
Memory Usage Performance Guidelines
Tools > Performance

2006-06-28

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, eMac,
Mac, Mac OS, Objective-C, Pages, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Memory Usage Performance Guidelines 7

Organization of This Document 7

Memory Management in Mac OS X 9

Virtual Memory Theory 9
Virtual Memory in Mac OS X 10

Page Lists in the Kernel 11
Allocating and Accessing Virtual Memory 11
Paging Virtual Memory Out 12
Paging Virtual Memory In 12
Shared Memory 13
Wired Memory 13

Optimizing Your Memory Allocations 15

Memory Allocation in Mac OS X 15
Allocating Small Memory Blocks 15
Allocating Large Memory Blocks 16
Allocating Memory in Batches 16
About Memory Zones 17

Tips for Allocating Memory 17
Deferring Memory Allocations 17
Initializing Memory 18
Using Multiple Malloc Zones 18
Cache Temporary Buffers 19
Release Your Memory 19
Using Handles in Carbon 19

Copying Memory 20
Copying Memory Directly 20
Delaying Memory Copy Operations 20
Copying Small Amounts of Data 21
Copying Data to Video RAM 21

Examining Memory Allocation Patterns 23

Debugging Allocations With MallocDebug 23
Using MallocDebug 24
Evaluating MallocDebug Problem Reports 27
Limitations of MallocDebug 27

Tracking Memory Allocations With malloc_history 29

3
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Observing Allocations With ObjectAlloc 30
Using ObjectAlloc 30
Interpreting ObjectAlloc Data 32

Examining Heaps With the heap Tool 33

Finding Memory Leaks 35

Finding Leaks With MallocDebug 35
Performing a Global Leak Analysis 35
Finding Leaks for Specific Features 36

Using the leaks Tool 37
Finding Leaked Autoreleased Objects 37
Tips for Improving Leak Detection 38

Enabling the Malloc Debugging Features 39

Detecting Double Freed Memory 40
Detecting Heap Corruption 40
Detecting Memory Smashing Bugs 40

Viewing Virtual Memory Usage 43

Viewing Virtual Memory Statistics 43
Viewing Mach-O Code Pages 43
Viewing Virtual Memory Regions 44

Sample Output From vmmap 44
Interpreting vmmap’s Output 46

Document Revision History 49

Index 51

4
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Memory Management in Mac OS X 9

Table 1 Fields of the VM object 10
Table 2 Wired memory generated by user-level software 13

Optimizing Your Memory Allocations 15

Listing 1 Allocating memory with vm_allocate 16
Listing 2 Lazy allocation of memory through an accessor 18

Examining Memory Allocation Patterns 23

Figure 1 MallocDebug main window 24
Figure 2 Function call stacks gathered at runtime 25
Figure 3 View of function call tree in standard mode 25
Figure 4 View of function call tree in inverted mode 25
Figure 5 ObjectAlloc window 31
Listing 1 Diagnostic output from crashing under MallocDebug 28

Finding Memory Leaks 35

Figure 1 MallocDebug main window 36

Enabling the Malloc Debugging Features 39

Table 1 Malloc environment variables 39

Viewing Virtual Memory Usage 43

Table 1 Column descriptions for vmmap 46
Listing 1 Output of vm_stat tool 43
Listing 2 Partial output of pagestuff tool 44
Listing 3 Typical output of vmmap 44

5
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Analyzing your memory usage is one way to fix other performance problems you may have, such as an
increased code footprint or slow code. Efficient memory usage is critical to performance in any application.
Increased memory usage not only increases the in-memory footprint of your application, it also increases
the time spent allocating and manipulating that memory.

Organization of This Document

This programming topic includes the following articles:

 ■ “Memory Management in Mac OS X” (page 9) introduces terminology and provides a high-level overview
of the Mac OS X virtual memory system.

 ■ “Optimizing Your Memory Allocations” (page 15) describes the best techniques for allocating, initializing,
and copying memory.

 ■ “Examining Memory Allocation Patterns” (page 23) describes the tools and techniques for analyzing
your application’s memory usage.

 ■ “Finding Memory Leaks” (page 35) describes the tools and techniques for finding memory leaks in your
application.

 ■ “Enabling the Malloc Debugging Features” (page 39) describes the environment variables used to enable
malloc history logging. You must set some of these variables before using some of the memory analysis
tools.

 ■ “Viewing Virtual Memory Usage” (page 43) describes the tools and techniques for analyzing your
application’s in-memory footprint.

Organization of This Document 7
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Memory Usage Performance
Guidelines

8 Organization of This Document
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Memory Usage Performance Guidelines

Efficient memory management is an important aspect of writing high performance code in Mac OS X code.
Tuning your memory usage can reduce both your application’s memory footprint and the amount of CPU
time it uses. In order to properly tune your code though, you need to understand something about how Mac
OS X manages memory.

Unlike earlier versions of Mac OS, Mac OS X includes a fully-integrated virtual memory system that you cannot
turn off. It is always on, providing up to 4 gigabytes of addressable space per 32-bit process and approximately
18 exabytes of addressable space for 64-bit processes. However, few machines have this much dedicated
RAM for the entire system, much less for a single process. To compensate for this limitation, the virtual
memory system uses hard disk storage to hold data not currently in use. This hard disk storage is sometimes
called the “swap” space because of its use as storage for data being swapped in and out of memory.

Note: Unlike most UNIX-based operating systems, Mac OS X does not use a preallocated swap partition for
virtual memory. Instead, it uses all of the available space on the machine’s boot partition.

The following sections introduce terminology and provide a brief overview of the Mac OS X virtual memory
system. For more detailed information on how the Mac OS X virtual memory system works, please see Kernel
Programming Guide.

Virtual Memory Theory

Virtual memory allows an operating system to escape the limitations of physical RAM. A virtual memory
manager creates a logical address space (or “virtual” address space) that is larger than the installed physical
memory (RAM) and divides it up into uniformly-sized chunks of memory called pages. Each page in the
logical address space has a corresponding page on the disk, in a special file known as the backing store. The
system then populates the computer’s physical memory with the pages currently in use to give the illusion
that the entire logical address space is made up of real memory.

There are two key features of the processor and its memory management unit (MMU) that you must grasp
in order to understand how virtual memory works. The first is the page table, which is a table that maps all
logical pages into their corresponding physical pages. When the processor accesses a logical address, the
MMU uses the page table to translate the access into a physical address, which is the address that’s actually
passed to the computer’s memory subsystem.

If the translation from a logical page address to a physical address fails, a page fault occurs. The virtual
memory system invokes a special page-fault handler to stop executing the current code and respond to the
fault. The page-fault handler finds a free page of physical memory, transfers the data from the backing store
to the physical page, and then updates the page table so that the page now appears to be at the correct
logical address. If no free pages are available in physical memory, the handler must first release an existing
page. If that page contains modified data, the handler writes its contents to the backing store before releasing
it. This process is known as paging.

Virtual Memory Theory 9
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

Moving data from physical memory to disk is called paging out (or “swapping out”); moving data from disk
to physical memory is called paging in (or “swapping in”). In both Mac OS 9 and Mac OS X, the size of a page
is 4 kilobytes. Every time a page fault occurs, the system reads 4 kilobytes from disk. Extended periods of
paging activity reduce performance significantly; such activity is sometimes called disk thrashing.

Reading from disk is much slower than reading directly from RAM, just as reading from RAM is always slower
than reading directly from the CPU caches. Because a page fault involves reading data from disk, and potentially
writing data to disk as well, reducing the number of occurring page faults can have a significant improvement
on overall system performance.

Virtual Memory in Mac OS X

In Mac OS X, each process has its own sparse 32-bit or 64-bit virtual address space. For 32-bit processes, each
process has an address space that can grow dynamically up to a limit of four gigabytes. For 64-bit processes,
the address space can grow dynamically up to a limit of approximately 18 exabytes. As an application uses
up space, the virtual memory system allocates additional swap file space on the root file system.

The virtual address space of a process consists of mapped regions of memory. Each region of memory in the
process represents a specific set of virtual memory pages. A region has specific attributes controlling such
things as inheritance (portions of the region may be mapped from “parent” regions), write-protection, and
whether it is “wired” (that is, it cannot be paged out). Because regions contain a given number of pages, they
are page-aligned, meaning the starting address of the region is also the starting address of a page and the
ending address also defines the end of a page.

The kernel associates a VM object with each region of the virtual address space. The kernel uses the VM
object to track and manage the resident and nonresident pages of that region. A region can map either to
an area of memory in the backing store or to a specific file-mapped file in the file system.

The VM object maps regions in the backing store through the default pager and maps file-mapped files
through the vnode pager. The default pager is a system manager that maps the nonresident virtual memory
pages to backing store and fetches those pages when requested. The vnode pager implements file mapping.
The vnode pager uses the paging mechanism to provide a window directly into a file. This mechanism lets
you read and write portions of the file as if they were located in memory.

A VM object may point to a pager or to another VM object. The kernel uses this self referencing to implement
a form of page-level sharing known as copy-on-write. Copy-on-write allows multiple blocks of code (including
different processes) to share a page as long as none write to that page. If one process writes to the page, a
new, writable copy of the page is created in the address space of the process doing the writing. This mechanism
allows the system to copy large quantities of data efficiently.

Each VM object contains several fields, as shown in Table 1 (page 10).

Table 1 Fields of the VM object

DescriptionField

A list of the pages of this region that are currently resident in physical memory.Resident pages

The size of the region, in bytes.Size

The pager responsible for tracking and handling the pages of this region in backing store.Pager

10 Virtual Memory in Mac OS X
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

DescriptionField

Used for copy-on-write optimizations.Shadow

Used for copy-on-write optimizations.Copy

Flags indicating the state of various implementation details.Attributes

If the VM object is involved in a copy-on-write (vm_copy) operation, the shadow and copy fields may point
to other VM objects. Otherwise both fields are usually NULL.

Page Lists in the Kernel

The kernel maintains and queries three system-wide lists of physical memory pages:

 ■ The active list contains pages that are currently mapped into memory and have been recently accessed.

 ■ The inactive list contains pages that are currently resident in physical memory but have not been
accessed recently. These pages contain valid data but may be released from memory at any time.

 ■ The free list contains pages of physical memory that are not associated with any address space of VM
object. These pages are available for immediate use by any process that needs them.

When the number of pages on the free list falls below a threshold (determined by the size of physical memory),
the pager attempts to balance the queues. It does this by pulling pages from the inactive list. If a page has
been accessed recently, it is reactivated and placed on the end of the active list. If an inactive page contains
data that has not been written to the backing store recently, its contents must be paged out to disk before
it can be placed on the free list. If an inactive page has not been modified and is not permanently resident
(wired), it is stolen (any current virtual mappings to it are destroyed) and added to the free list. Once the free
list size exceeds the target threshold, the pager rests.

The kernel moves pages from the active list to the inactive list if they are not accessed; it moves pages from
the inactive list to the active list on a soft fault (see “Paging Virtual Memory In” (page 12)). When virtual
pages are swapped out, the associated physical pages are placed in the free list. Also, when processes explicitly
free memory, the kernel moves the affected pages to the free list.

Allocating and Accessing Virtual Memory

Applications usually allocate memory using the malloc routine. This routine finds free space on an existing
page or allocates new pages using vm_allocate to create space for the new memory block. Through the
vm_allocate routine, the kernel performs a series of initialization steps:

1. It maps a range of memory in the virtual address space of this process by creating a map entry; the map
entry is a simple structure that defines the starting and ending addresses of the region.

2. The range of memory is backed by the default pager.

3. The kernel creates and initializes a VM object, associating it with the map entry.

Virtual Memory in Mac OS X 11
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

At this point there are no pages resident in physical memory and no pages in the backing store. Everything
is mapped virtually within the system. When a program accesses the region, by reading or writing to a specific
address in it, a fault occurs because that address has not been mapped to physical memory. The kernel also
recognizes that the VM object has no backing store for the page on which this address occurs. The kernel
then performs the following steps for each page fault:

1. It acquires a page from the free list and fills it with zeroes.

2. It inserts a reference to this page in the VM object’s list of resident pages.

3. It maps the virtual page to the physical page by filling in a data structure called the pmap. The pmap
contains the page table used by the processor (or by a separate memory management unit) to map a
given virtual address to the actual hardware address.

Paging Virtual Memory Out

The kernel continuously compares the number of physical pages in the free list against a threshold value.
When the number of pages in the free list dips below this threshold, the kernel reclaims physical pages for
the free list by swapping inactive pages out of memory. To do this, the kernel iterates all resident pages in
the active and inactive lists, performing the following steps:

1. If a page in the active list is not recently touched, it is moved to the inactive list.

2. If a page in the inactive list is not recently touched, the kernel finds the page’s VM object.

3. If the VM object has never been paged before, the kernel calls an initialization routine that creates and
assigns a default pager object.

4. The VM object’s default pager attempts to write the page out to the backing store.

5. If the pager succeeds, the kernel frees the physical memory occupied by the page and moves the page
from the inactive to the free list.

Paging Virtual Memory In

The final phase of virtual memory management moves pages in the backing store back into physical memory.
A memory access fault initiates the page-in process. Memory access faults occur when code tries to access
data at a virtual address that is not mapped to physical memory. There are two kinds of faults:

 ■ A soft fault occurs when the page of the referenced address is resident in physical memory but is currently
not mapped into the address space of this process.

 ■ A hard fault occurs when the page of the referenced address is not in physical memory but is swapped
out to backing store (or is available from a mapped file). This is what is typically known as a page fault.

When any type of fault occurs, the kernel locates the map entry and VM object for the accessed region. The
kernel then goes through the VM object’s list of resident pages. If the desired page is in the list of resident
pages, the kernel generates a soft fault. If the page is not in the list of resident pages, it generates a hard
fault.

12 Virtual Memory in Mac OS X
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

For soft faults, the kernel maps the physical memory containing the pages to the virtual address space of
the process. The kernel then marks the specific page as active. If the fault involved a write operation, the
page is also marked as modified so that it will be written to backing store if it needs to be freed later.

For hard faults, the VM object’s pager finds the page in the backing store or from the file-mapped file,
depending on the type of pager. After making the appropriate adjustments to the map information, the
pager moves the page into physical memory and places the page on the active list. As with a soft fault, if the
fault involved a write operation, the page is marked as modified.

Shared Memory

Shared memory is memory that can be written to or read from by two or more processes. Shared memory
can be inherited from a parent process, created by a shared memory server, or explicitly created by an
application for export to other applications. Uses for shared memory include the following:

 ■ sharing large resources such as icons or sounds

 ■ fast communication between one or more processes

Shared memory is fragile. If one program corrupts a section of shared memory, any programs that also use
that memory share the corrupted data.

Wired Memory

Wired memory (also called resident memory) stores kernel code and data structures that should never be
paged out to disk. Applications, frameworks, and other user-level software cannot allocate wired memory.
However, they can affect how much wired memory exists at any time. There is memory overhead associated
with each kernel resource expended on behalf of a program.

Table 2 (page 13) lists some of the wired-memory costs for user-generated entities.

Table 2 Wired memory generated by user-level software

Wired Memory Used by KernelResource

16 kilobytesProcess

blocked in a continuation—5 kilobytes; blocked—21 kilobytesThread

116 bytesMach port

32 bytesMapping

2 kilobytes plus 200 bytes for each task that uses itLibrary

160 bytesMemory region

Virtual Memory in Mac OS X 13
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

Note: These measurements will change with each new Mac OS X release. They are provided here to give
you a rough estimate of the relative cost of system resource usage.

As you can see, each thread created, each subprocess forked, and each library linked contributes to the
resident footprint of the system.

In addition to wired memory generated through user-level requests, the following kernel entities also use
wired memory:

 ■ VM objects

 ■ the virtual memory buffer cache

 ■ I/O buffer caches

 ■ drivers

Wired data structures are also associated with the physical page and map tables used to store virtual-memory
mapping information, Both of these entities scale with the amount of available physical memory. Consequently,
when you add memory to a system the wired memory increases even if nothing else changes. When the
computer is first booted into the Finder, with no other applications running, wired memory consumes
approximately 14 megabytes of a 64 megabyte system and 17 megabytes of a 128 megabyte system.

Wired memory is not immediately released back to the free list when it becomes invalid. Instead it is “garbage
collected” when the free-page count falls below the threshold that triggers page out events.

14 Virtual Memory in Mac OS X
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Memory Management in Mac OS X

Memory is an important resource for your application so it’s important to take the time to examine your
application’s memory allocation patterns and make changes as necessary.

You can gather a history of your allocations using the Sampler program or using the malloc_history
command-line tool. For more information on analyzing your memory usage, see “Examining Memory Allocation
Patterns” (page 23).

Memory Allocation in Mac OS X

Mac OS X implements a highly-tuned, threadsafe allocation library, providing standard implementations of
the malloc,calloc, realloc, and free routines, among others. If you are allocating memory using older
routines such as NewPtr or NewHandle, you should change your code to use malloc instead. The end result
is the same since most legacy routines are now wrappers for malloc anyway.

If you are using a custom malloc implementation, you should consider moving to the system-supplied
malloc routines. The Mac OS X malloc implementation is highly optimized and fully supports the
Apple-provided memory analysis tools. Moving to Apple’s implementation not only gains you the ability to
analyze your memory, it lets you remove your custom code from your executable, thus reducing your
application footprint.

The following sections provide some details on how the Mac OS X allocation library handles large and small
allocations. This information can help you identify the costs associated with each type of allocation. Note
that although the following sections talk about the behaviors of the malloc routine, those behaviors also
apply to routines such as calloc and realloc.

Allocating Small Memory Blocks

For allocations of less than a few virtual memory pages, malloc suballocates the requested amount from a
list (or “pool”) of free blocks of increasing size. Any small blocks you deallocate using the free routine are
added back to the pool and reused on a “best fit” basis. The memory pool is itself is comprised of several
virtual memory pages and allocated using the vm_allocate routine.

The granularity of any block returned by malloc is 16 bytes. Any blocks you allocate will be at least 16 bytes
in size or comprised of a block that is a multiple of 16. Thus, if you request 4 bytes, malloc returns a block
of 16 bytes. If you request 24 bytes, malloc returns a block of 32 bytes.

Memory Allocation in Mac OS X 15
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

Note: By their nature, allocations smaller than a single virtual memory page in size cannot be page aligned.

Allocating Large Memory Blocks

For allocations greater than a few virtual memory pages, malloc uses the vm_allocate routine to obtain
a block of the requested size.The vm_allocate routine assigns an address range to the new block in the
virtual memory space of the current process but does not allocate any physical memory. Instead, the malloc
routine pages in the memory for the allocated block as it is used.

The granularity of large memory blocks is 4096 bytes, the size of a virtual memory page. If you are allocating
a large memory buffer, you should consider making it a multiple of this size.

Note: Large memory allocations are guaranteed to be page-aligned.

For large allocations, you may find that it makes sense to allocate virtual memory using vm_allocate directly.
The example in Listing 1 (page 16) shows how to use the vm_allocate function.

Listing 1 Allocating memory with vm_allocate

void* AllocateVirtualMemory(size_t size)
{
 char* data;
 kern_return_t err;

 // In debug builds, check that we have
 // correct VM page alignment
 check(size != 0);
 check((size % 4096) == 0);

 // Allocate directly from VM
 err = vm_allocate((vm_map_t) mach_task_self(),
 (vm_address_t*) &data,
 size,
 VM_FLAGS_ANYWHERE);

 // Check errors
 check(err == KERN_SUCCESS);
 if(err != KERN_SUCCESS)
 {
 data = NULL;
 }

 return data;
}

Allocating Memory in Batches

If your code allocates multiple, identically-sized memory blocks, you can use themalloc_zone_batch_malloc
function to allocate those blocks all at once. This function offers better performance than the equivalent
series of calls to malloc to allocate the same memory. Performance is best when the individual block size

16 Memory Allocation in Mac OS X
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

is relatively small—less than 4K in size. The function does its best to allocate all of the requested memory
but may return less than was requested. When using this function, check the return values carefully to see
how many blocks were actually allocated.

Batch allocation of memory blocks is supported in Mac OS X version 10.3 and later. For information, see the
/usr/include/malloc/malloc.h header file.

About Memory Zones

A zone is a variable-size range of virtual memory from which malloc allocates blocks. All allocations made
using the malloc function occur within the standard malloc zone, which is created when malloc is first
called by your application. You can create additional malloc zones and allocate memory in a specific zone.

Note: The term zone is synonomous with the terms heap, pool, and arena in terms of memory allocation
using the malloc routines.

Zones have the advantage of allowing blocks with similar access patterns or lifetimes to be placed together,
theoretically minimizing wasted space or paging activity. You can allocate many objects in a zone and then
destroy the zone to free them all. For most developers, however, zones fail to deliver a performance advantage,
and you should avoid them unless you need to either track a set of memory blocks separately from other
allocations or free many memory blocks quickly, or you have measured a specific case where zones will help.

For information on how to use multiple zones in an application, see “Using Multiple Malloc Zones” (page
18)

Tips for Allocating Memory

When it comes time to allocate memory for your program, there are other considerations you should make.
The following sections provide guidelines on when and how to allocate memory.

Deferring Memory Allocations

Every memory allocation has a performance cost. That cost is measured by the time it takes to allocate the
memory and the space occupied by the memory. If you do not need a particular block of memory right away,
you should consider deferring its allocation until the first time you actually need it. Once allocated, you can
then use it and delete it or cache it for later use.

Applications often allocate memory during initialization and then use that memory later—or sometimes not
at all during a given session. Not only does this cause the application to pay an up-front cost for allocating
the memory but it does so needlessly. You can easily improve on this costly approach by deferring the
allocation to the first time the memory is needed.

For most operations, you can easily arrange your code to use a block of memory right after you allocate it.
But if your application uses global variables, you need another way to ensure the memory is there when you
need it, but not before. To accomplish this with a minimum of code modification, do the following:

 ■ Turn any global variables into static variables so that they are inaccessible to other code modules.

Tips for Allocating Memory 17
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

 ■ Create a public accessor function to access the static variable and allocate and initialize the buffer for it
upon the first invocation.

Listing 2 (page 18) gives an example of this technique. Code modules that want to access the global buffer
call the function to access the pointer.

Listing 2 Lazy allocation of memory through an accessor

MyGlobalInfo* GetGlobalBuffer()
{
 static MyGlobalInfo* sGlobalBuffer = NULL;
 if (sGlobalBuffer == NULL)
 {
 sGlobalBuffer = malloc(sizeof(MyGlobalInfo));
 }
 return sGlobalBuffer;
}

Note: This code is not safe in the presence of multiple threads. More than one thread could call this function
simultaneously, causing the memory to be allocated more than once. To make it threadsafe, add a semaphore
lock around the if statement and any required initialization code.

Initializing Memory

Memory allocated using malloc is not guaranteed to be initialized with zeroes. Instead of using memset to
initialize the memory, a better choice is to use the calloc routine to allocate the memory in the first place.

When you call memset right after malloc, the virtual memory system must map the corresponding pages
into memory in order to zero-initialize them. This operation can be very expensive and wasteful, especially
if you do not use the pages right away.

The calloc routine reserves the required virtual address space for the memory but waits until the memory
is actually used before initializing it. This approach alleviates the need to map the pages into memory right
away. It also lets the system initialize pages as they’re used, as opposed to all at once.

Using Multiple Malloc Zones

All memory blocks are contained within a malloc zone (also referred to as a malloc heap). All allocations
made by malloc function occur within the default malloc zone of the current process, which is created when
malloc is first called. Although it is generally not recommended, you can create additional zones if
measurements show there to be potential performance gains. For example, if the effect of releasing a large
number of temporary (and isolated) objects is slowing down your application, you could allocate them in a
zone instead and simply deallocate the zone.

Basic support for zones is defined in /usr/include/malloc/malloc.h. Use the malloc_create_zone
function to create a custom malloc zone or the malloc_default_zone function to get the default zone for
your application. To allocate memory in a particular zone, use the malloc_zone_malloc ,
malloc_zone_calloc , malloc_zone_valloc , or malloc_zone_realloc functions. To release the
memory in a custom zone, call malloc_destroy_zone.

18 Tips for Allocating Memory
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

Warning: You should never deallocate the default zone for your application.

If you are a Cocoa developer, you can also use the NSCreateZone function to create a custom malloc zone
and the NSDefaultMallocZone function to get the default zone for your application. To create new objects
in a custom zone, use the allocWithZone: class method, which is available to all subclasses of NSObject.
If your class does not descend from NSObject, use the NSAllocateObject function to allocate the memory
for your new instances. For more information, see the function descriptions in Foundation FrameworkReference.

If you are creating objects (or allocating memory blocks) in a custom malloc zone, you can simply free the
entire zone when you are done with it, instead of releasing the zone-allocated objects or memory blocks
individually. When doing so, be sure your application data structures do not hold references to the memory
in the custom zone. Attempting to access memory in a deallocated zone will cause a memory fault and crash
your application.

Cache Temporary Buffers

If you have a highly-used function that allocates a large temporary buffer for some calculations, you might
want to consider alternative ways to allocate that buffer. Instead of creating a new block of memory each
time it’s called, your function could instead cache a buffer initially and reuse that buffer during subsequent
invocations. If your function needs a variable buffer space, you can always grow the buffer as needed. For
multi-threaded applications, you can attach the buffer pointer to your thread’s context. For single-threaded
applications, you can just store the pointer in a global variable.

Caching buffers eliminates much of the overhead for functions that regularly allocate and free large blocks
of memory. However, this technique is only appropriate for functions that are called frequently. Also, you
should be careful not to cache too many large buffers. Caching buffers does add to the memory footprint of
your application. You should be sure to gather metrics for your program with and without the caches to see
which yields better performance.

Release Your Memory

Finally, keep in mind the importance of releasing (via the free system routine) all memory that you have
allocated with malloc, calloc, or realloc. Neglecting to releasememory causes memory leaks, which
have a direct impact on performance. To help track down memory leaks, use the MallocDebug application
or the leaks command-line tool. Both of these tools are described in “Examining Memory Allocation
Patterns” (page 23).

Using Handles in Carbon

If you have existing code from Mac OS 9 that you are porting to Mac OS X, you can achieve some performance
gains by simplifying your handle-related code. The benefit offered by handles in Mac OS 9 is no longer
relevant in applications built for Mac OS X. In particular, there is no need to compact the memory blocks
referenced by handles. As a result, your handles never move and there is no need to lock them when you
want to access their contents.

Tips for Allocating Memory 19
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

If you have code that makes calls to HLock, HUnlock. HSetState, or HGetState, you can either conditionally
compile that code out for Mac OS X or you can remove the code entirely. The only exception to this rule is
cases where your code calls the SetHandleSize function, which can potentially move a handle if more
space is required. If your code needs to access a handle that might be resized at some point, you should lock
the handle first.

Copying Memory

There are two main approaches to copying memory in Mac OS X: direct and delayed. For most situations,
the direct approach offers the best overall performance. However, there are times when using a delayed-copy
operation has is benefits. The goal of the following sections is to introduce you to the different approaches
for copying memory and the situations when you might use those approaches.

Copying Memory Directly

The direct copying of memory involves using a routine such as memcpy or memmove to copy bytes from one
block to another. Both the source and destination blocks must be resident in memory at the time of the copy.
However, these routines are especially suited for the following situations:

 ■ the size of the block you want to copy is small (under 16 kilobytes).

 ■ you intend to use either the source or destination right away.

 ■ the source or destination block is not page aligned.

 ■ the source and destination blocks overlap.

If you do not plan to use the source or destination data for some time, performing a direct copy can decrease
performance significantly for large memory blocks. Copying the memory directly increases the size of your
application’s working set. Whenever you increase your application’s working set, you increase the chances
of paging to disk. If you have two direct copies of a large memory block in your working set, you might end
up paging them both to disk. When you later access either the source or destination, you would then need
to load that data back from disk, which is much more expensive than using vm_copy to perform a delayed
copy operation.

Note: If the source and destination blocks overlap, you should prefer the use of memmove over memcpy. Both
implementations handle overlapping blocks correctly in Mac OS X, but the implementation of memcpy is not
guaranteed to do so.

Delaying Memory Copy Operations

If you intend to copy many pages worth of memory, but don’t intend to use either the source or destination
pages immediately, then you may want to use the vm_copy routine. Unlike memmove or memcpy, vm_copy
does not touch any real memory. It modifies the virtual memory map to indicate that the destination address
range is a copy-on-write version of the source address range.

20 Copying Memory
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

The vm_copy routine is more efficient than memcpy in very specific situations. Specifically, it is more efficient
in cases where your code does not access either the source or destination memory for a fairly large period
of time after the copy operation. The reason that vm_copy is effective for delayed usage is the way the kernel
handles the copy-on-write case. In order to perform the copy operation, the kernel must remove all references
to the source pages from the virtual memory system. The next time a process accesses data on that source
page, a soft fault occurs, and the kernel maps the page back into the process space as a copy-on-write page.
The process of handling a single soft fault is almost as expensive as copying the data directly.

Copying Small Amounts of Data

If you need to copy a small blocks of non-overlapping data, you should prefer memcpy over any other routines.
For small blocks of memory, the GCC compiler can optimize out this routine and replace it with inline
instructions to copy the data by value. The compiler may not optimize out other routines such as memmove
or BlockMoveData.

Copying Data to Video RAM

When copying data into VRAM, use the BlockMoveDataUncachedfunction instead of functions such as
bcopy. The bcopy routine uses cache-manipulation instructions that may cause exception errors. The kernel
must fix these errors in order to continue, which slows down performance tremendously.

Copying Memory 21
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

22 Copying Memory
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Optimizing Your Memory Allocations

Examining your application’s memory allocation patterns can help reveal algorithms that may not be the
most efficient in their memory use. If you see a large number of allocations occurring during a loop, you may
decide to go back and change the allocations to occur outside of the loop. This kind of reduction can have
a significant increase in application performance.

Apple provides several tools for examining your memory usage. The MallocDebug tracks the location of
memory allocations by recording the application call stack whenever a memory-related function is called.
The malloc_history tool does many of the same things as MallocDebug but from a command-line interface.
You can use these tools to look for unexpectedly large allocations or allocations that were made but are no
longer needed.

If you are writing a Cocoa application, you should use the ObjectAlloc program and heap tool to see which
Objective-C objects your program creates. The ObjectAlloc program is good for finding problems involving
allocation trends, retain/release problems, or other problems involving object allocations. Similarly, the heap
tool helps you examine the objects currently in use by a program.

Debugging Allocations With MallocDebug

The MallocDebug application provides tools for inspecting your program’s memory use and for finding
memory leaks. MallocDebug shows currently allocated blocks of memory, organized by the call stack at the
time of allocation. You can use MallocDebug to determine how much memory your application allocates,
where it allocates that memory, and which functions allocated large amounts of memory. It gathers data
from the Carbon Memory Manager, Core Foundation object allocations, Cocoa object allocations, and
mallocallocations.

MallocDebug does not require prior instrumentation of the program—that is, you don’t need to link with
special libraries or call special functions. Instead, MallocDebug launches your application using its own
instrumented version of the malloc library calls.

Note: The custom malloc library used by MallocDebug may hold on to memory blocks longer than normal
for analysis purposes. As a result, you should not try to gather metrics regarding the size of your program’s
memory footprint while running it under MallocDebug.

MallocDebug includes a number of features you can use to refine your memory analysis:

 ■ It provides a hex-dump view for examining raw memory.

 ■ It allows you to mark off any period of execution for analysis.

 ■ It allows you to export performance data for detailed examination or for further analysis and refinement
by command-line tools. The export feature gives you the freedom to look at or summarize the data in
the form most relevant to your executable.

Debugging Allocations With MallocDebug 23
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

For information on how to use MallocDebug to identify memory leaks in your program, see “Finding Memory
Leaks” (page 35).

Using MallocDebug

After launching MallocDebug, the main window appears (Figure 1 (page 24)). There are three basic sections
in the MallocDebug window. Information about the launched program is at the top of the window. The
center portion displays the call stack browser. The bottom portion displays the memory buffer browser.

Figure 1 MallocDebug main window

Analysis Mode

Display Mode

Call Stack Browser

Memory Buffer List

Launch information

To start a new MallocDebug session, you must select and launch the application you want to analyze by
doing the following:

1. Enter the full path to the program in the Executable field, or click the Browse button and select the
program using the file-system browser.

2. If you want to run the executable with command-line arguments, enter them in the Arguments field.

3. Click the Launch button.

MallocDebug launches the program and performs an initial query about memory usage. Further updates
occur whenever you press the Update button.

24 Debugging Allocations With MallocDebug
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

The Call Stack Browser

The main focus of memory analysis in MallocDebug is the call stack browser (see Figure 1 (page 24)). This
browser shows you where memory allocations occurred by gathering stack snapshots whenever one of the
malloc library routines was encountered. Figure 2 (page 25) shows a sample set of data for calls to the malloc
routine.

Figure 2 Function call stacks gathered at runtime

CFStringCreate

InitializeMyApplication

-[NSObject alloc]

CreateNewWindow malloc

malloc

mallocCFAllocatorAllocate

NSZoneAlloc

MallocDebug coalesces the call stack information it gathers into a call tree by overlapping equivalent sequences
of functions. It then presents this information in the call stack browser. The call stack browser has three
display modes: standard, inverted, and flat. Each display mode presents the data in a different way to help
you identify trends. You can choose which mode you want from the left-most pop-up menu and toggle back
and forth as needed.

Standard mode presents each call stack hierarchically from the function at the top of the stack (for instance,
main) to the function that performs the allocation: malloc, calloc, and so on. Each element of the browser
shows the amount of memory that has been allocated in the call stack involving that method or function.
Figure 3 (page 25) illustrates the structure of the call stack in standard mode.

Figure 3 View of function call tree in standard mode

CFStringCreate

InitializeMyApplication

-[NSObject alloc]

CreateNewWindow malloc

CFAllocatorAllocate

NSZoneAlloc

Inverted mode reverses the hierarchy of standard mode and shows the call tree from the allocation functions
to the bottom of each stack. This mode is useful for highlighting the ways in which specific allocation functions
are called. By seeing all the calls to malloc or the Core Foundation allocators, you can more easily detect
wasteful patterns in lower-level libraries. Use inverted mode if you’re working on a low-level framework or
if you want to focus on how you’re calling malloc in your own code. Figure 4 (page 25) illustrates the
structure of the call stack in inverted mode.

Figure 4 View of function call tree in inverted mode

CFAllocatorAllocate

CreateNewWindow

NSZoneAlloc

InitializeMyApplication

CFStringCreate

-[NSObject alloc]

malloc

Flat mode shows memory usage for every method and function of an application in a single list, sorted by
allocated amount. All of the instances of a function call are collapsed into one browser item corresponding
to that function. A function’s memory use includes the sum of all the allocations performed in that function

Debugging Allocations With MallocDebug 25
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

and all allocations performed in functions that it calls. This allows you to see the total amount of memory
allocated by a specific function and every function it called, not just those at the top or bottom of the call
stack.

The analysis mode pop-up menu (located to the right of the viewing-mode pop-up menu) affects the type
of allocations that are displayed in the call stack browser. You have several options:

 ■ All Allocations Gives you the call trees for all currently allocated buffers in your application.

 ■ Allocations since Mark Displays functions and methods in which an allocation has occurred since launch
time or the last mark. See “Taking a Snapshot of Memory Usage” (page 26) for information on how to
display allocations over a specific period of time.

 ■ Leaks This item displays a call tree showing leaked memory blocks in your program. For further discussion
of this analysis mode, see “Finding Memory Leaks” (page 35).

 ■ Overruns/underruns Displays a call tree with a list of buffers that were written to incorrectly, caused by
writing to memory before or after the buffer boundary. If the program wrote past the end of a buffer, a
right arrow (>) appears by the buffer. Similarly, if the application wrote before the start of a buffer, a left
arrow (<) appears by the buffer. For more on MallocDebug’s memory-detail features, see “Analyzing Raw
Memory” (page 26).

Taking a Snapshot of Memory Usage

When you launch a program with MallocDebug, the main window displays the allocation activity that occurred
during launch time. When you click the Update button, MallocDebug shows memory usage up to the current
point in time. If you want to display allocations from a particular point in time, you can do the following:

1. Press the Mark button.

2. Exercise a portion of your program.

3. Select the "Allocations from mark" item from the analysis mode pop-up list.

MallocDebug shows the buffers allocated since the mark was set. Note that MallocDebug displays only the
buffers that are still currently allocated, so you will see only those buffers allocated since you clicked the
Mark button that have not been freed.

Analyzing Raw Memory

When you select an allocation buffer in the call stack browser, the memory buffer list (shown in Figure 1 (page
24)) might show one or more lines of data. Each line in this list represents a block of memory allocated by
the currently selected function or by a function eventually called by that function. Each line contains the
address of the buffer, its size (in bytes), and the zone in which it was allocated. Double-clicking one of these
lines opens the Memory Viewer Panel window, which you can use to inspect the contents of memory at that
location.

If code attempts to write before the start or past the end of a buffer, the memory buffer list shows an
appropriate indicator in the Status column. If bytes were written before the buffer, the column displays a
less-than < character. If bytes were written after the buffer, the column contains a greater-than > character.
Use the popup menu below the list to sort the list contents.

26 Debugging Allocations With MallocDebug
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

MallocDebug helps you catch some types of problems by writing certain hexadecimal patterns into the hex
values displayed in the Memory Viewer Panel window. It overwrites freed memory with 0X55 and it guards
against writing beyond a block’s boundaries by putting the values 0xDEADBEEF and 0xBEEFDEAD, respectively,
at the beginning and end of each allocated buffer.

The memory buffer inspector can be particularly helpful for determining why an object is leaking. For example,
if a string is being leaked, the text of the string might indicate where it was created. If an event structure is
leaked, you might be able to identify the type of event from the contents of memory and thus find the
corresponding event-handling code responsible for the leak.

Evaluating MallocDebug Problem Reports

Some of the reports that MallocDebug presents identify obvious problems that you should fix immediately.
Some of these problems include leaks, buffer overruns, and references to freed memory. Other problems are
more subjective in nature and require you to make a determination as to whether there is a problem.

To improve your program’s overall allocation behavior, use MallocDebug’s detailed accounting of memory
usage to explore the memory usage of your program. This can help you identify wasted memory allocations
or unexpected allocation patterns and thus optimize your program’s memory usage. As you analyze your
memory allocations, consider the following items:

 ■ Don’t ignore small buffers. A small leaked buffer might itself contain references to larger buffers, which
then also become leaks. (The leaks tool is better at reporting leaks of this nature.)

 ■ Look at allocation patterns during specific intervals of typical program use, especially where you suspect
memory usage might be a problem.

 ■ The inverted display mode for the call stack browser can sometimes yield results faster because it shows
which routines are actually calling malloc. The normal display mode is better for seeing memory
allocations in particular modules of your code.

 ■ Keep track of important statistics, such as private memory usage and total allocated memory, so you
can compare them against previous measurements.

Limitations of MallocDebug

The following section describes some of the issues you may run into when running MallocDebug.

Allocated Memory Reporting

MallocDebug shows the current amount of allocated memory at a given point in a program’s execution; it
does not show the total amount of memory allocated by the program during its entire span of execution.
Memory that has been freed is not shown.

To see memory that your program has allocated and freed, use the malloc_history tool. See “Tracking
Memory Allocations With malloc_history” (page 29) for more information.

Debugging Allocations With MallocDebug 27
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

Crashing Under MallocDebug

If a program crashes under MallocDebug, a diagnostic message is printed to the console that explains why
the program crashed. Listing 1 (page 28) gives an example of MallocDebug’s crash diagnostic message.

Listing 1 Diagnostic output from crashing under MallocDebug

MallocDebug: Target application attempted to read address 0x55555555, which can’t be
read.
MallocDebug: MallocDebug trashes freed memory with the value 0x55,
MallocDebug: strongly suggesting the application or a library is referencing
MallocDebug: memory it already freed.
MallocDebug: MallocDebug can’t do anything about this, so the app’s just going to have
 to be terminated.
MallocDebug: libMallocDebug cannot help the application recover from this error,
MallocDebug: so we’ll just have to shut down the application.
MallocDebug: ***
MallocDebug: THIS IS A BUG IN THE PROGRAM BEING RUN UNDER MALLOC DEBUG,
MallocDebug: NOT A BUG IN MALLOC DEBUG!
MallocDebug: ***

Usually a crash results from subtle memory problems, such as referencing freed memory or dereferencing
pointers found outside an allocated buffer. Check suspected buffers of memory with the memory-buffer
inspector (see “Analyzing Raw Memory” (page 26)). If your program is referencing memory at 0x55555555,
then it is referencing freed memory.

Important: You should always investigate and fix bugs that cause your program to crash. Subtle problems
may indicate a design flaw that could cost more time to fix later.

Programs Calling setuid or setgid

For security reasons, the operating system does not allow programs running setuid (set the user id at
execution) or setgid (set the group id at execution) to load new libraries, such as the heap debugging library
used by MallocDebug. As a result, MallocDebug cannot display information about these programs unless
they are run by the target user or by a member of the target group.

If you want to examine a setuid or setgid program with MallocDebug, you have two options:

 ■ Use MallocDebug on a copy of the program without the setuid or setgid permissions set. This approach
may not work if the permissions are needed to access files normally not accessible by you.

 ■ Run MallocDebug while logged in as the user who owns the file, or use the su tool to log in as another
user. Note that you must run your program by calling the executable file directly in the latter case since
the open tool runs the program as if it was launched by the user who logged in.

Running Under libMallocDebug

If you’re writing a simple program that runs from the command-line, you may need to statically link the
malloc routines into your executable before MallocDebug can attach to your program. Most programs link
to the System framework, which is instrumented for use by MallocDebug. If your program does not use this
framework, you can explicitly link your program with the /usr/lib/libMallocDebug.a library. (If you are

28 Debugging Allocations With MallocDebug
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

running in Mac OS X 10.3.9 or later, you can also execute the command set env DYLD_INSERT_LIBRARIES
/usr/lib/libMallocDebug.A.dylib from Terminal to attach your program to libMallocDebug .) You
should not notice any difference in your program’s allocation behavior when linking with this library.

If you do link your application to libMallocDebug , you should be aware of the following caveats:

 ■ If your code runs in versions of Mac OS X prior to 10.4, you must need to set the
DYLD_FORCE_FLAT_NAMESPACE environment variable to force the linker to use the malloc routines in
libMallocDebug. If you are running in Mac OS X v10.4 or later, you do not need to set this variable.

 ■ When running your program in Mac OS X v10.4 or later under gdb with libMallocDebug installed, your
program automatically drops into the debugger when libMallocDebug detects that memory has been
corrupted by a malloc or free call. To continue running your program, execute the command " set
$PC+=4 " in gdb then continue.

 ■ If your program runs on a version of Mac OS X prior to version 10.3.9, you may need to execute the
command " set start-with-shell 0 " in gdb to debug your program with libMallocDebug . .

 ■ In Mac OS X v10.4 and later, child processes created by a fork and exec now properly inherit the
DYLD_INSERT_LIBRARIES environment variable setting. Thus, if the parent is running under
libMallocDebug , so will the child.

Setting Environment Variables

MallocDebug does not contain any built-in mechanism for setting environment variables. You can work
around this limitation by setting your environment variables from Terminal and then launching MallocDebug
from there. When launched in this manner, your application inherits the Terminal environment, including
any environment variables.

Do not launch MallocDebug from Terminal using the open command. Instead, run the MallocDebug executable
directly. The executable is located in the MallocDebug.app application bundle, usually in the
MallocDebug.app/Contents/MacOS directory.

Tracking Memory Allocations With malloc_history

The malloc_history tool displays backtrace data showing exactly where your program made calls to the
malloc and free functions. If you specify an address when calling malloc_history, the tool tracks memory
allocations occurring at that address only. If you specify the -all_by_size or -all_by_count options, the
tool displays all allocations, grouping frequent allocations together.

Before using the malloc_history tool on your program, you must first enable the malloc library logging
features by setting the MallocStackLogging to 1. You may also want to set the
MallocStackLoggingNoCompact environment variable to retain information about freed blocks. For more
information on these variables, see “Enabling the Malloc Debugging Features” (page 39).

The malloc_history tool is best used in situations where you need to find the previous owner of a block
of memory. If you determine that a particular data is somehow becoming corrupted, you can put checks into
your code to print the address of the block when the corruption occurs. You can then use malloc_history
to find out who owns the block and identify any stale pointers.

Tracking Memory Allocations With malloc_history 29
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

The malloc_history tool is also suited for situations where Sampler or MallocDebug cannot be used. For
example, you might use this tool from a remote computer or in situations where you want a minimal impact
on the behavior of your program.

For more information on using malloc_history, see the man pages.

Observing Allocations With ObjectAlloc

ObjectAlloc allows you to observe memory allocation activity in an application. It shows you the allocations
in terms of the number of objects created, rather than where the allocations occurred. Its real-time histograms
allow you to directly perceive changes and trends in object counts. It also retains a history of allocations and
deallocations, allowing you to identify overall allocation trends.

The information displayed by ObjectAlloc is recorded by an allocation statistics facility built into the Core
Foundation framework. When this facility is active, every allocation and deallocation is recorded as it happens.
For Objective-C objects, copy, retain, release, and autorelease are recorded.

Using ObjectAlloc

When you first launch ObjectAlloc, it asks you to choose the application you want to inspect. After selecting
the application, ObjectAlloc displays the main window so that you can launch the application and start
gathering data. The main window contains several buttons for controlling the launch and execution of the
application, as well as for setting mark points from which to examine data. Figure 5 (page 31) shows the
ObjectAlloc main window.

30 Observing Allocations With ObjectAlloc
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

Figure 5 ObjectAlloc window

Pause/Continue
Step Backward Step Forward

Mark
Start/Stop

When you click the Start button, ObjectAlloc launches the application and starts displaying object allocation
data as it occurs. You can use the buttons along the top of the window to control the gathering and display
of collection data. If you want to view past allocations, you must pause or stop the data gathering process
before using the controls to step forward or backward through the allocation history. You can use the slider
control just under the buttons to watch changes in allocation counts over time.

The Mark button sets a starting point from which to watch allocations. This starting point is a convenience
that lets you view allocations over a more recent period of time. Use the “Show since mark” checkbox to
toggle between displaying events that occurred since the mark was set and displaying events that occurred
since the application was launched.

Note: Due to the sheer quantity of information being processed, updating the ObjectAlloc main window
can slow the system down noticeably. Uncheck the “Live update” checkbox to update the display only when
the ObjectAlloc window is activated or deactivated.

Browsing Global Allocations

The Global Allocations tab contains a table with a listing of all memory blocks ever allocated in the application.
The Category column shows the type of the memory block—either an Objective-C class name or a Core
Foundation object name. If ObjectAlloc cannot deduce type information for the block, it uses “GeneralBlock-”
followed by the size of the block (in bytes).The Current column shows the number of blocks of each type

Observing Allocations With ObjectAlloc 31
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

allocated but not (yet) released. The Peak column shows the largest number of blocks of each type that
existed at any given time. The Total column shows the total number of blocks of each type that have been
allocated, including blocks that have since been released.

The histogram bars to the right of the Total column are graphical representations of the three columns: the
dark portion of the bar indicates the Current value, the middle portion of the bar is the additional number
under Peak, and the complete length of the bar indicates the value under Total. The Scale slider controls the
number of objects represented by each pixel in a bar (the actual number is shown to the right of the bar).

The “Counts are bytes” checkbox changes the numbers in the Current, Peak, and Total columns to reflect the
number of bytes allocated (per object type) instead of the number of objects allocated (per object type).

Browsing Object Instances

The Instance Browser tab lists each type of block. Clicking a block type displays a list of all instances of that
block. Clicking the address of a block instance displays a list of all allocation events pertaining to that block,
including allocation, retain, release, autorelease, and free events. If the block has not yet been freed, the
contents of the block are displayed in the bottom pane of the ObjectAlloc window. Clicking an event brings
up a textual description of the event, including a function call stack.

Browsing Call Stacks

The Call Stacks tab displays a table of each block type along with the number of instances (Count) and the
number of bytes allocated to those instances (Size). The furthest-right column of this table contains the first
item of a hierarchical function call tree. Clicking the disclosure triangle displays the next level of the function
call stack. When the function call stack is open, it displays the location of each allocation.

The Descend Unique Path button discloses the selected function call stack to the deepest function shared
by each instance’s function call stack. The Descend Max Path button discloses the selected function call stack
to the deepest function in the stack.

Interpreting ObjectAlloc Data

Here are some general guidelines for interpreting the data reported by ObjectAlloc:

 ■ Does the number of instantiated objects match your expectations? If not, you might be creating more
temporary objects than anticipated.

 ■ Examine the relationships between different objects. If you allocate one custom object, did you expect
to see several other objects created along with it?

 ■ Examine the colored bars in the allocation graph. Large differences between the peak and current
allocations (or between the total and current allocations) indicate a surge in allocations. This could reflect
a large number of autoreleased objects needing to be released earlier from a loop.

32 Observing Allocations With ObjectAlloc
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

Examining Heaps With the heap Tool

The heap tool displays a snapshot of the memory allocated by the malloc library and located in the address
space of a specified process. For Cocoa applications, this tool identifies Objective-C objects by name; For
both memory blocks and objects, the tool organizes the information by heap, showing all items in the same
heap together.

The heap tool provides much of the same information as the ObjectAlloc application, but does so in a much
less intrusive manner. You can use this tool from a remote session or in situations where the use of ObjectAlloc
might slow the system down enough to affect the resulting output.

Examining Heaps With the heap Tool 33
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

34 Examining Heaps With the heap Tool
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Examining Memory Allocation Patterns

Memory leaks are blocks of allocated memory that the program no longer references. Memory leaks are bugs
and should always be fixed. Leaks waste space by filling up pages of memory with inaccessible data and
waste time due to extra paging activity. Leaked memory eventually forces the system to allocate additional
virtual memory pages for the application, the allocation of which could have been avoided by reclaiming
the leaked memory.

The malloc library can only reclaim the memory you tell it to reclaim. If you call malloc or any routine that
allocates memory, you must balance that call with a corresponding free. A typical memory leak occurs when
a developer forgets to deallocate memory for a pointer embedded in a data structure. If you allocate memory
for embedded pointers in your code, make sure you release the memory for that pointer prior to deallocating
the data structure itself.

Another typical memory leak example occurs when a developer allocates memory, assigns it to a pointer,
and then assigns a different value to the pointer without freeing the first block of memory. In this example,
overwriting the address in the pointer erases the reference to the original block of memory, making it
impossible to release.

Apple provides the MallocDebug application and leaks command-line tool for automatically tracking down
memory leaks. You can also track down leaks manually using other analysis tools, but that task falls under
the category of finding memory problems in general and is covered in “Examining Memory Allocation
Patterns” (page 23). The following sections describe the MallocDebug and leaks tools and show you how
to use them to track down memory leaks.

Finding Leaks With MallocDebug

The MallocDebug application is a graphical tool for diagnosing all types of memory problems. MallocDebug
includes a memory-leak analysis tool that you can use to identify leaks in your program. The interface for
MallocDebug displays potential leaks using a call-graph structure so that you can easily locate the function
that generated the leak.

Performing a Global Leak Analysis

MallocDebug uses a conservative garbage-collection algorithm for detecting leaks. This algorithm searches
the program’s memory for pointers to each malloc-allocated block. Any block that is not referenced at all by
the program is marked as a leak.

To initiate a leak search in MallocDebug, do the following:

1. Launch MallocDebug.

2. Open a new window and select the executable you want to examine.

Finding Leaks With MallocDebug 35
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Finding Memory Leaks

3. Click the Launch button.

4. Exercise the application features to build its memory profile.

5. In MallocDebug, select “Leaks” from the analysis popup menu to display the memory leaks in your
application.

6. Use the call-graph data in the browser to find where the memory was allocated.

Figure 1 shows the MallocDebug main window with the Leaks option selected for viewing. When you select
any of the leak-related options from this popup menu, MallocDebug initiates its leak-detection analysis. It
then displays the results of the analysis in the browser window. Each entry in the browser includes the amount
of memory leaked from that function.

Figure 1 MallocDebug main window

The leak analysis performed by MallocDebug identifies all memory that has been leaked since the application
was launched. “Finding Leaks for Specific Features” (page 36) describes a way you can use MallocDebug to
isolate memory leaks in your application.

Finding Leaks for Specific Features

The leak analysis tools in MallocDebug perform a global search for leaks in your program. However, there
are other types of leaks that MallocDebug cannot identify. These are leaks caused by your code allocating a
block and then not freeing it. You must identify these leaks yourself using the MallocDebug sampling features.
To find these leaks, do the following:

1. In the MallocDebug window, select "Allocations from mark" from the analysis popup button.

2. Click the Mark button.

36 Finding Leaks With MallocDebug
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Finding Memory Leaks

3. Exercise the target feature of your application.

4. In MallocDebug, click the Update button to display the memory allocated since the Mark button was
clicked.

5. Look for any newly-allocated buffers. These may be buffers your code forgot to free after it was done
with them.

Using the leaks Tool

The leaks command-line tool searches the virtual memory space of a process for buffers allocated by malloc
but no longer referenced. For each leaked buffer it finds, leaks displays the following information:

 ■ the address of the leaked memory

 ■ the size of the leak (in bytes)

 ■ the contents of the leaked buffer

If leaks can determine that the object is an instance of an Objective-C or Core Foundation object, it also
displays the name of the object. If you do not want to view the contents of each leaked buffer, you can specify
the -nocontext option when calling leaks. If the MallocStackLogging environment variable is set and
you are running your application in gdb, leaks displays a stack trace describing where the buffer was
allocated. For more information on malloc debugging options, see “Enabling the Malloc Debugging
Features” (page 39).

The leaks tool has some advantages over MallocDebug when it comes to detecting leaks in complex data
structures. For example, the leaks tool correctly handles leaks in circularly linked structures. It can also
identify leaks in groups of connected nodes. MallocDebug may not correctly identify leaks in these types of
structures.

Note: The leaks command-line tool is located in /usr/bin.

Finding Leaked Autoreleased Objects

If a Cocoa object is autoreleased without an autorelease pool in place, Xcode sends an a message to the
console warning you that the object is just leaking. Even if you are not writing a Cocoa application, it is
possible to see this same type of console warning. The implementation of many Cocoa classes is based on
Core Foundation types. If your application uses Core Foundation, it is possible that the leaks are occurring
as a result of calls to that framework.

To find memory leaks of this type, use the debugger to put a breakpoint on the _NSAutoreleaseNoPool
function. This function is declared in NSDebug.h in the Foundation framework. When the debugger reaches
that function, you should be able to look at the stack crawl and see what piece of code caused the leak.

Using the leaks Tool 37
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Finding Memory Leaks

Tips for Improving Leak Detection

The following guidelines can help you find memory leaks quickly in your program. Most of these guidelines
are intended to be used with the leaks tool but some are also applicable for use with MallocDebug.

 ■ Run leaks during unit testing. Because unit testing exercises all code paths in a repeatable manner,
you are more likely to find leaks than you would be if you were testing your code in a production
environment.

 ■ Enable the MallocScribble and MallocPreScribble environment variables before running your
leak tests. For more information, see “Enabling the Malloc Debugging Features” (page 39).

 ■ Use the -exclude option of leaks to filter out leaks in functions with known memory leaks. This option
helps reduce the amount of extraneous information reported by leaks.

 ■ If leaks reports a leak intermittently, set up a loop around the target code path and run the code
hundreds or thousands of times. This increases the likelihood of the leak reappearing more regularly.

 ■ Run your program against libgmalloc.dylib in gdb. This library is an aggressive debugging malloc
library that can help track down insidious bugs in your code. For more information, see the libgmalloc
man page.

 ■ For Cocoa applications, if you fix a leak and your program starts crashing, your code is probably trying
to use an already-freed object or memory buffer. Set the NSZombieEnabled environment variable to 1
to find messages to already freed objects.

Most unit testing code executes the desired code paths and exits. Although this is perfectly normal for unit
testing, it creates a problem for the leaks tool, which needs time to analyze the process memory space. To
fix this problem, you should make sure your unit-testing code does not exit immediately upon completing
its tests. You can do this by putting the process to sleep indefinitely instead of exiting normally.

38 Tips for Improving Leak Detection
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Finding Memory Leaks

The malloc library provides debugging features to help you track down memory smashing bugs, heap
corruption, references to freed memory, and buffer overruns. You enable these debugging options through
a set of environment variables. With the exception of MallocCheckHeapStart and MallocCheckHeapEach,
the value for most of these environment variables is ignored. To disable a variable from Terminal, use the
unsetenv command. Table 1 lists some of the key environment variables and describes their basic function.
For a complete list of variables, see the malloc man page.

Table 1 Malloc environment variables

DescriptionVariable

If set, malloc remembers the function call stack at the time of each
allocation.

MallocStackLogging

This option is similar to MallocStackLogging but makes sure that all
allocations are logged, no matter how small or how short lived the buffer
may be.

MallocStackLogging-
NoCompact

If set, free sets each byte of every released block to the value 0x55.MallocScribble

If set, malloc sets each byte of a newly allocated block to the value 0xAA.
This increases the likelihood that a program making assumptions about
freshly allocated memory fails.

MallocPreScribble

If set, malloc adds guard pages before and after large allocations.MallocGuardEdges

Fine-grain control over the behavior of MallocGuardEdges: If set,
malloc does not place a guard page at the head of each large block
allocation.

MallocDoNotProtectPrelude

Fine-grain control over the behavior of MallocGuardEdges: If set,
malloc does not place a guard page at the tail of each large block
allocation.

MallocDoNotProtect-
Postlude

Set this variable to the number of allocations before malloc will begin
validating the heap. If not set, malloc does not validate the heap.

MallocCheckHeapStart

Set this variable to the number of allocations before malloc should
validate the heap. If not set, malloc does not validate the heap.

MallocCheckHeapEach

The following example enables stack logging and heap checking before running an application. The value
for MallocCheckHeapStart is set to 1 but is irrelevant and can be set to any value you want. You could
also set these variables from you shell’s startup file.

% setenv MallocStackLogging 1
% setenv MallocCheckHeapStart 1000

39
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Enabling the Malloc Debugging Features

% setenv MallocCheckHeapEach 100
% ./my_tool

If you want to run your program in gdb, you can set environment variables from the Xcode debugging console
using the command set env, as shown in the following example:

% gdb
(gdb) set env MallocStackLogging 1
(gdb) run

Some of the performance tools require these options to be set in order to gather their data. For example,
the malloc_history tool can identify the allocation site of specific blocks if the MallocStackLogging
flag is set. This tool can also describe the blocks previously allocated at an address if the
MallocStackLoggingNoCompact environment variable is set. The leaks command line tool will name
the allocation site of a leaked buffer if MallocStackLogging is set. See the man pages for leaks and
malloc_history for more details.

Detecting Double Freed Memory

The malloc library reports attempts to call free on a buffer that has already been freed. If you have set the
MallocStackLoggingNoCompact option set, you can use the logged stack information to find out where
in your code the second free call was made. You can then use this information to set up an appropriate
breakpoint in the debugger and track down the problem.

The malloc library reports information to stderr.

Detecting Heap Corruption

To enable heap checking, assign values to the MallocCheckHeapStart and MallocCheckHeapEach
environment variables. You must set both of these variables to enable heap checking. The
MallocCheckHeapStart variable tells the malloc library how many malloc calls to process before initiating
the first heap check. Set the second to the number of malloc calls to process between heap checks.

The MallocCheckHeapStart variable is useful when the heap corruption occurs at a predictable time. Once
it hits the appropriate start point, the malloc library starts logging allocation messages to the Terminal
window. You can watch the number of allocations and use that information to determine approximately
where the heap is being corrupted. Adjust the values for MallocCheckHeapStart and
MallocCheckHeapEach as necessary to narrow down the actual point of corruption.

Detecting Memory Smashing Bugs

To find memory smashing bugs, enable the MallocScribble variable. This variable writes invalid data to
freed memory blocks, the execution of which causes an exception to occur. When using this variable, you
should also set the MallocStackLogging and MallocStackLoggingNoCompact variables to log the

40 Detecting Double Freed Memory
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Enabling the Malloc Debugging Features

location of the exception. When the exception occurs, you can then use the malloc_history command to
track down the code that allocated the memory block. You can then use this information to track through
your code and look for any lingering pointers to this block.

Detecting Memory Smashing Bugs 41
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Enabling the Malloc Debugging Features

42 Detecting Memory Smashing Bugs
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Enabling the Malloc Debugging Features

Mac OS X provides the top, vm_stat, and vmmap command-line utilities for viewing statistics about virtual
memory usage. The information returned by these tools ranges from summary information about all the
system processes to detailed information about a specific process.

For information on how to use the top tool, please see PerformanceOverview in Performance Documentation.
The sections that follow provide information on using vmmap and vm_stat.

Viewing Virtual Memory Statistics

The vm_stat tool displays high-level statistics about the current virtual memory usage of the system. By
default, vm_stat displays these statistics once, but you can specify an interval value (in seconds) to update
these statistics continuously. For information on the usage of this tool, see the man pages.

Listing 1 shows an example of the output from vm_stat.

Listing 1 Output of vm_stat tool

Mach Virtual Memory Statistics: (page size of 4096 bytes)
Pages free: 3194.
Pages active: 34594.
Pages inactive: 17870.
Pages wired down: 9878.
"Translation faults": 6333197.
Pages copy-on-write: 81385.
Pages zero filled: 3180051.
Pages reactivated: 343961.
Pageins: 33043.
Pageouts: 78496.
Object cache: 66227 hits of 96952 lookups (68% hit rate)

Viewing Mach-O Code Pages

The pagestufftool displays information about the specified logical pages of a file conforming to the Mach-O
executable format. For each specified page of code, symbols (function and static data structure names) are
displayed. All pages in the __TEXT, __text section are displayed if no page numbers are given.

Listing 2 shows part of the output from pagestuff for the TextEdit application. This output is the result of
running the tool with the -a option, which prints information about all of the executable’s code pages. It
includes the virtual address locations of each page and the type of information on that page.

Viewing Virtual Memory Statistics 43
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

Listing 2 Partial output of pagestuff tool

File Page 0 contains Mach-O headers
File Page 1 contains Mach-O headers
File Page 2 contains contents of section (__TEXT,__text)
Symbols on file page 2 virtual address 0x3a08 to 0x4000
File Page 3 contains contents of section (__TEXT,__text)
Symbols on file page 3 virtual address 0x4000 to 0x5000
File Page 4 contains contents of section (__TEXT,__text)
Symbols on file page 4 virtual address 0x5000 to 0x6000

...

File Page 22 contains contents of section (__TEXT,__cstring)
File Page 22 contains contents of section (__TEXT,__literal4)
File Page 22 contains contents of section (__TEXT,__literal8)
File Page 22 contains contents of section (__TEXT,__const)
Symbols on file page 22 virtual address 0x17000 to 0x17ffc
File Page 23 contains contents of section (__DATA,__data)
File Page 23 contains contents of section (__DATA,__la_symbol_ptr)
File Page 23 contains contents of section (__DATA,__nl_symbol_ptr)
File Page 23 contains contents of section (__DATA,__dyld)
File Page 23 contains contents of section (__DATA,__cfstring)
File Page 23 contains contents of section (__DATA,__bss)
File Page 23 contains contents of section (__DATA,__common)
Symbols on file page 23 virtual address 0x18000 to 0x18d48
 0x00018000 _NXArgc
 0x00018004 _NXArgv
 0x00018008 _environ
 0x0001800c ___progname
...

In the preceding listing, if a page exports any symbols, those symbols are also displayed by the -a option.
If you want to view the symbols for a single page, pass in the desired page number instead of the -a option.

Viewing Virtual Memory Regions

The vmmap tool displays the virtual memory regions allocated for a specified process. This tool can help a
programmer understand the purpose of memory at a given address and how that memory is being used.
For each virtual-memory region, vmmap displays the type of page, the starting address, region size (in kilobytes),
read/write permissions, sharing mode, and the purpose of the pages in that region.

Sample Output From vmmap

Listing 3 (page 44) shows some sample output from the vmmap tool. This example is not a full listing of the
tool’s output but is an abbreviated version showing the primary sections.

Listing 3 Typical output of vmmap

==== Non-writable regions for process 313
__PAGEZERO 0 [4K] ---/--- SM=NUL ...ts/MacOS/Clock
__TEXT 1000 [40K] r-x/rwx SM=COW ...ts/MacOS/Clock

44 Viewing Virtual Memory Regions
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

__LINKEDIT e000 [4K] r--/rwx SM=COW ...ts/w/Clock
 90000 [4K] r--/r-- SM=SHM
 340000 [3228K] r--/rwx SM=COW 00000100 00320...
 789000 [3228K] r--/rwx SM=COW 00000100 00320...
Submap 90000000-9fffffff r--/r-- machine-wide submap
__TEXT 90000000 [932K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib
__LINKEDIT 900e9000 [260K] r--/r-- SM=COW /usr/lib/libSystem.B.dylib
__TEXT 90130000 [740K] r-x/r-x SM=COW .../Versions/A/CoreFoundation
__LINKEDIT 901e9000 [188K] r--/r-- SM=COW .../Versions/A/CoreFoundation
__TEXT 90220000 [2144K] r-x/r-x SM=COW .../Versions/A/CarbonCore
__LINKEDIT 90438000 [296K] r--/r-- SM=COW .../Versions/A/CarbonCore

[...data omitted...]

==== Writable regions for process 606
__DATA 18000 [4K] rw-/rwx SM=PRV /Contents/MacOS/TextEdit
__OBJC 19000 [8K] rw-/rwx SM=COW /Contents/MacOS/TextEdit
MALLOC_OTHER 1d000 [256K] rw-/rwx SM=PRV
MALLOC_USED(DefaultMallocZone_0x5d2c0) 5d000 [256K] rw-/rwx SM=PRV
 9d000 [372K] rw-/rwx SM=COW 33320000 00000020 00000000 00001b84...
VALLOC_USED(DefaultMallocZone_0x5d2c0) ff000 [36K] rw-/rwx SM=PRV
MALLOC_USED(CoreGraphicsDefaultZone_0x10 108000 [256K] rw-/rwx SM=PRV
MALLOC_USED(CoreGraphicsRegionZone_0x148 148000 [256K] rw-/rwx SM=PRV

[...data omitted...]

Submap a000b000-a012ffff r--/r-- process-only submap
__DATA a0130000 [28K] rw-/rw- SM=COW .../Versions/A/CoreFoundation
Submap a0137000-a021ffff r--/r-- process-only submap
__DATA a0220000 [20K] rw-/rw- SM=COW .../Versions/A/CarbonCore
Submap a0225000-a048ffff r--/r-- process-only submap
__DATA a0490000 [12K] rw-/rw- SM=COW .../IOKit.framework/Versions/A/IOKit
Submap a0493000-a050ffff r--/r-- process-only submap
__DATA a0510000 [36K] rw-/rw- SM=COW .../Versions/A/OSServices
 b959e000 [4K] rw-/rw- SM=SHM
 b95a0000 [4K] rw-/rw- SM=SHM
 b9630000 [164K] rw-/rw- SM=SHM
 b965a000 [896K] rw-/rw- SM=SHM
 bff80000 [504K] rw-/rwx SM=ZER
STACK[0] bfffe000 [4K] rw-/rwx SM=PRV
 bffff000 [4K] rw-/rwx SM=PRV
__DATA c000c000 [4K] rw-/rwx SM=PRV .../Versions/A/ApplicationEnhancer
STACK[1] f0001000 [512K] rw-/rwx SM=PRV
 ff002000 [12272K] rw-/rw- SM=SHM

==== Legend
SM=sharing mode:
 COW=copy_on_write PRV=private NUL=empty ALI=aliased
 SHM=shared ZER=zero_filled S/A=shared_alias

==== Summary for process 313
ReadOnly portion of Libraries: Total=27420KB resident=12416KB(45%)
swapped_out_or_unallocated=15004KB(55%)
Writable regions: Total=21632KB written=536KB(2%) resident=1916KB(9%) swapped_out=0KB(0%)
 unallocated=19716KB(91%)

Viewing Virtual Memory Regions 45
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

If you specify the -d parameter (plus an interval in seconds), vmmap takes two snapshots of virtual-memory
usage—one at the beginning of a specified interval and the other at the end—and displays the differences.
It shows three sets of differences:

 ■ individual differences

 ■ regions in the first snapshot that are not in the second

 ■ regions in the second snapshot that are not in the first

Interpreting vmmap’s Output

The columns of vmmap output have no headings. Instead you can interpret the type of data in each column
by its format. Table 1 (page 46) describes these columns.

Table 1 Column descriptions for vmmap

DescriptionExampleColumn
Number

The purpose of the memory. This column can contain the name
of a Mach-O segment or the memory allocation technique.

__TEXT, __LINKEDIT,
MALLOC_USED, STACK, and
so on

1

If present, the zone used for allocation.(DefaultMallocZone_-
0x5d2c0)

2

The virtual memory address of the region.4eee0003

The size of the region, measured in kilobytes[124K]4

Read, write and execution permissions for the region. The first set
of flags specifies the current protection for the region. The second
set of values specifies the maximum protection for the region. If
an entry contains a dash (-), the process does not have the target
permission.

rw-/rwx5

Sharing mode for the region, either COW (copy-on-write), PRV
(private), NUL (empty), ALI (aliased), or SHM (shared).

SM=PRV6

The end of the pathname identifying the executable mapped into
this region of virtual memory. If the region is stack or heap
memory, nothing is displayed in this column.

...ts/MacOS/Clock7

Column 1 identifies the purpose of the memory. A __TEXT segment contains read-only code and data. A
__DATA segment contains data that may be both readable and writable. For allocated data, this column
shows how the memory was allocated, such as on the stack, using malloc, and so on. For regions loaded
from a library, the far right column shows the name of the library loaded into memory.

46 Viewing Virtual Memory Regions
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

The size of the virtual memory region (column 4) represents the total size reserved for that region. This
number may not reflect the actual number of memory pages allocated for the region. For example, calling
vm_allocate reserves a set of memory pages but does not allocate any physical memory until the pages
are actually touched. Similarly, a memory-mapped file may reserve a set of pages, but the system does not
load pages until a read or write event occurs on the file.

The protection mode (column 5) describes the access restrictions for the memory region. A memory region
contains separate flags for read, write, and execution permissions. Each virtual memory region has a current
permission, and a maximum permission. In the output from vmmap, the current permission appears first
followed by the maximum permission. Thus, if the permissions are “r--/rwx“ the page is currently read-only
but allows read, write, and execution access as its maximum allowed permissions. Typically, the current
permissions do not permit writing to a region. However, these permissions may change under certain
circumstances. For example, a debugger may request write access to a page in order to set a breakpoint.

Note: Pages representing part of a Mach-O executable are usually not writable. The first page (__PAGEZERO,
starting at address 0x00000000) has no permissions set. This ensures that any reference to a NULL pointer
immediately causes an error. The page just before the stack is similarly protected so that stack overflows
cause the application to crash immediately.

The sharing mode (SM= field) tells you whether pages are shared between processes and what happens when
pages are modified. Private pages (PRV) are visible only to the process and are allocated as they are used.
Private pages can also be paged out to disk. Copy-on-write (COW) pages are shared by multiple processes (or
shared by a single process in multiple locations). When the page is modified, the writing process then receives
its own copy of the page. Empty (NUL) sharing implies that the page does not really exist in physical memory.
Aliased (ALI) and shared (SHM) memory are shared between processes.

The sharing mode typically describes the general mode controlling the region. For example, as copy-on-write
pages are modified, they become private to the application. However, the region containing those private
pages is still copy-on-write until all pages become private. Once all pages are private, the sharing mode
changes to private.

Some lines in the output of vmmap describe submaps. A submap is a shared set of virtual memory page
descriptions that the operating system can reuse between multiple processes. For example, the memory
between0x90000000 and0xAFFFFFFF is a submap containing the most common dynamic libraries. Submaps
minimize the operating system’s memory usage by representing the virtual memory regions only once.
Submaps can either be shared by all processes (machine-wide) or be local to the process (process-only). If
the contents of a machine-wide submap are changed—for example, the debugger makes a section of memory
for a dynamic library writable so it can insert debugging traps—then the submap becomes local, and the
kernel allocates memory to store the extra copy.

Viewing Virtual Memory Regions 47
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

48 Viewing Virtual Memory Regions
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Viewing Virtual Memory Usage

This table describes the changes to Memory Usage Performance Guidelines.

NotesDate

Clarified where to get the leaks tool.2006-06-28

Updated information related to using libMallocDebug and malloc zones.2005-07-07

Fixed some minor bugs. Added new sections on batch allocation of memory
and finding leaks of autoreleased objects.

2005-04-29

Added tips for detecting leaks more quickly.

Document title changed. Old title was Memory Performance.

Added Carbon-specific performance tips.2003-07-25

First revision of this programming topic. Some of the information appeared in
the document Inside Mac OS X: Performance.

2003-05-15

49
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

50
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

Symbols

_NSAutoreleaseNoPool function 37

A

accessors for static variables 18
active page lists 11
autoreleased objects 37

B

backing store, defined 9
batch allocations 16
bcopy function 21
BlockMoveData function 21
BlockMoveDataUncached function 21

C

call stack browser
in MallocDebug 25
in ObjectAlloc 32

calloc function 15, 18
copy-on-write 10

D

debugging memory problems 39–41
default pager 10
disk thrashing 10
DYLD_FORCE_FLAT_NAMESPACE environment variable

29

E

environment variables 29
executable launcher in MallocDebug 24

F

file mapping 10
free function 15
free page lists 11
function call stacks (ObjectAlloc) 32

H

handles, using 19
hard faults 12
heap tool 33
heaps. See malloc zones
HGetState function 20
HLock function 20
HSetState function 20
HUnlock function 20

I

inactive page lists 11

L

leaks tool 37
leaks, finding 35–38
libgmalloc.dylib 38
logical address space. See virtual address space

51
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Index

M

malloc debugging 38, 39
malloc function 11, 23
malloc heaps. See malloc zones
malloc zones 17, 18
MallocCheckHeapEach environment variable 39
MallocCheckHeapStart environment variable 39
MallocDebug 23–29

crashing in 28
environment variables 29
evaluating problem reports 27
finding leaks 35
limitations 27–29
windows in 24

MallocDoNotProtectPostlude environment variable
39

MallocDoNotProtectPrelude environment variable
39

MallocGuardEdges environment variable 39
MallocPreScribble environment variable 38, 39
MallocScribble environment variable 38, 39
MallocStackLogging environment variable 29, 39
MallocStackLoggingNoCompact environment variable

29, 39
malloc_history tool 27, 29
malloc_zone_batch_malloc function 16
map entries 11
memcpy function 20
memmove function 20
memory management unit (MMU) 9
memory objects. See VM objects
memory pools. See malloc zones
memory
See also virtual memory
access faults 12
accessors and 18
allocating 11, 15–17
allocation tips 17–20
batch allocations 16
blocks 18
copying 20–21
deallocating 19
debugging problems 39–41
deferring allocations 17
finding leaks 26, 35–37
freeing 19
inheriting 13
initializing 18
large allocation granularity 16
malloc zones 17
performance costs 17
shared 13

small allocation granularity 15
snapshots 26
thread safety and 18
wired 13

memset function 18
MMU (memory management unit) 9

N

NewHandle function 15
NewPtr function 15
NSZombieEnabled environment variable 38

O

ObjectAlloc 30–32
Objective-C objects 30
open tool 28

P

page alignment 10
page faults 9, 12
page lists 11
page size 10
page tables 9, 12
pages, defined 9
pagestuff tool 43
paging in 10, 12
paging out 10, 12
paging, defined 9
pmap structure 12
porting to Mac OS X 19

R

RAM, and virtual memory 9
realloc function 15, 19
resident memory 13

S

setgid 28
SetHandleSize function 20
setuid 28

52
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

shared memory 13
soft faults 12
sparse address spaces 10

T

tools
heap 33
leaks 37
MallocDebug 23, 29
malloc_history 29
ObjectAlloc 30, 32
pagestuff 43
vmmap 44, 47
vm_stat 43

U

unit testing 38

V

virtual address space
defined 9
size 10

virtual memory
accessing 12
debugging 43–47
overview 9–14
paging in 12
paging out 12

VM objects 10–11
vmmap tool 44–47
vm_allocate function 11
vm_copy function 11, 20
vm_stat tool 43
vnode pager 10
VRAM, copying data to 21

W

wired memory 13

Z

zones. See malloc zones

53
2006-06-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

	Memory Usage Performance Guidelines
	Contents
	Figures, Tables, and Listings
	Introduction
	Memory Management in Mac OS X
	Virtual Memory Theory
	Virtual Memory in Mac OS X
	Page Lists in the Kernel
	Allocating and Accessing Virtual Memory
	Paging Virtual Memory Out
	Paging Virtual Memory In
	Shared Memory
	Wired Memory

	Optimizing Your Memory Allocations
	Memory Allocation in Mac OS X
	Allocating Small Memory Blocks
	Allocating Large Memory Blocks
	Allocating Memory in Batches
	About Memory Zones

	Tips for Allocating Memory
	Deferring Memory Allocations
	Initializing Memory
	Using Multiple Malloc Zones
	Cache Temporary Buffers
	Release Your Memory
	Using Handles in Carbon

	Copying Memory
	Copying Memory Directly
	Delaying Memory Copy Operations
	Copying Small Amounts of Data
	Copying Data to Video RAM

	Examining Memory Allocation Patterns
	Debugging Allocations With MallocDebug
	Using MallocDebug
	The Call Stack Browser
	Taking a Snapshot of Memory Usage
	Analyzing Raw Memory

	Evaluating MallocDebug Problem Reports
	Limitations of MallocDebug
	Allocated Memory Reporting
	Crashing Under MallocDebug
	Programs Calling setuid or setgid
	Running Under libMallocDebug
	Setting Environment Variables

	Tracking Memory Allocations With malloc_history
	Observing Allocations With ObjectAlloc
	Using ObjectAlloc
	Browsing Global Allocations
	Browsing Object Instances
	Browsing Call Stacks

	Interpreting ObjectAlloc Data

	Examining Heaps With the heap Tool

	Finding Memory Leaks
	Finding Leaks With MallocDebug
	Performing a Global Leak Analysis
	Finding Leaks for Specific Features

	Using the leaks Tool
	Finding Leaked Autoreleased Objects
	Tips for Improving Leak Detection

	Enabling the Malloc Debugging Features
	Detecting Double Freed Memory
	Detecting Heap Corruption
	Detecting Memory Smashing Bugs

	Viewing Virtual Memory Usage
	Viewing Virtual Memory Statistics
	Viewing Mach-O Code Pages
	Viewing Virtual Memory Regions
	Sample Output From vmmap
	Interpreting vmmap’s Output

	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

