
Performance Overview
Performance

2006-10-03

Apple Inc.
© 2004, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, Objective-C, Quartz,
Velocity Engine, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Performance Overview 7

Who Should Read This Document 7
Organization of This Document 7
Filing Bug Reports 7
See Also 8

Chapter 1 Developing for Performance 9

What Is Performance? 9
The Efficient Use of Resources 9
The Perception of Speed 11

Tracking Performance 12
Establish Your Baseline Metrics 12
Measure Early, Measure Often 12
Analyze Your Results 13

Chapter 2 Basic Performance Tips 15

Common Areas to Monitor 15
Code for Your Program’s Key Tasks 15
Drawing Code 15
Launch Time Initialization Code 16
File Access Code 16
Application Footprint 16
Memory Allocation Code 17

Fundamental Optimization Tips 17
Use Event-Based Handlers 17
Thread Your Program 18
Use the Accelerate Framework 18
Be Lazy 19
Take Advantage of Perceived Performance 19
Use the Mach-O Binary Format 19

Chapter 3 Performance Tools 21

Installing the Apple Tools 21
Analysis Tools 21
Monitoring Tools 22
Hardware Analysis Tools 23
Additional Command-Line Tools 24

3
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 4 Doing an Initial Performance Evaluation 27

Using top 27
Using Quartz Debug 30
Using Spin Control 31
Using Shark 32

Document Revision History 35

Index 37

4
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 3 Performance Tools 21

Table 3-1 Analysis tools 22
Table 3-2 Monitoring tools 23
Table 3-3 CHUD tools 23
Table 3-4 Command-line tools 24

Chapter 4 Doing an Initial Performance Evaluation 27

Figure 4-1 Quartz Debug options 30
Figure 4-2 Spin Control main window 31
Figure 4-3 Spin Control sample window 32
Figure 4-4 Shark launch window 32
Figure 4-5 Shark profile window 33
Figure 4-6 Shark code display 34
Table 4-1 Output from top using the -w option 28
Table 4-2 Output from top using the -d option 29
Listing 4-1 Typical output of top 28

5
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Performance is an important design factor in all software products. If a program runs slowly or displays the
spinning cursor too frequently, users are likely to become frustrated with the program and look for alternatives.
Maintaining a reasonable level of performance requires some diligence on your part, but the earlier you start
considering it, the easier it is to catch and fix problems.

Who Should Read This Document

Performance Overview is an essential guide for developers who are new to the area of software performance
analysis. This document gives an overview of the factors that govern performance and offers an approach
for identifying and fixing common performance problems. It also introduces you to the specific tools and
documentation you can use to identify and fix performance problems.

Organization of This Document

This document has the following chapters:

 ■ “Developing for Performance” (page 9) describes the factors that constitute performance and the
approaches to achieving the best performance in your software.

 ■ “Basic Performance Tips” (page 15) describes the common areas of your code to analyze and offers some
fundamental performance techniques.

 ■ “Performance Tools” (page 21) describes the available tools for doing a performance analysis of your
program.

 ■ “Doing an Initial Performance Evaluation” (page 27) walks you through the basics of some key tools and
shows you how to use them to find performance problems.

Filing Bug Reports

If you encounter bugs in Apple software or documentation, you are encouraged to report them to Apple. In
addition to reporting bugs, you can also file enhancement requests to indicate features you would like to
see in future revisions of a product or document. To file bug reports or enhancement requests, go to the Bug
Reporting page of the Apple Developer Connection website, which is at the following URL:

http://developer.apple.com/bugreporter/

You must have a valid Apple Developer Connection login name and password to file bugs. You can obtain
a login name for free by following the instructions found on the Bug Reporting page.

Who Should Read This Document 7
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Performance Overview

http://developer.apple.com/bugreporter/

See Also

In addition to this document, there are several documents that cover more specific aspects of performance.
You should investigate these documents for detailed tips on how to analyze and solve performance problems.

 ■ CodeSize PerformanceGuidelines offers advice on how to improve the memory footprint of your program.

 ■ Code Speed Performance Guidelines offers advice on how to tune your algorithms and find performance
bottlenecks.

 ■ Drawing Performance Guidelines offers advice on how to optimize your program’s drawing-related code.

 ■ File-System Performance Guidelines offers advice on how to access files more efficiently.

 ■ Launch TimePerformanceGuidelines offers advice on how to speed up the launch time of your application.

 ■ Memory Usage Performance Guidelines offers advice on how to use memory more efficiently and on how
to analyze your current memory usage.

 ■ Threading Programming Guide provides detailed conceptual and task-based information about how to
use threads in your program.

 ■ 64-Bit Transition Guide discusses the performance impacts of 64-bit binaries and provides guidance on
when creating such binaries is appropriate.

8 See Also
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Performance Overview

Performance is an aspect of software design that is often overlooked until it becomes a serious problem. If
you wait until the end of your development cycle to do performance tuning, it may be too late to achieve
any significant improvements. Performance is something to include early in the design phase and continue
improving all throughout the development cycle.

Of course, in order to design for performance, it helps to understand what performance is. The sections in
this chapter provide background information about the factors that influence performance, how those factors
manifest themselves in Mac OS X, and how you can approach the monitoring of those factors.

What Is Performance?

The term “performance” may mean different things to different people. So before embarking on a quest to
improve the performance of your application, now is a good time to consider what this term means.

Many people equate performance with speed. Indeed, if a program performs a complex operation in one
second, you might think the program has good performance. Taken by itself, though, speed can be a
misleading measurement. In complex software systems, the speed of an operation is not a fixed value. If you
perform the same operation several times under different conditions, the time it takes to complete that
operation could vary widely. That is because the program is only one of many processes sharing resources
on the local system, and the use (or abuse) of those resources affects all other processes.

The following sections explain performance in terms of two different concepts: efficient resource usage and
user perception. Both of these concepts have an important impact on how you design and implement your
application, and understanding how to use both can lead to better overall performance.

The Efficient Use of Resources

A computer shares a limited number of resources among all the running processes. At the lowest level, these
resources break down to the following categories:

 ■ CPU time

 ■ Memory space

 ■ Mass storage space

All of your data resides either in memory or on some sort of mass storage device and must be operated on
by the CPU. An efficient application uses all of these resources carefully. The following sections provide more
detail about each type of resource and its effects on your programs.

What Is Performance? 9
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

CPU Time

CPU time is doled out by the system so you must make the best possible use of what time you have. Because
Mac OS X implements symmetric multiprocessing, each thread on the system is assigned a slice of time
(maximum of 10 milliseconds) in which to run. At the end of that time (or before in many cases) the system
takes back control of the CPU and gives it to a different thread.

On a typical Mac OS X system (with more than 100 concurrently running threads), if every thread used its
full allotment of time, performance would be terrible. This leads to one of the most important goals for
writing an application:

Goal:If your program has nothing to do, it should not consume CPU time.

The best way to accomplish this goal is to use an event-based model. Using modern event-handling systems,
such as the Carbon Event Manager, means your program’s threads are run only when there is work to be
done.

When your application does have work to do, it should use CPU time as effectively as it can. This means
choosing algorithms that are appropriate for the amount of data you expect to handle. It also means using
other system resources, such as an available vector unit (Velocity Engine or SSE) or the graphics processor,
to perform specialized operations, which leads to the following goal:

Goal:Move work out of the CPU whenever you can.

For basic information about how to use CPU time effectively, see “Fundamental Optimization Tips” (page
17). For tips specifically related to improving the speed of drawing operations, see “Drawing Code” (page
15).

Memory Space

Memory on modern computing hardware is typically composed of progressively slower (but larger) types of
memory. The fastest memory available to the CPU is the CPU’s own registers. The next fastest is the L1 cache,
followed by the L2 and L3 caches when they are available. The next fastest memory is the main memory.
The slowest memory of all consists of virtual memory pages that reside on disk and must be paged in before
they can be used.

In an ideal world, every application would be small enough to fit into the system’s fastest cache memory.
Unfortunately, most of an application’s code and data resides either in main memory or paged out to disk.
Therefore, it is important that the application’s code and data is organized in a way that minimizes the time
spent in these slower media, which leads to the following goal:

Goal:Reduce the memory footprint of your program.

Reducing the memory footprint of your program can significantly improve its performance. A small memory
footprint usually has two advantages. First, the smaller your program, the fewer memory pages it occupies.
Fewer memory pages, typically means less paging. Second, code is usually smaller as a result of being more
heavily optimized and better organized. Thus, fewer instructions are needed to perform a given task and all
of the code for that task is gathered on the same set of memory pages.

In addition to reducing your application’s memory footprint, you should also try to reduce the footprint of
writable memory pages in your application. Writable memory pages store global or allocated data for your
application. If a page fault occurs in a low-memory situation, the virtual memory system may need to reclaim
some of your application’s memory pages to make room for another process. If a page has not been modified,

10 What Is Performance?
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

the system can reclaim it and immediately overwrite it with new data. However, if the page has been modified,
the system must first write the modifications to disk. Writing data to disk adds a significant amount of time
to the processing time of a page fault.

For basic information about how to reduce the footprint of your program, see “Application Footprint” (page
16). For tips specifically related to using memory more efficiently, see “Memory Allocation Code” (page 17).

Mass Storage Space

File-system performance on any computer is important because nearly everything resides in a file somewhere.
Your applications, data, and even the operating system itself all reside in files that must be loaded into
memory from a device that is incredibly slow compared to other parts of the system. File systems, whether
they are local or network-based, are one of the biggest bottlenecks to performance. This leads to yet another
goal:

Goal:Eliminate unnecessary file operations and delay others until the information is actually needed.

Removing this bottleneck, by eliminating or delaying your file operations, is important to improving the
overall performance of your application. Tens of millions of CPU cycles can pass between the time you request
data from a file and the time your program actually sees that data. If your program accesses a large number
of files, it may wait many seconds before it receives all of the requested data.

Another important thing to remember in Mac OS X is that your application and any files it creates may be
on the network instead of on a local hard disk. Mac OS X makes the network as invisible as possible, so you
should never make any assumptions about the locality of files.

For basic information about how to improve the file-based performance of your program, see “File Access
Code” (page 16).

The Perception of Speed

Even if you tune your application for optimal performance, it’s entirely possible that your application still
appears slow to the user. The problem is unavoidable: if you have a lot of work to do, you need the CPU time
and resources to do that work. In this situation, you need to give your application the appearance of speed.
You can do that with the following goal:

Goal:Make your program responsive to the user.

Responsiveness is usually a more important factor to users than raw speed. As long as a program responds
to commands in a timely manner, the user is often willing to accept the fact that some tasks take longer to
perform. Thus, the perception of speed is achieved by letting the user continue to work while your program
processes data in the background. Threading your application is a good way to make it responsive to the
user. While your main thread responds to the user, worker threads perform calculations or handle other
time-consuming tasks.

Another common way to make your application appears fast is to improve its launch time. An application
that takes more than a few seconds to launch is probably doing too much. Not only is it unresponsive to the
user during that time but it may also be loading resources that are not needed right away or might not be
used at all, which is wasteful.

For information about how to improve launch times, see “Launch Time Initialization Code” (page 16). For
information about improving the perceived performance of your program, see “Take Advantage of Perceived
Performance” (page 19).

What Is Performance? 11
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

Tracking Performance

The only way to ensure high performance is to include performance goals in your product design and measure
your product against those goals throughout the development process. High performance is not a feature
that you can graft onto your code at the end of the development cycle; it is intimately tied to that cycle. As
code is written, it is important to know the impact it has on your program’s overall performance. If you detect
performance problems early, you have a good chance to fix them before it is too late.

The way to determine if you are meeting or exceeding a specific goal is to gather metrics. Apple provides
several tools for monitoring and analyzing the performance of a program. You can also build measurement
tools directly into your code to help automate the process of gathering data. Whichever approach you choose,
you need to exercise those tools regularly and analyze the results.

Establish Your Baseline Metrics

The first thing you need to do is decide on a set of baseline metrics you want to measure. Choose the tasks
you think are most important to your users and identify a set of constraints for performing those tasks. For
example, you might want a document to load in less than 1 second or cause no more than 100 kilobytes of
memory to be allocated.

The tasks you choose to measure should reflect the needs of your users. Your marketing department should
be able to help you choose a set of tasks that users will find relevant. If you have an established product, talk
to you users and find out what features they consider slow and consider adding those features to your list
of tasks.

Once you have a list of tasks you want to track, you need to determine the performance targets for each task.
For existing products, you might simply be trying to improve on the performance of the previous version.
You might also try to measure the performance of competing products and set goals that meet or exceed
their performance. If you have a new product, you might have to experiment with numbers to find reasonable
values. Alternatively, you might want to establish aggressive baseline values and try to come as close to them
as possible.

As with any performance measurement, consistency is important. Your process for establishing baseline
metrics should include information about the system on which you are gathering those metrics. Record the
hardware and software configuration of your system in some detail and always run your tests against the
same configuration. Try to use the slowest possible hardware configuration for establishing your baselines.
Measurements on a fast machine might lead you to believe that your software performs well, but many users
will be running computers with slower processors or less memory.

Measure Early, Measure Often

Performance data is not something you can gather once and hope to find all of the performance bottlenecks
in your program. It’s easier to find problems if you maintain a history of your program’s performance.
Maintaining a history makes it easy to see whether your application’s performance is improving or declining.
If it’s declining, you can take action to correct the problem before your product ships.

12 Tracking Performance
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

Another reason for measuring performance regularly is that you can correlate those results with code checkins.
If performance at a particular milestone declines, you can review the code checked in during that period and
try to find out why. Similarly, if performance improves, you can use the recent code checkins as a model for
good programming practices and encourage your team to use similar techniques.

You should start making performance measurements as soon as you have a partially functional program. As
new features are added, you can add measurements for those features. Incorporating a set of automated
diagnostic routines directly into your program makes it easier for the members of your team to see the results
immediately. Having this information readily available makes it easier for them to fix performance problems
before checking in their code.

Analyze Your Results

Gathering data is the most important step in identifying performance bottlenecks. But once you have the
data, it’s also important that you use it to find problems. Analyzing performance data is not as simple as
looking at the output and seeing the problem right away. You might get lucky and see the problem quickly,
but some problems are subtler and require more careful analysis.

One way to help analyze results is to plot them graphically. Visualizing performance data can help you see
trends much more quickly than if they were in a spreadsheet or other text-based medium. For example, you
could plot the time to complete an operation against a particular build to determine if performance is
improving or declining from build to build.

Analyze Higher-Level Algorithms

As you analyze performance data, keep an open mind towards the abstraction level at which the problem
resides. Suppose the data you have indicates that a lot of time is spent inside a particular function. It may
be that the code in the function itself can be optimized so that it performs faster, but is that the real cause
of the problem? Run your program again but this time sample on calls to that function. Look at how many
times the function is called and see if there are any patterns there. If the function is called one million times,
the problem might be in the higher-level algorithm that is calling it in the first place. If the function is called
once, the body of the function is likely the problem.

Note: Shark is one of the more powerful tools you can use to analyze your program. The data mining
capabilities of Shark are an excellent way to detect problems in higher-level algorithms. For more information
about Shark and the other Apple-provided tools, see “Performance Tools” (page 21).

The performance tools themselves have limitations that you need to understand and take into account when
analyzing data. For example, sampling programs may point out places where your application is spending
a lot of time, but you should understand how Shark and other tools gather their data before drawing too
many conclusions. These tools do not track every function call. Instead, they offer a statistical analysis of your
program based on samples taken at fixed intervals. Use the output from these tools as a guide, but be sure
to correlate it with other data you record.

Other Analysis Techniques

If you are ever in doubt as to the true cause of a performance problem, avoid making assumptions about
the cause of the problem. Instead, refine your analysis by focusing your data gathering efforts on the relevant
code. Try using different tools to gather new types of information. A different tool might provide a unique
perspective that reveals more about the actual problem.

Tracking Performance 13
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

Some additional ways you can analyze your program include the following:

 ■ Watch the code in the debugger. Walking through code in the debugger might reveal logic errors that
are slowing the code down.

 ■ Add checkpoints to the code to log information about when that code was executed. For an example
of using checkpoints to track initialization code, see the Launch Time Performance Guidelines.

 ■ Try coding alternate solutions to the problem and see if they run into similar problems.

14 Tracking Performance
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing for Performance

This chapter offers practical advice for how to tune your programs. It offers suggestions of areas you should
monitor with the performance tools and also provides a list of practical tips for improving performance.

Common Areas to Monitor

Many performance problems can be traced to specific parts of your program. As you design and implement
your code, you should monitor those areas to make sure they meet the performance targets you set.

Code for Your Program’s Key Tasks

As you design your program, consider the tasks or workflows that users will encounter the most. During your
implementation phase, be sure to monitor the code for those tasks and make sure their performance does
not drop below acceptable levels. If it does, you should take immediate actions to correct the problems.

The key tasks performed by a program varies from program to program. For example, a word processor might
need to be fast during text input and display, while a file utility program would need to be fast at scanning
the files and directories on a hard disk. It is up to you to decide which tasks your users are most likely to
perform.

For information on how to identify and fix slow operations in your program, see Code Speed Performance
Guidelines.

Drawing Code

Most programs do some amount of drawing. If your program uses only standard windows and controls, then
you probably do not need to worry too much about drawing performance. However, if you do any custom
drawing, you need to monitor your drawing code and make sure it is performing at acceptable levels. In
particular, if you support any of the following, you should investigate ways to optimize your drawing code.

 ■ Live resizing

 ■ Custom view drawing code, especially if portions of the view can be updated without updating the
whole view

 ■ Textured graphics

 ■ Entirely opaque views

For information on how to optimize drawing performance, see Drawing Performance Guidelines.

Common Areas to Monitor 15
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

Launch Time Initialization Code

Launch time is the time when you initialize your program’s data structures and prepare to receive user input.
However, many programs do much more work at launch time than is necessary. In many cases, tasks performed
at launch time can be deferred until after the application has started processing user events. This deferral
gives the user the perception that your application is fast, which is a good first impression to make.

For applications that need to run in Mac OS X version 10.3.3 and earlier, another way to improve launch times
is to prebind your application. Prebinding involves precalculating library address ranges and storing those
values in your application binary. This step eliminates the need for the dynamic loader (dyld) to calculate
those address ranges at launch time. Improvements in dyld for Mac OS X version 10.3.4 make prebinding
largely unnecessary in that and later releases.

For information on how to improve launch-time performance, see Launch Time Performance Guidelines.

File Access Code

The file system is a bottleneck for getting information into memory and the CPU. In the time it takes to access
a file, tens of millions of instructions may be executed. It is therefore imperative that you examine the way
your program uses files to be sure that the files you use are needed and are used properly.

Minimizing the number of files you use is one way to improve file-related performance. When you must
access files, do so judiciously and keep the following in mind:

 ■ Understand how the system caches work and know how to optimize the use of those caches. Avoid
caching data unless you plan to refer to it more than once.

 ■ Read and write data sequentially whenever possible. Jumping around a file takes extra time to seek to
the new location.

 ■ Read larger blocks of data from files whenever possible, keeping in mind that reading too much data at
once might cause different problems. For example, reading the entire contents of a 32 MB file might
trigger paging of those contents before the operation is complete.

 ■ Avoid closing and reopening files unnecessarily. If caching is enabled, doing so may cause the cache to
be refreshed even if the data did not change.

For information on how to identify and fix file-related performance problems, see Launch Time Performance
Guidelines.

Application Footprint

The size of your code can have a tremendous effect on system performance. The more memory pages used
by your program, the fewer there are available for the system and other programs. This memory pressure
can eventually lead to paging and an overall system slowdown.

Managing your code footprint is all about organizing your code and data structures. You need to make sure
you have the right pieces in memory and that you are not causing any memory pages to be read or written
unnecessarily. Some of the problems that cause a large memory footprint are as follows:

16 Common Areas to Monitor
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

 ■ Code pages contain unused code. The compiler typically organizes code by compilation module, which
is not always the best way to organize code. Alternatively, a function might have been excised from the
active code path but remains in the code module.

 ■ Static or constant data is stored on writable pages. During paging, this data is written to disk unnecessarily.

 ■ A program exports more symbols than are actually needed.

 ■ Code is not properly optimized by the compiler and linker.

 ■ Too many frameworks are included by the program. Load only the code you need.

For information on how to find and fix code footprint problems, see Code Size Performance Guidelines.

Memory Allocation Code

Programs allocate memory for storing both permanent and temporary data structures. Each memory allocation
has a cost associated with it, both in CPU time and in memory consumption. Understanding when your
program allocates memory and how that memory is used can help you reduce both of those costs.

Understanding your program’s memory usage can help determine ways to reduce that usage. You can find
out if autoreleased Objective-C objects are being deallocated before they cause too much paging. You can
find memory leaks caused by bugs in your code. You can also watch the number of times you call malloc,
which might point out places where you can reuse existing memory blocks rather than create new ones.

One important rule to follow when allocating memory is to be lazy. Defer memory allocations until you
actually need the memory being used. For some additional ways you can be lazy with memory allocations,
see “Be Lazy ” (page 19).

For information about optimizing your memory allocation patterns, seeMemoryUsagePerformanceGuidelines.

Fundamental Optimization Tips

Before you begin implementing a new program, there are several performance enhancements you should
consider adding. Although you might not be able to take advantage of all of these enhancements in every
case, you should at least consider them during your design phase.

Use Event-Based Handlers

All modern Mac OS X applications should be using the Carbon Event Manager or other event-based model
for responding to system events. The old way of retrieving events by polling the system is highly inefficient.
In fact, when there are no events to process, polling code is a 100 percent waste of CPU time. Using more
modern event-based APIs can lead to the following benefits:

 ■ It makes your program more responsive to the user.

 ■ It reduces your application’s CPU usage.

 ■ It minimizes your application’s working set—the number of code pages loaded in memory at any given
time.

Fundamental Optimization Tips 17
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

 ■ It allows the system to manage power aggressively.

The Cocoa framework incorporates Carbon Event Manager calls into its classes and methods to implement
an event-driven model for you. Applications written in Cocoa automatically take advantage of this behavior
and require no additional modifications. Carbon applications must support the Carbon Event Manager calls
explicitly.

Event-based handlers are not limited to supporting user events, such as mouse and keyboard events. Each
thread has its own run loop to provide on-demand responses to timers, network events, and other incoming
data. Applications support run loops using either the Core Foundation (CFRunLoop) or Cocoa (NSRunLoop)
interfaces.

Thread Your Program

Supporting multiple threads is a good way to improve both the perceived and actual performance of your
program. On hardware containing multiple processors, a multithreaded program often has significantly better
performance than a single-threaded program. By distributing tasks across all available processors, an
application can perform multiple operations simultaneously. Even on a single-processor machine, the use of
additional threads can provide a perceived speed boost by leaving your main thread free to handle user
events.

Before you begin adding support for multiple threads, though, be sure to put some thought into how your
program might use those threads effectively. Because threads require a fair amount of overhead to create,
you should carefully choose which tasks you want to assign to separate threads. If all of your program’s tasks
are small and performed at different times, you would probably not want to create separate threads for each
one. Instead, creating a single long-lived worker thread might be more appropriate.

Another consideration with threading is how to protect your data structures. Problems can occur when
multiple threads modify the same data without first checking to see if it is safe to do so. Your code needs to
use locks rigorously to protect its data structures. You might also need to synchronize specific blocks of code
to prevent them from being executed by multiple threads at once.

For information on how to support additional threads in your program, see Threading Programming Guide.

Use the Accelerate Framework

If your application performs a lot of mathematical computations on scalar data, you should consider using
the Accelerate framework (Accelerate.framework) to accelerate those calculations. The Accelerate
framework takes advantage of any available vector processing units (such as the PowerPC AltiVec extensions,
also known as Velocity Engine, or the Intel x86 SSE extensions) to perform multiple calculations in parallel.
By coding to the framework, you can avoid having to create separate code paths for each platform architecture.
The Accelerate framework is highly tuned for all of the architectures Mac OS X supports.

Tools such as Shark can help point out portions of your program that might benefit from using the Accelerate
framework. For more information about Shark and other tools, see “Performance Tools” (page 21).

18 Fundamental Optimization Tips
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

Be Lazy

A very simple way to improve performance is to make sure your application does not perform any unnecessary
work. Each moment of an application’s time should be spent responding to the user’s current request, not
predicting future requests. If you do not need a resource right away, such as a nib file containing a preferences
window, don’t load it. Such an action takes time to execute because it accesses the file system, and if the
user never opens that preference window, the process of loading its nib file is a waste of time.

The basic rule is wait until the user requests something from your application, then use the necessary resources
to fulfill the request. You should cache data only in situations where there is a measurable performance
benefit. Preloading caches on the assumption that the rest of the application will run faster can actually
degrade performance in low-memory situations. In such a situation, your cached data may be paged to disk
before it can be used. Thus, any savings you gained by caching the data turn into a loss because that data
must now be read from disk twice before it is ever used. If you really want to cache data, wait until a given
operation has been performed once before you cache any data from it.

Some other things to be lazy about include the following:

 ■ Defer memory allocation until the point where you actually need the memory.

 ■ Don’t zero-initialize blocks of memory. Call the calloc function to do it for you lazily.

 ■ Give the system the chance to load your code lazily. Profile and organize your code so that the system
loads only the code needed for the current operation.

 ■ Defer reading the contents of a file until you actually need the information.

Take Advantage of Perceived Performance

The perception of performance is just as effective as actual performance in many cases. Many program tasks
can be performed in the background, on a separate thread, or at idle time. Doing this makes the program
interface feel more responsive to the user. Of course, creating the perception of performance does not work
in every case. For example, the perception may be lost if the data being processed in the background is
needed by the user immediately.

As you design your program, think about which tasks can be moved to the background effectively. For
example, if your program needed to scan a number of files, do it on a background thread. Similarly, if you
need to perform lengthy calculations, do it in the background so that the user may continue to manipulate
your program’s user interface.

Another way to improve perceived performance is to make sure your application launches quickly. At launch
time, defer any tasks that do not contribute to the immediate presentation of your application interface. For
example, defer the creation of large data structures you do not need immediately until after your application
has finished launching. You should also avoid loading plug-ins until the moment their code is actually needed.

Use the Mach-O Binary Format

If you have a Carbon application that is based on the Code Fragment Manager Preferred Executable Format
(PEF), you should consider switching to the Mach-O executable format for several reasons. Foremost among
them is that Mach-O is designed and optimized for use with the Mac OS X virtual memory system. Other
reasons include the following:

Fundamental Optimization Tips 19
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

 ■ PEF executables are not supported on Intel-based Macintosh computers.

 ■ In Mac OS X, the libraries that implement the Carbon environment use the Mach-O executable format.
Mach-O executables use a calling convention different from that used by PEF executables. Calls made
to or from PEF code fragments must be translated at runtime. While the translation overhead is small,
it is unnecessary if you are using Mach-O.

 ■ Apple’s Mac OS X development environment supports only Mach-O. Whether or not you use Apple’s
development environment for Mac OS X, the Mac OS X performance tools are significantly easier to use
with Mach-O executables than with PEF executables.

 ■ Mach-O executables can directly call other Mach-O shared libraries and BSD API routines in the kernel.

 ■ Mach-O supports just-in-time binding, where a link to a function is resolved when that function is first
called. All links in a PEF-based application (and all PEF libraries it links to) must be resolved when the
application is launched.

Although Mach-O is not supported in Mac OS 9, using Mach-O does not require you to abandon Mac OS 9
as a delivery platform. You can build an application package that runs a PEF binary in Mac OS 9 and a Mach-O
binary in Mac OS X. This allows you to optimize your executable for each operating system that you wish to
support. For more information, see Bundle Programming Guide.

For an overview of the Mach-O format and how you can take advantage of that format for performance
tuning, see “Overview of the Mach-O Executable Format” in Code Size Performance Guidelines.

20 Fundamental Optimization Tips
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Basic Performance Tips

Mac OS X comes with tools for gathering several different types of performance metrics for your application.
Some of these tools can be launched from the Finder and some must be run from the command line. The
following sections introduce the available tools and tell you when you might use them.

Installing the Apple Tools

The Apple performance tools are installed as part of the Xcode Tools package. This package ships on a CD
that comes with retail copies of Mac OS X. You can also download it for free or order a CD from the Apple
Developer Connection section of the Apple website.

To install Xcode Tools, double-click the installer package found on the Xcode Tools CD or that you downloaded
from the web. The installer creates a /Developer directory on the boot volume of your hard drive. Inside
this directory are subdirectories containing the applications, documentation, examples, and other files.

The primary performance tools are located in the /Developer/Applications/Performance Tools
directory but some tools are located in other subdirectories of /Developer/Applications. Several
command-line performance tools are also installed in the /usr/bin directory and are available from Terminal.

Most of the applications with a graphical user interface have online help available through the Help menu.
All of the command-line tools have man pages, accessed on the command line by typing “mantoolname”.

Analysis Tools

Analysis tools let you actively gather data about the performance of your program. You can view these tools
in a way similar to debugging tools. You use them to investigate problems and gather information needed
to go back and revise your code. Unlike debugging tools, most analysis tools provide a way to save data from
a session so that you can view it later, which is very useful for charting the progress of your application.

With the exception of Shark, most of the analysis tools are geared towards finding specific types of performance
problems. While any one tool might give you useful information, it is important to run several tools on the
same code to view problems from several different angles. For example, using ObjectAlloc, you might find
that your program creates a number of objects, but running MallocDebug you might find that many of those
objects are actually being leaked. Shark provides many ways to gather and view information and is
indispensable for finding performance problems in your code.

Table 3-1 lists the analysis tools installed with the Xcode Tools. Applications such as Shark are installed in
the /Developer/Applications/Performance Tools directory. Command-line tools, such as heap and
leaks, are installed in /usr/bin.

Installing the Apple Tools 21
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

Table 3-1 Analysis tools

DescriptionTool

Tracks and analyzes memory allocated in an application. You can use this tool to find
memory leaks or analyze memory allocation patterns.

MallocDebug

Tracks Objective-C and Core Foundation object allocations and deallocations in real
time. The tool also lets you view the retention history for an object, which can be
useful in recovering memory held by over-retained objects.

ObjectAlloc

Gathers GPU-related performance data, including data related to VRAM usage, video
bus traffic, and hardware stalls among others. You can use this information to identify
the cause of temporary slowdowns or sporadic hesitations in your OpenGL application.

OpenGL Driver
Monitor

Creates a runtime profile of your OpenGL-based application. You can view function
statistics and the call-trace history of your application’s OpenGL calls.

OpenGL Profiler

Analyzes your application’s behavior at runtime. It can identify where your program
spends its time and summarize how often allocation routines, system calls, or arbitrary
functions were called.

Sampler

Instruments your code to provide function-level profiling and displays the resulting
data graphically. You can use this tool to count events, such as how many times a
function is called or an event is sent.

Saturn

Does statistical sampling of all processes and threads in the system. You can also use
Shark to trace function calls, including malloc calls, and to chart information
graphically. Shark helps you to isolate problems quickly by providing a rich set of
data-mining features and is an indispensable tool for finding performance bottlenecks.

Shark

Lists all malloc-allocated buffers in the heap of a specified processheap

Searches the memory space of a process for any allocated but unreferenced blocks
of memory.

leaks

Displays the virtual memory regions allocated to a specified process. You can use this
tool to analyze the memory usage of your process.

vmmap

Monitoring Tools

Monitoring tools are passive tools that gather data automatically. To use these tools, leave them running
while you exercise the features of your program. You can then analyze the data generated by these tools to
gain a better understanding of your program’s performance characteristics. Some programs, like Spin Control,
should be left running all the time. Most others can be launched and terminated as needed to gather
performance information.

Table 3-2 lists the monitoring tools installed with the Xcode Tools. Applications such as BigTop and Spin
Control are installed in the /Developer/Applications/Performance Tools directory hierarchy. The
Activity Monitor tool is installed in the /Applications/Utilities directory. Command-line tools, such
as fs_usage and top, are installed in /usr/bin.

22 Monitoring Tools
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

Table 3-2 Monitoring tools

DescriptionTool

Displays common usage statistics relating to memory and CPU usage for the currently
running processes. This tool provides information that is similar to that of the top tool.

Activity Monitor

Displays system statistics, such as CPU, disk, network and memory usage graphically over
time. You can monitor a single process or all processes. This tool provides information
that i similar to that of the top and vm_stat tools.

BigTop

Shows screen updates in real time by briefly flashing the areas being redrawn. You can
use this tool to analyze your application’s drawing behavior.

Quartz Debug

Samples programs that cause the spinning cursor to appear. Leave this program running
in the background to catch unresponsive applications at critical moments.

Spin Control

Graphically displays activity across a range of threads. It provides color-coded timeline
views of thread activity and can display backtraces of activity at specific points in time.

Thread Viewer

Displays an ongoing list of file-system activity, as generated by page faults and calls to
file-system functions. You can use this tool to understand the file access patterns of your
program.

fs_usage

Displays an ongoing list of system call and page fault statistics.sc_usage

Displays common system usage statistics relating to memory and CPU usage for the
currently running processes. This tool updates the information dynamically so that you
can see trends at runtime.

top

Hardware Analysis Tools

The CHUD Tools include additional applications for doing hardware and low-level software analysis. The
graphical applications are installed in /Developer/Applications/Performance Tools/CHUD and the
command-line tools are installed in /usr/bin. All of the tools are included with the Xcode Tools. Table 3-3
lists the tools that are part of this package and provides a brief overview of their purpose.

Table 3-3 CHUD tools

DescriptionName

Measures cache performance under a wide range of conditions.CacheBasher

Collects sampling data at a hardware level. The tool can collect samples at a systemwide
or process-specific level and display the metrics for the collected data. You can use this tool
to gather metrics such as utilized bandwidth, cycles per instruction, and cache miss rates.

MONster

Lets you search for available performance counter events. When you select multiple events,
the tool notifies you if those events cannot be recorded simultaneously.

PMC Index

Lets you examine and modify CPU and PCI configuration registers.Reggie SE

Hardware Analysis Tools 23
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

DescriptionName

Measures integer, floating-point, and vector performance.Skidmarks GT

A command-line tool that analyzes TT6E instruction traces and presents detailed analyses
and histograms. You can use this tool to detect bad instruction sequences, such as
misaligned operands, data dependency stalls, and spilled loads.

acid

A command-line tool that traces all threads of execution in a process, recording every
instruction and data access to a trace file. This tool can generate traces in TT6, TT6E, or FULL
format.

amber

A command-line tool that is a cycle-accurate simulator of the Motorola 7400 processor.
This tool takes TT6 traces as input.

simg4

A command-line tool that is a cycle-accurate simulator of the IBM 970 processor. This tool
takes TT6 traces as input.

simg5

For information about using the CHUD tools, see online help for a particular tool. Documentation for some
CHUD tools is also installed in /Developer/ADC Reference Library/CHUD.

Additional Command-Line Tools

Table 3-4 lists some additional command-line tools that you can use to monitor and analyze performance in
Mac OS X. These tools are located in the /usr/bin/ directory and must be run from a command-line prompt.
Most are installed along with the Xcode Tools.

Table 3-4 Command-line tools

DescriptionName

Converts back and forth between a symbol name and the numeric address of that
symbol in a running executable.

atos

Displays the C-structures from an object file along with their member offset values.c2ph

Produces execution profiles based on an execution analysis of a program.gprof

Displays kernel trace data.kdump

Shows the malloc allocations performed by a specified process.malloc_history

Displays the symbol table information for one or more object files.nm

Displays the contents of a Mach-O executable in a more human-readable formotool

Displays information about the logical pages of a Mach-O executable file.pagestuff

Parses the C structures from an object file and displays them along with their member
offset values.

pstruct

24 Additional Command-Line Tools
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

DescriptionName

Produces an execution profile based on the execution analysis of a program.sample

Displays Mach virtual memory statistics, including the number of active, inactive, wired,
and free pages. This tool also displays page fault and other activity information.

vm_stat

Additional Command-Line Tools 25
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

26 Additional Command-Line Tools
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Performance Tools

So, you have some code and you want to see if it is suffering from performance problems. Where do you
start? Not all problems are immediately visible. You might notice that an operation took several seconds to
perform, but you might not notice an operation that consumed too many CPU cycles or allocated too much
memory. This is where Apple’s performance tools come into play. They can help you see aspects of your
program that are easily overlooked.

The following sections provide a brief overview of how to use some key tools when starting to analyze your
program. These tools are good for identifying potential problems and can provide a significant amount of
performance data. Remember, though, that there may be other tools that provide more specific information
related to the problem. Many of the Apple performance tools are designed for specific tasks, such as tracking
memory allocations or finding leaks. Running your application with several other tools can help you confirm
whether a particular area is a problem.

Important: The performance tools are there to assist you in investigating performance problems. Make sure
you gather as much data as you can during your analysis. Performance analysis is somewhat of an art and
requires careful consideration of all available data to find the real problem.

Using top

The top tool is an important tool for identifying potential problem areas in a process. This tool displays a
periodically sampled set of statistics on system usage. Using top and understanding its output are an excellent
way to identify potential performance problems.

The top tool displays periodically updated statistics on CPU usage, memory usage (in various categories),
resource usage (such as threads and ports), and paging events. In the default mode, top displays CPU and
memory utilization of all system processes. You can use this information to see how much memory your
program is using and what percentage of the CPU time it is using. An idle program should not use any CPU
time and an active one should consume a proportionate amount of CPU time based on the complexity of
the task.

Note: If you want to track CPU usage and other statistics over time, use BigTop instead. BigTop graphs
performance trends over time, providing a real-time display of memory usage, page faults, CPU usage, and
other data.

Listing 4-1 shows a typical statistical output from top. For application developers, the statistics you should
be most interested in are the CPU usage, resident private memory usage (RPRVT), and pagein/pageout rates.
These values tell you some key things about your application’s resource usage. High CPU usage may mean
that your application tasks are not tuned appropriately. Increased memory usage and page-in/page-out rates
may indicate a need to reduce your application’s memory footprint.

Using top 27
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

Listing 4-1 Typical output of top

Processes: 36 total, 2 running, 34 sleeping... 81 threads
Load Avg: 0.24, 0.27, 0.23 CPU usage: 12.5% user, 87.5% sys, 0.0% idle
SharedLibs: num = 77, resident = 10.6M code, 1.11M data, 4.75M LinkEdit
MemRegions: num = 1207, resident = 16.4M + 4.94M private, 22.2M shared
PhysMem: 16.0M wired, 25.8M active, 48.9M inactive, 90.7M used, 37.2M free
VM: 476M + 39.8M 6494(6494) pageins, 0(0) pageouts

 PID COMMAND %CPU TIME #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE
 318 top 0.0% 0:00.36 1 23 13 172K 232K 380K 1.31M
 316 zsh 0.0% 0:00.08 1 18 12 168K 516K 628K 1.67M
 315 Terminal 0.0% 0:02.25 4 112 50 1.32M 3.55M 4.88M 31.7M
 314 CPU Monito 0.0% 0:02.08 1 63 35 896K 1.34M 2.14M 27.9M
 313 Clock 0.0% 0:01.51 1 57 38 1.02M 2.01M 2.69M 29.0M
 312 Dock 0.0% 0:03.72 2 77 78 2.18M 2.28M 3.64M 30.0M
 311 Finder 0.0% 0:07.68 4 86 171 7.96M 9.15M 15.1M 52.1M
 308 pbs 0.0% 0:01.37 4 76 40 928K 684K 1.77M 15.4M
 285 loginwindow 0.0% 0:07.19 2 70 58 1.64M 1.93M 3.45M 29.6M
 282 cron 0.0% 0:00.00 1 11 14 88K 228K 116K 1.50M
 245 sshd 0.0% 0:02.48 1 10 15 176K 312K 356K 1.41M
 222 SecuritySe 0.0% 0:00.14 2 21 24 476K 828K 1.29M 3.95M
 209 automount 0.0% 0:00.03 2 13 20 336K 748K 324K 4.36M
 200 nfsiod 0.0% 0:00.00 1 10 12 4K 224K 52K 1.22M
 199 nfsiod 0.0% 0:00.00 1 10 12 4K 224K 52K 1.2
[...]

In its header area, top displays statistics on the global state of the system. This information includes load
averages; total process and thread counts; and total memory, broken down into various categories such as
private, shared, wired, and free. It also includes global information concerning the system frameworks. At
regular intervals, top updates these statistics to account for recent system activity.

Table 4-1 describes the columnar data that appears in the CPU and memory utilization mode using the -w
parameter. For detailed information about how top reports information, see the top(1) man page.

Table 4-1 Output from top using the -w option

DescriptionColumn

The BSD process ID.PID

The name of the executable or application package. (Note that Code Fragment Manager
applications are named after the native process that launches them, LaunchCFMApp.)

COMMAND

The percentage of CPU cycles consumed during the interval on behalf of this process
(both kernel and user space).

%CPU

The amount of CPU time (minute:seconds.hundreths) consumed by this process since it
was launched.

TIME

The number of threads owned by this process.#TH

The number of Mach port objects owned by this process. The delta value, which is
enabled by the -w parameter, is relative to the value first displayed when top was
launched.

#PRTS (delta)

28 Using top
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

DescriptionColumn

The number of memory regions.#MREG

The private address space currently allocated (with -w parameter only).VPRVT

The resident private memory. The delta value, which is enabled by the -w parameter,
is relative to the previous sample.

RPRVT (delta)

The resident shared memory. The delta value, which is enabled by the -w parameter,
is relative to the previous sample

RSHRD (delta)

The total resident memory as real pages that this process currently has associated with
it. Some may be shared by other processes. The delta value, which is enabled by the
-w parameter, is relative to the previous sample.

RSIZE (delta)

The total address space currently allocated, including shared memory. The delta value,
which is enabled by the -w parameter, is relative to the value first displayed when top
was launched.

This value is mostly irrelevant for Mac OS X processes. Every application has a large
virtual size because of the shared region used to hold framework and library code.

VSIZE (delta)

The RPRVT data (for resident private pages) is a good measure of how much real memory an application is
using. The RSHRD column (for resident shared pages) shows the resident pages of all the shared mapped
files or memory objects that are shared with other tasks.

Note: The top tool does not provide a separate count of the number of pages in shared libraries that are
mapped into the task.

The top tool reports memory usage of windows in the “shared memory” category because window buffers
are shared with the window server.

Table 4-2 shows the columns displayed in the event-counting mode, which is enabled with either the -e,
-d, or -a option on the command line.

Table 4-2 Output from top using the -d option

DescriptionColumn

The BSD process ID.PID

The name of the executable or application package. (Note that Code Fragment Manager
applications are named after the native process that launches them, LaunchCFMApp.)

COMMAND

The percentage of CPU cycles consumed during the interval on behalf of this process (both
kernel and user space).

%CPU

The amount of CPU time consumed by this process (minute:seconds.hundreths) since it
was launched.

TIME

The total number of page faults.FAULTS

Using top 29
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

DescriptionColumn

The number of page-ins, requests for pages from a pager (each page-in represents a 4
kilobyte I/O operation).

PAGEINS

The number of faults that caused a page to be copied (generally caused by copy-on-write
faults).

COW_FAULTS

The number of Mach messages sent by the process.MSGS_SENT

The number of Mach messages received by the process.MSGS_RCVD

The number of BSD system calls made by the process.BSDSYSCALL

The number of Mach system calls made by the process.MACHSYSCALL

The number of context switches to the process (the number of times the process has been
given time to run by the kernel’s scheduler).

CSWITCH

Using Quartz Debug

Quartz Debug is an important tool for determining the efficiency of your drawing code. The tool collects
information from your program’s drawing calls to find out where your program is drawing and whether it is
redrawing content unnecessarily. Figure 4-1 shows the Quartz Debug options window.

Figure 4-1 Quartz Debug options

In its primary mode, Quartz Debug shows you visually where your code is drawing. It places a yellow rectangle
over an area where a redraw operation is about to occur and then pauses briefly before redrawing the content.
This flickering yellow pattern can point out places where you are drawing more than is necessary. For example,
if you update only a small portion of a custom view, you probably do not want to be forced to redraw the
entire view. Alternatively, if you see a system control being redrawn several times in succession, it might
point out the need to hide that control before changing its attributes.

The tool also has a mode that identifies parts of the screen that are being redrawn with the exact same
content. If you select the “Flash identical updates” option, the tool displays red over any areas whose resulting
bits are identical to the current content.

30 Using Quartz Debug
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

Using Spin Control

If an application becomes unresponsive at any time, the window server notifies the user of this situation by
changing the cursor to a spinning wheel. If your application is the one that is unresponsive, sampling it during
that time can help you determine why it is unresponsive. However, even if you have Shark or another tool
ready to go, you might not be able start them fast enough to gather a set of samples during the unresponsive
period. This is where Spin Control provides a helpful solution.

Spin Control is a monitoring tool that automatically samples unresponsive applications. You leave Spin
Control running on your computer whenever you are testing your application. When the spinning cursor
appears, Spin Control gathers the backtrace information and makes it available from the application’s main
window, as shown in Figure 4-2.

Figure 4-2 Spin Control main window

To view the backtrace for a particular session, select that session and click Open. Spin Control displays the
browser window (Figure 4-3) along with the sample data. You can use the data in this window to identify
the code that was executing when your application became unresponsive. The controls in the bottom-left
corner of the window let you change the way you view the samples. The buttons at the bottom right let you
prune the call stacks and focus on the most relevant call stack entries.

Using Spin Control 31
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

Figure 4-3 Spin Control sample window

If you want to view a complete listing of the call stacks, click the “Show text report” button on the main
window. This format shows a formatted version of the entire data set that you can copy and paste into other
documents.

Using Shark

Shark is one of the most powerful analysis tools you can use to find performance problems in your code.
Shark can generate a time-based profile of your program’s execution, trace function calls, and graph memory
allocations over time. You can use Shark to track information for your program or for the entire system. Shark
even captures execution information for kernel entities such as drivers and kernel extensions.

Despite the power of Shark, using the tool is very simple. Upon launch, Shark presents you with the window
shown in Figure 4-4. Click Start (or use the Option-Escape global shortcut) to start sampling all system
processes. Click the button again (or use the same global shortcut) to stop gathering data and display the
samples (Figure 4-5).

Figure 4-4 Shark launch window

If you want to limit sampling to only one process, you can use the pop-up menu on the right side of the
window to select that process. Also, if you want to do something other than a statistical time profile, choose
the appropriate option from the configuration pop-up menu before you click Start.

32 Using Shark
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

When you stop sampling, Shark displays the profile window (Figure 4-5) with the gathered data. This is the
main window you use to identify potential problems. You can configure this window to display a heavy view,
tree view, or both.

Figure 4-5 Shark profile window

The heavy view sorts function calls based on the frequency by which they appeared. This view identifies your
program’s hot spots. If you see one of your program’s functions near the top of this view, you should
investigate. Functions tend to have higher weights if they are poorly optimized but a more likely scenario is
that the function is being called too frequently from some other place. This can indicate an inefficient
higher-level algorithm.

The tree view shows the same data organized by calling hierarchy. This view offers a convenient way to
understand the context in which a particular function is called. This is the more traditional way to view call
stack data and can be used in conjunction with the heavy view to track down hot spots and to see the
surrounding context quickly.

The Shark profile window makes it easy to filter out irrelevant code and libraries through a feature called
data mining. The Data Mining menu has several options for excluding or flattening symbols and libraries. If
you apply these commands, Shark rolls the costs of calling those symbols and libraries into the function that
called them. For example, if you know your code makes several calls to Core Foundation and you exclude
the Core Foundation library, the time spent in Core Foundation now appears as time spent in your code. If
the amount of time spent in your code jumps significantly afterward, you might want to investigate ways to
call fewer Core Foundation functions.

Using Shark 33
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

Shark also can help you identify performance issues within a given function through the code view. When
you double-click a function, Shark displays the source code for that function if it is available (see Figure 4-6).
It applies color to lines of code based on the amount of time spent in that code. For each line of source,
brighter shades of yellow indicate where more time was spent during the profile.

Figure 4-6 Shark code display

Shark occasionally offers specific tuning tips and comments in the margin. Clicking the exclamation-point
icon displays a tip that you can use to improve your code. The comment column displays a summary of the
tip.

For more information about Shark and its features, choose Help > Shark Help to display the Shark User Guide.

34 Using Shark
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Doing an Initial Performance Evaluation

This table describes the changes to Performance Overview.

NotesDate

Updated the advice about using Velocity Engine to reflect using the Accelerate
framework, which supports multiple platform architectures.

2006-10-03

New document that introduces the factors that determine performance.2005-04-29

Some information appeared previously in PerformanceFundamentals and Finding
Performance Problems.

35
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

36
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Accelerate framework 18
acid tool 24
Activity Monitor 23
algorithms, analyzing 13
AltiVec. See Velocity Engine
amber tool 24
analysis techniques 13–14
applications, PEF-based 20
atos tool 24

B

BigTop 23
BSD system calls 30
bugs, reporting 7

C

c2ph tool 24
cache files 16
CacheBasher 23
Carbon Event Manager 17
CFM (Code Fragment Manager) 19
CFRunLoop 18
checkpoints 14
code checkins 13
Code Fragment Manager (CFM) 19
code optimizations 17
constant data 17
context switches 30
copy-on-write faults 30
CPU registers 23
CPU time 10, 28

D

data mining 33
drawing code 15
drivers 32

E

enhancements, requesting 7
event handling 17

F

file systems
monitoring 16
performance of 11

files
closing 16
reading 16, 19
writing 16

frameworks 17
fs_usage tool 23

G

global data 10
gprof tool 24

H

heap tool 22
heavy view, in Shark 33

37
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Index

I

IBM 970 processor 24

J

just-in-time binding 20

K

kdump tool 24
kernel extensions 32

L

laziness, in coding 19
leaks tool 22
locks 18

M

Mach messages 30
Mach ports 28
Mach system calls 30
Mach-O format 19
MallocDebug 22
malloc_history tool 24
man pages 21
memory footprint 16
memory

allocation patterns 22
deferring allocations 17, 19
finding leaks 17, 22
footprint 10, 16
graphing allocations 32
initializing 19
monitoring allocations 17
overview 10
tracking objects 22

metrics
analyzing results 13
correlating with code checkins 13
CPU time 10
establishing baseline values 12
file usage 11
gathering 12
memory usage 10

MONster 23
Motorola 7400 processor 24

N

network events 18
network speed 11
nm tool 24
NSRunLoop 18

O

object allocations 22
ObjectAlloc 22
OpenGL Profiler 22
optimization tips 17–20
otool tool 24

P

page faults 10, 29
page-ins 30
pagestuff tool 24
PCI configuration registers 23
PEF (Preferred Executable Format) 19
perceived performance 11, 18, 19
performance tools
acid tool 24
Activity Monitor 23
amber tool 24
atos tool 24
BigTop 23
c2ph tool 24
CacheBasher 23
fs_usage tool 23
gprof tool 24
heap tool 22
installing 21
kdump tool 24
leaks tool 22
limitations 13
MallocDebug 22
malloc_history tool 24
MONster 23
nm tool 24
ObjectAlloc 22
OpenGL Driver Monitor 22
OpenGL Profiler 22
otool tool 24

38
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

pagestuff tool 24
PMC Index 23
pstruct tool 24
Quartz Debug 23, 30
Reggie SE 23
sample tool 25
Saturn 22
sc_usage tool 23
Shark 22, 32
simg4 tool 24
simg5 tool 24
Skidmarks GT 24
Spin Control 23, 31
Thread Viewer 23
top tool 23, 27
vmmap tool 22
vm_stat tool 25

performance
analyzing 21, 23
and lazy coding 19
areas to monitor 15–17
definition 9–11
evaluating 27–34
monitoring 22
of key tasks 15
optimization tips 17–20
tracking 12–14

PMC Index 23
polling for events 17
Preferred Executable Format (PEF) 19
private address space 29
process ID 28
profiling code 19, 22
pstruct tool 24

Q

Quartz Debug 23, 30

R

Reggie SE 23
resident private memory 29
resident shared memory 29
run loops 18

S

sample tool 25

Sampler 22
Saturn 22
sc_usage tool 23
shared libraries 20
Shark 22, 32
simg4 tool 24
simg5 tool 24
Skidmarks GT 24
Spin Control 23, 31
spinning cursor 31
static data 17
symbols 17
synchronizing code execution 18

T

Thread Viewer 23
threads 18, 28
timers 18
top tool 23, 27
tree view, in Shark 33
tuning tips 34

U

unresponsive applications 31

V

Velocity Engine 18
virtual memory 22
vmmap tool 22
vm_stat tool 25

W

writable memory pages 10

Z

zero-initialized memory 19

39
2006-10-03 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Performance Overview
	Contents
	Figures, Tables, and Listings
	Introduction
	Developing for Performance
	What Is Performance?
	The Efficient Use of Resources
	CPU Time
	Memory Space
	Mass Storage Space

	The Perception of Speed

	Tracking Performance
	Establish Your Baseline Metrics
	Measure Early, Measure Often
	Analyze Your Results
	Analyze Higher-Level Algorithms
	Other Analysis Techniques

	Basic Performance Tips
	Common Areas to Monitor
	Code for Your Program’s Key Tasks
	Drawing Code
	Launch Time Initialization Code
	File Access Code
	Application Footprint
	Memory Allocation Code

	Fundamental Optimization Tips
	Use Event-Based Handlers
	Thread Your Program
	Use the Accelerate Framework
	Be Lazy
	Take Advantage of Perceived Performance
	Use the Mach-O Binary Format

	Performance Tools
	Installing the Apple Tools
	Analysis Tools
	Monitoring Tools
	Hardware Analysis Tools
	Additional Command-Line Tools

	Doing an Initial Performance Evaluation
	Using top
	Using Quartz Debug
	Using Spin Control
	Using Shark

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

