
Launch Time Performance Guidelines
Performance > Tools

2006-04-04

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Launch Time Performance Guidelines 7

Organization of This Document 7

Launch Time Tips 9

Delay Initialization Code 9
Simplify Your Main Nib File 10
Minimize Global Variables 10
Minimize Strings File Sizes 10
Reduce the Impact of Expensive Operations 11
Avoid Memory Turnover 11
Use Local Resources 11

Gathering Launch Time Metrics 13

Measuring Launch Speed 13
Gathering Data Using Checkpoints 13
Using Explicit Timestamps 14
Measuring Cocoa Application Launch Times 14

Sampling the Application Launch 14
Using Shark 15
Using the sample Command-Line Tool 16

Minimizing File Access At Launch Time 17

Delay Any Unnecessary File I/O 17
Using fs_usage to Review File I/O 17

Prebinding Your Application 19

Prebinding Your Code 19
Caveats for Prebinding 20
Determining if Your Executable Is Prebound 22
Fixing Prebinding Information 23

Document Revision History 25

Index 27

3
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Gathering Launch Time Metrics 13

Figure 1 Sampling the launch of an application with Shark 15

Minimizing File Access At Launch Time 17

Listing 1 Sample output from fs_usage 18

Prebinding Your Application 19

Table 1 Prebinding address ranges prior to Mac OS X 10.2) 20
Table 2 Prebinding address ranges for Mac OS X v10.2 to v10.3.x 21
Table 3 Prebinding address ranges for Mac OS X v10.4 and later 21

5
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

This document provides specific tips on how to identify and improve your application’s performance at
launch time. The launch of an application provides users with the first impression of your application. If your
application launches quickly, it leaves users with a good impression.

Organization of This Document

This document contains the following articles:

 ■ “Launch Time Tips” (page 9) describes some standard techniques for improving the performance of
your application at launch time.

 ■ “Gathering Launch Time Metrics” (page 13) describes ways to measure the speed of your application
launch.

 ■ “Minimizing File Access At Launch Time” (page 17) shows you how to measure and reduce your file
usage at launch time.

 ■ “Prebinding Your Application” (page 19) explains the prebinding process and shows you how to determine
if your application is prebound.

Organization of This Document 7
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Launch Time Performance
Guidelines

8 Organization of This Document
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Launch Time Performance Guidelines

Launch time is an important metric to measure for any application. It is the first experience a user has with
your application, and it is something the user sees on a regular basis. The less time it takes your application
to launch, the faster your application will seem to the user.

Your overriding goal during launch should be to display the application’s menu bar and main window and
then start responding to user commands as quickly as possible. Making your application responsive to
commands quickly provides a better experience for the user. The following sections provide some general
tips on how to make your application launch faster.

Regardless of what techniques you choose to improve your launch times, the only way to know you’ve
improved performance is through measurement. Gather and record launch time metrics early in your
development process and monitor them especially when implementing new optimizations. For information
on how to measure launch-time performance, see “Gathering Launch Time Metrics” (page 13).

Delay Initialization Code

Many applications spend a lot of time initializing code that isn’t used until much later. Delaying the initialization
of subsystems that are not immediately needed can speed up your launch time considerably. Remember
that the goal is to display your application interface quickly, so try to initialize only the subsystems related
to that goal initially.

Once you have posted your interface, your application can continue to initialize additional subsystems as
needed. However, remember that just because your application is able to process commands does not mean
you need all of that code right away. The preferred way of initializing subsystems is on an as-needed basis.
Wait until the user executes a command that requires a particular subsystem and then initialize it. That way,
if the user never executes the command, you will not have wasted any time running the code to prepare for
it.

For a Carbon application, you should perform your basic initialization before beginning your application’s
main event loop. Once that loop is running, you can set up a one-shot timer to execute any additional code
that your application absolutely requires for basic operation. Do not load code for specific features until the
user chooses a command that uses that feature.

For a Cocoa application, avoid putting a lot of extraneous initialization code in your awakeFromNibmethods.
The system calls the awakeFromNib method of your main nib file before your application enters its main
event loop. Use that method to initialize the objects in that nib and to prepare your application interface.
For all other initialization, use the applicationDidFinishLaunchingmethod of your NSApplication object
instead. For more information on nib files and how they are loaded, see Resource Programming Guide.

Delay Initialization Code 9
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Launch Time Tips

Simplify Your Main Nib File

Loading a nib file is an expensive process that can slow down your application launch time if you are not
careful. When a nib file is loaded, all of the objects in that file are instantiated and made ready for use. The
more objects you include in your application’s main nib, the more time it takes to load that file and launch
your application.

The instantiation process for objects in a nib file requires that any frameworks used by those objects must
themselves be resident in memory. Thus loading a nib for a Cocoa application would likely require the loading
of both the AppKit and Foundation frameworks, if they were not already resident in memory. Similarly, if you
declare a custom class in your main nib file and that class relies on other frameworks, the system must load
those frameworks as well.

When designing your application’s main nib file, you should include only those objects needed to display
your application’s initial user interface. Usually, this would involve just your application’s menu bar and initial
window, if any. For any custom classes you include in the nib, make sure their initialization code is as minimal
as possible. Defer any time-consuming operations or memory allocations until after the class is instantiated.

Minimize Global Variables

For both applications and frameworks, be careful not to declare global variables that require significant
amounts of initialization. The system initializes global variables before calling your application’s main routine.
If you use a global variable to declare an object, the system must call the constructor or initialization method
for that object during launch time. In general, it’s best to avoid declaring objects as global variables altogether
when you can use a pointer instead.

If you are implementing a framework, or any type of reusable code module for that matter, you should also
minimize the number of global variables you declare. Each application that links to a framework acquires a
copy of that framework’s global variables. These variables might require several pages of virtual memory,
which then increases the memory footprint of the target application. An increased memory footprint can
lead to paging in the application, which has a tremendous impact on performance.

One way to minimize the global variables in a framework is to store the variables in a malloc-allocated block
of memory instead. In this technique, you access the variables through a pointer to the memory, which you
store as a global variable. Another advantage of this technique is that it allows you to defer the creation of
any global variables until the first time they are actually used. See Optimizing Your Memory Allocations in
Memory Usage Performance Guidelines for more information.

Minimize Strings File Sizes

Loading large numbers of unused strings at launch time adds an unnecessary burden to your application’s
memory footprint. In low-memory situations, a larger footprint could trigger paging and impact the launch
time of your application. If you find yourself loading hundreds of unused strings at launch time, you might
consider using separate resource files to store those strings not needed to launch the application.

10 Simplify Your Main Nib File
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Launch Time Tips

In general, minimizing the number of strings in your Localizable.strings file is a good idea and can
improve your application launch time. You must be careful, though, not to break up your remaining strings
files too much in an effort to minimize the number of strings loaded by each successive operation. Separating
your strings into many small files increases the overall amount of time spent doing file I/O, which can hinder
performance rather than improve it. Before breaking your strings files into more than a few files, you should
gather metrics to make sure it is warranted.

Reduce the Impact of Expensive Operations

Application launch time is not the time to perform any operation involving a potentially large data set. If
your application handles a scalable data set, make sure to gather performance metrics with a large data set.
Even with efficient algorithms, processing large amounts of data takes time and should be deferred until
after your application finishes launching.

If you must load data early, try to do so in a way that reduces the impact on your application’s launch time.
One way is to design your program in a way that lets you load only a portion of the data set. For a really large
data set, the user will be unable to see it all on the screen at one time anyway. Loading and displaying data
incrementally improves launch time as well as the general performance of your application. Another way is
to use a background thread to load the data shortly after the launch cycle completes.

For more information about improving the speed of your operations, see Code Speed Performance Guidelines.

Avoid Memory Turnover

Allocating and deleting memory takes time. If you find your algorithms allocating and deleting temporary
memory in a tight loop, you might think of a way to remove those allocation routines from the loop. Rather
than create a new string object each time, you could create one string object and re-initialize its contents
with each pass of the loop.

One way to determine if you’re allocating too much memory at launch time is to launch your application
running under MallocDebug or ObjectAlloc. These tools show you the allocation patterns of your application.
If you find your application allocating large amounts of temporary memory, you might go back through your
algorithms to see if there are any blocks you can reuse or recycle.

For information about the Mac OS X virtual memory system and how to allocate memory efficiently, see
Memory Usage Performance Guidelines.

Use Local Resources

At launch time, it’s important to know where your resources are located. All of your application’s critical
resources should be located inside the application bundle itself. Searching for resources outside of the bundle
has potentially serious costs, as you may not know whether the resource is local or on the network. In
particular, you should keep in mind that items such as plug-ins, loadable bundles, and user preferences may
reside somewhere out on the network. Attempting to load these resources at launch time can delay the
availability of your application.

Reduce the Impact of Expensive Operations 11
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Launch Time Tips

It’s best to avoid accessing external resources at launch time. If a resource is on a network server and the
network is not available, your application could hang while it waits for the needed resource to become
available. This is not a desirable situation and should be avoided by eliminating startup dependencies on
these types of resources. If you do need to load these resources early, try loading them after your application
has finished launching or from a background thread.

12 Use Local Resources
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Launch Time Tips

The following sections describe some techniques for gathering launch-time performance metrics.

Measuring Launch Speed

One of the more important measurements you can make during your application launch cycle, is how long
it takes before your application is ready to process user commands. The following sections describe several
techniques for measuring the launch speed of your application.

Gathering Data Using Checkpoints

One way to gather information about your application’s launch performance is to use checkpoints. Checkpoints
let you bracket any block of code you want to monitor with identifying information. In the simplest case,
you can insert a checkpoint at the beginning of your main function and again right after your initialization
code finishes and record the time at which those checkpoints were encountered.

If you need a fine grain view of your application launch, you can write checkpoint code that retrieves the
current time from the system and write it to a log file. If you do not need quite so much detail, you can
implement a simpler form of checkpoint using file-system calls. In this technique, you call a function that
touches the file system and then use fs_usage to record the time that call was made.

The following code snippet uses the stat system function as a checkpoint to mark the beginning of the
launch cycle for the TextEdit application. The function attempts to touch a non-existent file, which in this
case is just a string with the name of the checkpoint. The call itself fails but registers as an attempt to access
a file and therefore shows up in the output from fs_usage.

struct stat statbuf;
stat("START:launch TextEdit", &statbuf);

With this code inserted into your application, you can then open a Terminal window and launch fs_usage
with the -w option. You might want to redirect the output from fs_usage through the grep tool to report
entries only from your application. For example, to report entries from the TextEdit application, you would
use the following command:

% sudo fs_usage -w | grep TextEdit

With fs_usage running, launch your application. In the output from fs_usage, look for a stat call with
the name of your checkpoint. For example, inserting the checkpoint “START: launch TextEdit“ at the
beginning of the TextEdit application yields output similar to the following:

14:13:59.689 stat [2] START:launch TextEdit 0.000081 TextEdit

Measuring Launch Speed 13
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Gathering Launch Time Metrics

You can then use the timestamp on the left to determine the amount of time elapsed between the two
checkpoints. This information tells you the elapsed time taken to execute the code between those two
checkpoints.

Note: Be aware that the elapsed time between two checkpoints does not necessarily reflect the time spent
executing your application code. It is simply an indication of how long it took to complete the task given the
current activity level of the system.

For more information on using fs_usage, see “Using fs_usage to Review File I/O” (page 17).

Using Explicit Timestamps

One way to measure the speed of any operation, including launch times, is to use system routines to get the
current time at the beginning and end of the operation. Once you have the two time values, you can take
the difference and log the results.

The advantage of this technique is that it lets you measure the duration of specific blocks of code. Mac OS
X includes several different ways to get the current time:

 ■ mach_absolute_time reads the CPU time base register and is the basis for other time measurement
functions.

 ■ The Core Services UpTime function provides nanosecond resolution for time measurements.

 ■ The BSD gettimeofdayfunction (declared in <sys/time.h>)provides microsecond resolution. (Note,
this function incurs some overhead but is still accurate for most uses.)

 ■ In Cocoa, you can create an NSDate object with the current time at the beginning of the operation and
then use the timeIntervalSinceDate: method to get the time difference.

Measuring Cocoa Application Launch Times

If you are writing a Cocoa application, you can use hooks in the AppKit framework to shutdown your application
immediately after it finishes launching. Setting the NSQuitAfterLaunch environment variable to any value
causes a Cocoa-based application to exit immediately after completing its launch cycle. You can use this
variable in conjunction with fs_usage to record the initial and final activity times of the application.

Important: Setting the value of the NSQuitAfterLaunch environment variable to zero does not disable
its effect. Instead, you must use the unsetenv command to remove the definition of this variable entirely.

Sampling the Application Launch

Sampling your application launch can identify where your application is spending its time. Sampling records
which functions were called at regular intervals during your application’s runtime. Using this data, you can
identify operations that might be taking too much time and target them for optimization.

14 Sampling the Application Launch
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Gathering Launch Time Metrics

Using Shark

The Shark application provides a graphical interface for gathering call stack data at program launch time. To
gather this data, do the following:

1. Launch Shark.

2. Set the sampling configuration to Time Profile.

3. Select Process from the target popup menu. Another popup menu appears with a list of running processes
and a “Launch” option. (See Figure 1.)

4. Select the Launch option to display the Launch Process window.

5. From the Launch Process window, select the process you want to launch along with any arguments or
environment variables you need to launch the program.

6. Make sure the “Start sampling immediately” check box is enabled.

7. Click OK to dismiss the Launch Process window. Shark immediately launches the selected process and
begins sampling.

8. When your application is done launching, click the Stop button (or use the Option+Esc hotkey) to stop
sampling and view the results.

Figure 1 Sampling the launch of an application with Shark

Sampling the Application Launch 15
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Gathering Launch Time Metrics

In addition to gathering sample data, you can also use shark to trace specific function calls, including malloc
calls, at launch time. For more information about Shark, see the Shark User Manual.

Using the sample Command-Line Tool

Another way to gather launch-time performance metrics is to use the sample command-line tool. Like
Sampler, the sample tool periodically samples an application and creates a runtime graph of the functions
that were called. You can use the sampled data to see get a more detailed view of what your application was
doing during launch.

You must run samplewith the -wait option to generate information for a launching application. The -wait
option tells sample to wait for the existence of the process and to begin sampling it with the specified
interval and duration when it appears. For example, you could use the following command to sample the
launch of the TextEdit application for 5 seconds at 10 millisecond intervals.

sample TextEdit 5 10 -wait

When calling the sample tool, let the sampled application continue running until the sampling period is
over. When the sample tool writes out its report, it uses the application’s symbol table to identify the routines
that were called. If you quit the application before the sampling period is over, the symbol information may
become unavailable. You can also use the -mayDie option to try to locate the symbol information explicitly.

16 Sampling the Application Launch
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Gathering Launch Time Metrics

Accessing a file is one of the slowest operations performed on a computer, so it is important that you do it
as little as possible, especially at launch time. There is always some file access that must occur at launch time,
such as loading your executable code and reading in your main nib file, but reducing your initial dependence
on startup files can provide significant speed improvements.

Delay Any Unnecessary File I/O

If you can delay the reading of a file until after launch time, do so. The following list includes some files whose
contents you may not need until after launch:

 ■ Frameworks not used directly by your application—avoid calling code that uses non-essential frameworks
until after launch.

 ■ Nib files whose contents are not displayed immediately—make sure your nib files and awakeFromNib:
code are not doing too much at launch time. See “Simplify Your Main Nib File” (page 10) for more
information.

 ■ User preference files—user preferences may not be local so read them later if you can.

 ■ Font files—consider delaying font initialization until after the application has launched.

 ■ Network files—avoid reading files located on the network if at all possible.

If you must read a file at launch time, do so only once. If you need multiple pieces of data from the same file,
such as from a preferences file, consider reading all of the data once rather than accessing the file multiple
times.

Using fs_usage to Review File I/O

One way to identify the files used by your application at launch time is with the fs_usage tool. To monitor
launch-time activity from your application, start running fs_usage in a Terminal window before you launch
your application. The tool generates a continuous stream of data regarding all file system accesses.

Important: You must have root access to run fs_usage. You can use the su or sudo commands to run the
tool.

To view file activity for all processes with the fs_usage tool, you would enter the following at the Terminal
prompt.

% sudo fs_usage

Delay Any Unnecessary File I/O 17
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Minimizing File Access At Launch Time

If you wanted to limit the display to files accessed by a particular process, you could redirect the output
through the grep tool. For example, to display file behavior for the TextEdit application, you would enter
the following at the Terminal prompt:

% sudo fs_usage | grep TextEdit

After entering your root password, fs_usage begins running. There should be a flurry of activity generated
by fs_usage when you launch your application. Once your application finishes launching, stop fs_usage
by typing Control-C in your Terminal window.

Listing 1 shows a small portion of the output obtained during the launch of the TextEdit application. Pay
attention to the second and fourth columns, which identify the operation and the elapsed time (in seconds)
spent in that operation. You can generate additional info by passing the -w option to fs_usage or by
maximizing the width of your Terminal window.

Listing 1 Sample output from fs_usage

10:56:13 CACHE_HIT 0.000041
TextEdit
11:00:04 CACHE_HIT 0.000024 TextEdit
11:00:04 CACHE_HIT 0.000032 TextEdit
11:00:04 CACHE_HIT 0.000026 TextEdit
11:00:04 lstat tions/TextEdit.app/Contents/MacOS 0.000052 TextEdit
11:00:04 lstat tEdit.app/Contents/MacOS/TextEdit 0.000020 TextEdit
11:00:04 stat /Applications/TextEdit.app 0.000012 TextEdit
11:00:04 access /Applications/TextEdit.app 0.000008 TextEdit
11:00:04 lstat ents/Resources/DocumentWindow.nib 0.000030 TextEdit
11:00:04 statfs ents/Resources/DocumentWindow.nib 0.000019 TextEdit
11:00:04 open ents/Resources/DocumentWindow.nib 0.000022 TextEdit
11:00:04 getdirentries 0.000067 TextEdit
11:00:04 getdirentries 0.000005 TextEdit
11:00:04 close 0.000007 TextEdit

The preceding sample data shows how much time was spent getting information about the TextEdit binary
file and its document window nib file. In this example, most of the operations took only microseconds to
perform. You should search your own output to see if there are any files being accessed that aren’t really
needed, or whose access takes a significant amount of time.

18 Using fs_usage to Review File I/O
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Minimizing File Access At Launch Time

Prebinding is the process of computing the addresses for symbols imported by a shared library or application
prior to their use. Resolving these addresses before their use reduces the amount of work performed by the
dynamic loader (dyld) at runtime and results in faster launch times for applications.

In Mac OS X v10.4, dyld was improved in a way that eliminated the need for prebinding information in most
situations. The system libraries are now the only executables that are still prebound, and they are prebound
in a way that optimizes performance on the target system. Because of the improved prebinding of the system
libraries, applications and third-party libraries no longer need to be prebound. A side benefit to this new
behavior is that applications now have more usable address space than in previous versions of the operating
system.

If you are developing applications for versions of Mac OS X prior to v10.4, prebinding is considered optional.
Changes in v10.3.4 made application prebinding unnecessary but applications running on earlier versions
of the operating system still received some benefits from prebinding. If you feel your application launches
slowly on pre-10.3.4 systems, build your application prebound and see if launch time improves.

If you are developing frameworks or other dynamic shared libraries for versions of Mac OS X prior to 10.4, it
is still recommended that you specify a base address for your library. Specifying this address allows prebinding
to occur for applications that use your library. If your library is running in Mac OS X v10.4 and later, specifying
a base address is optional but can be useful for debugging shared libraries. The atos command-line tool
lets you identify symbols located in memory. It is easier to identify specific symbols if your library has a known
base address.

The following sections tell you how to prebind your application and framework projects and how to update
that prebinding information if it becomes invalid.

Prebinding Your Code

Prior to Mac OS X v10.4, prebinding was enabled for all new projects built using Xcode. In Mac OS X v10.4
and later, this setting is no longer enabled due to changes that make prebinding unnecessary. If you aren’t
sure if your project is being built with prebinding enabled, you can check the build settings for your project.
Prebinding settings are set on a per-target basis in the Build options view of the Xcode inspector window.
If the “Prebinding” option is enabled for your target, it is being built with prebinding information.

If you are not using Xcode, there are several other ways to enable prebinding of your application or framework.
During the link phase, the ld tool looks to see if the LD_PREBIND environment variable is set. If it is, the tool
enables prebinding unless a command-line option specifically disables it. If you are calling ld from the
command-line, you can pass it the -prebind option to enable prebinding explicitly.

If you are developing a framework for versions of Mac OS X prior to 10.4, you should always build and ship
it with prebinding enabled. If your framework is not prebound, applications that reference your framework
cannot be prebound either, which can impact their launch time. In addition to enabling prebinding, you
need to specify a preferred memory address for your framework. You do this by passing the -seg1addr

Prebinding Your Code 19
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

option to ld. In Xcode, you add this option to the "Other Linker Flags" build setting. From the command line,
simply include this option along with the other linker options in your makefile. For more information about
using this option, see the ld man page.

Caveats for Prebinding

If you build with prebinding enabled, there are still times when ldmay be unable to prebind your application.
Prebinding fails if there are any symbol-name conflicts in the linked libraries or if the preferred address spaces
for any libraries overlap. Prebinding also fails if any linked frameworks are not themselves prebound. When
prebinding fails, the dynamic linker has to readjust the addresses of symbols in the affected libraries, which
can slow down launch time.

In order to minimize symbol-name conflicts, Apple introduced a two-level namespace mechanism in Mac
OS X 10.0.4. Two-level namespaces use both the library name and the symbol name to identify each symbol,
which reduces the chances of a collision. An executable built with the two-level namespace format is still
compatible with versions of Mac OS X prior to version 10.0.4. By default, Xcode builds all new projects using
two-level namespaces.

Apple builds and ships its libraries with prebinding enabled and in a way that makes sure there are no
address-space overlaps. However, other applications may install libraries and frameworks whose prebound
addresses do overlap. Table 1 lists the virtual memory address ranges available to your code on versions of
Mac OS X prior to version 10.2. This table also lists the address ranges reserved for Apple-supplied frameworks
and services. You can use this information to choose an appropriate location for your framework and library
code.

Table 1 Prebinding address ranges prior to Mac OS X 10.2)

UsageAddress range

Application and user framework address range.0x00000000 to 0x410FFFFF

Address range reserved for use by Apple frameworks. Do not use this
address range for your libraries.

0x41100000 to 0x412FFFFF

Address range is preferred for use by Apple frameworks0x41300000 to 0x606DFFFF

Additional space available for third-party application and framework code.0x606E0000 to 0x6FFFFFFF

Address range reserved for use by Apple frameworks. Do not use this
address range.

0x70000000 to 0x8FFFFFFF

Additional space available for third-party application and framework code.0x90000000 to 0x9FFFFFFF

Preferred for use by the Window Manager.0xA0000000 to 0xAFFFFFFF

Preferred for use by thread stacks.0xB0000000 to 0xBFFFFFFF

Additional space available for third-party application and framework code.0xC0000000 to 0xFEFFFFFF

Preferred for use by the pasteboard and other system services.0xFF000000 to 0xFFBFFFFF

Additional space available for third-party application and framework code.0xFFC00000 to 0xFFFFFFFF

20 Caveats for Prebinding
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

Table 2 lists the virtual memory address ranges available with Mac OS X version 10.2 through version 10.3.x.
In cases where an address range is preferred by Apple frameworks or services, you may still be able to use
portions of that range. The availability of a given range depends on which frameworks or services your
application uses.

Table 2 Prebinding address ranges for Mac OS X v10.2 to v10.3.x

UsageAddress range

Application address range.0x00000000 to 0x4FFFFFFF

Preferred address range for Apple frameworks. Applications may use this
range as necessary.

0x50000000 to 0x8FDFFFFF

Reserved for use by Apple frameworks. Do not use this address range.0x8FE00000 to 0xAFFFFFFF

Preferred address range for the application’s main thread. The Window
Manager may also use portions of this range. Applications may use this
range as necessary.

0xB0000000 to 0xBFFFFFFF

Additional space available for third-party application and framework code.0xC0000000 to 0xEBFFFFFF

Preferred for use by the Apple prebinding tools. Applications may use this
range as necessary.

0xEC000000 to 0xEFFFFFFF

Preferred for use by additional thread stacks. Applications may use this
range as necessary.

0xF0000000 to 0xFDFFFFFF

Reserved for use by the pasteboard and other system services. Do not use
this address range.

0xFE000000 to 0xFFBFFFFF

Preferred for use by other system services. Applications may use this range
as necessary.

0xFFC00000 to 0xFFFDFFFF

Reserved for use by system services. Do not use this address range.0xFFFE0000 to 0xFFFFFFFF

Table 3 lists the virtual memory address ranges available with Mac OS X version 10.4 and later. This version
consolidates the system libraries into a single address range and frees up more contiguous space for your
application to use.

Table 3 Prebinding address ranges for Mac OS X v10.4 and later

UsageAddress range

Application address range.0x00000000 to 0x8FDFFFFF

Reserved exclusively for Apple system libraries. Do not use this address
range.

0x8FE00000 to 0xAFFFFFFF

Preferred address range for the application’s main thread.0xB0000000 to 0xBFFFFFFF

Additional space available for third-party applications and framework code.0xC0000000 to 0xEBFFFFFF

Caveats for Prebinding 21
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

UsageAddress range

Preferred for use by the Apple prebinding tools. Applications may use this
range as necessary.

0xEC000000 to 0xEFFFFFFF

Preferred for use by additional thread stacks. Applications may use this
range as necessary.

0xF0000000 to 0xFDFFFFFF

Reserved for use by the pasteboard and other system services. Do not use
this address range.

0xFE000000 to 0xFFBFFFFF

Preferred for use by other system services. Applications may use this range
as necessary.

0xFFC00000 to 0xFFFDFFFF

Reserved for use by system services. Do not use this address range.0xFFFE0000 to 0xFFFFFFFF

An application’s binary code is loaded beginning at address 0x00000000. You should never define a framework
with a low address range as it will very likely collide with the address range of any applications that use it.
Instead, use an address range that is higher in the available address space.

Determining if Your Executable Is Prebound

The simplest way to determine if your Mach-O executable is prebound is to use the otool command-line
tool to examine the object file. Running this tool with the -h and -v options displays the Mach header
information for the executable. If your executable is prebound, you should see the word PREBOUND in the
flags section of the header. The following code listing shows the output for the TextEdit application.

Mach header
 magic cputype cpusubtype filetype ncmds sizeofcmds flags
 MH_MAGIC PPC ALL EXECUTE 54 8108 NOUNDEFS DYLDLINK PREBOUND
 TWOLEVEL

Prior to Mac OS X v10.4, another way to determine if a Mach-O executable is prebound is to enable the
prebinding debugging option and launch your executable. (This does not work for applications in Mac OS
X v10.4 and later because prebinding for main executables is ignored.) From the csh shell, you can do this
using the following steps:

1. Launch Terminal.

2. At the Terminal prompt, type the following:

setenv DYLD_PREBIND_DEBUG

3. At the Terminal prompt, enter the path to your application’s executable file. For TextEdit, you would
enter something like the following:

/Applications/TextEdit.app/Contents/MacOS/TextEdit

If your application is prebound, the dyld tool outputs the message prebinding enabled to the command
line. If you see messages about some number of two-level prebound libraries being used, then your application
is only partially prebound.

22 Determining if Your Executable Is Prebound
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

Fixing Prebinding Information

In all versions of Mac OS X, you should not need to do anything to keep your prebinding information up-to-date
on the user’s system. On versions of Mac OS X that require it, the system automatically fixes prebinding
information as needed. In addition, the Installer program runs the update_prebinding tool at the end of
the install cycle to update prebinding information. You should never need to call this tool directly.

Fixing Prebinding Information 23
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

24 Fixing Prebinding Information
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Prebinding Your Application

This table describes the changes to Launch Time Performance Guidelines.

NotesDate

Updated prebinding guidelines.2006-04-04

Explained how to set the preferred address for frameworks. Added information
about what happens when prebinding fails.

2005-08-11

Updated prebinding information for Mac OS X v10.4.2005-06-04

Replaced Sampler examples with Shark examples.2005-04-29

Document title changed. Old title was Launch Time Performance.

Corrected prebinding address ranges.2004-05-27

Updated address ranges pertaining to prebinding.2004-04-15

Minor bug fixes for Mac OS X 10.3.2003-07-25

First revision of this programming topic. Some of the information appeared in
the document Inside Mac OS X: Performance.

2003-05-15

25
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

26
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

applicationDidFinishLaunching method 9
awakeFromNib method 9

C

checkpoints 13

D

data, loading 11

F

files, loading 17
font files 17
frameworks, and global variables 10
fs_usage tool 13, 17

G

gettimeofday function 14
global variables 10

I

initialization code, delaying 9

L

launch time

measuring speed 13
sampling 14–16

M

mach_absolute_time function 14
main event loop 9
memory

allocating 11

N

network files 17
nib files 17

instantiation process 10
simplifying 10

NSQuitAfterLaunch environment variable 14

P

prebinding 19–23
preference files 17

R

resources, using efficiently 11

S

sample tool 16
Shark 15
stat function 13
subsystems, initializing 9

27
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Index

T

timeIntervalSinceDate: method 14
timestamps 14
tools
fs_usage 13, 17
sample 16
Shark 15

U

UpTime function 14

28
2006-04-04 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

	Launch Time Performance Guidelines
	Contents
	Figures, Tables, and Listings
	Introduction
	Launch Time Tips
	Delay Initialization Code
	Simplify Your Main Nib File
	Minimize Global Variables
	Minimize Strings File Sizes
	Reduce the Impact of Expensive Operations
	Avoid Memory Turnover
	Use Local Resources

	Gathering Launch Time Metrics
	Measuring Launch Speed
	Gathering Data Using Checkpoints
	Using Explicit Timestamps
	Measuring Cocoa Application Launch Times

	Sampling the Application Launch
	Using Shark
	Using the sample Command-Line Tool

	Minimizing File Access At Launch Time
	Delay Any Unnecessary File I/O
	Using fs_usage to Review File I/O

	Prebinding Your Application
	Prebinding Your Code
	Caveats for Prebinding
	Determining if Your Executable Is Prebound
	Fixing Prebinding Information

	Revision History
	Index
	A
	C
	D
	F
	G
	I
	L
	M
	N
	P
	R
	S
	T
	U

