
Code Size Performance Guidelines
Performance > Tools

2006-06-28

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Pages, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Code Size Performance Guidelines 7

Organization of This Document 7

Overview of the Mach-O Executable Format 9

The __TEXT Segment: Read Only 9
The __DATA Segment: Read/Write 10
Mach-O Performance Implications 10

Managing Code Size 13

Compiler-Level Optimizations 13
Additional Optimizations 14

Dead Strip Your Code 14
Strip Symbol Information 15
Eliminate C++ Exception Handling Overhead 15
Avoid Excessive Function Inlining 16
Build Fixed-Position Application Code 17
Build Frameworks as a Single Module 17

Improving Locality of Reference 19

Profiling Code With gprof 19
Generating Profiling Data 19
Generating Order Files 20
Fixing Up Your Order Files 21
Linking with an Order File 21
Limitations of gprof Order Files 22

Profiling With the Monitor Functions 22
Organizing Code at Compile Time 23
Reordering the __text Section 23

Reordering Procedures 24
Procedure Reordering for Large Programs 25

Reordering Other Sections 28
Reordering Literal Sections 28
Reordering Data Sections 29

Reordering Assembly Language Code 30

Reducing Shared Memory Pages 31

Declaring Data as const 31

3
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Initializing Static Data 33
Avoiding Tentative-Definition Symbols 33
Analyzing Mach-O Executables 34

Minimizing Your Exported Symbols 35

Identifying Exported Symbols 35
Limiting Your Exported Symbols 36
Limiting Exports Using GCC 4.0 36

Document Revision History 37

Index 39

4
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Tables and Listings

Overview of the Mach-O Executable Format 9

Table 1 Major sections in the __TEXT segment 9
Table 2 Major sections of the __DATA segment 10

Managing Code Size 13

Table 1 GCC compiler optimization options 13

Improving Locality of Reference 19

Listing 1 Using monitor functions 23
Listing 2 Code for Unique.c 26

5
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

In the context of performance, there is a distinct correlation between memory usage and efficiency. The
more memory your application occupies, the more inefficient it is going to be. More memory means more
memory allocations, more code, and a greater potential for paging.

The focus of this programming topic is on the reduction of your executable code. Reducing your code footprint
is not just a matter of turning on code optimizations in your compiler, although that does help. You can also
reduce your code footprint by organizing your code so that only the minimum set of required functions is
in memory at any given time. You implement this optimization by profiling your code.

Reducing the amount of memory allocated by your application is also important in reducing your memory
footprint; however, that information is covered in Memory Usage Performance Guidelines in Performance
Documentation.

Organization of This Document

This programming topic contains the following articles:

 ■ “Overview of the Mach-O Executable Format” (page 9) describes how to use the organization of the
Mach-O executable format to improve the efficiency of your code.

 ■ “Managing Code Size” (page 13) describes several compiler options that you can use to reduce the
overall size of your executables.

 ■ “Improving Locality of Reference” (page 19) describes how to profile and reorganize your code to improve
loading times for code segments.

 ■ “Reducing Shared Memory Pages” (page 31) describes ways to reduce the size of your __DATA segments.

 ■ “Minimizing Your Exported Symbols” (page 35) shows how you identify and eliminate unnecessary
symbol information in your code.

Organization of This Document 7
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Code Size Performance
Guidelines

8 Organization of This Document
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Code Size Performance Guidelines

Mach-O is the native executable format of binaries in Mac OS X and is the preferred format for shipping code.
An executable format determines the order in which the code and data in a binary file are read into memory.
The ordering of code and data has implications for memory usage and paging activity and thus directly
affects the performance of your program.

A Mach-O binary is organized into segments. Each segment contains one or more sections. Code or data of
different types goes into each section. Segments always start on a page boundary, but sections are not
necessarily page-aligned. The size of a segment is measured by the number of bytes in all the sections it
contains and rounded up to the next virtual memory page boundary. Thus, a segment is always a multiple
of 4096 bytes, or 4 kilobytes, with 4096 bytes being the minimum size.

The segments and sections of a Mach-O executable are named according to their intended use. The convention
for segment names is to use all-uppercase letters preceded by double underscores (for example, __TEXT);
the convention for section names is to use all-lowercase letters preceded by double underscores (for example,
__text).

There are several possible segments within a Mach-O executable, but only two of them are of interest in
relation to performance: the __TEXT segment and the __DATA segment.

The __TEXT Segment: Read Only

The __TEXT segment is a read-only area containing executable code and constant data. By convention, the
compiler tools create every executable file with at least one read-only __TEXT segment. Because the segment
is read-only, the kernel can map the __TEXT segment directly from the executable into memory just once.
When the segment is mapped into memory, it can be shared among all processes interested in its contents.
(This is primarily the case with frameworks and other shared libraries.) The read-only attribute also means
that the pages that make up the __TEXT segment never have to be saved to backing store. If the kernel
needs to free up physical memory, it can discard one or more __TEXT pages and re-read them from disk
when they are needed.

Table 1 (page 9) lists some of the more important sections that can appear in the __TEXT segment. For a
complete list of segments, see Mach-O Runtime Architecture.

Table 1 Major sections in the __TEXT segment

DescriptionSection

The compiled machine code for the executable__text

The general constant data for the executable__const

Literal string constants (quoted strings in source code)__cstring

Position-independent code stub routines used by the dynamic linker (dyld).__picsymbol_stub

The __TEXT Segment: Read Only 9
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of the Mach-O Executable Format

The __DATA Segment: Read/Write

The __DATA segment contains the non-constant data for an executable. This segment is both readable and
writable. Because it is writable, the __DATA segment of a framework or other shared library is logically copied
for each process linking with the library. When memory pages are readable and writable, the kernel marks
them copy-on-write. This technique defers copying the page until one of the processes sharing that page
attempts to write to it. When that happens, the kernel creates a private copy of the page for that process.

The __DATA segment has a number of sections, some of which are used only by the dynamic linker. Table
2 (page 10) lists some of the more important sections that can appear in the __DATA segment. For a complete
list of segments, see Mach-O Runtime Architecture.

Table 2 Major sections of the __DATA segment

DescriptionSection

Initialized global variables (for example int a = 1; or static int a = 1;).__data

Constant data needing relocation (for example, char * const p = "foo";).__const

Uninitialized static variables (for example, static int a;).__bss

Uninitialized external globals (for example, int a; outside function blocks).__common

A placeholder section, used by the dynamic linker.__dyld

“Lazy” symbol pointers. Symbol pointers for each undefined function called by the
executable.

__la_symbol_ptr

“Non lazy” symbol pointers. Symbol pointers for each undefined data symbol
referenced by the executable.

__nl_symbol_ptr

Mach-O Performance Implications

The composition of the __TEXT and __DATA segments of a Mach-O executable file has a direct bearing on
performance. The techniques and goals for optimizing these segments are different. However, they have as
a common goal: greater efficiency in the use of memory.

Most of a typical Mach-O file consists of executable code, which occupies the __TEXT, __text section. As
noted in “The __TEXT Segment: Read Only” (page 9), the __TEXT segment is read-only and is mapped
directly to the executable file. Thus, if the kernel needs to reclaim the physical memory occupied by some
__text pages, it does not have to save the pages to backing store and page them in later. It only needs to
free up the memory and, when the code is later referenced, read it back in from disk. Although this is cheaper
than swapping—because it involves one disk access instead of two—it can still be expensive, especially if
many pages have to be recreated from disk.

One way to improve this situation is through improving your code’s locality of reference through procedure
reordering, as described in “Improving Locality of Reference” (page 19). This technique groups methods and
functions together based on the order in which they are executed, how often they are called, and the frequency
with which they call one another. If pages in the __text section group functions logically in this way, it is

10 The __DATA Segment: Read/Write
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of the Mach-O Executable Format

less likely they have to be freed and read back in multiple times. For example, if you put all of your launch-time
initialization functions on one or two pages, the pages do not have to be recreated after those initializations
have occurred.

Unlike the __TEXT segment, the __DATA segment can be written to and thus the pages in the __DATA
segment are not shareable. The non-constant global variables in frameworks can have an impact on
performance because each process that links with the framework gets its own copy of these variables. The
main solution to this problem is to move as many of the non-constant global variables as possible to the
__TEXT,__const section by declaring them const. “Reducing Shared Memory Pages” (page 31) describes
this and related techniques. This is not usually a problem for applications because the __DATA section in an
application is not shared with other applications.

The compiler stores different types of nonconstant global data in different sections of the __DATA segment.
These types of data are uninitialized static data and symbols consistent with the ANSI C notion of “tentative
definition” that aren’t declared extern. Uninitialized static data is in the __bss section of the __DATA
segment. Tentative-definition symbols are in the __common section of the __DATA segment.

The ANSI C and C++ standards specify that the system must set uninitialized static variables to zero. (Other
types of uninitialized data are left uninitialized.) Because uninitialized static variables and tentative-definition
symbols are stored in separate sections, the system needs to treat them differently. But when variables are
in different sections, they are more likely to end up on different memory pages and thus can be swapped in
and out separately, making your code run slower. The solution to these problems, as described in “Reducing
Shared Memory Pages” (page 31), is to consolidate the non-constant global data in one section of the __DATA
segment.

Mach-O Performance Implications 11
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of the Mach-O Executable Format

12 Mach-O Performance Implications
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of the Mach-O Executable Format

The GCC compiler supports a variety of options for optimizing your code. Most of these techniques result in
the generation of less code or faster code, depending on your needs. As you prepare your software for release,
you should experiment with these techniques to see which ones benefit your code the most.

Compiler-Level Optimizations

As your project code stabilizes, you should begin experimenting with the basic GCC options for optimizing
code. The GCC compiler supports optimization options that let you choose whether you prefer a smaller
binary size, faster code, or faster build times.

For new projects, Xcode automatically disables optimizations for the development build style and selects
the “fastest, smallest” option for the deployment build style. Code optimizations of any kind result in slower
build times because of the extra work involved in the optimization process. If your code is changing, as it
does during the development cycle, you do not want optimizations enabled. As you near the end of your
development cycle, though, the deployment build style can give you an indication of the size of your finished
product.

Table 1 lists the optimization levels available in Xcode. When you select one of these options, Xcode passes
the appropriate flags to the GCC compiler for the given group or files. These options are available at the
target-level or as part of a build style. See the Xcode Help for information on working with build settings for
your project.

Table 1 GCC compiler optimization options

DescriptionXcode Setting

The compiler does not attempt to optimize code. Use this option during development
when you are focused on solving logic errors and need a fast compile time. Do not use
this option for shipping your executable.

None

The compiler performs simple optimizations to boost code performance while minimizing
the impact to compile time. This option also uses more memory during compilation.

Fast

Performs nearly all supported optimizations that do not require a space-time trade-off.
The compiler does not perform loop unrolling or function inlining with this option. This
option increases both compilation time and the performance of generated code.

Faster

Performs all optimizations in an attempt to improve the speed of the generated code.
This option can increase the size of generated code as the compiler performs aggressive
inlining of functions.

This option is generally not recommended. See “Avoid Excessive Function Inlining” (page
16) for more information.

Fastest

Compiler-Level Optimizations 13
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

DescriptionXcode Setting

Performs all optimizations that do not typically increase code size. This is the preferred
option for shipping code as it gives your executable a smaller memory footprint.

Fastest, smallest

As with any performance enhancement, do not make assumptions about which option will give you the best
results. You should always measure the results of each optimization you try. For example, the “Fastest” option
might generate extremely fast code for a particular module, but it usually does so at the expense of executable
size. Any speed advantages you gain from the code generation are easily lost if the code needs to be paged
in from disk at runtime.

Additional Optimizations

Besides code-level optimizations, there are some additional techniques you can use to organize your code
at the module level. The following sections describes these techniques.

Dead Strip Your Code

For statically-linked executables, dead-code stripping is the process of removing unreferenced code from
the executable file. The idea behind dead-stripping is that if the code is unreferenced, it must not be used
and therefore is not needed in the executable file. Removing dead code reduces the size of your executable
and can help reduce paging.

Starting with Xcode Tools version 1.5, the static linker (ld) supports dead stripping of executables. You can
enable this feature directly from Xcode or by passing the appropriate command-line options to the static
linker.

To enable dead-code stripping in Xcode, do the following:

1. Select your target.

2. Open the Inspector or Get Info window and select the Build tab.

3. In the Linking settings, enable the Dead Code Stripping option.

4. In the Code Generation settings, set the Level of Debug Symbols option to All Symbols.

To enable dead-code stripping from the command line, pass the -dead_strip option to ld. You should
also pass the -gfull option to GCC to generate a complete set of debugging symbols for your code. The
linker uses this extra debugging information to dead strip the executable.

14 Additional Optimizations
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

Note: The “All Symbols” or -gfull option is recommended even if you do not plan to dead strip your code.
Although the option generates larger intermediate files, it often results in smaller executables because the
linker is able to remove duplicate symbol information more effectively.

If you do not want to remove any unused functions, you should at least isolate them in a separate section
of your __TEXT segment. Moving unused functions to a common section improves the locality of reference
of your code and reduces the likelihood of their being loaded into memory. For more information on how
to group functions in a common section, see “Improving Locality of Reference” (page 19).

Strip Symbol Information

Debugging symbols and dynamic-binding information can take up a lot of space and comprise a large
percentage of your executable’s size. Before shipping your code, you should strip out all unneeded symbols.

To strip debugging symbols from your executable, change the Xcode build-style settings to “Deployment”
and rebuild your executable. You can also generate debugging symbols on a target-by-target basis if you
prefer. See the Xcode Help for more information on build styles and target settings.

To remove dynamic-binding symbols manually from your executable, use the strip tool. This tool removes
symbol information that would normally be used by the dynamic linker to bind external symbols at runtime.
Removing the symbols for functions that you do not want to be dynamically bound reduces your executable
size and reduces the number of symbols the dynamic linker must bind. Typically, you would use this command
without any options to remove non-external symbols, as shown in the following example:

% cd ~/MyApp/MyApp.app/Contents/MacOS
% strip MyApp

This command is equivalent to running strip with the -u and -r options. It removes any symbols marked
as non-external but does not remove symbols that are marked external.

An alternative to stripping out dynamic-binding symbols manually is to use an exports file to limit the symbols
exported at build time. An exports file identifies the specific symbols available at runtime from your executable.
For more information on creating an exports file, see “Minimizing Your Exported Symbols” (page 35).

Eliminate C++ Exception Handling Overhead

When an exception is thrown, the C++ runtime library must be able to unwind the stack back to the point
of the first matching catch block. For this to work, the GCC compiler generates stack unwinding information
for each function that may throw an exception. This unwinding information is stored in the executable file
and describes the objects on the stack. This information makes it possible to call the destructors of those
objects to clean them up when an exception is thrown.

Even if your code does not throw exceptions, the GCC compiler still generates stack unwinding information
for C++ code by default. If you use exceptions extensively, this extra code can increase the size of your
executable significantly.

Additional Optimizations 15
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

Disabling Exceptions

You can disable exception handling in Xcode altogether by disabling the “Enable C++ Exceptions” build
option for your target. From the command line, pass the -fno-exceptions option to the compiler. This
option removes the stack unwinding information for your functions. However, you must still remove any
try, catch, and throw statements from your code.

Selectively Disabling Exceptions

If your code uses exceptions in some places but not everywhere, you can explicitly identify methods that do
not need unwinding information by adding an empty exception specification to the method declaration.
For example, in the following code, the compiler must generate stack unwinding information for my_function
on the grounds that my_other_function or a function called by it may throw an exception.

extern int my_other_function (int a, int b);
int my_function (int a, int b)
{
 return my_other_function (a, b);
}

However, if you know that my_other_function cannot throw exceptions, you can signal this to the compiler
by including the empty exception specification (throw ()) in the function declarations. Thus, you would
declare the preceding function as follows:

extern int foo (int a, int b) throw ();
int my_function (int a, int b) throw ()
{
 return foo (a, b);
}

Minimizing Exception Use

When writing your code, consider your use of exceptions carefully. Exceptions should be used to indicate
exceptional circumstances—that is, they should be used to report problems that you did not anticipate. If
you read from a file and got an end-of-file error, you would not want to throw an exception because this is
a known type of error and can be handled easily. If you try to read from a file you know to be open and are
told the file ID is invalid, then you would probably want to throw an exception.

Avoid Excessive Function Inlining

Although inline functions can improve speed in some situations, they can also degrade performance on Mac
OS X if used excessively. Inline functions eliminate the overhead of calling a function but do so by replacing
each function call with a copy of the code. If an inline function is called frequently, this extra code can add
up quickly, bloating your executable and causing paging problems.

Used properly, inline functions can save time and have a minimal impact on your code footprint. Remember
that the code for inline functions should generally be very short and called infrequently. If the time it takes
to execute the code in a function is less than the time it takes to call the function, the function is a good
candidate for inlining. Generally, this means that an inline function probably should have no more than a
few lines of code. You should also make sure that the function is called from as few places as possible in your
code. Even a short function can cause excessive bloat if it is made inline in dozens or hundreds of places.

16 Additional Optimizations
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

Also, you should be aware that the “Fastest” optimization level of the GCC should generally be avoided. At
this optimization level, the compiler aggressively tries to create inline functions, even for functions that are
not marked as inline. Unfortunately, doing so can significantly increase the size of your executable and cause
far worse performance problems due to paging.

Build Fixed-Position Application Code

By default, most code is built with the -dynamic compiler option. This option enables indirect symbol
addressing and position-independent code generation, which allows the generated code to be relocated
within the virtual memory space of the process. For projects such as bundles and frameworks, this option is
required. The dynamic-linker must be able to relocate the bundle or framework and patch up symbol references
at runtime.

Unlike bundles and frameworks, applications do not need the position-independent code generation feature
provided by the -dynamic option. Application code is never relocated within the process space. However,
it does still require the indirect addressing feature to allow for dynamic linking to other code modules, such
as bundles. To solve this problem, the GCC versions 3.1 and later support the -mdynamic-no-pic option,
which disables position-independent code generation but allows indirect symbol addressing. You should
always enable this option when building applications.

Note: In Xcode, you specify the -mdynamic-no-pic option by choosing the Generate Position Independent
Code option from the Code Generation settings.

Build Frameworks as a Single Module

Most shared libraries don’t need the module features of the Mach-O runtime. In addition, cross-module calls
incur the same overhead as cross-library calls. As a result, you should link all of your project’s intermediate
object files together into a single module.

To combine your object files, you must pass the -r option to ld during the link phase. If you are using Xcode
to build your code, this is done for you by default.

Additional Optimizations 17
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

18 Additional Optimizations
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Code Size

An important improvement you can make to your application’s performance is to reduce the number of
virtual memory pages used by the application at any given time. This set of pages is referred to as the working
set and consists of application code and runtime data. Reducing the amount of in-memory data is a function
of your algorithms, but reducing the amount of in-memory code can be achieved by a process called scatter
loading. This technique is also referred to as improving the locality of reference of your code.

Normally, compiled code for methods and functions is organized by source file in the resulting binary. Scatter
loading changes this organization and instead groups related methods and functions together, independent
of the original locations of those methods and functions. This process allows the kernel to keep an active
application’s most frequently referenced executable pages in the smallest memory space possible. Not only
does this reduce the footprint of the application, it reduces the likelihood of those pages being paged out.

Important: You should generally wait until very late in the development cycle to scatter load your application.
Code tends to get moved around during development, which can invalidate prior profiling results.

Profiling Code With gprof

Given profiling data collected at runtime, gprof produces an execution profile of a program. The effect of
called routines is incorporated in the profile of each caller. The profile data is taken from the call graph profile
file (gmon.out by default), which is created by a program compiled and linked with the -pg option. The
symbol table in the executable is correlated with the call graph profile file. If more than one profile file is
specified, the gprof output shows the sum of the profile information in the given profile files.

The gprof tool is useful for many purposes, including the following:

 ■ cases where the Sampler application doesn’t work well, such as command-line tools or applications that
quit after a short period of time

 ■ cases where you want a call graph that includes all the code that might be called in a given program,
rather than a periodic sampling of calls

 ■ cases where you want to change the link order of your code to optimize the code locality

Generating Profiling Data

Before you can profile your application, you must set up your project to generate profiling information. To
generate profiling information for your Xcode project, you must modify your target or build-style settings
to include the “Generate profiling code” option. (See the Xcode Help for information on enabling target and
build-style settings.)

Profiling Code With gprof 19
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

The profiling code inside your program generates a file called gmon.out with the profiling information.
(Usually, this file is placed in the current working directory.) To analyze the data in this file, copy it to the
directory containing your executable prior to calling gprof, or just specify the path to gmon.out when you
run gprof.

In addition to profiling your own code, you can find out how much time is spent in Carbon and Cocoa
frameworks by linking against profile versions of those frameworks. To do this, add the DYLD_IMAGE_SUFFIX
setting to your target or build style and set its value to _profile. The dynamic linker combines this suffix
with the framework name to link against the profile version of the framework. To determine which frameworks
support profiling, look at the frameworks themselves. For example, the Carbon library comes with both profile
and debug versions.

Note: Profile and debug versions of libraries are installed as part of the developer tools package and may
not be available on user systems. Make sure your shipping executable does not link against one of these
libraries.

Generating Order Files

An order file contains an ordered sequence of lines, each line consisting of a source file name and a symbol
name, separated by a colon with no other white space. Each line represents a block to be placed in a section
of the executable. If you modify the file by hand, you must follow this format exactly so the linker can process
the file. If the object file name:symbol name pair is not exactly the name seen by the linker, it tries its best to
match up the names with the objects being linked.

The lines in an order file for procedure reordering consist of an object filename and procedure name (function,
method, or other symbol). The sequence in which procedures are listed in the order file represents the
sequence in which they are linked into the __text section of the executable.

To create an order file from the profiling data generated by using a program, run gprof using the -S option
(see the man page for gprof (1)). For example,

gprof -S MyApp.profile/MyApp gmon.out

The -S option produces four mutually exclusive order files:

Ordering based on a “closest is best” analysis of the profiling call graph. Calls that call each
other frequently are placed close together.

gmon.order

Routines sorted by the number of calls made to each routine, largest numbers first.callf.order

Routines sorted by the order in which they are called.callo.order

Routines sorted by the amount of CPU time spent, largest times first.time.order

You should try using each of these files to see which provides the largest performance improvement, if any.
See “Using pagestuff to Examine Pages on Disk” (page 25) for a discussion of how to measure the results of
the ordering.

20 Profiling Code With gprof
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

These order files contain only those procedures used during profiling. The linker keeps track of missing
procedures and links them in their default order after those listed in the order file. Static names for library
functions are generated in the order file only if the project directory contains a file generated by the linker’s
-whatsloaded option; see “Creating a Default Order File” (page 25) for details.

The gprof -S option doesn’t work with executables that have already been linked using an order file.

Fixing Up Your Order Files

After you generate your order files, you should look through them and make sure they are correct. There are
a number of cases where you need to edit your order files manually, including the following:

 ■ Your executable contained assembly-language files.

 ■ You profiled a stripped executable.

 ■ Your executable contained files compiled without the -g option.

 ■ Your project defines internal labels (typically for goto statements).

 ■ You want to preserve the order of routines in a particular object file.

If the definition of a symbol is located in an assembly file, a stripped executable file, or a file compiled without
the -g option, gprof omits the source file name from the symbol’s entry in the order file. If your project uses
such files, you must edit the order file manually and add the appropriate source filenames. Alternatively, you
can delete the symbol references altogether to force the corresponding routines to be linked in default order.

If your code contains internal labels, you must remove those labels from the order files; otherwise, the function
that defines the label will be split apart during the linking phase. You can prevent the inclusion of internal
labels in assembly files altogether by prefixing them with the string L_. The assembler interprets symbols
with this prefix as local to a particular function and strips them to prevent access by other tools such as
gprof.

To preserve the order of routines in a particular object file, use the special symbol .section_all. For
example, if the object file foo.o comes from assembly source and you want to link all of the routines without
reordering them, delete any existing references to foo.o and insert the following line in the order file:

foo.o:.section_all

This option is useful for object files compiled from assembly source, or for which you don’t have the source.

Linking with an Order File

Once you’ve generated an order file, you can link the program using the -sectorder and -e start options:

cc -o outputFile inputFile.o … -sectorder __TEXT __text orderFile -e start

To use an order file with a Xcode project, modify the “Other Linker Flags” option in the Deployment build
style of your project. Add the text -sectorder __TEXT __text orderFile to this setting to specify your
order file.

Profiling Code With gprof 21
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

If any inputFile is a library rather than an object file, you may need to edit the order file before linking to
replace all references to the object file with references to the appropriate library file. Again, the linker does
its best to match names in the order file with the sources it is editing.

With these options, the linker constructs the executable file outputFile so that the contents of the __TEXT
segment’s __text section are constructed from blocks of the input files’ __text sections. The linker arranges
the routines in the input files in the order listed in orderFile.

As the linker processes the order file, it places the procedures whose object-file and symbol-name pairs aren’t
listed in the order file into the __text section of outputFile. It links these symbols in the default order.
Object-file and symbol-name pairs listed more than once always generate a warning, and the first occurrence
of the pair is used.

By default, the linker prints a summary of the number of symbol names in the linked objects that are not in
the order file, the number of symbol names in the order file that are not in the linked objects, and the number
of symbol names it tried to match that were ambiguous. To request a detailed listing of these symbols, use
the -sectorder_detail option.

The linker’s -e start option preserves the executable’s entry point. The symbol start (note the lack of a
leading “_”) is defined in the C runtime shared library /usr/bin/crt1.o; it represents the first text address
in your program when you link normally. When you reorder your procedures, you have to use this option to
fix the entry point. Another way to do this is to make the line /usr/lib/crt1.o:start or
/usr/lib/crt1.o:section_all the first line of your order file.

Limitations of gprof Order Files

The .order files generated by gprof contain only those functions that were called or sampled when the
executable was run. For library functions to appear correctly in the order file, a whatsloaded file produced
by the linker should exist in the working directory.

The -S option does not work with executables that have already been linked with an order file.

Production of the gmon.order file can take a long time—it can be suppressed with the -x parameter.

Filenames will be missing for the following items:

 ■ files compiled without the -g parameter

 ■ routines generated from assembly-language source

 ■ executables that have had their debugging symbols removed (as with the strip tool)

Profiling With the Monitor Functions

The file /usr/include/monitor.h declares a set of functions that you can use to programmatically profile
specific sections of your code. You can use these functions to gather statistics only for certain sections of
your code, or for all of your code. You can then use the gprof tool to build call graph and other performance
analysis data from the resulting file. Listing 1 (page 23) shows how to use the monitor functions.

22 Profiling With the Monitor Functions
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

Listing 1 Using monitor functions

#include <monitor.h>

 /* To start profiling: */
 moninit();
 moncontrol(1);

 /* To stop, and dump to a file */
 moncontrol(0);
 monoutput("/tmp/myprofiledata.out");
 monreset();

Organizing Code at Compile Time

The GCC compiler lets you specify attributes on any function or variable you declare. The section attribute
lets you tell GCC which segment and section you want a particular piece of code to be placed.

Warning: Do not use section attributes unless you understand the structure of Mach-O executables
and know the rules for placing functions and data in the corresponding segments. Placing a function
or global variable in an inappropriate section may break your program.

The section attribute takes several parameters that control where the resulting code is placed. At a minimum,
you must specify a segment and section name for the code you want to place. Other options are also available
and are described in the GCC documentation.

The following listing shows how you use the section attribute for a function. In this example, the section
attribute is added to a forward declaration of the function. The attribute tells the compiler to place the
function in a specific __text section of the executable.

void MyFunction (int a) __attribute__((section("__TEXT,__text.10")));

The following listing shows some examples of how you can organize your global variables using the section
attribute.

extern const int x __attribute__((section("__TEXT,__my_const")));
const int x=2;

extern char foo_string[] __attribute__((section("__DATA,__my_data")));
char foo_string[] = "My text string\n";

For detailed information on specifying section attributes, see the documentation for the GCC compiler in
/Developer/Documentation/DeveloperTools/gcc3.

Reordering the __text Section

As described in “Overview of the Mach-O Executable Format” (page 9), the __TEXT segment holds the
actual code and read-only portions of your program. The compiler tools, by convention, place procedures
from your Mach-O object files (with extension .o) in the __text section of the __TEXT segment.

Organizing Code at Compile Time 23
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

As your program runs, pages from the __text section are loaded into memory on demand, as routines on
these pages are used. Code is linked into the __text section in the order in which it appears in a given
source file, and source files are linked in the order in which they are listed on the linker command line (or in
the order specifiable in Xcode). Thus, code from the first object file is linked from start to finish, followed by
code from the second file and third file and so on.

Loading code in the source file declaration order is rarely optimal. For example, suppose that certain methods
or functions in your code are invoked repeatedly, while others are seldom used. Reordering the procedures
to place frequently used code at the beginning of the __text section minimizes the average number of
pages your application uses and thereby reduces paging activity.

As another example, suppose that all the objects defined by your code are initialized at the same time.
Because the initialization routine for each class is defined in a separate source file, the initialization code is
ordinarily distributed across the __text section. By contiguously reordering initialization code for all classes,
you reduce the number of pages that need to be read in, enhancing initialization performance. The application
requires just the small number of pages containing initialization code, rather than a larger number of pages,
each containing a small piece of initialization code.

Reordering Procedures

Depending on the size and complexity of your application, you should pursue a strategy for ordering code
that best improves the performance of your executable. Like most performance tuning, the more time you
spend measuring and retuning your procedure order, the more memory you save. You can easily obtain a
good first-cut ordering by running your application and sorting the routines by call frequency. The steps for
this strategy are listed below and explained in more detail in the sections that follow:

1. Build a profile version of your application. This step generates an executable containing symbols used
in the profiling and reordering procedures.

2. Run and use the application to create a set of profile data. Perform a series of functional tests, or have
someone use the program for a test period.

Important: For best results, focus on the most typical usage pattern. Avoid using all the features of the
application or the profile data might become diluted. For example, focus on launch time and the time
to activate and deactivate your main window. Do not bring up ancillary windows.

3. Create order files. Order files list procedures in optimized order. The linker uses order files to reorder
procedures in the executable.

4. Run the linker using the order files. This creates an executable with procedures linked into the __text
section as specified in the order file.

For information on profiling your code and generating and linking an order file, see “Profiling Code With
gprof” (page 19).

24 Reordering the __text Section
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

Procedure Reordering for Large Programs

For many programs, the ordering generated by the steps just described brings a substantial improvement
over unordered procedures. For a simple application with few features, such an ordering represents most of
the gains to be had by procedure reordering. However, larger applications and other large programs can
benefit greatly from additional analysis. While order files based on call frequency or the call graph are a good
start, you can use your knowledge of the structure of your application to further reduce the virtual-memory
working set.

Creating a Default Order File

If you want to reorder an application’s procedures using techniques other than those described above, you
may want to skip the profiling steps and just start with a default order file that lists all the routines of your
application. Once you have a list of the routines in suitable form, you can then rearrange the entries by hand
or by using a sorting technique of your choice. You can then use the resulting order file with the linker’s
-sectorder option as described in “Linking with an Order File” (page 21).

To create a default order file, first run the linker with the -whatsloaded option:

cc -o outputFile inputFile.o -whatsloaded > loadedFile

This creates a file, loadedFile, that lists the object files loaded in the executable, including any in frameworks
or other libraries. The -whatsloaded option can also be used to make sure that order files generated by
gprof -S include names for procedures in static libraries.

Using the file loadedFile, you can run nm with the -onjls options and the __TEXT __text argument:

nm -onjls __TEXT __text `cat loadedFile` > orderFile

The content of the file orderFile is the symbol table for the text section. Procedures are listed in the symbol
table in their default link order. You can rearrange entries in this file to change the order in which you want
procedures to be linked, then run the linker as described in “Linking with an Order File” (page 21).

Using pagestuff to Examine Pages on Disk

The pagestuff tool helps you measure the effectiveness of your procedure ordering by telling you which
pages of the executable file are likely to be loaded in memory at a given time. This section briefly describes
how to use this tool. See the pagestuff man page for more information.

The pagestuff tool prints out the symbols on a particular page of executable code. The following is the
syntax for the command:

pagestuff filename [pageNumber | -a]

The output of pagestuff is a list of procedures contained in filename on page pageNumber. To view all
the pages of the file, use the -a option in place of the page number. This output allows you to determine if
each page associated with the file in memory is optimized. If it isn’t, you can rearrange entries in the order
file and link the executable again to maximize performance gains. For example, move two related procedures
together so they are linked on the same page. Perfecting the ordering may require several cycles of linking
and tuning.

Reordering the __text Section 25
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

Grouping Routines According to Usage

Why generate profile data for individual operations of your application? The strategy is based on the
assumption that a large application has three general groups of routines:

 ■ Hot routines run during the most common usage of the application. These are often primitive routines
that provide a foundation for the application’s features (for example, routines for accessing a document’s
data structures) or routines that implement the core features of an application, such as routines that
implement typing in a word processor. These routines should be clustered together in the same set of
pages.

 ■ Warm routines implement specific features of the application. Warm routines are usually associated
with particular features that user performs only occasionally (such as launching, printing, or importing
graphics). Because these routines are used reasonably often, cluster them in the same small set of pages
so they will load quickly. However, because there are long periods when users aren’t accessing this
functionality, these routines should not be located in the hot category.

 ■ Cold routines are rarely used in the application. Cold routines implement obscure features or cover
boundary or error cases. Group these routines together to avoid wasting space on a hot or warm page.

At any given time, you should expect most of the hot pages to be resident, and you should expect the warm
pages to be resident for the features that the user is currently using. Only very rarely should a cold page be
resident.

To achieve this ideal ordering, gather a number of profile data sets. First, gather the hot routines. As described
above, compile the application for profiling, launch it, and use the program. Using gprof -S, generate a
frequency sorted order file called hot.order from the profile data.

After creating a hot order file, create order files for features that users occasionally use, such as routines that
only run when the application is launched. Printing, opening documents, importing images and using various
non-document windows and tools are other examples of features that users use occasionally but not
continually, and are good candidates for having their own order files. Naming these order files after the
feature being profiled (for example, feature.order) is recommended.

Finally, to generate a list of all routines, build a “default” order file default.order (as described in “Reordering
Procedures” (page 24)).

Once you have these order files, you can combine them using the code shown in Listing 2 (page 26). You
can use this listing to build a command-line utility that removes duplicate lines in the order files while retaining
the ordering of the original data.

Listing 2 Code for Unique.c

//
// unique
//
// A command for combining files while removing
// duplicate lines of text. The order of other lines of text
// in the input files is preserved.
//
// Build using this command line:
//
// cc -ObjC -O -o unique -framework Foundation Unique.c
//
// Note that "unique" differs from the BSD command "uniq" in that
// "uniq" combines duplicate adjacent lines, while "unique" does not

26 Reordering the __text Section
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

// require duplicate lines to be adjacent. "unique" is also spelled
// correctly.
//

#import <stdio.h>
#import <string.h>
#import <Foundation/NSSet.h>
#import <Foundation/NSData.h>

#define kBufferSize 8*1024

void ProcessFile(FILE *fp)
{
 char buf[kBufferSize];

 static id theSet = nil;

 if(theSet == nil)
 {
 theSet = [[NSMutableSet alloc] init];
 }

 while(fgets(buf, kBufferSize, fp))
 {
 id dataForString;

 dataForString = [[NSData alloc] initWithBytes:buf length:strlen(buf)];

 if(! [theSet containsObject:dataForString])
 {
 [theSet addObject:dataForString];
 fputs(buf, stdout);
 }

 [dataForString release];
 }
}

int main(int argc, char *argv[])
{
 int i;
 FILE * theFile;
 int status = 0;

 if(argc > 1)
 {
 for(i = 1; i < argc; i++)
 {
 if(theFile = fopen(argv[i], "r"))
 {
 ProcessFile(theFile);
 fclose(theFile);
 }
 else
 {
 fprintf(stderr, "Could not open ‘%s’\n", argv[i]);
 status = 1;
 break;

Reordering the __text Section 27
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

 }
 }
 }
 else
 {
 ProcessFile(stdin);
 }

 return status;
}

Once built, you would use the program to generate your final order file with syntax similar to the following:

unique hot.order feature1.order ... featureN.order default.order > final.order

Of course, the real test of the ordering is the amount by which paging I/O is reduced. Run your application,
use different features, and examine how well your ordering file is performing under different conditions. You
can use the top tool (among others) to measure paging performance.

Finding That One Last Hot Routine

After reordering you will usually have a region of pages with cold routines that you expect to be rarely used,
often at the end of your text ordering. However, one or two hot routines might slip through the cracks and
land in this cold section. This is a costly mistake, because using one of these hot routines now requires an
entire page to be resident, a page that is otherwise filled with cold routines that are not likely to be used.

Check that the cold pages of your executable are not being paged in unexpectedly. Look for pages that are
resident with high-page offsets in the cold region of your application’s text segment. If there is an unwanted
page, you need to find out what routine on that page is being called. One way to do this is to profile during
the particular operation that is touching that page, and use the grep tool to search the profiler output for
routines that reside on that page. Alternatively, a quick way to identify the location where a page is being
touched is to run the application under the gdb debugger and use the Mach call vm_protect to disallow
all access to that page:

(gdb) p vm_protect(task_self(), startpage_addr, vm_page_size, FALSE, 0);

After clearing the page protections, any access to that page causes a memory fault, which breaks the program
in the debugger. At this point you can simply look at the function call stack (using the bt command) to learn
why the routine was being called.

Reordering Other Sections

You can use the -sectorder option of the linker to organize blocks in most sections of the executable.
Sections that might occasionally benefit from reordering are literal sections, such as the __TEXT segment’s
__cstring section, and the __DATA segment’s __data section.

Reordering Literal Sections

The lines in the order file for literal sections can most easily be produced with the ld and otool tools. For
literal sections, otool creates a specific type of order file for each type of literal section:

28 Reordering Other Sections
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

 ■ For C string literal sections, the order-file format is one literal C string per line (with ANSI C escape
sequences allowed in the C string). For example, a line might look like

Hello world\n

 ■ For 4-byte literal sections, the order-file format is one 32-bit hex number with a leading 0x per line with
the rest of the line treated as a comment. For example, a line might look like

0x3f8ccccd (1.10000002384185790000e+00)

 ■ For 8-byte literal sections, the order file line consists of two 32-bit hexadecimal numbers per line separated
by white space each with a leading 0x, with the rest of the line treated as a comment. For example, a
line might look like:

0x3ff00000 0x00000000 (1.00000000000000000000e+00)

 ■ For literal pointer sections, the format of the lines in the order file represents the pointers, one per line.
A literal pointer is represented by the segment name, the section name of the literal pointer, and then
the literal itself. These are separated by colons with no extra white space. For example, a line might look
like:

__OBJC:__selector_strs:new

 ■ For all the literal sections, each line in the order file is simply entered into the literal section and appears
in the output file in the order of the order file. No check is made to see if the literal is in the loaded
objects.

To reorder a literal section, first create a “whatsloaded” file using the ld -whatsloaded option as described
in section “Creating a Default Order File” (page 25). Then, run otool with the appropriate options, segment
and section names, and filenames. The output of otool is a default order file for the specified section. For
example, the following command line produces an order file listing the default load order for the __TEXT
segment’s __cstring section in the file cstring_order:

otool -X -v -s __TEXT __cstring `cat whatsloaded` > cstring_order

Once you’ve created the file cstring_order, you can edit the file and rearrange its entries to optimize
locality of reference. For example, you can place literal strings used most frequently by your program (such
as labels that appear in your user interface) at the beginning of the file. To produce the desired load order
in the executable, use the following command:

cc -o hello hello.o -sectorder __TEXT __cstring cstring_order

Reordering Data Sections

There are currently no tools to measure code references to data symbols. However, you might know a
program’s data-referencing patterns and might be able to get some savings by separating data for seldom-used
features from other data. One way to approach __data section reordering is to sort the data by size so small
data items end up on as few pages as possible. For example, if a larger data item is placed across two pages
with two small items sharing each of these pages, the larger item must be paged in to access the smaller
items. Reordering the data by size can minimize this sort of inefficiency. Because this data would normally
need to be written to the virtual-memory backing store, this could be a major savings in some programs.

Reordering Other Sections 29
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

To reorder the __data section, first create an order file listing source files and symbols in the order in which
you want them linked (order file entries are described at the beginning of “Generating Order Files” (page
20)). Then, link the program using the -sectorder command-line option:

cc -o outputFile inputFile.o … -sectorder __DATA __data orderFile -e start

To use an order file with a Xcode project, modify the “Other Linker Flags” option in the Deployment build
style of your project. Add the text -sectorder __DATA __data orderFile to this setting to specify your
order file.

Reordering Assembly Language Code

Some additional guidelines to keep in mind when reordering routines coded in assembly language:

 ■ temporary labels in assembly code

Within hand-coded assembly code, be careful of branches to temporary labels that branch over a non
temporary label. For example, if you use a label that starts with “L” or a d label (where d is a digit), as in
this example

foo: b 1f
 ...
bar: ...
1: ...

The resulting program won’t link or execute correctly, because only the symbols foo and bar make it
into the object file’s symbol table. References to the temporary label 1 are compiled as offsets; as a result,
no relocation entry is generated for the instruction b 1f. If the linker does not place the block associated
with the symbol bar directly after that associated with foo, the branch to 1f will not go to the correct
place. Because there is no relocation entry, the linker doesn’t know to fix up the branch. The source-code
change to fix this problem is to change the label 1 to a non temporary label (bar1 for example). You
can avoid problems with object files containing hand-coded assembly code by linking them whole,
without reordering.

 ■ the pseudo-symbol .section_start

If the specified section in any input file has a non-zero size and there is no symbol with the value of the
beginning of its section, the linker uses the pseudo symbol .section_start as the symbol name it
associates with the first block in the section. The purpose of this symbol is to deal with literal constants
whose symbols do not persist into the object file. Because literal strings and floating-point constants
are in literal sections, this not a problem for Apple compilers. You might see this symbol used by
assembly-language programs or non-Apple compilers. However, you should not reorder such code and
you should instead link the file whole, without reordering (see“Linking with an Order File” (page 21)).

30 Reordering Assembly Language Code
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Improving Locality of Reference

As noted in “Overview of the Mach-O Executable Format” (page 9), the data in the __DATA segment of a
Mach-O binary is writable and thus shareable (via copy-on-write). Writable data slows down paging
performance in low-memory situations by increasing the number of pages that may need to be written to
disk. For frameworks, writable data is shared initially but has the potential to be replicated to the memory
space of each process.

Reducing the amount of dynamic or non-constant data in an executable can have a significant impact on
performance, especially for frameworks The following sections show you how to reduce the size of your
executable’s __DATA segment, and thus reduced the number of shared memory pages.

Declaring Data as const

The easiest way to make the __DATA segment smaller is to mark more globally scoped data as constant.
Most of the time, it’s easy to mark data as constant. For example, if you’re never going to modify the elements
in an array, you should include the const keyword in the array declaration, as shown here:

const int fibonacci_table[8] = {1, 1, 2, 3, 5, 8, 13, 21};

Remember to mark pointers as constant (when appropriate). In the following example, the strings "a" and
"b" are constant, but the array pointer foo is not:

static const char *foo[] = {"a", "b"};
foo[1] = "c"; // OK: foo[1] is not constant.

To mark the entire declaration as constant, you need to add the const keyword to the pointer to make the
pointer constant. In the following example, both the array and its contents are constant:

static const char *const foo[] = {"a", "b"};
foo[1] = "c"; // NOT OK: foo[1] is constant.

Sometimes you may want to rewrite your code to separate out the constant data. The following example
contains an array of structures in which only one field is declared const. Because the entire array isn’t declared
const, it is stored in the __DATA segment.

struct {
 const char *imageName;
 NSImage *image;
} images[100] = {
 {"FooImage", nil},
 {"FooImage2", nil}
 // and so on
};

To store as much of this data as possible in the __TEXT segment, create two parallel arrays, one marked
constant and one not:

Declaring Data as const 31
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Reducing Shared Memory Pages

const char *const imageNames[100] = { "FooImage", /* . . . */ };
NSImage *imageInstances[100] = { nil, /* . . . */ };

If an uninitialized data item contains pointers, the compiler can’t store the item in the __TEXT segment.
Strings end up in the __TEXT segment’s __cstring section but the rest of the data item, including the
pointers to the strings, ends up in the __DATA segment’s const section. In the following example,
daytimeTable would end up split between the __TEXT and __DATA segments, even though it’s constant:

struct daytime {
 const int value;
 const char *const name;
};

const struct daytime daytimeTable[] = {
 {1, "dawn"},
 {2, "day"},
 {3, "dusk"},
 {4, "night"}
};

To place the whole array in the __TEXT segment, you must rewrite this structure so it uses a fixed-size char
array instead of a string pointer, as shown in the following example:

struct daytime {
 const int value;
 const char name[6];
};

const struct daytime daytimeTable[] = {
 {1, {'d', 'a', 'w', 'n', '\0'}},
 {2, {'d', 'a', 'y', '\0'}},
 {3, {'d', 'u', 's', 'k', '\0'}},
 {4, {'n', 'i', 'g', 'h', 't', '\0'}}
};

Unfortunately, there’s no good solution if the strings are of widely varying sizes, because this solution would
leave a lot of unused space.

The array is split onto two segments because the compiler always stores constant strings in the __TEXT
segment’s __cstring section. If the compiler stored the rest of the array in the __DATA segment’s __data
section, it’s possible that the strings and the pointers to the strings would end up on different pages. If that
happened, the system would have to update the pointers to the strings with the new addresses, and it can’t
do that if the pointers are in the __TEXT segment because the __TEXT segment is marked read-only. So the
pointers to the strings, and the rest of the array along with it, must be stored in the const section of the
__DATA segment. The __const section is reserved for data declared const that couldn’t be placed in the
__TEXT segment.

32 Declaring Data as const
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Reducing Shared Memory Pages

Initializing Static Data

As is pointed out in “Overview of the Mach-O Executable Format” (page 9), the compiler stores uninitialized
static data in the __bss section of the __DATA segment and stores initialized data in the __data section. If
you have only a small amount of static data in the __bss section, you might want to consider moving it to
the __data section instead. Storing data in two different sections increases the number of memory pages
used by the executable, which in turn increases the potential for paging.

The goal of merging the __bss and __data sections is to reduce the number of memory pages used by
your application. If moving data into the __data section increases the number of memory pages in that
section, there is no benefit to this technique. In fact, adding to the pages in the __data section increases
the amount of time spent reading and initializing that data at launch time.

Suppose you declare the following static variables:

static int x;
static short conv_table[128];

To move these variables into the __data section of your executable’s __DATA segment, you would change
the definition to the following:

static int x = 0;
static short conv_table[128] = {0};

Avoiding Tentative-Definition Symbols

The compiler puts any duplicate symbols it encounters in the __common section of the __DATA segment (see
“Overview of the Mach-O Executable Format” (page 9)). The problem here is the same as with uninitialized
static variables. If an executable’s non-constant global data is distributed among several sections, it is more
likely that this data will be on different memory pages; consequently, the pages may have to be swapped in
and out separately. The goal for the __common section is the same as that for the __bss section: to eliminate
it from your executable if you have a small amount of data in it.

A common source of a tentative-definition symbol is the definition of that symbol in a header file. Typically,
headers declare a symbol but do not include the definition of that symbol; the definition is instead provided
in an implementation file. But definitions appearing in header files can result in that code or data appearing
in every implementation file that includes the header file. The solution to this problem is to ensure that
header files contain only declarations, not definitions.

For functions, you would obviously declare a prototype for that function in your header file and put the
definition of that function in your implementation file. For global variables and data structures, you should
do something similar. Rather than defining the variable in your header file, define it in your implementation
file and initialize it appropriately. Then, declare that variable in your header file, preceding the declaration
with the extern keyword. This technique localizes the variable definition to one file while still allowing
access to that variable from other files.

You can also get tentative-definition symbols when you accidentally import the same header file twice. To
make sure you do not do this, include preprocessor directives to prohibit the inclusion of files that have
already been included. Thus, in your header file, you would have the following code:

#ifndef MYHEADER_H

Initializing Static Data 33
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Reducing Shared Memory Pages

#define MYHEADER_H
// Your header file declarations. . .
#endif

Then when you want to include that header file, include it in the following way:

#ifndef MYHEADER_H
#include "MyHeader.h"
#endif

Analyzing Mach-O Executables

You have several tools at your disposal for finding out how much memory your non-constant data is occupying.
These tools report on various aspects of data usage.

While your application or framework is running, use the size and pagestuff tools to see how big your
various data sections are and which symbols they contain. Some things to look for include the following:

 ■ To find executables with lots of non-constant data, check for files with large __data sections in the
__DATA segment.

 ■ Check for variables and symbols in the __bss and __common sections that can be removed or moved
to the __data section.

 ■ To locate data that, although declared constant, the compiler can’t treat as constant, check for executables
or object files with a __const section in the __DATA segment.

Some of the bigger consumers of memory in the __DATA segment are fixed-size global arrays initialized but
not declared const. You can sometimes find these tables by searching your source code for “[] = {“.

You can also let the compiler help you find where arrays can be made constant. Put const in front of all the
initialized arrays you suspect might be read-only and recompile. If an array is not truly read-only, it will not
compile. Remove the offending const and retry.

34 Analyzing Mach-O Executables
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Reducing Shared Memory Pages

If your application or framework has a public interface, you should limit your exported symbols to those
required for your interface. Exported symbols take up space in your executable file and should be minimized
when possible. Not only does this reduce the size of your executable, it also reduces the amount of work
done by the dynamic linker.

By default, Xcode exports all symbols from your project. You can use the information that follows to identify
and eliminate those symbols you do not want to export.

Identifying Exported Symbols

To view the symbols exported by your application, use the nm tool. This tool reads an executable’s symbol
table and displays the symbol information you request. You can view all symbols or just the symbols from a
specific segment of your executable code. For example, to display only the externally available global symbols,
you would specify the -g option on the command line.

To view detailed symbol information, run nm with the -m option. The output from this option tells you the
type of the symbol and whether it is external or local (non-external). For example, to view detailed symbol
information for the TextEdit application, you would use nm as follows:

%cd /Applications/TextEdit.app/Contents/MacOS
% nm -m TextEdit

A portion of the resulting output might look like the following:

9005cea4 (prebound undefined [lazy bound]) external _abort (from libSystem)
9000a5c0 (prebound undefined [lazy bound]) external _atexit (from libSystem)
90009380 (prebound undefined [lazy bound]) external _calloc (from libSystem)
00018d14 (__DATA,__common) [referenced dynamically] external _catch_exception_raise
00018d18 (__DATA,__common) [referenced dynamically] external _catch_exception_raise_state
00018d1c (__DATA,__common) [referenced dynamically] external
_catch_exception_raise_state_identity

In this mode, nm displays various information depending on the symbol. For functions and other code residing
in the __TEXT segment, nm displays prebinding information and the originating library. For information in
the __DATA segment, nm displays the specific section of the symbol and its linkage. For all symbols, nm displays
whether the symbol is external or local.

Identifying Exported Symbols 35
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Minimizing Your Exported Symbols

Limiting Your Exported Symbols

If you know the symbols you want to export from your project, you should create an exports file and add
that file to your project’s Linker settings. An exports file is a plain text file containing the names of the symbols
you wish to make available to external callers. Each symbol must be listed on a separate line. Leading and
trailing whitespace is not considered part of the symbol name. Lines starting with a # sign are ignored.

To include your exports file in your Xcode project, modify the target or build-style settings for your project.
Set the value of the “Exported symbols file” setting to the name of your exports file. Xcode passes the
appropriate options to the static linker.

To export a list of symbols from the command line, add the -exported_symbols_list option to your
linker command. Rather than export a specific list of symbols, you can also export all symbols and then restrict
a specific list. To restrict a specific list of symbols, use the -unexported_symbols_list option in your
linker command.

Note that symbols exported by the runtime libraries must be included explicitly in your exports file for your
application to launch properly. To gather a list of these symbols, link your code without an export file and
then execute the nm -m command from Terminal. From the resulting output, gather any symbols that are
marked external and are not part of your code and add them to your exports file.

Limiting Exports Using GCC 4.0

GCC 4.0 supports custom visibility attributes for individual symbols. In addition, the compiler provides
compile-time flags that let you set the default visibility for all symbols for the compiled files.

For information on using the new symbol visibility features of GCC 4.0, see “Controlling Symbol Visibility“ in
C++ Runtime Environment Programming Guide.

36 Limiting Your Exported Symbols
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Minimizing Your Exported Symbols

This table describes the changes to Code Size Performance Guidelines.

NotesDate

Added information about using GCC 4.0 to reduce the number of exported
symbols.

2006-06-28

Clarified guidelines for inline functions. Updated compiler options to cover
dead-code stripping.

2005-04-29

Document name changed. Old title was Optimizing Your Code Footprint.

Minor bug fix to clarify use of the -dynamic compiler option.2003-12-11

Minor bug fixes to reflect the Xcode environment.2003-07-25

First revision of this programming topic. Some of the information appeared in
the document Inside Mac OS X: Performance.

2003-05-15

37
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

38
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

Symbols

__bss section 10, 11, 33
__common section 10, 11, 33
__const section 9, 10, 31
__cstring section 9
__data section 10, 29
__DATA segment 10
__dyld section 10
__la_symbol_ptr section 10
__nl_symbol_ptr section 10
__picsymbol_stub section 9
__text section 9, 23
__TEXT segment 9
__TEXT segment 23

A

ANSI C 11
arrays, making constant 34
assembly language, reordering code 30

C

C++
exception handling 15
uninitialized static data and 11

code profiling
with gprof 19

cold routines 26
compiler optimizations 13–14
constant data 9
copy-on-write 10

D

dead code stripping 14
declaring data const 31
default order files 25
duplicate symbols 33
dynamic linker (dyld) 9

E

exception handling overhead 15

F

frameworks
building 17

functions
inline 16
reordering 24

G

gprof tool 19–22

H

hot routines 26

I

implementation files 33
inline functions 16

39
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Index

M

Mach-O
executables 23
object files 23

memory
freeing 9
usage 9

N

nonconstant data 10

O

order files
and literal sections 28
using 25

P

pagestuff tool 25, 34
paging 9
Project Builder 24
pseudo symbols 30

R

read-only segments 9
read/write data 10

S

scatter loading 19
sections
__bss 10, 11, 33
__common 10, 11, 33
__const 9, 10
__cstring 9
__data 10
__dyld 10
__la_symbol_ptr 10
__nl_symbol_ptr 10
__picsymbol_stub 9
__text 9

.section_start symbol 30
-sectorder option 28
size tool 34
static data 33
symbols

.section_start 30
duplicate 33
exporting 36
identifying 35
in runtime libraries 36
removing 15

T

tentative-definition symbols 33
tools
gprof 19, 22
pagestuff 25, 34

U

unique utility 28

W

warm routines 26
working set 19

40
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

	Code Size Performance Guidelines
	Contents
	Tables and Listings
	Introduction
	Overview of the Mach-O Executable Format
	The __TEXT Segment: Read Only
	The __DATA Segment: Read/Write
	Mach-O Performance Implications

	Managing Code Size
	Compiler-Level Optimizations
	Additional Optimizations
	Dead Strip Your Code
	Strip Symbol Information
	Eliminate C++ Exception Handling Overhead
	Disabling Exceptions
	Selectively Disabling Exceptions
	Minimizing Exception Use

	Avoid Excessive Function Inlining
	Build Fixed-Position Application Code
	Build Frameworks as a Single Module

	Improving Locality of Reference
	Profiling Code With gprof
	Generating Profiling Data
	Generating Order Files
	Fixing Up Your Order Files
	Linking with an Order File
	Limitations of gprof Order Files

	Profiling With the Monitor Functions
	Organizing Code at Compile Time
	Reordering the __text Section
	Reordering Procedures
	Procedure Reordering for Large Programs
	Creating a Default Order File
	Using pagestuff to Examine Pages on Disk
	Grouping Routines According to Usage
	Finding That One Last Hot Routine

	Reordering Other Sections
	Reordering Literal Sections
	Reordering Data Sections

	Reordering Assembly Language Code

	Reducing Shared Memory Pages
	Declaring Data as const
	Initializing Static Data
	Avoiding Tentative-Definition Symbols
	Analyzing Mach-O Executables

	Minimizing Your Exported Symbols
	Identifying Exported Symbols
	Limiting Your Exported Symbols
	Limiting Exports Using GCC 4.0

	Revision History
	Index
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	R
	S
	T
	U
	W

