
vImage Data Types and Constants Reference
Performance > Graphics & Imaging

2007-07-12

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and Quartz
are trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

vImage Data Types and Constants Reference 5

Overview 5
Data Types 5

vImagePixelCount 5
vImage_Buffer 5
vImage_AffineTransform 6
vImage_Error 7
vImage_Flags 7
Pixel_8 7
Pixel_F 8
Pixel_8888 8
Pixel_FFFF 8
GammaFunction 8
ResamplingFilter 9

Constants 9
Error Codes 9
Processing Flags 11

Document Revision History 15

Index 17

3
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

4
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Accelerate/vImage

Companion guide vImage Programming Guide

Declared in vImage_Types.h

Overview

The data types and constants defined in this document are used by vImage functions. The primary vImage
data type is the vImage buffer, which contains a pointer to image data along with other image data
information. The vImage framework also defines data types for planar and interleaved pixel types, a resampling
callback filter, and an affine transform. It provides constants that specify errors that can be returned by vImage
functions and flags that you can pass to a function to specify a variety of processing options.

Data Types

vImagePixelCount
A type for the number of pixels.

typedef unsigned long vImagePixelCount;

Discussion
For LP64 (ppc64) this is a 64-bit quantity.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vImage_Types.h

vImage_Buffer
The basic data structure used by vImage functions for passing image data.

Overview 5
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

typedef struct vImage_Buffer
{
 void *data;
 vImagePixelCount height;
 vImagePixelCount width;
 size_t rowBytes;
}vImage_Buffer;

Fields
data

A pointer to memory for image data. The image data can be in planar (Planar8, PlanarF) or interleaved
(ARGB8888, ARGBFFFF, RGBA8888, or RGBAFFFF) formats. If you are using the vImage buffer to provide
an image, then the pointer should point to the top left pixel of the image. If you are providing the
vImage buffer to a function that fills the memory with image data (that is, as a destination buffer),
the pointer must point to an area of memory that is an appropriate size for the destination buffer.
Specifically, size of the memory, in bytes, must be at least the height of the image data multiplied by
the number of row bytes.

height
The number of pixels in one column of the image.

width
The number of pixels in one row of the image.

rowBytes
The number of bytes in a pixel row. This is the distance, in bytes, between the start of one row of the
image and the start of the next. This quantity must be at least the width times the pixel size, where
pixel size depends on the image format. You can provide a larger value, in which case the extra bytes
will extend beyond the end of each row of pixels.

You may want to provide a larger value for one of two reasons: to improve performance, or to describe
an image within a larger image without copying the data. The extra bytes are not considered part of
the image represented by the vImage buffer.

Discussion
vImage functions will not attempt to read pixel data outside the area described by the height and width
fields of the vImage buffer. The function will also not write data outside that area.

Declared In
vImage_Types.h

vImage_AffineTransform
A structure for values that represent an affine transformation.

typedef struct vImage_AffineTransform
{
 float a, b, c, d;
 float tx, ty;
}vImage_AffineTransform;

Discussion
This structure represents the 3x2 matrix :

6 Data Types
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

a b
c d
tx ty

The vImage affine transform structure is just like the Quartz CGAffineTransform data structure.
CGAffineTransform Reference describes functions for creating and manipulating matrixes of this form.

Declared In
vImage_Types.h

vImage_Error
A type for image errors.

typedef ssize_t vImage_Error;

Discussion
“Error Codes” (page 9) describes the constants that use this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

vImage_Flags
A type for processing options.

typedef uint32_t vImage_Flags;

Discussion
“Processing Flags” (page 11) describes the constants that use this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_8
A type for an 8-bit planar pixel value

typedef uint8_t Pixel_8;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Data Types 7
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

Pixel_F
A type for a floating-point planar pixel value

typedef float Pixel_F;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_8888
A type for an interleaved, 8 bits per channel pixel value.

typedef uint8_t Pixel_8888[4];

Discussion
For example, uint8_t[4] = { alpha, red, green, blue } for ARGB data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_FFFF
A type for an interleaved, floating-point pixel value.

typedef float Pixel_FFFF[4];

Discussion
For example, float[4] = { alpha, red, green, blue } for ARGB data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

GammaFunction
A type for a gamma function.

typedef void * GammaFunction;

Discussion
You use this data type when you create a gamma function. See vImageCreateGammaFunction.

Availability
Available in Mac OS X v10.4 and later.

8 Data Types
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

Declared In
vImage_Types.h

ResamplingFilter
A pointer to a resampling filter callback function.

typedef void * ResamplingFilter;

Discussion
You pass a resampling filter callback to a shear function. The resampling filter pointer can point to a structure
that contains a function, rows of precalculated values, flag settings, and so on. The shear function requires
that the structure contains a scale factor.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Constants

Error Codes
Error codes returned by vImage functions.

enum
{
 kvImageNoError = 0,
 kvImageRoiLargerThanInputBuffer = -21766,
 kvImageInvalidKernelSize = -21767,
 kvImageNoEdgeStyleSpecified = -21768,
 kvImageInvalidOffset_X = -21769,
 kvImageInvalidOffset_Y = -21770,
 kvImageMemoryAllocationError = -21771,
 kvImageNullPointerArgument = -21772,
 kvImageInvalidParameter = -21773,
 kvImageBufferSizeMismatch = -21774,
 kvImageUnknownFlagsBit = -21775
};

Constants
kvImageNoError

The vImage function completed without error.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Constants 9
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

kvImageRoiLargerThanInputBuffer
The region of interest, as specified by the srcOffsetToROI_X and srcOffsetToROI_Y parameters
and the height and width of the destination buffer, extends beyond the bottom edge or right edge
of the source buffer.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidKernelSize
Either the kernel height, the kernel width, or both, are even.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageNoEdgeStyleSpecified
The function requires you to set at least one edge option flags: kvImageCopyInPlace,
kvImageBackgroundColorFill, or kvImageEdgeExtend, but none is set. See “Processing
Flags” (page 11).

kvImageInvalidOffset_X
The srcOffsetToROI_X parameter that specifies the left edge of the region of interest is greater
than the width of the source image.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidOffset_Y
The srcOffsetToROI_Y parameter that specifies the top edge of the region of interest is greater
than the height of the source image.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageMemoryAllocationError
An attempt to allocate memory failed.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageNullPointerArgument
A pointer parameter is NULL and it must not be.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidParameter
Invalid parameter.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageBufferSizeMismatch
The function requires the source and destination buffers to have the same height and the same width,
but they do not.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

10 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

kvImageUnknownFlagsBit
The flag is not recognized.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Declared In
vImage_Types.h

Processing Flags
Flags that specify options for vImage functions.

enum
{
 kvImageNoFlags = 0,
 kvImageLeaveAlphaUnchanged = 1,
 kvImageCopyInPlace = 2,
 kvImageBackgroundColorFill = 4,
 kvImageEdgeExtend = 8,
 kvImageDoNotTile = 16,
 kvImageHighQualityResampling = 32,
 kvImageTruncateKernel = 64,
 kvImageGetTempBufferSize = 128
};

Constants
kvImageNoFlags

Do not set any flags.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageLeaveAlphaUnchanged
Operate on red, green, and blue channels only. When you set this flag, the alpha value is copied from
source to destination. You can set this flag only for interleaved image formats.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageCopyInPlace
Copy the value of the edge pixel in the source to the destination. When you set this flag, and a
convolution function is processing an image pixel for which some of the kernel extends beyond the
image boundaries, vImage does not computer the convolution. Instead, the value of the particular
pixel unchanged; it’s simply copied to the destination image. This flag is valid only for convolution
operations. The morphology functions do not use this flag because they do not use pixels outside
the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Constants 11
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

kvImageBackgroundColorFill
A background color fill. The associated value is a background color (that is, a pixel value). When you
set this flag, vImage assigns the pixel value to all pixels outside the image. You can set this flag for
convolution and geometry functions. The morphology functions do not use this flag because they
do not use pixels outside the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageEdgeExtend
Extend the edges of the image infinitely. When you set this flag, vImage replicates the edges of the
image outward. It repeats the top row of the image infinitely above the image, the bottom row
infinitely below the image, the first column infinitely to the left of the image, and the last column
infinitely to the right. For spaces that are diagonal to the image, vImage uses the value of the
corresponding corner pixel. For example, for all pixels that are both above and to the left of the image,
the upper-leftmost pixel of the image (the pixel at row 0, column 0) supplies the value. In this way,
vImage assigns every pixel location outside the image some value. You can set this flag for convolution
and geometry functions. The morphology functions do not use this flag because they do not use
pixels outside the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageDoNotTile
Do not use vImage internal tiling routines. When you set this flag, vImage turns off internal tiling. Set
this flag if you want to perform your own tiling or your own multithreading, or to use the minimum
or maximum filters in place.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageHighQualityResampling
Use a higher quality, slower resampling filter for for geometry operations—shear, scale, rotate, affine
transform, and so forth.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

12 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

kvImageTruncateKernel
Use the part of the kernel that overlaps the image. This flag is valid only for convolution operations.
When you set this flag, vImage restricts calculations to the portion of the kernel overlapping the
image. It corrects the calculated pixel by first multiplying by the sum of all the kernel elements, then
dividing by the sum of the kernel elements that are actually used. This preserves image brightness
at the edges.

For integer kernels:

real_divisor = divisor * (sum of used kernel elements) / (sum of kernel
elements)

The morphology functions do not use this flag because they do not use pixels outside the image in
any of their calculations.

Kernel truncation is not robust for certain kernels. It can ail when any rectangular segment of the
kernel that includes the center, and at least one of the corners, sums to zero. You typically see this
with emboss or edge detection filters, or other filters that are designed to find the slope of a signal.
For those kinds of filters, you should use the kvImageEdgeExtend option instead.

Available in Mac OS X v10.4 and later.

Declared in vImage_Types.h.

kvImageGetTempBufferSize
Get the minimum temporary buffer size for the operation, given the parameters provided. When you
set this flag, the function returns the number of bytes required for the temporary buffer. A negative
value specifies an error.

Available in Mac OS X v10.4 and later.

Declared in vImage_Types.h.

Discussion
You can pass multiple flags to a function by adding the flag values together. For example, to leave alpha
unchanged and turn off tiling, you can pass:

kvImageLeaveAlphaUnchanged + kvImageDoNotTile

Three of the flags are mutually exclusive: kvImageCopyInPlace, kvImageBackgroundColorFill, and
kvImageEdgeExtend. Never pass more than one of these flag values in the same flag parameter.

When passing flags to a function, do not set values for flags that are not used by the function. If the function
requires you to set certain flag values, do so. For example, for the convolution function, you must set exactly
one of kvImageCopyInPlace, kvImageBackgroundColorFill, and kvImageEdgeExtend. Otherwise
the function may return an error. If you don’t want to set flag values, pass kvImageNoFlags.

Declared In
vImage_Types.h

Constants 13
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

14 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

vImage Data Types and Constants Reference

This table describes the changes to vImage Data Types and Constants Reference.

NotesDate

Updated for Mac OS X v10.4.2007-07-12

The content in this document was formerly part of Optimizing Image Processing
With vImage.

Updated the data types in vImage_Buffer (page 5).

Revised the description of kvImageTruncateKernel (page 13).

Added GammaFunction (page 8), ResamplingFilter (page 9), and
kvImageUnknownFlagsBit (page 11).

15
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

16
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

E

Error Codes 9

G

GammaFunction data type 8

K

kvImageBackgroundColorFill constant 12
kvImageBufferSizeMismatch constant 10
kvImageCopyInPlace constant 11
kvImageDoNotTile constant 12
kvImageEdgeExtend constant 12
kvImageGetTempBufferSize constant 13
kvImageHighQualityResampling constant 12
kvImageInvalidKernelSize constant 10
kvImageInvalidOffset_X constant 10
kvImageInvalidOffset_Y constant 10
kvImageInvalidParameter constant 10
kvImageLeaveAlphaUnchanged constant 11
kvImageMemoryAllocationError constant 10
kvImageNoEdgeStyleSpecified constant 10
kvImageNoError constant 9
kvImageNoFlags constant 11
kvImageNullPointerArgument constant 10
kvImageRoiLargerThanInputBuffer constant 10
kvImageTruncateKernel constant 13
kvImageUnknownFlagsBit constant 11

P

Pixel_8 data type 7
Pixel_8888 data type 8
Pixel_F data type 8

Pixel_FFFF data type 8
Processing Flags 11

R

ResamplingFilter data type 9

V

vImagePixelCount data type 5
vImage_AffineTransform structure 6
vImage_Buffer structure 5
vImage_Error data type 7
vImage_Flags data type 7

17
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

Index

	vImage Data Types and Constants Reference
	Contents
	vImage Data Types and Constants Reference
	Overview
	Data Types
	vImagePixelCount
	vImage_Buffer
	vImage_AffineTransform
	vImage_Error
	vImage_Flags
	Pixel_8
	Pixel_F
	Pixel_8888
	Pixel_FFFF
	GammaFunction
	ResamplingFilter

	Constants
	Error Codes
	Processing Flags

	Revision History
	Index
	E
	G
	K
	P
	R
	V

