
vImage Transform Reference
Performance > Graphics & Imaging

2007-07-12

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

vImage Transform Reference 5

Overview 5
Functions by Task 5

Transforming with a Lookup Table 5
Applying a Polynomial 6
Multiplying Pixels by a Matrix 6
Correcting Gamma 6

Functions 7
vImageCreateGammaFunction 7
vImageDestroyGammaFunction 8
vImageGamma_Planar8toPlanarF 8
vImageGamma_PlanarF 9
vImageGamma_PlanarFtoPlanar8 9
vImageInterpolatedLookupTable_PlanarF 10
vImageLookupTable_Planar8toPlanarF 11
vImageLookupTable_PlanarFtoPlanar8 12
vImageMatrixMultiply_ARGB8888 13
vImageMatrixMultiply_ARGBFFFF 14
vImageMatrixMultiply_Planar8 15
vImageMatrixMultiply_PlanarF 16
vImagePiecewisePolynomial_Planar8toPlanarF 17
vImagePiecewisePolynomial_PlanarF 19
vImagePiecewisePolynomial_PlanarFtoPlanar8 20
vImagePiecewiseRational_PlanarF 21

Constants 24
Gamma Function Types 24

Document Revision History 27

Index 29

3
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

4
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Accelerate/vImage

Companion guide vImage Programming Guide

Declared in Transform.h

Overview

Transformation functions alter the values of pixels in the image. Unlike convolutions, transformation functions
do not depend on the values of nearby pixels. The vImage transformation functions fall into four broad
categories:

 ■ Gamma correction functions correct the brightness profile of an image by multiplying each pixel by the
value of the function. Gamma correction prepares an image for display or printing on a particular device.

 ■ Lookup table functions are like the piecewise polynomial functions, but instead of applying a polynomial
they use a lookup table that you supply.

 ■ Matrix multiplication functions have a variety of uses, such as to convert between color spaces (RGB and
YUV, for example), change a color image to a grayscale one, and for “color twisting.”

 ■ Piecewise functions are similar to the gamma correction functions, but instead of applying a predefined
gamma function they apply one or more polynomials that you supply. The number of polynomials must
be an integer power of 2, and they must all be of the same order.

Transformation functions use a vImage buffer structure (vImage_Buffer—see vImage Data Types and
Constants Reference) to receive and supply image data. This buffer contains a pointer to image data, the
height and width (in pixels) of the image data, and the number of row bytes. You actually pass a pointer to
a vImage buffer structure.

Some transformation functions “work in place”. That is, the source and destination images can occupy the
same memory if the they are strictly aligned pixel for pixel. For these, you can can provide a pointer to the
same vImage buffer structure for one of the source images and the destination image.

Functions by Task

Transforming with a Lookup Table

vImageLookupTable_Planar8toPlanarF (page 11)
Uses a lookup table to transform an image in Planar8 format to an image in PlanarF format.

Overview 5
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

vImageLookupTable_PlanarFtoPlanar8 (page 12)
Uses a lookup table to transform an image in PlanarF format to an image in Planar8 format.

vImageInterpolatedLookupTable_PlanarF (page 10)
Uses a lookup table to transform an image in PlanarF format to an image in PlanarF format.

Applying a Polynomial

vImagePiecewisePolynomial_PlanarF (page 19)
Applies a set of piecewise polynomials to an image in PlanarF format.

vImagePiecewisePolynomial_Planar8toPlanarF (page 17)
Applies a set of piecewise polynomials to transform an image in Planar8 format to an image in PlanarF
format.

vImagePiecewisePolynomial_PlanarFtoPlanar8 (page 20)
Applies a set of piecewise polynomials to transform an image in PlanarF format to an image in Planar8
format.

vImagePiecewiseRational_PlanarF (page 21)
Applies a piecewise rational expression to an image in PlanarF format.

Multiplying Pixels by a Matrix

vImageMatrixMultiply_Planar8 (page 15)
Operates on a set of 8-bit source image planes, multiplying each pixel by the provided matrix to
produce a set of 8-bit destination image planes.

vImageMatrixMultiply_PlanarF (page 16)
Operates upon a set of floating-point source image planes, multiplying each pixel by the provided
matrix to produce a set of floating-point destination image planes.

vImageMatrixMultiply_ARGB8888 (page 13)
Operates upon an interleaved 8-bit source image, multiplying each pixel by the provided matrix to
produce an interleaved 8-bit destination image.

vImageMatrixMultiply_ARGBFFFF (page 14)
Operates upon an interleaved floating-point source image, multiplying each pixel by the provided
matrix to produce an interleaved floating-point destination image.

Correcting Gamma

vImageCreateGammaFunction (page 7)
Returns a gamma function object.

vImageDestroyGammaFunction (page 8)
Destroys a gamma function object created.

vImageGamma_Planar8toPlanarF (page 8)
Applies a gamma function to a Planar8 image to produce a PlanarF image.

vImageGamma_PlanarFtoPlanar8 (page 9)
Applies a gamma function to an image in PlanarF format to an image in Planar8 format.

6 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

vImageGamma_PlanarF (page 9)
Applies a gamma function to a PlanarF image.

Functions

vImageCreateGammaFunction
Returns a gamma function object.

GammaFunction vImageCreateGammaFunction (
 float gamma,
 int gamma_type,
 vImage_Flags flags
);

Parameters
gamma

The exponent of a power function for calculating full-precision gamma correction.

gamma-type
A selector for the type of gamma correction to use. Pass one of the full- or half-precision type constants
defined in “Gamma Function Types” (page 24).

flags
Pass kvImageDoNotTile if you plan to perform your own tiling or use multithreading.

Return Value
A gamma function object that encapsulates a gamma value, a gamma function type, and option flags.

Discussion
You can pass a gamma function object to any of the three gamma correction functions:
vImageGamma_Planar8toPlanarF (page 8), vImageGamma_PlanarFtoPlanar8 (page 9),
vImageGamma_PlanarF (page 9).

The gamma-type parameter determines the type of calculation to be used. The simplest calculation is:

if (value == 0) result = 0;

else {
 if (value < 0)
 sign = -1.0f;
 else
 sign = 1.0f;
 result = pow(fabs(value), gamma) * sign;
}

This calculation results in symmetric gamma curves about 0, and makes sure that only well-behaved values
are used in pow().

You can use an equivalent calculation that uses a more efficient method, depending on the desired precision.

In addition to the full-precision gamma correction, there is a faster half-precision option that provides 12-bit
precision.

Functions 7
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

f your data will ultimately be converted to 8-bit integer data, consider using half-precision. The half-precision
variants work correctly only for floating-point input values in the range 0.0 ... 1.0, though out-of-range values
produce results that clamp appropriately to 0 or 255 on conversion back to 8-bit. In addition, there are
restrictions on the range of the exponent: it must be positive, in the range 0.1 to 10.0.

Finally, there is a set of still faster half-precision options that use predefined gamma values, ignoring the
value set in vImageCreateGammaFunction. These options have the same restrictions on input values as
stated previously.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageDestroyGammaFunction
Destroys a gamma function object created.

void vImageDestroyGammaFunction (
 GammaFunction f
);

Parameters
f

A gamma function object created with the function vImageCreateGammaFunction (page 7).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_Planar8toPlanarF
Applies a gamma function to a Planar8 image to produce a PlanarF image.

vImage_Error vImageGamma_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

8 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
7).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_PlanarF
Applies a gamma function to a PlanarF image.

vImage_Error vImageGamma_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
7).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_PlanarFtoPlanar8
Applies a gamma function to an image in PlanarF format to an image in Planar8 format.

Functions 9
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

vImage_Error vImageGamma_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
7).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageInterpolatedLookupTable_PlanarF
Uses a lookup table to transform an image in PlanarF format to an image in PlanarF format.

vImage_Error vImageInterpolatedLookupTable_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_F *table,
 vImagePixelCount tableEntries,
 float maxFloat,
 float minFloat,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

10 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

table
A lookup table of floating-point values.

tableEntries
A value of type vImagePixelCount, giving the number of values in the array.

maxFloat
A value of type float.

minFloat
A value of type float.

flags
The options to use when performing the transformation. Pass kvImageDoNotTile if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
It will work in place. The table contains an arbitrary number of values; it is entered with an index interpolated
from a value from the source image, to look up a floating-point value for the destination image.

The input pixel is first clipped to the range minFloat ... maxFloat. The result is then calculated as

 float clippedPixel =MAX(MIN(src_pixel, maxFloat), minFloat);
 float fIndex = (float) (tableEntries - 1) * (clippedPixel - minFloat)
 / (maxFloat - minFloat);
 float fract = fIndex - floor(fIndex);
 unsigned long i = fIndex;
 float result = table[i] * (1.0f - fract) + table[i + 1] * fract;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageLookupTable_Planar8toPlanarF
Uses a lookup table to transform an image in Planar8 format to an image in PlanarF format.

vImage_Error vImageLookupTable_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_F table[256],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 11
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

table
A lookup table that contains 256 values.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel, the 8-bit value from the source Planar8 image is used as an index to get a floating-point value
from the table. This value is used as the corresponding pixel in the PlanarF result image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageLookupTable_PlanarFtoPlanar8
Uses a lookup table to transform an image in PlanarF format to an image in Planar8 format.

vImage_Error vImageLookupTable_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_8 table[4096],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

table
A lookup table that contains 4096 values.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The table contains 4096 values; it is entered with an integer index derived from a pixel value in the source
image, to look up an 8-bit value for the destination image.

For each pixel, the floating-point value from the source PlanarF image is first clipped to the range 0.0 ... 1.0,
and then converted to an integer in the range 0 ... 4095. The conversion calculation is equivalent to

 if (realValue < 0.0f) realValue = 0.0f;
 if (realValue > 1.0f) realValue = 1.0f;

12 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

 intValue = (int)(realValue * 4095.0f + 0.5f);

This integer is used as an index to get an 8-bit value from the table. This value is used as the corresponding
pixel in the Planar8 result image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_ARGB8888
Operates upon an interleaved 8-bit source image, multiplying each pixel by the provided matrix to produce
an interleaved 8-bit destination image.

vImage_Error vImageMatrixMultiply_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const int16_t matrix[4 *4],
 int32_t divisor,
 const int16_t *pre_bias,
 const int32_t *post_bias,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

matrix
A 1-dimensional array whose values represent a 4x4 matrix. vImage multiplies each source pixel by
this matrix to produce a destination pixel.

divisor
A divisor for normalization after performing the matrix multiplication.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Functions 13
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

Discussion
Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_ARGBFFFF
Operates upon an interleaved floating-point source image, multiplying each pixel by the provided matrix to
produce an interleaved floating-point destination image.

vImage_Error vImageMatrixMultiply_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float matrix[4 *4],
 const float *pre_bias,
 const float *post_bias,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

matrix
A 1-dimensional array whose values represent a 4x4 matrix. vImage multiplies each source pixel by
this matrix to produce a destination pixel.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

14 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

Discussion
The operation is the same as vImageMatrixMultiply_ARGB8888 (page 13) except that floating-point
values are used and there is no divisor.

Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_Planar8
Operates on a set of 8-bit source image planes, multiplying each pixel by the provided matrix to produce a
set of 8-bit destination image planes.

vImage_Error vImageMatrixMultiply_Planar8 (
 const vImage_Buffer *srcs[],
 const vImage_Buffer *dests[],
 uint32_t src_planes,
 uint32_t dest_planes,
 const int16_t matrix[],
 int32_t divisor,
 const int16_t *pre_bias,
 const int32_t *post_bias,
 vImage_Flags flags
);

Parameters
srcs

A pointer to an array of vImage buffer structures, one buffer for each source plane.

dests
A pointer to an array of pointers to vImage buffer data structures, one buffer structure for each
destination plane. You are responsible for filling out the height, width, and rowBytes fields of these
structures, and for allocating data buffers of the appropriate size. On return, the data buffers in these
structures contains the destination image data for each plane. When you no longer need the data
buffers, you must deallocate the memory.

src_planes
The number of source planes.

dest_planes
The number of destination planes.

matrix
A 1-dimensional array whose values represent a matrix with dimensions dest_planesxsrc_planes.
vImage multiplies each source pixel by this matrix to produce a destination pixel.

divisor
A divisor for normalization after performing the matrix multiplication.

Functions 15
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
The options to use when performing the transformation. Pass kvImageDoNotTile if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_PlanarF
Operates upon a set of floating-point source image planes, multiplying each pixel by the provided matrix to
produce a set of floating-point destination image planes.

vImage_Error vImageMatrixMultiply_PlanarF (
 const vImage_Buffer *srcs[],
 const vImage_Buffer *dests[],
 uint32_t src_planes,
 uint32_t dest_planes,
 const float matrix[],
 const float *pre_bias,
 const float *post_bias,
 vImage_Flags flags
);

Parameters
srcs

A pointer to an array of vImage buffer structures, one buffer for each source plane.

dests
A pointer to an array of pointers to vImage buffer data structures, one buffer structure for each
destination plane. You are responsible for filling out the height, width, and rowBytes fields of these
structures, and for allocating data buffers of the appropriate size. On return, the data buffers in these
structures contains the destination image data for each plane. When you no longer need the data
buffers, you must deallocate the memory.

src_planes
The number of source planes.

16 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

dest_planes
The number of destination planes.

matrix
A 1-dimensional array whose values represent a matrix with dimensions dest_planesxsrc_planes.
vImage multiplies each source pixel by this matrix to produce a destination pixel.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The operation is the same asvImageMatrixMultiply_Planar8 (page 15) except that floating-point values
are used and there is no divisor.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImagePiecewisePolynomial_Planar8toPlanarF
Applies a set of piecewise polynomials to transform an image in Planar8 format to an image in PlanarF format.

vImage_Error vImagePiecewisePolynomial_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 17
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImagePiecewisePolynomial_PlanarF (page 19)

18 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

Declared In
Transform.h

vImagePiecewisePolynomial_PlanarF
Applies a set of piecewise polynomials to an image in PlanarF format.

vImage_Error vImagePiecewisePolynomial_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Functions 19
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImagePiecewisePolynomial_PlanarFtoPlanar8
Applies a set of piecewise polynomials to transform an image in PlanarF format to an image in Planar8 format.

vImage_Error vImagePiecewisePolynomial_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

20 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImagePiecewisePolynomial_PlanarF (page 19)

Declared In
Transform.h

vImagePiecewiseRational_PlanarF
Applies a piecewise rational expression to an image in PlanarF format.

Functions 21
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

vImage_Error vImagePiecewiseRational_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **topCoefficients,
 const float **bottomCoefficients,
 const float *boundaries,
 uint32_t topOrder,
 uint32_t bottomOrder,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

topCoefficients

An array of pointers to polynomial coefficient arrays The array of pointers has length 2log2segments. Each
array pointed to has length topOrder+1.

Each polynomial coefficient array contains the coefficients for one polynomial. Note that a polynomial
of order R has R+1 coefficients. All the polynomial coefficient arrays must be the same size, R+1, and
in each array the coefficients must be ordered from the 0th-order term to the highest-order term.

bottomCoefficients

An array of pointers to polynomial coefficient arrays The array of pointers has length 2log2segments. Each
array pointed to has length bottomOrder+1.

Each polynomial coefficient array contains the coefficients for one polynomial. Note that a polynomial
of order R has R+1 coefficients. All the polynomial coefficient arrays must be the same size, R+1, and
in each array the coefficients must be ordered from the 0th-order term to the highest-order term.
These do not need to be the same order as the top polynomials.

boundaries

An array of floating-point values with size (2log2segments)+1, in increasing order, for separating adjacent
ranges of pixel values. The first boundary value is the lowest in the range; input values lower than
this are clipped to this value. The last boundary value is the highest in the range; input values higher
than this are clipped to this value. The boundary values between the first and last separate the
subranges from each other. The boundaries must be the same for both the top and bottom
polynomials.

topOrder
The order of the top polynomial. Make sure you pass the order (that is, the highest power of x), not
the number of coefiicients.

bottomOrder
The order of the bottom polynomial. Make sure you pass the order (that is, the highest power of x),
not the number of coefiicients.

log2segments
The number of rationals represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of rational (for example, 5), you must round up to the next integer power of 2 (for the example
of 5, that would be 8), and simply repeat the last rational the appropriate number of times.

22 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function is similar tovImagePiecewisePolynomial_PlanarF (page 19) except that it evaluates a
piecewise rational expression in the form of:

result =
c0 + c1* x + c2 * x 2 + c3* x3...

d0 + d1* x + d2 * x 2 + d3* x3...

Each polynomial has its own set of coefficients and its own polynomial order. The two polynomials share the
same set of segment boundaries. If the polynomials are split then all the top polynomials must be of the
same order, and all the bottom polynomials must be of the same order. However, regardless of whether the
polynomial is split or not, the top polynomials do not need to be the same order as the bottom polynomials.

This function does not deliver IEEE-754 correct division. The divide does not round per the IEEE-754 current
rounding mode. It incurs up to 2 ULPs (Units in the Last Place) of error. Edge cases involving denormals,
infinities, NaNs and division by zero return undefined results. (They will not crash, but NaN is a likely result
in such cases.) Denormals can be rescued on AltiVec enabled machines by turning off the Non-Java bit in
the VSCR, at the expense of taking a many-thousand cycle kernel exception every time a denormal number
is encountered. Since you can predict ahead of time whether a given set of bounded polynomials is going
to encounter these conditions, this problem should be avoidable by wise choice of polynomials. Developers
who require IEEE-754 correct results should call the polynomial evaluator above twice and do the division
themselves.

The approximate cost of evaluating a rational (in the same units as polynomial above) is:

time = (base cost to touch all the data) + top polynomial order
 + bottom polynomial order + 4 + 4 * log2segments

With data not in cache, the time may be significantly different. For sufficiently small polynomials, the cost
may be a fixed cost, dependent only on how much data is touched, and not on polynomial order.

This performance behavior is provided to help you evaluate speed tradeoffs. It is not a guaranteed. It is
subject to change in future operating system revisions, and may be different on different hardware within
the same or different operating system revisions.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

Functions 23
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

Constants

Gamma Function Types
Types of full- or half-precision gamma functions.

enum
{
 kvImageGamma_UseGammaValue = 0,
 kvImageGamma_UseGammaValue_half_precision = 1,
 kvImageGamma_5_over_9_half_precision = 2,
 kvImageGamma_9_over_5_half_precision = 3,
 kvImageGamma_5_over_11_half_precision = 4,
 kvImageGamma_11_over_5_half_precision = 5,
 kvImageGamma_sRGB_forward_half_precision = 6,
 kvImageGamma_sRGB_reverse_half_precision = 7,
 kvImageGamma_11_over_9_half_precision = 8,
 kvImageGamma_9_over_11_half_precision = 9,
 kvImageGamma_BT709_forward_half_precision = 10,
 kvImageGamma_BT709_reverse_half_precision = 11
};

Constants
kvImageGamma_UseGammaValue

Full-precision calculation using the gamma value set in vImageCreateGammaFunction.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_UseGammaValue_half_precision
Half-precision calculation using the gamma value set in vImageCreateGammaFunction.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_5_over_9_half_precision
Half-precision calculation using a gamma value of 5/9 or 1/1.8.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_9_over_5_half_precision
Half-precision calculation using a gamma value of 9/5 or 1.8.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_5_over_11_half_precision
Half-precision calculation using a gamma value of 5/11 or 1/2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

24 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

kvImageGamma_11_over_5_half_precision
Half-precision calculation using a gamma value of 11/5 or 2.2. On exit, gamma is 5/11.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_sRGB_forward_half_precision
Half-precision calculation using the sRGB standard gamma value of 2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_sRGB_reverse_half_precision
Half-precision calculation using the sRGB standard gamma value of 1/2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_11_over_9_half_precision
Half-precision calculation using a gamma value of 11/9 or (11/5)/(9/5).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_9_over_11_half_precision
Half-precision calculation using a gamma value of 9/11 or (9/5)/(11/5).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_BT709_forward_half_precision
ITU-R BT.709 standard. This is like kvImageGamma_sRGB_forward_half_precision above but without
the 1.125 viewing gamma for computer graphics: x<0.081? x/4.5: pow((x+0.099)/1.099,
1/0.45).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_BT709_reverse_half_precision
ITU-R BT.709 standard reverse. This is like kvImageGamma_sRGB_reverse_half_precision above but
without the 1.125 viewing gamma for computer graphics: x<0.018? 4.5*x: 1.099*pow(x,0.45)
- 0.099.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

Declared In
Transform.h

Constants 25
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

26 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Transform Reference

This table describes the changes to vImage Transform Reference.

NotesDate

Updated for Mac OS X v10.4.2007-07-12

The content in this document was formerly part of Optimizing Image Processing
With vImage.

Added vImagePiecewiseRational_PlanarF (page 21).

27
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

G

Gamma Function Types 24

K

kvImageGamma_11_over_5_half_precision constant
25

kvImageGamma_11_over_9_half_precision constant
25

kvImageGamma_5_over_11_half_precision constant
24

kvImageGamma_5_over_9_half_precision constant
24

kvImageGamma_9_over_11_half_precision constant
25

kvImageGamma_9_over_5_half_precision constant
24

kvImageGamma_BT709_forward_half_precision
constant 25

kvImageGamma_BT709_reverse_half_precision
constant 25

kvImageGamma_sRGB_forward_half_precision
constant 25

kvImageGamma_sRGB_reverse_half_precision
constant 25

kvImageGamma_UseGammaValue constant 24
kvImageGamma_UseGammaValue_half_precision

constant 24

V

vImageCreateGammaFunction function 7
vImageDestroyGammaFunction function 8
vImageGamma_Planar8toPlanarF function 8
vImageGamma_PlanarF function 9
vImageGamma_PlanarFtoPlanar8 function 9

vImageInterpolatedLookupTable_PlanarF function
10

vImageLookupTable_Planar8toPlanarF function 11
vImageLookupTable_PlanarFtoPlanar8 function 12
vImageMatrixMultiply_ARGB8888 function 13
vImageMatrixMultiply_ARGBFFFF function 14
vImageMatrixMultiply_Planar8 function 15
vImageMatrixMultiply_PlanarF function 16
vImagePiecewisePolynomial_Planar8toPlanarF

function 17
vImagePiecewisePolynomial_PlanarF function 19
vImagePiecewisePolynomial_PlanarFtoPlanar8

function 20
vImagePiecewiseRational_PlanarF function 21

29
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

Index

	vImage Transform Reference
	Contents
	vImage Transform Reference
	Overview
	Functions by Task
	Transforming with a Lookup Table
	Applying a Polynomial
	Multiplying Pixels by a Matrix
	Correcting Gamma

	Functions
	vImageCreateGammaFunction
	vImageDestroyGammaFunction
	vImageGamma_Planar8toPlanarF
	vImageGamma_PlanarF
	vImageGamma_PlanarFtoPlanar8
	vImageInterpolatedLookupTable_PlanarF
	vImageLookupTable_Planar8toPlanarF
	vImageLookupTable_PlanarFtoPlanar8
	vImageMatrixMultiply_ARGB8888
	vImageMatrixMultiply_ARGBFFFF
	vImageMatrixMultiply_Planar8
	vImageMatrixMultiply_PlanarF
	vImagePiecewisePolynomial_Planar8toPlanarF
	vImagePiecewisePolynomial_PlanarF
	vImagePiecewisePolynomial_PlanarFtoPlanar8
	vImagePiecewiseRational_PlanarF

	Constants
	Gamma Function Types

	Revision History
	Index
	G
	K
	V

