a calibration routine and a delay loop. The calibration
routine should execute approximately the same instructions as the delay loop for a known number of
iterations.

The nature of the instructions within the delay loop are largely unimportant. They can be any instructions
that your program needs to execute while waiting for the desired amount of time to elapse. However, a
common technique is to perform nonblocking I/O during the delay loop and then process any characters
received.

For example, Listing 7-1 shows a very simple timing loop that reads a byte and triggers some simple echo
statements (depending on what key is pressed) while simultaneously echoing a statement to the screen
about once per second.

Listing 7-1 A simple one-second timing loop

#!/bin/sh

ONE_SECOND=1000

function read_test()
{
 COUNT=0
 local ONE_SECOND=1000 # ensure this never trips!
 while [$COUNT -lt 200] ; do
 CHAR=`./getch`
 if [$1 = "rot"] ; then
 CHAR=","
 fi
 case "$CHAR" in
 ("q" | "Q")
 CONT=0;
 GAMEOVER=1
 ;;
 ("")
 # Silently ignore empty input.
 ;;
 (*)
 echo "Unknown key $CHAR"
 ;;
 esac
 COUNT=`expr $COUNT '+' 1`
 while [$COUNT -ge $ONE_SECOND] ; do
 COUNT=`expr $COUNT - $ONE_SECOND`
 MODE="clear";

112 Timing Loops
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

 draw_cur $ROT;
 VPOS=`expr $VPOS '+' 1`
 MODE="apple";
 draw_cur $ROT
 done
 done
}

function calibrate_timers()
{
 2>/tmp/readtesttime time $0 -readtest
 local READ_DUR=`grep real /tmp/readtesttime | sed 's/real.*//' | tr -d ' '`
 # echo "READ_DUR: $READ_DUR"

 local READ_SINGLE=`echo "scale=20; ($READ_DUR / 200)" | bc`
 ONE_SECOND=`echo "scale=0; 1.0 / $READ_SINGLE" | bc`

 # echo "READ_SINGLE: $READ_SINGLE";
 # exit

 echo "One second is about $ONE_SECOND cycles."
}

if ["x$1" = "x-readtest"] ; then
 read_test
 exit
fi

echo "Calibrating. Please wait."
calibrate_timers

echo "Done calibrating. You should see a message about once per second. Press 'q' to
 quit."
stty -icanon -isig

GAMEOVER=0
COUNT=0
Start the game loop.
while [$GAMEOVER -eq 0] ; do
 # echo -n "Enter a character: "
 CHAR=`./getch`
 case "$CHAR" in
 ("q" | "Q")
 CONT=0;
 GAMEOVER=1
 ;;
 ("")
 # Silently ignore empty input.
 ;;
 (*)
 echo "Unknown key $CHAR"
 ;;
 esac
 COUNT=`expr $COUNT '+' 1`
 while [$COUNT -ge $ONE_SECOND] ; do
 COUNT=`expr $COUNT - $ONE_SECOND`
 echo "One second elapsed (give or take)."
 done

Timing Loops 113
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

done

stty sane

In a real-world timing loop, you will probably have keys that perform certain operations that take time—moving
a piece on a checkerboard, for example. In that case, your calibration should also perform a series to tests to
approximate the amount of time for each of those operations.

If you divide the time for the slow operation by the duration of a single read operation (READ_SINGLE), you
can discern an approximate penalty for the move using iterations of the main program loop as the unit value.
Then, when you perform one of those operations later, you simply add that penalty value to the main loop
counter, thus ensuring that the "One second elapsed” messages will quickly catch up with (approximately)
where they should be.

You can approximate this further by using larger numbers in your loop counter to achieve greater precision.
For example, you might increment your loop counter by 100 instead of by 1. This will give a much more
accurate approximation of the number of cycles stolen by a slow operation.

Warning: If you perform significant multiplication (for example, to increase game play speed on
subsequent levels) to change the rate of your timer, using larger values means that you are much more
likely to exceed the maximum value that shell math or expr math can handle during your interim
calculations. In such cases, you may find it better to use bc, which works with floating-point quantities.

Trapping Signals

No discussion of advanced programming would be complete without an explanation of signal handling. In
UNIX-based and UNIX-like operating systems, signals provide a primitive means of interprocess communication.
A script or other process can send a signal to another process by either using the kill command or by
calling the kill function in a C program. Upon receipt, the receiving process either exits, ignores the signal,
or executes a signal handler routine of the author’s choosing.

Signals are most frequently used to terminate execution of a process in a friendly way, allowing that process
the opportunity to clean up before it exits. However, they can also be used for other purposes. For example,
when a terminal window changes in size, any running shell in that window receives a SIGWINCH (window
change) signal. Normally, this signal is ignored, but if a program cares about window size changes, it can
trap that signal and handle it in an application-specific way. With the exception of the SIGKILL signal, any
signal can be trapped and handled by calling the function signal.

In much the same way, shell scripts can also trap signals and perform operations when they occur, through
the use of the trap builtin.

The syntax of trap is as follows:

trap function signal [signal ...]

The first argument is the name of a function that should be called when the specified signals are received.
The remaining arguments contain a space-delimited list of signal names or numbers. Because signal numbers
vary between platforms, for maximum readability and portability, you should always use signal names.

For example, if you want to trap the SIGWINCH (window change) signal, you could write the following
statement:

114 Trapping Signals
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

trap sigwinch_handler SIGWINCH

After you issue this statement, the shell calls the function sigwinch_handler whenever it receives a
SIGWINCH signal. The script in Listing 7-2 prints the phrase “Window size changed.“ whenever you adjust
the size of your terminal window.

Listing 7-2 Installing a signal handler trap

#!/bin/sh

function fixrows()
{
 echo "Window size changed."
}

echo "Adjust the size of your window now."
trap fixrows SIGWINCH

COUNT=0
while [$COUNT -lt 60] ; do
 COUNT=$(($COUNT + 1))
 sleep 1
done

Sometimes, instead of trapping a signal, you may want to ignore a signal entirely. To do this, specify an empty
string for the function name. For example, the code in Listing 7-3 ignores the “interrupt” signal generated
when you press Control-C:

Listing 7-3 Ignoring a signal

#!/bin/sh
trap "" SIGINT

echo "This program will sleep for 10 seconds and cannot be killed with"
echo "control-c."
sleep 10

Finally, signals can be used as a primitive form of interscript communication. The next two scripts work as a
pair. To see this in action, first save the script in Listing 7-4 as ipc1.sh and the script in Listing 7-5 as ipc2.sh.

Listing 7-4 ipc1.sh: Script interprocess communication example, part 1 of 2

#!/bin/sh

Save this as ipc1.sh

./ipc2.sh &

PID=$!

sleep 1 # Give it time to launch.

kill -HUP $PID

Listing 7-5 ipc2.sh: Script interprocess communication example, part 2 of 2

#!/bin/sh

Trapping Signals 115
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Save this as ipc2.sh

function hup_handler()
{
 echo "SIGHUP RECEIVED."
 exit 0
}

trap hup_handler SIGHUP

while true ; do
 sleep 1
done

Now run ipc1.sh. It launches the script ipc2.sh in the background, uses the special shell variable $! to
get the process ID of the last background process (ipc2.sh in this case), then sends it a hangup (SIGHUP)
signal using kill.

Because the second script, ipc2.sh, trapped the hangup signal, its shell then calls a handler function,
hup_handler. This function prints the words “SIGHUP RECEIVED.“ and exits.

Special Shell Variables

The Bourne shell has a number of special “automatic” variables that it maintains for informational purposes.
These variables provide information such as the process ID of the shell, the exit status of the last command,
and so on. This section provides a list of these special variables. For additional variables supported by specific
Bourne shell variants such as BASH and ZSH, see the bash and zshparam manual pages, respectively.

Table 7-1 Special shell variables

DescriptionVariable

Process information

Process ID of shell$$

Process ID of shell’s parent process.

Quirk Warning: For subshells, the value of PPID is inherited from the parent
shell. Thus, PPID is only the parent of the outermost shell process.

$PPID

Exit status of last command.$?

Name of last command.$_

Process ID of last process run in the background using ampersand (&) operator.
This is commonly used in conjunction with the wait builtin.

$!

A colon-delimited list of locations where trusted executables are installed. Any
executable in one of these locations can be executed without specifying a
complete path.

$PATH

116 Special Shell Variables
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

DescriptionVariable

Field and record parsing

Input Field Separators (uses are explained in “Variable Expansion and Field
Separators” (page 39))

$IFS

User information

The user’s home directory.$HOME

The user’s ID.

Security Warning: This value can be modified by the calling script, so it should
not be used for authentication purposes.

$UID

The user’s (short) login name.

Security Warning: This value can be modified by the calling script, so it should
not be used for authentication purposes.

$USER

Miscellaneous Variables

Number of arguments passed to the shell.$#

Complete list of arguments passed to the shell, separated by spaces..$@

Complete list of arguments passed to the shell, separated by the first character
of the IFS (input field separators) variable.

Compatibility Note: In AIX, if you surround this variable with quotes, the shell
wraps each individual argument with quotes when it expands the variable.

$*

A list of all shell flags currently enabled.$-

The current working directory. Equivalent to executing the pwd command.$PWD

Shell Text Formatting

One powerful technique when writing shell scripts is to take advantage of the terminal emulation features
of your terminal application (whether it is Terminal, an xterm, or some other application) to display formatted
content.

You can use the printf command to easily create columnar layouts without any special tricks. For more
visually exciting presentation, you can add color or text formatting such as boldface or underlined display
using ANSI (VT100/VT220) escape sequences.

In addition, you can use ANSI escape sequences to show or hide the cursor, set the cursor position anywhere
on the screen, and set various text attributes, including boldface, inverse, underline, and foreground and
background color.

Shell Text Formatting 117
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Using the printf Command for Tabular Layout

Much like C and other languages, most operating systems that support shell scripts also provide a
command-line version of printf. This command differs from the C printf function in a number of ways.
These differences include the following:

 ■ The %c directive does not perform integer-to-character conversion. The only way to convert an integer
to a character with the shell version is to first convert the integer into octal and then print it by using
the octal value as a switch. For example, printf "\144" prints the lowercase letter d.

 ■ The command-line version supports a much smaller set of placeholders. For example, %p (pointers) does
not exist in the shell version.

 ■ The command-line version does not have a notion of long or double-precision numbers. Although flags
with these modifiers are allowed (%lld, for example), the modifiers are ignored. Thus, there is no difference
between %d, %ld, and %lld.

 ■ Large integers may be truncated to 32-bit signed values.

 ■ Double-precision floating-point values may be reduced to single-precision values.

 ■ Floating point precision is not guaranteed (even for single-precision values) because some imprecision
is inherent in the conversion between strings and floating-point numbers.

Much like the printf statement in other languages, the shell script printf syntax is as follows:

printf "format string" argument ...

Like the C printf function, the command-line printf format string contains some combination of text,
switches (\n and \t, for example), and placeholders (%d, for example).

The most important feature of printf for tabular layouts is the padding feature. Between the percent sign
and the type letter, you can place a number to indicate the width to which the field should be padded. For
a floating-point placeholder (%f), you can optionally specify two numbers separated by a decimal point. The
leftmost value indicates the total field width, while the rightmost value indicates the number of decimal
places that should be included. For example, you can print pi to three digits of precision in an 8-character-wide
field by typing printf "%8.3f" 3.14159265.

In addition to the width of the padding, you can add certain prefixes before the field width to indicate special
padding requirements. They are:

 ■ Minus sign (-)—indicates the field should be left justified. (Fields are right justified by default.)

 ■ Plus sign (+)—indicates that a sign should be prepended to a numerical argument even if it has a positive
value.

 ■ Space—indicates that a space should be added to a numerical argument in place of the sign if the value
is positive. (A plus sign takes precedence over a space.)

 ■ Zero (0)—indicates that numerical arguments should be padded with leading zeroes instead of spaces.
(A minus sign takes precedence over a zero.)

For example, if you want to create a four-column table of name, address, phone number, and GPA, you might
write a statement like this:

118 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Listing 7-6 Columnar printing using printf

#/bin/sh

NAME="John Doe"
ADDRESS="1 Fictitious Rd, Bucksnort, TN"
PHONE="(555) 555-5555"
GPA="3.885"
printf "%20s | %30s | %14s | %5s\n" "Name" "Address" "Phone Number" "GPA"
printf "%20s | %30s | %14s | %5.2f\n" "$NAME" "$ADDRESS" "$PHONE" "$GPA"

The printf statement pads the fields into neat columns and truncates the GPA to two decimal places,
leaving room for three additional characters (the decimal point itself, the ones place, and a leading space).
You should notice that the additional arguments are all surrounded by quotation marks. If you do not do
this, you will get incorrect behavior because of the spaces in the arguments.

Note: The printf command, like its C function sibling, does not truncate values to fit within the specified
field width. For examples of how to truncate strings, see “Truncating Strings” (page 119).

The next sample shows number formatting:

#!/bin/sh

GPA="3.885"

printf "%f | whatever\n" "$GPA"
printf "%20f | whatever\n" "$GPA"
printf "%+20f | whatever\n" "$GPA"
printf "%+020f | whatever\n" "$GPA"
printf "%-20f | whatever\n" "$GPA"
printf "%- 20f | whatever\n" "$GPA"

This prints the following output:

3.885000 | whatever
 3.885000 | whatever
 +3.885000 | whatever
+000000000003.885000 | whatever
3.885000 | whatever
 3.885000 | whatever

Most of the same formatting options apply to %s and %d (including, surprisingly, zero-padding of string
arguments). For more information, see the manual page for printf.

Truncating Strings

To truncate a value to a given width, you can use a simple regular expression to keep only the first few
characters. For example, the following snippet copies the first seven characters of a string:

STRING="whatever you want it to be"
TRUNCSTRING="`echo "$STRING" | sed 's/^\(.......\).*$/\1/'`"
echo "$TRUNCSTRING"

Shell Text Formatting 119
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

As an alternative, you can use a more general-purpose routine such as the one in Listing 7-7, which truncates
a string to an arbitrary length by building up a regular expression.

Listing 7-7 Truncating text to column width

function trunc_field()
{
 local STR=$1
 local CHARS=$2
 local EXP=""
 local COUNT=0
 while [$COUNT -lt $CHARS] ; do
 EXP="$EXP."
 COUNT=`expr $COUNT + 1`
 done
 echo $STR | sed "s/^\($EXP\).*$/\1/"
}

printf "%10s | something\n" "`trunc_field "$TEXT" 20`"

Of course, you can do this much faster by either caching these strings or replacing most of the function with
a single line of Perl:

echo "$STR" | perl -e "$/=undef; print substr(<STDIN>, 0, $CHARS);"

Finally, if you are willing to write code that is extremely nonportable (using a syntax that does not even work
in ZSH), you can use BASH-specific substring expansion:

echo "${STR:0:8}"

You can learn about similar operations in the manual page for bash under the “Parameter Expansion” heading.
As a general rule, however, you should avoid such shell-specific tricks.

Using ANSI Escape Sequences

You can use ANSI escape sequences to add color or formatting to text displayed in the terminal, reposition
the cursor, set tab stops, clear portions of the display, change scrolling behavior, and more. This section
includes a partial list of many commonly used escape sequences, along with examples of how to use them.

Important: For the purposes of this section, the Esc (escape) key is represented by the notation ^[because
the ASCII character for the Esc key is the same as the ASCII character for Control-bracket (character 27). Thus,
when you see ^[[, it means Esc followed by a bracket. (Nearly all ANSI escape sequences begin with
Esc-bracket, though there are a few exceptions.)

There are two ways to generate escape sequences: direct printing and using the terminfo database. Printing
the sequences directly has significant performance advantages but is less portable because it assumes that
all terminals are ANSI/VT100/VT220-compliant. A good compromise is to combine these two approaches by
caching the values generated with a terminfo command such as tput at the beginning of your script and
then printing the values directly elsewhere in the script.

120 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Generating Escape Sequences using the terminfo Database

Generating escape sequences with the terminfo database is relatively straightforward once you know what
terminal capabilities to request. You can find several tables containing capability information, along with the
standard ANSI/VT220 values for each capability, in “ANSI Escape Sequence Tables” (page 122). (Note that not
all ANSI escape sequences have equivalent terminfo capabilities, and vice versa.)

Once you know what capability to request (along with any additional arguments that you must specify), you
can use the tput command to output the escape sequence (or capture the output of tput into a variable
so you can use it later). For example, you can clear the screen with the following command:

tput cl

Some terminfo database entries contain placeholders for numeric values, such as row and column information.
The easiest way to use these is to specify those numeric values on the command line when calling tput.
However, for performance, it may be faster to substitute the values yourself. For example, the capability cup
sets the cursor position to a row and column value. The following command sets the position to row 3,
column 7:

tput cup 3 7

You can, however, obtain the unsubstituted string by requesting the capability without specifying row and
column parameters. For example:

tput cup | less

By piping the data to less, you can see precisely what the tput tool is providing, and you can look up the
parameters in the manual page for terminfo. This particular example prints the following string:

^[[%i%p1%d;%p2%dH

The %i notation means that the first two (and only the first two) values are one greater than you might
otherwise expect. (For ANSI terminals, columns and rows number from 1 rather than from 0). The %p1%d
means to push parameter 1 onto the stack and then print it immediately. The parameter %p2%d is the
equivalent for parameter 2.

As you can see from even this relatively simple example, the language used for terminfo is quite complex.
Thus, while it may be acceptable to perform the substitution for simple terminals such as VT100 yourself,
you may still be trading performance for portability. In general, it is best to let tput perform the substitutions
on your behalf.

Generating Escape Sequences Directly

To use an ANSI escape sequence without using tput, you must first be able to print an escape character
from your script. There are three ways to do this:

 ■ Use printf to print the escape sequence. In a string, the \e switch prints an escape character. This is
the easiest way to print escape sequences.

For example, the following snippet shows how to print the reset sequence (^[c):

printf "\ec" # resets the screen

Note: In all versions of Mac OS X, printf is a shell builtin for /bin/sh. However, this is not necessarily
true for other platforms. Thus, if cross-platform performance is an issue, you should avoid this usage.

Shell Text Formatting 121
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

 ■ Embed the escape character in your script. The method of doing this varies widely from one editor to
another. In most text-based editors and on the command line itself, you do this by pressing Control-V
followed by the Esc key. Although this is the fastest way to print an escape sequence, it has the
disadvantage of making your script harder to edit.

For example, you might write a snippet like this one:

echo "^[c" # Read the note below!!!

Note: You must enter this escape character manually; copying and pasting the text in this example will
not work.

To enter the above escape sequence, type echo followed by a space and double-quote mark. Then press
Control-V followed by the Esc key to add the escape character. Next, type a lowercase c. Finally, close
the double-quote mark and press Return.

 ■ Use printf to store an escape character into a variable. This is the recommended technique because
it is nearly as fast as embedding the escape character but does not make the code hard to read and edit.

For example, the following code sends a terminal reset command (^[c):

#!/bin/sh

ESC=`printf "\e"` # store an escape character
 # into the variable ESC
echo "$ESC""c" # Echo a terminal reset command.

Because the terminal reset command is one of only a handful of escape sequences that do not start with a
left square bracket, it is worth pointing out the two sets of double-quote marks after the variable in the above
example. Without those, the shell tries to print the value of the variable ESCc, which does not exist.

ANSI Escape Sequence Tables

There are four basic categories of escape codes:

 ■ Cursor manipulation routines (described in Table 7-2 (page 123)) allow you to move the cursor around
on the screen, show or hide the cursor, and limit scrolling to only a portion of the screen.

 ■ Attribute manipulation sequences (described in “Attribute and Color Escape Sequences” (page 124))
allow you to set or clear text attributes such as underlining, boldface display, and inverse display.

 ■ Color manipulation sequences (described in “Attribute and Color Escape Sequences” (page 124)) allow
you to change the foreground and background color of text.

 ■ Other escape codes (described in Table 7-5 (page 127)) support clearing the screen, clearing portions of
the screen, resetting the terminal, and setting tab stops.

Cursor and Scrolling Manipulation Escape Sequences

Tdhe terminal window is divided into a series of rows and columns. The upper-left corner is row 1, column
1. The lower-right corner varies depending on the size of the terminal window.

122 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

You can obtain the current number of rows and columns on the screen by examining the values of the shell
variables LINES and COLUMNS. Thus, the screen coordinates range from (1, 1) to ($LINES, $COLUMNS).
In most modern Bourne shells, the values for LINES and COLUMNS are automatically updated when the
window size changes. This is true for both BASH and ZSH shells.

Compatibility Note: In BASH, the LINES and COLUMNS variables are set only for interactive instances of the
shell. This presents a small problem for shell scripts that care about window size. As a result, in versions of
Mac OS X where the default shell is BASH (Mac OS X v10.3 and newer), these variables are not defined in
shell scripts that start with #!/bin/sh.

Of course, you could request that ZSH interpret the script by changing the first line of your script to
#!/bin/zsh, but doing so is not particularly portable. Fortunately, without changing shells, you can easily
obtain the current row and column count with the code in Listing 7-8.

Listing 7-8 Obtaining terminal size using stty or tput

If tput is available, this is the easy way:
MYLINES=`tput lines` # ROWS
MYCOLUMNS=`tput cols` # COLUMNS

If not, you can do it the hard way. This usually works.
MYLINES=`stty -a | grep rows | sed 's/^.*;\(.*\)rows\(.*\);.*$/\1\2/' | sed 's/;.*$//'
 | sed 's/[^0-9]//g'` # ROWS
MYCOLUMNS=`stty -a | grep columns | sed 's/^.*;\(.*\)columns\(.*\);.*$/\1\2/' | sed
's/;.*$//' | sed 's/[^0-9]//g'` # COLUMNS

If you want to be particularly clever, you can also trap the SIGWINCH signal and update your script’s notion
of lines and columns when it occurs. See “Trapping Signals” (page 114) for more information.

Once you know the number of rows and columns on your screen, you can move the cursor around with the
escape sequences listed in Table 7-2. For example, to set the cursor position to row 4, column 5, you could
issue the following command:

printf "\e[4;5H"

For other, faster ways to print escape sequences, see “Generating Escape Sequences Directly” (page 121).

Table 7-2 Cursor and scrolling manipulation escape sequences

DescriptionEscape sequenceTerminfo capability

Hides the cursor.^[[?25ltivis

Note: The terminfo entry for
Terminal does not support this
option.

Shows the cursor.^[[?25htvvis

Note: The terminfo entry for
Terminal does not support this
option.

Sets cursor position to row r, column c.^[[r;cHcup row colum

Shell Text Formatting 123
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

DescriptionEscape sequenceTerminfo capability

Reports current cursor position as though typed from
the keyboard (reported as ^[[r;cR). Note: it is not
practical to capture this information in a shell script.

^[[6n(no equivalent)

Saves current cursor position and style.^[7sc

Restores previously saved cursor position and style.^[8rc

Moves cursor up r rows.^[[rAcuu r

Moves cursor down r rows.^[[rBcud r

Moves cursor right c columns.^[[cCcuf c

Moves cursor left c columns.^[[cDcub c

Disables automatic line wrapping when the cursor
reaches the right edge of the screen.

^[[7h(no equivalent)

Enables line wrapping (on by default).^[[7l(no equivalent)

Enables whole-screen scrolling (on by default).^[[r(no equivalent)

Enables partial-screen scrolling from row S to row E
and moves the cursor to the top of this region.

^[[S;Er(no equivalent)

Moves the cursor down by one line.^[Ddo

Moves the cursor up by one line.^[Mup

Attribute and Color Escape Sequences

Attribute and color escape sequences allow you to change the attributes or color for text that you have not
yet drawn. No escape sequence (scrolling notwithstanding) changes anything that has already been drawn
on the screen. Escape sequences apply only to subsequent text.

For example, to draw a red “W” character, first send the escape sequence to set the foreground color to red
(^[[31m), then print a “W” character, then send an attribute reset sequence (^[[m), if desired.

The attribute and color escape codes can be combined with other attribute and color escape codes in the
form ^[[#;#;#;...#m. For example, you can combine the escape sequences ^[[1m (bold) and ^[[32m
green text) into the sequence ^[[1;32m. Listing 7-9 prints a familiar phrase in multiple colors.

Listing 7-9 Using ANSI color

#!/bin/sh

printf '\e[41mH\e[42me\e[43ml\e[44;32ml\e[45mo\e[m \e[46;33m'
printf 'W\e[47;30mo\e[40;37mr\e[49;39ml\e[41md\e[42m!\e[m\n'

124 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Note: For consistent formatting, you may add a leading zero to any single-digit attribute escape sequences,
if desired. For example, ^[[1m is equivalent to ^[[01m.

Table 7-3 contains a list of capabilities and escape sequences that control text style.

Table 7-3 Attribute escape sequences

DescriptionEscape sequenceTerminfo capability

Resetting attributes

Resets all attributes to their default values.^[[m or ^[[0mme

Setting attributes

Enables “bold” display. This code and code #2
(dim) are mutually exclusive.

^[[1mbold

Enables “dim” display. This code and code #1
(bold) are mutually exclusive. Not supported
in Terminal.

^[[2mdim

Enables “standout” display. Not supported in
Terminal.

^[[3mso

Note: In the terminfo database entry
for Terminal, this attribute is mapped
to inverse because the VT100
“standout” mode is not supported.

Enables underlined display.^[[4mus

<blink>.^[[5mblink

Note: The terminfo entry for Terminal
does not support this option.

Fast blink or strike-through. (Not supported in
Terminal; behavior inconsistent elsewhere.)

^[[6m(No equivalent.)

Enables reversed (inverse) display.^[[7mmr

Enables hidden (background-on-background)
display.

^[[8minvis

Note: The terminfo entry for Terminal
does not support this option.

Unused.^[[9m

Font selection codes. Unsupported in most
terminal applications, including Terminal.

Codes 10m–19m

Clearing attributes

“Fraktur” typeface. Unsupported almost
universally, and Terminal is no exception.

^[[20m(No equivalent.)

Shell Text Formatting 125
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

DescriptionEscape sequenceTerminfo capability

Unused.^[[21m

Disables “bright” or “dim” display. This disables
either code 1m or 2m.

^[[22mse

Note: Technically, this capability is
supposed to end standout mode, but
it is overloaded to disable bold
bright/dim mode as well.

Disables “standout” display. Not supported in
Terminal.

^[[23mse

Disables underlined display.^[[24mue

</blink>. Also disables slow blink or
strike-through (6m) on terminals that support
that attribute.

^[[25m(No equivalent. Use me to disable all
attributes instead.)

Unused.^[[26m

Disables reversed (inverse) display.^[[27m(No equivalent. Use me to disable all
attributes instead.)

Disables hidden (background-on-background)
display.

^[[28m(No equivalent. Use me to disable all
attributes instead.)

Unused.^[[29m

Table 7-4 contains a list of capabilities and escape sequences that control text and background colors.

Table 7-4 Color escape sequences

DescriptionEscape sequenceTerminfo capability

Foreground colors

Sets foreground color to black.^[[30msetaf 0

Sets foreground color to red.^[[31msetaf 1

Sets foreground color to green.^[[32msetaf 2

Sets foreground color to yellow.^[[33msetaf 3

Sets foreground color to blue.^[[34msetaf 4

Sets foreground color to magenta.^[[35msetaf 5

Sets foreground color to cyan.^[[36msetaf 6

Sets foreground color to white.^[[37msetaf 7

Unused.^[[38m

126 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

DescriptionEscape sequenceTerminfo capability

Sets foreground color to the default.^[[39msetaf 9

Background colors

Sets background color to black.^[[40msetab 0

Sets background color to red.^[[41msetab 1

Sets background color to green.^[[42msetab 2

Sets background color to yellow.^[[43msetab 3

Sets background color to blue.^[[44msetab 4

Sets background color to magenta.^[[45msetab 5

Sets background color to cyan.^[[46msetab 6

Sets background color to white.^[[47msetab 7

Unused.^[[48m

Sets background color to the default.^[[49msetab 9

Other Escape Sequences

In addition to providing text formatting, ANSI escape sequences provide the ability to reset the terminal,
clear the screen (or portions thereof), clear a line (or portions thereof), and set or clear tab stops.

For example, to clear all existing tab stops and set a single tab stop at column 20, you could use the snippet
show in Listing 7-10.

Listing 7-10 Setting tab stops

#!/bin/sh
echo # Start on a new line
printf "\e[19C" # move right 19 columns to column 20
printf "\e[3g" # clear all tab stops
printf "\e[W" # set a new tab stop
printf "\e[19D" # move back to the left
printf "Tab test\tThis starts at column 20."

Table 7-5 contains a list of capabilities and escape sequences that perform other miscellaneous tasks such
as cursor control, tab stop manipulation, and clearing the screen or portions thereof.

Table 7-5 Other escape codes

DescriptionEscape sequenceTerminfo capability

Resetting the terminal

Shell Text Formatting 127
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

DescriptionEscape sequenceTerminfo capability

Resets the background and foreground colors to
their default values, clears the screen, and moves
the cursor to the home position.

^[creset

Note: This resets many more
things than ^[c. It is also
technically not a single capability
but rather the contatenation of
rs1, rs2, and rs3.

Clearing the screen

Clears to the bottom of the screen using the
current background color.

^[[J or ^[[0Jcd

Clears to the top of the screen using the current
background color.

^[[1J(no equivalent)

Clears the screen to the current background color.
On some terminals, the cursor is reset to the home
position.

^[[2Jcl

Clearing the current line

Clears to the end of the current line.^[[K or ^[[0Kce

Clears to the beginning of the current line.^[[1Kcb—Not supported in terminfo
entry for Terminal.

Clears the current line.^[[2K(no equivalent)

Tab stops

Set horizontal tab at cursor position.^[[W or ^[[0Whts

Set vertical tab at current line. (Not supported in
Terminal.)

^[[1W(no equivalent)

Redundant codes equivalent to codes 0g–3g.Codes 2W–6W

Clear horizontal tab at cursor position.^[[g or ^[[0g(no equivalent)

Clear vertical tab at current line. (Not supported in
Terminal.)

^[[1g(no equivalent)

Clear horizontal and vertical tab stops for current
line only. (Not supported in Terminal.)

^[[2g(no equivalent)

Clear all horizontal tabs.^[[3gtbc

128 Shell Text Formatting
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

Note: You can also set tab stops with the command-line utility tabs.

For More Information

The tables in this chapter provide only some of the more commonly used escape sequences and terminfo
capabilities. You can find an exhaustive list of ANSI escape sequences at http://www.inwap.com/pdp10/an-
sicode.txt and an exhaustive list of terminfo capabilities in the manual page for terminfo.

Before using capabilities or escape sequences not in this chapter, however, you should be aware that most
terminal software (including Terminal in Mac OS X) does not support the complete set of ANSI escape
sequences or terminfo capabilities.

Finding the Absolute Path of the Current Script

Occasionally, you may write a script that needs to execute itself. The shell variable $0 contains the name
passed in on the command line. However, if the script is in a directory contained in the PATH environment
variable, you may want a path that does not depend on the value of the PATH variable remaining contstant.
The following snippet returns the path (which may be relative to the current working directory) of the
executing script.

SCRIPT="$(which $0)"

Your script can then execute itself like this:

"$SCRIPT" arguments go here

If you need a complete absolute path, you can modify the original snippet to do this:

SCRIPT="$(which $0)"
if ["x$(echo $SCRIPT | grep '^\/')" = "x"] ; then
 SCRIPT="$PWD/$SCRIPT"
fi

If the path starts with a leading slash (/), it is already an absolute path, so you don’t need to do anything to
it. If it does not, prepending the current working directory turns it into one. Note that the result is not a
minimized absolute path; it may contain references to the current (.) or enclosing (..) directories. It is,
however, an absolute path that is will not break even if your script changes directories or modifies its PATH
environment variable.

Application Scripting With osascript

Mac OS X provides a powerful application scripting environment called AppleScript. With AppleScript, you
can launch an application, tell a running application to perform various tasks, query a running application
in various ways, and so on. Shell script programmers can harness this power through the osascript(1)
tool.

Finding the Absolute Path of the Current Script 129
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

http://www.inwap.com/pdp10/ansicode.txt
http://www.inwap.com/pdp10/ansicode.txt

Note: Although this section describes use of osascript for executing AppleScript for application scripting,
the osascript tool provides a command-line interface to any scripting language with an interpreter that
conforms to the Open Scripting Architecture (OSA). For example, if you install the third-party JavaScript OSA
freeware package, you can use osascript to execute JavaScript code.

The osascript tool executes a program in the specified language and prints the results via standard output.
If no program file is specified, it reads the program from standard input.

The first example is fairly straightforward. It opens the file poem.txt in the directory above the directory
where the script is located:

Listing 7-11 Opening a file using AppleScript and osascript: 07_osascript_simple.sh

#!/bin/sh

POEM="$PWD/../poem.txt"

cat << EOF | osascript -l AppleScript
launch application "TextEdit"
tell application "TextEdit"
 open "$POEM"
end tell
EOF

You should notice that the path to the file poem.txt is specified as an absolute path here. This is crucial
when working with osascript. Because the current working directory of a launched application is always
the root of the file system (the / directory) rather than the shell script’s working directory, a script must pass
an absolute path to AppleScript rather than a path relative to the script’s working directory.

The next example shows how to query an application. In this case, it launches TextEdit, opens two files, asks
TextEdit for a list of open documents, and uses that list to help it ask TextEdit to return the first paragraph
of text in the document that corresponds with the poem.txt file.

Listing 7-12 Working with a file using AppleScript and osascript: 08_osascript_para.sh

#!/bin/sh

Get an absolute path for the poem.txt file.
POEM="$PWD/../poem.txt"

Get an absolute path for the script file.
SCRIPT="$(which $0)"
if ["x$(echo $SCRIPT | grep '^\/')" = "x"] ; then
 SCRIPT="$PWD/$SCRIPT"
fi

Launch TextEdit and open both the poem and script files.
cat << EOF | osascript -l AppleScript > /dev/null
launch application "TextEdit"
tell application "TextEdit"
 open "$POEM"
end tell

set myDocument to result
return number of myDocument

130 Application Scripting With osascript
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

EOF

cat << EOF | osascript -l AppleScript > /dev/null
launch application "TextEdit"
tell application "TextEdit"
 open "$SCRIPT"
end tell

set myDocument to result
return number of myDocument
EOF

Tell the shell not to mangle newline characters, tabs, or whitespace.
IFS=""

Ask TextEdit for a list of open documents. From this, we can
obtain a document number that corresponds with the poem.txt file.
This query returns a newline-deliminted list of open files. Each
line contains the file number, followed by a tab, followed by the
filename
DOCUMENTS="$(cat << EOF | osascript -l AppleScript

 tell application "TextEdit"
 documents
 end tell

 set myList to result -- Store the result of "documents" message into
 variable "myList"
 set myCount to count myList -- Store the number of items in myList into
myCount
 set myRet to "" -- Create an empty string variable called
"myRet"

 (* Loop through the myList array and build up a string in the myRet variable
 containing one line per entry in the form:

 number tab_character name
 *)
 repeat with myPos from 1 to myCount
 set myRet to myRet & myPos & "\t" & name of item myPos of myList & "\n"
 end repeat
 return myRet
EOF
)"

Determine the document number that corresponds with the poem.txt
file.
DOCNUMBER="$(echo $DOCUMENTS | grep '[[:space:]]poem\.txt' | grep -v ' poem\.txt'
 | head -n 1 | sed 's/\([0-9][0-9]*.\).*/\1/')"
SECOND_DOCNUMBER="$(echo $DOCUMENTS | grep '[[:space:]]poem\.txt' | grep -v '
poem\.txt' | tail -n 1 | sed 's/\([0-9][0-9]*.\).*/\1/')"

if [$DOCNUMBER -ne $SECOND_DOCNUMBER] ; then
 echo "WARNING: You have more than one file named poem.txt open. Using the"
 1>&2
 echo "most recently opened file." 1>&2
 echo "DOCNUMBER $DOCNUMBER != $SECOND_DOCNUMBER"

Application Scripting With osascript 131
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

fi

echo "DOCNUMBER: $DOCNUMBER"

if ["x$DOCNUMBER" != "x"] ; then
 # Query poem.txt by number
 FIRSTPARAGRAPH="$(cat << EOF | osascript -l AppleScript
 tell application "TextEdit"
 paragraph 1 of document $DOCNUMBER
 end tell
EOF
)"
 echo "The first paragraph of poem.txt is:"
 echo "$FIRSTPARAGRAPH"
fi

Query poem.txt by name
FIRSTPARAGRAPH="$(cat << EOF | osascript -l AppleScript
 tell application "TextEdit"
 paragraph 1 of document "poem.txt"
 end tell
EOF
)"
echo "The first paragraph of poem.txt is:"
echo "$FIRSTPARAGRAPH"

This script illustrates three very important concepts.

 ■ It shows how to refer to a document by number and how to iterate through a list of documents,
associating the name with a particular document number.

 ■ It demonstrates a limitation in AppleScript—specifically, that you cannot always uniquely identify a
particular document with a given name if two open files have the same name. When writing scripts, you
should carefully avoid opening two files with the same name using the same application.

 ■ It demonstrates how to reference a document by its name. The results from the documents message
are transient; document numbers change as new windows are opened and old windows are closed.
Thus, you should generally address documents using their names rather than using document numbers
unless you are very careful.

The final example shows how to manipulate images using shell scripts and AppleScript. It scales the image
to be as close to 320x480 or 480x320 (depending on the orientation of the image) as possible.

Listing 7-13 Resizing an image using Image Events and osascript: 09_osascript_images.sh

#!/bin/sh

Get an absolute path for the poem.txt file.

MAXLONG=480
MAXSHORT=320

URL="http://images.apple.com/macpro/images/design_smartdesign_hero20080108.png"
FILE="$PWD/my design_smartdesign_hero20080108.png"
OUTFILE="$PWD/my design_smartdesign_hero20080108-mini.png"

if [! -f "$FILE"] ; then

132 Application Scripting With osascript
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

 curl "$URL" > "$FILE"
fi

Tell the shell not to mangle newline characters, tabs, or whitespace.
IFS=""

Obtain image information
DIM="$(cat << EOF | osascript -l AppleScript
tell application "Image Events"
 launch
 set this_image to open "$FILE"
 copy dimensions of this_image to {W, H}
 close this_image
end tell
return W & H
EOF
)"

W="$(echo "$DIM" | sed 's/ *, *.*//')"
H="$(echo "$DIM" | sed 's/.* *, *//')"

echo WIDTH: $W HEIGHT: $H

if [$W -gt $H] ; then
 LONG=$W
 SHORT=$H
else
 LONG=$H
 SHORT=$W
fi

echo "LONG: $LONG SHORT: $SHORT"
echo "MAXLONG: $MAXLONG MAXSHORT: $MAXSHORT"

NEWLONG=$LONG
NEWSHORT=$SHORT
NEWSCALE=1

if [$NEWLONG -gt $MAXLONG] ; then
 # Long direction is too big.
 NEWLONG="$(echo "scale=20; $LONG * ($MAXLONG/$LONG)" | bc | sed 's/\..*//')";
 NEWSHORT="$(echo "scale=20; $SHORT * ($MAXLONG/$LONG)" | bc | sed
's/\..*//')";
 NEWSCALE="$(echo "scale=20; ($MAXLONG/$LONG)" | bc)";
fi

echo "PART 1: NEWLONG: $NEWLONG NEWSHORT: $NEWSHORT"

if [$NEWSHORT -gt $MAXSHORT] ; then
 # Short direction is till too big.
 NEWLONG="$(echo "scale=20; $LONG * ($MAXSHORT/$SHORT)" | bc | sed
's/\..*//')";
 NEWSHORT="$(echo "scale=20; $SHORT * ($MAXSHORT/$SHORT)" | bc | sed
's/\..*//')";
 NEWSCALE="$(echo "scale=20; ($MAXSHORT/$SHORT)" | bc)";
fi

echo "PART 2: NEWLONG: $NEWLONG NEWSHORT: $NEWSHORT"

Application Scripting With osascript 133
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

if [$W -gt $H] ; then
 NEWWIDTH=$NEWLONG
 NEWHEIGHT=$NEWSHORT
else
 NEWHEIGHT=$NEWLONG
 NEWWIDTH=$NEWSHORT
fi

echo "DESIRED WIDTH: $NEWWIDTH NEW HEIGHT: $NEWHEIGHT (SCALE IS $NEWSCALE)"

cp "$FILE" "$OUTFILE"

DIM="$(cat << EOF | osascript -l AppleScript
tell application "Image Events"
 launch
 set this_image to open "$OUTFILE"
 scale this_image by factor $NEWSCALE
 save this_image with icon
 copy dimensions of this_image to {W, H}
 close this_image
end tell
return W & H
EOF
)"

GOTW="$(echo "$DIM" | sed 's/ *, *.*//')"
GOTH="$(echo "$DIM" | sed 's/.* *, *//')"

echo "NEW WIDTH: $GOTW NEW HEIGHT: $GOTH"

Of course, you could just as easily perform these calculations in AppleScript itself, but this demonstrates how
easy it is for shell scripts to exchange information with AppleScript code, manipulate image files, and tell
applications to perform other complex tasks.

For more information about manipulating images with Image Events, see http://www.apple.com/apple-
script/imageevents/. You can also find many other AppleScript examples at http://www.apple.com/apple-
script/examples.html.

134 Application Scripting With osascript
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Advanced Techniques

http://www.apple.com/applescript/imageevents/
http://www.apple.com/applescript/imageevents/
http://www.apple.com/applescript/examples.html
http://www.apple.com/applescript/examples.html

Shell scripts, when compared with compiled languages, generally do not perform well. However, most shell
scripts also do not perform as well as they could with a bit of performance tuning. This chapter shows some
common pitfalls of shell scripting and demonstrates how to fix these mistakes.

Avoiding Unnecessary External Commands

Every line of code in a shell script takes time to execute. This section shows two examples in which avoiding
unnecessary external commands results in a significant performance improvement.

Finding the Ordinal Rank of a Character (More Quickly)

The Monte Carlo method sample code, found in “An Extreme Example: The Monte Carlo (Bourne) Method
for Pi” (page 151), shows a number of ways to calculate the ordinal value of a byte. The version written using
a pure shell approach is painfully slow, in large part because of the loops required.

The best way to optimize performance is to find an external utility written in a compiled language that can
perform the same task more easily. Thus, the solution to that performance problem was to use the perl or
awk interpreter to do the heavy lifting. Although they are not compiled languages, both Perl and AWK have
compiled routines (ord and index, respectively) to find the index of a character within a string.

However, when using outside utilities is not possible, you can still reduce the complexity by executing outside
tools less frequently. For example, once you have an initialized array containing all of the characters from
1–255 (skipping null), you can reduce the number of iterations by removing more than one character at a
time until the character disappears, then going back by one batch of characters and working your way forward
again, one character at a time.

The following code runs more than twice as fast (on average) as the purely linear search:

function ord2()
{
 local CH="$1"
 local STRING=""
 local OCCOPY=$ORDSTRING
 local COUNT=0;

 # Delete ten characters at a time. When this loop
 # completes, the decade containing the character
 # will be stored in LAST.
 CONT=1
 BASE=0
 LAST="$OCCOPY"
 while [$CONT = 1] ; do
 LAST=`echo "$OCCOPY" | sed 's/^\(..........\)/\1/'`

Avoiding Unnecessary External Commands 135
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

 OCCOPY=`echo "$OCCOPY" | sed 's/^..........//'`
 CONT=`echo "$OCCOPY" | grep -c "$CH"`
 BASE=`expr $BASE + 10`
 done
 BASE=`expr $BASE - 10`

 # Search for the character in LAST.
 CONT=1;
 while [$CONT = 1]; do
 # Copy the string so we know if we've stopped finding
 # nonmatching characters.
 OCTEMP="$LAST"

 # echo "CH WAS $CH"
 # echo "ORDSTRING: $ORDSTRING"

 # If it's a close bracket, quote it; we don't want to
 # break the regexp.
 if ["x$CH" = "x]"] ; then
 CH='\]'
 fi

 # Delete a character if possible.
 LAST=$(echo "$LAST" | sed "s/^[^$CH]//");

 # On error, we're done.
 if [$? != 0] ; then CONT=0 ; fi

 # If the string didn't change, we're done.
 if ["x$OCTEMP" = "x$LAST"] ; then CONT=0 ; fi

 # Increment the counter so we know where we are.
 COUNT=$((COUNT + 1)) # or COUNT=$(expr $COUNT '+' 1)
 # echo "COUNT: $COUNT"
 done

 COUNT=$(($COUNT + 1 + $BASE)) # or COUNT=$(expr $COUNT '+' 1)
 # If we ran out of characters, it's a null (character 0).
 if ["x$OCTEMP" = "x"] ; then COUNT=0; fi

 # echo "ORD IS $COUNT";

 # Return the ord of the character in question....
 echo $COUNT
 # exit 0
}

As you tune, you should be cognizant of the average case time. In the case of a linear search, assuming all
possible character values are equally likely, the average time is half of the number of items in the list, or about
127 comparisons. Searching in units of 10, the average is about 1/10 of that plus half of 10, or about 17.69
comparisons, with a worst case of 34 comparisons. The optimal value is 16, with an average of 15.9375
comparisons, and a worst case of 30 comparisons.

136 Avoiding Unnecessary External Commands
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

Of course, you could write the code as a binary search. Because splitting a string is not easy to do quickly, a
binary search works best with strings of known length in which you can cache a series of strings containing
some number of periods. If you are searching a string of arbitrary length, this technique would probably be
much, much slower than a linear search (unless you use BASH-specific substring expansion, as described in
“Truncating Strings” (page 119)).

Caching the strings of periods used in the splitting process increases initialization time slightly, but after that,
the execution time of the search itself improves by about a factor of 2 compared to the “skip 16” version.
Whether that tradeoff is appropriate depends largely on how many times you need to perform this operation.
If the answer is once, then the extra initialization time will likely erase any performance gain from using the
binary search. If the answer is more than once, the binary search is preferable.

Listing 8-1 contains the binary search version.

Listing 8-1 A binary search version of the Bourne shell ord function

Initialize the split strings. This code should be added to ord_init.

 SPLIT=128
 while [$SPLIT -ge 1] ; do
 COUNT=$SPLIT
 STRING=""
 while [$COUNT -gt 0] ; do
 STRING="$STRING""."
 COUNT=$((COUNT - 1))
 done
 eval "SPLIT_$SPLIT=\"$STRING\"";
 SPLIT=$((SPLIT / 2))
 done

function split_str()
{
 STR="$1"
 NUM="$2"
 SPLIT="$(eval "echo \"\$SPLIT_$NUM\"")"
 LEFT="$(echo "$STR" | sed "s/^\\($SPLIT\\).*$/\\1/")"
 RIGHT="$(echo "$STR" | sed "s/^$SPLIT//")"
}

function ord3()
{
 local CH="$1"
 OCCOPY="$ORDSTRING"
 FIRST=1;
 LAST=257

 ord3_sub "$CH" "$ORDSTRING" $FIRST $LAST
}

function ord3_sub()
{
 local CH="$1"
 OCCOPY="$2"
 FIRST=$3

Avoiding Unnecessary External Commands 137
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

 LAST=$4

 # echo "FIRST: $FIRST, LAST: $LAST"

 if [$FIRST -ne $(($LAST - 1))] ; then
 SPLITWIDTH=$((($LAST - $FIRST) / 2))
 split_str "$OCCOPY" $SPLITWIDTH
 if [$(echo "$LEFT" | grep -c "$CH") -eq 1] ; then
 # echo "left"
 ord3_sub "$CH" "$LEFT" $FIRST $(($FIRST + $SPLITWIDTH))
 else
 # echo "right"
 ord3_sub "$CH" "$RIGHT" $(($FIRST + $SPLITWIDTH)) $LAST
 fi
 else
 echo $(($FIRST + 1))
 fi
}

As expected, this performs significantly better, decreasing execution time by about ten percent in this case.
The improved performance, however, is almost precisely offset by the extra initialization costs to enable you
to split the list. That is why you should never assume that a theoretically optimal algorithm will perform
better than a theoretically less optimal algorithm. In shell scripting, the performance impact of constant cost
differences can and often do easily outweigh improvements in algorithmic complexity.

Of course, using a Perl or AWK script to find the ordinal rank is much faster than any of these methods. The
purpose of this example is to demonstrate methods for improving efficiency of similar operations, not to
show the best way to find the ordinal rank of a character.

Reducing Use of the eval Builtin

The eval builtin is a very powerful tool. However, it adds considerable overhead when you use it.

If you are executing the eval builtin repeatedly in a loop and do not need to use the results for intermediate
calculations, it is significantly faster to store each expression as a series of semicolon-separated commands,
then execute them all in a single pass at the end.

For example, the following code shifts the entries in a pseudo-array by one row:

function test1()
{
 X=1; XA=0
 while [$X -lt 5] ; do
 Y=1;
 while [$Y -lt 5] ; do
 eval "FOO_$X""_$Y=FOO_$XA""_$Y"
 Y=`expr $Y + 1`
 done
 X=`expr $X + 1`
 XA=`expr $XA + 1`
 done
}

138 Avoiding Unnecessary External Commands
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

You can speed up this function by about 20% by concatenating the assignment statements into a single
string and running eval only once, as show in the following example:

function test3()
{
 X=1; XA=0
 LIST=""
 while [$X -lt 5] ; do
 Y=1;
 while [$Y -lt 5] ; do
 LIST="$LIST$SEMI""FOO_$X""_$Y=\$FOO_$XA""_$Y"
 SEMI=";"
 Y=`expr $Y + 1`
 done
 X=`expr $X + 1`
 XA=`expr $XA + 1`
 done
 # echo $LIST
 eval $LIST
}

An even more dramatic performance improvement comes when you can precache these commands into a
variable. If you need to repeatedly execute a fairly well-defined series of statements in this way (but don’t
want to waste hundreds of lines of space in your code), you can create the list of commands once, then use
it repeatedly.

By caching the list of commands, the second and subsequent executions improve by about a factor of 200,
which puts its performance at or near the speed of a function call with all of the assignment statements
written out.

Another useful technique is to precache a dummy version of the commands, with placeholder text instead
of certain values. For example, in the above code you could cache a series of statements in the form
ROW_X_COL_1=ROW_Y_COL_1;, repeating for each column value. Then, when you needed to copy one row
to another, you could do this:

eval `echo $ROWCOPY | sed "s/X/$DEST_ROW/g" | sed "s/Y/$SRC_ROW/g"`

If you don’t have separate variables for source and destination rows, you might write something like the
following:

eval `echo $ROWCOPY | sed "s/X/$ROW/g" | sed "s/Y/$(expr $ROW + 1)/g"`

By writing the code in this way, you have replaced several lines of iterator code and dozens of eval instructions
with a single eval instruction and two executions of sed. The resulting performance improvement is dramatic.

Other Performance Tips

Here are a few more performance tuning tips.

Other Performance Tips 139
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

Background or Defer Output

Output to files takes time, output to the console doubly so. If you are writing code where performance is a
consideration, you should either execute output commands in the background by adding an ampersand (&)
to the end of the command or group multiple output statements together.

For example, if you are drawing a game board, the fastest way is to store your draw commands in a single
variable and output the data at once. In this way, you avoid taking multiple execution penalties. A very fast
way to do this is to disable buffering and set newline to shift down a line without returning to the left edge
(run stty raw to set both of these parameters), then store the first row into a variable, followed by a newline,
followed by backspace characters to shift left to the start of the next row, followed by the next row, and so
on.

Defer Potentially Unnecessary Work

If the results of a series of instructions may never be used, do not perform those instructions.

For example, consider code that uses the eval builtin to obtain the values from a series of variables in a
pseudo-array. Suppose that the code returns immediately if any of the variables has a value of 2 or more.

Unless you are accumulating multiple assignment statements into a single call to eval (as described in
“Reducing Use of the eval Builtin” (page 138)), you should call eval on the first statement by itself, make the
comparison, run eval for the next statement, and so on. By doing so, you are reducing the average number
of calls to eval.

Perform Comparisons Only Once

If you have a function that performs an expensive test two or more times, cache the results of that test and
perform the most lightweight comparison possible from then on.

Also, if you have two possible execution paths through your code that share some code in common, it may
be faster to use only a single if statement and duplicate the small amount of common code rather than
repeatedly performing the same comparison. In general, however, such changes will only result in a single-digit
percentage improvement in performance, so it is usually not worth the decrease in maintainability to duplicate
code in this way.

The performance impact varies depending on the expense of the test. Tests that perform computations or
outside execution are particularly expensive and thus should be minimized as much as possible. Of course,
you can reduce the additional impact by performing the calculation once and doing a lightweight test
multiple times.

A simple test case produced the results shown in Table 8-1.

Table 8-1 Performance (in seconds) impact of duplicating common code to avoid redundant tests

Test performed once with two copies of shared
code

Test performed twice with one copy of shared code
in-between

6.9577.003

140 Other Performance Tips
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

Choose Control Statements Carefully

In most situations, the appropriate control statement is obvious. To test to see whether a variable contains
one of two or three values, you generally choose an if statement with a small number of elif statements.
For larger number of values, you generally choose a case statement. This not only leads to more readable
code, but also results in faster code.

For small numbers of cases (5), as expected, the difference between a series of if statements, an if statement
with a series of elif statements, and a case statement is largely lost in the noise, performance-wise, even
after 1000 iterations. Although the results shown in Table 8-2 are in the expected order, this was only true
approximately half the time. For a smaller number of cases, the differences can largely be ignored.

Table 8-2 Performance (in seconds) comparisons of 1000 executions of various control statement
sequences

case statementif, then series of elif
statements

series of if
statements

eval builtin executing
multiple functions

6.8076.8316..8466.945Five cases

6.9036.9807.2247.094Ten cases

6.7047.3928.037.023Fifty cases

With a larger number of cases, the results more predictably resemble what one might expect. The case
version is fastest, followed by the elif version, followed by the if version, with the eval version still coming
in last. These results tended to be more consistent, though eval was often faster than the series of if
statements.

Although the performance differences (shown in Table 8-2) are relatively small, in a sufficiently complex
script with a large number of cases, they can make a sizable difference. In particular, the case statement
tends to degrade more gracefully, whereas the series of if statements by themselves tends to cause an
ever-increasing performance penalty.

Perform Computations Only Once

For example, if you have a function that includes expr $ROW + 1 in two or more lines of code, you should
define a local variable ROW_PLUS_1 and store the value of the expression in that variable. Caching the results
of computation is particularly important if you are using expr for more portable math, but doing so
consistently results in a small performance improvement even when using shell math.

Table 8-3 Performance (in seconds) of 1000 iterations, performing each computation once or twice

Once with shell mathTwice with shell mathOnce with exprTwice with expr

6.4866.59612.82023.744

Other Performance Tips 141
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

Use Shell Builtins Wherever Possible

Using echo by itself is typically about 30 times faster than explicitly executing /bin/echo. This improved
performance also applies to other builtins such as umask or test.

Of course, test is particularly important because it doubles as the bracket ([) command, which is essential
for most control statements in the shell. If you explicitly write a control statement using /bin/[, the script’s
performance degrades immensely, Fortunately, it is unlikely that anyone would ever do that accidentally.

Table 8-4 Relative performance (in seconds) of 1000 iterations of the echo builtin and the echo command

/usr/bin/printfprintf (builtin)/bin/echoecho (builtin)

6.3590.2306.2120.285

On a related note, the printf builtin is significantly faster than the echo builtin if your shell provides it (most
do). Thus, for maximum performance, you should use printf instead of echo.

For Maximum Performance, Use Shell Math, Not External Tools

Although significantly less portable, code that uses the ZSH- and BASH-specific $(($VAR + 1)) math
notation executes up to 125 times faster than identical code written with the expr command and up to 225
times faster than identical code written with the bc command.

Use expr in preference to bc for any integer math that exceeds the capabilities of the shell’s math capabilities.
The floating-point math used by bc tends to be significantly slower.

Table 8-5 Relative performance (in seconds) of 1000 iterations of shell math, expr, and bc

bc commandexpr commandshell math

25.00814.1060.111

Combine Multiple Expressions with sed

The sed tool, like any other external tool, is expensive to start up. If you are processing a large chunk of data,
this penalty is lost in the noise, but if you are processing a short quantity of data, it can be a sizable percentage
of script execution time. Thus, if you can process multiple regular expressions in a single instance of sed, it
is much faster than processing each expression separately.

Consider, for example, the following code, which changes “This is a test” into “This is burnt toast” and then
throws away the results by redirecting them to /dev/null.

function1()
{
 LOOP=0
 while [$LOOP -lt 1000] ; do
 echo "This is a test." | sed 's/a/burnt/g' | sed 's/e/oa/g' > /dev/null

142 Other Performance Tips
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

 LOOP=$((LOOP + 1))
 done
}

You can speed this up dramatically by rewriting the processing line to look like this:

echo "This is a test." | sed -e 's/a/burnt/g' -e 's/e/oa/g' > /dev/null

By passing multiple expressions to sed, it processes them in a single execution. In this case, the processing
of the second expression can be reduced by more than 60% on a typical computer.

As explained in “Avoiding Unnecessary External Commands” (page 135), you can improve performance further
by concatenating these strings into a single string and processing the output of all 1000 lines in a single
invocation of sed (with two expressions). This change reduces the total execution time by nearly a factor of
20 compared with the original version.

For small inputs, the execution penalty is relatively large, so combining expressions results in a significant
improvement. For large inputs, the execution penalty is relatively small, so combining expressions generally
results in negligible improvement. However, even with large inputs, if the sed statements are executed in a
loop, the cumulative performance difference could be noticeable.

Table 8-6 Relative performance (in seconds) of different use cases for sed

One call on
accumulated text

Two calls on
accumulated text

One call per line
(1000 calls total)

Two calls per line
(2000 calls total)

0.6650.6709.98316.874Single-processor
system

0.6120.6198.14311.460Dual-processor
system

Other Performance Tips 143
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

144 Other Performance Tips
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Performance Tuning

The final piece to understanding shell scripting (and to understanding other people’s shell scripts) is
comprehending the use (and abuse) of command-line tools. The scripts listed in this section are commonly
used in shell scripts.

Each of these tools has its own syntax and its own quirks. It is impractical to explain them all in detail. However,
this chapter briefly highlights some common tools and includes links to their manual pages for finding
additional information about them.

General Tools

The tools in this section are general tools that don’t fit into any broad categories.

Table A-1 Commonly used general scripting tools

DescriptionTool

Short for “basic calculator”, performs floating point math and various other useful calculations
that are not practical with basic shell math support.

bc

Used to work with hard-to-handle command-line tools that require more complex interaction
than is possible with a single pipe. For example, you could use an expect script to interact with
getty over a tty or other bidirectional connection to log into a remote computer. In general,
scripting that requires two-way interaction between the script and a program is most easily done
with an expect script.

expect

Evaluates a numerical expression. This command supports basic integer math, and is frequently
used for incrementing a loop iterator.

expr

Returns a failure exit status (nonzero).false

Pauses execution for a period of time (measured in seconds).sleep

Returns a successful exit status (0).true

Text Processing Tools

The tools listed in this section are commonly used for text processing. Unless otherwise noted, these commands
take input from standard input (if applicable) and print the result to standard output.

General Tools 145
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

Many of these commands use regular expressions. The syntax of regular expressions is described in “Regular
Expressions Unfettered” (page 63). For additional usage notes specific to individual applications, see the
manual page for the command itself.

Table A-2 Commonly used text processing tools

DescriptionTool

Short for Aho, Weinberger, and Kernighan; a programming language in itself, used for text processing
using regular expressions. This tool is described further in “How AWK-ward” (page 77).

awk

Short for Global [search for] Regular Expressions and Print; prints lines matching an input pattern
(optionally with a specified number of lines of leading and/or trailing context). The grep command
can take input from standard input or from files.

Common variants include agrep (“approximate grep” from the Univ. of AZ), fgrep, and egrep.

grep

Prints the first few lines from a file (or standard input). The number of lines can be specified with
the -n flag.

head

A programming language whose scripts can be easily embedded in shell scripts using the -e flag.
Perl's regular expression language is somewhat richer than basic regular expressions (and easier to
read than character classes in extended regular expressions), making it popular for text processing
use.

perl

Short for stream editor; performs more complex text substitutions using regular expressions.sed

Sorts a series of lines. By default, sort reads these lines from its standard input. After its standard
input is closed, it sorts them and prints the results to its standard output.

sort

Prints the last few lines from of a file (or standard input). The number of lines can be specified with
the -n flag. Alternatively, you can specify the starting position as a byte or line offset from either
the start or end of the file.

tail

Copies standard input to standard output, saving a copy into a file (or multiple files).tee

Replaces one character with another.tr

Filters out adjacent lines that match.uniq

File Commands

These commands are used to manipulate files, including renaming, moving, and deleting files, changing
permissions, creating directories, listing files, and so on.

Table A-3 Commonly used file manipulation tools

DescriptionTool

Changes the current working directory. The command cd ..moves up a directory,
for example.

cd

146 File Commands
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

ftp://ftp.cs.arizona.edu/agrep/

DescriptionTool

Changes flags on a file or directory. Most of these flags are relatively obscure. For
changing permissions flags, use chmod instead.

chflags

Changes the group ID associated with a file or directory.chgrp

Changes modes (permission bits) or access control lists (ACLs) on a file or directory.chmod

Changes the ownership of files or directories. This command can also change the
group if desired.

chown

Lists or searches for files in a directory and its subdirectories.find

Creates symbolic links and hard links to files or directories.ln

Lists the files in the current directory.ls

Creates new directories.mkdir

Creates named pipes for communication. This tool is useful in situations where
pipes cannot be established while executing the commands, such as connecting
two tools in a circular fashion.

mkfifo

Moves or renames files and directories.mv

Removes files and directoriesrm and rmdir

Prints detailed file status information, such as the type of file, last modification
date, and so on.

stat

These tools, installed as part of the Developer Tools installation, are useful for
getting and manipulating things like extended attributes.

Be aware that if you write a script that depends on these, it will require the
Developer Tools to be installed.

GetFileInfo and
SetFile

Disk Commands

The tools listed in this section perform operations on disks, file systems, partition tables, and disk images.

Table A-4 Commonly used disk-related and partition-related tools

DescriptionTool

Mounts and unmounts volumes and disks, checks disks for
consistency, erases optical disks, wipes disks with a security wipe,
partitions disks, manipulates RAID sets, and so on.

This utility is the command-line counterpart to the Disk Utility
application.

diskutil

Checks a file system for consistency.fsck, fsck_msdos, fsck_hfs

Disk Commands 147
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

DescriptionTool

Creates and manipulates disk images, including attaching disk
images for mounting.

hdiutil

Mounts and unmounts volumes.

If you unmount automounted volumes behind the back of the
disk arbitrartion system, you can cause strange behavior in the
GUI. Use these commands with care, and if you are trying to
unmount an automounted volume, use hdiutil or diskutil
instead.

mount and umount

(Also mount_afp, mount_cd9660,
mount_cddafs, mount_fdesc,
mount_ftp,mount_hfs,mount_msdos,
mount_nfs, mount_ntfs,
mount_smbfs,mount_udf,mount_url,
and mount_webdav)

Archiving and Compression Commands

The tools in this section allow you to create archive files that contain copies of multiple files for ease of
distribution, to extract the contents of archive files, and compress and decompress files to reduce disk space
or network utilization.

The compression tools can also generally be used with pipes to compress data without storing it in a file.
The archive tools can generally use standard input or output for reading or writing the archive itself, but not
the contents thereof. The funzip variant of the zip archiving tool can be used with two pipes, but can only
extract the first file from an archive.

Table A-5 Commonly used archiving and compression tools

DescriptionTool

Compresses and decompresses files using the Burrows-Wheeler block sorting text
compression algorithm and Huffman coding. This compression tool takes somewhat
longer than other tools such as gzip, but tends to result in smaller files, and is thus
growing in popularity for distributing large files.

Files created with this tool end with the .bz2 extension.

bzip2,bunzip2, and
bzip2recover

Compresses and decompresses files using the Lempel-Ziv-Welsh (LZW) compression
algorithm. This compression format has largely fallen out of popularity.

Files created by this tool end with the .Z extension.

compress and
uncompress

Compresses, uncompresses, and prints the contents of files in the GNU Zip
(LZ77-based) format. This compression scheme is popular with UNIX and Linux users.

While based on the same underlying compression scheme, the GNU Zip and ZIP file
formats are not the same. The ZIP file format can contain multiple files, while the
Gzip file format can only contain a single file (though this single file may be a tar
archive).

Files created by this tool end with the .gz extension.

gzip, gunzip, zcat,
and gzcat

148 Archiving and Compression Commands
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

DescriptionTool

Compresses and uncompresses files and directories using the ZIP file format (deflate,
based on LZ77 and Huffman coding). This file format is commonly used for
exchanging compressed files with Windows users.

Files created by this tool end with the .zip extension.

zip, unzip, and
funzip

Creates, appends to, and extracts multifile archives in the tar (short for “Tape
ARchive”) format. This format is the standard format for storing multiple files in a
single archive among UNIX and Linux users. The tar file format is usually seen in a
compressed form, using either gzip or bzip2.

Files created by this tool end with the .tar extension (or the .tgz or .tbz
extensions for tar archives compressed with gzip or bzip2).

tar

For More Information

There are a nearly unlimited number of tools that you might find useful when writing shell scripts. These are
just a few of the more common ones. You can find out about the command-line tools that ship as part of
Mac OS X by looking in the man pages, either online (Mac OS X Man Pages) or by using the man command
on the command line.

For help finding a command to perform a particular task, you can either search the online version of the man
pages or use the apropos command on the command line.

Happy scripting!

For More Information 149
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

150 For More Information
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Other Tools and Information

The Monte Carlo method for calculating Pi is a common example program used in computer science curricula.
Most CS professors do not force their students to write it using a shell script, however, and doing so poses
a number of challenges.

The Monte Carlo method is fairly straightforward. You take a unit circle and place it inside a 2x2 square and
randomly throw darts at it. For any dart that hits within the circle, you add one to the "inside" counter and
the "total" counter. For any dart that hits outside the circle, you just add one to the "total" counter. When
you divide the number of hits inside the circle by the number of total throws, you get a number that (given
an infinite number of sufficiently random throws) will converge towards /4(one fourth of pi).

A common simplification of the Monte Carlo method (which is used in this example) is to reduce the square
to a single unit in size, and to reduce the unit circle to only a quarter circle. Thus, the circle meets two corners
of the square and has its center at the third corner..

The computer version of this problem, instead of throwing darts, uses a random number generator to generate
a random point within a certain set of bounds. In this case, the code uses integers from 0-65,535 for both
the x and y coordinates of the point. It then calculates the distance from the point (0,0) to (x,y) using the
pythagorean theorem (the hypotenuse of a right triangle with edges of lengths x and y). If this distance is
greater than the unit circle (65,535, in this case), the point falls outside the "circle". Otherwise, it falls inside
the "circle".

Obtaining Random Numbers

To obtain random numbers, this code example uses the dd command to read one byte at a time from
/dev/random. Then, it must calculate the numeric equivalent of these numbers. That process is described
in “Finding The Ordinal Rank of a Character” (page 152).

The following example shows how to read a byte using dd:

Read four random bytes.
RAWVAL1="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
RAWVAL2="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
RAWVAL3="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
RAWVAL4="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"

Calculate the ordinality of the bytes.
XVAL0=$(ord "$RAWVAL1") # more on this function later
XVAL1=$(ord "$RAWVAL2") # more on this function later
YVAL0=$(ord "$RAWVAL3") # more on this function later
YVAL1=$(ord "$RAWVAL4") # more on this function later

We basically want to get an unsigned 16-bit number out of
two raw bytes. Earlier, we got the ord() of each byte.
Now, we figure out what that unsigned value would be by
multiplying the high order byte by 256 and adding the

Obtaining Random Numbers 151
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo
(Bourne) Method for Pi

low order byte. We don't really care which byte is which,
since they're just random numbers.
XVAL=$((($XVAL0 * 256) + $XVAL1)) # use expr for older shells.
YVAL=$((($YVAL0 * 256) + $YVAL1)) # use expr for older shells.

Finding The Ordinal Rank of a Character

There are many ways to calculate the ordinal rank of a character. This example presents three of those: inline
Perl, inline AWK, and a more purist (read "slow") version using only sed and tr.

Finding Ordinal Rank Using Perl

The easiest way to find the ordinal rank of a character in a shell script is by using inline Perl code. In the
following example, the raw character is echoed to the perl interpreter's standard input. (See the perl
manual page for more information about Perl.)

The short Perl script sets the record separator to undefined, then reads data until EOF, finally printing the
ordinal value of the character that it retrieves using the ord function..

YVAL1=$(echo $RAWVAL4 | perl -e '$/ = undef; my $val = <STDIN>; print ord($val);')

Finding Ordinal Rank Using AWK

The second method for obtaining the ordinal rank of a character is slightly more complicated, but still relatively
fast. Performance is only slightly slower than the Perl example.

 YVAL0=$(echo $RAWVAL3 | awk '{
 RS="\n"; ch=$0;
 # print "CH IS ";
 # print ch;
 if (!length(ch)) { # must be the record separator.
 ch="\n"
 };
 s="";
 for (i=1; i<256; i++) {
 l=sprintf("%c", i);
 ns = (s l); s = ns;
 };
 pos = index(s, ch); printf("%d", pos)
 }')

In this example, the raw character is echoed to an AWK script. (See the awk manual page and “How
AWK-ward” (page 77) for more information about AWK.) That script iterates through the numbers 1-255,
concatenating the character (l) whose ASCII value is that number (i) onto a string (ns). It then asks for the
location of that character in the string. If no value is found, index will return zero (0), which is convenient, as
NULL (character 0) is excluded from the string.

The surprising thing is that this code, while seemingly far more complicated than the Perl equivalent, performs
almost as well (less than half a second slower per 100 iterations).

152 Finding The Ordinal Rank of a Character
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

Finding Ordinal Rank Using tr And sed

This example was written less out of a desire to actually use such a method and more out of a desire to prove
that such code is possible. It is, by far, the most roundabout way to calculate the ordinal rank of a character
that you are likely to ever encounter. It behaves much like the awk program described in “Finding Ordinal
Rank Using AWK” (page 152), but without using any other programming languages other than Bourne shell
scripts.

The first part of this example is a small code snippet to convert an integer into its octal equivalent. This will
be important later.

Listing B-1 An Integer to Octal Conversion Function

Convert an int to an octal value.
inttooct()
{
 echo $(echo "obase=8; $1" | bc)
}

This code is relatively straightforward. It tells the basic calculator, bc, to print the specified number, converting
the output to base 8 (octal).

The next part of this example is the code to initialize a string containing a list of all of the possible ASCII
characters except NULL (character 0) in order. This function is called only once at program initialization; the
shell version of this code is very slow as it is, and calling this function each time you try to find the ordinal
rank of a character would make this code completely unusable.

Initializer for the scary shell ord function.
ord_init()
{
 I=1
 ORDSTRING=""
 while [$I -lt 256] ; do
 # local HEX=$(inttohex $I);
 local OCT=$(inttooct $I);
 # The following should work with GNU sed, but
 # Mac OS X's sed doesn't support \x.
 # local CH=$(echo ' ' | sed "s/ /\\x$HEX/")
 # How about this?
 # local CH=$(perl -e "\$/=undef; \$x = ' '; \$x =~ s/ /\x$HEX/g; print \$x;")
 # Yes, that works, but it's cheating. Here's a better one.
 local CH=$(echo ' ' | tr ' ' "\\$OCT");
 ORDSTRING=$ORDSTRING$CH
 I=$(($I + 1)) # or I=$(expr $I '+' 1)
 # echo "ORDSTRING: $ORDSTRING"
 done
}

This version shows three possible ways to generate a raw character from the numeric equivalent. The first
way works in Perl and works with GNU sed, but does not work with the sed implementation in Mac OS X.
The second way uses the perl interpreter. While this way works, the intent was to avoid using other scripting
languages if possible.

The third way is an interesting trick. A string containing a single space is passed to tr. The tr command, in
its normal use, substitutes all instances of a particular character with another one. It also recognizes character
codes in the form of a backslash followed by three octal digits. Thus, in this case, its arguments tell it to

Finding The Ordinal Rank of a Character 153
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

replace every instance of a space in the input (which consists of a single space) with the character equivalent
of the octal number $OCT. This octal number, in turn, was calculated from the loop index (I) using the octal
conversion function shown in Listing B-1 (page 153).

When this function returns, the global variable $ORDSTRING contains every ASCII character beginning with
character 1 and ending with character 255.

The final piece of this code is a subroutine to locate a character within a string and to return its index. Again,
this can be done easily with inline Perl code, but the goal of this code is to do it without using any other
programming language.

Warning: Beginning in Mac OS X v10.5, the sed command requires that its input strings contain only
valid character sequences in the character set specified by your locale settings. The default character
set is UTF-8.

The raw streams of bytes used in this function are not guaranteed to be a valid UTF-8 text sequence.
As a result, with the default locale settings, this function produces errors whenever it encounters most
characters with values greater than 127 (high ASCII characters).

To disable these sed constraints, your script must override the standard locale. To do this, add the
following line near the top of the script:

export LANG="C"

This sets the locale to “C”, a locale in which no multibyte character sequences exist and each character
is treated as a raw byte for comparison purposes (sorting is in raw numeric order, and so on).

See the locale manual page for more information about locales.

ord()
{
 local CH="$1"
 local STRING=""
 local OCCOPY=$ORDSTRING
 local COUNT=0;

 # Some shells can't handle NULL characters,
 # so this code gets an empty argument.
 if ["x$CH" = "x"] ; then
 echo 0
 return
 fi

 # Delete the first character from a copy of ORDSTRING if that
 # character doesn't match the one we're looking for. Loop
 # until we don't have any more leading characters to delete.
 # The count will be the ASCII character code for the letter.
 CONT=1;
 while [$CONT = 1]; do
 # Copy the string so we know if we've stopped finding
 # nonmatching characters.
 OCTEMP="$OCCOPY"

 # echo "CH WAS $CH"
 # echo "ORDSTRING: $ORDSTRING"

 # Delete a character if possible.
 OCCOPY=$(echo "$OCCOPY" | sed "s/^[^$CH]//");

154 Finding The Ordinal Rank of a Character
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

 # On error, we're done.
 if [$? != 0] ; then CONT=0 ; fi

 # If the string didn't change, we're done.
 if ["x$OCTEMP" = "x$OCCOPY"] ; then CONT=0 ; fi

 # Increment the counter so we know where we are.
 COUNT=$((COUNT + 1)) # or COUNT=$(expr $COUNT '+' 1)
 # echo "COUNT: $COUNT"
 done

 COUNT=$(($COUNT + 1)) # or COUNT=$(expr $COUNT '+' 1)
 # If we ran out of characters, it's a null (character 0).
 if ["x$OCTEMP" = "x"] ; then COUNT=0; fi

 # echo "ORD IS $COUNT";

 # Return the ord of the character in question....
 echo $COUNT
 # exit 0
}

Basically, this code repeatedly deletes the first character from a copy of the string generated by the ord_init
function unless that character matches the pattern. As soon as it fails to delete a character, the number of
characters deleted (before finding the matching character) is equal to one less than the ASCII value of the
input character. If the code runs out of characters, the input character must have been the one character
omitted from the ASCII lookup string: NULL (character 0).

Complete Code Sample

Note: This complete code listing is also available in the companion files zip archive, which may be found in
the table of contents when viewing this chapter in HTML form on the ADC Reference Library website.

#!/bin/sh

ITERATIONS=1000
SCALE=6

Prevent sed from caring about high ASCII characters not
being valid UTF-8 sequences
export LANG="C"

Set FAST to "slow", "medium", or "fast". This controls
which ord() function to use.
#
slow-use a combination of Perl, AWK, and shell methods
medium-use only Perl and AWK methods.
fast-use only Perl

FAST="slow"
FAST="medium"
FAST="fast"

Complete Code Sample 155
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

100 iterations - FAST
real 0m9.850s
user 0m2.162s
sys 0m8.388s

100 iterations - MEDIUM
real 0m10.362s
user 0m2.375s
sys 0m8.726s

100 iterations - SLOW
real 2m25.556s
user 0m32.545s
sys 2m12.802s

Calculate the distance from point 0,0 to point X,Y.
In other words, calculate the hypotenuse of a right
triangle whose legs are of length X and Y.
distance()
{
 local X=$1
 local Y=$2

 DISTANCE=$(echo "sqrt(($X ^ 2) + ($Y ^ 2))" | bc)

 echo $DISTANCE
}

Convert an int to a hex value. (Not used.)
inttohex()
{
 echo $(echo "obase=16; $1" | bc)
}

Convert an int to an octal value.
inttooct()
{
 echo $(echo "obase=8; $1" | bc)
}

Initializer for the scary shell ord function.
ord_init()
{
 I=1
 ORDSTRING=""
 while [$I -lt 256] ; do
 # local HEX=$(inttohex $I);
 local OCT=$(inttooct $I);
 # The following should work with GNU sed, but
 # Mac OS X's sed doesn't support \x.
 # local CH=$(echo ' ' | sed "s/ /\\x$HEX/")
 # How about this?
 # local CH=$(perl -e "\$/=undef; \$x = ' '; \$x =~ s/ /\x$HEX/g; print \$x;")
 # Yes, that works, but it's cheating. Here's a better one.
 local CH=$(echo ' ' | tr ' ' "\\$OCT");
 ORDSTRING=$ORDSTRING$CH
 I=$(($I + 1)) # or I=$(expr $I '+' 1)

156 Complete Code Sample
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

 # echo "ORDSTRING: $ORDSTRING"
 done
}

This is a scary little lovely piece of shell script.
It finds the ord of a character using only the shell,
tr, and sed. The variable ORDSTRING must be initialized
prior to first use with a call to ord_init. This string
is not modified.
ord()
{
 local CH="$1"
 local STRING=""
 local OCCOPY=$ORDSTRING
 local COUNT=0;

 # Some shells can't handle NULL characters,
 # so this code gets an empty argument.
 if ["x$CH" = "x"] ; then
 echo 0
 return
 fi

 # Delete the first character from a copy of ORDSTRING if that
 # character doesn't match the one we're looking for. Loop
 # until we don't have any more leading characters to delete.
 # The count will be the ASCII character code for the letter.
 CONT=1;
 while [$CONT = 1]; do
 # Copy the string so we know if we've stopped finding
 # nonmatching characters.
 OCTEMP="$OCCOPY"

 # echo "CH WAS $CH"
 # echo "ORDSTRING: $ORDSTRING"

 # Delete a character if possible.
 OCCOPY=$(echo "$OCCOPY" | sed "s/^[^$CH]//");

 # On error, we're done.
 if [$? != 0] ; then CONT=0 ; fi

 # If the string didn't change, we're done.
 if ["x$OCTEMP" = "x$OCCOPY"] ; then CONT=0 ; fi

 # Increment the counter so we know where we are.
 COUNT=$((COUNT + 1)) # or COUNT=$(expr $COUNT '+' 1)
 # echo "COUNT: $COUNT"
 done

 COUNT=$(($COUNT + 1)) # or COUNT=$(expr $COUNT '+' 1)
 # If we ran out of characters, it's a null (character 0).
 if ["x$OCTEMP" = "x"] ; then COUNT=0; fi

 # echo "ORD IS $COUNT";

 # Return the ord of the character in question....

Complete Code Sample 157
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

 echo $COUNT
 # exit 0
}

If we're using the shell ord function, we need to
initialize it on launch. We also do a quick sanity
check just to make sure it is working.
if ["x$FAST" = "xslow"] ; then
 echo "Initializing Bourne ord function."
 ord_init

 # Test our ord function
 echo "Testing ord function"
 ORDOFA=$(ord "a")
 # That better be 97.
 if ["$ORDOFA" != "97"] ; then
 echo "Shell ord function broken. Try fast mode."
 fi

 echo "ord_init done"
fi

COUNT=0
IN=0

For the Monte Carlo method, we check to see if a random point between
0,0 and 1,1 lies within a unit circle distance from 0,0. This allows
us to approximate pi.
while [$COUNT -lt $ITERATIONS] ; do
 # Read four random bytes.
 RAWVAL1="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
 RAWVAL2="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
 RAWVAL3="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"
 RAWVAL4="$(dd if=/dev/random bs=1 count=1 2> /dev/null)"

 # ord "$RAWVAL4";
 # exit 0;

 # The easy method for doing an ord() of a character: use Perl.
 XVAL0=$(echo $RAWVAL1 | perl -e '$/ = undef; my $val = <STDIN>; print ord($val);')
 XVAL1=$(echo $RAWVAL2 | perl -e '$/ = undef; my $val = <STDIN>; print ord($val);')

 # The not-so-easy way using AWK (but still almost as fast as Perl)
 if ["x$FAST" != "xfast"] ; then
 # Run this for FAST = medium or slow.
 echo "AWK ord"
 # Fun little AWK program for calculating ord of a letter.
 YVAL0=$(echo $RAWVAL3 | awk '{
 RS="\n"; ch=$0;
 # print "CH IS ";
 # print ch;
 if (!length(ch)) { # must be the record separator.
 ch="\n"
 };
 s="";
 for (i=1; i<256; i++) {
 l=sprintf("%c", i);
 ns = (s l); s = ns;

158 Complete Code Sample
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

 };
 pos = index(s, ch); printf("%d", pos)
 }')
 # Fun little shell script for calculating ord of a letter.
 else
 YVAL0=$(echo $RAWVAL3 | perl -e '$/ = undef; my $val = <STDIN>; print ord($val);')
 fi

 # The evil way---slightly faster than looking it up by hand....
 if ["x$FAST" = "xslow"] ; then
 # Run this ONLY for FAST = slow. This is REALLY slow!
 YVAL1=$(ord "$RAWVAL4")
 else
 YVAL1=$(echo $RAWVAL4 | perl -e '$/ = undef; my $val = <STDIN>; print ord($val);')
 fi

 # echo "YV3: $VAL3"
 # YVAL1="0"

 # We basically want to get an unsigned 16-bit number out of
 # two raw bytes. Earlier, we got the ord() of each byte.
 # Now, we figure out what that unsigned value would be by
 # multiplying the high order byte by 256 and adding the
 # low order byte. We don't really care which byte is which,
 # since they're just random numbers.
 XVAL=$((($XVAL0 * 256) + $XVAL1)) # use expr for older shells.
 YVAL=$((($YVAL0 * 256) + $YVAL1)) # use expr for older shells.

 # This doesn't work well, since we can't seed AWK's PRNG
 # in any useful way.
 # YVAL=$(awk '{printf("%d", rand() * 65535)}')

 # Calculate the difference.
 DISTANCE=$(distance $XVAL $YVAL)
 echo "X: $XVAL, Y: $YVAL, DISTANCE: $DISTANCE"

 if [$DISTANCE -le 65535] ; then # use expr for older shells
 echo "In circle.";
 IN=$(($IN + 1))
 else
 echo "Outside circle.";
 fi

 COUNT=$(($COUNT + 1)) # use expr for older shells.
done

Calculate PI.
PI=$(echo "scale=$SCALE; ($IN / $ITERATIONS) * 4" | bc)

Print the results.
echo "IN: $IN, ITERATIONS: $ITERATIONS"
echo "PI is about $PI"

Complete Code Sample 159
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

160 Complete Code Sample
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

An Extreme Example: The Monte Carlo (Bourne) Method for Pi

This table describes the changes to Shell Scripting Primer.

NotesDate

Added a forward link in the awk section. Added a few minor cross-platform
porting notes. Added a CSH compatibility note about numeric comparisons.

2009-04-08

Added AppleScript/osascript section. Added portability notes for head and tail
commands.

2009-03-04

Added index.2009-01-06

Clarified text about C shell limitations, quoting arguments. Added additional
cross-platform compatibility information.

2008-11-19

Fixed a bug in an awk code sample.2008-04-08

Added several useful commands to the "Other Tools" chapter.2008-02-08

Updated for Mac OS X v10.5. Added some basic information about csh and
additional awk samples.

2007-12-11

Fixed a typo in an awk code example.2007-10-02

Added chapter on performance optimization and advanced scripting techniques.
Made other minor enhancements.

2007-04-03

Clarified behavior of variable exports. Added explanation of eval command.2006-12-05

Added chapters on cross-platform scripting and awk.2006-11-07

Added a section on job control in bash and zsh.2006-10-03

Fixed a number of typographical errors.2006-06-28

First version.2006-05-23

161
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

162
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

! operator 46
$ operator 40

in regular expressions 65
$! variable 52, 54, 116
$# variable 117
$$ variable 116
$((...)) operator 58
$() operator 43
$* variable 117
$- variable 117
$? variable 46, 116
$@ variable 116, 117
' and " operators 40, 41
(and) operators 40, 41

in regular expressions 68, 71–72, 76
* operator 40

in regular expressions 66
*? operator (in Perl regular expressions) 75
+ operator (in regular expressions) 66
+? operator (in Perl regular expressions) 75
. builtin 50
. operator (in regular expressions) 66
$0 variable 129
> operator 26
>& operator 27
>> operator 26
? operator 40, 41

in regular expressions 66
& operator 52

and expr 37
&& operator 46
<< operator 24
[and] operators 40, 41

in regular expressions 68
[command 30
\ operator 40, 41
^ operator

as positional anchor in regular expressions 65
in regular expression character classes 68

$_ variable 116, 117
` operator 40, 41, 43
{ and } operators 40, 41, 48, 49
| operator

and case 35
and expr 37
and regular expressions 69
in regular expressions 69

|& operator (C shell) 28
|| operator 46

A

absolute path, obtaining from relative path 129
alias builtin 15
anonymous subroutines 48
ANSI escape sequences 120–129

and echo (terminfo) 122
and printf (terminfo) 121, 122
and tput (terminfo) 121
clearing parts of the screen 128
color manipulation 126–127
cursor and scrolling manipulation 122–124
reset terminal 127
tab stop manipulation 128, 129
text attribute manipulation 124–126

append operator 26
AppleScript (using osascript) 129–134
apropos command 149
arrays

in AWK 85–90
simulating with eval 108

asterisk operator 40
AWK 77–91

arrays 85–90
basic syntax 77
BEGIN and END patterns 81
case-insensitive matching 81
common mistakes 85, 86, 90
conditional filter rules 78–82
conditional pattern matching 81–82

163
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

Index

control statements 83–85
expression ranges 80
field separators 82–83
file input and output 90–91
functions 85
input and output 78
ordinal ranking 152
record separators 82–83
regular expressions 79
relational expressions 80–81
running a script 78
skipping records and files 84–85
special variables 78
splitting strings into arrays 87

awk command 96, 146, 152

B

background execution 52
backtick operator 43
bash command 14
BASH

exporting behavior of 19
extended for loop syntax 34
math support extension 58
substring expansion extension 120
window size variable behavior 123

basic script 16
bc command 61–62, 145, 153
bg command 51
braces 41, 48, 49
brackets 30, 41

in regular expressions 68
break statement 32, 33, 34
builtins
alias 15
echo 16
export 19
jobs 52
setenv 21
source 50–51
trap 114
wait 52

bunzip2 command 148
bzip2 command 148

C

C shell limitations
comparison operators 59

control statements 32, 34
inline execution 44
input and output 24, 40
job and process management 54
order of operations 47
subroutines 48, 49

case statement 34
cat command 24
cd command 146
chaining execution 46–47
character classes

regular expression syntax 67
shell globbing syntax 41

chflags command 147
chgrp command 147
chmod command 147
chown command 96, 147
?: operator

in Perl regular expressions 76
color escape sequences (ANSI) 126–127
command-line tools, compatibility 95–106
commands, shell scripting. See individual commands.
common mistakes

in AWK 85, 86, 90
in file redirection 28
in math operations 59–60
in process management 116
in regular expressions 63, 69, 72, 75
in subroutines 48
regular expressions 64

compatibility
AWK length function 89
BASH extensions 93, 120
bc command 61
command-line tools 95–106
device I/O 94
disk management and partitioning 94
field separator behavior 40
file system hierarchy 94
legacy mode and compat manual page 106
locales 154
managing users and groups 93
math syntax 58
special variables 117
ZSH extensions 93
ZSH variable expansion 17
_POSIX2_VERSION and compat manual page 103

compress command 148
concurrent execution 54
continue statement 32, 33, 34
control statements 29–38
counting lines in a file 55
cp command 96

164
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

csh command. See also C shell; specific statements.
cursor escape sequences (ANSI) 122–124
cut command 24, 40

D

date command 97
dd command 151
delay loops 112
/dev/random device 151
dialects, of shell scripts 13, 93
diskutil command 147
do statement 32
dollar sign operator 40
done statement 32
double-quotation mark 40, 41

E

echo builtin 16, 98
elif statement 29
else statement 29
env command 22
environment variable. See also variables.
esac statement 34
escape sequences. See also ANSI escape sequences.
eval builtin 107–110
exit status

of scripts 45
of subroutines 48

expansion of variables 38–42
expect command 145
export builtin 19
expr command

and math 57–58
and regular expressions 37
and strings 36
defined 145

F

false command 145
fg command 51
fi statement 29
field separators 23, 39–40
file command 98
file descriptor redirection 27
files, reading and writing 26
find command 147

floating-point computation 60–62, 145
for loops

with lists 33
with numerical comparison 34

for statement 32
in AWK 84

foreach statement (C shell) 34
fsck command and variants 147
functions. See subroutines.
funzip command 149

G

GetFileInfo command 147
getting started 16
globbing 40–42
grep command 44, 65, 99, 146
gunzip command 148
gzcat command 148
gzip command 148

H

hdiutil command 148
head command 99–100, 146
$HOME variable 117

I

I/O
in AWK 90–91
nonblocking 110
using read 23
using redirection 26
with devices 94

if statement 29
C shell globbing extensions 42
in AWK 83

$IFS variable 117
and C shell 24
and read 23

ignoring signals 115
image manipulation with AppleScript 132–134
inline execution 43

parsing order of 44

165
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

J

job control 51
job numbers 53
jobs builtin 52
jobs, concurrent execution of 54
join command 100

K

kill command 116

L

linked list, simulating with eval 109
ln command 147
local statement 49
local variable 49
locale command 154
locales 154
login command 106
ls command 147

M

man command 149
math

common mistakes 59–60
floating-point 60–62, 145
using bc 61–62
using Perl 61
with $((...)) 58
with expr 57–58

merging redirect operator 27
mkdir command 147
mkfifo command 101, 147
mount command and variants 148
mv command 101, 147

N

nonblocking I/O 110

O

operator precedence rules 46
operators
See individual symbols.

ordinal rank of characters 152–155
osascript tool 129–134

P

parentheses 41
PATH environment variable 19
$PATH variable 116
path, of current shell script 129
performance

choosing control statements 141
deferring console output 140
deferring work 140
reducing comparisons 140
reducing computations 141
reducing external commands 135
reducing use of eval 138
using builtins instead of commands 142

perl command 146, 152
Perl

floating-point math 61
ordinal ranking 152
regular expression extensions 73–76
word boundaries 75

pipes
in Bourne shell 27
in C shell 28

$PPID variable 116
pr command 101
printenv command 20, 21
printf command

for printing prompts 23
in AWK 78
tabular layouts with 118–119

ps command 101
$PWD variable 117
Python regular expression extensions 73–76

Q

quotation mark 40, 41
in Bourne shell 42
in C shell 43

quoting special characters
in Bourne shell 42

166
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

in C shell 43
in regular expressions 70

R

random numbers, obtaining 151
read command 23
redirect operator 26
redirection

in AWK 90–91
pipes and 26–29

regular expressions
additional reading 76
capture operators 71–72
character classes 67
common mistakes 63, 64, 69, 72, 75
custom character classes 68
grouping 68

without capturing 76
matching any character 66
matching beginning and end of lines 65
mixing capturing and grouping operators 72
modifiers 72–73
noncapturing parentheses 76
nongreedy matching 75
overall syntax 64
Perl and Python extensions 73–76
Perl character class shortcuts 74–75
positional anchors 65
predefined character classes 67
quoting special characters 70
repetition operators 66

nongreedy 75
using an empty subexpression 69
using parentheses and pipe for multiple options 69
variable substitution 71

result code
of scripts 45
of subroutines 48

return statement 48
return value

of scripts 45
of subroutines 48

rm command 147
rmdir command 147

S

scoping rules 49

scrolling manipulation with ANSI escape sequences 122–
124

security
and $UID variable 117
and $USER variable 117
and environment variables 22

sed command 102, 146, 154
self-execution of shell scripts 129
setenv builtin 21
SetFile command 147
shar command 25
shell script dialects 13, 93
signals

trapping 114–116
single-quotation mark 40, 41
sleep command 145
sort command 102, 146
source builtin 50–51
special characters

behavior of 40–44
entering 15
quoting 42–43

standard error 26
standard input 26
standard output 26
stat command 147
statements. See individual statement.
stderr (standard error) 26
stdin (standard input) 26
stdout (standard output) 26
stty command 103
subroutines

anonymous 48
common mistakes 48
named 47

substrings 119–120
switch statement (C shell) 36

T

tail command 104–105, 146
tar command 149
tee command 146
test command 30
then statement 29
tput command 121
tr command 146, 153
trap builtin 114
trapping signals 114–116
true command 145

167
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

U

$UID variable 117
umount command 148
uncompress command 148
uniq command 146
unzip command 149
$USER variable 117
uuencode and uudecode commands 105

V

variables
and source builtin 51
arguments and 129
environment 18
exit status 46
expansion 38–42
exporting 18–22
local to subroutine 49
overriding 20–22
printing 16–18
scope of 49
special 116–117

W

wait builtin 52
while statement 32

in AWK 83–84
wildcards

in filename globbing 40
in regular expressions 66–67

window
detecting size changes 115
determining current size 123

X

xargs command 106

Z

zcat command 148
zip command 149
ZSH

math support extension 58

extended for loop syntax 34

168
2009-04-08 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

	Shell Scripting Primer
	Contents
	Tables and Listings
	Introduction
	Shell Script Basics
	Shell Script Dialects
	She Sells C Shells
	Tips for Shell Users
	The alias Builtin
	Entering Special Characters

	Shell Variables and Printing
	Exporting Shell Variables
	Using the export Builtin (Bourne Shell)
	Overriding Environment Variables for Child Processes (Bourne Shell)
	Using the setenv Builtin (C shell)
	Overriding Environment Variables for Child Processes (C Shell)

	Shell Script Input and Output Using printf and read
	Bulk I/O Using the cat Command
	Pipes and Redirection
	Basic File Redirection
	Pipes and File Descriptor Redirection (Bourne Shell)
	Pipes and File Descriptor Redirection (C Shell)

	Basic Control Statements
	The if Statement
	The test Command and Bracket Notation
	The while Statement
	The for Statement
	Standard for Loops
	Extended for Loops

	The case statement
	The expr Command

	Variables, Expansion, and Quoting
	Variable Expansion and Field Separators
	Special Characters Explained
	Quoting Special Characters
	Inline Execution

	Result Codes, Subroutines, Scoping, and Sourcing
	Working with Result Codes
	Chaining Execution
	Subroutine Basics
	Anonymous Subroutines
	Variable Scoping
	Including One Shell Script Inside Another (Sourcing)
	Background Jobs and Job Control

	Paint by Numbers
	The expr Command Also Does Math
	The Easy Way: Parentheses
	Common Mistakes
	Beyond Basic Math
	Floating Point Math Using Inline Perl
	Floating Point Math Using the bc Command

	Regular Expressions Unfettered
	Types of Regular Expressions
	Regular Expression Syntax
	Positional Anchors and Flags
	Wildcards and Repetition Operators
	Character Classes and Groups
	Predefined Character Classes
	Custom Character Classes
	Grouping Operators
	Using Empty Subexpressions

	Quoting Special Characters
	Capturing Operators and Variables
	Mixing Capturing and Grouping Operators
	Using Modifiers
	Perl and Python Extensions
	Character Class Shortcuts
	Nongreedy Wildcard Matching
	Noncapturing Parentheses
	For More Information

	How AWK-ward
	What Is AWK?
	A Simple AWK Script
	Conditional Filter Rules in AWK
	Regular Expressions in AWK
	Expression Ranges in awk
	Relational Expressions in AWK
	Special Patterns in AWK:BEGIN and END
	Conditional Pattern Matching with Variables

	Changing the Record and Field Separators in AWK Scripts
	Control Statements in AWK
	The if Statement
	The while Statement
	The for Statement
	Skipping Records and Files

	Functions in AWK
	Working with Arrays in AWK
	Array Basics
	Creating Arrays with split
	Copying and Joining an Array
	Deleting Array Elements

	File Input and Output

	Designing Scripts for Cross-Platform Deployment
	Bourne Shell Version
	Managing Users and Groups
	Working with Device I/O
	Disk Management and Partitioning
	File System Hierarchy
	General Command-Line Tool Differences
	awk
	chown
	cp
	crontab
	date
	df
	du
	echo
	file
	grep
	head
	join
	less
	ls
	mkfifo
	more or less
	mv
	pr
	ps
	sed
	sort
	stty
	tail
	uudecode, uuencode
	which
	who
	xargs

	Advanced Techniques
	Data Structures, Arrays, and Indirection
	A Complex Example: Setting and Printing Values of Arbitrary Variables
	A Practical Example: Using eval to Simulate an Array
	A Data Structure Example: Linked Lists

	Nonblocking I/O
	Timing Loops
	Trapping Signals
	Special Shell Variables
	Shell Text Formatting
	Using the printf Command for Tabular Layout
	Truncating Strings
	Using ANSI Escape Sequences
	Generating Escape Sequences using the terminfo Database
	Generating Escape Sequences Directly

	ANSI Escape Sequence Tables
	Cursor and Scrolling Manipulation Escape Sequences
	Attribute and Color Escape Sequences
	Other Escape Sequences
	For More Information

	Finding the Absolute Path of the Current Script
	Application Scripting With osascript

	Performance Tuning
	Avoiding Unnecessary External Commands
	Finding the Ordinal Rank of a Character (More Quickly)
	Reducing Use of the eval Builtin

	Other Performance Tips
	Background or Defer Output
	Defer Potentially Unnecessary Work
	Perform Comparisons Only Once
	Choose Control Statements Carefully
	Perform Computations Only Once
	Use Shell Builtins Wherever Possible
	For Maximum Performance, Use Shell Math, Not External Tools
	Combine Multiple Expressions with sed

	Appendix A: Other Tools and Information
	General Tools
	Text Processing Tools
	File Commands
	Disk Commands
	Archiving and Compression Commands
	For More Information

	Appendix B: An Extreme Example: The Monte Carlo (Bourne) Method for Pi
	Obtaining Random Numbers
	Finding The Ordinal Rank of a Character
	Finding Ordinal Rank Using Perl
	Finding Ordinal Rank Using AWK
	Finding Ordinal Rank Using tr And sed

	Complete Code Sample

	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

