
vecLib Framework Reference
Performance

2009-01-06

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, SANE, and
Velocity Engine are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

vecLib Framework Reference 11

Overview 11
vecLibTypes.h 11
vBasicOps.h 12
vfp.h 12
vForce.h 12
vectorOps.h 12
vBigNum.h 13
For More Information 13

Functions by Task 13
Shift and Rotate Functions (from vBasicOps.h) 13
Integer Arithmetic Functions (from vBasicOps.h) 14
Floating-Point Arithmetic and Auxiliary Functions (from vfp.h) 16
Exponential and Logarithmic Functions (from vfp.h) 17
Trigonometric Functions (from vfp.h) 17
Hyperbolic Functions (from vfp.h) 18
Power Functions (from vfp.h) 18
Remainder Functions (from vfp.h) 18
Inquiry Functions (from vfp.h) 18
Array-Oriented Arithmetic and Auxiliary Functions (from vForce.h) 19
Array-Oriented Exponential and Logarithmic Functions (from vForce.h) 19
Array-Oriented Power Functions (from vForce.h) 20
Array-Oriented Trigonometric Functions (from vForce.h) 20
Array-Oriented Hyperbolic Functions (from vForce.h) 21
Shift and Rotate Functions on Big Numbers (from vBigNum.h) 22
Arithmetic Functions on Big Numbers (from vBigNum.h) 22
Vector-Scalar Linear Algebra Functions (from vectorOps.h) 25
Matrix-Vector Linear Algebra Functions (from vectorOps.h) 26
Matrix Operations (from vectorOps.h) 26

Functions 27
vA1024Shift 27
vA128Shift 27
vA256Shift 27
vA512Shift 27
vA64Shift 28
vA64Shift2 28
vacosf 28
vacoshf 28
vasinf 29
vasinhf 29
vatan2f 29

3
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vatanf 29
vatanhf 30
vclassifyf 30
vcopysignf 30
vcosf 30
vcoshf 31
vdivf 31
vexpf 31
vexpm1f 31
vfabf 32
vfmodf 32
vipowf 32
vIsamax 32
vIsamin 33
vIsmax 33
vIsmin 34
vL1024Rotate 34
vL128Rotate 34
vL256Rotate 35
vL512Rotate 35
vL64Rotate 35
vL64Rotate2 35
vLL1024Shift 36
vLL256Shift 36
vLL512Shift 36
vLL64Shift 36
vLL64Shift2 37
vlog1pf 37
vlogbf 37
vlogf 37
vLR1024Shift 38
vLR256Shift 38
vLR512Shift 38
vLR64Shift 38
vLR64Shift2 39
vnextafterf 39
vpowf 39
vR1024Rotate 39
vR128Rotate 40
vR256Rotate 40
vR512Rotate 40
vR64Rotate 40
vR64Rotate2 41
vremainderf 41
vremquof 41
vrsqrtf 41

4
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

vS1024Add 42
vS1024AddS 42
vS1024Divide 42
vS1024HalfMultiply 42
vS1024Mod 43
vS1024Neg 43
vS1024Sub 43
vS1024SubS 44
vS128Add 44
vS128AddS 44
vS128Divide 44
vS128FullMultiply 45
vS128HalfMultiply 45
vS128Sub 45
vS128SubS 45
vS16Divide 46
vS16HalfMultiply 46
vS256Add 46
vS256AddS 46
vS256Divide 47
vS256FullMultiply 47
vS256HalfMultiply 47
vS256Mod 48
vS256Neg 48
vS256Sub 48
vS256SubS 48
vS32Divide 49
vS32FullMulEven 49
vS32FullMulOdd 49
vS32HalfMultiply 49
vS512Add 50
vS512AddS 50
vS512Divide 50
vS512FullMultiply 51
vS512HalfMultiply 51
vS512Mod 51
vS512Neg 51
vS512Sub 52
vS512SubS 52
vS64Add 52
vS64AddS 53
vS64Divide 53
vS64FullMulEven 53
vS64FullMulOdd 53
vS64HalfMultiply 54
vS64Sub 54

5
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

vS64SubS 54
vS8Divide 54
vS8HalfMultiply 54
vSasum 55
vSaxpy 55
vscalbf 56
vScopy 56
vSdot 56
vSgeadd() 57
vSgemm() 58
vSgemtx() 59
vSgemul() 60
vSgemv() 61
vSgemx() 62
vSgesub() 62
vSgetmi() 63
vSgetmo() 64
vSgevv() 64
vsignbitf 65
vsinf 65
vsinhf 65
vSnaxpy 66
vSndot 66
vSnorm2 67
vSnrm2 67
vsqrtf 68
vSrot 68
vSscal 69
vSsum 69
vSswap 70
vSyax() 70
vSzaxpy() 71
vtablelookup 71
vtanf 71
vtanhf 72
vU1024Add 72
vU1024AddS 72
vU1024Divide 73
vU1024HalfMultiply 73
vU1024Mod 73
vU1024Neg 73
vU1024Sub 74
vU1024SubS 74
vU128Add 74
vU128AddS 75
vU128Divide 75

6
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

vU128FullMultiply 75
vU128HalfMultiply 75
vU128Sub 76
vU128SubS 76
vU16Divide 76
vU16HalfMultiply 76
vU256Add 76
vU256AddS 77
vU256Divide 77
vU256FullMultiply 77
vU256HalfMultiply 78
vU256Mod 78
vU256Neg 78
vU256Sub 78
vU256SubS 79
vU32Divide 79
vU32FullMulEven 79
vU32FullMulOdd 80
vU32HalfMultiply 80
vU512Add 80
vU512AddS 80
vU512Divide 81
vU512FullMultiply 81
vU512HalfMultiply 81
vU512Mod 81
vU512Neg 82
vU512Sub 82
vU512SubS 82
vU64Add 83
vU64AddS 83
vU64Divide 83
vU64FullMulEven 83
vU64FullMulOdd 84
vU64HalfMultiply 84
vU64Sub 84
vU64SubS 84
vU8Divide 84
vU8HalfMultiply 85
vvacos 85
vvacosf 85
vvacosh 86
vvacoshf 86
vvasin 86
vvasinf 86
vvasinh 87
vvasinhf 87

7
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

vvatan 87
vvatan2 88
vvatan2f 88
vvatanf 88
vvatanh 89
vvatanhf 89
vvceil 89
vvceilf 89
vvcos 90
vvcosf 90
vvcosh 90
vvcoshf 91
vvcosisin 91
vvcosisinf 91
vvdiv 92
vvdivf 92
vvexp 92
vvexpf 92
vvfloor 93
vvfloorf 93
vvint 93
vvintf 94
vvlog 94
vvlog10 94
vvlog10f 94
vvlogf 95
vvnint 95
vvnintf 95
vvpow 96
vvpowf 96
vvrec 96
vvrecf 97
vvrsqrt 97
vvrsqrtf 97
vvsin 97
vvsincos 98
vvsincosf 98
vvsinf 98
vvsinh 99
vvsinhf 99
vvsqrt 99
vvsqrtf 100
vvtan 100
vvtanf 100
vvtanh 100
vvtanhf 101

8
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Data Types 101
vUInt8 101
vSInt8 101
vUInt16 102
vSInt16 102
vUInt32 102
vSInt32 102
vFloat 103
vBool32 103
__float_complex_t 103
__double_complex_t 103
vU128 103
vS128 104
vU256 104
vS256 105
vU512 106
vS512 106
vU1024 107
vS1024 109

Document Revision History 111

Index 113

9
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

10
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Framework: vecLib

Declared in vBasicOps.h
vBigNum.h
vForce.h
vecLibTypes.h
vectorOps.h
vfp.h

Overview

The vecLib framework contains nine C header files (not counting vecLib.h which merely includes the others).
Two of them, vDSP.h and vDSP_translate.h, are covered in vDSP Library.

Three of the header files are Apple’s versions of well-known libraries which are described in detail in external
references:

 ■ cblas.h and vblas.h are the interfaces to Apple’s implementations of BLAS. Documentation on the BLAS
standard, including reference implementations, can be found on the web starting from the BLAS FAQ
page at these URLs (verified live as of July 2005): http://www.netlib.org/blas/faq.html and
http://www.netlib.org/blas/blast-forum/blast-forum.html

 ■ clapack.h is the interface to Apple’s implementation of LAPACK. Documentation of the LAPACK interfaces,
including reference implementations, can be found on the web starting from the LAPACK FAQ page at
this URL (verified live as of July 2005): http://netlib.org/lapack/faq.html

This document describes the functions declared in the remaining header files: vecLibTypes.h, vfp.h, vForce.h,
vBasicOps.h, vectorOps.h, and vBigNum.h.

These files support the vector mathematical functions library (also called “vMathLib”), which runs on vector
processing hardware (Altivec or SSE3) if available. This library abstracts the vector processing capability so
that code written for it will execute appropriate instructions for the processor available at runtime.

vecLibTypes.h

The vecLibTypes.h header file defines a set of vector data types (vFloat, vUInt32, etc.), which represent
128-bit vectors containing values of type float, UInt32, etc. The vBasicOps.h and vfp.h headers make use
of these types.

The type names all begin with the letter “v,” followed by a mnemonic for the scalar data type used for elements
of the vector. For example, vUInt32, vSInt16, vFloat, etc.

Overview 11
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

http://www.netlib.org/blas/faq.html
http://www.netlib.org/blas/blast-forum/blast-forum.html
http://netlib.org/lapack/faq.html

vBasicOps.h

vBasicOps.h declares a set of basic arithmetic and logical functions on 128-bit vectors, using the integer types
from vecLibTypes.h.

The function names begin with “v,” followed by a mnemonic for the type of operation, e.g. “S” or “U” for
signed or unsigned, then the width of the operation, then the name of the operation. For example, vS8Divide
performs division of signed 8-bit values packed into 128-bit vectors.

vfp.h

vBasicOps.h declares a set of floating-point arithmetic, transcendental and trigonometric functions, on 128-bit
vectors, using the floating-point types from vecLibTypes.h.

These functions are named with their customary mathematical names, prefixed with the letter “v”, and all
except vtablelookup() have the suffix “f” to indicate that they work with single-precision floating-point
data. For example, vcosf is the single-precision cosine function.

vForce.h

vForce.h declares a set of trigonometric and transcendental functions in terms of C arrays (double * or
float *), which can be of any desired length. Internally, the C arrays are converted piecewise into collections
of 128-bit vectors, if appropriate for the current architecture.

The functions declared in vForce.h are named with the customary mathematical names, but with the prefix
“vv.” Each mathematical function is available in two variants: one for single-precision floating-point data and
one for double-precision data. The single-precision forms have the suffix “f”, while the double-precision forms
have no suffix. For example, vvcosf is the single-precision cosine function, while vvcos is the double-precision
variant.

All of the vForce.h functions follow a common format:

 ■ The return type is void.

 ■ The first parameter points to an array to hold the results. (The only exceptions are vvsincosf() and
vvsincos(), which have two result arrays pointed to by the first two parameters.)

 ■ One or more parameters point to operand arrays, the same length as the result array.

 ■ The last parameter is the array length.

vectorOps.h

vectorOps.h declares a set of vector and matrix BLAS functions on arrays of 128-bit vectors containing
single-precision floating-point values. The arrays can be of any desired length, but the number of float
elements must be a multiple of 4.

12 Overview
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vBigNum.h

vBigNum.h provides arithmetic and logical operations on large integers, which may be 128, 256, 512, or 1024
bits in length. It defines types for these values, and internally processes them as collections of 128-bit vectors.

vBigNum.h defines its own set of data types to represent large integer quantities, such as vS128 for a signed,
128-bit integer or vU1024 for an unsigned, 1025-bit integer. The function names begin with the data type
name, followed by the name of the operation. For example, vS512Add performs addition of two 128-bit
signed integers.

The functions perform logical and arithmetic operations on scalar values that may be 128, 256, 512, or 1024
bits in width. These values are implemented as structures of one, two, four, or eight 128-bit vectors, and the
operations execute on the available vector-processing hardware if possible.

The functions have names that are compatible with those in vBasicOps.h.

For More Information

For information about membership in Apple’s developer program, go to this URL:

http://developer.apple.com/membership/

For information about the Velocity Engine, go to this URL:

http://developer.apple.com/hardwaredrivers/ve/index.html

For general technical support from Apple, go to this URL:

http://developer.apple.com/technicalsupport/index.html

Functions by Task

Shift and Rotate Functions (from vBasicOps.h)

vLL64Shift (page 36)
64-bit logical left shift.

vLL64Shift2 (page 37)
64-bit logical left shift with two shift factors.

vLR64Shift (page 38)
64-bit logical right shift.

vLR64Shift2 (page 39)
64-bit logical right shift with two shift factors.

vA64Shift (page 28)
64-bit arithmetic shift.

vA64Shift2 (page 28)
64-bit arithmetic shift with two shift factors.

Functions by Task 13
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

http://developer.apple.com/membership/
http://developer.apple.com/hardwaredrivers/ve/index.html
http://developer.apple.com/technicalsupport/index.html

vA128Shift (page 27)
128-bit arithmetic shift.

vL64Rotate (page 35)
64-bit left rotate.

vR64Rotate (page 40)
64-bit right rotate.

vL64Rotate2 (page 35)
64-bit left rotate with two rotation factors.

vR64Rotate2 (page 41)
64-bit right rotate with two rotation factors.

vL128Rotate (page 34)
128-bit left rotate.

vR128Rotate (page 40)
128-bit right rotate.

Integer Arithmetic Functions (from vBasicOps.h)

vU64Add (page 83)
Unsigned 64-bit addition (modular arithmetic).

vU64AddS (page 83)
Unsigned 64-bit addition with saturation (clipping).

vS64Add (page 52)
Signed 64-bit addition (modular arithmetic).

vS64AddS (page 53)
Signed 64-bit addition with saturation (clipping).

vU128Add (page 74)
Unsigned 128-bit addition (modular arithmetic).

vU128AddS (page 75)
Unsigned 128-bit addition with saturation (clipping).

vS128Add (page 44)
Signed 128-bit addition (modular arithmetic).

vS128AddS (page 44)
Signed 128-bit addition with saturation (clipping).

vU64Sub (page 84)
Unsigned 64-bit subtraction (modular arithmetic).

vU64SubS (page 84)
Unsigned 64-bit subtraction with saturation (clipping).

vS64Sub (page 54)
Signed 64-bit subtraction (modular arithmetic).

vS64SubS (page 54)
Signed 64-bit subtraction with saturation (clipping).

vU128Sub (page 76)
Unsigned 128-bit subtraction (modular arithmetic).

14 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU128SubS (page 76)
Unsigned 128-bit subtraction with saturation (clipping).

vS128Sub (page 45)
Signed 128-bit subtraction (modular arithmetic).

vS128SubS (page 45)
Signed 128-bit subtraction with saturation (clipping).

vU8HalfMultiply (page 85)
Unsigned 8-bit multiplication; results are same width as multiplicands.

vS8HalfMultiply (page 54)
Signed 8-bit multiplication; results are same width as multiplicands.

vU16HalfMultiply (page 76)
Unsigned 16-bit multiplication; results are same width as multiplicands.

vS16HalfMultiply (page 46)
Signed 16-bit multiplication; results are same width as multiplicands.

vU32HalfMultiply (page 80)
Unsigned 32-bit multiplication; results are same width as multiplicands.

vS32HalfMultiply (page 49)
Signed 32-bit multiplication; results are same width as multiplicands.

vU64HalfMultiply (page 84)
Unsigned 64-bit multiplication; results are same width as multiplicands.

vS64HalfMultiply (page 54)
Signed 64-bit multiplication; results are same width as multiplicands.

vU128HalfMultiply (page 75)
Unsigned 128-bit multiplication; results are same width as multiplicands.

vS128HalfMultiply (page 45)
Signed 128-bit multiplication; results are same width as multiplicands.

vU32FullMulEven (page 79)
Unsigned 32-bit multiplication; results are twice as wide as multiplicands, even-numbered elements
of multiplicand vectors are used. Note the big-endian convention: the leftmost element is element
0.

vU32FullMulOdd (page 80)
Unsigned 32-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements
of multiplicand vectors are used. Note the big-endian convention: the leftmost element is element
0.

vS32FullMulEven (page 49)
Signed 32-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

vS32FullMulOdd (page 49)
Signed 32-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

vU64FullMulEven (page 83)
Unsigned 64-bit multiplication; results are twice as wide as multiplicands, even-numbered elements
of multiplicand vectors are used. Note the big-endian convention: the leftmost element is element
0.

Functions by Task 15
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU64FullMulOdd (page 84)
Unsigned 64-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements
of multiplicand vectors are used. Note the big-endian convention: the leftmost element is element
0.

vS64FullMulEven (page 53)
Signed 64-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

vS64FullMulOdd (page 53)
Signed 64-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

vU8Divide (page 84)
Unsigned 8-bit division.

vS8Divide (page 54)
Signed 8-bit division.

vU16Divide (page 76)
Unsigned 16-bit division.

vS16Divide (page 46)
Signed 16-bit division.

vU32Divide (page 79)
Unsigned 32-bit division.

vS32Divide (page 49)
Signed 32-bit division.

vU64Divide (page 83)
Unsigned 64-bit division.

vS64Divide (page 53)
Signed 64-bit division.

vU128Divide (page 75)
Unsigned 128-bit division.

vS128Divide (page 44)
Signed 128-bit division.

Floating-Point Arithmetic and Auxiliary Functions (from vfp.h)

vdivf (page 31)
For each vector element, calculates A/B.

vsqrtf (page 68)
For each vector element, calculates the square root of X.

vrsqrtf (page 41)
For each vector element, calculates the inverse of the square root of X.

vfabf (page 32)
For each vector element, calculates the absolute value of v.

vcopysignf (page 30)
For each vector element, produces a value with the magnitude of arg2 and sign arg1. Note that the
order of the arguments matches the recommendation of the IEEE 754 floating-point standard, which
is opposite from the SANE copysign function.

16 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vnextafterf (page 39)
For each vector element, calculates the next representable value after x in the direction of y. If x is
equal to y, then y is returned.

vtablelookup (page 71)
For each vector element of Index_Vect, returns the corresponding value from Table.

Exponential and Logarithmic Functions (from vfp.h)

vexpf (page 31)
For each vector element, calculates the exponential of X.

vexpm1f (page 31)
For each vector element, calculates ExpM1(x) = Exp(x) - 1. But, for small enough arguments, ExpM1(x)
is expected to be more accurate than Exp(x) - 1.

vlogf (page 37)
For each vector element, calculates the natural logarithm of X.

vlog1pf (page 37)
For each vector element, calculates Log1P = Log(1 + x). But, for small enough arguments, Log1P is
expected to be more accurate than Log(1 + x).

vlogbf (page 37)
For each vector element, extracts the exponent of X, as a signed integral value. A subnormal argument
is treated as though it were first normalized. Thus: 1 <= x * 2^(-logb(x)) < 2.

vscalbf (page 56)
For each vector element, calculates x * 2^n efficiently. This is not normally done by computing 2^n
explicitly.

Trigonometric Functions (from vfp.h)

vsinf (page 65)
For each vector element, calculates the sine.

vcosf (page 30)
For each vector element, calculates the cosine.

vtanf (page 71)
For each vector element, calculates the tangent.

vasinf (page 29)
For each vector element, calculates the arcsine. Results are in the interval [-pi/2, pi/2].

vacosf (page 28)
For each vector element, calculates the arccosine. Results are in the interval [0, pi].

vatanf (page 29)
For each vector element, calculates the arctangent. Results are in the interval [-pi/2, pi/2].

vatan2f (page 29)
For each vector element, calculates the arctangent of arg2/arg1 in the interval [-pi,pi] using the sign
of both arguments to determine the quadrant of the computed value.

Functions by Task 17
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Hyperbolic Functions (from vfp.h)

vsinhf (page 65)
For each vector element, calculates the hyperbolic sine of X.

vcoshf (page 31)
For each vector element, calculates the hyperbolic cosine of X.

vtanhf (page 72)
For each vector element, calculates the hyperbolic tangent of X.

vasinhf (page 29)
For each vector element, calculates the inverse hyperbolic sine of X.

vacoshf (page 28)
For each vector element, calculates the inverse hyperbolic cosine of X.

vatanhf (page 30)
For each vector element, calculates the inverse hyperbolic tangent of X.

Power Functions (from vfp.h)

vipowf (page 32)
For each vector element, calculates X to the integer power of Y.

vpowf (page 39)
For each vector element, calculates X to the floating-point power of Y. The result is more accurate
than using exp(log(X)*Y).

Remainder Functions (from vfp.h)

vfmodf (page 32)
For each vector element, calculates X modulo Y.

vremainderf (page 41)
For each vector element, calculates the remainder of X/Y, according to the IEEE 754 floating-point
standard.

vremquof (page 41)
For each vector element, calculates the remainder of X/Y, according to the SANE standard. It stores
into QUO the 7 low-order bits of the integer quotient, such that -127 <= QUO <= 127.

Inquiry Functions (from vfp.h)

vclassifyf (page 30)
For each vector element, returns the class of the argument (one of the FP_ ... constants defined in
math.h).

vsignbitf (page 65)
For each vector element, returns a non-zero value if and only if the sign of arg is negative. This
includes NaNs, infinities and zeros.

18 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Array-Oriented Arithmetic and Auxiliary Functions (from vForce.h)

vvrecf (page 97)
For each single-precision array element, sets y to the reciprocal of y.

vvrec (page 96)
For each double-precision array element, sets y to the reciprocal of y.

vvdivf (page 92)
For each single-precision array element, sets z to y/x.

vvdiv (page 92)
For each double-precision array element, sets z to y/x.

vvsqrtf (page 100)
For each single-precision array element, sets y to the square root of x.

vvsqrt (page 99)
For each double-precision array element, sets y to the square root of x.

vvrsqrtf (page 97)
For each single-precision array element, sets y to the reciprocal of the square root of x.

vvrsqrt (page 97)
For each double-precision array element, sets y to the reciprocal of the square root of x.

vvintf (page 94)
For each single-precision array element, sets y to the integer truncation of x.

vvint (page 93)
For each double-precision array element, sets y to the integer truncation of x.

vvnintf (page 95)
For each single-precision array element, sets y to the nearest integer to x.

vvnint (page 95)
For each double-precision array element, sets y to the nearest integer to x.

vvceilf (page 89)
For each single-precision array element, sets y to the ceiling of x.

vvceil (page 89)
For each double-precision array element, sets y to the ceiling of x.

vvfloorf (page 93)
For each single-precision array element, sets y to the floor of x.

vvfloor (page 93)
For each double-precision array element, sets y to the floor of x.

Array-Oriented Exponential and Logarithmic Functions (from vForce.h)

vvexpf (page 92)
For each single-precision array element, sets y to the exponential of x.

vvexp (page 92)
For each double-precision array element, sets y to the exponential of x.

vvlogf (page 95)
For each single-precision array element, sets y to the natural logarithm of x.

Functions by Task 19
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvlog (page 94)
For each double-precision array element, sets y to the natural logarithm of x.

vvlog10f (page 94)
For each single-precision array element, sets y to the base 10 logarithm of x.

vvlog10 (page 94)
For each double-precision array element, sets y to the base 10 logarithm of x.

Array-Oriented Power Functions (from vForce.h)

vvpowf (page 96)
For each single-precision array element, sets z to x raised to the power of y.

vvpow (page 96)
For each double-precision array element, sets z to x raised to the power of y.

Array-Oriented Trigonometric Functions (from vForce.h)

vvsinf (page 98)
For each single-precision array element, sets y to the sine of x.

vvsin (page 97)
For each double-precision array element, sets y to the sine of x.

vvcosf (page 90)
For each single-precision array element, sets y to the cosine of x.

vvcos (page 90)
For each double-precision array element, sets y to the cosine of x.

vvtanf (page 100)
For each single-precision array element, sets y to the tangent of x.

vvtan (page 100)
For each double-precision array element, sets y to the tangent of x.

vvasinf (page 86)
For each single-precision array element, sets y to the arcsine of x.

vvasin (page 86)
For each double-precision array element, sets y to the arcsine of x.

vvacosf (page 85)
For each single-precision array element, sets y to the arccosine of x.

vvacos (page 85)
For each double-precision array element, sets y to the arccosine of x.

vvatanf (page 88)
For each single-precision array element, sets y to the arctangent of x.

vvatan (page 87)
For each double-precision array element, sets y to the arctangent of x.

vvatan2f (page 88)
For each single-precision array element, sets z to the arctangent of y/x.

20 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvatan2 (page 88)
For each double-precision array element, sets z to the arctangent of y/x.

vvsincosf (page 98)
For each single-precision array element, sets z to the sine of x and y to the cosine of x.

vvsincos (page 98)
For each double-precision array element, sets z to the sine of x and y to the cosine of x.

vvcosisinf (page 91)
For each single-precision array element, sets the real part of C to the sine of x and the imaginary part
of C to the cosine of x.

vvcosisin (page 91)
For each double-precision array element, sets the real part of C to the sine of x and the imaginary
part of C to the cosine of x.

Array-Oriented Hyperbolic Functions (from vForce.h)

vvsinhf (page 99)
For each single-precision array element, sets y to the hyperbolic sine of x.

vvsinh (page 99)
For each double-precision array element, sets y to the hyperbolic sine of x.

vvcoshf (page 91)
For each single-precision array element, sets y to the hyperbolic cosine of x.

vvcosh (page 90)
For each double-precision array element, sets y to the hyperbolic cosine of x.

vvtanhf (page 101)
For each single-precision array element, sets y to the hyperbolic tangent of x.

vvtanh (page 100)
For each double-precision array element, sets y to the hyperbolic tangent of x.

vvasinhf (page 87)
For each single-precision array element, sets y to the inverse hyperbolic sine of x.

vvasinh (page 87)
For each double-precision array element, sets y to the inverse hyperbolic sine of x.

vvacoshf (page 86)
For each single-precision array element, sets y to the inverse hyperbolic cosine of x.

vvacosh (page 86)
For each double-precision array element, sets y to the inverse hyperbolic cosine of x.

vvatanhf (page 89)
For each single-precision array element, sets y to the inverse hyperbolic tangent of x.

vvatanh (page 89)
For each double-precision array element, sets y to the inverse hyperbolic tangent of x.

Functions by Task 21
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Shift and Rotate Functions on Big Numbers (from vBigNum.h)

vLL256Shift (page 36)
256-bit logical left shift.

vLR256Shift (page 38)
256-bit logical right shift.

vA256Shift (page 27)
256-bit arithmetic shift.

vLL512Shift (page 36)
512-bit logical left shift.

vLR512Shift (page 38)
512-bit logical right shift .

vA512Shift (page 27)
512-bit arithmetic shift.

vLL1024Shift (page 36)
1024-bit logical left shift.

vLR1024Shift (page 38)
1024-bit logical right shift .

vA1024Shift (page 27)
1024-bit arithmetic shift.

vL256Rotate (page 35)
256-bit left rotate.

vR256Rotate (page 40)
256-bit right rotate.

vL512Rotate (page 35)
512-bit left rotate.

vR512Rotate (page 40)
512-bit right rotate.

vL1024Rotate (page 34)
1024-bit left rotate.

vR1024Rotate (page 39)
1024-bit right rotate.

Arithmetic Functions on Big Numbers (from vBigNum.h)

vU256Add (page 76)
Unsigned 256-bit addition (modular arithmetic).

vU256AddS (page 77)
Unsigned 256-bit addition with saturation (clipping).

vS256Add (page 46)
Signed 256-bit addition (modular arithmetic).

vS256AddS (page 46)
Signed 256-bit addition with saturation (clipping).

22 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU512Add (page 80)
Unsigned 512-bit addition (modular arithmetic).

vU512AddS (page 80)
Unsigned 512-bit addition with saturation (clipping).

vS512Add (page 50)
Signed 512-bit addition (modular arithmetic).

vS512AddS (page 50)
Signed 512-bit addition with saturation (clipping).

vU1024Add (page 72)
Unsigned 1024-bit addition (modular arithmetic).

vU1024AddS (page 72)
Unsigned 1024-bit addition with saturation (clipping).

vS1024Add (page 42)
Signed 1024-bit addition (modular arithmetic).

vS1024AddS (page 42)
Signed 1024-bit addition with saturation (clipping).

vU256Sub (page 78)
Unsigned 256-bit subtraction (modular arithmetic).

vU256SubS (page 79)
Unsigned 256-bit subtraction with saturation (clipping).

vS256Sub (page 48)
Signed 256-bit subtraction (modular arithmetic).

vS256SubS (page 48)
Signed 256-bit subtraction with saturation (clipping).

vU512Sub (page 82)
Unsigned 512-bit subtraction (modular arithmetic).

vU512SubS (page 82)
Unsigned 512-bit subtraction with saturation (clipping).

vS512Sub (page 52)
Signed 512-bit subtraction (modular arithmetic).

vS512SubS (page 52)
Signed 512-bit subtraction with saturation (clipping).

vU1024Sub (page 74)
Unsigned 1024-bit subtraction (modular arithmetic).

vU1024SubS (page 74)
Unsigned 1024-bit subtraction with saturation (clipping).

vS1024Sub (page 43)
Signed 1024-bit subtraction (modular arithmetic).

vS1024SubS (page 44)
Signed 1024-bit subtraction with saturation (clipping).

vU256Neg (page 78)
Unsigned 256-bit negation.

vS256Neg (page 48)
Signed 256-bit negation.

Functions by Task 23
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU512Neg (page 82)
Unsigned 512-bit negation.

vS512Neg (page 51)
Signed 512-bit negation.

vU1024Neg (page 73)
Unsigned 1024-bit negation.

vS1024Neg (page 43)
Signed 1024-bit negation.

vU256Mod (page 78)
Unsigned 256-bit mod.

vS256Mod (page 48)
Signed 256-bit mod.

vU512Mod (page 81)
Unsigned 512-bit mod.

vS512Mod (page 51)
Signed 512-bit mod.

vU1024Mod (page 73)
Unsigned 1024-bit mod.

vS1024Mod (page 43)
Signed 256-bit Mod.

vU256HalfMultiply (page 78)
Unsigned 256-bit multiplication; result is the same width as multiplicands.

vS256HalfMultiply (page 47)
Signed 256-bit multiplication; result is the same width as multiplicands.

vU512HalfMultiply (page 81)
Unsigned 512-bit multiplication; result is the same width as multiplicands.

vS512HalfMultiply (page 51)
Signed 512-bit multiplication; result is the same width as multiplicands.

vU1024HalfMultiply (page 73)
Unsigned 1024-bit multiplication; result is the same width as multiplicands.

vS1024HalfMultiply (page 42)
Signed 1024-bit multiplication; result is the same width as multiplicands.

vU128FullMultiply (page 75)
Unsigned 128-bit multiplication; result is twice as wide as multiplicands.

vS128FullMultiply (page 45)
Signed 128-bit multiplication; result is twice as wide as multiplicands.

vU256FullMultiply (page 77)
Unsigned 256-bit multiplication; result is twice as wide as multiplicands.

vS256FullMultiply (page 47)
Signed 256-bit multiplication; result is twice as wide as multiplicands.

vU512FullMultiply (page 81)
Unsigned 512-bit multiplication; result is twice as wide as multiplicands.

vS512FullMultiply (page 51)
Signed 512-bit multiplication; result is twice as wide as multiplicands.

24 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU256Divide (page 77)
Unsigned 256-bit division.

vS256Divide (page 47)
Signed 256-bit division.

vU512Divide (page 81)
Unsigned 512-bit division.

vS512Divide (page 50)
Signed 512-bit division.

vU1024Divide (page 73)
Unsigned 1024-bit division.

vS1024Divide (page 42)
Signed 1024-bit division.

Vector-Scalar Linear Algebra Functions (from vectorOps.h)

vIsamax (page 32)
Finds the position of the first vector element having the largest absolute value.

vIsamin (page 33)
Finds the position of the first vector element having the smallest absolute value.

vIsmax (page 33)
Finds the position of the first vector element having the maximum value.

vIsmin (page 34)
Finds the position of the first vector element having the minimum value.

vSasum (page 55)
Finds the sum of the absolute values of the elements in a vector.

vSsum (page 69)
Finds the sum of the values of the elements in a vector.

vSaxpy (page 55)
Multiplies a vector by a scalar , adds it to a second vector , and stores the result in the second vector.

vSnaxpy (page 66)
Performs the computation of vSaxpy n times, using a different multiplier each time.

vScopy (page 56)
Copies one vector to another.

vSdot (page 56)
Computes the dot product of two vectors.

vSndot (page 66)
Computes the dot products of n pairs of vectors, accumulating or storing the results in an array of n
float values.

vSnrm2 (page 67)
Finds the Euclidean length of a vector.

vSnorm2 (page 67)
Finds the Euclidean length of a vector.

Functions by Task 25
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vSrot (page 68)
Applies planar rotation to a set of n points whose x and y coordinates are contained in two arrays of
vectors.

vSscal (page 69)
Scales a vector in place.

vSswap (page 70)
Interchanges the elements of two vectors.

vSyax() (page 70)
Multiplies each element of a vector and stores the results in a second vector.

vSzaxpy() (page 71)
Multiplies a vector by a scalar, adds it to a second vector, and stores the result in a third vector.

Matrix-Vector Linear Algebra Functions (from vectorOps.h)

vSgemv() (page 61)
Multiplies a vector by a scalar. Multiplies a matrix by another scalar, then by a second vector, and
adds the resulting vector to the first vector. This function can also perform the calculation with the
transpose of the original matrix instead of the matrix itself. A selector parameter determines whether
the transpose is used.

vSgemx() (page 62)
Multiplies a matrix by a scalar and then by a vector, and adds the resulting vector to a second vector.

vSgemtx() (page 59)
Forms the transpose of a matrix, multiplies it by a scalar and then by a vector, and adds the resulting
vector to a second vector.

Matrix Operations (from vectorOps.h)

vSgeadd() (page 57)
Matrix addition for general matrices or their transposes.

vSgesub() (page 62)
Matrix subtraction for general matrices or their transposes.

vSgemul() (page 60)
Matrix multiplication for general matrices or their transposes.

vSgemm() (page 58)
Combined matrix multiplication and addition for general matrices or their transposes.

vSgetmi() (page 63)
General matrix transpose, in place.

vSgetmo() (page 64)
General matrix transpose, out of place.

vSgevv() (page 64)
Multiplies two matrices and places the results in a third matrix.

26 Functions by Task
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Functions

vA1024Shift
1024-bit arithmetic shift.

extern void vA1024Shift(
 const vS1024 * a,
 UInt32 shiftAmount,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vA128Shift
128-bit arithmetic shift.

extern vUInt32 vA128Shift(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vA256Shift
256-bit arithmetic shift.

extern void vA256Shift(
 const vS256 * a,
 UInt32 shiftAmount,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vA512Shift
512-bit arithmetic shift.

Functions 27
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vA512Shift(
 const vS512 * a,
 UInt32 shiftAmount,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vA64Shift
64-bit arithmetic shift.

extern vUInt32 vA64Shift(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vA64Shift2
64-bit arithmetic shift with two shift factors.

extern vUInt32 vA64Shift2(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vacosf
For each vector element, calculates the arccosine. Results are in the interval [0, pi].

extern vFloat vacosf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vacoshf
For each vector element, calculates the inverse hyperbolic cosine of X.

28 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vFloat vacoshf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vasinf
For each vector element, calculates the arcsine. Results are in the interval [-pi/2, pi/2].

extern vFloat vasinf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vasinhf
For each vector element, calculates the inverse hyperbolic sine of X.

extern vFloat vasinhf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vatan2f
For each vector element, calculates the arctangent of arg2/arg1 in the interval [-pi,pi] using the sign of both
arguments to determine the quadrant of the computed value.

extern vFloat vatan2f(vFloat arg1, vFloat arg2);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vatanf
For each vector element, calculates the arctangent. Results are in the interval [-pi/2, pi/2].

Functions 29
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vFloat vatanf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vatanhf
For each vector element, calculates the inverse hyperbolic tangent of X.

extern vFloat vatanhf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vclassifyf
For each vector element, returns the class of the argument (one of the FP_ ... constants defined in math.h).

extern vUInt32 vclassifyf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vcopysignf
For each vector element, produces a value with the magnitude of arg2 and sign arg1. Note that the order
of the arguments matches the recommendation of the IEEE 754 floating-point standard, which is opposite
from the SANE copysign function.

extern vFloat vcopysignf(vFloat arg2, vFloat arg1);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vcosf
For each vector element, calculates the cosine.

30 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vFloat vcosf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vcoshf
For each vector element, calculates the hyperbolic cosine of X.

extern vFloat vcoshf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vdivf
For each vector element, calculates A/B.

extern vFloat vdivf(vFloat A, vFloat B);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vexpf
For each vector element, calculates the exponential of X.

extern vFloat vexpf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vexpm1f
For each vector element, calculates ExpM1(x) = Exp(x) - 1. But, for small enough arguments, ExpM1(x) is
expected to be more accurate than Exp(x) - 1.

Functions 31
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vFloat vexpm1f(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vfabf
For each vector element, calculates the absolute value of v.

extern vFloat vfabf(vFloat v);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vfmodf
For each vector element, calculates X modulo Y.

extern vFloat vfmodf(vFloat X, vFloat Y);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vipowf
For each vector element, calculates X to the integer power of Y.

extern vFloat vipowf(vFloat X, vSInt32 Y);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vIsamax
Finds the position of the first vector element having the largest absolute value.

32 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern SInt32 vIsamax(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The index of the first element having the largest absolute value in the vector.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vIsamin
Finds the position of the first vector element having the smallest absolute value.

extern SInt32 vIsamin(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The index of the first element having the smallest absolute value in the vector.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vIsmax
Finds the position of the first vector element having the maximum value.

extern SInt32 vIsmax(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The index of the first element having the maximum value in the vector.

Functions 33
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vIsmin
Finds the position of the first vector element having the minimum value.

extern SInt32 vIsmin(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The index of the first element having the minimum value in the vector.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vL1024Rotate
1024-bit left rotate.

extern void vL1024Rotate(
 const vU1024 * a,
 UInt32 rotateAmount,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vL128Rotate
128-bit left rotate.

extern vUInt32 vL128Rotate(vUInt32 vA, vUInt8 vRotateFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

34 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vL256Rotate
256-bit left rotate.

extern void vL256Rotate(
 const vU256 * a,
 UInt32 rotateAmount,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vL512Rotate
512-bit left rotate.

extern void vL512Rotate(
 const vU512 * a,
 UInt32 rotateAmount,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vL64Rotate
64-bit left rotate.

extern vUInt32 vL64Rotate(vUInt32 vA, vUInt8 vRotateFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vL64Rotate2
64-bit left rotate with two rotation factors.

extern vUInt32 vL64Rotate2(vUInt32 vA, vUInt8 vRotateFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

Functions 35
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vLL1024Shift
1024-bit logical left shift.

extern void vLL1024Shift(
 const vU1024 * a,
 UInt32 shiftAmount,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLL256Shift
256-bit logical left shift.

extern void vLL256Shift(
 const vU256 * a,
 UInt32 shiftAmount,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLL512Shift
512-bit logical left shift.

extern void vLL512Shift(
 const vU512 * a,
 UInt32 shiftAmount,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLL64Shift
64-bit logical left shift.

extern vUInt32 vLL64Shift(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

36 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBasicOps.h

vLL64Shift2
64-bit logical left shift with two shift factors.

extern vUInt32 vLL64Shift2(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vlog1pf
For each vector element, calculates Log1P = Log(1 + x). But, for small enough arguments, Log1P is expected
to be more accurate than Log(1 + x).

extern vFloat vlog1pf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vlogbf
For each vector element, extracts the exponent of X, as a signed integral value. A subnormal argument is
treated as though it were first normalized. Thus: 1 <= x * 2^(-logb(x)) < 2.

extern vFloat vlogbf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vlogf
For each vector element, calculates the natural logarithm of X.

extern vFloat vlogf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

Functions 37
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vLR1024Shift
1024-bit logical right shift .

extern void vLR1024Shift(
 const vU1024 * a,
 UInt32 shiftAmount,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLR256Shift
256-bit logical right shift.

extern void vLR256Shift(
 const vU256 * a,
 UInt32 shiftAmount,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLR512Shift
512-bit logical right shift .

extern void vLR512Shift(
 const vU512 * a,
 UInt32 shiftAmount,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vLR64Shift
64-bit logical right shift.

extern vUInt32 vLR64Shift(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

38 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBasicOps.h

vLR64Shift2
64-bit logical right shift with two shift factors.

extern vUInt32 vLR64Shift2(vUInt32 vA, vUInt8 vShiftFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vnextafterf
For each vector element, calculates the next representable value after x in the direction of y. If x is equal to
y, then y is returned.

extern vFloat vnextafterf(vFloat x, vFloat y);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vpowf
For each vector element, calculates X to the floating-point power of Y. The result is more accurate than using
exp(log(X)*Y).

extern vFloat vpowf(vFloat X, vFloat Y);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vR1024Rotate
1024-bit right rotate.

extern void vR1024Rotate(
 const vU1024 * a,
 UInt32 rotateAmount,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Functions 39
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

vR128Rotate
128-bit right rotate.

extern vUInt32 vR128Rotate(vUInt32 vA, vUInt8 vRotateFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vR256Rotate
256-bit right rotate.

extern void vR256Rotate(const vU256 * a, UInt32 rotateAmount, vU256
* result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vR512Rotate
512-bit right rotate.

extern void vR512Rotate(
 const vU512 * a,
 UInt32 rotateAmount,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vR64Rotate
64-bit right rotate.

extern vUInt32 vR64Rotate(vUInt32 vA, vUInt8 RotateFactor);

Availability
Mac OS X version 10.0 and later.

40 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBasicOps.h

vR64Rotate2
64-bit right rotate with two rotation factors.

extern vUInt32 vR64Rotate2(vUInt32 vA, vUInt8 vRotateFactor);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vremainderf
For each vector element, calculates the remainder of X/Y, according to the IEEE 754 floating-point standard.

extern vFloat vremainderf(vFloat X, vFloat Y);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vremquof
For each vector element, calculates the remainder of X/Y, according to the SANE standard. It stores into QUO
the 7 low-order bits of the integer quotient, such that -127 <= QUO <= 127.

extern vFloat vremquof(vFloat X, vFloat Y, vUInt32 *QUO);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vrsqrtf
For each vector element, calculates the inverse of the square root of X.

extern vFloat vrsqrtf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

Functions 41
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vS1024Add
Signed 1024-bit addition (modular arithmetic).

extern void vS1024Add(
 const vS1024 * a,
 const vS1024 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024AddS
Signed 1024-bit addition with saturation (clipping).

extern void vS1024AddS(
 const vS1024 * a,
 const vS1024 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024Divide
Signed 1024-bit division.

extern void vS1024Divide(
 const vS1024 * numerator,
 const vS1024 * divisor,
 vS1024 * result,
 vS1024 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024HalfMultiply
Signed 1024-bit multiplication; result is the same width as multiplicands.

42 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vS1024HalfMultiply(
 const vS1024 * a,
 const vS1024 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024Mod
Signed 256-bit Mod.

extern void vS1024Mod(
 const vS1024 * numerator,
 const vS1024 * divisor,
 vS1024 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024Neg
Signed 1024-bit negation.

extern void vS1024Neg(
 const vS1024 * a,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS1024Sub
Signed 1024-bit subtraction (modular arithmetic).

extern void vS1024Sub(
 const vS1024 * a,
 const vS1024 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Functions 43
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

vS1024SubS
Signed 1024-bit subtraction with saturation (clipping).

extern void vS1024SubS(
 const vS1024 * a,
 const vS1024 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS128Add
Signed 128-bit addition (modular arithmetic).

extern vSInt32 vS128Add(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS128AddS
Signed 128-bit addition with saturation (clipping).

extern vSInt32 vS128AddS(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS128Divide
Signed 128-bit division.

extern vSInt32 vS128Divide(vSInt32 vN, vSInt32 vD, vSInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

44 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBasicOps.h

vS128FullMultiply
Signed 128-bit multiplication; result is twice as wide as multiplicands.

extern void vS128FullMultiply(
 const vS128 * a,
 const vS128 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS128HalfMultiply
Signed 128-bit multiplication; results are same width as multiplicands.

extern vSInt32 vS128HalfMultiply(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS128Sub
Signed 128-bit subtraction (modular arithmetic).

extern vSInt32 vS128Sub(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS128SubS
Signed 128-bit subtraction with saturation (clipping).

extern vSInt32 vS128SubS(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Functions 45
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBasicOps.h

vS16Divide
Signed 16-bit division.

extern vSInt16 vS16Divide(vSInt16 vN, vSInt16 vD, vSInt16 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS16HalfMultiply
Signed 16-bit multiplication; results are same width as multiplicands.

extern vSInt16 vS16HalfMultiply(vSInt16 vA, vSInt16 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS256Add
Signed 256-bit addition (modular arithmetic).

extern void vS256Add(
 const vS256 * a,
 const vS256 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256AddS
Signed 256-bit addition with saturation (clipping).

46 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vS256AddS(
 const vS256 * a,
 const vS256 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256Divide
Signed 256-bit division.

extern void vS256Divide(
 const vS256 * numerator,
 const vS256 * divisor,
 vS256 * result,
 vS256 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256FullMultiply
Signed 256-bit multiplication; result is twice as wide as multiplicands.

extern void vS256FullMultiply(
 const vS256 * a,
 const vS256 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256HalfMultiply
Signed 256-bit multiplication; result is the same width as multiplicands.

extern void vS256HalfMultiply(
 const vS256 * a,
 const vS256 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Functions 47
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

vS256Mod
Signed 256-bit mod.

extern void vS256Mod(
 const vS256 * numerator,
 const vS256 * divisor,
 vS256 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256Neg
Signed 256-bit negation.

extern void vS256Neg(
 const vS256 * a,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256Sub
Signed 256-bit subtraction (modular arithmetic).

extern void vS256Sub(
 const vS256 * a,
 const vS256 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS256SubS
Signed 256-bit subtraction with saturation (clipping).

48 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vS256SubS(
 const vS256 * a,
 const vS256 * b,
 vS256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS32Divide
Signed 32-bit division.

extern vSInt32 vS32Divide(vSInt32 vN, vSInt32 vD, vSInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS32FullMulEven
Signed 32-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vSInt32 vS32FullMulEven(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS32FullMulOdd
Signed 32-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of multiplicand
vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vSInt32 vS32FullMulOdd(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS32HalfMultiply
Signed 32-bit multiplication; results are same width as multiplicands.

Functions 49
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vSInt32 vS32HalfMultiply(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS512Add
Signed 512-bit addition (modular arithmetic).

extern void vS512Add(
 const vS512 * a,
 const vS512 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512AddS
Signed 512-bit addition with saturation (clipping).

extern void vS512AddS(
 const vS512 * a,
 const vS512 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512Divide
Signed 512-bit division.

extern void vS512Divide(
 const vS512 * numerator,
 const vS512 * divisor,
 vS512 * result,
 vS512 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

50 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vS512FullMultiply
Signed 512-bit multiplication; result is twice as wide as multiplicands.

extern void vS512FullMultiply(
 const vS512 * a,
 const vS512 * b,
 vS1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512HalfMultiply
Signed 512-bit multiplication; result is the same width as multiplicands.

extern void vS512HalfMultiply(
 const vS512 * a,
 const vS512 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512Mod
Signed 512-bit mod.

extern void vS512Mod(
 const vS512 * numerator,
 const vS512 * divisor,
 vS512 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512Neg
Signed 512-bit negation.

Functions 51
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vS512Neg(
 const vS512 * a,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512Sub
Signed 512-bit subtraction (modular arithmetic).

extern void vS512Sub(
 const vS512 * a,
 const vS512 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS512SubS
Signed 512-bit subtraction with saturation (clipping).

extern void vS512SubS(
 const vS512 * a,
 const vS512 * b,
 vS512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vS64Add
Signed 64-bit addition (modular arithmetic).

extern vSInt32 vS64Add(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

52 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vS64AddS
Signed 64-bit addition with saturation (clipping).

extern vSInt32 vS64AddS(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS64Divide
Signed 64-bit division.

extern vSInt32 vS64Divide(vSInt32 vN, vSInt32 vD, vSInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS64FullMulEven
Signed 64-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vSInt32 vS64FullMulEven(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS64FullMulOdd
Signed 64-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of multiplicand
vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vSInt32 vS64FullMulOdd(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

Functions 53
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vS64HalfMultiply
Signed 64-bit multiplication; results are same width as multiplicands.

extern vSInt32 vS64HalfMultiply(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS64Sub
Signed 64-bit subtraction (modular arithmetic).

extern vSInt32 vS64Sub(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS64SubS
Signed 64-bit subtraction with saturation (clipping).

extern vSInt32 vS64SubS(vSInt32 vA, vSInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS8Divide
Signed 8-bit division.

extern vSInt8 vS8Divide(vSInt8 vN, vSInt8 vD, vSInt8 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vS8HalfMultiply
Signed 8-bit multiplication; results are same width as multiplicands.

54 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vSInt8 vS8HalfMultiply(vSInt8 vA, vSInt8 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vSasum
Finds the sum of the absolute values of the elements in a vector.

extern float vSasum(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The sum of the absolute values of the elements in the vector.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSaxpy
Multiplies a vector by a scalar , adds it to a second vector , and stores the result in the second vector.

extern void vSaxpy(
 SInt32 n,
 float alpha,
 const vector float x[],
 vector float y[]);

Parameters
n

Number of elements in each of the vectors x and y; must be a multiple of 4.

alpha
A multiplier for the vector x.

x
A vector array of float values.

y
A second vector array of float values.

Discussion
The elements of x are multiplied by alpha and added to the corresponding elements of y. The results are
stored in y.

Functions 55
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vscalbf
For each vector element, calculates x * 2^n efficiently. This is not normally done by computing 2^n explicitly.

extern vFloat vscalbf(vFloat X, vSInt32 n);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vScopy
Copies one vector to another.

extern void vScopy(
 SInt32 n,
 const vector float x[],
 vector float y[]);

Parameters
n

Number of elements in vectors x and y; must be a multiple of 4.

x
A vector array of float values.

y
A second vector array of float values.

Discussion
The elements of x are copied to the corresponding elements of y.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSdot
Computes the dot product of two vectors.

56 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern float vSdot(
 SInt32 n,
 const vector float x[],
 const vector float y[]);

Parameters
n

Number of elements in vectors x and y; must be a multiple of 4.

x
A vector array of float values.

y
A second vector array of float values.

Return Value
The dot product of the two vectors.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSgeadd()
Matrix addition for general matrices or their transposes.

extern void vSgeadd(
 SInt32 height,
 SInt32 width,
 const vector float a[],
 char forma,
 const vector float b[],
 char formb,
 vector float c[]);

Parameters
height

number of rows in the matrices to be added; must be a multiple of 4.

width
number of columns in the matrices to be added; must be a multiple of 4.

a
a matrix with elements of type float. If forma = ‘n’, the matrix itself is used in the calculation and
it has height rows and width columns. If forma = ‘T’, the transpose is used and a has width rows
and height columns.

forma
selector with a value of ‘n’ or ‘T’.

b
a matrix with elements of type float. If formb = ‘n’, the matrix itself is used in the calculation and
it has height rows and width columns. If formb = ‘T’, the transpose is used and b has width rows
and height columns.

Functions 57
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

formb
selector with a value of ‘n’ or ‘T’.

c
destination matrix with height rows and width columns.

Discussion
Matrix a (or its transpose) is added to matrix b (or its transpose); the result is stored in mactrix c.

Availability
Mac OS X version 10.0 and later.

Declared In

vSgemm()
Combined matrix multiplication and addition for general matrices or their transposes.

extern void vSgemm(
 Sint32 l,
 SInt32 m,
 SInt32 n,
 const vector float a[],
 char forma,
 const vector float b[],
 char formb,
 vector float c,
 float alpha,
 float beta
 vector float matrix[]);

Parameters
l

number of rows in matrix c; must be a multiple of 4.

m
if forma = ‘n’, m is the number of columns in matrix a ; if forma = ‘T’, m is the number of rows in matrix
a. Also, if formb = ‘n’, m is the number of rows in matrix b; if formb = ‘T’, m is the number of columns
in matrix b. m must be a multiple of 4.

n
number of columns in matrix c; must be a multiple of 4.

a
a matrix with elements of type float. If forma = ‘n’, the matrix itself is used in the calculation and
it has l rows and m columns. If forma = ‘T’, the transpose is used and a has m rows and l columns.
Thus the matrix used in the calculation is l by n.

forma
selector with a value of ‘n’ or ‘T’.

b
a matrix with elements of type float. If formb = ‘n’, the matrix itself is used in the calculation and
it has m rows and n columns. If formb = ‘T’, the transpose is used and b has n rows and m columns.
Thus the matrix used in the calculation is m by n.

formb
selector with a value of ‘n’ or ‘T’.

58 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

c
an l by n matrix with elements of type float.

alpha
multiplier for matrix a.

beta
multiplier for matrix c.

matrix
destination matrix with l rows and n columns.

Discussion
Matrix a (or its transpose) is multiplied by matrix b (or its transpose); matrix c is multiplied by beta, and the
result is added to the result of the matrix multiplication; the result is stored in matrix matrix

Availability
Mac OS X version 10.0 and later.

Declared In

vSgemtx()
Forms the transpose of a matrix, multiplies it by a scalar and then by a vector, and adds the resulting vector
to a second vector.

extern void vSgemtx(
 SInt32 m,
 SInt32 n,
 float alpha,
 const vector float a[],
 const vector float x[],
 vector float y[]);

Parameters
m

number of rows in a, and the length of vector y; must be a multiple of 4.

n
number of columns in a, and the length of vector x; must be a multiple of 4.

alpha
scalar multiplier for matrix a.

a
m by n matrix with elements of type float.

x
vector with elements of type float.

y
destination vector with n elements of type float.

Discussion
The transpose of matrix a is multiplied by alpha and then by vector x; the resulting vector is added to vector
y, and the results are stored in y.

Availability
Mac OS X version 10.0 and later.

Functions 59
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In

vSgemul()
Matrix multiplication for general matrices or their transposes.

extern void vSgemul(
 Sint32 l,
 SInt32 m,
 SInt32 n,
 const vector float a[],
 char forma,
 const vector float b[],
 char formb,
 vector float matrix[]);

Parameters
l

number of rows in matrix matrix; must be a multiple of 4.

m
if forma = ‘n’, m is the number of columns in matrix a ; if forma = ‘T’, m is the number of rows in matrix
a. Also, if formb = ‘n’, m is the number of rows in matrix b; if formb = ‘T’, m is the number of columns
in matrix b. m must be a multiple of 4.

n
number of columns in the matrix matrix; must be a multiple of 4.

a
a matrix with elements of type float. If forma = ‘n’, the matrix itself is used in the calculation and
it has l rows and m columns. If forma = ‘T’, the transpose is used and a has m rows and l columns.
Thus the matrix used in the calculation is l by m.

forma
selector with a value of ‘n’ or ‘T’.

b
a matrix with elements of type float. If formb = ‘n’, the matrix itself is used in the calculation and
it has m rows and n columns. If formb = ‘T’, the transpose is used and b has n rows and m columns.
Thus the matrix used in the calculation is m by n.

formb
selector with a value of ‘n’ or ‘T’.

matrix
destination matrix with l rows and n columns.

Discussion
Matrix a (or its transpose) is multiplied by matrix b (or its transpose); the result is stored in matrix matrix.

Availability
Mac OS X version 10.0 and later.

60 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In

vSgemv()
Multiplies a vector by a scalar. Multiplies a matrix by another scalar, then by a second vector, and adds the
resulting vector to the first vector. This function can also perform the calculation with the transpose of the
original matrix instead of the matrix itself. A selector parameter determines whether the transpose is used.

extern void vSgemv(
 char forma,
 SInt32 m,
 SInt32 n,
 float alpha,
 const vector float a[],
 const vector float x[],
 float beta,
 vector float y[]);

Parameters
forma

selects the variant computation to be performed: ‘T’ causes the transform of matrix a to be used, ‘n’
causes a itself to be used.

m
number of rows in a. If forma = ‘n’, m is the length of vector y; if forma = ‘T’, m is the length of vector
x; must be a multiple of 4.

n
number of columns in a. If forma = ‘n’, m is the length of vector x; if forma = ‘T’, m is the length of
vector y; must be a multiple of 4.

alpha
scalar multiplier for matrix a.

a
m by n matrix with elements of type float.

x
vector with elements of type float.

beta
scalar multiplier for vector y.

y
destination vector with n elements of type float.

Discussion
Vector y is multiplied by beta. Matrix a is multiplied by alpha. Then if forma = ‘n’, a is multiplied by vector
x; if forma = ‘T’, the transpose of a is multiplied by x. The resulting vector is added to vector y, and the results
are stored in y.

Availability
Mac OS X version 10.0 and later.

Functions 61
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In

vSgemx()
Multiplies a matrix by a scalar and then by a vector, and adds the resulting vector to a second vector.

extern void vSgemx(
 SInt32 m,
 SInt32 n,
 float alpha,
 const vector float a[],
 const vector float x[],
 vector float y[]);

Parameters
m

number of rows in a, and the length of vector y; must be a multiple of 4.

n
number of columns in a, and the length of vector x; must be a multiple of 4.

alpha
scalar multiplier for matrix a.

a
m by n matrix with elements of type float.

x
vector with elements of type float.

y
destination vector with n elements of type float.

Discussion
Matrix a is multiplied by alpha and then by vector x; the resulting vector is added to vector y, and the results
are stored in y.

Availability
Mac OS X version 10.0 and later.

Declared In

vSgesub()
Matrix subtraction for general matrices or their transposes.

62 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vSgesub(
 SInt32 height,
 SInt32 width,
 const vector float a[],
 char forma,
 const vector float b[],
 char formb,
 vector float c[]);

Parameters
height

number of rows in the matrices to be subtracted; must be a multiple of 4.

width
number of columns in the matrices to be subtracted; must be a multiple of 4.

a
a matrix with elements of type float. If forma = ‘n’, the matrix itself is used in the calculation and
it has height rows and width columns. If forma = ‘T’, the transpose is used and a has width rows
and height columns.

forma
selector with a value of ‘n’ or ‘T’.

b
a matrix with elements of type float. If formb = ‘n’, the matrix itself is used in the calculation and
it has height rows and width columns. If formb = ‘T’, the transpose is used and b has width rows
and height columns.

formb
selector with a value of ‘n’ or ‘T’.

c
destination matrix with height rows and width columns.

Discussion
Matrix b (or its transpose) is subtracted from matrix a (or its transpose); the result is stored in mactrix c.

Availability
Mac OS X version 10.0 and later.

Declared In

vSgetmi()
General matrix transpose, in place.

extern void vSgetmi(
 SInt32 size,
 vector float x[]);

Parameters
size

number of rows and columns in matrix x; must be a multiple of 4.

x
square matrix with size rows and size columns.

Functions 63
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Discussion
The matrix x is transposed in place.

Availability
Mac OS X version 10.0 and later.

Declared In

vSgetmo()
General matrix transpose, out of place.

extern void vSgetmo(
 SInt32 height,
 SInt32 width,
 const vector float x[],
 vector float y[]);

Parameters
height

number of rows in matrix x and number of columns in matrix y; must be a multiple of 4.

width
number of columns in matrix x and number of rows in matrix y; must be a multiple of 4.

x
matrix with height rows and width columns.

y
matrix with width rows and height columns.

Discussion
The matrix x is transposed into matrix y.

Availability
Mac OS X version 10.0 and later.

Declared In

vSgevv()
Multiplies two matrices and places the results in a third matrix.

extern void vSgevv(
 SInt32 l,
 SInt32 n,
 const vector float a[],
 const vector float b[],
 vector float m[]);

Parameters
l

number of rows in matrix a and in matrix m; must be a multiple of 4.

n
number of columns in matrix b and in matrix m; must be a multiple of 4.

64 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

a
matrix with l rows.

b
matrix with n columns.

m
matrix with l rows and n columns.

Discussion
The matrices a and b are multiplied and the result is stored in matrix m.

Availability
Mac OS X version 10.0 and later.

Declared In

vsignbitf
For each vector element, returns a non-zero value if and only if the sign of arg is negative. This includes
NaNs, infinities and zeros.

extern vUInt32 vsignbitf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vsinf
For each vector element, calculates the sine.

extern vFloat vsinf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vsinhf
For each vector element, calculates the hyperbolic sine of X.

extern vFloat vsinhf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

Functions 65
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vSnaxpy
Performs the computation of vSaxpy n times, using a different multiplier each time.

extern void vSnaxpy(
 SInt32 n,
 SInt32 m,
 const vector float a[],
 const vector float x[],
 vector float y[]);

Parameters
n

Number of elements in vector a; must be a multiple of 4.

m
Number of elements in each of the vectors x and y; must be a multiple of 4.

x
A vector array of float values.

y
A second vector array of float values.

Discussion
For i = 0 to n-1, the elements of x are multiplied by a[i] and added to the corresponding elements of y. The
results are accumulated and stored in y.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSndot
Computes the dot products of n pairs of vectors, accumulating or storing the results in an array of n float
values.

extern void vSndot(
 SInt32 n,
 SInt32 m,
 float s[],
 SInt32 isw,
 const vector float x[],
 const vector float y[]);

Parameters
n

Number of dot products to compute, and number of elements in vector s ; must be a multiple of 4.

m
Number of elements in the vectors whose dot products are computed; must be a multiple of 4.

s
Destination vector; the n dot products are accumulated or stored here.

66 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

isw
A key that selects one of the four variants of this function: see Discussion below.

x
A matrix whose rows are n floating-point vectors, each containing m values.

y
A second matrix whose rows are n floating-point vectors, each containing m values.

Discussion
For i = 0 to n-1, the dot product of vectors x[i] and y[i] is computed. The dot product is accumulated or stored
in s[i], according to the value of isw:

 ■ if isw = 1, the dot product is stored in s[i].

 ■ if isw = 2, the dot product is negated and then stored in s[i].

 ■ if isw = 3, the dot product is added to the value in s[i].

 ■ if isw = 4, the dot product is negated and then added to the value in s[i].

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSnorm2
Finds the Euclidean length of a vector.

extern float vSnorm2(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The Euclidean length of x.

Discussion
Input is not scaled.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSnrm2
Finds the Euclidean length of a vector.

Functions 67
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern float vSnrm2(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The Euclidean length of x.

Discussion
Input is scaled to avoid destructive underflow and overflow.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vsqrtf
For each vector element, calculates the square root of X.

extern vFloat vsqrtf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vSrot
Applies planar rotation to a set of n points whose x and y coordinates are contained in two arrays of vectors.

extern void vSrot(
 SInt32 n,
 vector float x[],
 vector float y[],
 float c,
 float s);

Parameters
n

number of points to be rotated; must be a multiple of 4.

x
vector with n/4 elements of type vector float, representing the x-coordinates of the points.

y
vector with n/4 elements of type vector float, representing the y-coordinates of the points.

c
cosine of the angle of rotation.

68 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

s
sine of the angle of rotation.

Discussion
The coordinates are modified in place in the vectors in arrays x and y.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSscal
Scales a vector in place.

extern void vSscal(SInt32 n, float alpha, vector float x[]);

Parameters
n

number of elements in vector x; must be a multiple of 4.

alpha
scaling factor.

v
vector with n elements of type float.

Discussion
Each element of vector x is multiplied in place by alpha.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSsum
Finds the sum of the values of the elements in a vector.

extern float vSsum(SInt32 count, const vector float x[]);

Parameters
count

Number of elements in the vector x; must be a multiple of 4.

x
A vector array of float values.

Return Value
The sum of the values of the elements in the vector.

Availability
Mac OS X version 10.0 and later.

Functions 69
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vectorOps.h

vSswap
Interchanges the elements of two vectors.

extern void vSswap(SInt32 n,vector float x[],vector float y[]);

Parameters
n

number of elements in vectors x and y; must be a multiple of 4.

x
vector with n elements of type float.

y
vector with n elements of type float.

Discussion
Each element of vector x is replaced by the corresponding element of y, and vice versa.

Availability
Mac OS X version 10.0 and later.

Declared In
vectorOps.h

vSyax()
Multiplies each element of a vector and stores the results in a second vector.

extern void vSyax(
 SInt32 n,
 float alpha,
 const vector float x[],
 vector float y[]);

Parameters
n

number of elements in vectors x and y; must be a multiple of 4.

alpha
multiplier.

x
source vector with n elements of type float.

y
destination vector with n elements of type float.

Discussion
Each element of vector x is multiplied by alpha, and stored in the corresponding element of y.

Availability
Mac OS X version 10.0 and later.

70 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In

vSzaxpy()
Multiplies a vector by a scalar, adds it to a second vector, and stores the result in a third vector.

extern void vSzaxpy(
 SInt32 n,
 float alpha,
 const vector float x[],
 const vector float yY[],
 vector float z[]);

Parameters
n

number of elements in vectors x, y, and z; must be a multiple of 4.

alpha
multiplier.

x
source vector with n elements of type float.

yY
source vector with n elements of type float.

z
destination vector with n elements of type float.

Discussion
Each element of vector x is multiplied by alpha, then the corresponding element of yY is added. Results are
stored in the corresponding elements of z.

Availability
Mac OS X version 10.0 and later.

Declared In

vtablelookup
For each vector element of Index_Vect, returns the corresponding value from Table.

extern vUInt32 vtablelookup(vSInt32 Index_Vect, UInt32 *Table);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vtanf
For each vector element, calculates the tangent.

Functions 71
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vFloat vtanf(vFloat arg);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vtanhf
For each vector element, calculates the hyperbolic tangent of X.

extern vFloat vtanhf(vFloat X);

Availability
Mac OS X version 10.0 and later.

Declared In
vfp.h

vU1024Add
Unsigned 1024-bit addition (modular arithmetic).

extern void vU1024Add(
 const vU1024 * a,
 const vU1024 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024AddS
Unsigned 1024-bit addition with saturation (clipping).

extern void vU1024AddS(
 const vU1024 * a,
 const vU1024 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

72 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU1024Divide
Unsigned 1024-bit division.

extern void vU1024Divide(
 const vU1024 * numerator,
 const vU1024 * divisor,
 vU1024 * result,
 vU1024 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024HalfMultiply
Unsigned 1024-bit multiplication; result is the same width as multiplicands.

extern void vU1024HalfMultiply(
 const vU1024 * a,
 const vU1024 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024Mod
Unsigned 1024-bit mod.

extern void vU1024Mod(
 const vU1024 * numerator,
 const vU1024 * divisor,
 vU1024 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024Neg
Unsigned 1024-bit negation.

Functions 73
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vU1024Neg(
 const vU1024 * a,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024Sub
Unsigned 1024-bit subtraction (modular arithmetic).

extern void vU1024Sub(
 const vU1024 * a,
 const vU1024 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU1024SubS
Unsigned 1024-bit subtraction with saturation (clipping).

extern void vU1024SubS(
 const vU1024 * a,
 const vU1024 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU128Add
Unsigned 128-bit addition (modular arithmetic).

extern vUInt32 vU128Add(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

74 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU128AddS
Unsigned 128-bit addition with saturation (clipping).

extern vUInt32 vU128AddS(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU128Divide
Unsigned 128-bit division.

extern vUInt32 vU128Divide(vUInt32 vN, vUInt32 vD, vUInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU128FullMultiply
Unsigned 128-bit multiplication; result is twice as wide as multiplicands.

extern void vU128FullMultiply(
 const vU128 * a,
 const vU128 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU128HalfMultiply
Unsigned 128-bit multiplication; results are same width as multiplicands.

extern vUInt32 vU128HalfMultiply(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

Functions 75
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU128Sub
Unsigned 128-bit subtraction (modular arithmetic).

extern vUInt32 vU128Sub(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU128SubS
Unsigned 128-bit subtraction with saturation (clipping).

extern vUInt32 vU128SubS(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU16Divide
Unsigned 16-bit division.

extern vUInt16 vU16Divide(vUInt16 vN, vUInt16 vD, vUInt16 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU16HalfMultiply
Unsigned 16-bit multiplication; results are same width as multiplicands.

extern vUInt16 vU16HalfMultiply(vUInt16 vA, vUInt16 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU256Add
Unsigned 256-bit addition (modular arithmetic).

76 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vU256Add(
 const vU256 * a,
 const vU256 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256AddS
Unsigned 256-bit addition with saturation (clipping).

extern void vU256AddS(
 const vU256 * a,
 const vU256 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256Divide
Unsigned 256-bit division.

extern void vU256Divide(
 const vU256 * numerator,
 const vU256 * divisor,
 vU256 * result,
 vU256 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256FullMultiply
Unsigned 256-bit multiplication; result is twice as wide as multiplicands.

extern void vU256FullMultiply(
 const vU256 * a,
 const vU256 * b,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Functions 77
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

vU256HalfMultiply
Unsigned 256-bit multiplication; result is the same width as multiplicands.

extern void vU256HalfMultiply(
 const vU256 * a,
 const vU256 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256Mod
Unsigned 256-bit mod.

extern void vU256Mod(
 const vU256 * numerator,
 const vU256 * divisor,
 U256 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256Neg
Unsigned 256-bit negation.

extern void vU256Neg(
 const vU256 * a,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256Sub
Unsigned 256-bit subtraction (modular arithmetic).

78 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vU256Sub(
 const vU256 * a,
 const vU256 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU256SubS
Unsigned 256-bit subtraction with saturation (clipping).

extern void vU256SubS(
 const vU256 * a,
 const vU256 * b,
 vU256 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU32Divide
Unsigned 32-bit division.

extern vUInt32 vU32Divide(vUInt32 vN, vUInt32 vD, vUInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU32FullMulEven
Unsigned 32-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vUInt32 vU32FullMulEven(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

Functions 79
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU32FullMulOdd
Unsigned 32-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vUInt32 vU32FullMulOdd(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU32HalfMultiply
Unsigned 32-bit multiplication; results are same width as multiplicands.

extern vUInt32 vU32HalfMultiply(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU512Add
Unsigned 512-bit addition (modular arithmetic).

extern void vU512Add(
 const vU512 * a,
 const vU512 * b,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512AddS
Unsigned 512-bit addition with saturation (clipping).

extern void vU512AddS(
 const vU512 * a,
 const vU512 * b,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

80 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU512Divide
Unsigned 512-bit division.

extern void vU512Divide(
 const vU512 * numerator,
 const vU512 * divisor,
 vU512 * result,
 vU512 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512FullMultiply
Unsigned 512-bit multiplication; result is twice as wide as multiplicands.

extern void vU512FullMultiply(
 const vU512 * a,
 const vU512 * b,
 vU1024 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512HalfMultiply
Unsigned 512-bit multiplication; result is the same width as multiplicands.

extern void vU512HalfMultiply(
 const vU512 * a,
 const vU512 * b,
 U512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512Mod
Unsigned 512-bit mod.

Functions 81
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern void vU512Mod(
 const vU512 * numerator,
 const vU512 * divisor,
 vU512 * remainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512Neg
Unsigned 512-bit negation.

extern void vU512Neg(
 const vU512 * a,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512Sub
Unsigned 512-bit subtraction (modular arithmetic).

extern void vU512Sub(
 const vU512 * a,
 const vU512 * b,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

Declared In
vBigNum.h

vU512SubS
Unsigned 512-bit subtraction with saturation (clipping).

extern void vU512SubS(
 const vU512 * a,
 const vU512 * b,
 vU512 * result);

Availability
Mac OS X version 10.0 and later.

82 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

vU64Add
Unsigned 64-bit addition (modular arithmetic).

extern vUInt32 vU64Add(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64AddS
Unsigned 64-bit addition with saturation (clipping).

extern vUInt32 vU64AddS(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64Divide
Unsigned 64-bit division.

extern vUInt32 vU64Divide(vUInt32 vN, vUInt32 vD, vUInt32 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64FullMulEven
Unsigned 64-bit multiplication; results are twice as wide as multiplicands, even-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vUInt32 vU64FullMulEven(vUInt32vA, vUInt32vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

Functions 83
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU64FullMulOdd
Unsigned 64-bit multiplication; results are twice as wide as multiplicands, odd-numbered elements of
multiplicand vectors are used. Note the big-endian convention: the leftmost element is element 0.

extern vUInt32 vU64FullMulOdd(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64HalfMultiply
Unsigned 64-bit multiplication; results are same width as multiplicands.

extern vUInt32 vU64HalfMultiply(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64Sub
Unsigned 64-bit subtraction (modular arithmetic).

extern vUInt32 vU64Sub(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU64SubS
Unsigned 64-bit subtraction with saturation (clipping).

extern vUInt32 vU64SubS(vUInt32 vA, vUInt32 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU8Divide
Unsigned 8-bit division.

84 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

extern vUInt8 vU8Divide(vUInt8 vN, vUInt8 vD, vUInt8 * vRemainder);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vU8HalfMultiply
Unsigned 8-bit multiplication; results are same width as multiplicands.

extern vUInt8 vU8HalfMultiply(vUInt8 vA, vUInt8 vB);

Availability
Mac OS X version 10.0 and later.

Declared In
vBasicOps.h

vvacos
For each double-precision array element, sets y to the arccosine of x.

void vvacos (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvacosf
For each single-precision array element, sets y to the arccosine of x.

void vvacosf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

Functions 85
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvacosh
For each double-precision array element, sets y to the inverse hyperbolic cosine of x.

void vvacosh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvacoshf
For each single-precision array element, sets y to the inverse hyperbolic cosine of x.

void vvacoshf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvasin
For each double-precision array element, sets y to the arcsine of x.

void vvasin (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvasinf
For each single-precision array element, sets y to the arcsine of x.

86 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvasinf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvasinh
For each double-precision array element, sets y to the inverse hyperbolic sine of x.

void vvasinh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvasinhf
For each single-precision array element, sets y to the inverse hyperbolic sine of x.

void vvasinhf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvatan
For each double-precision array element, sets y to the arctangent of x.

void vvatan (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Functions 87
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vForce.h

vvatan2
For each double-precision array element, sets z to the arctangent of y/x.

void vvatan2 (
 double * /* z */,
 const double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvatan2f
For each single-precision array element, sets z to the arctangent of y/x.

void vvatan2f (
 float * /* z */,
 const float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvatanf
For each single-precision array element, sets y to the arctangent of x.

void vvatanf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

88 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvatanh
For each double-precision array element, sets y to the inverse hyperbolic tangent of x.

void vvatanh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvatanhf
For each single-precision array element, sets y to the inverse hyperbolic tangent of x.

void vvatanhf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvceil
For each double-precision array element, sets y to the ceiling of x.

void vvceil (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvceilf
For each single-precision array element, sets y to the ceiling of x.

Functions 89
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvceilf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvcos
For each double-precision array element, sets y to the cosine of x.

void vvcos (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvcosf
For each single-precision array element, sets y to the cosine of x.

void vvcosf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvcosh
For each double-precision array element, sets y to the hyperbolic cosine of x.

void vvcosh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

90 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vForce.h

vvcoshf
For each single-precision array element, sets y to the hyperbolic cosine of x.

void vvcoshf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvcosisin
For each double-precision array element, sets the real part of C to the sine of x and the imaginary part of C
to the cosine of x.

void vvcosisin (
 __double_complex_t * /* C */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvcosisinf
For each single-precision array element, sets the real part of C to the sine of x and the imaginary part of C to
the cosine of x.

void vvcosisinf (
 __float_complex_t * /* C */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

Functions 91
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvdiv
For each double-precision array element, sets z to y/x.

void vvdiv (
 double * /* z */,
 const double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvdivf
For each single-precision array element, sets z to y/x.

void vvdivf (
 float * /* z */,
 const float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvexp
For each double-precision array element, sets y to the exponential of x.

void vvexp (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvexpf
For each single-precision array element, sets y to the exponential of x.

92 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvexpf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvfloor
For each double-precision array element, sets y to the floor of x.

void vvfloor (double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvfloorf
For each single-precision array element, sets y to the floor of x.

void vvfloorf (float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvint
For each double-precision array element, sets y to the integer truncation of x.

void vvint (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

Functions 93
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvintf
For each single-precision array element, sets y to the integer truncation of x.

void vvintf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvlog
For each double-precision array element, sets y to the natural logarithm of x.

void vvlog (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvlog10
For each double-precision array element, sets y to the base 10 logarithm of x.

void vvlog10 (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvlog10f
For each single-precision array element, sets y to the base 10 logarithm of x.

94 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvlog10f (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvlogf
For each single-precision array element, sets y to the natural logarithm of x.

void vvlogf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvnint
For each double-precision array element, sets y to the nearest integer to x.

void vvnint (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvnintf
For each single-precision array element, sets y to the nearest integer to x.

void vvnintf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Functions 95
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vForce.h

vvpow
For each double-precision array element, sets z to x raised to the power of y.

void vvpow (
 double * /* z */,
 const double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvpowf
For each single-precision array element, sets z to x raised to the power of y.

void vvpowf (
 float * /* z */,
 const float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvrec
For each double-precision array element, sets y to the reciprocal of y.

void vvrec (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

96 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vvrecf
For each single-precision array element, sets y to the reciprocal of y.

void vvrecf(
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvrsqrt
For each double-precision array element, sets y to the reciprocal of the square root of x.

void vvrsqrt (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvrsqrtf
For each single-precision array element, sets y to the reciprocal of the square root of x.

void vvrsqrtf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsin
For each double-precision array element, sets y to the sine of x.

Functions 97
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvsin (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsincos
For each double-precision array element, sets z to the sine of x and y to the cosine of x.

void vvsincos (
 double * /* z */,
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsincosf
For each single-precision array element, sets z to the sine of x and y to the cosine of x.

void vvsincosf (
 float * /* z */,
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsinf
For each single-precision array element, sets y to the sine of x.

98 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvsinf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsinh
For each double-precision array element, sets y to the hyperbolic sine of x.

void vvsinh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsinhf
For each single-precision array element, sets y to the hyperbolic sine of x.

void vvsinhf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvsqrt
For each double-precision array element, sets y to the square root of x.

void vvsqrt (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Functions 99
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vForce.h

vvsqrtf
For each single-precision array element, sets y to the square root of x.

void vvsqrtf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvtan
For each double-precision array element, sets y to the tangent of x.

void vvtan (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvtanf
For each single-precision array element, sets y to the tangent of x.

void vvtanf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvtanh
For each double-precision array element, sets y to the hyperbolic tangent of x.

100 Functions
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

void vvtanh (
 double * /* y */,
 const double * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

vvtanhf
For each single-precision array element, sets y to the hyperbolic tangent of x.

void vvtanhf (
 float * /* y */,
 const float * /* x */,
 const int * /* n */);

Availability
Available in Mac OS X v10.4 and later.

Declared In
vForce.h

Data Types

Note: The types given here are valid for C or C++ and for either PowerPC or Intel processors. The typedefs
shown are for C++ and PowerPC processors; for other, conditionally compiled typedefs, see the header files.

vUInt8
A 128-bit vector packed with unsigned char values.

typedef vector unsigned char vUInt8;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vSInt8
A 128-bit vector packed with signed char values.

Data Types 101
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

typedef vector signed char vSInt8;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vUInt16
A 128-bit vector packed with unsigned short values.

typedef vector unsigned short vUInt16;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vSInt16
A 128-bit vector packed with signed short values.

typedef vector signed short vSInt16;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vUInt32
A 128-bit vector packed with unsigned int values.

typedef vector unsigned int vUInt32;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vSInt32
A 128-bit vector packed with signed int values.

typedef vector signed int vSInt32;

Availability
Available in Mac OS X v10.3 and later.

102 Data Types
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vecLibTypes.h

vFloat
A 128-bit vector packed with float values.

typedef vector float vFloat;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

vBool32
A 128-bit vector packed with bool int values.

typedef vector bool int vBool32;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vecLibTypes.h

__float_complex_t
A single-precision complex number type.

typedef complex float __float_complex_t;

Declared In

__double_complex_t
A double-precision complex number type.

typedef complex double __double_complex_t;

Declared In

vU128
A union containing one vUInt32 vector or four 32-bit integers, representing a 128-bit unsigned integer.
Conditional definitions provide compatibility with both PowerPC and Intel architectures; see the header file
for details.

Data Types 103
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

union vU128 {
vUInt32 v;
struct {
 vUInt32 v1;
 } vs;
struct {
 UInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 LSW;
 } s;
};
typedef union vU128 vU128;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

vS128
A union containing one vSInt32 vector or four 32-bit integers, representing a 128-bit signed integer.
Conditional definitions provide compatibility with both PowerPC and Intel architectures; see the header file
for details.

union vS128 {
vUInt32 v;
struct {
 vUInt32 v1;
 } vs;
struct {
 SInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 LSW;
 } s;
};
typedef union vS128 vS128;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

vU256
A union containing an array or structure of two vUInt32 vectors or eight 32-bit integers, representing a
256-bit unsigned integer. Conditional definitions provide compatibility with both PowerPC and Intel
architectures; see the header file for details.

104 Data Types
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

union vU256 {
vUInt32 v[2];
struct {
 vUInt32 v1;
 vUInt32 v2;
 } vs;
struct {
 UInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 LSW;
 } s;
};
typedef union vU256 vU256;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

vS256
A union containing an array or structure of two vUInt32 vectors or eight 32-bit integers, representing a
256-bit signed integer. Conditional definitions provide compatibility with both PowerPC and Intel architectures;
see the header file for details.

union vS256 {
vUInt32 v[2];
struct {
 vUInt32 v1;
 vUInt32 v2;
 } vs;
struct {
 SInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 LSW;
 } s;
};
typedef union vS256 vS256;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

Data Types 105
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vU512
A union containing an array or structure of four vUInt32 vectors or sixteen 32-bit integers, representing a
256-bit unsigned integer. Conditional definitions provide compatibility with both PowerPC and Intel
architectures; see the header file for details.

union vU512 {
vUInt32 v[4];
struct {
 vUInt32 v1;
 vUInt32 v2;
 vUInt32 v3;
 vUInt32 v4;
 } vs;
struct {
 UInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 d8;
 UInt32 d9;
 UInt32 d10;
 UInt32 d11;
 UInt32 d12;
 UInt32 d13;
 UInt32 d14;
 UInt32 d15;
 UInt32 LSW;
 } s;
};
typedef union vU512 vU512;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

vS512
A union containing an array or structure of four vUInt32 vectors or sixteen 32-bit integers, representing a
256-bit signed integer. Conditional definitions provide compatibility with both PowerPC and Intel architectures;
see the header file for details.

106 Data Types
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

union vS512 {
vUInt32 v[4];
struct {
 vUInt32 v1;
 vUInt32 v2;
 vUInt32 v3;
 vUInt32 v4;
 } vs;
struct {
 SInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 d8;
 UInt32 d9;
 UInt32 d10;
 UInt32 d11;
 UInt32 d12;
 UInt32 d13;
 UInt32 d14;
 UInt32 d15;
 UInt32 LSW;
 } s;
};
typedef union vS512 vS512;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

vU1024
A union containing an array or structure of eight vUInt32 vectors or thirty-two 32-bit integers, representing
a 1024-bit unsigned integer. Conditional definitions provide compatibility with both PowerPC and Intel
architectures; see the header file for details.

Data Types 107
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

union vU1024 {
vUInt32 v[8];
struct {
 vUInt32 v1;
 vUInt32 v2;
 vUInt32 v3;
 vUInt32 v4;
 vUInt32 v5;
 vUInt32 v6;
 vUInt32 v7;
 vUInt32 v8;
 } vs;
struct {
 UInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 d8;
 UInt32 d9;
 UInt32 d10;
 UInt32 d11;
 UInt32 d12;
 UInt32 d13;
 UInt32 d14;
 UInt32 d15;
 UInt32 d16;
 UInt32 d17;
 UInt32 d18;
 UInt32 d19;
 UInt32 d20;
 UInt32 d21;
 UInt32 d22;
 UInt32 d23;
 UInt32 d24;
 UInt32 d25;
 UInt32 d26;
 UInt32 d27;
 UInt32 d28;
 UInt32 d29;
 UInt32 d30;
 UInt32 d31;
 UInt32 LSW;
 } s;
};
typedef union vU1024 vU1024;

Availability
Available in Mac OS X v10.0 and later.

Declared In
vBigNum.h

108 Data Types
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

vS1024
A union containing an array or structure of eight vUInt32 vectors or thirty-two 32-bit integers, representing
a 1024-bit signed integer. Conditional definitions provide compatibility with both PowerPC and Intel
architectures; see the header file for details.

union vS1024 {
vUInt32 v[8];
struct {
 vUInt32 v1;
 vUInt32 v2;
 vUInt32 v3;
 vUInt32 v4;
 vUInt32 v5;
 vUInt32 v6;
 vUInt32 v7;
 vUInt32 v8;
 } vs;
struct {
 SInt32 MSW;
 UInt32 d2;
 UInt32 d3;
 UInt32 d4;
 UInt32 d5;
 UInt32 d6;
 UInt32 d7;
 UInt32 d8;
 UInt32 d9;
 UInt32 d10;
 UInt32 d11;
 UInt32 d12;
 UInt32 d13;
 UInt32 d14;
 UInt32 d15;
 UInt32 d16;
 UInt32 d17;
 UInt32 d18;
 UInt32 d19;
 UInt32 d20;
 UInt32 d21;
 UInt32 d22;
 UInt32 d23;
 UInt32 d24;
 UInt32 d25;
 UInt32 d26;
 UInt32 d27;
 UInt32 d28;
 UInt32 d29;
 UInt32 d30;
 UInt32 d31;
 UInt32 LSW;
 } s;
};
typedef union vS1024 vS1024;

Availability
Available in Mac OS X v10.0 and later.

Data Types 109
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

Declared In
vBigNum.h

110 Data Types
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

vecLib Framework Reference

This table describes the changes to vecLib Framework Reference.

NotesDate

Corrected the Availability of the vForce.h functions.2009-01-06

New document that describes the C API for vector mathematical functions in
the vecLib subframework of the Accelerate framework.

2005-09-08

111
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

112
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

__double_complex_t data type 103
__float_complex_t data type 103

V

vA1024Shift function 27
vA128Shift function 27
vA256Shift function 27
vA512Shift function 27
vA64Shift function 28
vA64Shift2 function 28
vacosf function 28
vacoshf function 28
vasinf function 29
vasinhf function 29
vatan2f function 29
vatanf function 29
vatanhf function 30
vBool32 data type 103
vclassifyf function 30
vcopysignf function 30
vcosf function 30
vcoshf function 31
vdivf function 31
vexpf function 31
vexpm1f function 31
vfabf function 32
vFloat data type 103
vfmodf function 32
vipowf function 32
vIsamax function 32
vIsamin function 33
vIsmax function 33
vIsmin function 34
vL1024Rotate function 34
vL128Rotate function 34
vL256Rotate function 35
vL512Rotate function 35

vL64Rotate function 35
vL64Rotate2 function 35
vLL1024Shift function 36
vLL256Shift function 36
vLL512Shift function 36
vLL64Shift function 36
vLL64Shift2 function 37
vlog1pf function 37
vlogbf function 37
vlogf function 37
vLR1024Shift function 38
vLR256Shift function 38
vLR512Shift function 38
vLR64Shift function 38
vLR64Shift2 function 39
vnextafterf function 39
vpowf function 39
vR1024Rotate function 39
vR128Rotate function 40
vR256Rotate function 40
vR512Rotate function 40
vR64Rotate function 40
vR64Rotate2 function 41
vremainderf function 41
vremquof function 41
vrsqrtf function 41
vS1024 data type 109
vS1024Add function 42
vS1024AddS function 42
vS1024Divide function 42
vS1024HalfMultiply function 42
vS1024Mod function 43
vS1024Neg function 43
vS1024Sub function 43
vS1024SubS function 44
vS128 data type 104
vS128Add function 44
vS128AddS function 44
vS128Divide function 44
vS128FullMultiply function 45
vS128HalfMultiply function 45
vS128Sub function 45

113
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

Index

vS128SubS function 45
vS16Divide function 46
vS16HalfMultiply function 46
vS256 data type 105
vS256Add function 46
vS256AddS function 46
vS256Divide function 47
vS256FullMultiply function 47
vS256HalfMultiply function 47
vS256Mod function 48
vS256Neg function 48
vS256Sub function 48
vS256SubS function 48
vS32Divide function 49
vS32FullMulEven function 49
vS32FullMulOdd function 49
vS32HalfMultiply function 49
vS512 data type 106
vS512Add function 50
vS512AddS function 50
vS512Divide function 50
vS512FullMultiply function 51
vS512HalfMultiply function 51
vS512Mod function 51
vS512Neg function 51
vS512Sub function 52
vS512SubS function 52
vS64Add function 52
vS64AddS function 53
vS64Divide function 53
vS64FullMulEven function 53
vS64FullMulOdd function 53
vS64HalfMultiply function 54
vS64Sub function 54
vS64SubS function 54
vS8Divide function 54
vS8HalfMultiply function 54
vSasum function 55
vSaxpy function 55
vscalbf function 56
vScopy function 56
vSdot function 56
vSgeadd() function 57
vSgemm() function 58
vSgemtx() function 59
vSgemul() function 60
vSgemv() function 61
vSgemx() function 62
vSgesub() function 62
vSgetmi() function 63
vSgetmo() function 64
vSgevv() function 64
vsignbitf function 65

vsinf function 65
vsinhf function 65
vSInt16 data type 102
vSInt32 data type 102
vSInt8 data type 101
vSnaxpy function 66
vSndot function 66
vSnorm2 function 67
vSnrm2 function 67
vsqrtf function 68
vSrot function 68
vSscal function 69
vSsum function 69
vSswap function 70
vSyax() function 70
vSzaxpy() function 71
vtablelookup function 71
vtanf function 71
vtanhf function 72
vU1024 data type 107
vU1024Add function 72
vU1024AddS function 72
vU1024Divide function 73
vU1024HalfMultiply function 73
vU1024Mod function 73
vU1024Neg function 73
vU1024Sub function 74
vU1024SubS function 74
vU128 data type 103
vU128Add function 74
vU128AddS function 75
vU128Divide function 75
vU128FullMultiply function 75
vU128HalfMultiply function 75
vU128Sub function 76
vU128SubS function 76
vU16Divide function 76
vU16HalfMultiply function 76
vU256 data type 104
vU256Add function 76
vU256AddS function 77
vU256Divide function 77
vU256FullMultiply function 77
vU256HalfMultiply function 78
vU256Mod function 78
vU256Neg function 78
vU256Sub function 78
vU256SubS function 79
vU32Divide function 79
vU32FullMulEven function 79
vU32FullMulOdd function 80
vU32HalfMultiply function 80
vU512 data type 106

114
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

INDEX

vU512Add function 80
vU512AddS function 80
vU512Divide function 81
vU512FullMultiply function 81
vU512HalfMultiply function 81
vU512Mod function 81
vU512Neg function 82
vU512Sub function 82
vU512SubS function 82
vU64Add function 83
vU64AddS function 83
vU64Divide function 83
vU64FullMulEven function 83
vU64FullMulOdd function 84
vU64HalfMultiply function 84
vU64Sub function 84
vU64SubS function 84
vU8Divide function 84
vU8HalfMultiply function 85
vUInt16 data type 102
vUInt32 data type 102
vUInt8 data type 101
vvacos function 85
vvacosf function 85
vvacosh function 86
vvacoshf function 86
vvasin function 86
vvasinf function 86
vvasinh function 87
vvasinhf function 87
vvatan function 87
vvatan2 function 88
vvatan2f function 88
vvatanf function 88
vvatanh function 89
vvatanhf function 89
vvceil function 89
vvceilf function 89
vvcos function 90
vvcosf function 90
vvcosh function 90
vvcoshf function 91
vvcosisin function 91
vvcosisinf function 91
vvdiv function 92
vvdivf function 92
vvexp function 92
vvexpf function 92
vvfloor function 93
vvfloorf function 93
vvint function 93
vvintf function 94
vvlog function 94

vvlog10 function 94
vvlog10f function 94
vvlogf function 95
vvnint function 95
vvnintf function 95
vvpow function 96
vvpowf function 96
vvrec function 96
vvrecf function 97
vvrsqrt function 97
vvrsqrtf function 97
vvsin function 97
vvsincos function 98
vvsincosf function 98
vvsinf function 98
vvsinh function 99
vvsinhf function 99
vvsqrt function 99
vvsqrtf function 100
vvtan function 100
vvtanf function 100
vvtanh function 100
vvtanhf function 101

115
2009-01-06 | © 2005, 2009 Apple Inc. All Rights Reserved.

INDEX

	vecLib Framework Reference
	Contents
	vecLib Framework Reference
	Overview
	vecLibTypes.h
	vBasicOps.h
	vfp.h
	vForce.h
	vectorOps.h
	vBigNum.h
	For More Information

	Functions by Task
	Shift and Rotate Functions (from vBasicOps.h)
	Integer Arithmetic Functions (from vBasicOps.h)
	Floating-Point Arithmetic and Auxiliary Functions (from vfp.h)
	Exponential and Logarithmic Functions (from vfp.h)
	Trigonometric Functions (from vfp.h)
	Hyperbolic Functions (from vfp.h)
	Power Functions (from vfp.h)
	Remainder Functions (from vfp.h)
	Inquiry Functions (from vfp.h)
	Array-Oriented Arithmetic and Auxiliary Functions (from vForce.h)
	Array-Oriented Exponential and Logarithmic Functions (from vForce.h)
	Array-Oriented Power Functions (from vForce.h)
	Array-Oriented Trigonometric Functions (from vForce.h)
	Array-Oriented Hyperbolic Functions (from vForce.h)
	Shift and Rotate Functions on Big Numbers (from vBigNum.h)
	Arithmetic Functions on Big Numbers (from vBigNum.h)
	Vector-Scalar Linear Algebra Functions (from vectorOps.h)
	Matrix-Vector Linear Algebra Functions (from vectorOps.h)
	Matrix Operations (from vectorOps.h)

	Functions
	vA1024Shift
	vA128Shift
	vA256Shift
	vA512Shift
	vA64Shift
	vA64Shift2
	vacosf
	vacoshf
	vasinf
	vasinhf
	vatan2f
	vatanf
	vatanhf
	vclassifyf
	vcopysignf
	vcosf
	vcoshf
	vdivf
	vexpf
	vexpm1f
	vfabf
	vfmodf
	vipowf
	vIsamax
	vIsamin
	vIsmax
	vIsmin
	vL1024Rotate
	vL128Rotate
	vL256Rotate
	vL512Rotate
	vL64Rotate
	vL64Rotate2
	vLL1024Shift
	vLL256Shift
	vLL512Shift
	vLL64Shift
	vLL64Shift2
	vlog1pf
	vlogbf
	vlogf
	vLR1024Shift
	vLR256Shift
	vLR512Shift
	vLR64Shift
	vLR64Shift2
	vnextafterf
	vpowf
	vR1024Rotate
	vR128Rotate
	vR256Rotate
	vR512Rotate
	vR64Rotate
	vR64Rotate2
	vremainderf
	vremquof
	vrsqrtf
	vS1024Add
	vS1024AddS
	vS1024Divide
	vS1024HalfMultiply
	vS1024Mod
	vS1024Neg
	vS1024Sub
	vS1024SubS
	vS128Add
	vS128AddS
	vS128Divide
	vS128FullMultiply
	vS128HalfMultiply
	vS128Sub
	vS128SubS
	vS16Divide
	vS16HalfMultiply
	vS256Add
	vS256AddS
	vS256Divide
	vS256FullMultiply
	vS256HalfMultiply
	vS256Mod
	vS256Neg
	vS256Sub
	vS256SubS
	vS32Divide
	vS32FullMulEven
	vS32FullMulOdd
	vS32HalfMultiply
	vS512Add
	vS512AddS
	vS512Divide
	vS512FullMultiply
	vS512HalfMultiply
	vS512Mod
	vS512Neg
	vS512Sub
	vS512SubS
	vS64Add
	vS64AddS
	vS64Divide
	vS64FullMulEven
	vS64FullMulOdd
	vS64HalfMultiply
	vS64Sub
	vS64SubS
	vS8Divide
	vS8HalfMultiply
	vSasum
	vSaxpy
	vscalbf
	vScopy
	vSdot
	vSgeadd()
	vSgemm()
	vSgemtx()
	vSgemul()
	vSgemv()
	vSgemx()
	vSgesub()
	vSgetmi()
	vSgetmo()
	vSgevv()
	vsignbitf
	vsinf
	vsinhf
	vSnaxpy
	vSndot
	vSnorm2
	vSnrm2
	vsqrtf
	vSrot
	vSscal
	vSsum
	vSswap
	vSyax()
	vSzaxpy()
	vtablelookup
	vtanf
	vtanhf
	vU1024Add
	vU1024AddS
	vU1024Divide
	vU1024HalfMultiply
	vU1024Mod
	vU1024Neg
	vU1024Sub
	vU1024SubS
	vU128Add
	vU128AddS
	vU128Divide
	vU128FullMultiply
	vU128HalfMultiply
	vU128Sub
	vU128SubS
	vU16Divide
	vU16HalfMultiply
	vU256Add
	vU256AddS
	vU256Divide
	vU256FullMultiply
	vU256HalfMultiply
	vU256Mod
	vU256Neg
	vU256Sub
	vU256SubS
	vU32Divide
	vU32FullMulEven
	vU32FullMulOdd
	vU32HalfMultiply
	vU512Add
	vU512AddS
	vU512Divide
	vU512FullMultiply
	vU512HalfMultiply
	vU512Mod
	vU512Neg
	vU512Sub
	vU512SubS
	vU64Add
	vU64AddS
	vU64Divide
	vU64FullMulEven
	vU64FullMulOdd
	vU64HalfMultiply
	vU64Sub
	vU64SubS
	vU8Divide
	vU8HalfMultiply
	vvacos
	vvacosf
	vvacosh
	vvacoshf
	vvasin
	vvasinf
	vvasinh
	vvasinhf
	vvatan
	vvatan2
	vvatan2f
	vvatanf
	vvatanh
	vvatanhf
	vvceil
	vvceilf
	vvcos
	vvcosf
	vvcosh
	vvcoshf
	vvcosisin
	vvcosisinf
	vvdiv
	vvdivf
	vvexp
	vvexpf
	vvfloor
	vvfloorf
	vvint
	vvintf
	vvlog
	vvlog10
	vvlog10f
	vvlogf
	vvnint
	vvnintf
	vvpow
	vvpowf
	vvrec
	vvrecf
	vvrsqrt
	vvrsqrtf
	vvsin
	vvsincos
	vvsincosf
	vvsinf
	vvsinh
	vvsinhf
	vvsqrt
	vvsqrtf
	vvtan
	vvtanf
	vvtanh
	vvtanhf

	Data Types
	vUInt8
	vSInt8
	vUInt16
	vSInt16
	vUInt32
	vSInt32
	vFloat
	vBool32
	__float_complex_t
	__double_complex_t
	vU128
	vS128
	vU256
	vS256
	vU512
	vS512
	vU1024
	vS1024

	Revision History
	Index
	Symbols
	V

