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P R E F A C E  
About This Book

This book, Mac OS X Numerics, is the reference for the numerics environment 
for Mac OS X. Mac OS X numerics is an environment in which floating-point 
operations are performed quickly and as accurately as possible. The core 
features used in Mac OS X numerics are not exclusive to Apple Computer; 
rather they are taken from IEEE Standard 754, the IEEE Standard for Binary 
Floating-point Arithmetic, augmented by IEEE standard ISO/IEC 9899, 
Programming Languages - C (more commonly referred to as referred to as 
C99). The numerics environment specified by the IEEE Standard 754 is called 
the IEEE standard numerics environment, or just IEEE standard numerics.

In one sense, IEEE standard numerics is an abstraction: a definition of an 
environment for computer numerics, independent of a specific computer. To 
have an instance of this environment, you need a language in which to 
describe operations and an implementation unit to carry them out. On Mac OS 
X, the IEEE standard numerics environment is implemented by the Libm math 
library, which complies with IEEE Standard 754 and C99.

The first part of this book describes the IEEE standard numerics definition, 
and the remaining parts describe how numerics is implemented in Mac OS X 
through Libm.

You should read this book if

■ you want to create Mac OS X applications that use floating-point operations

■ you want to learn more about IEEE Standard 754 and C99 standard for 
binary floating-point arithmetic

What’s in This Book 0

Part 1 describes the features shared by all IEEE standard numerics 
implementations and includes examples that show how to use IEEE standard 
numerics effectively. These examples are written in C, although other 
high-level languages might provide support for IEEE standard numerics. Read 
Part 1 to find out how Mac OS X implements IEEE Standard 754 in general or 
to learn more about the standard.

Part 2 explains the numeric implementation in compilers and in the Libm 
math library. This library is provided to implement both IEEE Standard 754 
and C99. Part 2 is for use exclusively by C language programmers.

The appendixes provide supplementary reference material. There are 
summaries of the Libm functions for your reference. 
xi
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The bibliography at the end of this book lists some of the major sources on 
numerics. Also at the end of this book are a glossary of terms and an index.

Conventions Used in This Book 0

Inside Macintosh uses various conventions to present information. Words that 
require special treatment appear in specific fonts or font styles. Certain 
information appears in special formats so that you can scan it quickly.

Special Fonts 0
All code listings, reserved words, and the names of actual data structures, 
constants, fields, parameters, and routines are shown in Courier (this is 
Courier).

Words that appear in boldface are key terms or concepts and are defined in 
the glossary at the end of this book.

When a word or character appears in italics, it represents a variable that is 
replaced with a literal value in an actual computation. For example,

means take the square root of any floating-point value x, such as 1.45 or 2.789. 

When a character appears in italics in one of the tables for special cases in 
Chapter 5, it represents a nonzero, finite floating-point number.

Types of Notes 0
There are several types of notes used in Inside Macintosh.

Note
A note like this contains information that is interesting but possibly not 
essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an 
understanding of the main text. ▲

▲ W AR N I N G

Warnings like this indicate potential problems that you should be aware 
of as you design your application. Failure to heed these warnings could 
result in system crashes or loss of data. ▲

sqrt x( )
xii
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For More Information 0

See http://developer.apple.com and, in particular, http://
developer.apple.com/samplecode/Sample_Code/Runtime_Architecture.htm 
for more information on Mac OS X and the implementation of its numerics 
environment.
xiii
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The IEEE Standard Numerics 
Environment 1

This part is a general description of IEEE standard numerics. Chapter 1 
describes the standards for floating-point arithmetic that the IEEE standard 
specifies and discusses why the standard is important. If you are unfamiliar 
with how computers perform floating-point arithmetic, you should read 
Chapter 1. Chapters 2 through 5 describe how the standard is implemented. 
They describe the basic features shared by all IEEE standard numerics 
implementations, including

■ the numeric data formats

■ the special values NaN (Not-a-Number) and Infinity

■ the methods by which floating-point expressions are evaluated

■ environmental controls, such as setting the rounding direction and 
handling exceptions

■ conversions between the different numeric formats

■ operations supported by IEEE standard numerics

Although Part 1 uses the C programming language in its examples, many of 
the facilities of the the Mac OS X implementation of the IEEE standard 
numerics (the Libm math library) are accessible to users of virtually any 
high-level programming language, as well as to assembly-language 
programmers. 
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IEEE Standard Arithmetic 1

This chapter describes why IEEE standard floating-point arithmetic is important and why 
you should use it when programming. The Libm math library is an implementation of 
the IEEE Standard 754 for binary floating-point arithmetic (augmented by the IEEE 
Standard 9899 for C language numerics). This chapter explains the benefits that the Libm 
math library provides by conforming to this standard. It provides an overview of the 
IEEE standard—describing the scope of the standard and explaining how following it 
improves the accuracy of your programs. It provides some examples to demonstrate how 
much easier programming is when the standard is followed.

You should read this chapter if you are unfamiliar with IEEE Standard 754 and you want 
to find out more about it. If you are already familiar with this standard but you would 
like to find out how the Libm math library implements them, you can skip to the next 
chapter.

About the IEEE Standard 1

The Libm math library in Mac OS X is a floating-point environment that complies with 
IEEE Standard 754 (as well as the IEEE Standard 9899). There is another IEEE standard 
for floating-point arithmetic, the IEEE Standard 854 for radix-independent floating-point 
arithmetic, which we do not deal with in this document.

The IEEE standard ensures that computers represent real numbers as accurately as 
possible and that computers perform arithmetic on real numbers as accurately as 
possible. Although there are infinitely many real numbers, a computer can represent only 
a finite number of them. Computers represent real numbers as binary floating-point 
numbers. Binary floating-point numbers can represent real numbers exactly in relatively 
few cases; in all other cases the representation is approximate. For example, 1/2 (0.5 in 
decimal) can be represented exactly in binary as 0.1. Other real numbers that can be 
represented exactly in decimal have repeating digits in binary and hence cannot be 
represented exactly, as shown in Table 1-1. For example, 1/10, or decimal 0.1 exactly, is 
0.000110011 . . . in binary. Errors of this kind are unavoidable in any computer 
approximation of real numbers. Because of these errors, sums of fractions are often 
slightly incorrect. For example, 4/3 – 5/6 is not exactly equal to 1/2 on any computer, 
even on computers that use IEEE standard arithmetic.

The IEEE standard defines data formats for floating-point numbers, shows how to 
interpret these formats, and specifies how to perform operations (known as 
floating-point operations) on numbers in these formats. It requires the following types of 
floating-point operations:

■ basic arithmetic operations (add, subtract, multiply, divide, square root, remainder, 
and round-to-integer)
About the IEEE Standard 1-3
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■ conversion operations, which convert numbers to and from the floating-point data 
formats

■ comparison operations, such as less than, greater than, and equal to

■ environmental control operations, which manipulate the floating-point environment

The IEEE standard requires that the basic arithmetic operations have the following 
attributes:

■ The result must be accurate in the precision in which the operation is performed. 
When a numerics environment is performing a floating-point operation, it calculates 
the result to a predetermined number of binary digits. This number of digits is called 
the precision. The result must be correct to the last binary digit.

■ If the result cannot be represented exactly in the destination data format, it must be 
changed to the closest value that can be represented, using rounding. See the section 
“Careful Rounding” on page 1-4 for more information on why careful rounding is 
important.

■ If an invalid input is provided or if the result cannot be represented exactly, a 
floating-point exception must be raised. See the section “Exception Handling” on 
page 1-6 for a description of why exception handling is important in floating-point 
arithmetic.

Careful Rounding 1
If the result of an IEEE arithmetic operation cannot be represented exactly in binary 
format, the number is rounded. IEEE arithmetic normally rounds results to the nearest 
value that can be represented in the chosen data format. The difference between the exact 
result and the represented result is the roundoff error.

The IEEE standard requires that users be able to choose to round in directions other than 
to the nearest value. For example, sometimes you might want to know that rounding has 
not invalidated a computation. One way to do that would be to force the rounding 
direction so that you can be sure your results are higher (or lower) than the exact answer. 
Because it conforms to the IEEE standard, Mac OS X numerics gives you a means of 

Table 1-1 Approximation of real numbers

Fraction
Decimal 
approximation* Binary approximation†

1/10 0.1000000000‡ 0.000110011001100110011001101

1/2 0.5000000000‡ 0.100000000000000000000000‡

4/3 1.333333333 1.01010101010101010101011

5/6 0.8333333333 0.110101010101010101010101

4/3 – 5/6 0.4999999997 0.100000000000000000000001

* 10 significant decimal digits
† 23 significant binary digits
‡ Exact value
1-4 About the IEEE Standard
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doing that. Fully developed, this strategy is called interval arithmetic (Kahan 1980). For 
complete details on rounding directions, see Chapter 3, “Environmental Controls.” 

The following example is a simple demonstration of the advantages of careful rounding. 
Suppose your application performs operations that are mutually inverse; that is, 
operations ,  ,  such that . There are many such 
operations, such as

,

,

Suppose  is the computed value of , and  is the computed value of . 
Because many numbers cannot be represented exactly in binary, the computed values 

 and  will often differ from  and . Even so, if both functions are 
continuous and well behaved, and if you always round  and  to the nearest 
value, you might expect your computer arithmetic to return x when it performs the cycle 
of inverse operations, . It is difficult to predict when this relation will hold for 
computer numbers. Experience with other computers says it is too much to expect, but 
IEEE arithmetic very often returns the correct inverse value.

The reason for IEEE arithmetic’s good behavior with respect to inverse operations is that 
it rounds so carefully. Even with all operations in, say, single precision, it evaluates the 
expression 3 × 1/3 to 1.0 exactly; some computers that do not follow the standards do not 
evaluate this expression exactly. If you find that surprising, you might enjoy running the 
code example in Listing 1-1 on a computer that does not use IEEE arithmetic and then on 
a computer using Mac OS X. The default rounding provided by the numerics 
environment gives good results; the Mac OS X computer prints “No failures.” The 
program will fail on a computer that doesn’t have IEEE arithmetic—in particular, that 
doesn’t round halfway cases in the same way that the IEEE standard’s default rounding 
direction mode does.

Listing 1-1 Inverse operations

#include <stdio.h>
main()
{

float x, y, a, b;
int ix, iy, 
int nofail = 1; /* Boolean, initialized to true */

for (ix = 1; ix <= 12; ix++) {
if ((ix != 7) && (ix != 11)) { /* x is a sum of powers of two */

for (iy = 1; iy <= 50; iy++) {
x = ix;
y = iy;
a = y / x;

y f x( )= x g y( )= g f x( )( ) x=

y x2= x y=

y 375x= x y 375⁄=

F x( ) f x( ) G y( ) g y( )

F x( ) G y( ) f x( ) g y( )
F x( ) G y( )

G F x( )( )
About the IEEE Standard 1-5
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b = x * a; /* b == (x * y / x) == y */
if (b != y) {

nofail = 0; /* false */
printf("It failed for x = %d, y = %d\n", ix, iy);

}
}

}
}
if (nofail) printf("No failures\n");

}

Exception Handling 1
The IEEE standard defines five exceptions that indicate when an exceptional event has 
occurred. They are

■ invalid operation

■ underflow

■ overflow

■ division by zero

■ inexact result

There are three ways your application can deal with exceptions:

■ Continue operation.

■ Stop on exceptions if you think they will invalidate your results.

■ Include code to do something special when exceptions happen.

The IEEE standard lets programs deal with the exceptions in reasonable ways. It defines 
the special values NaN (Not-a-Number) and Infinity, which allow a program to continue 
operation; see the section “Interpreting Floating-Point Values” on page 2-4 in 
“Floating-Point Data Formats”. The IEEE standard also defines exception flags, which a 
program can test to detect exceptional events.

IEEE arithmetic allows the option to stop computation when exceptional events arise; see 
“Trapping Floating-point Exceptions” on page 7-14 for details. But there are good reasons 
why you might prefer not to have to stop. The following examples illustrate some of 
those reasons.

Example: Finding Zero Return Values 1

Suppose you want to find the first positive integer that causes a function to cross the 
x-axis. A simple version of the code might look like this:

for (i = 0; i < MAXVALUE; i++)
if (func(i) == 0)

printf("It crosses when x = %g\n", i);
1-6 About the IEEE Standard
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Further, suppose that func was defined like this:

double func(double x)
{

return(sqrt(x - 3));
}

The intent of the for loop is to find out where the function crosses the x-axis and print 
out that information; it does not really care about the value returned from func unless 
the value is 0. However, this loop will fail when i is less than 3 because you cannot take 
the square root of a negative number. With a C compiler that supports the IEEE standard, 
performing the square root operation on a negative number returns a NaN, allowing the 
loop to produce the desired result. To obtain the desired result on all computers, 
something more cumbersome would have to be written. By allowing the square root of a 
negative number, the IEEE standard allows more straightforward code.

This program fragment demonstrates the principal service performed by NaNs: they 
permit deferred judgments about variables whose values might be unavailable (that is, 
uninitialized) or the result of invalid operations. Instead of having the computer stop a 
computation as soon as a NaN appears, you might prefer to have it continue if whatever 
caused the NaN is irrelevant to the solution.

Example: Searching Without Stopping 1

Suppose a program has to search through a database for a maximum value that has to be 
calculated. The search loop might call a subroutine to perform some calculation on the 
data in each record and return a value for the program to test or compare. The code 
might look like this:

max = –INFINITY;
for (i = 0; i < MAXRECORDS; i++)

if((temp = computation(record[i].value)) > max)
max = temp;

Suppose that the value field of the record structure is not a required field when the 
data is entered, so that for some records, data might be nonexistent or invalid. In many 
machines, that would cause the program to stop. To avoid having the program stop 
during the search, you would have to add tests for all the exceptional cases. With IEEE 
standard numerics, the subroutine computation does not stop for nonexistent or 
invalid data; it simply returns a NaN.

This is another example of the way arithmetic that includes NaNs allows the program to 
ignore irrelevancies, even when they cause invalid operations. Using arithmetic without 
NaNs, you would have to anticipate all exceptional cases and add code to the program to 
handle every one of them in advance. With NaNs, you can handle all exceptional cases 
after they have occurred, or you can simply ignore them, as in this example.
About the IEEE Standard 1-7
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Example: Parallel Resistances 1

Like NaNs, Infinities enable the program to handle cases that otherwise would require 
special programming to keep from stopping. Here is an example where arithmetic with 
Infinities is entirely reasonable.

When three electrical resistances R1, R2, and R3 are connected in parallel, as shown in 
Figure 1-1, their effective resistance is the same as a single resistance whose value R123 is 
given by this formula: 

Figure 1-1 Parallel resistances

The formula gives correct results for positive resistance values between 0 (corresponding 
to a short circuit) and ∞ (corresponding to an open circuit) inclusive. On computers that 
do not allow division by zero, you would have to add tests designed to filter out the cases 
with resistance values of zero. (Negative values can cause trouble for this formula, 
regardless of the style of the arithmetic, but that reflects their troublesome nature in 
circuits, where they can cause instability.)

Arithmetic with Infinities usually gives reasonable results for expressions in which each 
independent variable appears only once.

Using IEEE Arithmetic 1

This section provides some example computations and describes how using IEEE 
arithmetic with Mac OS X makes programming these computations easier.

R123 1
1

R1
------- 1

R2
------- 1

R3
-------+ +

-----------------------------------=

A B A' B'

R1

R2

R3

R123
1-8 Using IEEE Arithmetic
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Evaluating Continued Fractions 1
Consider a typical continued fraction .

An algebraically equivalent expression is :

Both expressions represent the same rational function, one whose graph is smooth and 
unexceptional, as shown in Figure 1-2.

Figure 1-2 Graph of continued fraction functions cf(x) and rf(x)

Although the two functions  and  are equal, they are not computationally 
equivalent. For instance, consider  at the following values of x:

Whereas  is perfectly well behaved, those values of x lead to division by zero when 
computing  and cause many computers to stop. In IEEE standard arithmetic, 
division by zero produces an Infinity. Therefore, Mac OS X has no difficulty in computing 

 for those values.

cf x( )

cf x( ) 4 3

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
------------------------------------------------–

-------------------------------------------------------------------–=

rf x( )

rf x( ) 622 x 751 x 324 x 59 4x–( )–( )–( )–
112 x 151 x 72 x 14 x–( )–( )–( )–

----------------------------------------------------------------------------------------=

10

5

0
–5 0 5 10

rf x( ) cf x( )
rf x( )

x 1= rf 1( ) 7=

x 2= rf 2( ) 4=

x 3= rf 3( ) 8 5⁄=

x 4= rf 4( ) 5 2⁄=

rf x( )
cf x( )

cf x( )
Using IEEE Arithmetic 1-9
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On the other hand, simply computing  instead of  can also cause problems. If 
the absolute value of x is so big that overflows the chosen data format, then  
approaches  but computing  encounters , 
which yields something else. Mac OS X returns NaN for such cases; some other machines 
return . Also, at arguments x between 1.6 
and 2.4, the formula  suffers from roundoff error much more than  does. For 
those reasons, computing  is preferable to computing  if division by zero 
works the way it does in Mac OS X, that is, if it produces Infinity instead of stopping 
computation.

In general, division by zero is an exceptional event not merely because it is rare but 
because different applications require different consequences. If you are not satisfied with 
the consequences supplied by the default Mac OS X environment, you can choose other 
consequences by making the program test for NaNs and Infinities (or for the flags that 
signal their creation).

Rather than sprinkle tests throughout the program in an attempt to keep exceptions from 
occurring, you might prefer to put one or two tests near the end of the code to detect the 
(rare) occurrence of an exception and modify the results appropriately. That is more 
economical than testing every divisor for zero (since zero divisors are rare).

Computing the Area of a Triangle 1
Here is a familiar and straightforward task that fails when subtraction is aberrant: 
Compute the area  of a triangle given the lengths  of its sides. The 
formula given here performs this calculation almost as accurately as its individual 
floating-point operations are performed by the computer it runs on, provided the 
computer does not drop digits prematurely during subtraction. The formula works 
correctly, and provably so, on a wide range of machines, including all implementations of 
the IEEE standards.

The classical formula, attributed to Heron of Alexandria, is

where .

For needle-shaped triangles, that formula gives incorrect results on computers even when 
every arithmetic operation is correctly rounded. For example, Table 1-2 shows an extreme case 
with results rounded to five decimal digits. With the values shown, rounded 

 must give either 100.01 or 100.02. Substituting those values for s in 
Heron’s formula yields either 0.0 or 1.5813 instead of the correct value 1.000025.

rf x( ) cf x( )
x 4 cf x( )

cf ∞( ) 4= rf x( ) overflow( ) underflow( )⁄

maximum  value ( ) maximum  value ( )⁄  1=
rf x( ) cf x( )

cf x( ) rf x( )

A x y z, ,( ) x y z, ,

A x y z, ,( ) s s x–( ) s y–( ) s z–( )=

s x y z+ +( ) 2⁄=

x y z+( )+( ) 2⁄
1-10 Using IEEE Arithmetic
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Evidently, Heron’s formula would be a very bad way for computers to calculate ratios of 
areas of nearly congruent needle-shaped triangles.

A good procedure, numerically stable on machines that do not truncate prematurely 
during subtraction (such as machines that use IEEE arithmetic), is the following:

1. Sort  so that .

2. Test for  to see whether the triangle exists.

3. Compute 

 

A

 

 by the formula

▲ W AR N I N G

 

This formula works correctly only if you do not remove any of the 
parentheses.

 

▲

 

The success of the formula depends upon the following easily proved theorem:

T

 

HEOREM

 

If p and q are represented exactly in the same conventional floating-point format, and 
if , then  too is representable exactly in the same format (unless  suffers 
underflow, something that cannot happen in IEEE arithmetic).

 

The theorem merely confirms that subtraction is exact when massive cancellation occurs. 
That is why each factor inside the square root expression is computed correctly to within 
a unit or two in its last digit kept, and 

 

A

 

 is not much worse, on computers that subtract 
the way ta PowerPC microprocessor does. On machines that flush tiny results to zero, 
this formula for 

 

A

 

 fails because can underflow.

 

About the FPCE Technical Report 1

 

Even though many computers now conform to the IEEE standard, the standard has 
suffered from a lack of high-level portability. The reason is that the standard does not 
define bindings to high-level languages; it only defines a programming environment. For 

 Table 1-2  Area using Heron’s formula  

  Correct
Rounding 
downward

Roundin
g
upward

 

x

 

100.01 100.01 100.01

 

y

 

99.995 99.995 99.995

 

z

 

0.025 0.025 0.025

(

 

x

 

+ (

 

y

 

+

 

z

 

) ) / 2 100.015 100.01 100.02

 

A

 

1.000025 0.0000 1.5813

x y z, , x y z≥ ≥

z x y–≥

A x y z+( )+( ) z x y–( )–( ) x y z–( )+( )( ) 4⁄=

1 2⁄ p q⁄ 2≤ ≤ p q– p q–

p q–( )
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instance, the standard defines data formats that should be supported but does not tell 
how these data formats should map to variable types in high-level languages. It also 
specifies that the user must be able to control rounding direction but falls short of 
defining how the user is able to do so. 

However, the definition of a binding is in progress for the C programming language. The 
Floating-Point C Extensions (FPCE) branch of the Numerical C Extensions Group 
(NCEG), or ANSI X3J11.1, has proposed a general floating-point specification for the 
C programming language, called the FPCE technical report, that contains additional 
specifications for implementations that comply with IEEE floating-point standards 754 
and 854. 

The FPCE technical report not only specifies how to implement the requirements of the 
IEEE standards, but also requires some additional functions, called transcendental 
functions (sometimes called elementary functions). These functions are consistent with 
the IEEE standard and can be used as building blocks in numerical functions. The 
transcendental functions include the usual logarithmic and exponential functions, as well 
as  and ; financial functions for compound interest and annuity 
calculations; trigonometric functions; error and gamma functions; and a random number 
generator. The PowerPC Numerics library, contained in the file MathLib, implements the 
transcendental functions. 

Part 2 of this book describes how PowerPC Numerics complies with the 
recommendations in the FPCE technical report. 

ln 1 x+( ) e x 1–
1-12 About the FPCE Technical Report
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Floating-Point Data Formats 2

This chapter describes the data formats your Mac OS X application can use to represent 
floating-point numbers. It begins by discussing in general the methods Libm uses to store 
and interpret floating-point values and by explaining why those methods were chosen. 
The chapter introduces the special values zero, NaN (Not-a-Number), and Infinity and 
explains why these special values are necessary. Next is an in-depth description of the 
numeric data formats with a discussion of how these formats represent floating-point 
values. At the end of the chapter, you will find a table comparing the size, range, and 
precision of the numeric data formats. This table can help you choose which data format 
is best for your application. 

You should read this chapter to learn about the floating-point data formats available on 
Macintosh computers using Mac OS X and to learn more about how your computer 
encodes and manipulates floating-point numbers. 

About Floating-Point Data Formats 2

The IEEE standard defines several floating-point data formats, one required and the 
others recommended. IEEE requires that each data format have a sign bit (s), an 
exponent field (e), and a fraction field (f). For each format, it lists requirements for the 
minimum lengths of these fields. For example, the standard describes a 32-bit single 
format whose exponent field must be 8 bits long and whose fraction field must be 23 bits 
long. Figure 2-1 shows the IEEE requirements for the single format. (In this figure, msb 
stands for most significant bit and lsb stands for least significant bit.)

Figure 2-1 IEEE single format

The only required data format is the 32-bit single format. A 64-bit double format is 
strongly recommended. The IEEE standard also describes two data formats called 
single-extended and double-extended and recommends that floating-point environments 
provide the extended format corresponding to the widest basic format (single or double) 
they support.

1 23

s e f

msb lsb msb lsb

8
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To conform to the IEEE requirements on floating-point data formats, Mac OS X provides 
two data formats: single (32 bits) and double (64 bits). The single and double formats are 
implemented exactly as described in the standard.

Table 2-1 shows how the two numeric data formats correspond to C variable types. For 
more information about data types in C, refer to “Numeric Data Types in C” on page 6-3.

The IEEE standard also makes requirements about how the values in these data formats 
are interpreted. Mac OS X follows these requirements exactly. They are described in the 
next section.

Interpreting Floating-Point Values 2

Regardless of which data format (single or double) you use, the numerics environment 
uses the same basic method to interpret which floating-point value the data format 
represents. This section describes that method.

Every floating-point data format has a sign bit, an exponent field, and a fraction field. 
These three fields provide binary encodings of a sign (+ or –), an exponent, and a 
significand, respectively, of a floating-point value. The value is interpreted as

where 

± is the sign stored in the sign bit (1 is negative, 0 is positive).

significand has the form .  . . .  where  . . .  are 
the bits in the fraction field and  is an implicit bit whose value is 
interpreted as described in the sections “Normalized Numbers” and 
“Denormalized Numbers.” The significand is sometimes called the 
mantissa.

exponent is the value of the exponent field. 

bias is the bias of the exponent. The bias is a predefined value (127 for single 
format, 1023 for double formats) that is added to the exponent when it is 
stored in the exponent field. When the floating-point number is evaluated, 
the bias is subtracted to return the correct exponent. The minimum biased 
exponent field (all 0’s) and maximum biased exponent field (all 1’s) are 
assigned special floating-point values (described in the next several 
sections). 

Table 2-1 Names of data types

PowerPC Numerics data format C type

IEEE single float

IEEE double double

  significand 2 exponent bias – ×±

b0 b1b2b3 bprecision 1– b1b2b3 bprecision 1–

b0
2-4 Interpreting Floating-Point Values
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In a numeric data format, each valid representation belongs to exactly one of these 
classes, which are described in the sections that follow:

 

■

 

normalized numbers

 

■

 

denormalized numbers

 

■

 

Infinities

 

■

 

NaNs (signaling or quiet)

 

■

 

zeros

 

Normalized Numbers 2

 

The numeric data formats represent most floating-point numbers as 

 

normalized 
numbers,

 

 meaning that the implicit leading bit (  on page 2-4) of the significand is 1. 
Normalization maximizes the resolution of the data type and ensures that representations 
are unique. Figure 2-2 shows the magnitudes of normalized numbers in single precision 
on the number line. The spacing of the vertical marks indicates the relative density of 
numbers in each binade. (A 

 

binade

 

 is a collection of numbers between two successive 
powers of 2.) Notice that the numbers get more dense as they approach 0.

Note

 

The figure shows only the relative density of the numbers; in reality, the 
density is immensely greater than it is possible to show in such a figure. 
For example, there are  (8,388,608) single-precision numbers in the 
interval .

 

◆

 

Figure 2-2

 

Normalized single-precision numbers on the number line

b0

223

2 126– x 2 125–<≤

  0 2–126 2–125 2–124–2–126–2–125–2–124

Gap in normalized numbers

–+
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Using only normalized representations creates a gap around the value 0, as shown in 
Figure 2-2. If a computer supports only the normalized numbers, it must round all tiny 
values to 0. For example, suppose such a computer must perform the operation , 
where 

 

x

 

 and

 

 y

 

 are very close to, but not equal to, each other. If the difference between 

 

x

 

 
and 

 

y

 

 is smaller than the smallest normalized number, the computer must deliver 0 as the 
result. Thus, for such 

 

flush-to-zero systems,

 

 the following statement is 

 

not

 

 true for all real 
numbers:

 if and only if  

 

Denormalized Numbers 2

 

Instead of using only normalized numbers and allowing this small gap around 0, Libm 
uses 

 

denormalized numbers,

 

 in which the leading implicit bit (  on page 2-4) of the 
significand is 0 and the minimum exponent is used.

Note

 

Some references use the term 

 

subnormal

 

 

 

numbers

 

 instead of 

 

denormalized numbers.

 

◆

 

Figure 2-3 illustrates the relative magnitudes of normalized and denormalized numbers 
in single precision. Notice that the denormalized numbers have the same density as the 
numbers in the smallest normalized binade. This means that the roundoff error is the 
same regardless of whether an operation produces a denormalized number or a very 
small normalized number. As stated previously, without denormalized numbers, 
operations would have to round tiny values to 0, which is a much greater roundoff error.

 

Figure 2-3

 

Denormalized single-precision numbers on the number line

 

To put it another way, the use of denormalized numbers makes the following statement 
true for all real numbers: 

 if and only if 

x y–

x y– 0= x y=

b0

    

Denormalized numbers in gap

0 2–126 2–125 2–124–2–126–2–125–2–124
–+

x y– 0= x y=
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Another advantage of denormalized numbers is that error analysis involving small 
values is much easier without the gap around zero shown in Figure 2-2 (Demmel 1984).

The computer determines that a floating-point number is denormalized (and therefore 
that its implicit leading bit is interpreted as 0) when the biased exponent field is filled 
with 0’s and the fraction field is nonzero.

Table 2-2 shows how a single-precision value  becomes progressively denormalized as 
it is repeatedly divided by 2, with rounding to nearest. This process is called 

 

gradual 
underflow.

 

 In the table, values  . . .  are denormalized;  is the smallest positive 
denormalized number in single format. Notice that as soon as the values are too small to 
be normalized, the biased exponent value becomes 0. 

 

Infinities 2

 

An 

 

Infinity

 

 is a special bit pattern that can arise in one of two ways:

 

■

 

When an operation (such as ) should produce a mathematical infinity, the result is 
an Infinity.

 

■

 

When an operation attempts to produce a number with a magnitude too great for the 
number’s intended floating-point data type, the result might be a value with the 
largest possible magnitude or it might be an Infinity (depending on the current 
rounding direction).

 

Table 2-2

 

Example of gradual underflow

 

Variable or 
operation Value

Biased 
exponent Comment

 

1.100 1100 1100 1100 1100 1101 

 

×

 

 2

1.100 1100 1100 1100 1100 1101 

 

×

 

 1

0.110 0110 0110 0110 0110 0110 

 

×

 

 0 Inexact

 

*

 

*

 

Whenever division returns an inexact tiny value, the exception bit for underflow is set to 
indicate that a low-order bit has been lost.

 

0.011 0011 0011 0011 0011 0011 

 

×

 

 0 Exact result

0.001 1001 1001 1001 1001 1010 

 

×

 

 0 Inexact

 

*

 

.

.

.

0.000 0000 0000 0000 0000 0011 

 

×

 

 0 Exact result

0.000 0000 0000 0000 0000 0010 
 

×
 

 0 Inexact
 

*

 
0.000 0000 0000 0000 0000 0001 

 
×

 
 0 Exact result

0.0 0 Inexact

 

*

A0

A2 A25 A25

A0 2 125–

A1 A0 2⁄= 2 126–

A2 A1 2⁄= 2 126–

A3 A2 2⁄= 2 126–

A4 A3 2⁄= 2 126–

A23 A22 2⁄= 2 126–

A24 A23 2⁄= 2 126–

A25 A24 2⁄= 2 126–

A26 A25 2⁄=

1 0⁄
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These bit patterns (as well as NaNs, introduced next) are recognized in subsequent 
operations and produce predictable results. The Infinities, one positive and one negative, 
generally behave as suggested by the theory of limits. For example:

■ Adding 1 to +∞ yields +∞.

■ Dividing  by +0 yields .

■ Dividing 1 by  yields .

The computer determines that a floating-point number is an Infinity if its exponent field 
is filled with 1’s and its fraction field is filled with 0’s. So, for example, in single format, if 
the sign bit is 1, the exponent field is 255 (which is the maximum biased exponent for the 
single format), and the fraction field is 0, the floating-point number represented is  
(see Figure 2-4).

Figure 2-4 Infinities represented in single precision

NaNs 2
When a numeric operation cannot produce a meaningful result, the operation delivers a 
special bit pattern called a NaN (Not-a-Number). For example, zero divided by zero, +∞ 
added to , and  yield NaNs. A NaN can occur in any of the numeric data formats 
(single or double), but generally, system-specific integer types (non-numeric types 
exclusively for integer values) have no representation for NaNs. 

NaNs propagate through arithmetic operations. Thus, the result of 3.0 added to a NaN is 
the same NaN. If two operands of an operation are NaNs, the result is one of the NaNs. 
NaNs are of two kinds: quiet NaNs, the usual kind produced by floating-point 
operations, and signaling NaNs.

When a signaling NaN is encountered as an operand of an arithmetic operation, the 
invalid-operation exception is signaled and a quiet NaN is the delivered result. Signaling 
NaNs are not created by any numeric operations, but you might find it useful to create 
signaling NaNs manually. For example, you might fill uninitialized memory with 
signaling NaNs so that if one is ever encountered in a program, you will know that 
uninitialized memory is accessed.

A NaN may have an associated code that indicates its origin. These codes are listed 
in Table 2-3. The NaN code is the 8th through 15th most significant bits of the fraction 
field.

1– ∞–

∞– 0–

∞–

Hexadecimal Binary

7F800000 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0FF800000

∞

∞– 

+ 

∞– 1–
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The first four cases are computed directly by the PowerPC processor, 
which always returns 0 for the NaN code. The remaining cases make use 
of Libm code, which sets the appropriate non-zero NaN code.

The computer determines that a floating-point number is a NaN if its exponent field is 
filled with 1’s and its fraction field is nonzero. The most significant bit of the fraction field 
distinguishes quiet and signaling NaNs. It is set for quiet NaNs and clear for signaling 
NaNs. For example, in single format, if the sign field has the value 1, the exponent field 
has the value 255, and the fraction field has the value 65,280, then the number is a 
signaling NaN. If the sign is 1, the exponent is 255, and the fraction field has the value 
4,259,584 (which means the fraction field has a leading 1 bit), the value is a quiet NaN. 
Figure 2-5 illustrates these examples.

Table 2-3 NaN codes

Decima
l

Hexadecima
l Meaning

1 0x00 Invalid square root, such as  

2 0x00 Invalid addition, such as 

4 0x00 Invalid division, such as 

8 0x00 Invalid multiplication, such as 

9 0x09 Invalid remainder or modulo, such as x rem 0

17 0x11 Attempt to convert invalid ASCII string

21 0x15 Attempt to create a NaN with a zero code

33 0x21 Invalid argument to trigonometric function (such as cos, sin, 
tan)

34 0x22 Invalid argument to inverse trigonometric function (such as 
acos, asin, atan)

36 0x24 Invalid argument to logarithmic function (such as log, 
)

37 0x25 Invalid argument to exponential function (such as exp, 
expm1)

38 0x26 Invalid argument to financial function (compound or 
annuity)

40 0x28 Invalid argument to inverse hyperbolic function (such as 
acosh, asinh)

42 0x2A Invalid argument to gamma function (gamma or lgamma)

1–

+∞( ) ∞–( )+

0 0⁄

0 ∞×

10log
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Figure 2-5 NaNs represented in single precision

Zeros 2
Each floating-point format has two representations for zero: +0 and . Although the two 
zeros compare as equal , their behaviors in IEEE arithmetic are slightly 
different.

Ordinarily, the sign of zero does not matter except (possibly) for a function discontinuous 
at zero. Though the two forms are numerically equal, a program can distinguish +0 from 

 by operations such as division by zero or by performing the numeric copysign 
function.

The sign of zero obeys the usual sign laws for multiplication and division. For example, 
 and . Because extreme negative underflows yield , 

expressions like  produce the correct sign for ∞ when x is tiny and negative. 
Addition and subtraction produce  only in these cases:

■

■

When rounding downward, with x finite,

■

■

The square root of  is .

The sign of zero is important in complex arithmetic (Kahan 1987).

The computer determines that a floating-point number is 0 if its exponent field and its 
fraction field are filled with 0’s. For example, in single format, if the sign bit is 0, the 
exponent field is 0, and the fraction field is 0, the number is +0 (see Figure 2-6).

FF80FF00 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0FFC0FF00

Hexadecimal Binary

Signaling�
NaN 

Quiet NaN

1 1 1 1 1 1 1 0

0–
+0( ) 0–=

0–

+0( ) 1–( )× 0–= 1 0–( )⁄ ∞–= 0–
1 x 3⁄

0–

0–( ) +0( )   yields  – 0–

0–( ) 0–( )  yields  + 0–

x x  yields  –  0–

x x–( )  yields  + 0–

0– 0–
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Figure 2-6

 

Zeros represented in single precision

 

Formats 2

 

This section shows the three numeric data formats: single, double. These are pictorial 
representations and might not reflect the actual byte order in any particular 
implementation.

Each of the diagrams on the following pages is followed by a table that gives the rules for 
evaluating the number. In each field of each diagram, the leftmost bit is the most 
significant bit (msb) and the rightmost is the least significant bit (lsb). Table 2-4 defines 
the symbols used in the diagrams.

 

Single Format 2

 

The 32-bit 

 

single format

 

 is divided into three fields having 1, 8, and 23 bits (see 
Figure 2-7).

 

Table 2-4

 

Symbols used in format diagrams 

 

Symbo
l Description

 

v 

 

Value of number

 s  Sign bit  
e 

 
Biased exponent (

 
exponent

 
 + 

 
bias

 
)

 

f 

 

Fraction (

 

significand

 

 without leading bit)

Hexadecimal Binary

00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 080000000

+ 0

– 0
Formats 2-11
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Figure 2-7

 

Single format

 

The interpretation of a single-format number depends on the values of the exponent field 
(

 

e

 

) and the fraction field (

 

f

 

), as shown in Table 2-5. 

Figure 2-8 shows the range and density of the real numbers that can be represented as 
single-format floating-point numbers using normalized and denormalized values. The 
vertical marks indicate the relative density of the numbers that can be represented. As 
explained in the section “Normalized Numbers” on page 2-5, the number of 
representable values gets more dense closer to 0. 

Figure 2-8

 

Single-format floating-point numbers on the real number line

 

Table 2-5

 

Values of single-format numbers (32 bits) 

 

If biased 
exponent 

 

e

 

 is: 

And 
fraction 

 

f 

 

is:

 

 

 

Then value 

 

v

 

 is: And the class of 

 

v

 

 is:

 

(any) Normalized

Denormalized

Zero

Infinity

 

v

 

 is a NaN NaN

1 23

s e f

msb lsb msb lsb

8

0 e 255< < v 1–( )s 2 e 127–( ) 1. f( )××=

e 0= f    0 ≠ v 1–( )s 2 126–( ) 0. f( )××=

e 0= f 0= v 1–( )s 0×=

e 255= f 0= v 1–( )s ∞×=

e 255= f    0 ≠

0

–1.4 × 10– 45 +1.4 × 10– 45

–+

–3.4 × 1038 +3.4 × 1038
2-12 Formats



C H A P T E R  2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats
      

Double Format 2

 

The 64-bit 

 

double format

 

 is divided into three fields having 1, 11, and 52 bits (see 
Figure 2-9).

 

Figure 2-9

 

Double format

 

The interpretation of a double-format number depends on the values of the exponent 
field (

 

e

 

) and the fraction field (

 

f

 

), as shown in Table 2-6. 

Figure 2-10 shows the range and density of the real numbers that can be represented as 
double-format floating-point numbers using normalized and denormalized values. The 
vertical marks indicate the relative density of the numbers that can be represented. As 
explained in the section “Normalized Numbers” on page 2-5, the number of 
representable values gets more dense closer to 0.

 

Table 2-6

 

Values of double-format numbers (64 bits) 

 

If biased 
exponent 

 

e

 

 is:

And 
fraction 

 

f

 

 
is: Then value 

 

v

 

 is: And the class of 

 

v

 

 is: 

 (any) Normalized

Denormalized

Zero

Infinity

 

v

 

 is a NaN NaN

1 52

s e f

msb lsb msb

11

lsb

0 e 2047< <  v  1–  ( )  s  2 e 1023– ( ) 1. f ( )××  =

e 0= f    0 ≠ v 1–( )s 2 1022–( ) 0. f( )××=

e 0= f 0= v 1–( )s 0×=

e 2047= f 0= v 1–( )s ∞×=

e 2047= f    0 ≠
Formats 2-13
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Double-format floating-point values on the real number line

 

Range and Precision of Data Formats 2

 

Table 2-7 shows the precision, range, and memory usage for each numeric data format. 
You can use this table to compare the data formats and choose which one is needed for 
your application. Typically, choosing a data format requires that you determine the 
tradeoffs between

 

■

 

fixed-point or floating-point form

 

■

 

precision

 

■

 

range

 

■

 
memory usage

 
■

 speed

In the table, decimal ranges are expressed as rounded, two-digit decimal representations 
of the exact binary values. The speed of a given data format varies depending on the 
particular implementation of IEEE standard numerics. (See Chapter 4, “Conversions,” for 
information on aspects of conversion relating to precision.)

 

Table 2-7

 

Summary of PowerPC Numerics data formats

 

Single Double

 

Size (bytes:bits)

 

4:32 8:64

 

Range of binary exponents 

 

Minimum

Maximum 127 1023

 

Significand precision

–1.8 × 10308 0 +1.8 × 10308

Range of�
single

Range of�
single

–4.9 × 10–324

–+

+4.9 × 10–324

126– 1022–
2-14 Range and Precision of Data Formats
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For example, in single format, the largest representable number is composed as follows:

 

significand

 

.11111111111111111111111

 

2

 

exponent

value

 

≈

 

The smallest positive normalized number representable in single format is made up as 
follows:

 

significand

 

.00000000000000000000000

 

2

 exponent

value

 

≈

 

For denormalized numbers, the smallest positive value representable in the single format 
is made up as follows:

 

significand

 

.00000000000000000000001

 

2

 

exponent

value

 

≈

 

Bits 24 53

Decimal digits 7–8 15–16

 

Decimal range (approximate)

 

Maximum positive

Minimum positive norm

Minimum positive denorm

Maximum negative denorm

Maximum negative norm

Minimum negative

 

Table 2-7

 

Summary of PowerPC Numerics data formats

 

Single Double

3.4 10+38× 1.8 10+308×

1.2 10 38–× 2.2 10 308–×

1.4 10 45–× 4.9 10 324–×

1.4– 10 45–× 4.9– 10 324–×

1.2– 10 38–× 2.2– 10 308–×

3.4– 10+38× 1.8– 10+308×

2 2 23––( )=

1=

127=

2 2 23––( ) 2127×=

3.403 1038×

1=

1=

126–=

1 2 126–×=

1.175 10 38–×

2 23–=

0=

126–=

2 23–= 2 126–×

1.401 10 45–×
Range and Precision of Data Formats 2-15
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Environmental Controls 3

This chapter describes the parts of the floating-point environment that you can control. 
The IEEE standard specifies that users should be able to control the rounding direction, 
floating-point exceptions, and in some instances the rounding precision. Libm provides 
utilities (called environmental controls) with which you can set, clear, and test the 
rounding direction and floating-point exception flags. (See Part 2 for the exact names of 
functions and instructions that control the floating-point environment.) This chapter 
describes the four rounding direction modes and the five floating-point exception flags 
that you can set, clear, and test with Libm. You should read it to learn more about the 
floating-point environment. 

Rounding Direction Modes 3

The available rounding direction modes are

■ to nearest

■ upward (toward +∞)

■ downward (toward )

■ toward zero

The rounding direction affects all conversions and all arithmetic operations except 
remainder. All operations are calculated without regard to the range and precision of the 
data type in which the result is to be stored. That is, conceptually, an operation first 
produces a result that is infinitely precise, or exact. If the destination data type cannot 
represent this number exactly, the result is rounded in the direction specified by the 
rounding mode.

The default rounding direction is to nearest. In this mode, floating-point expressions 
deliver the value nearest to the exact result that the destination data type can represent. If 
two representable values are equally close to the exact result, the expression delivers the 
one whose least significant bit is zero. Hence, halfway cases (for example, 1.5) round to 
even when the destination is an integer type or when the round-to-integer operation is 
used. If the magnitude of the exact result is greater than the data type’s largest value (by 
at least one half unit in the last place), then the Infinity with the corresponding sign is 
delivered.

The other rounding directions are upward, downward, and toward zero. When rounding 
upward, the result is the representable value (possibly +∞) closest to, and not less than, 
the exact result. When rounding downward, the result is the representable value 
(possibly ) closest to, and not greater than, the exact result. When rounding toward 
zero, the result is the representable value closest to, and not greater in magnitude than, 
the exact result. Toward-zero rounding truncates a number to an integer (when the 

∞–

∞–
Rounding Direction Modes 3-3
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destination is an integer type). Table 3-1 shows some values rounded to integers using 
different rounding modes.

Exception Flags 3

Floating-point exceptions are signaled with exception flags. When an application begins, 
all floating-point exception flags are cleared and the default rounding direction (round to 
nearest) is in effect. This is the default environment. When an exception occurs, the 
appropriate exception flag is set, but the application continues normal operation. 
Floating-point exception flags merely indicate that a particular event has occurred; they 
do not change the flow of control for the application. An application can examine or set 
individual exception flags and can save and retrieve the entire environment (rounding 
direction and exception flags). 

The numerics environment supports five exception flags:

■ invalid operation (often called simply invalid)

■ underflow

■ overflow

■ divide-by-zero

■ inexact

These are discussed in the paragraphs that follow.

Table 3-1 Examples of rounding to integer in different directions

Floating-poin
t
number

Rounded 
to nearest

Rounded 
toward 0

Rounded 
downward

Rounded
upward

  1.5   2   1   1   2

  2.5   2   2   2   3

–2.2 –2 –2 –3 –2
3-4 Exception Flags
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Invalid Operation 3
The invalid exception (or invalid-operation exception) occurs if an operand is invalid for 
the operation being performed. The result is a quiet NaN for all destination formats 
(single, double, or double-double). The invalid conditions for the different operations are 

In addition, any operation on a signaling NaN except the class and sign inquiries 
produce an invalid exception. 

Underflow 3
The underflow exception occurs when a floating-point result is both tiny and inexact 
(and therefore is perhaps significantly less accurate than if there were no limit to the 
exponent range). A result is considered tiny if it must be represented as a denormalized 
number.

Overflow 3
The overflow exception occurs when the magnitude of a rounded floating-point result is 
greater than the largest finite number that the floating-point destination data format can 
represent. (Invalid exceptions, rather than overflow exceptions, flag the production of an 
out-of-range value for an integer destination type.) 

Divide-by-Zero 3
The divide-by-zero exception occurs when a finite, nonzero number is divided by zero. It 
also occurs, in the more general case, when an operation on finite operands produces an 
exact infinite result; for example,  returns  and signals divide-by-zero. 
(Overflow exceptions, rather than divide-by-zero exceptions, flag the production of an 
inexact infinite result.)

Operation Invalid condition

Addition or 
subtraction

Magnitude subtraction of Infinities, 
for example, (+∞) + ( )

Multiplication  

Division  or 

Remainder x rem y, where y is 0 or x is infinite 

Square root A negative operand 

Conversion See Chapter 4, “Conversions” 

Comparison With predicates involving less than or greater than, but not unordered, 
when at least one operand is a NaN 

∞–

0 ∞×

0 0⁄ ∞ ∞⁄

b 0( )log ∞–
Exception Flags 3-5
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Inexact 3
The inexact exception occurs if the rounded result of an operation is not identical to the 
exact (infinitely precise) result. Thus, an inexact exception always occurs when an 
overflow or underflow occurs. Valid operations on Infinities are always exact and 
therefore signal no exceptions. Invalid operations on Infinities are described at the 
beginning of this section.
3-6 Exception Flags
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This chapter describes how floating-point numbers are converted to different formats. 
Most conversions take place implicitly due to assignment statements or evaluations 
written in a high-level language (such as C). For example, when a floating-point 
expression is evaluated, one or more of its operands might automatically be converted to 
a different data format. When a floating-point value is assigned to a variable, another 
automatic conversion might be necessary. These conversions are handled by code 
generated by the compiler.

A program can also make explicit Libm calls (such as rint) to perform conversions.

This chapter lists the supported numeric conversions and describes how each of these 
conversions is performed. You should read it to find out exactly how a floating-point 
value is converted to a different format. Parts 2 and 3 describe the conversion utilities 
available to the users of different implementations.

About Conversions 4

The IEEE standard requires the following types of conversions:

■ from floating-point formats to integer formats

■ from integer formats to floating-point formats

■ from floating-point values to integer values, with the result in a floating-point format

■ between all supported floating-point formats

Converting Floating-Point to Integer Formats 4

In IEEE standard arithmetic, the following three types of floating-point to integer 
conversions are supported either directly by the programming languages or by library 
implementations:

■ round to integer in current rounding direction (the required conversion, discussed in 
detail in Chapter 3, “Environmental Controls”)

■ chop to integer (or round toward zero)

■ add half to magnitude and chop

Although the IEEE standard specifies that conversions from floating-point to integer 
formats be rounded in the current rounding direction, high-level languages usually 
define their own methods. For example, the default method of converting from 
floating-point to integer formats in C is simply to discard the fractional part (truncate). 
About Conversions 4-3
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Conversions from floating-point to integer formats raise the invalid floating-point 
exception flag in any of the following cases:

■ The floating-point value is out of range for the integer type (for example, an attempt to 
convert a 64-bit integer value stored in the double data type to a 32-bit integer type). 

■ The floating-point value is a NaN.

■ The floating-point value is an Infinity.

All floating-point to integer conversions that are in range but inexact (that is, the 
floating-point value was not an integer) raise the inexact floating-point exception flag, 
although this is not required by the IEEE standard.

Table 4-1 shows some examples of how floating-point values might be converted to a 
32-bit integer format by rounding in the current rounding direction. Note that IEEE 
rounding in the default direction (to nearest) differs from most common rounding 
functions on halfway cases.

Rounding Floating-Point Numbers to Integers 4

Programming languages can also round floating-point numbers to integers and leave 
them stored in the same floating-point data format. These conversions may round in the 
current rounding direction, or they may explicitly round upward, downward, to the 
nearest value, or toward zero. These operations do not affect zeros, NaNs, or Infinities, 
because these three types of special values are already considered integers. 

Table 4-1 Examples of floating-point to integer conversion 

Floating-point 
number

Rounded 
to nearest

Rounded 
toward 0

Rounded 
downward

Rounded 
upward

  1.5   2   1   1   2

  2.5   2   2   2   3

–2.2 –2 –2 –3 –2

2,147,483,648.5 NaN NaN NaN NaN
4-4 Rounding Floating-Point Numbers to Integers
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Converting Integers to Floating-Point Formats 4

When an integer is converted to a floating-point format whose precision is greater than or 
equal to the size of the integer format, the conversion is exact. When an integer is 
converted to a floating-point format whose precision is less than the size of the integer 
format, the integer is rounded in the current rounding direction. For example, because 
the single format has 24 bits in the significand, any integer requiring more than 24 bits of 
precision will not be converted to its exact value. 

Converting Between Floating-Point Formats 4

Programming languages support conversions between both of the IEEE floating-point 
data formats supported by Mac OS X. This section describes these conversions. 

Converting Between Single and Double Formats 4
Libm directly supports the single and double formats and conversions between them. 
When a single format number is converted to a double format number, the conversion is 
exact.

When a double format number is converted to a single format number, it is rounded to 
the closest single value in the current rounding direction. The conversion might raise the 
exceptions shown in Table 4-2.

Table 4-2 Double to single conversion: Possible exceptions

Exception Raised when

Inexact Significand requires > 24 bits of precision

Overflow Exponent > 127

Underflow Exponent < –126
Converting Integers to Floating-Point Formats 4-5
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Numeric Operations and Functions 5

This chapter describes the operations (comparisons, arithmetic operations, and auxiliary 
and transcendental functions) that programming languages and Libm allow you to 
perform on floating-point numbers. Numeric operations are evaluated as floating-point 
expressions; as such they are affected by, and might affect, the floating-point 
environment. 

Read this chapter to find out what numeric operations are supported and how they work. 
For a description of the floating-point environment, see Chapter 3, “Environmental 
Controls.”

Comparisons 5

Programming languages for Mac OS X support the usual numeric comparisons: less than, 
less than or equal to, greater than, greater than or equal to, equal to, and not equal to (see 
Table 5-1 for a complete listing). For real numbers, these comparisons behave according 
to the familiar ordering of real numbers.

Comparisons With NaNs and Infinities 5
Numeric comparisons handle NaNs and Infinities as well as real numbers. The usual 
trichotomy for real numbers is extended so that, for any numeric values a and b, exactly 
one of the following statements is true:

■ a < b

■ a > b

■ a = b

■ a and b are unordered

The following rule determines which statement is true: If a or b is a NaN, then a and b are 
unordered; otherwise, a is less than, equal to, or greater than b according to the ordering 
of the real numbers, with the understanding that 

and < every real number < +∞ 

Comparison Operators 5
The meaning of high-level language relational operators is a natural extension of their 
old meaning based on trichotomy. For example, the C expression  is true if x is 
less than y or if x equals y, and is false if x is greater than y or if x and y are unordered. 
Note that the numeric not-equal relation means less than, greater than, or unordered. The 

+0 0–= ∞–

x y=<
Comparisons 5-3
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IEEE Standard 9899 extends the usual set of C relational operators to a set of 14 
comparisons, shown in Table 5-1.

Some relational operators in high-level language comparisons contain the predicate less 
than or greater than, but not unordered. In C, those relational operators are <, <=, >, 
and >= (but not == and !=). For those relations, comparisons signal invalid if the 
operands are unordered, that is, if either operand is a NaN. For the operators equal and 
nonequal, comparisons with NaN are not misleading; thus, when x or y is a NaN, the 
relation x == y is false, which is not misleading. Likewise, when x or y is a NaN, x != y 
returns true, again not misleading. On the other hand, when x or y is a NaN, x < y being 
false might tempt you to conclude that x ≥ y, so the floating-point routines signal invalid 
to help you avoid the pitfall. Table 5-1 shows the results of such comparisons in C.

The full 26 distinct comparison predicates of the IEEE standard may be obtained by 
logical negation of all of the operators except for == and !=, which never signal invalid. 
For example, (x < y) and !(x !< y) are logically equivalent for all possible values of a and b, 
but the former raises the invalid exception flag when x and y compare unordered while 
the latter does not.

In addition to the comparison operators, there are also library functions that perform 
comparisons. See “Comparison Functions” on page 9-3.

Table 5-1 Comparison symbols

Symbo
l Relation

Invalid if
unordered?

< Less than Yes

> Greater than Yes

<= Less than or equal to Yes

>= Greater than or equal to Yes

== Equal to No

!= Not equal to (unordered, less than, or greater than) No

!<>= Unordered No

<> Less than or greater than Yes

<>= Not unordered (less than, equal to, or greater than) Yes

!<= Not less than or equal to (unordered or greater than) No

!< Not less than (unordered, greater than, or equal to) No

!>= Not greater than or equal to (unordered or less than) No

!> Not greater than (unordered, less than, or equal to) No

!<> Unordered or equal No
5-4 Comparisons
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Arithmetic Operations 5

Mac OS X programming languages and Libm provide the seven arithmetic operations 
required by the IEEE standard for its two data types, as shown for the C language in 
Table 5-2 and described in the sections that follow.

The language processors for Mac OS X automatically use their chosen expression 
evaluation methods for the normal inline operators (+, –, *, /). All the arithmetic 
operations produce the best possible result: the mathematically exact result, coerced to 
the precision and range of the evaluation format. The coercions honor the user-selectable 
rounding direction and handle all exceptions according to the requirements of the IEEE 
standard (see Chapter 3, “Environmental Controls”).

Some of the arithmetic operations are implemented in software. These operations are 
declared to be type double_t, which is defined to be type double. 

+ 5

You can use the + symbol to add two real numbers.

x + y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The + operator performs the standard addition of two floating-point numbers.

Table 5-2 Arithmetic operations in C

Operation C symbol

Add + 

Subtract – 

Multiply * 

Divide / 

Square root sqrt 

Remainder remainder 

Round-to-integer rint 
Arithmetic Operations 5-5
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When x and y are both finite and nonzero, either the result of x + y is exact or it raises one 
of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 5-3 shows the results when one of the operands of the addition operation is a zero, 
a NaN, or an Infinity. In this table, x is any floating-point number.

– 5

You can use the – symbol to subtract one real number from another.

x – y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The – operator performs the standard subtraction of two floating-point numbers.

Table 5-3 Special cases for floating-point addition

Operation
Resul
t Exceptions raised

x None

x None

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

NaN Invalid

x +0( )+

x 0–( )+

0–( ) +0( )+

0–( ) 0–( )+ 0–

x NaN+

x +∞( )+

x ∞–( )+ ∞–

+∞ ∞–( )+
5-6 Arithmetic Operations
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EXCEPTIONS

When x and y are both finite and nonzero, either the result of x – y is exact or it raises one 
of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 5-4 shows the results when one of the operands of the subtraction operation is a 
zero, a NaN, or an Infinity. In this table, x is any floating-point number.

Table 5-4 Special cases for floating-point subtraction

Operation
Resul
t Exceptions raised

x None

−x None

+0 None

x None

−x None

None

+0 None

x – NaN NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN – x NaN None*

None

+∞ None

NaN Invalid

+∞ None

None

NaN Invalid

x +0( )–

+0( ) x–

+0( ) 0–( )–

x 0–( )–

0–( ) x–

0–( ) +0( )– 0–

0–( ) 0–( )–

x +∞( )– ∞–

+∞( ) x–

+∞( ) +∞( )–

x ∞–( )–

∞–( ) x– ∞–

∞–( ) ∞–( )–
Arithmetic Operations 5-7
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You can use the * symbol to multiply two real numbers.

x * y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The * operator performs the standard multiplication of two floating-point numbers 
.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x * y is exact or it raises one 
of the following exceptions:

■ inexact (if the result of x * y must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 5-5 shows the results when one of the operands of the multiplication operation is a 
zero, a NaN, or an Infinity. In this table, x is a nonzero floating-point number.

Table 5-5 Special cases for floating-point multiplication

Operation
Resul
t Exceptions raised

x * +0 ±0 None

x * ±0 None

±∞ * ±0 NaN Invalid

x * NaN NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

x * +∞ ±∞ None

x * ±∞ None

±0 * ±∞ NaN Invalid

x y×( )

0–

∞–
5-8 Arithmetic Operations
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/ 5

You can use the / symbol to divide one real number by another.

x / y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The / operator performs the standard division of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of  is exact or it raises one 
of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 5-6 shows the results when one of the operands of the division operation is a zero, a 
NaN, or an Infinity. In this table, x is any floating-point number.

Table 5-6 Special cases for floating-point division 

Operation
Resul
t Exceptions raised

±0 None

±∞ Divide-by-zero

±0 None

±∞ Divide-by-zero

NaN Invalid

NaN None*

NaN None*

±0 None

continued

x y⁄

+0( ) x⁄

x +0( )⁄

0–( ) x⁄

x 0–( )⁄

±0 ±0⁄

x NaN⁄

NaN x⁄

x +∞( )⁄
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sqrt 5

You can use the square root (sqrt) function to compute the square root of a real number.

double_t sqrt(double_t x);

x Any positive floating-point number.

DESCRIPTION

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 
following exceptions:

■ inexact (if the result must be rounded)

■ invalid (if x is negative)

SPECIAL CASES

Table 5-7 shows the results when the argument to the square root function is a zero, a 
NaN, or an Infinity, plus other special cases for the square root function. In this table, x is 
a finite, nonzero floating-point number.

±∞ None

x / ±0 None

±∞ None

NaN Invalid

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 5-6 Special cases for floating-point division (continued)

Operation
Resul
t Exceptions raised

+∞( ) x⁄

∞–( )

∞–( ) x⁄

∞±( ) ∞±( )⁄

sqrt x( ) x=

sqrt x( )
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remainder, remquo, and fmod 5

You can use the remainder, remquo, and fmod functions to perform the remainder 
operation recommended in the IEEE standard. 

double_t remainder (double_t x, double_t y);
double_t remquo (double_t x, double_t y, int *quo);
double_t fmod (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

quo On return, the signed lowest seven bits (in the range of −127 to +127, 
inclusive) of the integer value closest to the quotient . This partial 
quotient might be of use in certain argument reduction algorithms.

DESCRIPTION

The IEEE remainder (rem) operation returns the result of the following computation.

 rem 

where n is the integer nearest the exact value of the quotient . This expression can be 
found even in the conventional integer-division algorithm, shown in Figure 5-1.

Table 5-7 Special cases for floating-point square root

Operation
Resul
t Exceptions raised

NaN Invalid

+0 None

None

 NaN None*

+∞ None

NaN Invalid

* If the NaN is a signaling NaN, the invalid exception is raised.

sqrt x( )    for  x  <  0

sqrt +0( )

sqrt 0–( ) 0–

sqrt NaN( )

sqrt +∞( )

sqrt ∞–( )

x y⁄

r x= y x y n×–=

x y⁄
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Figure 5-1

 

Integer-division algorithm

 

Whenever , 

 

n

 

 is even. 

If the value of 

 

r

 

 is 0, the sign of 

 

r

 

 is that of 

 

x

 

.

The rem operation is always exact.

The IEEE rem operation differs from other commonly used remainder and modulo 
operations. It returns a remainder of the smallest possible magnitude, and it always 
returns an exact remainder. Other remainder functions can be constructed from the IEEE 
remainder function by appropriately adding or subtracting 

 

y

 

. 

 

EXCEPTIONS

 

When 

 

x

 

 and 

 

y

 

 are finite, nonzero floating-point numbers in single or double format, the 
result of 

 

x

 

 rem 

 

y

 

 is exact.

 

SPECIAL CASES

 

Table 5-8 shows the results when one of the arguments to the rem operation is a zero, a 
NaN, or an Infinity. In this table, 

 

x

 

 is a finite, nonzero floating-point number.

 

Table 5-8

 

Special cases for floating-point remainder

 

Operation
Resul
t Exceptions raised

 

+0 rem 

 

x

 

 +0 None

 

x

 

 rem NaN Invalid

 rem 

 

x

 

 None

 

x

 

 rem NaN Invalid

 

x

 

 rem NaN NaN None

 

*

 

NaN rem 

 

x

 

NaN None

 

*

 

x

 

 rem +

 

∞

 

 

 

x

 

None

+

 

∞

 

 rem 

 

x

 

NaN Invalid

 

x

 

 rem  

 

x

 

None

 rem 

 

x

 

 NaN Invalid

    
n

y x

x – y × n
y × n

Integral quotient approximation

Dividend

Remainder

Divisor

n x y⁄– 1 2⁄=

+0( )

0– 0–

0–( )

∞–

∞–
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      EXAMPLES  

z = remainder(5, 3); /* z = –1. */
/* 5 rem 3 = 5 – 3 

 

×

 

 2 = –1 because 1 < 5/3 < 2 and because 
5/3 = 1.66666... is closer to 2 than to 1, quo is taken to 
be 2. */

z = remainder(43.75, 2.5); /* z = –1.25. */
/* 43.75 rem 2.5 = 43.75 – 2.5 

 

×

 

 18 = –1.25 because 
17 < 43.75/2.5 < 18 and because 43.75/2.5 = 17.5 is 
equally close to both 17 and 18, quo is taken to be the 
even quotient, 18. */

z = remainder(43.75, +INFINITY); /* z = 43.75 */
/* 43.75 rem ∞ = 43.75 – 0 

 

×

 

 ∞ = 43.75 because 43.75 / ∞ = 0, 
quo is taken to be 0. */

 

rint 5

 

You can use the round-to-integer operation (

 

rint

 

 function) to round a number to the 
nearest integer in the current rounding direction.

 

double_t rint(double_t x);

x Any floating-point number.

DESCRIPTION

The rint function rounds its argument to an integer in the current rounding direction. 
The available rounding directions are upward, downward, to nearest (default), and 
toward zero. With the default rounding direction, if the argument is equally near two 
integers, the even integer is used as the result.

In each floating-point data type, all values of sufficiently great magnitude are integers. 
For example, in single format, all numbers whose magnitudes are at least  are integers. 
This means that +∞ and  are already integers and return exact results.

The rint function performs the round-to-integer arithmetic operation described in the 
IEEE standard. For other C functions that perform rounding to integer, see Chapter 8, 
“Conversion Functions.”

* If the NaN is a signaling NaN, the invalid exception is raised.

223

∞–
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EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises the following 
exception

■ inexact (if x is not an integer)

SPECIAL CASES

Table 5-9 shows the results when the argument to the round-to-integer operation is a 
zero, a NaN, or an Infinity.

EXAMPLES

Table 5-10 shows some example results of rint, given different rounding directions.

Auxiliary Functions 5

The IEEE standard defines a number of recommended functions (called auxiliary 
functions) that are generally useful in numerical programming. The recommended 
functions supported by Libm are

Table 5-9 Special cases for floating-point round-to-integer

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

Table 5-10 Examples of rint 

Example

Current rounding direction

To nearest Toward 0 Downward Upward

rint(1.5) 2 1 1 2

rint(2.5) 2 2 2 3

rint(–2.2) –2 –2 –3 –2

rint x( )

rint +0( )

rint 0–( ) 0–

rint NaN( )

rint +∞( )

rint ∞–( ) ∞–
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■ : copy the sign of y onto the magnitude of x

■ : absolute value

■ : binary exponent

■ nan functions: NaN generators

■ nextafter functions

■ : binary scaling

The auxiliary functions are provided in the C library MathLib. For more information 
about these functions, see Part 2.

Transcendental Functions 5

Libm provides several basic mathematical functions in addition to the auxiliary functions 
recommended in the IEEE standard. These functions include 

■ logarithms

■ exponentials

■ trigonometric functions

■ error and gamma functions 

For information about the transcendental functions supported, see Part 2.

copysign x y,( )

fabs x( )

logb x( )

scalb x( )
Transcendental Functions 5-15
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The Mac OS X Numerics C 
Implementation 2

This part describes the Macintosh OS X implementation for the C 
programming language. The numeric implementation for the C language 
conforms to both IEEE Standard 754, referred to in this book as the IEEE 
standard, and the IEEE Standard 9899. As stated in Part 1, the IEEE Standard 
9899 describes a standard way of doing floating-point arithmetic for the C 
programming language. The IEEE Standard 754 specifies a standard for 
floating-point arithmetic for all computers regardless of the architecture or of 
any high-level language. The IEEE Standard 9899 conforms to the IEEE 
standard and standardizes its implementation for the C programming 
language, so that if you write a program that uses IEEE Standard 9899 
features, it will compile with any 9899-compliant compiler.

Macintosh OS X numerics in C is supported largely through a library called 
Libm. This library contains macros, functions, and type definitions that 
provide conformance to the IEEE Standard 754 and the IEEE Standard 9899. 

This part describes the Libm library, its adherence to each piece of the IEEE 
numerics environment, and its additional features that conform to the IEEE 
Standard 9899. For more information about the semantics of Macintosh OS X 
numerics, see Part 1. Read Part 2 if you are a programmer and you want to 
find out how to access the features described in Part 1 using the C language.
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Numeric Data Types in C 6

This chapter describes the numeric data types available in C and shows how to 
determine the class and sign of values represented in numeric data types. As stated in 
Chapter 2, “Floating-Point Data Formats,” the Mac OS X numerics environment provides 
two numeric data formats: single (32 bits long) and double (64 bits long). Each can 
represent normalized numbers, denormalized numbers, zeros, NaNs, and Infinities. See 
Chapter 2 for information about the numeric data formats and about how they represent 
values. Read this chapter to find out about the mapping of numeric formats to 
floating-point types in C, about the floating-point type declarations made in the Mac OS 
X numerics library (Libm), and about the library utilities available that can determine the 
class of a floating-point value.

C Data Types 6

Table 6-1 shows how the PowerPC Numerics data formats map to the C floating-point 
variable types. This mapping follows the recommendations in the FPCE technical report.

Efficient Type Declarations 6

Libm contains two floating-point type definitions, float_t and double_t in the header 
Types.h. If you define a variable to be float_t or double_t, it means “use the most 
efficient floating-point format for this architecture.” Table 6-2 shows the definitions for 
float_t and double_t for the PowerPC architecture.

Table 6-1 Names of data types

PowerPC Numerics format C type

IEEE single float

IEEE double double

Table 6-2 float_t and double_t types

Architecture float_t type double_t type

PowerPC float double
C Data Types 6-3
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For the PowerPC microprocessor, the most natural format for computations is double, 
but the architecture allows computations in single precision as well. Therefore, for the 
PowerPC microprocessor, float_t is defined to be float (single precision) and 
double_t is defined to be double.

Inquiries: Class and Sign 6

Libm provides macros you can use to determine the class and sign of a floating-point 
value. All of these macros return type long int. They are listed in Table 6-3.

Table 6-3 Class and sign inquiry macros

Macro Value returned Condition

fpclassify(x) FP_NAN x is a NaN

FP_INFINITE x is  or +∞

FP_ZERO x is +0 or 

FP_NORMAL x is a normalized number

FP_SUBNORMAL x is a denormalized (subnormal) number

isnormal(x) 1 x is a normalized number

0 x is not a normalized number

isfinite(x) 1 x is not , +∞, or NaN

0 x is , +∞, or NaN

isnan(x) 1 x is a NaN (quiet or signaling)

0 x is not a NaN (quiet or signaling)

signbit(x) 1 The sign bit of x is 1 (x is negative)

0 The sign bit of x is 0 (x is positive)

∞–

0–

∞–

∞–
6-4 Inquiries: Class and Sign
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Creating Infinities and NaNs 6

Lib defines the constants INFINITY and NAN, so that you can assign these values to 
variables in your program, and provides the following function that returns NaNs:

double nan  (const char *tagp);

The nan function returns a quiet NaN with a fraction field that is equal to the argument 
tagp. The argument tagp is a pointer to a string that will be copied into bits 8 through 
15 of the NaN’s fraction field. The string should specify a decimal number between 0 and 
255. For example:

nan("32")

creates a NaN with code 32. If you supply a negative string, or if tagp is empty, it is the 
same as supplying the string “0”. If you supply a string greater than 255, it is the same as 
supplying the string “255”. For a list of predefined NaN codes, see Chapter 2, 
“Floating-Point Data Formats.”

Numeric Data Types Summary 6

This section summarizes the C constants, macros, functions, and type definitions 
associated with creating floating-point values or determining the class and sign of a 
floating-point value. 

C Summary 6

Constants 6

#define HUGE_VAL 1e500
#define HUGE_VALF 1e50f
#define INFINITY HUGE_VALF

#if defined(__APPLE_CC__) && (__APPLE_CC__ >= 1345)
#define NAN__builtin_nanf("0x7fc00000") /* Constant expression, can be used 
as initializer. */
#else
#define NAN __nan( )
#endif
Creating Infinities and NaNs 6-5
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Class and Sign Inquiry Macros

#define fpclassify( x ) ( ( sizeof ( x ) == sizeof(double) ) ? \
__fpclassifyd  ( x ) : \

( sizeof ( x ) == sizeof( float) ) ? \
__fpclassifyf ( x ) : \
__fpclassify  ( x ) )

#define isnormal( x ) ( ( sizeof ( x ) == sizeof(double) ) ? \
__isnormald ( x ) : \

( sizeof ( x ) == sizeof( float) ) ? \
__isnormalf ( x ) : \
__isnormal  ( x ) )

#define isfinite( x )      ( ( sizeof ( x ) == sizeof(double) ) ? \
__isfinited ( x ) : \

( sizeof ( x ) == sizeof( float) ) ? \
__isfinitef ( x ) : \
__isfinite  ( x ) )

#define isnan( x ) ( ( sizeof ( x ) == sizeof(double) ) ? \
__isnand ( x ) : \

( sizeof ( x ) == sizeof( float) ) ? \
__isnanf ( x ) : \
__isnan  ( x ) )

#define signbit( x ) ( ( sizeof ( x ) == sizeof(double) ) ? \
__signbitd ( x ) : \

( sizeof ( x ) == sizeof( float) ) ? \
__signbitf ( x ) : \
__signbitl ( x ) )

Data Types 6

enum {

FP_NAN = 1, /* NaN */
FP_INFINITE = 2, /* + or - infinity */
FP_ZERO = 3, /* + or - zero */
FP_NORMAL = 4, /* all normal numbers */
FP_SUBNORMAL = 5 /* denormal numbers */

};
6-6 Numeric Data Types Summary
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typedef float float_t;
typedef double double_t;

Special Value Routines 6

Creating NaNs

double nan (const char *tagp);
Numeric Data Types Summary 6-7
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Environmental Control Functions 7

This chapter describes how to control the floating-point environment using functions 
defined in Libm. 

As described in Chapter 3, “Environmental Controls,” the rounding direction and the 
exception flags are the parts of the environment that you can access. You can test and 
change the rounding direction, and you can test, set, and clear the exceptions flags. You 
may also save and restore both the rounding direction and exception flags together as a 
single entity. This chapter describes the functions that perform these tasks. For the 
definitions of rounding direction and exception flags, see Chapter 3.

Read this chapter to learn how to access and manipulate the floating-point environment 
in the C language. All of the environmental control function declarations appear in the 
file fenv.h.

Controlling the Rounding Direction 7

In Libm, the following functions control the rounding direction:

The four rounding direction modes are defined as the constants shown in Table 7-1. 

fegetround 7

You can use the fegetround function to save the current rounding direction.

int fegetround (void);

fegetround  Returns the current rounding direction.

fesetround  Sets the rounding direction.

Table 7-1 Rounding direction modes in Libm

Rounding 
direction Constant

To nearest FE_TONEAREST

Toward zero FE_TOWARDZERO

Upward FE_UPWARD

Downward FE_DOWNWARD
Controlling the Rounding Direction 7-3
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DESCRIPTION

The fegetround function returns an integer that specifies which rounding direction is 
currently being used. The integer it returns will be equal to one of the constants shown in 
Table 7-1. You can save the returned value in an integer variable to save the current 
rounding direction.

EXAMPLES

int rounddir;
double_t x, y, result;

rounddir = fegetround(); /* save rounding direction */

result = x + y;
if (rounddir == FE_TONEAREST) 

printf("The result was rounded to the nearest value.\n");
else if (rounddir == FE_UPWARD)

printf("The result was rounded upward.\n");
else if (rounddir == FE_DOWNWARD)

printf("The result was rounded downward.\n");
else if (rounddir == FE_TOWARDZERO)

printf("The result was rounded toward zero.\n");

fesetround 7

You can use the fesetround function to change the rounding direction.

int fesetround (int round);

round One of the four rounding direction constants (see Table 7-1).

DESCRIPTION

The fesetround function sets the rounding direction to the mode specified by its 
argument. If the value of round does not match any of the rounding direction constants, 
the function returns 1 and does not change the rounding direction. (Otherwise it returns 
0.)

By convention, if you change the rounding direction inside a function, first save the 
rounding direction of the calling function using fegetround and restore the saved 
direction at the end of the function. This way, the function does not affect the rounding 
direction of its caller. If the function is to be reentrant, then storage for the caller’s 
rounding direction must be local.
7-4 Controlling the Rounding Direction



C H A P T E R  7

Environmental Control Functions

7
E

nvironm
ental C

ontrol F
unctions
One reason to change the rounding direction would be to put bounds on errors (at least 
for the basic arithmetic operations and square root). Suppose you want to evaluate an 
expression such as

where a, b, c, d, f, and g are positive.

To make sure that the result is always larger than the exact value, you can change the 
expression such that all roundings cause errors in the same direction. The example that 
follows changes the rounding direction to compute an upper bound for the expression, 
and then restores the previous rounding.

EXAMPLES

double_t big_divide(void)
{

double_t x_up, a, b, c, d, f, g;
int r; /* specifies rounding direction */

r = fegetround(); /* save caller’s rounding direction */
fesetround(FE_DOWNWARD);

/* downward rounding for denominator */
x_up = f + g; 
fesetround(FE_UPWARD);

/* upward rounding for expression */
x_up = (a * b + c * d) / x_up; 
fesetround(r);

/* restore caller’s rounding direction */
return(x_up);

}

Controlling the Exception Flags 7

In Libm, the following functions control the floating-point exception flags:

feclearexcept Clears one or more exceptions.

fegetexceptfl
ag

Saves one or more exception flags.

feraiseexcept Raises one or more exceptions. 

fesetexceptfl
ag

Restores the state of one or more exception flags.

fetestexcept Returns the value of one or more exception flags.

x a b c d×+×( ) f g+( )⁄=
Controlling the Exception Flags 7-5
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The five floating-point exception flags are defined as the constants shown in Table 7-2. 

Libm also defines another constant, FE_ALL_EXCEPT, which is the logical OR of all five 
exceptions. Using FE_ALL_EXCEPT, you can manipulate all five floating-point exception 
flags as a single entity. The type fexcept_t also exists so that all 
the exception flags may be accessed at once.

feclearexcept 7

You can use the feclearexcept function to clear one or more floating-point exceptions.

void feclearexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be cleared. 

DESCRIPTION

The feclearexcept function clears the floating-point exceptions specified by its 
argument. The argument may be one of the constants in Table 7-2, two or more of these 
constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

feclearexcept(FE_INEXACT); /* clears the inexact flag */
feclearexcept(FE_INEXACT|FE_UNDERFLOW);

/* clears the inexact and underflow flags */
feclearexcept(FE_ALL_EXCEPT); /* clears all flags */

Table 7-2 Floating-point exception flags in Libm

Exception Constant

Inexact FE_INEXACT

Divide-by-zero FE_DIVBYZERO

Underflow FE_UNDERFLOW

Overflow FE_OVERFLOW

Invalid FE_INVALID
7-6 Controlling the Exception Flags
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fegetexceptflag 7

You can use the fegetexcept function to save the current value of one or more 
floating-point exception flags.

void fegetexceptflag (fexcept_t *flagp, int excepts);

flagp A pointer to where the exception flag values are to be stored.

excepts A mask indicating which exception flags to save. 

DESCRIPTION

The fegetexceptflag function saves the values of the floating-point exception flags 
specified by the argument excepts to the area pointed to by the argument flagp. The 
excepts argument may be one of the constants in Table 7-2 on page 7-6, two or more of 
these constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

fegetexceptflag(flagp, FE_INVALID); /* saves the invalid flag */
fegetexceptflag(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* saves the invalid, overflow, and divide-by-zero flags */
fegetexceptflag(flagp, FE_ALL_EXCEPT); /* saves all flags */

feraiseexcept 7

You can use the feraiseexcept function to raise one or more floating-point exceptions.

void feraiseexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be set. 

DESCRIPTION

The feraiseexcept function sets the floating-point exception flags specified by its 
argument. The argument may be one of the constants in Table 7-2 on page 7-6, two or 
more of these constants ORed together, or the constant FE_ALL_EXCEPT.
Controlling the Exception Flags 7-7
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feraiseexcept(FE_OVERFLOW); /* sets the overflow flag */
feraiseexcept(FE_INEXACT|FE_UNDERFLOW);

/* sets the inexact and underflow flags */
feraiseexcept(FE_ALL_EXCEPT); /* sets all flags */

fesetexcept 7

You can use the fesetexcept function to restore the values of the floating-point 
exception flags previously saved by a call to fegetexcept.

void fesetexcept (const fexcept_t *flagp, int excepts);

flagp A pointer to the values the floating-point exception flags should have.

excepts A mask indicating which exception flags should have their values 
changed. 

DESCRIPTION

The fesetexceptflag function sets the floating-point exception flags indicated by 
the argument excepts to the values indicated by the argument flagp. The excepts 
argument may be one of the constants in Table 7-2 on page 7-6, two or more of these 
constants ORed together, or the constant FE_ALL_EXCEPT.

You must call fegetexcept before this function to set the flagp argument. This 
argument cannot be set in any other way.

EXAMPLES

fesetexceptflag(flagp, FE_INVALID);/* restores the invalid flag */
fesetexceptflag(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* restores the invalid, overflow, and divide-by-zero flags */
fesetexceptflag(flagp, FE_ALL_EXCEPT); /* restores all flags */

fetestexcept 7

You can use the fetestexcept function to find out if one or more floating-point 
exceptions has occurred.

int fetestexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be tested. 
7-8 Controlling the Exception Flags
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DESCRIPTION

The fetestexcept function tests the floating-point exception flags specified by its 
argument. The argument may be one of the constants in Table 7-2 on page 7-6, two or 
more of these constants ORed together, or the constant FE_ALL_EXCEPT. 

If all exception flags being tested are clear, fetestexcept returns a 0. If one of the 
flags being tested is set, fetestexcept returns the constant associated with that flag. If 
more than one flag is set, fetestexcept returns the result of ORing their constants 
together. For example, if the inexact exception is set, fetestexcept returns 
FE_INEXACT. If both the inexact and overflow exceptions flags are set, fetestexcept 
returns FE_INEXACT | FE_OVERFLOW.

EXAMPLES

feraiseexcept(FE_DIVBYZERO|FE_OVERFLOW);
feclearexcept(FE_INEXACT|FE_UNDERFLOW|FE_INVALID);

/* Now the divide-by-zero and overflow flags are 1, and the
rest of the flags are 0. */

i = fetestexcept(FE_INEXACT);
/* i = 0 because inexact is clear */

i = fetestexcept(FE_DIVBYZERO);
/* i = FE_DIVBYZERO */

i = fetestexcept(FE_UNDERFLOW);
/* i = 0 */

i = fetestexcept(FE_OVERFLOW);
/* i = FE_OVERFLOW */

i = fetestexcept(FE_ALL_EXCEPT);
/* i = FE_DIVBYZERO | FE_OVERFLOW */

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);
/* i = FE_DIVBYZERO */

Accessing the Floating-Point Environment 7

Libm defines four functions that access the entire floating-point environment:

fegetenv Returns the current environment.

feholdexcept Saves the previous environment and clears all exception flags.

fesetenv Sets new environmental values.

feupdateenv Restores a previously saved environment.
Accessing the Floating-Point Environment 7-9
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These functions take parameters of type fenv_t. Type fenv_t is the environment word 
type. In general, the environmental access functions either take a pointer to a variable of 
type fenv_t or accept the macro FE_DFL_ENV, which defines the default environment 
(default rounding direction and all exceptions cleared).

fegetenv 7

You can use the fegetenv function to save the current state of the floating-point 
environment.

void fegetenv (fenv_t *envp);

envp A pointer to an environment word that will store the current state of the 
environment upon the function’s return.

DESCRIPTION

The fegetenv function saves the current state of the rounding direction modes and the 
floating-point exception flags in the object pointed to by its envp argument.

EXAMPLES

double_t func (double_t x, double_t y)
{

fenv_t *env;

x = x + y; /* floating-point op; may raise exceptions */
fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */
.
.
.

}

feholdexcept 7

You can use the feholdexcept function to save the current floating-point environment 
and then clear all exception flags.
7-10 Accessing the Floating-Point Environment
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int feholdexcept (fenv_t *envp);

envp A pointer to an environment word where the environment should be 
saved.

DESCRIPTION

The feholdexcept function stores the current environment in the argument envp and 
clears the floating-point exception flags. Note that this function does not affect the 
rounding direction. It is the same as performing the following two calls:

fegetenv(envp);
feclearexcept(FE_ALL_EXCEPT);

Call feholdexcept at the beginning of a function so that the function can start with all 
exceptions cleared but not change the caller’s environment. Use feupdateenv to restore 
the caller’s environment at the end of the function. The feupdateenv function keeps 
any exceptions raised by the current function set while restoring the rest of the caller’s 
environment. Thus, using feholdexcept and feupdateenv together preserves all 
raised floating-point exceptions while allowing new ones to be raised as well.

EXAMPLES

void subroutine(void)
{

fenv_t *e; /* local storage for environment */

feholdexcept(e); /* save caller’s environment and
clear exceptions */

/* subroutine’s operations here */

  feupdateenv(e); /* restore caller’s environment */
}

fesetenv 7

You can use the fesetenv function to restore the floating-point environment.

void fesetenv (const fenv_t *envp);

envp A pointer to a word containing the value to which the environment should 
be set.
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DESCRIPTION

The fesetenv function sets the floating-point environment to the value pointed to by its 
argument envp. The value of envp must come from a call to either fegetenv or 
feholdexcept, or it may be the constant FE_DFL_ENV, which specifies the default 
environment. In the default environment, all exception flags are clear and the rounding 
direction is set to the default.

EXAMPLES

double_t func (double_t x, double_t y)
{

fenv_t *env;

fesetenv(FE_DFL_ENV); /* clear environment */

x = x + y; /* floating-point op; may raise exceptions */
fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */
fesetenv(env); /* ignore environmental changes by

multiplication operator */
.
.
.

}

feupdateenv 7

You can use the feupdateenv function to restore the floating-point environment 
previously saved with feholdexcept.

void feupdateenv (const fenv_t *envp);

envp A pointer to the word containing the environment to be restored.

DESCRIPTION

The feupdateenv function, which takes a saved environment as argument, does the 
following: 

1. It temporarily saves the exception flags (raised by the current function).

2. It restores the environment received as an argument.

3. It signals the temporarily saved exceptions.
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The feupdateenv function facilitates writing subroutines that appear to their callers to 
be atomic operations (such as addition, square root, and others). Atomic operations pass 
extra information back to their callers by signaling exceptions; however, they hide 
internal exceptions, which might be irrelevant or misleading. Thus, exceptions signaled 
between the feholdexcept and feupdateenv functions are hidden from the calling 
function unless the exceptions remain raised when the feupdateenv procedure is 
called. 

EXAMPLES

/* NumFcn signals underflow if its result is denormalized, 
overflow if its result is INFINITY, and inexact always, but hides 
spurious exceptions occurring from internal computations. */ 

long double NumFcn(void)
{

fenv_t e; /* local environment storage */
enum NumKind c; /* for class inquiry */
fexcept_t * flagp; 
long double result;

feholdexcept(&e); /* save caller’s environment and
   clear exceptions */

/* internal computation */

c = fpclassify(result); /* class inquiry */

feclearexcept(FE_ALL_EXCEPT); /* clear all exceptions */
 feraiseexcept(FE_INEXACT); /* signal inexact */

 if (c == FP_INFINITE)
 feraiseexcept(FE_OVERFLOW);

else if (c == FP_SUBNORMAL) 
 feraiseexcept(FE_UNDERFLOW);

feupdateenv(&e);
/* restore caller’s environment, and then signal
   exceptions raised by NumFcn */

return(result);
}

Accessing the Floating-Point Environment 7-13
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Trapping Floating-point Exceptions 7

When a floating-point exception occurs, the Macinstosh OS floating-point library returns 
a result value (usually a NaN, infinity, underflow, or overflow) and sets the appropriate 
flaoting-point exception flags.

For many programs the result value delivered is appropriate, and enables the application 
to continue, complete without error, and return a reasonable result.

In other programs, where more direct control is required, the program may test the 
exception flags explicity after a critical operation, using the floating point environment 
inquiry functions described in this chapter (such as fegetenv).

There is a third way of dealing with exceptions, used when the application requires an 
unusually fine degree of control. By enabling (setting) bits in the Floating Point Status 
and Control Register (FPSCR), the application can cause the PowerPC microprocessor to 
generate hardware interrupt signals when a floating-point exception occurs. These bits 
are set through the use of the fesetenvd call. The Mac OS X will deliver that interrupt 
to your application by raising the UNIX signal SIGFPE. 

Your application can specify how this interrupt is to be handled by calling the sigaction 
function with a first parameter of SIGFPE. When a floating-point operation causes and 
exception, the associated interrupt will trigger a special handler (installed with the same 
sigaction call) which is executed before the operation returns a result. The handler (which 
may be a default system handler or a user-defined handler) has access to a great deal of 
information about the system (including the floating-point registers) at the time the 
exception occurs, and may make adjustments as desired.

sigaction is part of the standard UNIX signal-handling facilities, as defined by IEEE 
Std1003.1-1988. For more information see http://developer.apple.com/
documentation/Darwin/Reference/ManPages/html/sigaction.2.html. 
When an exception handler is invoked, the parameters delivered to it include 
machine-specific (usually PPC-specific) data about the state of the floating-point 
environment. For details about the data structures, see the header files ucontext.h and 
thread_status.h.

Here is sample exception handler (myHandler), and a program (main) which installs it 
and generates some floating-point exceptions to invoke it. In this case the sample 
exception handler simply prints out (using printf) the address at which it was invoked 
and the value of the PowerPC FPSCR before reurning control to the main program.
7-14 Trapping Floating-point Exceptions



C H A P T E R  7

Environmental Control Functions

7
E

nvironm
ental C

ontrol F
unctions
Listing 7-1 Sample Exception Handler

#include <math.h>
#include <fenv.h>
#include <signal.h>
#include <ucontext.h>
#include <mach/thread_status.h>

#define fegetenvd(x) asm volatile("mffs %0" : "=f" (x));
#define fesetenvd(x) asm volatile("mtfsf 255,%0" : : "f" (x));
enum {

FE_ENABLE_INEXACT    = 0x00000008,
FE_ENABLE_DIVBYZERO  = 0x00000010,
FE_ENABLE_UNDERFLOW  = 0x00000020,
FE_ENABLE_OVERFLOW   = 0x00000040,
FE_ENABLE_INVALID    = 0x00000080,
FE_ENABLE_ALL_EXCEPT = 0x000000F8

};

typedef union {
struct {

unsigned long hi;
unsigned long lo;

} i;
double d;

} hexdouble;

void myHandler(sig, sip, scp)
int sig;
siginfo_t *sip;
struct ucontext *scp;
{

hexdouble t;
ppc_float_state_t *fs;
ppc_thread_state_t *ss;

fs = &scp->uc_mcontext->fs;
ss = &scp->uc_mcontext->ss;

printf("SIGFPE taken at 0x%x invokes myHandler, fpscr = %08X\n",
sip->si_addr, fs->fpscr);

/* Re-arms interrupts when this state is restored */
Trapping Floating-point Exceptions 7-15



fs->fpscr &= FE_ENABLE_ALL_EXCEPT;

/* Advances the PC when this state is restored */
ss->srr0 += 4;

printf("fpscr = %08X\n", fs->fpscr);
}

static struct sigaction act = { myHandler, (sigset_t)0, SA_SIGINFO };

main ()
{

float s;
hexdouble t;

fegetenvd(t.d);

/* Enable hardware trapping for all exceptions */
t.i.lo |= FE_ENABLE_ALL_EXCEPT;
fesetenvd(t.d);

/* Set handler */

if (sigaction(SIGFPE, &act, (struct sigaction *)0) != 0) {
perror("Yikes");
exit(-1);

}
fegetenvd(t.d);

/* Overflow folded out by compiler */
s = HUGE_VALF * HUGE_VALF;

/* Inf/Inf raises invalid operation */
s = s / (1.0 + s);
fegetenvd(t.d);

/* verify that the compiler is doing the right thing */
printf("In main(1), s computed as: %e , fpscr = %08X\n", s, t.i.lo);

/* Overflow folded out by compiler */
s = HUGE_VALF * HUGE_VALF;

/* Inf/Inf raises invalid operation */
s = s / (2.0 + s);
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fegetenvd(t.d);

/* verify that the compiler is doing the right thing */
printf("In main(2), s computed as: %e , fpscr = %08X\n", s, t.i.lo);

}

Environmental Controls Summary 7

This section summarizes the C constants, macros, functions, and type definitions 
associated with controlling the floating-point environment. 

C Summary 7

Constants 7

Rounding Direction Modes

#define FE_TONEAREST 0x00000000 
#define FE_TOWARDZERO 0x00000001 
#define FE_UPWARD 0x00000002 
#define FE_DOWNWARD 0x00000003

Floating-Point Exception Flags

#define FE_INEXACT 0x02000000 /* inexact */
#define FE_DIVBYZERO 0x04000000 /* divide-by-zero */
#define FE_UNDERFLOW 0x08000000 /* underflow */
#define FE_OVERFLOW 0x10000000 /* overflow */
#define FE_INVALID 0x20000000 /* invalid */

#define FE_ALL_EXCEPT ( FE_INEXACT | FE_DIVBYZERO | FE_UNDERFLOW | \
FE_OVERFLOW | FE_INVALID )

#define FE_DFL_ENV &_FE_DFL_ENV /* pointer to default environment*/

Data Types 7

typedef long fenv_t;
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typedef long fexcept_t;

Environment Access Routines 7

Controlling the Rounding Direction

int fegetround (void);

int fesetround (int round);

Controlling the Exception Flags

void feclearexcept (int excepts);

void fegetexceptflag (fexcept_t *flagp, int excepts);

void feraiseexcept (int excepts);

void fesetexceptflag (const fexcept_t *flagp, int excepts);

int fetestexcept (int excepts);

Accessing the Floating-Point Environment

void fegetenv (fenv_t *envp);

int feholdexcept (fenv_t *envp);

void fesetenv (const fenv_t *envp);

void feupdateenv (const fenv_t *envp);
7-18 Environmental Controls Summary
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Conversion Functions 8

This chapter describes how you can perform the conversions required by the IEEE 
standard using Libm C functions. For each type of conversion, this chapter lists the 
functions you can use to perform that conversion. It shows the declarations of these 
functions, describes what they do, describes when they raise floating-point exceptions, 
and gives examples of how to use them. For a description of the conversions required by 
the IEEE standard and the details of how each conversion is performed in Mac OS X 
numerics, see Chapter 4, “Conversions.” All of the conversion function declarations 
appear in the file math.h. 

Converting Floating-Point to Integer Formats 8

In C, the default method of converting floating-point numbers to integers is to simply 
discard the fractional part (truncate). Libm provides two functions that convert 
floating-point numbers to integers using methods other than the default C method and 
that return the integers in integer types.

llrint 8

You can use the llrint function to round a real number to the nearest integer (of type 
long long int) in the current rounding direction.

long long int llrint (double_t x);

x Any floating-point number.

DESCRIPTION

The llrint function rounds its argument to the nearest integer (of type long long 
int) in the current rounding direction and places the result in a long long int type. 
The available rounding directions are upward, downward, to nearest, and toward zero.

Returns the nearest integer to x in the current rounding direction as 
type long long int.

Adds 1/2 to the magnitude of x, chops to an integer, and returns the 
value as type long long int.

Returns the nearest integer to x in the current rounding direction as 
type long int.

Adds 1/2 to the magnitude of x, chops to an integer, and returns the 
value as type long int.

llrint x( )

lrint x( )

lrint x( )

lround x( )
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llrint differs from rint (described on page 5-13) in that it returns the value in type 
long int; rint returns the value in a floating-point type. It differs from lrint in its 
return type as well (long long int rather than long int).

EXCEPTIONS

When x is finite and nonzero, either the result of llrint(x) is exact or it raises one of the 
following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long long int type)

SPECIAL CASES

Table 8-2 shows the results when the argument to the llrint function is a zero, a NaN, 
or an Infinity.

EXAMPLES

z = llrint(+INFINITY);/* z = unspecified value for all rounding 
directions because +INFINITY exceeds the 
range of long long int. The invalid
exception is raised. */

z = lrint(300.1);   /* z = 301 if rounding direction is upward
else z = 300. The inexact exception is 
raised.*/

z = lrint(–300.1);   /* z = –301 if rounding direction is 
downward else z = –300. The inexact 
exception is raised. */

Table 8-1 Special cases for the llrint function

Operation Result Exceptions raised

+0 None

None

Undefined Invalid

Undefined Invalid

Undefined Invalid

llrint +0( )

llrint 0–( ) 0–

llrint NaN( )

llrint +∞( )

llrint ∞–( )
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lrint 8

You can use the lrint function to round a real number to the nearest integer (of type 
long int) in the current rounding direction.

long int lrint (double_t x);

x Any floating-point number.

DESCRIPTION

The lrint function rounds its argument to the nearest integer (of type long int) in the 
current rounding direction and places the result in a long int type. The available 
rounding directions are upward, downward, to nearest, and toward zero.

The lrint function provides the floating-point to integer conversion as described in the 
IEEE standard. It differs from rint (described on page 5-13) in that it returns the value in 
type long int; rint returns the value in a floating-point type. It differs from llrint 
in its return type as well (long int rather than long long int).

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 
following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 8-2 shows the results when the argument to the lrint function is a zero, a NaN, or 
an Infinity.

Table 8-2 Special cases for the lrint function

Operation Result Exceptions raised

+0 None

None

Undefined Invalid

Undefined Invalid

Undefined Invalid

lrint x( )

lrint +0( )

lrint 0–( ) 0–

lrint NaN( )

lrint +∞( )

lrint ∞–( )
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EXAMPLES

z = lrint(+INFINITY);/* z = unspecified value for all rounding 
directions because +INFINITY exceeds the 
range of long int. The invalid exception 
is raised. */

z = lrint(300.1);   /* z = 301 if rounding direction is upward
else z = 300. The inexact exception is 
raised.*/

z = lrint(–300.1);   /* z = –301 if rounding direction is 
downward else z = –300. The inexact 
exception is raised. */

llround 8

You can use the llround function to round a real number to the nearest integer value (of 
type long long int) by adding 1/2 to the magnitude and truncating.

long long int llround (double_t x);

x Any floating-point number.

DESCRIPTION

The llround function adds 1/2 to the magnitude of its argument and chops to integer, 
returning the answer in long long int type.

llround differs from round (described on page 8-12) in that it returns the value in type 
long long int; round returns the value in a floating-point type. It differs from 
lround in its return type as well (long long int rather than long int).

This function is not affected by the current rounding direction. Notice that the llround 
function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the default 
rounding direction, llrint (described on page 8-3) rounds halfway cases to the even 
integer.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 
following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long long int type)

llround x( )
8-6 Converting Floating-Point to Integer Formats
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SPECIAL CASES

Table 8-4 shows the results when the argument to the llround function is a zero, a NaN, 
or an Infinity.

EXAMPLES

z = llround(+INFINITY); /* z = an unspecified value because 
+∞ is outside of the range of long 
long int. */

z = llround(0.5); /* z = 1 because |0.5| + 0.5 = 1.0. The 
inexact exception is raised. */

z = llround(–0.9); /* z = –1 because |–0.9| + 0.5 = 1.4. 
The inexact exception is raised. */

lround 8

You can use the lround function to round a real number to the nearest integer value (of 
type long int) by adding 1/2 to the magnitude and truncating.

long int lround (double_t x);

x Any floating-point number.

DESCRIPTION

The lround function adds 1/2 to the magnitude of its argument and chops to integer, 
returning the answer in long int type.

lround differs from round (described on page 8-12) in that it returns the value in type 
long int; round returns the value in a floating-point type. It differs from llround in 
its return type as well (long int rather than long long int).

Table 8-3 Special cases for the llround function

Operation Result Exceptions raised

+0 None

None

Undefined Invalid

Undefined Invalid

Undefined Invalid

llround +0( )

llround 0–( ) 0–

llround NaN( )

llround +∞( )

llround ∞–( )
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This function is not affected by the current rounding direction. Notice that the lround 
function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the default 
rounding direction, lrint (described on page 8-5) rounds halfway cases to the even 
integer.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 
following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 8-4 shows the results when the argument to the roundtol function is a zero, a 
NaN, or an Infinity.

EXAMPLES

z = lround(+INFINITY); /* z = an unspecified value because 
+∞ is outside of the range of long 
int. */

z = lround(0.5); /* z = 1 because |0.5| + 0.5 = 1.0. The 
inexact exception is raised. */

z = lround(–0.9); /* z = –1 because |–0.9| + 0.5 = 1.4. 
The inexact exception is raised. */

Rounding Floating-Point Numbers to Integers 8

Libm provides six functions that convert floating-point numbers to integers and return 
the integer in a floating-point type. The first is the rint function, which performs the 

Table 8-4 Special cases for the lround function

Operation Result Exceptions raised

+0 None

None

Undefined Invalid

Undefined Invalid

Undefined Invalid

lround x( )

lround +0( )

lround 0–( ) 0–

lround NaN( )

lround +∞( )

lround ∞–( )
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round-to-integer operation as described in Chapter 5, “Numeric Operations and 
Functions.” The other functions either round in a specific direction or perform a variation 
of the rint operation.

ceil 8

You can use the ceil function to round a real number upward to the nearest integer 
value.

double_t ceil (double_t x);

x Any floating-point number.

DESCRIPTION

The ceil function rounds its argument upward. This is an ANSI standard C library 
function. The result is returned in a floating-point data type.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */
fesetround(FE_UPWARD); /* round upward */
rint(x); /* round to integer */
fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

Returns the nearest integer not less than x.

Returns the nearest integer not greater than x.

Returns the nearest integer to x in the current rounding direction.

Adds 1/2 to the magnitude of x and chops to an integer.

Truncates the fractional part of x.

ceil x( )

floor x( )

nearbyint x( )

round x( )

trunc x( )

ceil x( )
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Table 8-5 shows the results when the argument to the ceil function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = ceil(+INFINITY); /* z = +INFINITY because +INFINITY is already 
an integer value by definition. */

z = ceil(300.1); /* z = 301.0 */
z = ceil(–300.1); /* z = –300.0 */

floor 8

You can use the floor function to round a real number downward to the next integer 
value.

double_t floor (double_t x);

x Any floating-point number.

DESCRIPTION

The floor function rounds its argument downward. This is an ANSI standard C library 
function. The result is returned in a floating-point data type.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */
fesetround(FE_DOWNWARD); /* round downward */
rint(x); /* round to integer */
fesetround(r); /* restore rounding direction */

Table 8-5 Special cases for the ceil function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

ceil +0( )

ceil 0–( ) 0–

ceil NaN( )

ceil +∞( )

ceil ∞–( ) ∞–
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EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 8-6 shows the results when the argument to the floor function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = floor(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = floor(300.1); /* z = 300.0 */
z = floor(–300.1); /* z = –301.0 */

nearbyint 8

You can use the nearbyint function to round a real number to the nearest integer in the 
current rounding direction.

double_t nearbyint (double_t x);

x Any floating-point number.

DESCRIPTION

The nearbyint function rounds its argument to the nearest integer in the current 
rounding direction. The available rounding directions are upward, downward, to nearest, 
and toward zero.

Table 8-6 Special cases for the floor function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

floor x( )

floor +0( )

floor 0–( ) 0–

floor NaN( )

floor +∞( )

floor ∞–( ) ∞–
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The nearbyint function provides the floating-point to integer conversion described in 
the IEEE Standard 854. It differs from rint (described on page 5-13) only in that it does 
not raise the inexact flag when the argument is not already an integer.

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 8-7 shows the results when the argument to the nearbyint function is a zero, a 
NaN, or an Infinity.

EXAMPLES

z = nearbyint(+INFINITY); /* z = +INFINITY for all rounding 
directions. */

z = nearbyint(300.1); /* z = 301.0 if rounding direction is 
upward, else z = 300.0. */

z = nearbyint(–300.1); /* z = –301.0 if rounding direction is 
downward, else z = –300.0. */

round 8

You can use the round function to round a real number to the integer value obtained by 
adding 1/2 to the magnitude and truncating.

double_t round (double_t x);

x Any floating-point number.

Table 8-7 Special cases for the nearbyint function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

nearbyint x( )

nearbyint +0( )

nearbyint 0–( ) 0–

nearbyint NaN( )

nearbyint +∞( )

nearbyint ∞–( ) ∞–
8-12 Rounding Floating-Point Numbers to Integers
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DESCRIPTION

The round function adds 1/2 to the magnitude of its argument and chops to integer. The 
result is returned in a floating-point data type.

This function is not affected by the current rounding direction. Notice that the round 
function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the default 
rounding direction, rint (described on page 5-13) rounds halfway cases to the even 
integer.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises the 
following exception:

■ inexact (if x is not an integer value)

SPECIAL CASES

Table 8-8 shows the results when the argument to the round function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = round(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = round(0.5); /* z = 1.0 because |0.5| + 0.5 = 1.0. The 
inexact exception is raised. */

z = round(–0.9); /* z = –1.0 because |–0.9| + 0.5 = 1.4. 
The inexact exception is raised. */

Table 8-8 Special cases for the round function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

round x( )

round +0( )

round 0–( ) 0–

round NaN( )

round +∞( )

round ∞–( ) ∞–
Rounding Floating-Point Numbers to Integers 8-13
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trunc 8

You can use the trunc function to truncate the fractional part of a real number so that 
just the integer part remains.

double_t trunc (double_t x);

x Any floating-point number.

DESCRIPTION

The trunc function chops off the fractional part of its argument. This is an ANSI 
standard C library function.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */
fesetround(FE_TOWARDZERO); /* round toward zero */
rint(x); /* round to integer */
fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 8-9 shows the results when the argument to the trunc function is a zero, a NaN, or 
an Infinity.

Table 8-9 Special cases for the trunc function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

trunc x( )

trunc +0( )

trunc 0–( ) 0–

trunc NaN( )

trunc +∞( )

trunc ∞–( ) ∞–
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EXAMPLES

z = trunc(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = trunc(300.1); /* z = 300.0 */
z = trunc(–300.1); /* z = –300.0 */

Converting Integers to Floating-Point Formats 8

In the C programming language, conversions from integers stored in an integer format to 
floating-point formats are automatic when you assign an integer to a floating-point 
variable.

double d;
int x = 1;
d = x; /* value 1 automatically converted to double format */

Converting Between Floating-Point Formats 8

In the C programming language, conversions between floating-point formats are 
automatic when you assign a floating-point number of one type to a variable of another 
type.

float f = 0.0f; /* single format */
double d = 1.1;
long double ld; /* double-double format */

f = d; /* double 1.1 converted to single format */
ld = f; /* single 1.1 converted to double-double format */
d = ld; /* double-double 1.1 converted to double format */
Converting Integers to Floating-Point Formats 8-15
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Conversions Summary 8

This section summarizes the C functions associated with converting floating-point 
values. 

C Summary 8

Conversion Routines 8

Converting Floating-Point Formats to Integer Formats

long int lrint (double_t x);

long int lround (double_t x);

Rounding Floating-Point Numbers to Integers

double_t ceil (double_t x);

double_t floor (double_t x); 

double_t nearbyint (double_t x);

double_t round (double_t x);

double_t trunc (double_t x);
8-16 Conversions Summary
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Transcendental Functions 9

This chapter describes how to use the transcendental and auxiliary functions declared in 
Libm. This chapter describes the following types of functions:

■ comparison 

■ sign manipulation

■ exponential 

■ logarithmic

■ trigonometric

■ hyperbolic

■ error and gamma

It shows the declarations of these functions, describes what they do, describes 
when they raise floating-point exceptions, and gives examples of how to use them. 
For functions that manipulate the floating-point environment, see Chapter 7, 
“Environmental Control Functions.” For functions that perform conversions, see 
Chapter 8, “Conversion Functions.” For basic arithmetic and comparison operations, 
see Chapter 5, “Numeric Operations and Functions.”

Comparison Functions 9

Libm provides four functions that perform comparisons between two floating-point 
arguments:

These functions take advantage of the rule from the IEEE standard that all values except 
NaNs have an order:

< all negative real numbers <  = +0 < all positive real numbers < +∞

These functions also make special cases of NaNs so that they raise no floating-point 
exceptions.

Returns the positive difference x – y or 0.

Returns the maximum of x or y.

Returns the minimum of x or y.

fdim x y,( )

fmax x y,( )

fmin x y,( )

∞– 0–
Comparison Functions 9-3
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fdim 9

You can use the fdim function to determine the positive difference between two real 
numbers.

double_t fdim (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fdim function returns the positive difference between its two arguments.

if x > y 
if x ≤ y 

EXCEPTIONS

When x and y are finite and nonzero and x > y, either the result of  is exact or 
it raises one of the following exceptions:

■ inexact (if the result of x – y must be rounded)

■ overflow (if the result of x – y is outside the range of the data type)

■ underflow (if the result of x – y is inexact and must be represented as a denormalized 
number or 0)

SPECIAL CASES

Table 9-1 shows the results when one of the arguments to the fdim function is a zero, a 
NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

Table 9-1 Special cases for the fdim function 

Operation
Resul
t Exceptions raised

+0 None

x None

+0 None

x None

NaN* None†

NaN None†

fdim x y,( ) x y–=

fdim x y,( ) +0=

fdim x y,( )

fdim +0 y,( )

fdim x +0,( )

fdim 0– y,( )

fdim x 0–,( )

fdim NaN y,( )

fdim x NaN,( )
9-4 Comparison Functions
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EXAMPLES

z = fdim(+INFINITY, 300); /* z = +∞ – 300 = +INFINITY because 
+∞ > 300 */

z = fdim(300, +INFINITY); /* z = +0 because 300 ≤ +∞ */

fmax 9

You can use the fmax function to find out which is the larger of two real numbers.

double_t fmax (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fmax function determines the larger of its two arguments.

if x ≥ y
if x < y 

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

+∞ None

+0 None

+0 None

+∞ None

* If both arguments are NaN, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-1 Special cases for the fdim function (continued)

Operation
Resul
t Exceptions raised

fdim +∞ y,( )

fdim x +∞,( )

fdim ∞– y,( )

fdim x ∞–,( )

fmax x y,( ) x=

fmax x y,( ) y=

fmax x y,( )
Comparison Functions 9-5
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SPECIAL CASES

Table 9-2 shows the results when one of the arguments to the fmax function is a zero, a 
NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that 
the order of operands for this function does not matter.)

EXAMPLES

z = fmax(–INFINITY, –300,000); /* z = –300,000 because any 
integer is greater than  */

z = fmax(NAN, –300,000); /* z = –300,000 by definition of the
function fmax. */

fmin 9

You can use the fmin function to determine which is the smaller of two real numbers.

double_t fmin (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

Table 9-2 Special cases for the fmax function

Operation Result Exceptions raised

x if x > 0 None

+0 if x < 0 None

x if x > 0 None

if x < 0 None

-0 None

+0 None

x*

* If both arguments are NaNs, the first NaN is returned.

None†

† If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

x None

fmax +0 x,( )

fmax 0– x,( )

0–

fmax 0– 0±,( )

fmax +0 0±,( )

fmax NaN x,( )

fmax +∞ x,( )

fmax ∞– x,( )

∞–
9-6 Comparison Functions
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DESCRIPTION

The fmin function determines the lesser of its two arguments.

if x ≤ y
if y < x 

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-3 shows the results when one of the arguments to the fmin function is a zero, a 
NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that 
the order of operands for this function does not matter.)

EXAMPLES

z = fmin(–INFINITY, –300,000); /* z = –INFINITY because  is 
smaller than any integer. */

z = fmin(NAN, –300,000); /* z = –300,000 by definition of the 
function fmin. */

Table 9-3 Special cases for the fmin function

Operation Result Exceptions raised

x if x < 0 None

+0 if x > 0 None

x if x < 0 None

-0 if x > 0 None

-0 None

+0 None

x*

* If both arguments are NaNs, the first NaN is returned.

None†

† If the NaN is a signaling NaN, the invalid exception is raised.

x None

None

fmin x y,( ) x=

fmin x y,( ) y=

fmin x y,( )

fmin +0 x,( )

fmin 0– x,( )

fmin 0– 0±,( )

fmin +0 0±,( )

fmin NaN x,( )

fmin +∞ x,( )

fmin ∞– x,( ) ∞–

∞–
Comparison Functions 9-7
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Sign Manipulation Functions 9

Libm provides two functions that manipulate the sign bit of the floating-point value:

Because these functions only manipulate the sign bit of the value and do not try to 
compute the value at all, they raise no floating-point exceptions.

copysign 9

You can use the copysign function to assign to some real number the sign of a second 
value.

double_t copysign (double_t x, double_t y);
long double copysignl (long double x, long double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The copysign function copies the sign of the y parameter onto the magnitude of the x 
parameter and returns the resulting number. 

copysign(x, 1.0) is always the absolute value of x. The copysign function simply 
manipulates sign bits and hence raises no exception flags.

EXCEPTIONS

When x and y are finite and nonzero, the result of  is exact.

Copies the sign of y to x.

Returns the absolute value (positive form) of x.

copysign x y,( )

fabs x( )

copysign x y,( )
9-8 Sign Manipulation Functions
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SPECIAL CASES

Table 9-4 shows the results when one of the arguments to the copysign function is a 
zero, a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point 
numbers.

EXAMPLES

z = copysign(–1234.567, 1.0);/* z = 1234.567 */
z = copysign(1.0, –1234.567);/* z = –1.0 */

fabs 9

You can use the fabs function to determine the absolute value of a real number. 

double_t fabs (double_t x);
long double fabsl (long double x);

x Any floating-point number.

DESCRIPTION

The fabs function returns the absolute value (positive value) of its argument.

Table 9-4 Special cases for the copysign function

Operation Result Exceptions raised

0 with sign of y None

|x| None

0 with sign of y None

–|x| None

NaN with sign of y None*

* If the NaN is a signaling NaN, the invalid exception is raised.

x with sign of NaN None*

∞ with sign of y None

|x| None

∞ with sign of y None

–|x| None

copysign +0 y,( )

copysign x +0,( )

copysign 0– y,( )

copysign x 0–,( )

copysign NaN y,( )

copysign x NaN,( )

copysign +∞ y,( )

copysign x +∞,( )

copysign ∞– y,( )

copysign x ∞–,( )

fabs x( ) x=
Sign Manipulation Functions 9-9
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This function looks only at the sign bit, not the value, of its argument.

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-5 shows the results when the argument to the fabs function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = fabs(–1.0); /* z = 1 */
z = fabs(245.0); /* z = 245 */

Exponential Functions 9

Libm provides six exponential functions:

Table 9-5 Special cases for the fabs function

Operation
Resul
t Exceptions raised

+0 None

+0 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+∞ None

The base e or natural exponential .

The base 2 exponential .

The base e exponential minus 1. 

Returns  (equivalent to scalb).

Returns . 

Returns .

fabs x( )

fabs +0( )

fabs 0–( )

fabs NaN( )

fabs +∞( )

fabs ∞–( )

exp x( ) ex

exp2 x( ) 2x

expm1 x( )

ldexp x n,( ) x 2n×

pow x y,( ) x y

scalbn x n,( ) x 2n×
9-10 Exponential Functions
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exp 9

You can use the exp function to raise e to some power.

double_t exp (double_t x);

x Any floating-point number.

DESCRIPTION

The exp function performs the exponential function on its argument. 

The log function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise the following exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-6 shows the results when the argument to the exp function is a zero, a NaN, or an 
Infinity.

Table 9-6 Special cases for the exp function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+0 None

exp x( ) ex=

ln  x ( )

exp x( )

exp +0( )

exp 0–( )

exp NaN( )

exp +∞( )

exp ∞–( )
Exponential Functions 9-11
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EXAMPLES

 

z = exp(0.0); /* z = 

 

e

 

0

 

 = 1. */
z = exp(1.0); /* z = 

 

e

 

1

 

 ≈ 2.71828128

 

 . . . 

 

The inexact exception is 
raised. */

 

exp2 9

 

You can use the 

 

exp2

 

 function to raise 2 to some power. 

 

double_t exp2 (double_t x);

x  Any floating-point number.  

DESCRIPTION

 

The 

 

exp2

 

 function returns the base 2 exponential of its argument.

The 

 

log2

 

 function performs the inverse operation .

exp2 x( ) 2x=

log2  x ( )
9-12 Exponential Functions



C H A P T E R  9

Transcendental Functions

9
Transcendental F

unctions
      

EXCEPTIONS

 

When 

 

x

 

 is finite and nonzero, the result of  might raise the following exceptions:

 

■

 

inexact (for all finite, nonzero values of 

 

x

 

)

 

■

 

overflow (if the result is outside the range of the data type)

 

■

 

underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

 

SPECIAL CASES

 

Table 9-7 shows the results when the argument to the 

 

exp2

 

 function is a zero, a NaN, or 
an Infinity.

 

EXAMPLES

 

z = exp2(2.0); /* z = 2

 

2

 

 = 4. The inexact exception is raised. */
z = exp2(1.5); /* z = 2

 

1.5

 

 ≈ 2.82843. The inexact exception is 
raised. */

 

expm1 9

 

You can use the 

 

expm1

 

 function to raise 

 

e

 

 to some power and subtract 1.

 

double_t expm1 (double_t x);

x

 

Any floating-point number.

 

Table 9-7

 

Special cases for the 

 

exp2

 

 function

 

Operation
Resul
t Exceptions raised

 

+1 None

+1 None

NaN None
 

*

 

*

 

If the NaN is a signaling NaN, the invalid exception is raised.

 +  ∞  None

+0 None

exp2 x( )

exp2 +0( )

exp2 0–( )

exp2 NaN( )

exp2 +∞( )

exp2 ∞–( )
Exponential Functions 9-13



 

C H A P T E R  9

 

Transcendental Functions

                                          
DESCRIPTION

The expm1 function returns the natural exponential decreased by 1. 

For small numbers, use the function call expm1(x) instead of the expression

exp(x) – 1

The call expm1(x) produces a more exact result because it avoids the roundoff error that 
might occur when the expression is computed. 

EXCEPTIONS

When x is finite and nonzero, the result of  might raise the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-8 shows the results when the argument to the expm1 function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = expm1(–2.1); /* z = e–2.1 – 1 = –0.877544. The inexact
exception is raised. */

z = expm1(6); /* z = e6 – 1 = 402.429. The inexact 
exception is raised. */

Table 9-8 Special cases for the expm1 function

Operation
Resul
t Exceptions raised

+0 None

–0 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

–1 None

expm1 x( ) ex 1–=

expm1 x( )

expm1 +0( )

expm1 0–( )

expm1 NaN( )

expm1 +∞( )

expm1 ∞–( )
9-14 Exponential Functions
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ldexp 9

You can use the ldexp function to perform efficient scaling by a power of 2.

double_t ldexp (double_t x, int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The ldexp function computes the value  without computing . This is an ANSI 
standard C library function.

The scalb function (described on page 9-18) performs the same operation as this 
function. The frexp function performs the inverse operation; that is, it splits x into its 
fraction field and exponent field.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 
the following exceptions:

■ inexact (if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-9 shows the results when the floating-point argument to the ldexp function is a 
zero, a NaN, or an Infinity. In this table, n is any integer.

Table 9-9 Special cases for the ldexp function 

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x 2n× 2n

ldexp x n,( ) x 2n×=

ldexp x n,( )

ldexp +0 n,( )

ldexp 0– n,( ) 0–

ldexp NaN n,( )

ldexp +∞ n,( )

ldexp ∞– n,( ) ∞–
Exponential Functions 9-15
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EXAMPLES

z = ldexp(3.0, 3); /* z = 3 × 23 = 24 */
z = ldexp(0.0, 3); /* z = 0 × 23 = 0 */

pow 9

You can use the pow function to raise a real number to the power of some other real 
number.

double_t pow (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The pow function computes x to the y power. This is an ANSI standard C library 
function.

Use the function call pow(x,y) instead of the expression

exp(y * log(x))

The call pow(x,y) produces a more exact result. 

There are some differences between this implementation and the behavior of the pow 
function in a SANE implementation. For example, in SANE pow(NAN,0) returns a NaN, 
whereas in PowerPC Numerics, pow(NAN,0) returns a 1.

EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it raises 
one of the following exceptions:

■ inexact (if y is not an integer or an underflow or overflow occurs)

■ invalid (if x is negative and y is not an integer)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

* If the NaN is a signaling NaN, the invalid exception is raised.

pow x y,( ) x y=

pow x y,( )
9-16 Exponential Functions
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SPECIAL CASES

Table 9-10 shows the results when one of the arguments to the pow function is a zero, a 
NaN, or an Infinity, plus other special cases for the pow function. In this table, x and y are 
finite, nonzero floating-point numbers.

Table 9-10 Special cases for the pow function 

Operation Result Exceptions raised

for x < 0 NaN if y is not integer Invalid

if y is integer None

+0 if y is > 0 None

+∞ if y < 0 Divide-by-zero

+1 None

-0 if y is odd integer > 0 None

+0 if y > 0 but not odd integer None

-∞ if y is odd integer < 0 Divide-by-zero

+∞ if y < 0 but not odd integer Divide-by-zero

+1 None

NaN if y ≠ 0 None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+1 if y = 0 None*

NaN None*

+∞ if y > 0 None

+0 if y < 0 None

+1 if y = 0 None

+∞ if |x| > 1 None

+0 if |x| < 1 None

1 if |x| = 1 Invalid

if y is odd integer > 0 None

+∞ if y > 0 but not odd integer None

if y is odd integer < 0 None

+0 if y < 0 but not odd integer None

+1 if y = 0 None

+0 if |x| > 1 None

+∞ if |x| < 1 None

1 if |x| = 1 Invalid

pow x y,( )

x y

pow +0 y,( )

pow x +0,( )

pow 0– y,( )

pow x 0–,( )

pow NaN y,( )

pow x NaN,( )

pow +∞ y,( )

pow x +∞,( )

pow ∞– y,( ) ∞–

0–

pow x ∞–,( )
Exponential Functions 9-17
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EXAMPLES

z = pow(NAN, 0); /* z = 1 */

scalbn 9

You can use the scalbn function to perform efficient scaling by a power of 2.

double_t scalbn (double_t x, long int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The scalbn function performs efficient scaling of its floating-point argument by a power 
of 2.

Using the scalbn function is more efficient than performing the actual arithmetic.

This function performs the same operation as the ldexp transcendental function 
described on page 9-15.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of the 
following exceptions:

■ inexact (if the result causes an overflow or underflow exception)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-11 shows the results when the floating-point argument to the scalbn function is 
a zero, a NaN, or an Infinity. In this table, n is any integer.

EXAMPLES

z = scalbn(1, 3); /* z = 1 × 23 = 8 */

scalbn x n,( ) x 2n×=

scalbn x n,( )
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Transcendental Functions

9
Transcendental F

unctions
Logarithmic Functions 9

MathLib provides seven logarithmic functions:

frexp 9

You can use the frexp function to find out the values of a floating-point number’s 
fraction field and exponent field.

double_t frexp (double_t x, int *exponent);

x Any floating-point number.

exponent A pointer to an integer in which the value of the exponent can be 
returned.

Table 9-11 Special cases for the scalb function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

* If the NaN is a signaling NaN, the invalid exception is raised.

Splits x into fraction and exponent fields.

Base e or natural logarithm. 

Base 10 logarithm.

Computes .

Base 2 logarithm. 

Returns exponent part of x.

Splits x into an integer and a fraction.

scalbn +0 n,( )

scalbn 0– n,( ) 0–

scalbn NaN n,( )

scalbn +∞ n,( )

scalbn ∞– n,( ) ∞–

frexp x exp,( )

x( )log

10 x( )log

1p x( )log 1 x+( )log

2 x( )log

b x( )log

modf x iptr,( )
Logarithmic Functions 9-19
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Transcendental Functions
DESCRIPTION

The frexp function splits its first argument into a fraction part and a base 2 exponent 
part. This is an ANSI standard C library function.

such that  

or

such that  and 

The return value of frexp is the value of the fraction field of the argument x. The 
exponent field of x is stored in the address pointed to by the exponent argument.

For finite nonzero inputs, frexp returns either 0.0 or a value whose magnitude is 
between 0.5 and 1.0. 

The ldexp and scalb functions perform the inverse operation (compute ).

EXCEPTIONS

If x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-12 shows the results when the input argument to the frexp function is a zero, a 
NaN, or an Infinity.

EXAMPLES

z = frexp(2E300, n); /* z ≈ 0.746611 and n = 998. In other
words, 2 × 10300 ≈ 0.746611 × 2998. */

Table 9-12 Special cases for the frexp function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n is undefined) None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ (n is undefined) None

 (n is undefined) None

frexp x n,( ) f= x f 2n×=

frexp x n,( ) f= n 1 b x( )log+( )= f scalb x n–,( )=

f 2n×

frexp x n,( )

frexp +0 n,( )

frexp 0– n,( ) 0–

frexp NaN n,( )

frexp +∞ n,( )

frexp ∞– n,( ) ∞–
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Transcendental Functions

9
Transcendental F

unctions
log 9

You can use the log function to compute the natural logarithm of a real number.

double_t log (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log function returns the natural (base e) logarithm of its argument. 

 such that 

The exp function performs the inverse (exponential) operation.

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (if x is negative)

SPECIAL CASES

Table 9-13 shows the results when the argument to the log function is a zero, a NaN, or 
an Infinity, plus other special cases for the log function.

Table 9-13 Special cases for the log function

Operation
Resul
t Exceptions raised

for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

NaN Invalid

x( )log loge   x ln  x y = = = x e y=

x( )log

x( )log

+1( )log

+0( )log ∞–

0–( )log ∞–

NaN( )log

+∞( )log

∞–( )log
Logarithmic Functions 9-21
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EXAMPLES

 

z = log(+1.0); /* z = +0.0 because e

 

0

 

 = 1 */
z = log(–1.0); /* z = NAN because negative arguments are not 

allowed. The invalid exception is raised. */

 

log10 9

 

You can use the 

 

log10

 

 function to compute the common logarithm of a real number.

 

double_t log10 (double_t x);

x

 

Any positive floating-point number.

 

DESCRIPTION

 

The 

 

log10

 

 function returns the common (base 10) logarithm of its argument. 

 such that 

 

EXCEPTIONS

 

When 

 

x

 

 is finite and nonzero, the result of  might raise one of the following 
exceptions:

 

■

 

inexact (for all finite, nonzero values of 

 

x

 

 other than +1)

 

■

 

invalid (when 

 

x

 

 is negative)

 

SPECIAL CASES

 

Table 9-14 shows the results when the argument to the 

 

log10

 

 function is a zero, a NaN, 
or an Infinity, plus other special cases for the 

 

log10

 

 function.

 

Table 9-14

 

Special cases for the 

 

log10

 

 function

 

Operation
Resul
t Exceptions raised

 

 for 

 

x

 

 < 0 NaN Invalid

+0 None

–

 

∞

 

Divide-by-zero

–

 

∞

 

Divide-by-zero

NaN None

 

*

 

*

 

If the NaN is a signaling NaN, the invalid exception is raised.

 

+

 

∞

 

None

NaN Invalid

10 x( )log log10  x y = = x 10 y=

10 x( )log

10 x( )log

10 +1( )log

10 +0( )log

10 0–( )log

10 NaN( )log

10 +∞( )log

10 ∞–( )log
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EXAMPLES

 

z = log10(+1.0); /* z = 0.0 because 10

 

0

 

 = 1 */
z = log10(10.0); /* z = 1.0 because 10

 

1

 

 = 10. The inexact 
exception is raised. */

z = log10(–1.0); /* z = NAN because negative arguments are not 
allowed. The invalid exception is raised. */

 

log1p 9

 

You can use the 

 

log1p

 

 function to compute the natural logarithm of 1 plus a real 
number.

 

double_t log1p (double_t x);

x  Any floating-point number greater than –1. 

DESCRIPTION

 

The 

 

log1p

 

 function computes the natural logarithm of 1 plus its argument. 

 such that 

For small numbers, use the function call 

 

log1p(x)

 

 instead of the function call 

 

log(1 + x)

 

. The call 

 

log1p(x)

 

 produces a more exact result because it avoids the 
roundoff error that might occur when the expression 

 

1 + x

 

 is computed. 

 

EXCEPTIONS

 

When 

 

x

 

 is finite and nonzero, the result of  might raise one of the following 
exceptions:

 

■

 

inexact (for all finite, nonzero values of 

 

x

 

 > –1)

 

■

 

invalid (when 

 

x

 

 is less than –1)

 

■

 

divide-by-zero (when 

 

x

 

 is –1)

1p x( )log loge   x 1+ ( ) ln  x 1+ ( ) y = = = 1 x+ 10 y=

1p x( )log
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SPECIAL CASES

 

Table 9-15 shows the results when the argument to the 

 

log1p

 

 function is a zero, a NaN, 
or an Infinity, plus other special cases for the 

 

log1p

 

 function.

 

EXAMPLES

 
z = log1p(–1.0); /* z = log(0) = –INFINITY. The divide-by-zero 

and inexact exceptions are raised. */
z = log1p(0.0); /* z = log(1) = 0.0 because e

 

0

 

 = 1. */
z = log1p(–2.0); /* z = log(–1) = NAN because logarithms of 

negative numbers are not allowed. The 
invalid exception is raised. */

 

Table 9-15

 

Special cases for the 

 

log1p

 

 function

 

Operation
Resul
t Exceptions raised

 

for 

 

x

 

 < –1 NaN Invalid

–

 

∞

 

Divide-by-zero

+0 None

–0 None

NaN None

 

*

 

*

 

If the NaN is a signaling NaN, the invalid exception is raised.

 

+

 

∞

 

None

NaN Invalid

1p x( )log

1p 1–( )log

1p +0( )log

1p 0–( )log

1p NaN( )log

1p +∞( )log

1p ∞–( )log
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log2 9

 

You can use the 

 

log2

 

 function to compute the binary logarithm of a real number.

 

double_t log2 (double_t x);

x

 

Any positive floating-point number.

 

DESCRIPTION

 

The 

 

log2

 

 function returns the binary (base 2) logarithm of its argument. 

 such that 

The 

 

exp2

 

 function performs the inverse operation.

 

EXCEPTIONS

 

When 

 

x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (when x is negative)

SPECIAL CASES

Table 9-16 shows the results when the argument to the log2 function is a zero, a NaN, or 
an Infinity, plus other special cases for the log2 function.

Table 9-16 Special cases for the log2 function

Operation
Resul
t Exceptions raised

 for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

NaN Invalid

2 x( )log log2  x y = = x 2y=

2 x( )log

2 x( )log

2 +1( )log

2 +0( )log ∞–

2 0–( )log ∞–

2 NaN( )log

2 +∞( )log

2 ∞–( )log
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EXAMPLES

 

z = log2(+1.0); /* z = +0 because 2

 

0

 

 = 1 */
z = log2(2.0); /* z = 1 because 2

 

1

 

 = 2. The inexact exception 
is raised. */

z = log2(–1.0); /* z = NAN because negative arguments are not 
allowed. The invalid exception is raised. */

 

logb 9

 You can use the  logb   function to determine the value in the exponent field of a 
floating-point number.

 

double_t logb (double_t x);

x

 

 Any floating-point number.

 

DESCRIPTION

 

The 

 

logb

 

 function returns the signed exponent of its argument 

 

x

 

 as a floating-point 
value.

 such that  

When the argument is a denormalized number, the exponent is determined as if the input 
argument had first been normalized. 

Note that for a nonzero finite 

 

x

 

, .

That is, for a nonzero finite 

 

x

 

, the magnitude of 

 

x

 

 taken to the power of its inverse 
exponent is between 1 and 2.

This function conforms to IEEE Standard 854, which differs from IEEE Standard 754 on 
the treatment of a denormalized argument 

 

x

 

. 

 

EXCEPTIONS

 

If 

 

x

 

 is finite and nonzero, the result of  is exact.

b x( )log y= x f 2y×=

1 fabs scalb x b x( )log–,( )( ) 2<≤

b x( )log
-27
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SPECIAL CASES

 

Table 9-17 shows the results when the argument to the 

 

logb

 

 function is a zero, a NaN, or 
an Infinity.

 

EXAMPLES

 

z = logb(789.9); /* z = 9.0 because 789.9 ≈ 1.54 

 

×

 

 2

 

9

 

 */
z = logb(21456789);/* z = 24.0 because 21456789 ≈ 1.28 

 

×

 

 2

 

24

 

 */

 

ilogb 9

 

ilogb returns the value in the exponent field of a floating-point number. ilogb is 
similar to logb, but it returns the value as a signed integer (rather than as a 
floating-point value.)

int logb (double_t x);

x Any floating-point number.

DESCRIPTION

The ilogb function returns the signed exponent of its argument x as an integer value.

 such that  

When the argument is a denormalized number, the exponent is determined as if the input 
argument had first been normalized. 

Note that for a nonzero finite x, .

That is, for a nonzero finite x, the magnitude of x taken to the power of its inverse 
exponent is between 1 and 2.

Table 9-17 Special cases for the logb function

Operation
Resul
t Exceptions raised

–∞ Divide-by-zero

–∞ Divide-by-zero

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+∞ None

b +0( )log

b 0–( )log

b NaN( )log

b +∞( )log

b ∞–( )log

b x( )log y= x f 2y×=

1 fabs scalb x x( )log–,( )( ) 2<≤
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This function conforms to IEEE Standard 9899. 

EXCEPTIONS

If x is finite and nonzero, the result of ilogb(x) is exact.

SPECIAL CASES

Table 9-17 shows the results when the argument to the ilogb function is a zero, a NaN, 
or an Infinity.

EXAMPLES

z = logb(789.9); /* z = 9 because 789.9 ≈ 1.54 × 29 */
z = logb(21456789);/* z = 24 because 21456789 ≈ 1.28 × 224 */

modf 9

You can use the modf function to split a real number into a fractional part and an integer 
part.

float modff (float x, float *iptrf);
double modf (double x, double *iptr);

x Any floating-point number.

iptr A pointer to a floating-point variable in which the integer part can be 
stored upon return.

Table 9-18 Special cases for the logb function

Operation Result Exceptions raised

ilogb(+0) -MAX_INT None

ilogb(-0) -MAX_INT None

ilogb(NaN) MAX_INT None*

* If the NaN is a signaling NaN, the invalid exception is raised.

ilogb(+∞) MAX_INT None

ilogb(-∞) MAX_INT None
-29
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DESCRIPTION

The modf function splits its first argument into a fractional part and an integer part. This 
is an ANSI standard C function.

 such that |f| < 1.0 and 

The fractional part is returned as the value of the function, and the integer part is stored 
as a floating-point number in the area pointed to by iptr. The fractional part and the 
integer part both have the same sign as the argument x.

EXCEPTIONS

If x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-19 shows the results when the floating-point argument to the modf function is a 
zero, a NaN, or an Infinity.

EXAMPLES

z = modf(1.0, n); /* z = 0.0 and n = 1.0 */
z = modf(+INFINITY, n); /* z = 0.0 and n = +INFINITY because the 

value +∞ is an integer. */

Table 9-19 Special cases for the modf function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n = NaN) None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+0 (n = +∞) None

 (n = ) None

modf x n,( ) f= f n+ x=

modf x n,( )

modf +0 n,( )

modf 0– n,( ) 0–

modf NaN n,( )

modf +∞ n,( )

modf ∞– n,( ) 0– ∞–
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Trigonometric Functions 9

Libm provides the following trigonometric functions:

The remaining trigonometric functions can be computed easily and efficiently from the 
transcendental functions provided.

The arguments for trigonometric functions (cos, sin, and tan) and return values for 
inverse trigonometric functions (acos, asin, atan, and atan2) are expressed in 
radians. The cosine, sine, and tangent functions use an argument reduction based on the 
remainder function (see page 5-11) and the constant pi, where pi is the nearest 
approximation of π with 53 bits of precision. The cosine, sine, and tangent functions are 
periodic with respect to the constant pi, so their periods are different from their 
mathematical counterparts and diverge from their counterparts when their arguments 
become very large. 

cos 9

You can use the cos function to compute the cosine of a real number.

double_t cos (double_t x);

x Any finite floating-point number.

DESCRIPTION

The cos function returns the cosine of its argument. The argument is the measure of 
an angle expressed in radians. This function is symmetric with respect to the y-axis 
(cos x = cos –x). 

The acos function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero,  raises the inexact exception.

 Computes the cosine of x.

Computes the sine of x.

Computes the tangent of x. 

Computes the arc cosine of x.

Computes the arc sine of x.

Computes the arc tangent of x.

Computes the arc tangent of y/x.

x( )cos

x( )sin

x( )tan

x( )acos

x( )asin

x( )atan

atan2 y x,( )

arccos y( )( )

x( )cos
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SPECIAL CASES

Table 9-20 shows the results when the argument to the cos function is a zero, a NaN, or 
an Infinity, plus other special cases for the cos function.

EXAMPLES

z = cos(0); /* z = 1.0. */
z = cos(pi/2); /* z = –0.0. The inexact exception is raised. */
z = cos(pi); /* z = –1.0. The inexact exception is raised. */
z = cos(–pi/2);/* z = 0.0. The inexact exception is raised. */
z = cos(–pi); /* z = –1.0. The inexact exception is raised. */

sin 9

You can use the sin function to compute the sine of a real number.

double_t sin (double_t x);

x Any finite floating-point number.

DESCRIPTION

The sin function returns the sine of its argument. The argument is the measure of an 
angle expressed in radians. This function is antisymmetric with respect to the y-axis 
(sin x = – sin –x). 

The asin function performs the inverse operation .

Table 9-20 Special cases for the cos function

Operation
Resul
t Exceptions raised

–1 Inexact

1 None

1 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN Invalid

NaN Invalid

π( )cos

+0( )cos

0–( )cos

NaN( )cos

+∞( )cos

∞–( )cos

arcsin y( )( )
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EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-21 shows the results when the argument to the sin function is a zero, a NaN, or 
an Infinity, plus other special cases for the sin function.

EXAMPLES

z = sin(pi/2); /* z = 1. The inexact exception is raised. */
z = sin(pi); /* z = 0. The inexact exception is raised. */
z = sin(–pi/2); /* z = –1. The inexact exception is raised. */
z = sin(–pi); /* z = 0. The inexact exception is raised. */

tan 9

You can use the tan function to compute the tangent of a real number.

double_t tan (double_t x);

x Any finite floating-point number.

Table 9-21 Special cases for the sin function

Operation
Resul
t Exceptions raised

0 Inexact

+0 None

–0 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN Invalid

NaN Invalid

x( )sin

π( )sin

+0( )sin

0–( )sin

NaN( )sin

+∞( )sin

∞–( )sin
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DESCRIPTION

The tan function returns the tangent of its argument. The argument is the measure of an 
angle expressed in radians. This function is antisymmetric. 

The atan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-22 shows the results when the argument to the tan function is a zero, a NaN, or 
an Infinity, plus other special cases for the tan function.

EXAMPLES

z = tan(pi); /* z = 0. The inexact exception is raised. */
z = tan(pi/2); /* z = +INFINITY. The inexact exception is 

raised. */
z = tan(pi/4); /* z = 1. The inexact exception is raised. */

Table 9-22 Special cases for the tan function

Operation
Resul
t Exceptions raised

0 Inexact

+∞ Inexact

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN Invalid

NaN Invalid

arctan y( )( )

x( )tan

π( )tan

π 2⁄( )tan

+0( )tan

0–( )tan 0–

NaN( )tan

+∞( )tan

∞–( )tan
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acos 9

You can use the acos function to compute the arc cosine of a real number between –1 
and +1.

double_t acos (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

DESCRIPTION

The acos function returns the arc cosine of its argument x. The return value is expressed 
in radians in the range [0, π].

such that  for –1 ≤ x ≤ 1

The cos function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x other than 1) 

■ invalid (if |x|>1)

SPECIAL CASES

Table 9-23 shows the results when the argument to the acos function is a zero, a NaN, or 
an Infinity, plus other special cases for the acos function.

Table 9-23 Special cases for the acos function

Operation
Resul
t Exceptions raised

 for |x| > 1 NaN Invalid

π Inexact

+0 None

π/2 Inexact

π/2 Inexact

NaN None*

NaN Invalid

NaN Invalid

x( )acos arccos x( ) y= = y( )cos x=

y( )cos( )

x( )acos

x( )acos

1–( )acos

+1( )acos

+0( )acos

0–( )acos

NaN( )acos

+∞( )acos

∞–( )acos
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EXAMPLES

z = acos(1.0); /* z = arccos (1) = 0.0 */
z = acos(–1.0); /* z = arccos (–1) = π. The inexact exception is 

raised. */

asin 9

You can use the asin function to compute the arc sine of a real number between –1 
and 1.

double_t asin (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

DESCRIPTION

The asin function returns the arc sine of its argument. The return value is expressed in 
radians in the range [ , + ]. This function is antisymmetric.

such that  for –1 ≤ x ≤ 1

The sin function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ invalid (if |x| > 1)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

* If the NaN is a signaling NaN, the invalid exception is raised.

π 2⁄– π 2⁄

x( )asin arcsin x( ) y= = y( )sin x=

y( )sin( )

x( )asin
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SPECIAL CASES

Table 9-24 shows the results when the argument to the asin function is a zero, a NaN, or 
an Infinity, plus other special cases for the asin function.

EXAMPLES

z = asin(1.0); /* z = arcsin 1 = π/2. The inexact exception is 
raised. */

z = asin(–1.0); /* z = arcsin –1 = –π/2. The inexact exception 
is raised. */

atan 9

You can use the atan function to compute the arc tangent of a real number.

double_t atan (double_t x);

x Any floating-point number.

DESCRIPTION

The atan function returns the arc tangent of its argument. The return value is expressed 
in radians in the range [ , + ]. This function is antisymmetric. 

 such that  for all x 

Table 9-24 Special cases for the asin function

Operation
Resul
t Exceptions raised

 for |x| > 1 NaN Invalid

–π/2 Inexact

π/2 Inexact

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN Invalid

NaN Invalid

x( )asin

1–( )asin

+1( )asin

+0( )asin

0–( )asin 0–

NaN( )asin

+∞( )asin

∞–( )asin

π 2⁄– π 2⁄

x( )atan arctan x( ) y= = y( )tan x=
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The tan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-25 shows the results when the argument to the atan function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = atan(1.0); /* z = arctan 1 = π/4 */
z = atan(–1.0); /* z = arctan –1 = –π/4. The inexact exception 

is raised. */

atan2 9

You can use the atan2 function to compute the arc tangent of a real number divided by 
another real number.

double_t atan2 (double_t y, double_t x);

y Any floating-point number.

x Any floating-point number.

Table 9-25 Special cases for the atan function

Operation Result Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+ Inexact

– Inexact

y( )tan( )

x( )atan

+0( )atan

0–( )atan 0–

NaN( )atan

+∞( )atan π 2⁄

∞–( )atan π 2⁄
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DESCRIPTION

The atan2 function returns the arc tangent of its first argument divided by its second 
argument. The return value is expressed in radians in the range [–π, +π], using the signs 
of its operands to determine the quadrant. 

such that  

EXCEPTIONS

When x and y are finite and nonzero, the result of  might raise one of the 
following exceptions:

■ inexact (if either x or y is any finite, nonzero value)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-26 shows the results when one of the arguments to the atan2 function is a zero, a 
NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers. 

Table 9-26 Special cases for the atan2 function

Operation Result Exceptions raised

+0 x > 0 None

+π x < 0 None

+π/2 y > 0 None

–π/2 y < 0 None

±0 None

x > 0 Inexact

–π x < 0 Inexact

+π/2 y > 0 None

–π/2 y < 0 None

±π Inexact

NaN* None†

NaN None†

π/2 Inexact

±0 y > 0 None

±3π/4 Inexact

2 y x,( )atan arctan y x⁄( ) z= = z( )tan y x⁄=

2 y x,( )atan

2 +0 x,( )atan

2 y +0,( )atan

2 0± +0,( )atan

2 0– x,( )atan 0–

2 y 0–,( )atan

2 0± 0–,( )atan

2 NaN x,( )atan

2 y NaN,( )atan

2 +∞ x,( )atan

2 y± +∞,( )atan

2 ∞± +∞,( )atan
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EXAMPLES

z = atan2(1.0, 1.0); /* z = arctan 1/1 = arctan 1 = π/4. The 
inexact exception is raised. */

z = atan2(3.5, 0.0); /* z = arctan 3.5/0 = arctan ∞ = π/2 */

Hyperbolic Functions 9

Libm provides hyperbolic and inverse hyperbolic functions. 

These functions are based on other transcendental functions and defer most exception 
generation to the core functions they use.

cosh 9

You can use the cosh function to compute the hyperbolic cosine of a real number.

double_t cosh (double_t x);

x Any floating-point number.

–π/2 Inexact

±π y > 0 None

±3π/4 Inexact

* If both arguments are NaNs, it is undefined which one atan2 returns.
† If the NaN is a signaling NaN, the invalid exception is raised.

Hyperbolic cosine of x.

Hyperbolic sine of x.

Hyperbolic tangent of x.

Inverse hyperbolic cosine of x.

Inverse hyperbolic sine of x.

Inverse hyperbolic tangent of x.

Table 9-26 Special cases for the atan2 function

Operation Result Exceptions raised

2 ∞– x,( )atan

2 y± ∞–,( )atan

2 ∞± ∞–,( )atan

x( )cosh

x( )sinh

x( )tanh

x( )acosh

x( )asinh

x( )atanh
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DESCRIPTION

The cosh function returns the hyperbolic cosine of its argument. This function is 
symmetric. 

The acosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

SPECIAL CASES

Table 9-27 shows the results when the argument to the cosh function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = cosh(1.0); /* z ≈ 1.54308. The inexact exception is 
raised. */

z = cosh(–1.0); /* z ≈ 1.54308. The inexact exception is 
raised. */

sinh 9

You can use the sinh function to compute the hyperbolic sine of a real number.

double_t sinh (double_t x);

Table 9-27 Special cases for the cosh function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+∞ None

arccosh y( )( )

x( )cosh

+0( )cosh

0–( )cosh

NaN( )cosh

+∞( )cosh

∞–( )cosh
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x Any floating-point number.

DESCRIPTION

The sinh function returns the hyperbolic sine of its argument. This function is 
antisymmetric. 

The asinh function performs the inverse operation .arcsinh y( )( )
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EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-28 shows the results when the argument to the sinh function is a zero, a NaN, or 
an Infinity.

EXAMPLES

sinh(1.0); /* z ≈ 1.175201. The inexact exception is raised. */
sinh(–1.0); /* z ≈ –1.175201. The inexact exception is raised. */

tanh 9

You can use the tanh function to compute the hyperbolic tangent of a real number.

double_t tanh (double_t x);

x Any floating-point number.

Table 9-28 Special cases for the sinh function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

x( )sinh

+0( )sinh

0–( )sinh 0–

NaN( )sinh

+∞( )sinh

∞–( )sinh ∞–
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DESCRIPTION

The tanh function returns the hyperbolic tangent of its argument. The return value is in 
the range [–1, +1]. This function is antisymmetric. 

The atanh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  raises the following exception:

■ inexact (for all finite, nonzero values of x)

SPECIAL CASES

Table 9-29 shows the results when the argument to the tanh function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = tanh(1.0); /* z ≈ 0.761594. The inexact exception is 
raised. */

z = tanh(–1.0); /* z ≈ 0.761594. The inexact exception is 
raised. */

acosh 9

You can use the acosh function to compute the inverse hyperbolic cosine of a real 
number.

double_t acosh (double_t x);

x Any floating-point number in the range 1 ≤ x ≤ +∞.

Table 9-29 Special cases for the tanh function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+1 None

–1 None

arctanh y( )( )

x( )tanh

+0( )tanh

0–( )tanh 0–

NaN( )tanh

+∞( )tanh

∞–( )tanh
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DESCRIPTION

The acosh function returns the inverse hyperbolic cosine of its argument. This function 
is antisymmetric.

such that 

The cosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 
exceptions:

■ inexact (for all finite values of x > 1)

■ invalid (if x < 1)

SPECIAL CASES

Table 9-30 shows the results when the argument to the acosh function is a zero, a NaN, 
or an Infinity, plus other special cases for the acosh function.

EXAMPLES

z = acosh(1.0); /* z = +0 */
z = acosh(0.0); /* z = NAN. The invalid exception is raised. */

Table 9-30 Special cases for the acosh function

Operation
Resul
t Exceptions raised

 for x < 1 NaN Invalid

+0 None

NaN Invalid

NaN Invalid

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

NaN Invalid

x( )acosh arccosh  x y = = cosh  y x =

y( )cosh( )

x( )acosh

x( )acosh

1( )acosh

+0( )acosh

0–( )acosh

NaN( )acosh

+∞( )acosh

∞–( )acosh
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asinh 9

 

You can use the 

 

asinh

 

 function to compute the inverse hyperbolic sine of a real number.

 double_t asinh (double_t x);

x

 

Any floating-point number.

 

DESCRIPTION

 

The 

 

asinh

 

 function returns the inverse hyperbolic sine of its argument. This function is 
antisymmetric. 

such that 

The 

 

sinh

 

 function performs the inverse operation .

 

EXCEPTIONS

 

When 

 

x

 

 is finite and nonzero, the result of  might raise one of the following 
exceptions:

 

■

 

inexact (for all finite, nonzero values of 

 

x

 

)

 

■

 

underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

 

SPECIAL CASES

 

Table 9-31 shows the results when the argument to the 

 

asinh

 

 function is a zero, a NaN, 
or an Infinity.

 

Table 9-31

 

Special cases for the 

 

asinh

 

 function

 

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

None

x( )asinh arcsinh  x y = = sinh  y x =

y( )sinh( )

x( )asinh

+0( )asinh

0–( )asinh 0–

NaN( )asinh

+∞( )asinh

∞–( )asinh ∞–
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EXAMPLES

 

z = asinh(1.0); /* z ≈ 0.881374. The inexact exception is 
raised. */

z = asinh(–1.0); /* z ≈ 0.881374. The inexact exception is 
raised. */

 

atanh 9

 

You can use the 

 

atanh

 

 function to perform the inverse hyperbolic tangent of a real 
number.

 
double_t atanh (double_t x);

x

 

Any floating-point number in the range –1 

 

≤

 

 

 

x

 

 

 

≤

 

 1.

 

DESCRIPTION

 

The 

 

atanh

 

 function returns the inverse hyperbolic tangent of its argument. This function 
is antisymmetric. 

such that 

The 

 

tanh

 

 function performs the inverse operation .

 

EXCEPTIONS

 

When 

 

x

 

 is finite and nonzero, the result of  might raise one of the following 
exceptions:

 

■

 

inexact (for all finite, nonzero values of 

 

x

 

 other than +1 and –1)

 

■

 

invalid (if |

 

x

 

| > 1)

 

■

 

underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

x( )atanh arctanh  x y = = tanh  y x =

y( )tanh( )

x( )atanh
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SPECIAL CASES

 

Table 9-32 shows the results when the argument to the 

 

atanh

 

 function is a zero, a NaN, 
or an Infinity, plus other special cases for the 

 

atanh

 

 function.

 

EXAMPLES

 
z = atanh(1.0); /* z = +INFINITY */
z = atanh(–1.0); /* z = –INFINITY */  

Error and Gamma Functions 9

 

Libm

 

 provides four error and gamma functions:

 

erf 9

 

You can use the 

 

erf

 

 function to perform the error function.

 

double_t erf (double_t x);

x

 

Any floating-point number.

 

Table 9-32

 

Special cases for the 

 

atanh

 

 function

 

Operation
Resul
t Exceptions raised

 

 for |

 

x

 

| > 1 NaN Invalid

Divide-by-zero

+

 

∞

 

Divide-by-zero

+0 None

None

NaN None

 

*

 

*

 

If the NaN is a signaling NaN, the invalid exception is raised.

 

NaN Invalid

NaN Invalid

Error function

Complementary error function

Computes 

 

Γ

 

(

 

x

 

)

Computes the natural logarithm of the absolute value of gamma(

 

x

 

)

x( )atanh

1–( )atanh ∞–

+1( )atanh

+0( )atanh

0–( )atanh 0–

NaN( )atanh

+∞( )atanh

∞–( )atanh

erf x( )

erfc x( )

gamma x( )

lgamma x( )
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DESCRIPTION

The erf function computes the error function of its argument. This function is 
antisymmetric.

EXCEPTIONS

When x is finite and nonzero, either the result of erf(x) is exact or it raises one of the 
following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-33 shows the results when the argument to the erf function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = erf(1.0); /* z ≈ 0.842701. The inexact exception is 
raised. */

z = erf(–1.0); /* z ≈ –0.842701. The inexact exception is 
raised. */

Table 9-33 Special cases for the erf function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+1 None

–1 None

erf x( )
2
π
--- e t–( )2dt

0

x

∫=

erf +0( )

erf 0–( ) 0–

erf NaN( )

erf +∞( )

erf ∞–( )
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erfc 9

You can use the erfc function to perform the complementary error function.

double_t erfc (double_t x);

x Any floating-point number.

DESCRIPTION

The erfc function computes the complementary error of its argument. This function is 
antisymmetric.

For large positive numbers (around 10), use the function call erfc(x) instead of the 
expression 1.0 – erf(x). The call erfc(x) produces a more exact result. 

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 
following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-34 shows the results when the argument to the erfc function is a zero, a NaN, or 
an Infinity.

Table 9-34 Special cases for the erfc function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+0 None

+2 None

erfc x( ) 1.0 erf x( )–=

erfc x( )

erfc +0( )

erfc 0–( )

erfc NaN( )

erfc +∞( )

erfc ∞–( )
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EXAMPLES

z = erfc(–INFINITY); /* z = 1 – erf( ) = 1 – –1 = +2.0 */
z = erfc(0.0); /* z = 1 – erf(0) = 1 – 0 = 1.0 */

gamma 9

You can use the gamma function to perform . 

double_t gamma (double_t x);

x Any positive floating-point number.

DESCRIPTION

The gamma function performs . 

The gamma function reaches overflow very fast as x approaches +∞. For large values, use 
the lgamma function (described in the next section) instead.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 
the following exceptions:

■ inexact (if the result must be rounded or an overflow occurs)

■ invalid (if x is a negative integer)

■ overflow (if the result is outside the range of the data type)

∞–

Γ x( )

Γ x( )

gamma x( ) Γ x( ) e t– tx 1– dt

0

∞

∫= =

gamma x( )
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SPECIAL CASES

Table 9-35 shows the results when the argument to the gamma function is a zero, a NaN, 
or an Infinity, plus other special cases for the gamma function.

EXAMPLES

z = gamma(–1.0); /* z = NAN. The invalid exception is raised. */
z = gamma(6); /* z = 120 */

lgamma 9

You can use the lgamma function to compute the natural logarithm of the absolute value 
of . 

double_t lgamma (double_t x);

x Any positive floating-point number.

DESCRIPTION

The lgamma function computes the natural logarithm of the absolute value of . 

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 
the following exceptions:

Table 9-35 Special cases for the gamma function

Operation
Resul
t Exceptions raised

for negative integer x NaN Invalid

+∞ Divide-by-zero

-∞ Divide-by-zero

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

NaN Invalid

gamma x( )

gamma +0( )

gamma 0–( )

gamma NaN( )

gamma +∞( )

gamma ∞–( )

Γ x( )

Γ x( )

lgamma x( ) loge Γ x( )( ) ln Γ x( )( )= =

lgamma x( )
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■ inexact (if the result must be rounded or an overflow occurs)

■ overflow (if the result is outside the range of the data type)

■ invalid (if x ≤ 0)

SPECIAL CASES

Table 9-36 shows the results when the argument to the lgamma function is a zero, a NaN, 
or an Infinity, plus other special cases for the lgamma function.

EXAMPLES

z = lgamma(–1.0); /* z = NAN. The invalid exception is 
raised. */

z = lgamma(3.41); /* z = 1.10304. The inexact exception is 
raised. */

Bessel Functions 9

Libm provides six Bessel functions:

Table 9-36 Special cases for the lgamma function

Operation
Resul
t Exceptions raised

for x a 
negative integer

+∞ Divide-by-zero

+∞ Divide-by-zero

+∞ Divide-by-zero

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+∞ None

j0(x) Bessel function of the first kind of order 0

j1(x) Bessel function of the first kind of order 1

jn(n,x) Bessel function of the first kind of integer order n

lgamma x( )

lgamma +0( )

lgamma 0–( )

lgamma NaN( )

lgamma +∞( )

lgamma ∞–( )
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j0 9

You can use the j0 function to calculate the Bessel function of the first kind of order 0 for 
argument x.

double j0 (double x);
x Any floating-point number.

DESCRIPTION

The j0 function calculates the Bessel function of the first kind of order 0 for argument x.

EXCEPTIONS

When x and y are finite and nonzero, j0(x) raises the inexact flag. It may also cause the 
following exceptions:

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-41 shows the results when the argument to the j0 function is a zero, a NaN, or an 
infinity.

y0(x) Linearly independent Bessel function of the second kind of order 0

y1(x) Linearly independent Bessel function of the second kind of order 1

yn(n,x) Linearly independent Bessel function of the second kind of integer 
order n

Table 9-37 Special cases for the j0 function

Operation Result Exceptions raised

j0(-0) 1 None

j0(+0) 1 None

j0(NaN) NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

j0(-∞) +0 None

j0(+∞) +0 None
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EXAMPLES

z = j0(0.0); /* z = 1.0 
z = j0(1.0); /* z = 7.651976865579666e-01 

j1 9

You can use the j1 function to calculate the Bessel function of the first kind of order 1 for 
argument x.

double j1 (double x);
x Any floating-point number.

DESCRIPTION

The j1 function calculates the Bessel function of the first kind of order 1 for argument x.

EXCEPTIONS

When x and y are finite and nonzero, j1(x) raises the inexact flag. It may also cause the 
following exceptions:

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-41 shows the results when the argument to the j1 function is a zero, a NaN, or an 
infinity.

Table 9-38 Special cases for the j1 function

Operation Result Exceptions raised

j1(-0) -0 None

j1(+0) +0 None

j1(NaN) NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

j1(-∞) -0 None

j1(+∞) +0 None
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EXAMPLES

z = j1(0.0); /* z = 0.0 
z = j1(1.0); /* z = 4.400505857449335e-01 

jn 9

You can use the jn function to calculate the Bessel function of the first kind of integer 
order n for argument x.

double jn (double x);
x Any floating-point number.

n Any integer.

DESCRIPTION

The jn function calculates the Bessel function of the first kind of integer order n for 
argument x.

EXAMPLES

z = yn(2, 0.0); /* z = 0.0 
z = yn(2, 1.0); /* z = 1.149034849319005e-01 

y0 9

You can use the y0 function to calculate the linearly independent Bessel function of the 
second kind of order 0 for argument x.

double y0 (double x);
x Any floating-point number.

DESCRIPTION

The y0 function calculates the linearly independent Bessel function of the second kind of 
order 0 for argument x.
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EXCEPTIONS

When x and y are finite and nonzero, y0(x) raises the inexact flag. It may also cause the 
following exceptions:

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-41 shows the results when the argument to the y0 function is a zero, a NaN, or an 
infinity.

EXAMPLES

z = y0(0.0); /* z = -∞ 
z = y0(1.0); /* z = 8.825696421567697e-02 

y1 9

You can use the y1 function to calculate the linearly independent Bessel function of the 
second kind of order 1 for argument x.

double y1 (double x);
x Any floating-point number.

DESCRIPTION

The y1 function calculates the linearly independent Bessel function of the second kind of 
order 1 for argument x.

Table 9-39 Special cases for the j0 function

Operation Result Exceptions raised

y0(-0) -∞ None

y0(+0) -∞ None

y0(NaN) NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

y0(-∞) NaN Invalid

y0(+∞) +0 None
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EXCEPTIONS

When x and y are finite and nonzero, y1(x) raises the inexact flag. It may also cause the 
following exceptions:

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-41 shows the results when the argument to the y1 function is a zero, a NaN, or an 
infinity.

EXAMPLES

z = y1(0.0); /* z = -∞ 
z = y1(1.0); /* -7.812128213002887e-01

yn 9

You can use the yn function to calculate the Bessel function of the second kind of integer 
order n for argument x.

double yn (double x);
x Any floating-point number.

n Any integer.

DESCRIPTION

Table 9-40 Special cases for the j0 function

Operation Result Exceptions raised

y1(-0) -∞ None

y1(+0) -∞ None

y1(NaN) NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

y1(-∞) NaN Invalid

y1(+∞) +0 None
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The jn function calculates the Bessel function of the second kind of integer order n for 
argument x.

EXAMPLES

z = yn(2, 0.0); /* z = -∞
z = yn(2, 1.0); /* z = -1.650682606816254e+00 

Miscellaneous Functions 9

There are four remaining Libm transcendental functions:

nextafter 9

You can use the nextafter functions to find out the next value that can be represented 
after a given value in a particular floating-point type. 

float       nextafterf (float x, float y);
double      nextafterd (double x, double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The nextafter functions (one for each data type) generate the next representable neighbor 
of x in the direction of y in the proper format.

The floating-point values representable in single and double formats constitute a finite set 
of real numbers. The nextafter functions illustrate this fact by returning the next 
representable value.

If ,  returns x if x and y are not signed zeros.

Returns next representable number after x in direction of y.

Computes hypotenuse of a right triangle.

Computes cube root of x.

fma(x,y,z) Computes (x*y)+z as a single operation.

nextafter x y,( )

hypot x( )

cbrt x( )

x y= nextafter x y,( )
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EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it 
raises one of the following exceptions:

■ inexact (if an overflow or underflow exception occurs)

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0, and x ≠ y)

SPECIAL CASES

Table 9-41 shows the results when one of the arguments to a nextafter function is a zero, a 
NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

Table 9-41 Special cases for the nextafter functions

Operation Result Exceptions raised

Next representable 
number in direction of y

Underflow

Next representable 
number in direction of 0

None

Next representable 
number in direction of y

Underflow

+0 None

Next representable 
number in direction of 0

None

None

NaN*

* If both arguments are NaNs, the value of the first NaN is returned.

None†

† If the NaN is a signaling NaN, the invalid exception is raised.

NaN None†

Largest respresentable 
number

None

Next representable 
number greater than x

None

Smallest representable 
number

None

Next representable 
number smaller than x

None

nextafter x y,( )

nextafter +0 y,( )

nextafter x +0,( )

nextafter 0– y,( )

nextafter 0– +0,( )

nextafter x 0–,( )

nextafter +0 0–,( ) 0–

nextafter NaN y,( )

nextafter x NaN,( )

nextafter +∞ y,( )

nextafter x +∞,( )

nextafter ∞– y,( )

nextafter x ∞–,( )
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EXAMPLES

z = nextafterf(1.0, +∞);/* z = 1.000000000000000000000012 
  ≈ 1.000000119209289551 */

z = nextafterd(1.0, +∞);/* z = 1.00000000…0000000000000000012 
  ≈ 1.000000000000000222 */ 

hypot 9

You can use the hypot function to compute the length of the hypotenuse of a right 
triangle.

double_t hypot(double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The hypot function computes the square root of the sum of the squares of its arguments. 
This is an ANSI standard C library function.

The function hypot performs its computation without undeserved overflow or 
underflow. For example, if  is greater than the maximum representable value 
of the data type but the square root of  is not, then no overflow occurs.

EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it raises 
one of the following exceptions:

■ inexact (if the result must be rounded or an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

hypot x y,( ) x2 y2+=

x2 y2+
x2 y2+

hypot x y,( )
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SPECIAL CASES

Table 9-42 shows the results when one of the arguments to the hypot function is a zero, a 
NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

EXAMPLES

z = hypot(2.0, 2.0); /* z = sqrt(8.0) ≈ 2.82843. The inexact 
exception is raised. */

cbrt 9

You can use the cbrt function to compute the real cube root of a number.

double_t cbrt(double_t x);

x Any floating-point number.

DESCRIPTION

The cbrt function computes the real cube root of its argument. This is an ANSI standard 
C library function.

Table 9-42 Special cases for the hypot function

Operation
Resul
t Exceptions raised

|y| None

|x| None

|y| None

|x| None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

NaN None*

∞ None

∞ None

+∞ None

+∞ None

+∞ None

+∞ None

hypot +0 y,( )

hypot x +0,( )

hypot 0– y,( )

hypot x 0–,( )

hypot NaN y,( )

hypot x NaN,( )

hypot NaN ∞±,( )

hypot ∞± NaN,( )

hypot +∞ y,( )

hypot x +∞,( )

hypot ∞– y,( )

hypot x ∞–,( )
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EXCEPTIONS

When x and y are finite and nonzero the result of cbrt(x) is inexact. It can also raise the 
following exception:

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 9-42 shows the results when the argument to the cbrt function is a zero, a NaN, or 
an Infinity.

EXAMPLES

z = cbrt(16.0); /* z ≈ 2.519842099789746. The inexact 
exception is raised. */

fma 9

You can use the fma function to compute (x*y)+z, rounded as one ternary
     operation: it computes the value (as if) to infinite precision and round
     once to the result format, according to the current rounding mode.

double_t fma(double_t x, double_t y, double_t z);

Table 9-43 Special cases for the hypot function

Operation
Resul
t Exceptions raised

+0 None

-0 None

NaN None*

* If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

-∞ None†

† If the NaN is a signaling NaN, the invalid exception is raised.

cbrt x( ) x3=

cbrt +0( )

cbrt 0–( )

cbrt NaN( )

cbrt +∞( )

cbrt -∞( )
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x Any floating-point number.

y Any floating-point number.

z Any floating-point number.

DESCRIPTION

The fma function computes (x*y)+z as a single ternary function, rounding it once 
according to the current rounding mode. This is an ANSI standard C library function.

fma(x,y,z) = (x*y)+z

EXCEPTIONS

fma has the following exceptional cases:

■ if x, y, or z is a NaN, the result is a NaN

■ if one of x or y is a zero and the other is an infinity, the result is a NaN and the 
“invalid” flag is raised

■ if x*y is an infinity and z is the infinity with the opposite sign, the result is a NaN and 
the “invalid” flag is raised.

SPECIAL CASES

See “Exceptions.” The table is omitted in this case.

EXAMPLES

w = fma(2.0,3.0,5.0);/* z = 11.0. */

Vector and Matrix Operations 9

Mac OS X provides a number of libraries for performing vector and matrix operations 
and solving systems of linear equations. These libraries are optimized to make effective, 
high-performance use of the PowerPC vector instruction set, which benefits from a high 
degree of data parallelism. These libraries include BLAS and LAPACK.

BLAS 9

The Basic Linear Algebra Subroutines (BLAS) is a set of high-quality routines for 
performing basic vector and matrix operations. Level 1 BLAS consists of vector-vector 
operations, Level 2 BLAS consists of matrix-vector operations, and Level 3 BLAS consists 
of matrix-matrix operations. The efficiency, portability, and wide adoption of the BLAS 
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have made them commonplace in the development of high-quality linear algebra 
software such as LAPACK, and in other technologies requiring fast vector and matrix 
calculations.

Through its vecLib framework, Mac OS X supports all the standard C BLAS entry points 
(known as the legacy C BLAS) and the industry-standard FORTRAN BLAS entry points. 
For more informations see http://www.netlib.org/blas/faq.html.

LAPACK 9

LAPACK provides routines for solving systems of simultaneous linear equations, 
least-squares solutions of linear systems of equations, eigenvalue problems, and similar 
value problems. Routines are provided to perform the associated matrix factorizations 
(LU, Cholesky, QR, SVD, Schur, and generalized Schur) and related computations such as 
the reordering of the Schur factorizations and estimating condition numbers. LAPACK 
handles dense and banded matrices, but not general sparse matrices. Functionality is 
provided for both real and complex matrices, in both single and double precision. The 
Mac OS X LAPACK makes full use of the optimized BLAS for improved performance. 
Through its vecLib framework, Mac OS X supports all the industry-standard FORTRAN 
LAPACK entry points. C programs may make calls to the FORTRAN entry points using 
the prototypes found in /System/Library/Frameworks/vecLib.framework/Headers/
clapack.h

For more information on LAPACK, see http://www.netlib.org/lapack/.

Transcendental Functions Summary 9

This section summarizes the transcendental functions declared in the MathLib header file 
fp.h and the constants and data types that they use.

C Summary 9

Constants 9

extern const double_t pi;

Data Types 9

typedef short relop;
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enum 
{

GREATERTHAN = ((relop) (0)),
LESSTHAN,
EQUALTO,
UNORDERED

};

Transcendental Functions 9

Comparison Functions

double_t fdim (double_t x, double_t y);

double_t fmax (double_t x, double_t y);

double_t fmin (double_t x, double_t y);

relop relation (double_t x, double_t y);

Sign Manipulation Functions

double_t copysign (double_t x, double_t y);

double_t fabs (double_t x);

Exponential Functions

double_t exp (double_t x);

double_t exp2  (double_t x);

double_t expm1  (double_t x);

double_t ldexp (double_t x, int n);

double_t pow   (double_t x, double_t y);

double_t scalb (double_t x, long int n); 

Logarithmic Functions

double_t frexp (double_t x, int *exponent);

double_t log (double_t x);

double_t log10 (double_t x); 

double_t log1p (double_t x);

double_t log2 (double_t x);

double_t logb (double_t x);

float modff (float x, float *iptrf);

double modf  (double x, double *iptr);
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Trigonometric Functions

double_t cos (double_t x);

double_t sin (double_t x);

double_t tan (double_t x);

double_t acos (double_t x);

double_t asin (double_t x);

double_t atan (double_t x);

double_t atan2 (double_t y, double_t x);

Hyperbolic Functions

double_t cosh (double_t x);

double_t sinh (double_t x);

double_t tanh (double_t x);

double_t acosh (double_t x);

double_t asinh (double_t x);

double_t atanh (double_t x);

Error and Gamma Functions

double_t erf  (double_t x);

double_t erfc (double_t x);

double_t gamma (double_t x);

double_t lgamma (double_t x);

Nextafter Functions
float nextafter (double_t x, double_t y);

Miscellaneous Functions
double_t hypot (double_t x, double_t y);

double_t cbrt (double_t x);

double_t fma (double_t x, double_t y, double_t z);
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A

Libm
 R

eference
Libm Reference A

This appendix provides a reference for the numeric implementation in the 
C programming language. It summarizes the data formats available and tells how to 
determine the floating-point class for a value. It also lists functions that control the 
floating-point environment, functions that perform floating-point operations, 
and the exceptions those functions might raise.

Floating-Point Data Formats A

Figure 0-1 Floating-point data formats

1 5211 1 5211

long double

1 5211

1 238

double

float
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Libm Reference
Table 0-1 Interpreting floating-point values

If biased* 
exponent e is:

And 
fraction f 
is: Then value v is: And class of v is: †

‡ (any) § FP_NORMAL
¶ FP_SUBNORMAL

FP_ZERO

FP_INFINITE

FP_SNAN (first bit is 0)
FP_QNAN (first bit is 1)

* bias = 127 for float; 1023 for double and long double.
† From enumerated type NumKind.
‡ max = 255 for float; 2047 for double and long double.
§ For long double both head and tail are evaluated this way and added together.
¶ minexp = –126 for float; –1022 for double and long double.

Table 0-2 Class and sign inquiry macros

fpclassify(x)

isnormal(x)

isfinite(x)

isnan(x)

signbit(x)

0 e max< < v 1–( )s 2 e bias–( ) 1. f( )××=

e 0= f    0 ≠ v 1–( )s 2minexp 0. f( )××=

e 0= f 0= v 1–( )s 0×=

e max= f 0= v 1–( )s ∞×=

e max= f    0 ≠ v NaN=
A-2 Floating-Point Data Formats
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Environmental Controls A

 

Table 0-3

 

Environmental access

 

Action Function prototype

 
Get

 
void fegetenv (fenv_t *envp);

 Set  void fesetenv (const fenv_t *envp); 

Save

 

int feholdexcept (fenv_t * envp);

 

Restore

 

void feupdateenv (const fenv_t *envp);

 

Table 0-4

 

Floating-point exceptions

 

Actio
n Function prototype

 

Get

 

void fegetexceptflag(fexcept_t *flagp, 
int excepts);

 

Raise

 

void feraiseexcept (int excepts);

 

Clear

 

void feclearexcept (int excepts);

 

Set

 

void fesetexceptflag (const fexcept_t 
*flagp, int excepts);

 

Test

 

int fetestexcept (int excepts);

 

Table 0-5

 

Rounding direction modes

 

Actio
n Function prototype

 

Get

 

int fegetround (void);

 

Set

 

int fesetround (int round);
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Table 0-6

 

Floating-point exceptions constants

 

Table 0-7

 

Rounding direction constants

 

Operations and Functions A

Note

 

Throughout the tables that follow, in the Exceptions column, I = invalid; 
X = inexact; O = overflow; U = underflow; D = divide-by-zero.

 

◆

 

Exceptions Value

 

FE_INEXACT 0x02000000

FE_DIVBYZERO 0x04000000

FE_UNDERFLOW 0x08000000

FE_OVERFLOW 0x10000000

FE_INVALID 0x20000000

FE_ALL_EXCEP
T

0x3E000000

 

Modes Value

 

FE_TONEAREST 0x00000000

FE_TOWARDZERO 0x00000001

FE_UPWARD 0x00000002

FE_DOWNWARD 0x00000003

 

Table 0-8

 

Arithmetic operations

 

Compute Syntax
Valid input 
range Exceptions

 

Sum

 

x + y

 

 to +

 

∞

 

I X O U -

 

Difference

 

x – y

 

 to +

 

∞

 

I X O U -

 

Product

 

x * y

 

 to +

 

∞

 

I X O U -

∞–

∞–

∞–
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Quotient

 

x / y

 

 to +

 

∞

 

I X O U D

 

Square root

 

sqrt(x)

 

0 to +

 

∞

 

I X - - -

 

Remainder

 

remainder(x,y)
remquo(x,y,quo)
fmod(x,y)

 

 to +∞ I - - - -

Table 0-9 Conversions to integer type

Compute Syntax Valid input range Exceptions

Round in current direction lrint(x)* I X - - -

Add 1/2 to magnitude 
and chop

lround(x)* I X - - -

* Return type of long int. 

Table 0-10 Conversions to integer in floating-point type

Compute Syntax
Valid input 
range Exceptions

Round in current 
direction

rint(x)  to +∞ - X - - - 

nearbyint(x)  to +∞ - - - - -

Round upward ceil(x)  to +∞ - - - - -

Round downward floor(x)  to +∞ - - - - -

Add 1/2 to magnitude 
and chop

round(x)  to +∞ - X - - -

Round toward zero trunc(x)  to +∞ - - - - -

Table 0-11 Comparison operations

Compute Syntax
Valid input 
range Exceptions

Positive difference or 0 fdim(x,y)  to +∞ - X O U -

Maximum of 2 numbers fmax(x,y)  to +∞ - - - - -

Minimum of 2 numbers fmin(x,y)  to +∞ - - - - -

Table 0-8 Arithmetic operations

Compute Syntax
Valid input 
range Exceptions

∞–

∞–

231  to  2 31 – 1–

231  to  2 31 – 1–

∞–

∞–

∞–

∞–

∞–

∞–

∞–

∞–

∞–
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Table 0-12

 

Sign manipulation functions

 

Compute Syntax
Valid input 
range Exceptions

 

Copy the sign

 

copysign(x,y)

 

 to +

 

∞

 

- - - - -

 

|

 

x

 

|

 

fabs(x)

 

 to +

 

∞

 

- - - - -

Table 0-13 Exponential functions

Comput
e Syntax

Valid input 
range Exceptions

exp(x)  to +∞ - X O U -

exp2(x)  to +∞ - X O U -

expm1(x)  to +∞ - X O U -

ldexp(x,n)  to +∞ - X O U -

scalb(x,n) - X O U -

pow(x,y)  to +∞ I X O U D

Table 0-14 Logarithmic functions

Compute Syntax Valid input range Exceptions

Fraction and exponent fields 
of floating-point number

frexp(x,&n)  to +∞ - - - - -

ln x log(x) 0 to +∞ I X - - D

log10(x) 0 to +∞ I X - - D

ln (x + 1) log1p(x) > –1 I X - - D

log2(x) 0 to +∞ I X - - D

Exponent field of 
floating-point number

logb(x)  to +∞ - - - - D

Split real number into 
fractional part and integer 
part

modf(x,&y)  to +∞ - - - - -

∞–

∞–

ex ∞–

2x ∞–

ex 1– ∞–

x 2n× ∞–

x y ∞–

∞–

log10x

log2x

∞–

∞–
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Table 0-15 Trigonometric functions

Compute Syntax Valid input range Exceptions

cos x cos(x) Any finite number I X - - -

sin x sin(x) Any finite number I X - U -

tan x tan(x) Any finite number I X - U -

arccos x acos(x) –1 to +1 I X - - -

arcsin x asin(x) –1 to +1 I X - U -

arctan x atan(x)  to +∞ - X - U -

arctan y/x atan2(x,y)  to +∞ - X - U -

Table 0-16 Hyperbolic functions

Compute Syntax Valid input range Exceptions

cosh x cosh(x)  to +∞ - X O - -

sinh x sinh(x)  to +∞ - X O U -

tanh x tanh(x)  to +∞ - X - - -

arccosh x acosh(x) 1 to +∞ I X - - -

arcsinh x asinh(x)  to +∞ - X - U -

arctanh x atanh(x) –1 to +1 I X - U -

Table 0-17 Error and gamma functions

Compute Syntax Valid input range Exceptions

error erf(x)  to +∞ - X - U -

1 – error erfc(x)  to +∞ - X - U -

Γ(x) gamma(x) 0 to +∞ I X O - -

ln(|Γ(x)|
)

lgamma(x) 0 to +∞ I X O - -

∞–

∞–

∞–

∞–

∞–

∞–

∞–

∞–
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Table 0-18 Miscellaneous functions

Compute Syntax Valid input range Exceptions

Create NaN nan(tagp) character string - - - - -

Next representable 
number after x in 
direction of y 

nextafter(x,y)  to +∞ - X O U -

Hypotenuse hypot(x,y)  to +∞ - X O U -

Cube root of x cbrt(x)  to +∞ - X O U -

Multiply and add 
(x*y+z)

fma(x,y,z)  to +∞ I X O U -

∞–

∞–

∞–

∞–



Glossary
ANSI X3J11.1 A branch of the American 
National Standards Institute (ANSI) that is 
working on a numerics standard for the C 
programming language. This group is also called 
the Numerical C Extensions Group (NCEG) and has 
produced the Floating-Point C Extensions (FPCE) 
technical report.

antisymmetric Used to describe a function 
whose graph is not symmetrical across the y-axis; 
that is func(x) ≠ func(–x) for all x.

atomic operations Operations that pass extra 
information back to their callers by signaling 
exceptions but that hide internal exceptions, 
which might be irrelevant or misleading.

bias A number added to the binary exponent of 
a floating-point number so that the exponent field 
will always be positive. The bias is subtracted 
when the floating-point value is evaluated.

binade The collection of numbers that lie 
between two successive powers of 2.

binary floating-point number A collection of 
bits representing a sign, an exponent, and a 
significand. Its numerical value, if any, is the 
signed product of the significand and 2 raised to 
the power of the exponent.

complex expression An expression made up of 
more than one simple expression, that is, an 
expression with more than one floating-point 
operation.

Condition Register A 32-bit PowerPC register 
used to summarize the states of the fixed-point 
and floating-point processors and to store results 
of comparison operations.

decimal format structure A data type for 
specifying the formatting for decimal (base 10) 
numbers (of conversions). It specifies the decimal 
number’s style and number of digits. It is defined 
by the decform data type.

default environment The environment settings 
when a PowerPC Numerics implementation starts 
up: rounding is to nearest and all exception flags 
are clear.

denormalized number A nonzero binary 
floating-point number whose significand has an 
implicit leading bit of 0 and whose exponent is 
the minimum exponent for the number’s data 
format. Also called denorm. See also normalized 
number.

divide-by-zero exception A floating-point 
exception that occurs when a finite, nonzero 
number is divided by zero or some other 
improper operation on zero has occurred.

double format A 64-bit application data format 
for storing floating-point values of up to 15- or 
16-decimal digit precision. 

double-double format A 128-bit application 
data format made up of two double-format 
numbers. It has the same range as the double 
format but much greater precision. 

environmental access switch A switch, 
recommended in the FPCE technical report, that 
specifies whether a program accesses the 
rounding direction modes and exception flags.

environmental controls The rounding direction 
modes and the exception flags.

evaluation format The data format used to 
evaluate the result of an expression. The 
evaluation format must be at least as wide as the 
expression’s semantic type. (It may be the same as 
the semantic type.) 

exception An error or other special condition 
detected by the microprocessor in the course of 
program execution. The floating-point exceptions 
are invalid, underflow, overflow, divide-by-zero, 
and inexact.
GL-1
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exception flag Each exception has a flag that can 
be set, cleared, and tested. It is set when its 
respective exception occurs and stays set until 
explicitly cleared.

exponent The part of a binary floating-point 
number that indicates the power to which 2 is 
raised in determining the value of the number. 
The wider the exponent field in a numeric data 
format, the greater range the format will handle.

expression evaluation method The method by 
which an evaluation format is determined for an 
expression.

floating-point operation An operation that is 
performed on numbers in floating-point formats. 
The IEEE standard requires that a numerics 
environment support addition, subtraction, 
multiplication, division, square root, remainder, 
and round-to-integer as the basic floating-point 
arithmetic operations.

Floating-Point Status and Control Register 
(FPSCR) A 32-bit PowerPC register used to 
store the floating-point environment.

flush-to-zero system A system that excludes 
denormalized numbers. Results smaller than the 
smallest normalized number are rounded to zero.

FPSCR See Floating-Point Status and Control 
Register.

fraction A field in a floating-point data format 
that stores all but the leading bit of the significand 
of a floating-point number.

gradual underflow A process that occurs on a 
computer system that includes denormalized 
numbers.

IEEE standard A term used in this book to 
mean IEEE Standard 754. 

IEEE Standard 754 A standard that defines how 
computers should perform binary floating-point 
arithmetic.

IEEE Standard 854 A standard that defines how 
computers should perform radix- independent 
floating-point arithmetic.

inexact exception A floating-point exception 
that occurs when the exact result of a 
floating-point operation must be rounded.

Infinity A special value produced when a 
floating-point operation should produce a 
mathematical infinity or when a floating-point 
operation attempts to produce a number greater 
in magnitude than the largest representable 
number in a given format. Infinities are signed.

integer types System types for integral values. 
Integer types typically use 16- or 32-bit 
two’s-complement integers. Integer types are not 
PowerPC Numerics formats but are available to 
PowerPC Numerics users.

integral value A value, perhaps in a numeric 
data format, that is exactly equal to a 
mathematical integer. For example, –2, –1, 0, 1, 2, 
and so on.

invalid exception A floating-point exception 
that occurs if an operand is invalid for the 
operation being performed.

invalid-operation exception See invalid 
exception.

Machine State Register A 32-bit PowerPC 
supervisor-level register that records the state of 
the processor, including if floating-point 
instructions and floating-point exceptions are 
enabled.

mantissa See significand.

minimum evaluation format The narrowest 
format in which a floating-point operation can be 
performed. Each implementation of PowerPC 
Numerics defines its own minimum evaluation 
format.

multiply-add instruction A type of instruction 
unique to the PowerPC architecture. 
Multiply-add instructions perform a multiply 
plus an addition or subtraction operation with at 
most a single roundoff error.

NaN (Not-a-Number) A special bit pattern 
produced when a floating-point operation cannot 
produce a meaningful result (for example, 0/0 
produces a NaN). NaNs propagate through 
arithmetic operations.

NCEG (Numerical C Extensions Group) See 
ANSI X3J11.1.
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nextafter functions Functions that return the 
next value after the input value that is 
representable in one of the floating-point data 
formats. For example, nextafterd(0, +∞) returns 
the value that comes immediately after 0 in the 
direction of +∞ in double format. 

normalized number A binary floating-point 
number in which all significand bits are 
significant: that is, the leading bit of the 
significand is 1. Compare denormalized number.

Numerical C Extensions Group (NCEG) See 
ANSI X3J11.1.

overflow exception A floating-point exception 
that occurs when the magnitude of a 
floating-point result is greater than the largest 
finite number that the destination data format can 
represent.

PowerPC processor Any member of the family 
of PowerPC microprocessors. The MPC601 
processor is the first PowerPC central processing 
unit.

PowerPC processor-based Macintosh 
computer Any computer containing a PowerPC 
central processing unit that runs Macintosh 
system software. Compare 680x0-based 
Macintosh computer.

precision The number of digits required to 
accurately represent a number. For example, the 
value 3.2 requires two decimal digits of precision, 
and the value 3.002 requires four decimal digits. 
In numeric data formats, the precision is equal to 
the number of bits (both implicit and explicit) in 
the significand.

quiet NaN A NaN that propagates through 
arithmetic operations without signaling an 
exception. 

rounding An action performed when a result of 
an arithmetic operation cannot be represented 
exactly in a numeric data format. With rounding, 
the computer changes the result to a close value 
that can be represented exactly. 

rounding direction modes Modes that specify 
the direction a computer will round when the 
result of an arithmetic operation cannot be 
represented exactly in a numeric data format. 
Under PowerPC Numerics, the computer resolves 

rounding decisions in one of the four directions 
chosen by the user: to nearest (the default), 
upward, downward, and toward zero.

roundoff error The difference between the exact 
result of an IEEE arithmetic operation and the 
result as it is represented in the numeric data 
format if the result has been rounded.

semantic type The widest type of the operands 
of an expression.

signaling NaN A NaN that signals an invalid 
exception when the NaN is an operand of an 
arithmetic operation. If no halt occurs, a quiet 
NaN is produced for the result. No PowerPC 
Numerics operation creates signaling NaNs.

sign bit The bit of a single, double, or 
double-double number that indicates the 
number’s sign: 0 indicates a positive number; 1, a 
negative number.

significand The part of a binary floating-point 
number that indicates where the number falls 
between two successive powers of 2. The wider 
the significand field in a numeric format, the 
more precision the format has.

simple expression An expression containing 
one floating-point operation.

single format A 32-bit application data format 
for storing floating-point values that have a 
precision of up to seven or eight decimal digits. It 
is used by engineering applications, among 
others.

sticky Used to describe a condition in which a 
bit stays set until it is explicitly cleared. 
Floating-point exception flags in the FPSCR are 
sticky, so if one instruction sets an exception flag 
and another instruction is performed before the 
flag is tested, it is impossible to tell which 
instruction caused the exception.

subnormal number A denormalized number.

symmetric Used to describe a function whose 
graph looks the same on both sides of the y-axis; 
that is, func(x) = func(–x) for all x.

tiny Used to describe a number whose 
magnitude is smaller than the smallest positive 
normalized number in the format of the number.
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transcendental functions Functions that can be 
used as building blocks in numerical functions. 
All of the functions contained in the PowerPC 
Numerics library are transcendental functions.

trigonometric functions Functions that perform 
trigonometric operations, such as cosine, sine, 
and tangent.

truncate To chop off the fractional part of a real 
number so that only the integer part remains. For 
example, if the real number 1.99999999999 is 
truncated, the truncated value is 1.

underflow exception An exception that occurs 
when the result of an operation is both tiny and 
inexact.

usual arithmetic conversions Automatic 
conversions performed in the C programming 
language. The ANSI C specification defines these 
conversions.

widest-need evaluation An evaluation method 
in which the widest format of all of the operands 
in a complex expression is used as the format in 
which the expression is evaluated.
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Index
Symbols

/ (divide) operator 5-9 to 5-10
– (minus) operator 5-6 to 5-7
!< (not less than) operator 5-4
!<= (not less than or equal) operator 5-4
!<> (not less or greater than) operator 5-4
!<>= (unordered) operator 5-4
!= (not equal) operator 5-4
!> (not greater than) operator 5-4
!>= (not greater than or equal) operator 5-4
* (multiply) operator 5-8
+ (plus) operator 5-5 to 5-6
< (less than) operator

defined 5-4
<= (less than or equal to) operator 5-4
<> (less or greater than) operator 5-4
<>= (ordered) operator 5-4
== (equal to) operator

defined 5-4
> (greater than) operator

defined 5-4
>= (greater than or equal to) operator 5-4
∞. See Infinities

Numerals

±0. See zero

A

absolute value 3-5
compiler 10-9 to 10-10

accessing the environment
C functions 8-13

accuracy
of basic arithmetic operations 1-4

acos function 10-35 to 10-36
acosh function 10-44 to 10-45
addition 5-5 to 5-6

invalid exception, generating 3-5
ANSI X3J11.1 1-11 to 1-12
antilog functions. See exponential functions
arc cosine 10-35 to 10-36

arc cosine, hyperbolic 10-44 to 10-45
arc sine 10-36 to 10-37
arc sine, hyperbolic 10-46 to 10-47
arc tangent 10-37 to 10-38, 10-38 to 10-40
arc tangent, hyperbolic 10-47 to 10-48
argument reduction 5-11, 10-31
arithmetic operations 5-14

addition 5-5 to 5-6
division 5-9 to 5-10
multiplication 5-8
remainder 5-11 to 5-13
round-to-integer 5-13 to 5-14
square root 5-10 to 5-11
subtraction 5-6 to 5-7

arithmetic, IEEE standard 1-3 to 5-14
asin function 10-36 to 10-37
asinh function 10-46 to 10-47
atan function 10-37 to 10-38
atan2 function 10-38 to 10-40
atanh function 10-47 to 10-48
atomic operations 8-13
auxiliary functions 5-14 to 5-15

exponent field, return 10-27 to 10-28, 10-28 to 10-29
nan function 7-5
nextafter functions 10-54 to 10-61
scaling 10-18
sign manipulation 10-8 to 10-9

B

base 2 exponential 10-12 to 10-13
bias of exponents 2-4
binary logarithm 10-26 to 10-27

C

C language
conformance to IEEE 754 1-11 to 1-12
conversions 9-3
data types, new 7-3 to 7-7
double type. See double format
environmental controls 8-3 to 8-18
float type. See single format
long double type. See double-double format
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I N D E X
transcendental functions 10-3
ceil function 9-9 to 9-10
classes of floating-point numbers 2-5 to 2-11

compiler 7-5
common logarithm 10-23 to 10-24
comparison operations. See comparisons
comparison operators 5-3 to 5-4
comparisons 5-4

invalid exception, generating 3-5
involving Infinities 5-3
involving NaNs 5-3

complementary error function 10-50 to 10-51
computer approximation of real numbers 1-3
controlling the environment

C functions 8-3 to 8-18
conversions 4-3

between floating-point formats 9-15
C functions 9-3
ceil function 9-9 to 9-10
floating-point to integer 4-3 to 4-5, 5-13 to 5-14, 9-3 to 

9-13
floor function 9-10 to 9-11
inexact exception 4-4, 4-5
integer to floating-point 4-3 to 4-5, 9-15
invalid exception 3-5, 4-4
nearbyint function 9-11 to 9-12
overflow exception 4-5
rint function 5-13 to 5-14
rinttol function 9-3 to 9-4, 9-5 to 9-6
round function 9-12 to 9-13
roundtol function 9-6 to 9-7, 9-7 to 9-8
trunc function 9-14 to 9-15
underflow exception 4-5

copysign function 10-8 to 10-9
invalid exception 3-5

copysignl function 10-8 to 10-9
cos function 10-31 to 10-32
cosh function 10-40 to 10-41
cosine 10-31 to 10-32
cosine, hyperbolic 10-40 to 10-41
current rounding direction 3-3 to 3-4
nearbyint function 9-11 to 9-12
rint function 5-13 to 5-14
rinttol function 9-3 to 9-4, 9-5 to 9-6

D

data formats 2-3 to 2-15
choosing 2-14
classes of numbers 2-5 to 2-11

compiler 7-5
compiler 7-3 to 7-7
converting between 9-15

diagrams 2-11
diagrams, symbols used in 2-11
double format 2-13 to 2-14
precision of 2-14 to 2-15
range of 2-14 to 2-15
single format 2-11 to 2-12

decimal fractions 1-3
default environment 3-4
default rounding direction 3-3
denormalized numbers 2-6 to 2-7

density of 2-6
density of denormalized numbers 2-6
density of single-precision numbers 2-5
difference operation

defined 5-6 to 5-7
difference, positive function 10-4 to 10-5
/ (divide) operator 5-9 to 5-10
divide-by-zero exception

defined 3-5
division 5-9 to 5-10

invalid exception, generating 3-5
by zero 1-8

double format 2-13 to 2-14
compiler 2-4, 7-3
converting from single format

defined 4-5
converting to single format

defined 4-5
diagram 2-13
diagram, symbols used in 2-11
precision 2-15
range 2-14
representation of values 2-13

double type. See double format
double-double format

compared to extended format 2-4
diagram, symbols used in 2-11

downward rounding
defined 3-3 to 3-4
floor function 9-10 to 9-11

E

elementary functions. See transcendental functions
environment 3-3 to 3-6

accessing
C functions 8-13

C functions, types 8-3 to 8-18
default 3-4
restoring

compiler 8-11 to 8-12, 8-12 to 8-13
saving

compiler 8-10, 8-10 to 8-11
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I N D E X
setting (compiler) 8-11 to 8-12
environmental controls 3-3 to 3-6

C functions 8-3 to 8-18
== (equal to) operator

defined 5-4
erf function 10-48 to 10-49
erfc function 10-50 to 10-51
error functions 10-53
exception handling 1-6 to 1-8
exceptional events 1-6 to 1-8
exceptions 1-6 to 1-8

C functions 8-5 to 8-9
clearing

compiler 8-6, 8-10 to 8-11
descriptions of 3-4 to 3-6
divide-by-zero 3-5
inexact 3-6
invalid 3-5
overflow 3-5
preserving

compiler 8-10 to 8-11, 8-12 to 8-13
raising

compiler 8-7 to 8-8
restoring (compiler) 8-8
saving

compiler 8-7, 8-10 to 8-11
setting

compiler 8-7 to 8-8, 8-12 to 8-13
spurious 8-13
testing

compiler 8-8 to 8-9
underflow 3-5

exp function 10-11 to 10-12
exp2 function 10-12 to 10-13
expm1 function 10-13 to 10-14
exponent

defined 2-4
determining value of 10-19 to 10-20, 10-27 to 10-28, 

10-28 to 10-29
exponential functions 10-18

base 2 exponential 10-12 to 10-13
natural exponential 10-11 to 10-12
natural exponential – 1 10-13 to 10-14

extended data type
compared to double-double format 2-4
in definitions of float_t and double_t 7-4

F

fabs function 3-5, 10-9 to 10-10
fabsl function 10-9 to 10-10
fdim function 10-4 to 10-5
FE_ALL_EXCEPT constant 8-6

FE_DFL_ENV constant 8-10
FE_DIVBYZERO constant 8-6
FE_DOWNWARD constant 8-3
FE_INEXACT constant 8-6
FE_INVALID constant 8-6
FE_OVERFLOW constant 8-6
FE_TONEAREST constant 8-3
FE_TOWARDZERO constant 8-3
FE_UNDERFLOW constant 8-6
FE_UPWARD constant 8-3
feclearexcept function 8-6
fegetenv function

definition 8-10
difference from feholdexcept function 8-11

fegetexcept function
definition 8-7
with fesetexcept function 8-8

fegetround function
definition 8-3 to 8-4
with fesetround function 8-4, 8-5

feholdexcept function 8-10 to 8-11
fenv_t type 8-10
fenv.h file 8-3 to 8-18
feraiseexcept function 8-7 to 8-8
fesetenv function 8-11 to 8-12
fesetexcept function 8-8
fesetround function 8-4 to 8-5
fetestexcept function 8-8 to 8-9
feupdateenv function

definition 8-12 to 8-13
with feholdexcept function 8-11

fexcept_t type 8-6
float type. See single format
floating-point data formats. See data formats
floating-point environment. See environment
floating-point exceptions. See exceptions
floating-point numbers

classes of 2-5 to 2-11
compiler 7-5

converting to integer 5-13 to 5-14
integers, converting to 4-3 to 4-5

compiler 9-3 to 9-13
truncating 3-3 to 3-4

splitting 10-29 to 10-30
floating-point values, interpreting 2-4 to 2-11
floor function 9-10 to 9-11
flush-to-zero systems 2-6
fmax function 10-5 to 10-6
fmin function 10-6 to 10-7
fmod function 5-11 to 5-13
format conventions for this book 1-xii
formats. See data formats
FPCE technical report 1-11 to 1-12

conversions 9-3
data types 7-3
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I N D E X
environmental access 8-3 to 8-18
transcendental functions 10-3

fpclassify macro 7-4
fp.h file

functions 9-3, 10-3
fraction field

defined 2-3
determining value of 10-19 to 10-20

frexp function 10-19 to 10-20
functions 5-3 to 5-15

auxiliary 5-14 to 5-15
error 10-53
exponential 10-18
gamma 10-53
hyperbolic 10-48
logarithmic 10-19 to 10-30
sign manipulation 10-10
trigonometric 10-40

G

gamma function 10-51 to 10-52
gamma functions 10-53
gradual underflow 2-7
> (greater than) operator

defined 5-4
>= (greater than or equal to) operator 5-4

H

hyperbolic functions 10-48
hypot function 10-61 to 10-64
hypotenuse 10-61 to 10-64

I

IEEE arithmetic
advantages 1-8
operations 5-14

IEEE data formats 2-3 to 2-4
. See also single format, double format

IEEE standard 1-xi
advantages 1-3
arithmetic operations 5-14
auxiliary functions 5-14 to 5-15
C language 1-11 to 1-12
comparisons 5-4
conversions required 4-3
data formats 2-3 to 2-4

exceptions 3-4 to 3-6
rounding direction modes 3-3 to 3-4, 4-4

. See also rounding direction
IEEE Standard 754. See IEEE standard
IEEE Standard 854 1-3
logb function 10-27, 10-29
nearbyint function 9-12

IEEE standard arithmetic. See IEEE arithmetic
inexact exception 3-6

conversions 4-4, 4-5
Infinities 2-7 to 2-8

as alternative to stopping 1-6, 1-8
comparisons 5-3
converting to integer 4-4
negative 2-8
positive 2-8

INFINITY constant 7-5
integer types 2-8
integers, converting 4-3 to 4-5

compiler 9-15
rounding 3-3 to 3-4
truncating 3-3 to 3-4

interpreting floating-point values 2-4 to 2-11
interval arithmetic 1-5
invalid exception 3-5

conversions 4-4
signaling NaN, result of 2-8

invalid-operation exception. See invalid exception
inverse operations 1-5 to 1-6
isfinite macro 7-4
isnan macro 7-4
isnormal macro 7-4

L

ldexp function 10-15 to 10-16
<> (less or greater than) operator 5-4
< (less than) operator

defined 5-4
<= (less than or equal to) operator 5-4
lgamma function 10-52 to 10-53
log function 10-21 to 10-23
log10 function 10-23 to 10-24
log1p function 10-24 to 10-25
log2 function 10-26 to 10-27
logarithmic functions 10-19 to 10-30

binary 10-26 to 10-27
common 10-23 to 10-24
log of gamma 10-52 to 10-53
natural 10-21 to 10-23, 10-24 to 10-25

logb function 10-27 to 10-28, 10-28 to 10-29
long double type. See double-double format
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M

MathLib 1-11 to 1-12
conversions 9-3
data types, new 7-3 to 7-7
environmental controls 8-3 to 8-18
transcendental functions 10-3

maximum function 10-5 to 10-6
minimum function 10-6 to 10-7
– (minus) operator 5-6 to 5-7
modf function 10-29 to 10-30
modulo function 5-12
multiplication 5-8

invalid exception, generating 3-5
* (multiply) operator 5-8

N

NAN constant 7-5
nan function

PowerPC Numerics 7-5
NaNs 2-8 to 2-10

as alternative to stopping 1-6, 1-7
comparisons 5-3
converting to integer 4-4
creating 7-5
quiet 2-8 to 2-10, 3-5
signaling 2-8 to 2-10, 3-5

natural exponential 10-11 to 10-12
natural exponential minus 1 10-13 to 10-14
natural logarithm 10-21 to 10-23, 10-24 to 10-25
NCEG 1-11 to 1-12
nearbyint function 9-11 to 9-12
negative Infinity. See Infinities
negative zero. See zero
nextafter functions

PowerPC Numerics 10-54 to 10-61
normalized numbers 2-5 to 2-6

compared to denormalized numbers 2-6
!= (not equal) operator 5-4
!> (not greater than) operator 5-4
!>= (not greater than or equal) operator 5-4
!<> (not less or greater than) operator 5-4
!< (not less than) operator 5-4
!<= (not less than or equal) operator 5-4
!<>= (unordered) operator 5-4
not unordered comparison 5-4
Not-a-Number. See NaNs
numbers, classes of 2-5 to 2-11

compiler 7-5
Numerical C Extensions Group 1-11 to 1-12

O

operations 5-3 to 5-15
arithmetic

defined 5-14
comparison

defined 5-4
compiler 5-3 to 5-15
conversion

compiler 9-3
ordered comparison

defined 5-4
<>= (ordered) operator 5-4
overflow 3-5

conversions 4-5

P

pi constant 10-31
+ (plus) operator 5-5 to 5-6
positive difference function 10-4 to 10-5
positive Infinity. See Infinities
positive zero. See zero
pow function

PowerPC Numerics 10-16 to 10-18
power function 10-16 to 10-18
PowerPC Numerics 1-xi

advantages 1-8
conversions supported 4-3
data formats 2-3 to 2-15
environmental controls 3-3 to 3-6
functions supported 5-3 to 5-15
operations supported 5-3 to 5-15

precision 1-4
of data formats 2-14 to 2-15

Q

quiet NaNs 2-8 to 2-10, 3-5

R

range of data formats 2-14 to 2-15
real numbers

computer approximation 1-3
order of 5-3

relational operators 5-3 to 5-4
remainder function

defined 5-11 to 5-13
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invalid exception, generating 3-5
remquo function 5-11 to 5-13
result, tiny 3-5
rint function 5-13 to 5-14
rinttol function 9-3 to 9-4, 9-5 to 9-6
round function 9-12 to 9-13
round to integer operation 5-13 to 5-14
rounding

defined 1-4 to 1-6
rounding direction 3-3 to 3-4

compiler 8-3 to 8-5
control 1-5
current 5-13 to 5-14, 9-3 to 9-4, 9-5 to 9-6, 9-11 to 9-12
default 3-3
downward 3-3 to 3-4
saving (compiler) 8-3 to 8-4
setting

compiler 8-4 to 8-5
to nearest 3-3
toward zero 3-3 to 3-4
upward 3-3 to 3-4

rounding downward
defined 3-3 to 3-4
floor function 9-10 to 9-11

rounding modes. See rounding direction
rounding to integer 3-3 to 3-4
rounding to nearest value 3-3
rounding toward zero

defined 3-3 to 3-4
trunc function 9-14 to 9-15

rounding upward
ceil function 9-9 to 9-10
defined 3-3 to 3-4
example 8-5

roundoff error with denormalized numbers 2-6
roundtol function 9-6 to 9-7, 9-7 to 9-8

S

scalb function
PowerPC Numerics 10-18

scaling functions
ldexp function 10-15 to 10-16
scalb function 10-18

sign bit 2-3, 2-4
sign manipulation functions 10-10
copysign 10-8 to 10-9
fabs function 10-9 to 10-10

sign of zero 2-10 to 2-11
signaling NaNs 2-8 to 2-10

invalid exception 3-5
signbit macro 7-4
significand 2-4

sin function 10-32 to 10-33
sine 10-32 to 10-33
sine, hyperbolic 10-41 to 10-43
single format 2-11 to 2-12

compiler 2-4, 7-3
converting from double format

defined 4-5
converting to double format

defined 4-5
diagram 2-12
diagram, symbols used in 2-11
precision 2-15
range 2-12
representation of values 2-12

single-precision numbers, density of 2-5
sinh function 10-41 to 10-43
small values

and error analysis 2-7
representing 2-6 to 2-7

spurious exceptions 8-13
sqrt function 5-10 to 5-11
square root operation

defined 5-10 to 5-11
invalid exception, generating 3-5

subtraction operation
defined 5-6 to 5-7

symbols in format diagrams 2-11

T

tagp parameter 7-5
tan function 10-33 to 10-34
tangent 10-33 to 10-34
tangent, hyperbolic 10-43 to 10-44
tanh function 10-43 to 10-44
tiny result 3-5
to-nearest rounding 3-3
toward +∞ rounding. See upward rounding
toward –∞ rounding. See downward rounding
toward-zero rounding

defined 3-3 to 3-4
trunc function 9-14 to 9-15

transcendental functions 10-3
defined 1-12, 5-15

trigonometric functions 10-40
trigonometric functions, hyperbolic 10-48
trunc function 9-14 to 9-15
truncating floating-point to integer 3-3 to 3-4, 9-14 to 

9-15
types. See data formats
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U

underflow 3-5
conversions 4-5
gradual 2-7

unordered (comparison)
defined 5-4

upward rounding 3-3 to 3-4
ceil function 9-9 to 9-10
example 8-5

V

values, interpreting 2-4 to 2-11
variable types. See data formats

Z

zero
division by 1-8
–0 as a result 2-10
rounding toward 3-3 to 3-4, 9-14 to 9-15
sign of 2-10 to 2-11
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