
vDSP Correlation, Convolution, and Filtering
Reference
Performance > Carbon

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

vDSP Correlation, Convolution, and Filtering Reference 5

Overview 5
Functions by Task 5

Correlation and Convolution 5
Windowing and Filtering 6

Functions 6
vDSP_blkman_window 6
vDSP_blkman_windowD 7
vDSP_conv 7
vDSP_convD 8
vDSP_desamp 9
vDSP_desampD 10
vDSP_f3x3 11
vDSP_f3x3D 11
vDSP_f5x5 12
vDSP_f5x5D 13
vDSP_hamm_window 13
vDSP_hamm_windowD 14
vDSP_hann_window 14
vDSP_hann_windowD 15
vDSP_imgfir 16
vDSP_imgfirD 17
vDSP_wiener 18
vDSP_wienerD 19
vDSP_zconv 20
vDSP_zconvD 21
vDSP_zrdesamp 22
vDSP_zrdesampD 23

Document Revision History 25

Index 27

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Accelerate/vecLib

Declared in vDSP.h

Overview

This document describes the C API for performing correlation, convolution, and filtering operations on real
or complex signals in vDSP. It also describes the built-in support for windowing functions such as Blackman,
Hamming, and Hann windows.

Functions by Task

Correlation and Convolution

vDSP_conv (page 7)
Performs either correlation or convolution on two vectors; single precision.

vDSP_convD (page 8)
Performs either correlation or convolution on two vectors; double precision.

vDSP_zconv (page 20)
Performs either correlation or convolution on two complex vectors; single precision.

vDSP_zconvD (page 21)
Performs either correlation or convolution on two complex vectors; double precision.

vDSP_wiener (page 18)
Wiener-Levinson general convolution; single precision.

vDSP_wienerD (page 19)
Wiener-Levinson general convolution; double precision.

vDSP_desamp (page 9)
Convolution with decimation; single precision.

vDSP_desampD (page 10)
Convolution with decimation; double precision.

vDSP_zrdesamp (page 22)
Complex/real downsample with anti-aliasing; single precision.

vDSP_zrdesampD (page 23)
Complex/real downsample with anti-aliasing; double precision.

Overview 5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering
Reference

Windowing and Filtering

vDSP_blkman_window (page 6)
Creates a single-precision Blackman window.

vDSP_blkman_windowD (page 7)
Creates a double-precision Blackman window.

vDSP_hamm_window (page 13)
Creates a single-precision Hamming window.

vDSP_hamm_windowD (page 14)
Creates a double-precision Hamming window.

vDSP_hann_window (page 14)
Creates a single-precision Hanning window.

vDSP_hann_windowD (page 15)
Creates a double-precision Hanning window.

vDSP_f3x3 (page 11)
Filters an image by performing a two-dimensional convolution with a 3x3 kernel on the input matrix
A. The resulting image is placed in the output matrix C; single precision.

vDSP_f3x3D (page 11)
Filters an image by performing a two-dimensional convolution with a 3x3 kernel on the input matrix
A. The resulting image is placed in the output matrix C; double precision.

vDSP_f5x5 (page 12)
Filters an image by performing a two-dimensional convolution with a 5x5 kernel on the input matrix
signal. The resulting image is placed in the output matrix result; single precision.

vDSP_f5x5D (page 13)
Filters an image by performing a two-dimensional convolution with a 5x5 kernel on the input matrix
signal. The resulting image is placed in the output matrix result; double precision.

vDSP_imgfir (page 16)
Filters an image by performing a two-dimensional convolution with a kernel; single precision.

vDSP_imgfirD (page 17)
Filters an image by performing a two-dimensional convolution with a kernel; double precision.

Functions

vDSP_blkman_window
Creates a single-precision Blackman window.

 void vDSP_blkman_window(
 float * C,
 vDSP_Length N,
 int FLAG);

Discussion
Represented in pseudo-code, this function does the following:

for (n=0; n < N; ++n)

6 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

{
 C[n] = 0.42 - (0.5 * cos(2 * pi * n / N)) + (0.08 * cos(4 * pi * n /
N));
}

vDSP_blkman_window creates a single-precision Blackman window function C, which can be multiplied by
a vector using vDSP_vmul. Specify the vDSP_HALF_WINDOW flag to create only the first (n+1)/2 points, or 0
(zero) for full size window.

See also vDSP_vmul.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_blkman_windowD
Creates a double-precision Blackman window.

 void vDSP_blkman_windowD (double * C,
 vDSP_Length N,
 int FLAG);

Discussion
Represented in pseudo-code, this function does the following:

for (n=0; n < N; ++n)
{
 C[n] = 0.42 - (0.5 * cos(2 * pi * n / N)) + (0.08 * cos(4 * pi * n /
N));
}

vDSP_blkman_windowD (page 7) creates a double-precision Blackman window function C, which can be
multiplied by a vector using vDSP_vmulD . Specify the vDSP_HALF_WINDOW flag to create only the first
(n+1)/2 points, or 0 (zero) for full size window.

See also vDSP_vmulD.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_conv
Performs either correlation or convolution on two vectors; single precision.

Functions 7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 vDSP_conv (const float signal[],
 vDSP_Stride signalStride,
 const float filter[],
 vDSP_Stride strideFilter,
 float result[],
 vDSP_Stride strideResult,
 vDSP_Length lenResult,
 vDSP_Length lenFilter);

Discussion

If filterStride is positive, vDSP_conv performs correlation. If filterStride is negative,it performs
convolution and *filtermust point to the last vector element. The function can run in place, but result cannot
be in place with filter.

The value of lenFilter must be less than or equal to 2044. The length of vector signal must satisfy two
criteria: it must be

 ■ equal to or greater than 12

 ■ equal to or greater than the sum of N-1 plus the nearest multiple of 4 that is equal to or greater than
the value of lenFilter.

Criteria to invoke vectorized code:

 ■ The vectors signal and result must be relatively aligned.

 ■ The value of lenFilter must be between 4 and 256, inclusive.

 ■ The value of lenResult must be greater than 36.

 ■ The values of signalStride and resultStride must be 1.

 ■ The value of filterStride must be either 1 or -1.

If any of these criteria is not satisfied, the function invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_convD
Performs either correlation or convolution on two vectors; double precision.

8 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 void vDSP_convD (const double signal[],
 vDSP_Stride signalStride,
 const double filter[],
 vDSP_Stride strideFilter,
 double result[],
 vDSP_Stride strideResult,
 vDSP_Length lenResult,
 vDSP_Length lenFilter);

Discussion

If filterStride is positive, vDSP_convD performs correlation. If filterStride is negative,it performs
convolution and *filtermust point to the last vector element. The function can run in place, but result
cannot be in place with filter.

The value of lenFilter must be less than or equal to 2044. The length of vector signal must satisfy two
criteria: it must be

 ■ equal to or greater than 12

 ■ equal to or greater than the sum of N-1 plus the nearest multiple of 4 that is equal to or greater than
the value of lenFilter.

Criteria to invoke vectorized code:

No Altivec support for double precision. On a PowerPC processor, this function always invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_desamp
Convolution with decimation; single precision.

 void vDSP_desamp (float * A,
 vDSP_Stride I,
 float * B,
 float * C,
 vDSP_Length N,
 vDSP_Length M);

Parameters
A

Single-precision real input vector, 8-byte aligned; length of A >= 12

I
Desampling factor

Functions 9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

B
Single-precision input filter coefficients

C
Single-precision real output vector

N
Output count

M
Filter coefficient count

Discussion
Performs finite impulse response (FIR) filtering at selected positions of vector A. desampx can run in place,
but C cannot be in place with B. Length of A must be >=(N-1)*I+(nearest multiple of 4 >=M).

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_desampD
Convolution with decimation; double precision.

 void vDSP_desampD (double * A,
 vDSP_Stride I,
 double * B,
 double * C,
 vDSP_Length N,
 vDSP_Length M);

Parameters
A

Double-precision real input vector, 8-byte aligned; length of A >= 12

I
Desampling factor

B
Double-precision input filter coefficients

C
Double-precision real output vector

N
Output count

M
Filter coefficient count

10 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

Discussion
Performs finite impulse response (FIR) filtering at selected positions of vector A. desampx can run in place,
but C cannot be in place with B. Length of A must be >=(N-1)*I+(nearest multiple of 4 >=M).

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_f3x3
Filters an image by performing a two-dimensional convolution with a 3x3 kernel on the input matrix A. The
resulting image is placed in the output matrix C; single precision.

 void vDSP_f3x3 (float * signal,
 vDSP_Length rows,
 vDSP_Length cols,
 float * filter,
 float * result);

Discussion
This performs the operation

The function pads the perimeter of the output image with a border of zeros of width 1.

B is the 3x3 kernel. M and N are the number of rows and columns, respectively, of the two-dimensional input
matrix A. M must be greater than or equal to 3. N must be even and greater than or equal to 4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_f3x3D
Filters an image by performing a two-dimensional convolution with a 3x3 kernel on the input matrix A. The
resulting image is placed in the output matrix C; double precision.

Functions 11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 void vDSP_f3x3D (double * signal,
 vDSP_Length rows,
 vDSP_Length cols,
 double * filter,
 double * result);

Discussion
This performs the operation

The function pads the perimeter of the output image with a border of zeros of width 1.

B is the 3x3 kernel. M and N are the number of rows and columns, respectively, of the two-dimensional input
matrix A. M must be greater than or equal to 3. N must be even and greater than or equal to 4.

Criteria to invoke vectorized code:

 ■ A, B, and C must be 16-byte aligned.

 ■ N must be greater than or equal to 18.

If any of these criteria is not satisfied, the function invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_f5x5
Filters an image by performing a two-dimensional convolution with a 5x5 kernel on the input matrix signal.
The resulting image is placed in the output matrix result; single precision.

 void vDSP_f5x5 (float * A,
 vDSP_Length M,
 vDSP_Length N,
 float * B,
 float * C);

Discussion
This performs the operation

The function pads the perimeter of the output image with a border of zeros of width 2.

12 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

B is the 3x3 kernel. M and N are the number of rows and columns, respectively, of the two-dimensional input
matrix A. M must be greater than or equal to 5. N must be even and greater than or equal to 6.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_f5x5D
Filters an image by performing a two-dimensional convolution with a 5x5 kernel on the input matrix signal.
The resulting image is placed in the output matrix result; double precision.

 void vDSP_f5x5D (double * A,
 vDSP_Length M,
 vDSP_Length N,
 double * B,
 double * C);

Discussion
This performs the operation

The function pads the perimeter of the output image with a border of zeros of width 2.

B is the 3x3 kernel. M and N are the number of rows and columns, respectively, of the two-dimensional input
matrix A. M must be greater than or equal to 5. N must be even and greater than or equal to 6.

Criteria to invoke vectorized code:

 ■ A, B, and C must be 16-byte aligned.

 ■ N must be greater than or equal to 20.

If any of these criteria is not satisfied, the function invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_hamm_window
Creates a single-precision Hamming window.

Functions 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 void
 vDSP_hamm_window (float * C,
 vDSP_Length N,
 int FLAG);

Discussion

vDSP_hamm_window creates a single-precision Hamming window function C, which can be multiplied by a
vector using vDSP_vmul . Specify the vDSP_HALF_WINDOW flag to create only the first (n+1)/2 points, or 0
(zero) for full size window.

See also vDSP_vmul.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_hamm_windowD
Creates a double-precision Hamming window.

 void
 vDSP_hamm_windowD (double * C,
 vDSP_Length N,
 int FLAG);

Discussion

vDSP_hamm_windowD creates a double-precision Hamming window function C, which can be multiplied by
a vector using vDSP_vmulD . Specify the vDSP_HALF_WINDOW flag to create only the first (n+1)/2 points, or
0 (zero) for full size window.

See also vDSP_vmulD.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_hann_window
Creates a single-precision Hanning window.

14 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 void
 vDSP_hann_window (float * C,
 vDSP_Length N,
 int FLAG);

Discussion

vDSP_hann_window creates a single-precision Hanning window function C, which can be multiplied by a
vector using vDSP_vmul .

The FLAG parameter can have the following values:

 ■ vDSP_HANN_DENORM creates a denormalized window.

 ■ vDSP_HANN_NORM creates a normalized window.

 ■ vDSP_HALF_WINDOW creates only the first (N+1)/2 points.

vDSP_HALF_WINDOW can be ORed with any of the other values (i.e., using the C operator |).

See also vDSP_vmul.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_hann_windowD
Creates a double-precision Hanning window.

 void
 vDSP_hann_windowD (double * C,
 vDSP_Length N,
 int FLAG);

Discussion

vDSP_hann_window creates a double-precision Hanning window function C, which can be multiplied by a
vector using vDSP_vmul .

The FLAG parameter can have the following values:

 ■ vDSP_HANN_DENORM creates a denormalized window.

 ■ vDSP_HANN_NORM creates a normalized window.

 ■ vDSP_HALF_WINDOW creates only the first (N+1)/2 points.

Functions 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

vDSP_HALF_WINDOW can ORed with any of the other values (i.e., using the C operator |).

See also vDSP_vmul.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_imgfir
Filters an image by performing a two-dimensional convolution with a kernel; single precision.

 void vDSP_imgfir (float * A,
 vDSP_Length M,
 vDSP_Length N,
 float * B,
 float * C,
 vDSP_Length P,
 vDSP_Length Q);

Parameters
A

A real matrix signal input.

M
Number of rows in A.

N
Number of columns in A.

B
A two-dimensional real matrix containing the filter.

C
Stores real output matrix.

P
Number of rows in B.

Q
Number of columns in B.

Discussion
The image is given by the input matrix A. It has M rows and N columns.

B is the filter kernel. It has P rows and Q columns.

Ensure Q >= P for best performance.

16 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

The filtered image is placed in the output matrix C. The function pads the perimeter of the output image
with a border of (P-1)/2 rows of zeros on the top and bottom and (Q-1)/2 columns of zeros on the left and
right.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_imgfirD
Filters an image by performing a two-dimensional convolution with a kernel; double precision.

 void vDSP_imgfirD (double * A,
 vDSP_Length M,
 vDSP_Length N,
 double * B,
 double * C,
 vDSP_Length P,
 vDSP_Length Q);

Parameters
A

A complex vector signal input.

M
Number of rows in input matrix.

N
Number of columns in input matrix.

B
A two-dimensional real matrix containing the filter.

C
Stores real output matrix.

P
Number of rows in B.

Q
Number of columns in B.

Discussion
The image is given by the input matrix A. It has M rows and N columns.

B is the filter kernel. It has P rows and Q columns. For best performance, ensure Q >= P.

The filtered image is placed in the output matrix C. The functions pad the perimeter of the output image
with a border of (P-1)/2 rows of zeros on the top and bottom and (Q-1)/2 columns of zeros on the left and
right.

Functions 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_wiener
Wiener-Levinson general convolution; single precision.

 void vDSP_wiener (vDSP_Length L,
 float * A,
 float * C,
 float * F,
 float * P,
 int IFLG,
 int * IERR);

Parameters
L

Input filter length

A
Single-precision real input vector: coefficients

C
Single-precision real input vector: input coefficients

F
Single-precision real output vector: filter coefficients

P
Single-precision real output vector: error prediction operators

IFLG
Not currently used, pass zero

IERR
Error flag

Discussion
Performs the operation

solves a set of single-channel normal equations described by:

 B[n] = C[0] * A[n] + C[1] * A[n-1] +, . . . ,+ C[N-1] * A[n-N+1]
 for n = {0, N-1}

where matrix A contains elements of the symmetric Toeplitz matrix shown below. This function can only be
done out of place.

Note that A[-n] is considered to be equal to A[n].

18 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

vDSP_wiener solves this set of simultaneous equations using a recursive method described by Levinson.
See Robinson, E.A.,Multichannel TimeSeriesAnalysiswithDigital Computer Programs. San Francisco: Holden-Day,
1967, pp. 43-46.

A[0] A[1] A[2] ... A[N-1]		C[0]		B[0]
A[1] A[0] A[1] ... A[N-2]		C[1]		B[1]
A[2] A[1] A[0] ... A[N-3]	*	C[2]	=	B[2]
...
A[N-1]A[N-2]A[N-3] ... A[0]		C[N-1]		B[N-1]

Typical methods for solving N equations in N unknowns have execution times proportional to N cubed, and
memory requirements proportional to N squared. By taking advantage of duplicate elements, the recursion
method executes in a time proportional to N squared and requires memory proportional to N. The
Wiener-Levinson algorithm recursively builds a solution by computing the m+1 matrix solution from the m
matrix solution.

With successful completion, vDSP_wiener returns zero in error flag IERR. If vDSP_wiener fails, IERR
indicates in which pass the failure occurred.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_wienerD
Wiener-Levinson general convolution; double precision.

 void vDSP_wienerD (vDSP_Length L,
 double * A,
 double * C,
 double * F,
 double * P,
 int IFLG,
 int * IERR);

Parameters
L

Input filter length

A
Double-precision real input vector: coefficients

C
Double-precision real input vector: input coefficients

F
Double-precision real output vector: filter coefficients

P
Double-precision real output vector: error prediction operators

IFLG
Not currently used, pass zero

IERR
Error flag

Functions 19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

Discussion
Performs the operation

solves a set of single-channel normal equations described by:

 B[n] = C[0] * A[n] + C[1] * A[n-1] +, . . . ,+ C[N-1] * A[n-N+1]
 for n = {0, N-1}

where matrix A contains elements of the symmetric Toeplitz matrix shown below. This function can only be
done out of place.

Note that A[-n] is considered to be equal to A[n].

vDSP_wiener solves this set of simultaneous equations using a recursive method described by Levinson.
See Robinson, E.A.,Multichannel TimeSeriesAnalysiswithDigital Computer Programs. San Francisco: Holden-Day,
1967, pp. 43-46.

A[0] A[1] A[2] ... A[N-1]		C[0]		B[0]
A[1] A[0] A[1] ... A[N-2]		C[1]		B[1]
A[2] A[1] A[0] ... A[N-3]	*	C[2]	=	B[2]
...
A[N-1]A[N-2]A[N-3] ... A[0]		C[N-1]		B[N-1]

Typical methods for solving N equations in N unknowns have execution times proportional to N cubed, and
memory requirements proportional to N squared. By taking advantage of duplicate elements, the recursion
method executes in a time proportional to N squared and requires memory proportional to N. The
Wiener-Levinson algorithm recursively builds a solution by computing the m+1 matrix solution from the m
matrix solution.

With successful completion, vDSP_wiener returns zero in error flag IERR. If vDSP_wiener fails, IERR
indicates in which pass the failure occurred.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_zconv
Performs either correlation or convolution on two complex vectors; single precision.

20 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

 void vDSP_zconv (DSPSplitComplex * signal,
 vDSP_Stride signalStride,
 DSPSplitComplex * filter,
 vDSP_Stride strideFilter,
 DSPSplitComplex * result,
 vDSP_Stride strideResult,
 vDSP_Length lenResult,
 vDSP_Length lenFilter);

Discussion
A is the input vector, with stride I, and C is the output vector, with stride K and length N.

B is a filter vector, with stride I and length P. If Jis positive,the function performs correlation. If Jis negative,
it performs convolution and Bmust point to the last element in the filter vector. The function can run in place,
but Ccannot be in place with B.

The value of N must be less than or equal to 512.

Criteria to invoke vectorized code:

 ■ Both the real parts and the imaginary parts of vectors A and C must be relatively aligned.

 ■ The values of I and K must be 1.

If any of these criteria is not satisfied, the function invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_zconvD
Performs either correlation or convolution on two complex vectors; double precision.

 void vDSP_zconvD (DSPDoubleSplitComplex * signal,
 vDSP_Stride signalStride,
 DSPDoubleSplitComplex * filter,
 vDSP_Stride strideFilter,
 DSPDoubleSplitComplex * result,
 vDSP_Stride strideResult,
 vDSP_Length lenResult,
 vDSP_Length lenFilter);

Discussion
A is the input vector, with stride I, and C is the output vector, with stride K and length N.

Functions 21
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

B is a filter vector, with stride I and length P. If J is positive, the function performs correlation. If J is
negative, it performs convolution and B must point to the last element in the filter vector. The function can
run in place, but C cannot be in place with B.

The value of N must be less than or equal to 512.

Criteria to invoke vectorized code:

No Altivec support for double precision. On a PowerPC processor, this function always invokes scalar code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_zrdesamp
Complex/real downsample with anti-aliasing; single precision.

 void vDSP_zrdesamp (DSPSplitComplex * A,
 vDSP_Stride I,
 float * B,
 DSPSplitComplex * C,
 vDSP_Length N,
 vDSP_Length M);

Parameters
A

Single-precision complex input vector.

I
Complex decimation factor.

B
Filter coefficient vector.

C
Single-precision complex output vector.

N
Length of output vector.

M
Length of real filter vector.

Discussion
Performs finite impulse response (FIR) filtering at selected positions of input vector A.

22 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

Length of A must be at least (N+M-1)*i. This function can run in place, but C cannot be in place with B.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

vDSP_zrdesampD
Complex/real downsample with anti-aliasing; double precision.

 void vDSP_zrdesampD (DSPDoubleSplitComplex * A,
 vDSP_Stride I,
 double * B,
 DSPDoubleSplitComplex * C,
 vDSP_Length N,
 vDSP_Length M);

Parameters
A

Double-precision complex input vector.

I
Complex decimation factor.

B
Filter coefficient vector.

C
Double-precision complex output vector.

N
Length of output vector.

M
Length of real filter vector.

Discussion
Performs finite impulse response (FIR) filtering at selected positions of input vector A.

Length of A must be at least (N+M-1)*i. This function can run in place, but C cannot be in place with B.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vDSP.h

Functions 23
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

24 Functions
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

vDSP Correlation, Convolution, and Filtering Reference

This table describes the changes to vDSP Correlation, Convolution, and Filtering Reference.

NotesDate

Corrected inaccuracies in documenting function parameters.2009-01-06

Blackman window functions represented in pseudocode.2008-11-19

New document that describes the C API for the digital signal processing
functionality of the vecLib framework.

2007-06-15

25
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

26
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

V

vDSP_blkman_window function 6
vDSP_blkman_windowD function 7
vDSP_conv function 7
vDSP_convD function 8
vDSP_desamp function 9
vDSP_desampD function 10
vDSP_f3x3 function 11
vDSP_f3x3D function 11
vDSP_f5x5 function 12
vDSP_f5x5D function 13
vDSP_hamm_window function 13
vDSP_hamm_windowD function 14
vDSP_hann_window function 14
vDSP_hann_windowD function 15
vDSP_imgfir function 16
vDSP_imgfirD function 17
vDSP_wiener function 18
vDSP_wienerD function 19
vDSP_zconv function 20
vDSP_zconvD function 21
vDSP_zrdesamp function 22
vDSP_zrdesampD function 23

27
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Index

	vDSP Correlation, Convolution, and Filtering Reference
	Contents
	vDSP Correlation, Convolution, and Filtering Reference
	Overview
	Functions by Task
	Correlation and Convolution
	Windowing and Filtering

	Functions
	vDSP_blkman_window
	vDSP_blkman_windowD
	vDSP_conv
	vDSP_convD
	vDSP_desamp
	vDSP_desampD
	vDSP_f3x3
	vDSP_f3x3D
	vDSP_f5x5
	vDSP_f5x5D
	vDSP_hamm_window
	vDSP_hamm_windowD
	vDSP_hann_window
	vDSP_hann_windowD
	vDSP_imgfir
	vDSP_imgfirD
	vDSP_wiener
	vDSP_wienerD
	vDSP_zconv
	vDSP_zconvD
	vDSP_zrdesamp
	vDSP_zrdesampD

	Revision History
	Index
	V

