QuickTime 7 Update Guide

QuickTime

¢

2005-04-29

.

[

Apple Inc.

© 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, eMac,
iTunes, Mac, Mac OS, Objective-C, Panther,
Quartz, QuickDraw, QuickTime, Safari, and
Xcode are trademarks of Apple Inc,, registered
in the United States and other countries.

Spotlight is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Introduction to QuickTime 7 7

Who Needs To Read This Document 7
How This Document Is Organized 7
See Also 8

Chapter 2 What’s New in QuickTime 7 9

Installing QuickTime 7 9
Hardware and Software Requirements 9
New Pro Key Required 9
QuickTime in Perspective 9
New Features of QuickTime 7 10
New Directions in QuickTime 7 11
In Summary QuickTime 6 through QuickTime 7 12
Changes to QuickTime Player and QuickTime Pro 12
New in QuickTime Player 13
New in QuickTime Pro 15
Other Changes and Enhancements 21
New QuickTime Kit Framework 27
Audio Enhancements 29
New Abstraction Layer For Audio 30
High-Resolution Audio Support 30
Sound Description Creation and Accessor Functions 32
Audio Playback Enhancements 33
Audio Conversion, Export, and Extraction 35
Standard Audio Compression Enhancements 36
Audio Export Enhancements 37
Audio Capture Enhancements 38
Using Sequence Grabber Audio Features 44
Video Enhancements 45
Frame Reordering Video 45
H.264 Codec 49
New Abstractions Layers For OpenGL Rendering 49
Replacing NewMovieFrom... Functions 52
Using NewMovieFromProperties 53
QuickTime Metadata Enhancements and APl 53
How It Works 54
Advantages of the New Metadata Format 55
QuickTime Sample Table APl 56
JavaScript Support and Accessibility in Safari 58
Other Changes and Enhancements 58

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

New Persistent Cache Option 59
Updates to QuickTime for Java 60
Support for Quartz Composer 61

Chapter 3 New Functions, Data Types, and Constants in QuickTime 7 63

QuickTime 7 API Reference 63
Functions 63
Callbacks 254
Data Structures 258
Constants 263

Document Revision History 287

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

Chapter 2

Figures, Tables, and Listings

What’s New in QuickTime 7 9

Figure 2-1
Figure 2-2

Figure 2-3

Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-1
Figure 2-12
Figure 2-13

Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27

Figure 2-28
Figure 2-29
Figure 2-30
Figure 2-31
Figure 2-32
Figure 2-33
Figure 2-34
Figure 2-35

Figure 2-36

The new QuickTime Player application 13

New audio, playback, and video controls in QuickTime Player and QuickTime Player
with Core Image support in Mac OSX v104 14

The audio settings dialog with sliders for audio control and channel speaker
assignments 15

Sharing attached movies either as email or on your .Mac HomePage 16

Full screen controls with a floating movie controller 17

Full Screen preferences with the full screen controls selected 18

The default export settings for exporting a movie to a QuickTime movie 18
Export options available in QuickTime Pro 19

The Movie Properties dialog 19

QuickTime Pro visual settings options for image control and manipulation 20
QuickTime Pro user options for controlling image transparency 20

The General pane in QuickTime Player Preferences 21

The new File menu in the QuickTime Player with New Movie Recording selected
21

Movie recording from a digital device in a new QuickTime player 22
Audio recording 22

Recording preferences 23

The new QuickTime Player menu 23

The QuickTime Pro Edit menu items with Trim to Selection selected 24
The View menu options 24

The Present Movie sheet 25

The Window menu with Show A/V Controls selected 25

Movie properties with annotations and added fields selected 26
Other settings available in the movie properties pane 26

The Presentation pane with a QTVR controller selected 27

The QuickTime Kit framework class hierarchy 28

The QuickTime object dragged to the application window 28

The QuickTime movie view object dragged to fill the entire contents of the window
29

Layout of surround speakers 31

QuickTime audio device sharing among sequence grabber channels 40
Client channel mapping with “splitting” of device channels 41

Channel mapping with reordering of channels 41

Channel mapping enabling mult-ing 42

Channel mapping with simultaneous multiple mixes 42

Channel mapping with multi-data rates 43

Sequence grabber audio callbacks, analogous to sequence grabber video bottlenecks
callbacks 43

SGAudio callbacks with real-time preview 44

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 2-37 Metadata modes of operations 55

Figure 2-38 QuickTime Browser preferences with the Save movies in disk cache box checked
59

Table 2-1 Surround sound definitions 31

Listing 2-1 Opting in for high-resolution audio export 37

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Introduction to QuickTime 7

QuickTime is the industry standard for multimedia programming and application development, with a rich
and evolving APl comprised of more than 2500 function calls. Its component-based architecture is highly
extensible, enabling applications to display, import, export, modify, and capture a broad range of digital
media, including audio, video, still images, text, Flash, MIDI, sprites, VR panoramas, among other media types.
QuickTime is designed from the ground up to work with local disk-based media, media accessed over a
network, or streams of real-time data.

This document provides detailed information about the new features, changes, and enhanced capabilities
that are available in QuickTime 7 for Mac OS X version 10.4.

Who Needs To Read This Document

If you are a QuickTime API-level developer, content author, multimedia producer, or Webmaster who is
currently working with QuickTime, you should read this document.

The document is written both for developers who use QuickTime on the Mac OS X platform and want to
learn the new programming features of QuickTime 7, and for beginning or experienced Cocoa programmers
interested in using QuickTime in their application development.

How This Document Is Organized

This update guide is intended to provide QuickTime developers, as well as other developers new to the
platform, with a comprehensive description of the changes and enhancements in this major software release.
Beyond this brief introductory chapter, the material discussed in Chapter 2 of the guide points to and
cross-references in Chapter 3 the many new functions available in QuickTime 7, with an emphasis on
understanding their usage for application developers.

m Chapter 1, “Introduction to QuickTime 7” (page 7), discusses who should read this document, as well
as other sources of information about the QuickTime documentation suite.

m Chapter 2, “What's New in QuickTime 7” (page 9), describes in detail the many new and enhanced
features available in QuickTime 7. It is intended to provide developers with a conceptual overview, in
addition code samples and illustrations of usage, so that developers can take advantage of many of new
features in QuickTime 7 in their applications.

m Chapter 3, “New Functions, Data Types, and Constants in QuickTime 7” (page 63), describes all the new
QuickTime functions, data structures, constants, and callbacks in this software release.

Who Needs To Read This Document 7
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Introduction to QuickTime 7

See Also

For developers who want to take advantage of QuickTime features and functionality, the complete suite of
documentation that describes the QuickTime APl is available online in HTML and PDF at the QuickTime Ref-
erence Library website.

The reference information currently presented in Chapter 3 of this update guide is also available in the
QuickTime API Reference document. All of the new QuickTime functions, data structures, and callbacks in
QuickTime 7 are incorporated into the QuickTime API Reference for easy access and reference, either in HTML
or PDF formats.

If you are new to QuickTime, you should begin by referring to Getting Started With QuickTime, which describes
the various starting points and learning paths for working with this rich, multimedia API.

Updates to the QuickTime technical documentation website are provided on a regular basis. Developers can
also subscribe to various mailing lists for the latest news and information.

To sign up for any of Apple’s Developer Programs, go to: http://developer.apple.com/membership/index.html.

8 See Also
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/referencelibrary/API_Fundamentals/QuickTime-api-date.html
http://developer.apple.com/referencelibrary/GettingStarted/GS_QuickTime/index.html
http://developer.apple.com/membership/index.html

CHAPTER 2

What's New in QuickTime 7

This chapter describes in detail the many new and enhanced features available in QuickTime 7. It is intended
to provide developers with a conceptual overview, in addition code samples and illustrations of usage, so
that developers can take advantage of many of these new features in QuickTime 7 in their applications.

The new functions discussed in this chapter are cross-referenced, with links, to their complete descriptions
in Chapter 3, “New Functions, Data Types, and Constants in QuickTime 7” (page 63).

If you are a QuickTime API-level developer, content author, multimedia producer, or Webmaster who is
currently working with QuickTime, you should read this chapter in order to understand the fundamental
changes that have taken place in the QuickTime software architecture.

Installing QuickTime 7

QuickTime 7 is installed automatically as part of Mac OS X v10.4.

Hardware and Software Requirements

QuickTime 7 requires the following minimum configuration:

= Mac OS X v104, v10.3, or Windows
m PowerPC G3 or better running at 400 MHz or higher
= Atleast 256 MB of RAM

New Pro Key Required

QuickTime 7 replaces existing point releases of QuickTime 6 for Mac OS X. A new Pro key is required; QuickTime
6 Pro keys will not unlock the Pro features of QuickTime 7.

QuickTime in Perspective

The QuickTime APl is dedicated to extending the reach of application developers by letting them invoke the
full range of multimedia’s capabilities. It supports a wide range of standards-based formats, in addition to
proprietary formats from Apple and others. The QuickTime API is not static, however, and has evolved over
the course of the last decade to adopt new idioms, new data structures, and new ways of doing things.

Installing QuickTime 7 9
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

10

CHAPTER 2
What's New in QuickTime 7

The C/C++ portion of the QuickTime APl comprises more than 2500 functions that provide services to
applications. These services include audio and video capture and playback; movie editing, composition, and
streaming; still image import, export, and display; audio-visual interactivity, and more.

A new Cocoa (Objective-C) API for QuickTime, available in Mac OS X v10.4 and v10.3, provides a much less
complex programmer interface, and represents a distillation and abstraction of the most essential QuickTime
functions as a small set of classes and methods. A great deal of functionality has been packed into a relatively
small objective API.

New Features of QuickTime 7

This release of QuickTime includes a number of major new features for users, developers, and content creators,
including improvements in the QuickTime architecture, file format, user interface, and API. There are significant
improvements in the audio, video, and metadata capabilities, as well as a new Cocoa API, and numerous
other enhancements.

= “Changes to QuickTime Player and QuickTime Pro” (page 12) describes the new user interface for
QuickTime Player and QuickTime Pro and some of the changes from previous versions of the player.

= “New QuickTime Kit Framework” (page 27) describes a new Cocoa (Objective-C) framework for developing
QuickTime applications. This new APl opens the world of QuickTime programming to a new group of
developers without requiring them to learn the large, complex C/C++ QuickTime API. The new framework
encapsulates a tremendous amount of QuickTime functionality in a small, easily-mastered API with a
handful of new objects, classes, and methods.

m “Audio Enhancements” (page 29) describes the many new audio features of QuickTime 7, including
support for multichannel sound, playback, capture, compression, and export of high-resolution audio,
a new sound description, and new functions for movie audio control, audio conversion configuration,
audio extraction, movie export, and level and frequency metering.

m “Video Enhancements” (page 45) describes QuickTime's new support for frame reordering video
compression and the H.264 codec. Frame reordering support is a major advance that involves new
sample tables for video, allowing video frames to have independent decode and display times. This
allows improved display, editing, and compression of H.264 and other advanced video codecs. A new
set of functions and structures are introduced to allow developers to work with samples that have
independent decode and display times.

= “New Abstractions Layers For OpenGL Rendering” (page 49) describes the new Visual Context, an
abstraction layer that eliminates dependence on graphics worlds (GWorlds) and supports rendering
directly to engines such as OpenGL.

m “Replacing NewMovieFrom... Functions” (page 52) describes the NewMovieFromProperties function,
which allows you to set up properties before creating a movie. This function also allows you to create
movies that are not necessarily associated with a graphics world, movies that can render their output
to a visual context, such as an OpenGL texture buffer, and movies that play to a particular audio device.

= “QuickTime Metadata Enhancements and API” (page 53) describes the new QuickTime extensible
metadata format, allowing developers to efficiently reference text, audio, video, or other material that
describes a movie, a track, or a media. Support is also added for including metadata from other file types
in native format; the QuickTime 7 release includes native support for iTunes metadata.

= “QuickTime Sample Table API” (page 56) describes the new API for working with QT Sample Tables, a
logical replacement for arrays of media sample references. The new API greatly extends the functionality
of media sample references, and the new API supports frame reordering compressed media.

QuickTime in Perspective
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

= “JavaScript Support and Accessibility in Safari” (page 58) describes the JavaScript support for the Safari
browser. This means you can now use JavaScript to control QuickTime when web pages are viewed
using Safari.

m “Other Changes and Enhancements” (page 58) discusses QuickTime 7's new persistent cache option,
which is important for web authors and content developers to understand because it may impact the
way that QuickTime content is downloaded and saved from their websites. New updates and fixes to
QuickTime for Java are also discussed in this section.

New Directions in QuickTime 7

Key areas of change evident in QuickTime 7 are:

= Ashift of emphasis toward a Core Audio approach to sound, and away from the Sound Manager approach,
throughout QuickTime.

= A shift of emphasis toward configuring components using component properties and an abstraction
layer, or context, and away from the exclusive use of standard dialogs supplemented by direct access
to low-level components.

= A shift of emphasis toward a more object-oriented organization, with more high-level functionality in
QuickTime itself supporting lighter-weight applications.

What Developers Need To Do

If you work with audio at a relatively low level, you should become familiar with the Mac OS X Core Audio
framework and learn how it differs from the older Sound Manager. The use of Core Audio concepts and data
structures is becoming ubiquitous in QuickTime for both Mac OS X and Windows. For details, see Apple’s
Core Audio documentation.

If you work directly with components, you should become familiar with the API for discovering, getting, and
setting component properties. While standard dialogs for configuration are still common, there are often
times when either no dialog or an application-specific dialog is preferable, as well as cases where low-level
control or device-specific configuration is needed that a standard dialog cannot supply.

For example, the component property API allows configuration at any level of detail without requiring a user
interface dialog or direct communication with low-level components. In many cases, an abstraction layer, or
context——either visual or audio——can be created, allowing transparent connection to different kinds of
low-level components, devices, or rendering engines.

The new extensible QuickTime metadata format, discussed in the section “QuickTime Metadata Enhancements
and API” (page 53), uses a similar method of configuration through an abstract set of properties, as a means
of “future-proofing” the architecture. The same is true of the new API for working with QuickTime sample
tables, described in the section “QuickTime Sample Table API” (page 56).

Object Model Evolution

A substantial reorganization of the QuickTime engine has been taking place “under the hood" in this software
release. This reorganization is intended to allow increased access to QuickTime functionality from
object-oriented frameworks such as Cocoa (Objective-C).

QuickTime in Perspective n
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/MusicAudio/Reference/CoreAudio/index.html

CHAPTER 2
What's New in QuickTime 7

As the QuickTime document object model continues to evolve, the goal is to provide developers with easier
access to the more powerful parts of the QuickTime engine using relatively lightweight object-oriented
applications or even scripts——without having to delve into the large and sometimes complex procedural
C/C++ QuickTime API. If you haven't experimented with Cocoa and the Xcode tools yet, this is a good time
to get started.

In Summary QuickTime 6 through QuickTime 7

The following table summarizes the point releases of QuickTime 6 and the features of QuickTime 7.

QuickTime Mac OS | Windows | Mac | Features

version X 0Ss9

6 X X X MPEG-4 and lots more.

6.01 X X X Bug fix for QuickTime 6. Last version for all three platforms.

6.03 X Bug fixes to address security issues. Mac OS 9 only.

6.1 X X Improved MPEG-4 video, full-screen modes, wired actions.

6.2 X Support for iTunes 4, enhanced AAC codec, limited DRM.

6.3 X X Improved AAC codec, 3GPP support, which includes AMR
codec.

6.4 for Mac OS | x New data reference functions, multithreading, new graphics

X functions, component and movie property access, other API
additions.

6.5 X X 3GPP, 3GPP2, and AMC support for mobile multimedia,
Unicode text support.

6.5.1 X X Apple Lossless codec for audio.

7 X X High-resolution, multichannel audio support, frame
reordering video and H.264 support, new Cocoa API, support
for rendering to OpenGL and elimination of dependence
on graphics worlds (GWorlds), new metadata format,
QuickTime sample table API, changes to QuickTime Player
and Pro UL

Changes to QuickTime Player and QuickTime Pro

QuickTime 7 introduces a number of new features and changes to the user interface of QuickTime Player
and QuickTime Pro. These are briefly described in this section. Both Player and Pro are available in Mac OS
X v10.4 and are also backward-compatible with Mac OS X v10.3.

12 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

New in QuickTime Player

The new QuickTime Player, shown in Figure 2-1, is a native Cocoa application. The intent of this new design
is to better integrate QuickTime Player in general with the Mac OS X user experience.

Figure 2-1 The new QuickTime Player application

8006 [¢ NeonMan.mov

[00:00:09 [

The following are some of the new user-level features available in QuickTime Player:

= H.264 video support. This state-of-the-art, standards-based codec delivers exceptional-quality video at
the lowest data rate possible, across the entire bandwidth spectrum.

= New audio and playback controls. Users can use the new A/V Controls window (previously available
only to QuickTime Pro users) to adjust settings for the best audio and playback experience. Users can
now easily change settings, including playback speed, volume, bass, treble, and balance, as shown in
Figure 2-2.

Changes to QuickTime Player and QuickTime Pro 13
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-2 New audio, playback, and video controls in QuickTime Player and QuickTime Player with
Core Image support in Mac OSX v10.4

Audio Video
Volume Brightness
r———i)
i 1 i i T '
Color
B.O.F AV Controls Bass ' N '
ety
Audio Playback ! i ! Contrast
el
Volume log Shuttle Treble " a7 -
1 i | 1 i I
1 1 i
Reverse Forward Tlnt—a—
' T '
Bass Balance
L r—p— R R §
' ? 7 ; Y - [Reset |
Treble Playback Speed
—_— Flayback
1 i i [S T
Ve Ik 2x 3x
Jog Shuttle Playback Speed
T
Balance 1 s | e e e ey
R Reverse Forward Yex Ix 2% 3x
| i |
For QuickTime Player For QuickTime Player + video card and

Core Image support in Mac OSX v10.4

A new video controls panel is also available, as shown in the right portion of Figure 2-2. This option,
however, is only available for users with a special video card on Mac OS X v10.4 where Core Image
support is provided. The video controls let the user adjust for brightness, color, contrast, and tint.

Note: Core Image extends the basic graphics capabilities of the system to provide a framework for
implementing complex visual behaviors in your application. Core Image uses GPU-based acceleration
and 32-bit floating-point support to provide fast image processing and pixel-level accurate content.

m Zero-configuration streaming. You no longer need to set your Internet connection speed in QuickTime
Preferences. QuickTime automatically determines the best connection speed for your computer. If a
connection is lost during streaming, QuickTime automatically reconnects to the server.

m Live resize. Playback continues smoothly as you change the size of the QuickTime Player window. (Note
that there may be hardware dependencies that affect the speed and smoothness of live resizing.)

= Multichannel audio. QuickTime Player can now play 24 audio channels——and beyond. With external
speakers, you can enjoy the full sound effects of movies and games.

By accessing the Window > Show Movie Properties dialog and selecting Audio Settings, as shown in
Figure 2-3, you can set the volume, balance, bass, and treble for a QuickTime movie. In addition, if you
select the sound track property in the dialog, you can set the speaker for each audio channel in that
track, specifying the speaker through which the audio can be heard.

14 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-3 The audio settings dialog with sliders for audio control and channel speaker assignments
®06 MavericksWarmup.mov Properties
Name Start Time Dwration Format

1 Movie 00:00.0 01:12.3

Sound Track 00:00.0 01:12.0 AAC

Video Track 00:00.0 01:12.3 MPEG-4 Video

MPEG-4 SDSM Tr: 00:00.0 01:12.3 MPEG-4 SDSM

MPEG-4 ODSM Tr 00:00.0 01:12.3 MPEG-4 ODSM

" Annotations Resources | Audio Settings | Other Settings }

Valume: & Channel Field
| |
e db +0db 6o T ¢ Left s
— — | ! n
1 Mute] solo | Right S
Center
Balance: ® LFE Screen
R — =~ Left Surround
enter ight
2 Right Surround
Bass: v Discrete-0
= =
Trebl Unused
reble:
T——
| ~ |
Lass Maore

= All-new content guide. The completely redesigned QuickTime Content Guide provides the latest in
news, education, and entertainment on the Internet.

m Screen-reader compatibility. Using VoiceOver, included with Mac OS X v10.4, users with visual disabilities
can enjoy QuickTime Player features.

= Spotlight-friendly content. New in Mac OS X v10.4, Spotlight makes it easy to find your QuickTime
content. Spotlight can search for movie attributes such as artist, copyright, codec, and so on.

= Easy access to QuickTime Pro. Items available only in QuickTime Pro display “Pro” by their names. If
you choose one of these items, you'll see a definition of the feature and learn how to upgrade to
QuickTime Pro. Note that the designation “Pro” is only present when QuickTime Player is not the Pro
version.

New in QuickTime Pro

The following are some of the new user-level features available in the Pro version of QuickTime Player:

= Creating H.264 video. Users can take advantage of this codec for a variety of video needs, ranging from
HD (high definition) to 3G (for mobile devices). This new codec provides better quality at lower bandwidth,
enabling users to deliver high-quality video over the Internet.

= Creating multichannel audio. Users can create a rich multimedia experience by labeling each audio
channel (for example, Left, Right, Left Surround, LFE, and so on), as shown in Figure 2-3. QuickTime
automatically mixes the audio to work with the speaker setup of each user.

= Recording audio and video. With a digital video camera connected to your computer, you can enrich
your email messages with video clips. In addition, with enhanced recording of audio and video, users
can add narration, for example, to their slide shows.

Changes to QuickTime Player and QuickTime Pro 15
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

= Sharing movies. Users can easily create a movie file for sending via email or posting to your .Mac
HomePage. Select File > Share and a dialog appears that lets you choose a maximum size for the attached
movie you want to share and then exports the movie to either your Mail program or to your .Mac
HomePage, as shown in Figure 2-4.

Figure 2-4 Sharing attached movies either as email or on your .Mac HomePage
o068 [# tm-shades.tiff
L
Email HomePage

Choose a maximum size for this movie attachment:

Size: | Small | :!

Summary: 12 frames per second, 240 x 180, with
medium guality stereo sound.

Estimated Size: 3.7 MB

(" Cancel) (Share)

= Full screen playback enhancements. Full screen mode now provides floating Dashboard-style controls
similar to the controls available for DVD Player. These include pause, play, stop, fast forward, and rewind,
as illustrated in Figure 2-5. Users move the pointer to display the controller; after a few seconds, the
controller fades away. Note that the controller does not appear with interactive movies when the mouse
is moved, so that it does not interfer with movie content. Users can press the keyboard control-C to
make it appear or disappear immediately. This new zooming transition, enabling you to go in and out
of Full Screen, is dependent on the user’s computer hardware, as well as the media being played back.

16 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-5 Full screen controls with a floating movie controller

Users can access full screen mode by choosing the View > Full Screen or using its keyboard equivalent.
To display the DVD-style full screen controls, users choose QuickTime Player > Preferences > Full Screen
and select “Display full screen controls,” as shown in Figure 2-6.

Changes to QuickTime Player and QuickTime Pro 17
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-6 Full Screen preferences with the full screen controls selected

8enn Full Screen (=)

o g

General | Full Screen | Recording

" Full Screen Iﬂ |-|

® Movie

O slideshow
Use the left and right arrows to direct the presentation.

] Display full screen controls

Hide After: 2 seconds v

= Concurrent exports. Users can export multiple files at once—and continue with their next playback or
editing task. Figure 2-7 shows the default export settings for exporting a movie to a QuickTime movie.

Figure 2-7 The default export settings for exporting a movie to a QuickTime movie

Save exported file as...

Save As: doorsroadhouse.mov B
Where: [[/l Documents |+J
Export: " Movie to QuickTime Movie |+] (Options...)
Use: v Default Settings
Most Recent Settings
Dial-up - Audio Only cel) (Save)

Dial-up
Broadband - Low
Broadband - Medium

Broadband - High
LAN/Intranet
T —

= The export options enable Pro users to export to a variety of image, text, audio, and movie formats, as
shown in Figure 2-8.

18 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-8 Export options available in QuickTime Pro

@' QuickTime Player File Edit View Window Help

Movie to 3G
Movie to AVI
Movie to BMP
Movie to DV Stream
Movie to FLC
Movie to Hinted Movie B
Movie to Image Sequence
Movie to MPEG-4
Movie to Picture
Movie to QuickTime Media Link
v Movie to QuickTime Movie
Sound to AIFF
Sound to AU
Sound to Wave
Text to QuickTime TeXML
Text to Text

Export:

Use:

= Enhanced and redesigned interface for movie settings. The Movie Properties window has been
redesigned to facilitate movie authoring. Figure 2-9 illustrates the Movie Properties dialog, with
annotations of the movie selected.

Figure 2-9 The Movie Properties dialog

®e06e doorsroadhouse.mov Properties
Object Start Time Curation

7 Movie 00:00.0 04:30.5

™ Video Track 00:00.0 04:30.5

Sound Track 00:00.0 04:30.5

. " - \
A | Resources Audio Settings Presentation

e

Artist The Doors
Title doorsroadhouse.mov

Copyright 2004

i
v
a
v

Add Field B [Remove Selected Fields |

—_—

4
T ——

= New options for image manipulation in the Visual Settings pane of the Movie Properties dialog of a
video track, as shown in Figure 2-10.

Changes to QuickTime Player and QuickTime Pro 19
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-10 QuickTime Pro visual settings options for image control and manipulation

806 Properties for "redhothchilipeppers.mp4”
Enabled Mame Start Time Duration Format
redhothchilipepp 00:00.0 04:38.2 -MNA m
Sound Track 00:00.0 04:38.2 AAC =
.
_ Video Track 00:00.0 04:38.2 | MPEG-4 Video =

_————————————————————————y ..

[

. Annotations | Resources | wisual Settings | Other Settings]

Mask Transformation

Actual Size: 464 x 256 pixels

CurrentSize: 464 x| 256 | pixels |&)

| Preserve Aspect Ratio

Offset: 0 pixels
o [[7] (6]]
{ Choose...) { Clear) [Invert)
Transparancy: Dither Copy B Layer: 0O @ [High Quality
[l Single Field

Smaller layer numbers are further forward. N
[Deinterlace

)

In addition, users are provided with other options to manipulate and control image transparency in
QuickTime movies and image files, shown in Figure 2-11.

Figure 2-11 QuickTime Pro user options for controlling image transparency

806 Properties for "redhothchilipeppers.mp4"
Enabled Name Start Time Duration Format
redhothchilipepp 00:00.0 04:38.3 -MNA m
Sound Track 00:00.0 04:38.3 AAC
_ Video Track 00:00.0 04:38.3 | MPEG-4 Video
Hinted Video 00:00.0 04:38.3 Hint
" Annotations | Resources | Visual Settings | Other Settings |

Mask Transformation

Actual Size: 464 x 256 pixels

Current Size: 464 x 256 r;:!i:cels w

| Preserve Aspect Ratio

Offset: 0 V] pixels

s] [1] €] [0
Layer: [0 |[3) [High Quality

[single Field
] Deinterlace

Mone
Blend

¥ Premultiplied Whita
Premultiplied Black

Transparai

Smaller layer numbers are further forward.

20 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Other Changes and Enhancements

QuickTime Preferences now has the option “Use high quality video setting when available.” Users can set
this as the default for displaying high-quality video tracks, such as DV. Figure 2-12 shows the options available
in the General pane of QuickTime Player Preferences.

Figure 2-12 The General pane in QuickTime Player Preferences

8enn General (=)

o g

General | Full Screen Recording

Movies:
8 Open movies in new players
"] Automatically play movies when opened

] Use high quality video setting when available

Sound:
™ Play sound in frontmost player only
] Play sound when application is in background
@ Show equalizer

Other:
@ Show Content Guide automatically
@ Pause movies before switching users
M Hide selection indicators for empty selection

Number of Recent Iltems: | 10 =5

Figure 2-13 shows the new File menu in QuickTime Player. The Open File command enables users to open
any of a number of digital media types that QuickTime supports, including movies, stillimages, VR panoramas,
Flash, and so on.

Figure 2-13 The new File menu in the QuickTime Player with New Movie Recording selected

g’ QuickTimePlayerm Edit View Window Help

=

New Player BN
New Audio Recording NN
Open File... #0
Open URL... 38U
Open Image Sequence... 430
Open Recent >
Close =W
Save s
Save As.. 385

Revert to Saved

Share...
Export..

Mm W

% 98

Page Setup.. i
Print..

3 3
y= p=

Changes to QuickTime Player and QuickTime Pro 21
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Choosing the File > New Movie Recording menu item enables you to record video from an external digital
video camera. Recording is transparent and easy to use, as QuickTime automatically recognizes the device
and opens a new QuickTime Player with a red button in the lower center, as shown in Figure 2-14. The Player
also displays the current recording duration, as well as the size of the recording in megabytes.

Figure 2-14 Movie recording from a digital device in a new QuickTime player

8eon Movie Recording

Choosing the File > New Audio Recording menu item enables you to record audio from an external or internal
audio device. Once recording begins, a new QuickTime Player appears, as shown in Figure 2-15.

Figure 2-15 Audio recording

la ne [@ Audio.mov

} [00:00:00 T I

To change the video or audio source for your recording, or to specify the quality of recording you want, you
choose QuickTime Player > Preferences > Recording, as shown in Figure 2-16.

22 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-16 Recording preferences
enon Recording =)

o By

GCeneral Full Screen | Recording

Video Source: ' Automatic I

ir

ar
—_

Microphone: ' Automatic !

Quality: ' Better (AVC/H.264) I:']

Better for email and web sharing.
320x240 video, 128 kbps AAC audio

Save files to: [@§ Desktop B

The Save dialog that the Save As command opens now has a “Make movie as a self-contained,” selected by
default, which is a change from previous versions of QuickTime Player.

Choosing the File > Update Existing Software menu item shown in Figure 2-17 lets you update the version
to the latest version of QuickTime available through Software Update.

Figure 2-177 The new QuickTime Player menu

8' eI qul LWL EVCT M File Edit View
About QuickTime Player
Preferences... 3,

QuickTime Preferences...
Registration...

Update Existing Software...
Buy QuickTime Player Pro...
Services >

Hide QuickTime Player #H
Hide Others #H
S}‘CV‘Y‘ rﬂ.::

Quit QuickTime Player #Q
——————————

The Edit menu has changed from previous versions of QuickTime, as shown in Figure 2-18.

Support for multiple undos is now provided. There is a command Trim to Selection (instead of Trim) and
there is no longer a Replace command (users can’t do delete and paste as a single operation).

Changes to QuickTime Player and QuickTime Pro 23
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-18 The QuickTime Pro Edit menu items with Trim to Selection selected

File m View Window Help

Undo 88
Redo {32
Cut #BX
Copy ®C
Paste BV
Delete

Select All BA
Select None 3B
Add to Movie Rw:AY
Add to Selection & Scale “C{+3V
Extract Track

Find >

Special Characters...
T

The Movie menu has been renamed and is now the View menu, as shown in Figure 2-19. The Show Movie
Properties command has been moved to the Windows menu. Note that this overrides any full screen settings
made in user preferences for the current presentation only.

Figure 2-19 The View menu options

Edit m Window Help

Half Size #®0
Actual Size #1
Double Size #2
Full Screen ®F
Present Movie... {+38F
Loop FBL

Loop Back and Forth
Play Selection Only 3T
Play All Frames

Play All Movies ®e

Go to Poster Frame
Set Poster Frame

Choose Language..
——————

The Present Movie command now opens a sheet as shown in Figure 2-20. The same functionality as in previous
versions is provided.

24 Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-20 The Present Movie sheet

A 8 [NeonMan.mov
Full Screen m ,i‘
8 Movie

(O Slideshow
Use the left and right arrows to direct the presentation.

(" Cancel)

[00:00:09 [

=0

The Window menu (Figure 2-21) now provides commands for getting movie properties and showing
audio/video controls.

Figure 2-21 The Window menu with Show A/V Controls selected

View m Help

Minimize #M
Zoom
Show Movie Info |

Show Movie Properties 3]

Show AfV Controls 8K

Favorites >
Bring All to Front

Apple QuickTime
v doorsroadhouse.mov

Choosing the Window > Show Movie Properties menu item and selecting Video Track 1 (shown in Figure
2-22) enables you to specify certain properties of that track. For example, if you select Annotations and want
to add a field, you have multiple choices, including Album, Artist, Author, and so on.

Changes to QuickTime Player and QuickTime Pro 25
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

26

CHAPTER 2
What's New in QuickTime 7

Figure 2-22 Movie properties with annotations and added fields selected

806 1984-2004.mov Properties

Name Start Time Duration Format
7 Movie 00.0 59.8
™ Sound Track 00.0 58.8 AAC m
™ Video Track 1 00.0 59.8 MPEG-4 Video °
[Hinted Video Trac 00.0 59.8 Hint .
M Hintad Snund Tra nn.n 5O R Hint 1

—[—ﬁmnomﬂom% Resources Visual Settings Other Settings —

_Add Field) s il e ot

Album

Author

Comment

Copyright

Director

Title

Information

Keywords

Producer
T

Choosing the Window > Show Movie Properties menu item and selecting Video Track 1 (shown in Figure
2-23) with Other Settings selected enables you to specify certain properties of that track, including language,
preloading of the track, caching, and so on.

Figure 2-23 Other settings available in the movie properties pane

e06 1984-2004.mov Properties

Start Time Duration Format
[Hinted Video Track 00.0 59.8 Hint -
7 Movie 00.0 559.8
|ZlSound Track | 000/ 593
™ Video Track 1 00.0 55.8 MPEG-4 Video 1
™ Video Track 2 00.0 59.8 MPEG-4 Video e

———— Annotations =~ Resources = Audio Settings I—ed'ler-ﬁ-ettlfrgs—]—

Language: English |+]
Alternate: | None B
Chapters: MNone _.

g Preload This Track
Improve playback performance by preloading
this track into memory.

g Cache (hint)
Improve looping performance by caching this

track in memary.

A
e —

The movie properties window has been reorganized, as shown in Figure 2-24. The Presentation pane provides
users with four choices for presenting movie, as well as options for displaying various types of movie controllers.

Changes to QuickTime Player and QuickTime Pro
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-24 The Presentation pane with a QTVR controller selected

8’ QuickTime Player File Edit View Window Help

06 Apple QuickTime Properties
Name Start Time Duration Format
o/mMovie | o0 00 |
® Buttons 00.0 01.0 Sprite
™ Movie 00.0 01.0 Movie
™ Graphic 00.0 01.0 Sprite
® Movie Variables 00.0 01.0 Sprite

" Annotations Resources Audio Settings | Presentation }

General: |_| Automatically play movie when opened
) Enter fullscreen mode when opened
] Automatically close after playing

| Automatically quit after playing

Movie Controller Type v Movie Controller

QTVR 1.0 Pancrama Controller

None Movie Controller

‘QTVR Movie Controller

QTVR 1.0 Object Controller
T —

= New selection handles and fade in/out behavior. When the user moves the mouse over a selection of
the movie, ticks appear that indicate you can make a selection over that area. When you move the mouse
over the playbar, the movie will fade the selection indicators in and out. Users can also set in and out
points now by placing the current time marker and typing | or O.

New QuickTime Kit Framework

QuickTime 7 introduces Cocoa developers to a new QuickTime Kit framework (QTKit . framework). The
QuickTime Kit is a Objective-C framework with a rich API for manipulating time-based media.

At a basic level, QuickTime Kit provides support for displaying and editing QuickTime movies, relying on
abstractions and data types that are already familiar to many Cocoa programmers, such as delegation and
notification. QuickTime Kit introduces new data types for QuickTime-related operations only when necessary.

Specifically, two QuickTime Kit classes——QTMovie and QTMovieView—-are intended to replace the existing
Application Kit classes NSMovie and NSMovieView.

The QuickTime Kit framework is new in Mac OS X v10.4 but is also backward-compatible with Mac OS X v10.3
(Panther) as well.

The QuickTime Kit framework provides a set of Objective-C classes and methods designed for the basic
manipulation of media, including movie playback, editing, import and export to standard media formats,
among other capabilities. The QuickTime Kit framework is at once powerful, yet easy to include in your Cocoa
application. Figure 2-25 shows the QuickTime Kit framework’s class hierarchy.

New QuickTime Kit Framework 27
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

28

CHAPTER 2
What's New in QuickTime 7

Figure 2-25 The QuickTime Kit framework class hierarchy

;" QuickTime Kit Framework

i [NSObject

QTDataReference

| [NSView _}—{QTMovieView | |

Although the QuickTime Kit framework contains only five classes, you can use these classes and their associated
methods, notifications, and protocols to accomplish a broad range of tasks, such as displaying, controlling,
and editing QuickTime movies in your Cocoa applications.

A QTKit palette is also provided in Interface Builder that lets you simply drag a QuickTime movie object,
complete with a controller for playback, into a window, and then set attributes for the movie—-all of this
without writing a single line of code.

Figure 2-26 shows an animated version of what happens in Interface Builder when you drag the QuickTime
object from the QTKit palette to the application window.

Figure 2-26 The QuickTime object dragged to the application window

000 Cocoa-QTKit =)
e SF ~ D [Tl) B=
o01.7 L_-, T e Ter || == »

000 Window

After you drag the QuickTime object into the application window, you have a QuickTime movie view object
with a control bar in the bottom-left corner of the window, as shown in Figure 2-27. By dragging the QuickTime
movie view object by its corner handle to the upper-right corner of the window, the entire window fills up
so that the movie view object with its control bar is visible.

New QuickTime Kit Framework
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-27 The QuickTime movie view object dragged to fill the entire contents of the window

806 Cocoa-QTKit [
AER = D [Ted | B
01.7: k’ = == [Tex | | ==, »

®Ne Window

The QuickTime Kit framework is documented in the QuickTime Kit Reference in conformance with the
standards established for Apple’s Cocoa documentation suite. A tutorial for using the new framework,
QuickTime Kit Programming Guide, is also available online and in PDF format. You can learn how to take
advantage of the new QuickTime Kit framework classes and methods and build your own QTKitPlayer

application, as well as learn how to extend its functionality.

Audio Enhancements

QuickTime 7 breaks free of the limitations of the Sound Manager, adding many new features and capabilities
that developers can take advantage of in their audio playback and capture applications.

Notably, QuickTime 7 now supports high-resolution audio, that is, audio sampled at sample rates higher
than 64 kHz and up to 192 kHz, with up to 24 channels and support for surround sound. This is in stark
contrast to the implementation of the Sound Manager, which only supported mono and stereo. High-resolution
audio is supported by Apple’s Core Audio technology.

The result of these new audio enhancements is as follows:

A much richer approach to sound in QuickTime, with support for higher sampling rates, such as 96 kHz
and 192 kHz, multiple channels and multiple channel layouts, including 5.1 surround sound and up to
24 discrete channels, meaning channels without any layout imposed on them. Support is also provided
for a variety of more accurate audio representations, such as 24-bit uncompressed audio, during capture,
playback, and export. Synchronization and access to uncompressed audio on a per-sample basis is also
greatly improved, including access to raw PCM audio samples from VBR-compressed audio sources.

The introduction of a new abstraction layer: the audio context. An audio context represents a connection
to a particular audio device. Using an audio context allows you to easily connect a movie to an audio
device.

A more flexible architecture for capturing audio. For instance, multiple sequence grabber audio channels
SGAudioMediaType) can capture from a single device at the same time, even if the device doesn't
permit multiple clients directly, and devices with different channel layouts or different PCM audio formats
can be interconnected seamlessly.

Audio Enhancements 29
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

30

CHAPTER 2
What's New in QuickTime 7

= Conversion of audio from one format to another on the fly, performing channel mix-down or remapping,
upsampling or downsampling, and sample conversion as needed. This conversion can be performed
during export, or as part of the output chain to a device with different playback characteristics than the
stored audio, or as part of the capture and storage chain to map input from one or more devices into
one or more storage formats.

Most components, with a few exceptions such as streaming and MPEG-4 exporting, will be able to make use
of these new capabilities immediately. This release of QuickTime updates a number of components so that
it is possible to capture, play back, edit, and export a broad variety of enhanced audio right away.

In brief, QuickTime 7 includes the following enhancements, discussed in this section:

= A new abstraction layer for audio

= A new sound description

= A suite of sound description functions

= New movie property to prevent pitch-shifting

= New functions for gain, balance, and mute

= New level and frequency metering API

= New audio extraction and conversion API

= New audio compression configuration component

= New movie export properties to support high-resolution audio

= New sequence grabber component for audio (SGAudioMediaType)

New Abstraction Layer For Audio

QuickTime 7 introduces the audio context——a new abstraction that represents playing to an audio device.

As defined, a QuickTime audio context is an abstraction for a connection to an audio device. This allows you
to work more easily and efficiently with either single or multiple audio devices in your application.

To create an audio context, you call QTAudioContextCreateForAudioDevice and pass in the UID of the
device, which is typically a CFString. An audio context is then returned. You can then pass that audio
content either into NewMovieFromProperties, as you would pass in a visual context, or you can open your
movie however you would normally open it and call SetMovieAudioContext. What that does is route all
the sound tracks of the movie to that particular device.

Note that if you want to route two different movies to the same device, you cannot use the same audio
context because the audio context is a single connection to that device. What you do is call
QTAudioContextCreateForAudioDevice again and pass in the same device UID to get another
AudioContext for the same device, and pass that to your second movie.

High-Resolution Audio Support

High-resolution audio makes use of an enhanced sound description with the ability to describe high sampling
rates, multiple channels, and more accurate audio representation and reproduction.

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Significantly, the new sound description has larger fields to describe the sampling rate and number of
channels, so that the sound description is no longer the limiting factor for these characteristics.

The sound description has built-in support for variable-bit-rate (VBR) audio encoding with variable-duration
compressed frames. Extensions to the sound description allow you to describe the spatial layout of the
channels, such as quadraphonic and 5.1 surround sound, or to label channels as discrete—-that is, not tied
to a particular geometry. For more information, see “SoundDescriptionV2” (page 262).

New movie audio properties include a summary channel layout property, providing a nonredundant listing
of all the channel types used in the movie—such as L/R for stereo, or L/R/Ls/Rs/C for 5-channel surround
sound—and a device channel layout, listing all the channel types used by the movie’s output device.

Figure 2-28 shows the layout of surround speakers. The terminology is defined in Table 1-1.

Figure 2-28 Layout of surround speakers

5%

©

W

Table 2-1 Surround sound definitions
Speaker | Definition
L Left speaker
R Right speaker
C Center speaker
Ls Left surround speaker
Rs Right surround speaker
LFE Sub-woofer (Note that LFE is an abbreviation for low-frequency effects)
Audio Enhancements 31

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

32

CHAPTER 2
What's New in QuickTime 7

The new sound description is supported by the data types and structures used in the Core Audio framework
for Mac OS X (see Core Audio documentation). While the Core Audio APl itself is not available to Windows
programmers, QuickTime for Windows may include the relevant data structures, such as audio buffers and
stream descriptions, audio time stamps and channel layouts, and so on, described in the Core Audio
documentation.

A suite of functions has been included to support the handling of sound descriptions opaquely.

Playback

Playback at the high level is automatic and transparent; if you play a movie that contains 96 kHz or 192 kHz
sound, it should just work. You should not have to modify your code. The same is true for cut-and-paste
editing. If the chosen output device does not support the channel layout, sampling rate, or sample size of
the movie audio, mix-down and resampling are performed automatically.

Import of high-resolution audio is automatic, provided the import component has been updated to support
high-resolution audio.

Export

Export of high-resolution audio is likewise transparent at the high level. Export at the lower levels requires
some additional code. Your application must “opt in” to the new audio features explicitly if it “talks” directly
to an export component instance. You do this by calling QTSetComponentProperty on the exporter
component instance and passing in the
kQTMovieExporterPropertyID_EnableHighResolutionAudioFeatures property. Thisis illustrated
in the code sample Listing 2-1 (page 37).

Capture

Capturing high-resolution audio requires new code to configure and use the new sequence grabber component
for audio. The new audio capture API offers a number of improvements, including the ability to share an
input device among multiple sequence grabber channels and the usage of multiple threads for increased
efficiency.

When all components in a chain are able to work with high-resolution audio, clock information can be
preserved across operations for sample-accurate synchronization.

Sound Description Creation and Accessor Functions

QuickTime 7 provides new functions that let you create, access, and convert sound descriptions.

Sound descriptions can take three basicinputs:an AudioStreamBasicDescription,achannel layout, and
magic cookie. Sound descriptions are now treated as if they are opaque. In QuickTime 7, when you are handed
a sound description, for example, you don’t have to go in and look at the version field.

If you want to create a sound description, you can simply hand it an AudioStreamBasicDescription,an
optional channel layout if you have one, and an optional magic cookie if you need one for the described
audio format. Note that it is the format (codec) of the audio that determines whether it needs a magic cookie,
not the format of the sound description.

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/MusicAudio/Reference/CoreAudio/index.html

CHAPTER 2
What's New in QuickTime 7

By calling QTSoundDescriptionCreate (page 230), you can make a sound description of any version you
choose-—for example, one that is of the lowest possible version, given that it is stereo and 16-bit, or one of
any particular version you want or request.

The main point about the new APl is the capability provided to create a sound description and the usage of
new property getters and setters. To accomplish this, follow these steps:

1. Getan AudioStreamBasicDescription from a sound description.
2. Get a channel layout from a sound description (if there is one).

3. Get the magic cookie from magic cookie (if there is one).

At this point, you have all the information you need to talk to Core Audio about this audio. You can also:
1. Get a user-readable textual description of the format described by the SoundDescription.

2. Add or replace a channel layout to an existing sound description. For example, this is what QuickTime
Player does in the properties panel where the user can change the channel assignments.

3. Addamagic cookie to a sound description. (This is not needed very often unless you are writing a movie
importer, for example.)

To convert an existing QuickTime sound description into the new V2 sound description, you call
QTSoundDescriptionConvert (page 230). This lets you convert sound descriptions from one version to
another.

For a description of versions 0 and 1 of the SoundDescription record, see the documentation for the
QuickTime File Format.

For a description of version 2 of the SoundDescription record, see “SoundDescriptionV2” (page 262).

For details of the sound description functions, see QTSoundDescriptionCreate (page 230) and
QTSoundDescriptionConvert (page 230).

Audio Playback Enhancements

In addition to playing back high-resolution audio, QuickTime 7 introduces the following audio playback
enhancements:

= The ability to play movies at a nonstandard rate without pitch-shifting the audio.

m Getting and setting the gain, balance, and mute values for a movie, or the gain and mute values for a
track.

= Providing audio level and frequency metering during playback.

Preventing Pitch-Shifting

A new property is available for use with the NewMovieFromProperties function:
kQTAudioPropertyID_RateChangesPreservePitch. When this property is set, changing the movie
playback rate will not result in pitch-shifting of the audio. This allows you to fast-forward through a movie
without hearing chipmunks.

Audio Enhancements 33
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

34

CHAPTER 2
What's New in QuickTime 7

Setting this property also affects playback of scaled edits, making it possible to change the tempo of a sound
segment or scale it to line up with a video segment, for example, without changing the pitch of the sound.

Gain, Mute, and Balance

New functions are available to set the left-right balance for a movie, set the gain for a movie or track, or to
mute and unmute a movie or track without changing the gain or balance settings.

The gain and mute functions duplicate existing functions for setting track and movie volume, but the new
functions present a simpler and more consistant programmer interface.

For example, to mute the movie using the old SetMovieVolume function, you would pass in a negative

volume value; to preserve the current volume over a mute and unmute operation, you had to first read the
volume, then negate it and set it for muting, then negate it and set it again to unmute. By comparison, the
new SetMovieAudioMute function simply mutes or unmutes the movie without changing the gain value.

Note: The values set using these functions are not persistent; that is, they are not saved with the movie.

For details, see

m GetTrackAudioGain (page 89)
m SetTrackAudioGain (page 252)
m GetTrackAudioMute (page 89)
m SetTrackAudioMute (page 252)
m GetMovieAudioGain (page 83)
m SetMovieAudioGain (page 246)
m GetMovieAudioMute (page 84)
m SetMovieAudioMute (page 247)
m GetMovieAudioBalance (page 80)
m SetMovieAudioBalance (page 244)

Level and Frequency Metering

It is now easy to obtain real-time measurements of the average audio output power level in one or more
frequency bands.

You can specify the number of frequency bands to meter. QuickTime divides the possible frequency spectrum
(approximately half the audio sampling rate) into that many bands. You can ask QuickTime for the center
frequency of each resulting band for display in your user interface.

You can measure the levels either before or after any mix-down or remapping to an output device. For
example, if you are playing four-channel surround sound into a stereo output device, you might want to
meter the audio levels of all four channels, or you might prefer to see the actual output values delivered to
the stereo device.

To use the frequency metering API, follow these steps:

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Set the number of frequency bands to meter using SetMovieAudioFrequencyMeteringNumBands.

Call GetMovieAudioFrequencyMeteringBandFrequencies if you need to know the frequencies of
the resulting bands.

Finally, make periodic calls to GetMovieAudioFrequencylevels to obtain measurements in all specified
bands. You can obtain either the average values, the peak hold values, or both.

For details, see

GetMovieAudioVolumeMeteringEnabled (page 85)
SetMovieAudioVolumeMeteringEnabled (page 248)
GetMovieAudioVolumelevels (page 84)
GetMovieAudioFrequencyMeteringNumBands (page 82)
SetMovieAudioFrequencyMeteringNumBands (page 246)
GetMovieAudioFrequencyMeteringBandFrequencies (page 82)

GetMovieAudioFrequencylevels (page 81)

Audio Conversion, Export, and Extraction

The new audio extraction API lets you retrieve mixed, uncompressed audio from a movie.

Note that the audio extraction API currently only mixes audio from sound tracks. Other media types, such as
muxed MPEG-1 audio inside a program stream, are not currently supported.

To use the audio extraction API, follow these steps:

1.

Begin by calling MovieAudioExtractionBegin (page 185). This returns an opaque session object that
you pass to subsequent extraction routines.

You canthen getthe AudioStreamBasicDescription forthe audio or layout. Note that some properties
are of variable size, such as the channel layout, depending on the audio format, so getting the information
involves a two-step process.

a. First,youcallMovieAudioExtractionGetPropertylInfo (page 189)to find out how much space
to allocate.

b. Next, call MovieAudioExtractionGetProperty (page 187) to obtain the actual value of the
property.

You can use the AudioStreamBasicDescription to specify a different uncompressed format than
Float 32. This causes the extraction API to automatically convert from the stored audio format into your
specified format.

UsetheMovieAudioExtractionSetProperty (page 189) function to specify channel remapping—that
is, a different layout——sample rate conversion, and preferred sample size. You can also use this function
to specify interleaved samples (default is non-interleaved) or to set the movie time to an arbitrary point.

Audio Enhancements 35
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

36

CHAPTER 2
What's New in QuickTime 7

Note that there are basically two things you set here: an audio stream basic description (ASBD) and a channel
layout. (ASBD sets the format, sample, number of channels, interleavings, and so on.)

Setup is now complete. You can now make a series of calls to MovieAudioExtractionFill1Buffer to
receive uncompressed PCM audio in your chosen format.

1. The default is for the first call to begin extracting audio at the start of the movie, and for subsequent
calls to begin where the last call left off, but you can set the extraction point anywhere in the movie
timeline by calling MovieAudioExtractionSetProperty and setting the movie time.

2. MovieAudioExtractionFill1Buffer willsetkMovieAudioExtractionCompleteinoutFlagswhen
you reach the end of the movie audio.

3. You must call MovieAudioExtractionEnd when you are done. This deallocates internal buffers and
data structures that would otherwise continue to use memory and resources.

A caveat: Ideally, the uncompressed samples would be bitwise identical whether you obtained the samples
by starting at the beginning of the movie and iterating through it, or by randomly setting the movie time
and extracting audio samples. This is typically the case, but for some compression schemes the output of
the decompressor depends not only on the compressed sample, but the seed value in the decompressor
that remains after previous operations.

The current release of QuickTime does not perform the necessary work to determine what the seed value
would be when the movie time is changed prior to extracting audio; while the extracted audio is generally
indistinguishable by ear, it may not always be bitwise identical.

For details about audio conversion, export, and extraction, refer to the information about the following
functions:

m MovieAudioExtractionBegin (page 185)

m MovieAudioExtractionGetPropertyInfo (page 189)
m MovieAudioExtractionGetProperty (page 187)

m MovieAudioExtractionSetProperty (page 189)

m MovieAudioExtractionFillBuffer (page 186)

m MovieAudioExtractionkEnd (page 186)

Standard Audio Compression Enhancements

QuickTime 7 introduces a new standard compressor component, StandardCompressionSubTypeAudio,
that adds the ability to configure high-resolution audio output formats. It uses Core Audio internally instead
of the Sound Manager, and has a full set of component properties to make configuration easier, especially
when the developer wishes to bring up an application-specific dialog, or no dialog, rather than the typical
compression dialog.

This component essentially replaces the StandardCompressionSubTypeSound component, which is limited
to 1 or 2 channel sound with sampling rates of 65 kHz or less. That component is retained for backward
compatability with existing code, but its use is no longer recommended.

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

The StandardCompressionSubTypeAudio component is configured by getting and setting component
properties, instead of using GetInfo and Setinfo calls. These properties have a class and ID, instead of just a
single selector.

The component property API allows configuration at any level of detail without requiring a user interface
dialog or direct communication with low-level components.

For details, refer to the sections “SGAudio Component Property Classes” (page 273)and “SGAudio Component
Property IDs” (page 273).

Note: You can also configure the new standard audio compression component by calling
SCSetSettingsFromAtomContainer. You can pass the new standard audio compression component
either a new atom container obtained from SCGetSettingsAsAtomContainer oran old atom container
returned by calling the same function (SCGetSettingsAsAtomContainer) onthe old SubTypeSound
component.

If you use MovieExportToDataRefFromProcedures, your getProperty proc will need to support some of
these property IDs as new selectors. Note that the Movie Exporter getProperty proc API is not changing to
add a class (the class is implied).

Note: Not all properties can be implemented by getProperty procs; the properties that getProperty procs
can implement are marked with the word "DataProc". See the inline documentation in
QuickTimeComponents.h for more information.

Audio Export Enhancements

Some movie export components now support high-resolution audio.

Export of high-resolution audio is transparent at the high level. If you export from a movie containing
high-resolution audio to a format whose export component supports it, the transfer of data is automatic; if
the export component does not support high-resolution audio, mix-down, resampling, and sound description
conversion are automatic.

Export at the lower levels requires some additional code. Your application must “opt in” to the new audio
features explicitly if it talks directly to an export component instance. (This is to prevent applications that
have inadvisedly chosen to “walk” the opaque atom settings structure from crashing when they encounter
the new and radically different structure.) The following code snippet (Listing 2-1) illustrates the opt-in
process.

Listing 2-1 Opting in for high-resolution audio export

ComponentInstance exporterCI;

ComponentDescription search = { ’'spit’, ’MooV’, ’appl’, 0, 0 };
Boolean useHighResolutionAudio = true, canceled;

0SStatus err = nokrr;

Component ¢ = FindNextComponent(NULL, &search);
exporterCI = OpenComponent(c);

// Hey exporter, I understand high-resolution audio!!
(void) QTSetComponentProperty(// disregard error

Audio Enhancements 37
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

exporterCI,

kQTPropertyClass_MovieExporter,
kQTMovieExporterPropertyID_EnableHighResolutionAudioFeatures,
sizeof(Boolean),

&useHighResolutionAudio);

err = MoviekExportDoUserDialog(exporterCI, myMovie, NULL, 0, 0, &canceled);

For additional details, see “Movie Exporter Properties” (page 272).

Audio Capture Enhancements

There is a new sequence grabber channel component (* sgch’) subtype for audio, SGAudioMediaType
(*audi’), which allows capture of high-resolution audio, supporting multi-channel, high sample rate, high
accuracy sound. This is intended to replace the older SoundMediaType component.

Important: The new component still captures a sound track of type SoundMediaType (*soun’); only the
sequence grabber media type changes, not the final track media type.

The new audio channel component has a number of noteworthy features, including:

= audio capture to VBR compressed formats

= enabling or disabling of source channels on a multi-channel input device

= mix-down and remapping of multi-channel audio source material

= discrete and spatial labeling of channels (for example, 5.1 or discrete)

= audio format and sample rate conversion during capture

= sharing of audio input devices among multiple sequence grabber audio channels

= sharing of audio playback devices among multiple sequence grabber audio channels
= notification of audio device hotplug/unplug events

= audio preview of source data or compressed data

= splitting audio channels from a record device to separate tracks in a movie

= redundant capture of multichannel audio to separate tracks in a movie (with independent data rates
and compression settings)

= client callbacks of audio pre- and post-mixdown, and pre- and post-conversion with propagation of
audio time stamps and audio samples to interested clients

= improved A/V sync
= improved threading model compared with the legacy SoundMediaType
= lower latency audio grabs

= reduced dependency on frequent SGId1e calls

This new, advanced functionality makes extensive use of Core Audio methodology and data structures.

38 Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Configuring Audio Channel Components

The audio channel component can be configured using component properties. This has several advantages
over using a sequence grabber panel. For one thing, it can be configured without a user dialog, or using an
application-specific dialog. For another, it is possible to test for properties and get or set them dynamically,
allowing the same code to configure multiple audio input devices, including unfamiliar devices.

The application does not need to bypass the channel component and connect directly to an input device,
such as a SoundInputDriver, to set low-level properties. This allows multiple capture channels to share a
single input device, and keeps application code from becoming tied to a particular device type.

For a full list of the SGAudioMediaType component properties, see “SGAudio Component Property
IDs” (page 273). For a full list of component property classes, see “SGAudio Component Property
Classes” (page 273).

Once the component is configured, the audio capture—plus any desired mixdown, format or sample-rate
conversion, and compression—take place in a combination of real-time and high-priority threads. Multichannel
data is interleaved and samples are put into a queue. You can set up callbacks to watch the data at any of
several points in the chain: pre-mixdown, post-mixdown, pre-conversion, or post-conversion.

The actual writing of the captured audio to a storage medium, such as a disk file, takes place during calls to
SGIdle.

One input device can be shared by multiple sequence grabber channels, as illustrated in Figure 2-29. Because
independent mix and conversion stages exist for each sequence grabber audio channel, the sequence grabber
audio channels can capture different channel mixes, sampling rates, sample sizes, or compression schemes
from the same source. Similarly, multiple sequence grabber audio channels can share a common output
device for previewing.

Channel mixdown or remapping, sample conversion, and any compression are all performed on high-priority
threads. Each sequence grabber channel receives data from only those audio channels it has requested, in
the format it has specified. The following processing may occur in the background:

= software gain adjustment

= mixing

= sample rate conversion

= bit-depth widening or shortening

= float to integer conversion

m byte-order conversion (big-endian to little-endian or vice-versa)

= encoding of frames into compressed packets of data in the specified format

= interleaving

The resulting frames or packets are held in a queue, to be written to file or broadcast stream on the main
thread. This is accomplished during calls to SGId1e, at which time the audio is chunked and interleaved with
any video data being captured.

Audio Enhancements 39
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

40

CHAPTER 2
What's New in QuickTime 7

Sequence Grabber Audio Channel Mapping

Figure 2-29 is a high-level diagram that shows some of the internal workings of the sequence grabber audio
channel, such as the Core Audio matrix mixer and the audio converter that lets you convert, compress, and
interleave audio, and then queue the audio. From the queue, the audio can be written to disk in desired
chunk sizes. One distinct advantage of this process is that you can take a single device and share it among
multiple channels. This results in simultaneous recording from multiple devices into multiple tracks in a
QuickTime movie. In addition, you can record multiple tracks from a single device.

Figure 2-29 QuickTime audio device sharing among sequence grabber channels

Real-Time and High-Priority Threads Main Thread (SGidle)

(sequence grabber 1 (audio channels #1 and #2)\

o o A g Write to
a r|x udio I ; disk in & QuickTime
@[mlxer converter dehsirekd g Movie
chun Track 1
Mix-down Format convert, sizes
®j> and compress, and
Core level meter interleave
Audio \ 4
®::> HAL P N
sequence grabber 2 (audio channels #1 and #3)
|| ot nud Write to
atrix udio disk in
@[mixer converte;r':D desired Ej>

. chunk Track 2
Mix-down Format convert, sizes

and compress, and
LIevel meter interleave

Figure 2-30 illustrates a usage case that involves client channel mapping. This shows how a client can
instantiate multiple sequence grabber audio channels that share a recording device. This enables the “splitting
of device channels across multiple tracks in a QuickTime movie. In Figure 2-30, there is single recording
device, with four channels. The first two channels record into Track 1 in a QuickTime movie. The second
sequence grabber audio channel, which records into Track 2 in a QuickTime movie, only wants channel 4
from the recording device, so that you can get one stereo track and one mono track.

”

In this example, device Track 0 will get into Movie Track 1, while Movie Track 3 has only one slot to fill. You
can mix and match different channel map valences in such a way as to disable certain tracks in a movie and
get submixes, for example. In code, it looks like this:

SInt32 map 1 L 1 =1{0, 1 };
SInt32 map 2 [1 =1{ 3 };

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-30 Client channel mapping with “splitting” of device channels

(1) (‘sequence grabber audio channel #1 QuickTime

! Movi
@@ LWants first two channels J:> ovie

Track 1

G—X ('sequence grabber audio channel #2 |

@:>@ LWants channel 4 J:>

Track 2

Figure 2-31 shows another usage case that also involves client channel mapping.

A sequence grabber audio channel shown in the illustration can get four channels from a device in any order
that makes sense for the client. Consider, for instance, a device that supports four-channels of audio. Using
the channel map property IDs (“SGAudio Component Property IDs” (page 273)), you can reorder channels
from a recording device to a desired movie channel valence. In code, it looks like this:

SInt32 map [4 1 =1{3, 2,1, 0 };

Figure 2-31 Channel mapping with reordering of channels

QuickTime
Movie

]

il

®ee6

(sequence grabber audio channel #1 \

Wants all channels, but in
reverse order

2
2

Track 1

res

Figure 2-32 shows another example of what you can do with the feature of channel mapping, in this case
mult’-ing, that is, duplicating channels from a recording device into multiple output channels in QuickTime
movie tracks. For instance, you can take advantage of this channel mapping feature if you have one recording
device and two sequence grabber audio channels, and they're both going to make the same movie. The first
sequence grabber audio channel wants the first stereo pair twice (1, 2, 1, 2), while the second wants the
second stereo pair twice (3, 4, 3, 4). In code, it looks like this (zero-based indexing):

SInt32 map 1 L 1 =1{0,1, 0, 1 };
SInt32 map 2 [1 =1{2, 3,2, 3 1};
Audio Enhancements 1

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

42

CHAPTER 2
What's New in QuickTime 7

Figure 2-32 Channel mapping enabling mult-ing

(sequence grabber audio channel #1 \ QuickTime
L J:> Movie

Wants first stereo pair twice

Track 1

sequence grabber audio channel #2 \

LWants second stereo pair twice Jj> (i

5 L

Figure 2-33 illustrates the what you can do with multiple mixes. Because you can duplicate device channels
onto multiple output tracks, you can create a movie containing multiple mixes of the same source material.

This is useful for a recording situation where you have a six channel recording device and are presenting 5.1
material. You could make a QuickTime movie that has four tracks in it. In this case, the first track is getting
the raw, unmixed source—-that is, channels one through six. You will have a six discrete channel track,
meaning that the first channel plays out to the first speaker, the second channel out to the second speaker,
and so on.

In sequence grabber audio channel #2, you'll get a 5.1 mix and apply spatial orientation to the six channels,
specifying the speakers to which the audio will play. All four tracks are going into a QuickTime movie. Sequence
grabber audio channel #3 presents a stereo mix-down, while sequence grabber audio channel #4 presents
a mono mix-down.

Figure 2-33 Channel mapping with simultaneous multiple mixes

8 (sequence grabber audio channel #1 \:>|..._4...,#
O | Raw unmixed source, labeled as discrete Track 1
O channels 0-5
O .

No Mix
O \ J

sequence grabber audio channel #2 \:> VAR Qul\inc:'l:Lme
- Vi
5.1 Mix of 6 channel source Track 2

6 channels are labeled approriately
(L,R, C, LFE, LS, RS)

\\ J

sequence grabber audio channel #3 \ﬁ‘i,

PEOO®®O

Stereo Mix Track 3
6 channels —}—} 2 channels
\ J

sequence grabber audio channel #4 \:>|..._4....F

000000 000000 000000

Mono Mix Track 4
6 channels —}—} 1 channel
\ J

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-34 shows channel mapping with multi-date rates, similar to multiple mixes, except that you can
also apply compression to the mixes. As a result, you can broadcast multiple streams at once.

Figure 2-34 Channel mapping with multi-data rates

8 ([sequence grabber audio channel #1 \:> INRETTIS
8 5.1 96 kHz 24 bit Track 1
®) ﬁ(Matrix mixer):>(Audio convener):>
O J

sequence grabber audio channel #2 | QuickTime
£ £ li, Movie

5.1 AAC 48 kHz 160 Kbps

ﬁ(Matrix mixer):>(Audio converter):>

7

Track 2

sequence grabber audio channel #3 \:>|.«_4...1
5.1 AAC 48 kHz 56 Kbps Track 3

ﬁ(Matrix mixer):>(Audio converter):>

J

POEO®O

sequence grabber audio channel #4 \j> “‘*:I:
Stereo QDesign Track 4

ﬁ(AC);'>(QDesign):'i

000000 O0000O0 000000

Figure 2-35 shows sequence grabber audio callbacks, which are analogous to the VideoMediaType sequence
grabber channel video bottlenecks. The callbacks provide developers with different places in the audio chain
where they can “pipe in” and look at the samples.

Figure 2-35 Sequence grabber audio callbacks, analogous to sequence grabber video bottlenecks callbacks

Real-Time Thread High-Priority Threads Main Thread

QuickTime
Movie

sequence grabber audio channel)

1 2)(3 @)
Matrix Audio
> mixer converterJ:> j>

- Track 1
Mix-down Format convert,
and compress, and
level meter interleave

@ Premix callback
(2) Postmix callback
@ Preconversion callback

@ Postconversion callback

Figure 2-36 shows sequence grabber audio callbacks, with real-time preview. Clients can specify what they
want to preview, using the sequence grabber channel play flags.

Audio Enhancements 43
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

44

CHAPTER 2
What's New in QuickTime 7

Figure 2-36 SGAudio callbacks with real-time preview

Real-Time Thread High-Priority Threads Main Thread

QuickTime
Movie

sequence grabber audio channel)

P
Matrix Audio
mixer converter}:> j>
@

2)(3 Track 1
[T Volume

@ Premix callback

(2) Postmix callback

@ Preconversion I
callback

@ Postconversion
callback

Using Sequence Grabber Audio Features

To make use of the new sequence grabber audio features, follow these steps:

1.

Instantiate a sequence grabber channel of subtype SGAudioMediaType (*audi’), by calling
SGNewChannel (sg, SGAudioMediaType, &audiChannel).

Use the QuickTime component property API to obtain a list of available input and preview devices from
the sequence grabber channel, by getting the property
kQTSGPropertyID_DevicelListWithAttributes (*#fdva’).

Use the same component property API to get the input device characteristics and set the desired audio
format and device settings. See “SGAudio Component Property Classes” (page273)and “SGAudio
Component Property IDs” (page 273) for details. Note that this is sometimes a two-stage process, as
next described.

a. Use(QTGetComponentPropertyInfo to determine the size of the property value.
b. Allocate the necessary container and use QTGetComponentProperty to obtain the actual value.

This is necessary with properties such as channel layout, which is a variable length structure.

Call SGStartRecord or SGStartPreview, enabling the sequence grabber, and then make periodic
callsto SGIdle.

If you are capturing only sequence grabber audio media, it is no longer necessary to make extremely frequent
calls to SGId1e, since this function is only used to write the samples to storage, not to capture data from the
input device. When capturing video or using an old-style sequence grabber sound media component,
however, you must still call SGId1e frequently (at a frequency greater than the video sample rate or the
sound chunk rate).

Audio Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

By setting the appropriate sequence grabber channel properties and setting up a callback, you can examine
samples at various points in the input chain, such as premix, postmix, preconversion, and postconversion.
For details, see SGAudioCallbackProc (page 256), SGAudioCallbackStruct (page 261), “SGAudio
Component Property Classes” (page 273) and “SGAudio Component Property IDs” (page 273).

Video Enhancements

QuickTime 7 introduces a number of important video enhancements, discussed in this section. These include

= Support for compressed video using frame reordering. Support is added for compression, playback,
streaming, and low-level access to stored samples.

= A new visual context that provides an abstraction layer that is intended to decouple QuickTime from
graphics worlds (GWorlds). This decoupling allows programmers to work in QuickTime without needing
to understand QuickDraw, and to more easily render QuickTime directly using engines such as OpenGL.

= Support for H.264 video compression, including QuickTime components for export, playback, and live
streaming.

Frame Reordering Video

QuickTime 7 adds support for frame reordering video compression. This is a major advance that involves
new sample tables for video to allow video frames to have independent decode and display times.

The result of using frame reordering for video compression is improved display, editing, and capture in H.264
and other advanced video codec formats. Enhancements include a new API for working with media sample
times, adding and finding samples, and a new Image Compression Manager (ICM) API.

Understanding Frame Reordering Video Compression

QuickTime supports many types of video compression, including spatial compression algorithms, such as
photo-JPEG, and temporal compression algorithms, in which some video frames are described completely,
while other frames are described in terms of their differences from other video frames.

Up until the introduction of H.264 in QuickTime 7, video frames could be of three kinds:

= |-frames (independently decodable)
m P-frames (predicted from a previous I- or P-frame)

= B-frames (predicted from one past and one future I- or P-frame)

Video Enhancements 45
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

46

CHAPTER 2
What's New in QuickTime 7

Note: B-frame, I-frame, and P-frame are all video compression methods used by the MPEG standard. B-frame
is an abbreviation for bi-directional frame, or bi-directional predictive frame. B-frames rely on the frames
preceding and following them and only contain data that has changed from the preceding frame or is different
from data in the next frame.

P-frame is an abbreviation for predictive frame, or predicted frame. P-frames follow |-frames and contain only
the data that has changed from the preceding I-frame. P-frames rely on I-frames to fill in most of its data.

I-frame, also known as keyframes, is an abbreviation for intraframe. An I-frame stores all the data required
to display the frame. In common usage, I-frames are interspersed with P-frames and B-frames in a compressed
video.

Because B-frames predict from a future frame, that frame has to be decoded before the B-frame, yet displayed
after it; this is why frame reordering is needed.The decoded order is no longer the same as the displayed
order.The QuickTime support for frame reordering is quite general.ln the H.264 codec, the concepts of the
direction of prediction, and the numbers of referenced frames, and the kind of frame that is referenced, are
all decoupled. In H.264, an encoder may choose to make a stream in which P-frames refer to a future frame,
or a B-frame which refers to two past or future frames, for example.

Important: Prior to this release, QuickTime supported self-contained video frames (keyframes, also called
sync-frames or I-frames) and frames that depended on previous frames (P-frames). Many modern compressors
also make use of frame reordering, in which frames can depend on future frames.Those future frames have
to be decoded before the frame in question, but displayed after it——hence the reordering. Traditional B-frames
are one example: they depend on a past and a future I- or P-frame.That future I- or P-frame has to be given
to the decoder before the B-frame, but is displayed after the B-frame itself. This means that the frames are
stored or streamed in decode order, rather than in display order.

For decompressors that don't use frame reorderings, the decode order and the display order are the same,
and QuickTime sample tables are traditionally organized to reflect this. Samples are stored in decode order,
which is presumed to be the display order, and the sample tables specify the duration of each sample’s
display; the display time is the time when the track begins plus the duration of all previous samples.

The addition of frame reordering support means that QuickTime now has an optional sample table for video
that specifies the offset between the decode time and the display time. This allows frames to be stored in
decode order but displayed in a different order. The decode time is still the beginning of the track plus the
decode duration of all previous samples, but it is now necessary to examine the offset table to determine
which samples precede others and calculate the correct display time.

For high-level programmers, this all happens transparently. Developers who work directly with sample
numbers and sample times, however, must be aware of this new feature. A new, expanded APl is available
to support this.

Finding and Adding Samples

Developers who need to work with specific samples based on the samples’ display times, or who are adding
samples to a media directly, need to use a different APl when working with media that uses frame reorderings.

For example, programmers who use the function MediaTimeToSamp1eNum mustinstead use the two functions
MediaDecodeTimeToSampleNumandMediaDisplayTimeToSamp1eNumwhen working with frame reordering
compressed video, as each sample now has a decode time and a display time instead of a single media time
(combined decode/display time).

Video Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Similarly, when adding samples to a media that permits display offsets, it is necessary to use the new
AddMediaSample? instead of AddMediaSamp]le, as the new function permits the user to pass a display
offset and specify properties that are unique to media with display offsets, such as whether subsequent
samples are allowed to have earlier display times than the current sample.

Calling one of the old functions that use a single media time value on new-format media that contains display
offsets will return the error code kQTErrMediaHasDisplayOffsets.

The new API elements all use 64-bit time values, whereas the older APl elements use 32-bit values. Calling
one of the old functions with a 64-bit time value returns the error code kQTErrTimeValueTooB1ig.

When creating a media for frame reordering compressed video track, pass in the new flag
kCharacteristicSupportsDisplayOffsets.

For details, see:

m AddMediaSample? (page 63)

m fExtendMediaDecodeDurationToDisplayEndTime (page 69)
m GetMediaAdvanceDecodeTime (page 71)

m (GetMediaDataSizeTime64 (page 72)

m GetMediaDecodeDuration (page 73)

m GetMediaDisplayDuration (page 73)

m GetMediaDisplayEndTime (page 74)

m GetMediaDisplayStartTime (page 74)

m (GetMediaNextInterestingDecodeTime (page 75)
m GetMediaNextInterestingDisplayTime (page 76)
m GetMediaSample? (page 77)

m MediaContainsDisplayOffsets (page 183)

m MediaDecodeTimeToSampleNum (page 183)

m MediaDisplayTimeToSampleNum (page 184)

m TrackTimeToMediaDisplayTime (page 253)

There is additional support for programmers who work directly with arrays of media sample references.
Although these new functions work with frame reordering video or other media with independent decode
and display times, they can also be used with ordinary media types. See “QuickTime Sample Table API” (page
56).

Compressing Video Using Frame Reordering

When compressing video that uses frame reordering, there is no longer a one-to-one correspondence between
submitting a frame for compression and getting back a compressed sample. The Image Compression Manager
(ICM) and the compressor component may buffer multiple images before determining that a series of frames
should be B-frames and a subsequent image should be decompressed out of order so that the B-frames can
refer to it. The new ICM functions do not require a strict correlation between input frames and output frames.
Frames may be rearranged by compression and decompression modules.

Video Enhancements 47
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

48

CHAPTER 2
What's New in QuickTime 7

The new functions allow groups of multiple pixel buffers to be in use at various processing points in order
to avoid unnecessary copying of data, using CVPixelBuffersand CVPixelBufferPools.These new types
are Core Foundation based. They follow Core Foundation’s protocols for reference counting
(create/copy/retain/release). Each type has its own retain and release functions which are type-safe and
NULL-safe, but otherwise equivalent to CFRetain and CFRelease. Note that the CVPixelBuffer functions
generally provide their output data through callbacks, rather than as return values or function parameters.

In general, the new functions return 0SStatus, with the exception of some simple Get functions that return
single values.

Clients create compression sessions using ICMCompressionSessionCreate (page 106). They then feed
pixel buffers in display order to ICMCompressionSessionEncodefFrame (page 108). Encoded frames may
not be output immediately, and may not be returned in the same order as they are input—encoded frames
will be returned in decode order, which will sometimes differ from display order. One of the parameters to
ICMCompressionSessionCreate specifies a callback routine that QuickTime will call when each encoded
frame is ready. Frames should be stored in the order they are output (decode order).

To force frames up to a certain display time to be encoded and output, call
ICMCompressionSessionCompleteFrames (page 106).

To obtain a pixel buffer pool that satisfies the requirements of both your pixel buffer producer and the
compressor, pass the pixel buffer producer’s pixel buffer options into ICMCompressionSessionCreate,
and then call ICMCompressionSessionGetPixelBufferPool (page 110). The compression session
constructs an appropriate pixel buffer pool.

Alternatively, you can create your own pixel buffer pool by obtaining the compressor’s pixel buffer attributes,
choosing a format compatible with your pixel buffer producer, and setting that compressor’s input format
using the component properties API. The process of obtaining the pixel buffer attributes is illustrated in the
following code snippet.

CFDictionaryRef attributesDictionary = NULL;

err = ICMCompressionSessionGetProperty(
session,
kQTPropertyClass_ICMCompressionSession,
kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes,
sizeof (CFDictionaryRef),
&attributesDictionary,
NULL) ;

if (attributesDictionary) {
// ...use...
CFRelease(attributesDictionary);
}

You can also pass arbitrary pixel buffers to ICMCompressionSessionEncodeFrame;if they're incompatible
with the compressor’s requirements, then the compression session will make compatible copies and pass
those to the compressor. This requires less setup but can result in significantly slower operation.

When the compressor no longer needs a source pixel buffer, it will release it. You may also pass
ICMCompressionSessionEncodeFrame a callback to be called when the source pixel buffer is released.

Clients may call ICMCompressionSessionGetImageDescription (page 110) to get the image description
for the encoded frames. Where possible, the ICM will allow this to be called before the first frame is encoded.

For additional details, see:

Video Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

m ICMCompressionSessionCreate (page 106)

m ICMCompressionSessionGetProperty (page 111)

m ICMCompressionSessionGetPixelBufferPool (page 110)
m [CMCompressionSessionEncodeFrame (page 108)

m ICMCompressionSessionGetImageDescription (page 110)

m ICMCompressionSessionCompleteFrames (page 106)

H.264 Codec

The H.264 codec is the latest standards-based video codec. Published jointly by the ITU as H.264——Advanced
Video Coding, and by ISO as MPEG-4 Part 10-—-Advanced Video Coding, the H.264 codec promises better
image quality at lower bit rates than the current MPEG-4 video codec, and also better live streaming
characteristics than the current H.263 codec.

This represents a significant increase in quality and performance, while operating in a standards-based
framework.

QuickTime 7 for Mac OS X v10.4 includes a QuickTime decompressor component and an exporter component
for creating and playing H.264-encoded video in QuickTime.

The H.264 codec makes use of QuickTime 7’s new support for frame reordering video compression.

New Abstractions Layers For OpenGL Rendering

QuickTime 7 introduces the visual context—an abstraction that represents a visual output destination for
a movie—and the OpenGL texture context, an implementation of the visual context that renders a movie's
output as a series of OpenGL textures.

QuickTime Visual Context

A QuickTime visual context provides an abstraction layer that decouples QuickTime movies from GWorlds.
This allows you to work in QuickTime without have to rely on QuickDraw concepts and structures. A visual
context enables you to render QuickTime output using engines such as OpenGL.

A visual context can act as a virtual output device, rendering the movie’s visual output, streaming it, storing
it, or processing it in any number of ways.

A visual context can also act as a bridge between a QuickTime movie and an application’s visual rendering
environment. For example, you can set up a visual context for OpenGL textures. This causes a movie to
produce its visual output as a series of OpenGL textures. You can then pass the textures to OpenGL for
rendering, without having to copy the contents of a GWorld and transform it into an OpenGL texture yourself.
In this case, the visual context performs the transformation from pixel buffers to OpenGL textures and delivers
the visual output to your application.

Video Enhancements 49
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

50

CHAPTER 2
What's New in QuickTime 7

A QTVisualContextRef is an opaque token that represents a drawing destination for a movie. The visual
context is, in object-oriented terms, a base class for other concrete implementations of visual rendering
environments. The output of the visual context depends entirely on the implementation. The implementation
supplied with QuickTime 7 produces a series of OpenGL textures, but the list of possible outputs is extensible.

You create a visual context by calling a function that instantiates a context of a particular type, such as
QTOpenGLTextureContextCreate. This allocates a context object suitable for passing to functions such
as SetMovieVisualContext or NewMovieFromProperties (page 191), which target the visual output of
the movie to the specified context.

Important: To use a visual context, open or create your movie using the NewMovieFromProperties
function.

In order to use a visual context with a QuickTime movie, you should instantiate the movie using the new
NewMovieFromProperties (page 191) function. This creates a movie that can accept a visual context. You
can either specify the desired visual context when you instantiate the movie, or set the initial visual context
to NIL (to prevent the movie from inheriting the current GWorld), and set the visual context later using
SetMovieVisualContext. See “Replacing NewMovieFrom... Functions” (page 52) for details.

Itis also possible to set a visual context for a movie that was instantiated using an older function, such as
NewMovieFromFile.Such a movie will be associated with a GWorld. You change this to a visual context by
first calling SetMovieVisualContext on the movie with the visual context set to NIL. This disassociates
the movie from its GWorld (or any previous visual context). You can then call SetMovieVisualContext a
second time, this time passing ina QTVisualContextRef.

OpenGL Texture Context

QuickTime 7 includes an OpenGL texture context.

A QTOpenGLTextureContext is a specific implementation of the visual context that provides the movie's
visual data to a client application as OpenGL textures. These textures can then be rendered to the screen
using OpenGL, composited with other graphics, run through Corelmage filters, or whatever else you, as the
application developer, choose to do.

Tousea QTOpenGLTextureContext for rendering to OpenGL, you must first set up an OpenGL session
using your own code (Carbon, Cocoa, or CGL, for example).

Warning: Call QuickTime OpenGL texture context functions only when you are certain that no other
©9 thread is making calls to the same OpenGL context that the QuickTime texture context is using.

Follow these steps:

1. Create an OpenGL texture context by calling QTOpenGLTextureContextCreate, passing in the desired
CGLContext and CGLPixelFormat.

2. UsetheQTVisualContextRef thatyou get back to refer to your new visual context in other functions.

Video Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Note: Mac OS X v10.4 exposes a new function in Carbon’s OpenGL API (AGL) to geta CGLPixelFormat
from an AGLPixelFormat.

1. You can use the function QTVisualContextSetImageAvailableCallback to passin an optional

callback function if you want to be notified when the context has a new texture ready. A visual context
callback of this type notifies you that a texture is available, but it may not actually be created until you
ask for it. It is even possible for a texture to become invalid and be flushed after the callback and before

the retrieval. Consequently, you should always poll for a new texture by calling
QTVisualContextIsNewImageAvailable in your render loop.

2. The two functions that check for availability, 0TVisualContextNewImageAvailable and the callback
function, are the only QuickTime OpenGL texture context functions that are completely thread safe. All

the other texture context functions must be called from a point in your application when it can be

guaranteed that no other thread will make OpenGL calls to the same OpenGL context used by the texture

context.

3. SettheQTVisualContext asthe visual output of a movie by calling NewMovieFromProperties (page
191) or SetMovieVisualContext. Note that SetMovieVisualContext will fail if the movie was not
opened using NewMovieFromProperties. Additionally, this call may fail if the host hardware is incapable

of supporting the visual context for any reason. For example, many current graphics cards have a size
limit of 2048 pixels in any dimension for OpenGL textures, so the attempt to set the visual context to

OpenGL textures would fail with a larger movie. (One work-around for this problem is to resize the movie

to fit within the hardware limitations given by g1GetIntegerv(GL_MAX_TEXTURE_SIZE,
&maxTextureSize)).

4. Poll for the availability of new textures by calling QTVisualContextNewImageAvailable during your

render loop. Be aware that this function, or the optional callback, may be notifying you of a texture’s
availability well ahead of its display time, while previous undisplayed textures remain enqueued.

5. Your application can get a texture when you are ready to work with it by calling

QTVisualContextCopyImageForTime.You may then pass the texture to OpenGL for display. Be aware,
however, that calls to this function may produce a null texture at times when there is no visual output

at the specified point in the movie timeline.

Important: You cannot call for textures out of order. Once you ask for a copy of the texture for a given time,

that texture and any textures for previous times are no longer available.

1. You should make periodic calls to QTVisualContextTask during your program to allocate time for
the OpenGL visual context to do its work.

2. Again, it is critical that this OpenGL texture function be called only at a point in your application when
it can be guaranteed that no other thread will make OpenGL calls to the same OpenGL context used by

the QuickTime visual context.

3. When you are done with the visual context, release it by calling QTVisualContextRelease. You can

nest calls that retain and release the context as needed. These calls increment and decrement the context’s
reference count. When the count reachs zero, the context is deallocated and disposed. If your application

creates the QTOpenGLContext, it is responsible for releasing it.

For additional details, see:

Video Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

m (QTVisualContextRef

m QTVisualContextCopylImageForTime (page 236)

m QTVisualContextGetAttribute (page 236)

m QTVisualContextGetTypelD (page 237)

m QTVisualContextIsNewImageAvailable (page 237)
m QTVisualContextSetAttribute (page 238)

m (QTVisualContextSetImageAvailableCallback (page 239)
m QTVisualContextRetain (page 240)

m QTVisualContextRelease (page 239)

m QTVisualContextTask (page 240)

m SetMovieVisualContext

m GetMovieVisualContext

m (QTOpenGLTextureContextCreate (page 210)

m QTVisualContextRetain

m (QTVisualContextRelease

m (QTOpenGLTextureAvailableCallbackProc (page 257)

Limitation Working With QuartzExtreme

Developers working on non-QuartzExtreme computers should be aware of a specific limitation with
QTVisualContext. The limitation is that with QuartzExtreme turned off, the creation of a QTVisualContext fails
with error -108.

If you launch QuartzDebug and turn off QuartzExtreme, and then launch the LiveVideoMixer and import a
movie into a channel, it won't play. In the console, the following error message is returned: QTVisualContext
creation failed with error:-108.

Replacing NewMovieFrom... Functions

52

QuickTime 7 introduces a replacement——NewMovieFromProperties (page 191)— for NewMovie,
NewMovieFromDataRef, and all other NewMovieFrom. .. functions.

In previous versions of QuickTime, you could use other functions that create new movies, including
NewMovieFromFile and NewMovieFromDataRef. These functions accept flags that allow you to set some
movie characteristics at creation time, but other movie characteristics are always set by default. For example,
there must be a valid graphics port associated with a movie created by these functions, even if the movie
does not output video.

NewMovieFromProperties (page 191) allows you to configure an extensible set of properties before creating
a movie. This has a number of advantages.

Replacing NewMovieFrom... Functions
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

= You can open a movie with exactly the properties you want, preventing QuickTime from taking undesired
default actions.

= You can also specify properties that the older functions do not know about, such as a visual context for
the movie.

Using NewMovieFromProperties

To instantiate a movie using NewMovieFromProperties, follow these steps:

1. Passina CFString file path, a URL, or set up a data reference, just as you would for NewMovieFromDataRef
or one of the other NewMovieFrom_ functions.

2. Next, set up a visual context for the movie to use by calling a function that creates a context of a the
desired type, such as QTOpenGLTextureContextCreate. Similarly, you can set up an audio context if
you want a device other than the default device.

3. QCallNewMovieFromProperties (page 191), passing in the data reference for the movie and the
QTVisualContextRef for the visual context, plus any appropriate properties listed in the
QTNewMoviePropertyArray.

Properties are passed in using a QTNewMoviePropertyElement struct, which specifies the property class
and property ID of each property.

The movie will automatically retain the visual context, so if your application does not need to work with the
context directly, you may release it now.

For additional details, see:

m QTNewMoviePropertyArray
m (QTNewMoviePropertyElement

m NewMovieFromProperties (page 191)

QuickTime Metadata Enhancements and API

QuickTime 7 introduces a new extensible metadata storage format that allows more flexible and efficient
storage of metadata, including encapsulated storage of metadata in native format (without translating to
and from a defined QuickTime format). For developers, this means that you can now write cleaner, more
generic code that enables you to look at, for example, all the metadata in a QuickTime or iTunes music track
using just a single function call.

Metadata, of course, is information about a file, track, or media, such as the white balance used to create a
photographic image or the artist, album, and title of an MP3 track. Traditionally, metadata information is
stored in QuickTime user data items or in ancilliary tracks in a movie. For example, copyright information is
normally stored ina *@cpy’ user data item, while cover art for an AAC audio track is normally stored in a
track that is not displayed by all applications.

QuickTime Metadata Enhancements and API 53
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

54

CHAPTER 2
What's New in QuickTime 7

The new metadata enhancements in QuickTime 7 allow you to access both old (QuickTime) and new (iTunes)
formats. The new metadata storage format is intended as a replacement for QuickTime user data, which was
limited in features and robustness. Specifically, the metadata enhancements introduced in QuickTime 7
provide the following capabilities:

= The ability to assign data types to any metadata that you place into the new storage format.
= The ability to assign locale information—-—for example, a particular language or country—-to the format.

= The ability to use a more descriptive key in the storage format-—for example, a reverse DNS format, such
as com.apple.quicktime.mov.

The new metadata format allows storage of data that is not possible in user data items, without extending
the list of item types exhaustively, and allows labeling of metadata unambiguously, rather than as data in
an undisplayed media track. It also permits inclusion of metadata that is always stored external to the movie,
even when the movie is flattened (saved as self-contained).

How It Works

Metadata is encapsulated in an opaque container and accessed using a QTMetDataRef. A QTMetaDataRef
represents a metadata repository consisting of one or more native metadata containers. The QuickTime
metadata API supports unified access to and management of these containers.

Each container consists of some number of metadata items. Metadata items correspond to individually
labeled values with characteristics such as keys, data types, locale information, and so on. Note that what
QuickTime calls items are sometimes referred to as attributes or properties in other metadata systems.

You address each container by its storage format (kQTMetaDataStorageFormat). Initially, there is support
for classic QuickTime user data items, iTunes metadata, and a richer QuickTime metadata container format.
A QTMetaDataRef may have one or all of these. No direct access to the native storage containers is provided.

QTMetaDataRefs may be associated with a movie, track or media. This parallels user data atoms usage but
provides access to other kinds of metadata storage at those levels.

A metadata item is assigned a runtime identifier (0TMetaDataItem) that along with the QTMetaDataRef
identifies the particular item (and value) across all native containers managed by the QTMetaDataRef.

Each item is addressed by a key, or label. The key is not necessarily unique within its container, as it is possible
to have multiple items with the same key (for example, multiple author items). Functions exist to enumerate
all items or only items with a particular key.

Because a QTMetaDataRef may provide access to different native metadata containers with differing key
structures—a four-char-code for one, a string for another, and so on—the key structure is also specified. A
QTMetaDataKeyFormat indicates the key structure to functions that take keys. This also supports container
formats that allow multiple key structures or multiple versions of key structures.

To allow unified access across disparate containers, you can specify a wildcard storage format. This can be
used for operations such as searches across container formats. A special key format called
kQTMetaDataKeyFormatCommon indicates one of a set of common keys that can be handled by multiple
native containers (for example, copyright).

Both modes of operation are illustrated in Figure 2-37.

QuickTime Metadata Enhancements and API
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

Figure 2-37 Metadata modes of operations

iTunes metadata

(QTMetaDataRef user data

L- Owner —>

7 \ J

QuickTime metadata

\ J

Abstract Metadata Model

Metadata Container

(" Metadata ltem)

(Attributes | Metadata value

- ltem ID

- Key

- Value Format
- Country

- Language

\, 7

(Metadata ltem)

(Attributes

) Metadata value)
- Item ID
- Key
- Value Format

- Country
- Language

1)

Advantages of the New Metadata Format

The QuickTime metadata format is inherently extensible. Instead of a set of structures and enumerated
parameters, the metadata APl uses a set of properties that can be enumerated, and whose characteristics
can be discovered, dynamically at runtime. This is analogous to the QuickTime component property function
in that you first get the property info, such as its size and format, and then you allocate the appropriate
container or structure to get or set the actual property.

The new QuickTime metadata format and API consist of the following structures, enumerations, and functions,
grouped in sections followed by the specific functions:

m “Metadata Format Constants” (page 283)
m “Metadata Property IDs” (page 283)

m “Metadata Key Constants” (page 284)

m “Metadata Error Codes” (page 285)

m QTCopyMovieMetaData (page 194)

m (QTCopyTrackMetaData (page 195)

QuickTime Metadata Enhancements and API 55
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

m (QTCopyMediaMetaData (page 196)

m (TMetaDataAddItem (page 198)

m (TMetaDataGetItemCount (page 199)

m (TMetaDataGetItemProperty (page 200)

m (QTMetaDataGetItemPropertyInfo (page 201)
m (TMetaDataGetItemValue (page 202)

m (QTMetaDataGetNextItem (page 203)

m (QTMetaDataGetProperty (page 204)

m (QTMetaDataGetPropertyInfo (page 205)

m (TMetaDataRetain (page 205)

m (TMetaDataRelease (page 206)

m (QTMetaDataRemoveltem (page 206)

m (TMetaDataRemoveItemsWithKey (page 207)
m (TMetaDataSetItem (page 208)

m (QTMetaDataSetItemProperty (page 209)

m (QTMetaDataSetProperty (page 210)

QuickTime Sample Table API

56

The new QuickTime sample table APl in QuickTime 7 is used when you need to obtain information about
samples—such as their size, location, and sample descriptions—or to set this kind of information (for example,
when adding samples or blocks of samples to a media directly, without using the services of an importer or
sequence grabber).

This new APl introduces QTSampleTab1e as a logical replacement for the arrays of sample reference records
used with the older functions AddMediaSampleReferences and AddMediaSampleReferences64. New
functions allow you to operate on whole tables of data simultaneously.

Like many new QuickTime APIs, the QuickTime sample table APl uses opaque data types whose properties
can be discovered dynamically at runtime. This is analogous to the component properties API for configuring
components. You use a GetPropertyInfo function to discover the size and format of a property, then
allocate the necessary container or structure to get or set the actual property.

This APl works with both simple media types that have a single media time for each sample and new media
types such as frame reordering video that have independent decode and display times for samples.

"\ Warning: When using the QuickTime sample table API to work with constant-bit-rate (CBR) compressed
> audio, the audio is represented in a new way.

/

QuickTime Sample Table API
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

In the QuickTime sample table API, sample numbers for audio always refer to packets. This is simpler and
more consistant, but it means that a new function may not return the same value as an older, analogous
function when called with reference to compressed CBR sound. For example,
QTSampleTableGetNumberOfSamp1es may return a different sample countthan GetMediaSampleCount.

All compressed audio is quantized into packets, and each packet can be decompressed into multiple PCM
samples. With previous APIs, media sample numbers for CBR sound refer to PCM samples, rather than the
compressed packets. When the same APIs are applied to variable-bit-rate (VBR) sound, however, the sample
numbers refer to packets. This inconsistency means that code using these older APIs must handle CBR and
VBR differently. In this API, by contrast, sample numbers always refer to packets.

This applies only to compressed CBR sound, however. In uncompressed sound tracks, each packet is simply
an uncompressed PCM frame, so the value is the same whether the sample number refers to packets or PCM
samples.

For full details of the QuickTime sample table API, see:

m (QTSampleTableCreateMutable (page 215)

m QTSampleTableCreateMutableCopy (page 216)

m QTSampleTableAddSampleDescription (page 212)
m QTSampleTableCopySampleDescription (page 214)
m QTSampleTableAddSampleReferences (page 213)

m AddSampleTableToMedia (page 66)

m CopyMediaMutableSampleTable (page 67)

m (QTSampleTableReplaceRange (page 226)

m QTSampleTableGetProperty (page 220)

m QTSampleTableSetProperty (page 227)

m QTSampleTableGetPropertyInfo (page 221)

m QTSampleTableGetNumberOfSamples (page 220)

m QTSampleTableGetSampleDescriptionlID (page 223)
m QTSampleTableGetDataSizePerSample (page 217)
m QTSampleTableGetSampleFlags (page 223)

m QTSampleTableGetDataOffset (page 216)

m QTSampleTableGetDisplayOffset (page 218)

m QTSampleTableGetTypelD (page 225)

m QTSampleTableGetDecodeDuration (page 217)

m QTSampleTableGetNextAttributeChange (page 218)
m QTSampleTableGetTimeScale (page 224)

m QTSampleTableRelease (page 225)

m QTSampleTableReplaceRange (page 226)

m QTSampleTableRetain (page 226)

m QTSampleTableSetTimeScale (page 228)

QuickTime Sample Table API 57
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

JavaScript Support and Accessibility in Safari

New in QuickTime 7, the QuickTime plug-in for Safari is now fully scriptable using JavaScript. This means you
can now use JavaScript to control QuickTime when webpages are viewed using Safari.

Two plug-ins are available in QuickTime 7 for Mac OS X v10.4: Carbon and a new Cocoa plug-in. From the
user’s perspective, these plug-ins look and behave the same. The Cocoa plug-in works only in Safari, however.
The benefit for both users and developers is that the plug-in is now scriptable.

To control a movie through the QuickTime plug-in using JavaScript, you must include the parameter
EnabledavaSript="true" in the movie's EMBED tag (this parameter is not needed in the OBJECT tag, but
it does no harm there).

JavaScript treats each embedded QuickTime movie in a webpage as a separately addressable object. Movies
can be identified by name if there is a NAME parameter in the movie's EMBED tag and an 1D attribute in the
movie’s 0BJECT tag. Internet Explorer for Windows uses the 1D attribute. Other browsers use the NAME
parameter. Both NAME and 1D should be set to the same value.

For example, to create a movie that can be addressed in JavaScript as Moviel, your 0BJECT and EMBED tags
would look something like this:

<OBJECT classid="clsid:02BF25D05-8C17-4B23-BC80-D3488ABDDC6B"
codebase="http://www.apple.com/qtactivex/qtplugin.cab"
width="180" height="160"
id="moviel" >

<PARAM name="src" value="My.mov">

<EMBED width="180" height="160"
src="My.mov"
name="moviel"
enablejavascript="true">
</EMBED>
</OBJECT>

Movies can also be identified by their ordinal number in the JavaScript embeds[] array.

An example of usage and syntax, showing JavaScript control of multiple QuickTime movies using different
methods of addressing, can be found in Sample JavaScript Usage.

QuickTime exposes dozens of methods to JavaScript, allowing you to control not only the standard user
interface actions, such as playing and stopping a movie, but also more complex actions, such as layering and
compositing. You can use JavaScript, for example, to enable and disable alternate audio, text, or video tracks,
or change a video track’s graphics mode or a sprite’s current image.

Detailed descriptions of the QuickTime methods and properties available to JavaScript can be found in
JavaScript Support.

Other Changes and Enhancements

58

This section discusses the following changes and enhancements that are available in QuickTime 7.

JavaScript Support and Accessibility in Safari
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/QuickTime/REF/QT41_HTML/QT41WhatsNew-80.html
http://developer.apple.com/documentation/QuickTime/REF/QT41_HTML/QT41WhatsNew-72.html

CHAPTER 2
What's New in QuickTime 7

New Persistent Cache Option

QuickTime 7 introduces a new persistent cache option, which is enabled in the System Preferences >
QuickTime > Browser panel, as shown in Figure 2-38. Users, web authors, and web content developers should
understand the consequences of this new option because it may impact the way that QuickTime content is
downloaded and saved from their websites. The reason is that QuickTime’s caching behavior has changed
in this release.

Figure 2-38 QuickTime Browser preferences with the Save movies in disk cache box checked

8eoo QuickTime (=]

| Register | Browser | Update Streaming = Advanced -

@ Play movies automatically

Plays movies automatically as they are downloaded by
your Web browser.

8 Save movies in disk cache
Retains downloaded movies in your browser's disk cache
whenever possible.

Movie Download Cache Size: 100 ME

I'_' Empty Download Cache ‘1

Important: The new cache is only used by QuickTime. Content downloaded by QuickTime is not stored in
the browser cache.

Changes to File Caching

By default, the user preference is set to “Save movies in disk cache.” This means that files downloaded by
QuickTime and written to the cache will now stay in the cache when the last connection to the file is closed.
By contrast, in pre-QuickTime 7 versions, downloaded files would be written to disk and but only remain
there as long as the user kept open a connection to the file. After the movie was closed, the local file would
be deleted. If you wanted to look at the movie again, you would have to download the file in its entirety
another time.

If the user unchecks the preference, QuickTime’s old behavior prevails—that is, movies downloaded to disk
will only be saved as long as they remain open. There may be situations, for example, when unchecking the
box is warranted: users don’t want any QuickTime content to be cached perhaps for privacy reasons, or if
they don't have enough disk space on their computers.

When the preference is checked, movies downloaded by QuickTime will be saved in the cache. The slider
allows the user to set the maximum size of the cache (the minimum is 100 MB). Note that QuickTime’s cache
is per user, not computer wide. This means that if you have more than one account on the computer, each
user’s setting and cached movies are for themselves only.

Other Changes and Enhancements 59
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

60

CHAPTER 2
What's New in QuickTime 7

When the cache is on, files may not remain in the persistent cache because of settings on the server. If you
have administrator (admin) access to a server, you can tell the server to include information in the file header
that specifies how long it is allowed to stay on the user’s computer. The header can say, “Don’t cache this at
all.” Or, “Only keep it for a week.” QuickTime pays close attention to the information that is stored in the
headers.

In particular, when the cache is enabled QuickTime honors the “expiration date,” often supplied by web
servers to inform clients of how long a file remains valid after it has been downloaded. Until the expiration
date supplied by the server is reached, QuickTime will respond to additional requests for the file by supplying
the file from the cache instead of by fetching it again from the server. This remains true even if the file is
changed on the server before the expiration date is reached. Previous versions of QuickTime as described
above always downloaded a file afresh, if a previous version of it was no longer still open and in use, and
therefore changes to files made before the expiration date would often be accessible immediately.

How To Control File Caching

There are several ways to control QuickTime’s file caching behavior. Each step, listed below, may be appropriate
for a different situation:

m HTTP headers. Useful only if you have admin access to the server on which the files are posted. Consult
your web server documentation for specifics (for example, look for “Cache-Control: no-cache” and
“Expires:”).

= ‘“cache” EMBED/OBJECT attribute. Useful if your movies are embedded in HTML pages, but you don't
have adminaccess to the server. This is a very common situation.

In previous versions of QuickTime, this tag told the plug-in to ask the browser not to keep an embedded
movie in its cache. This is still true, but now it also tells the plug-in to not keep the movie in the QuickTime
persistent cache either.

m XML movies. The “cache” attribute has been added to QuickTime Media Link importer. Adding
‘cache="false” to a media link movie will keep it from being saved in QuickTime's persistent cache. See
the documentation QuickTime Media Links XML Importer for more information about this movie importer.

When a movie is tagged as “not cacheable” with any of these methods, QuickTime will not keep the movie
or any media loaded by it in the persistent cache (for example, sprite images loaded by URL).

Updates to QuickTime for Java

QuickTime for Java (QTJ) is now fully supported in QuickTime 7. QTJ is now installed by default in QuickTime
7.

This release includes a number of important bug fixes requested by QuickTime for Java developers. These
are as follows:

= Major fixes for issues related to drawing and correct QTComponent rendering
m Compatibility with headless applications

= Fixes for issues related to movie progress procedures and movie exporting

= Fixes for Applet issues, including support for MPEG video playback in an applet

= Support for 2-byte character file names

Other Changes and Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/QuickTime/WhatsNewQT5/QT5NewChapt1/chapter_1_section_39.html

CHAPTER 2
What's New in QuickTime 7

= Security fixes

Support for Quartz Composer

QuickTime can read Quartz Composers. Also, Quartz Composer compositions can be exported as QuickTime
movies.

You can accomplish this either by using the Export menu command in the Quartz Composer Editor, or by
opening the composition in QuickTime Player and saving it as a movie.

Other Changes and Enhancements 61
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
What's New in QuickTime 7

62 Other Changes and Enhancements
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in
QuickTime 7

This chapter describes all the new QuickTime functions, data structures, constants, and callbacks available
in this software release.

If you are a QuickTime API-level developer, content author, multimedia producer or Webmaster who is
currently working with QuickTime, you should read this chapter and use it for reference, as needed, in your
application development.

QuickTime 7 API Reference

The following functions, callbacks, structures, and constants are new or changed with this release of QuickTime.

Functions

Functions that are new in QuickTime 7 are described in this section; they are listed in alphabetical order.

AddMediaSample2

Adds sample data and a description to a media.

O0SErr AddMediaSample2 (

Media theMedia,

const UInt8 *dataln,

ByteCount size,

TimeValueb4 decodeDurationPerSample,
TimeValue64 displayOffset,
SampleDescriptionHandle sampleDescriptionH,
ItemCount numberOfSamples,
MediaSampleFlags sampleFlags,
TimeValue64 *sampleDecodeTimeQut);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

dataln
A handle to the sample data. The function adds this data to the media specified by theMed7a. You
specify the number of bytes of sample data with the s7ze parameter.

QuickTime 7 API Reference 63
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

64

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

size
The number of bytes of sample data to be added to the media. This parameter indicates the total
number of bytes in the sample data to be added to the media, not the number of bytes per sample.

Use the number0fSamp1es parameter to indicate the number of samples that are contained in the
sample data.

decodeDurationPerSample

The duration of each sample to be added, representing the amount of time that passes while the
sample data is being displayed. You must specify this parameter in the media’s time scale. For example,
if you are adding sound that was sampled at 22 kHz to a media that contains a sound track with the
same time scale, you would set durationPerSampleto 1. Similarly, if you are adding video that was
recorded at 10 frames per second to a video media that has a time scale of 600, you would set this

parameter to 60. Note that this is the duration per sample, regardless of the number of samples being
added.

displayOffset

A 64-bit time value that specifies the offset between the decode time (the start time of the track plus
the duration of all previous samples) and the display time. This value is normally zero unless the
sample is frame reordering compressed video.

sampleDescriptionH

Ahandletoa SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a SoundDescription structure. If the media does not require a
SampleDescription structure, set this parameter to NIL.

numberOfSamples

The number of samples contained in the sample data to be added to the media. The Movie Toolbox
considers the value of this parameter as well as the value of the s7ze parameter when it determines
the size of each sample that it adds to the media. You should set the value of this parameter so that
the resulting sample size represents a reasonable compromise between total data retrieval time and
the overhead associated with input and output. You should also consider the speed of the data storage
device; CD-ROM devices are much slower than hard disks, for example, and should therefore have a
smaller sample size. For a video media, set a sample size that corresponds to the size of a frame. For
a sound media, choose a number of samples that corresponds to between 0.5 and 1.0 seconds of
sound. In general, you should not create groups of sound samples that are less than 2 KB in size or
greater than 15 KB. Typically, a sample size of about 8 KB is reasonable for most storage devices.

sampleflags
Flags that control the add operation; set unused flags to 0:

mediaSampleNotSync

Indicates that the sample to be added is not a sync sample. Set this flag to 1 if the sample is
not a sync sample; set it to 0 if the sample is a sync sample.

sampleDecodeTimeOut

A pointer to a time value that represents the sample decode time. After adding the sample data to
the media, the function returns in this parameter the time where the sample was inserted. If you don’t
want to receive this information, set this parameter to NI L.

Return Value

An error code. Returns noE rr if there is no error. You can access Movie Toolbox error returns through

GetMoviesError and GetMoviesStickyError, as well as in the function result.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

Your application specifies the sample and the media for the operation. This function updates the media so
that it contains the sample data. One call to this function can add several samples to a media. This function
replaces AddMediaSamp1e; it adds 64-bit support and support for frame reordering video compression
(display offset). This function can return these errors:

nokrr
Success.

memFul TErr
Could not allocate memory.

paramkrr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.
Version Notes
Introduced in QuickTime 7. This function extends and supersedes AddMediaSamp1e. Whereas
AddMediaSample takes a Handle+offset+size, AddMediaSample? takesa Ptr+size.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

AddMediaSampleFromEncodedFrame

Adds sample data and description from an encoded frame to a media.

0SErr AddMediaSampleFromEncodedFrame (
Media theMedia,

ICMEncodedFrameRef encodedFrame,
TimeValue64 *sampleDecodeTimeQut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia

encodedframe
An encoded frame token returned by an ICMCompressionSequence.

sampleDecodeTimeOut
A pointer to a time value. After adding the sample data to the media, the function returns the decode
time where the first sample was inserted in the time value referred to by this parameter. If you don't
want to receive this information, set this parameter to NULL.

QuickTime 7 API Reference 65
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

66

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noE rr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
This is a convenience APl to make it easy to add frames emitted by new ICM compression functions to media.
It can return these errors:

noErr
Success.

memFulTErr
Could not allocate memory.

paramkrr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

AddSampleTableToMedia

Adds a sample table to a media.

O0SErr AddSampleTableToMedia (

Media theMedia,
QTSampleTableRef sampleTable,

SInt64 startSampleNum,

SInt64 numberOfSamples,
TimeValueb4 *sampleDecodeTimeOut);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

sampleTable
A reference to an opaque sample table object containing sample references to be added to the media.

startSampleNum
The sample number of the first sample reference in the sample table to be added to the media. The
first sample’s number is 1.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

numberOfSamples

The number of sample references from the sample table to be added to the media.
sampleDecodeTimeOut

A pointer to a time value. After adding the sample references to the media, the function returns the

decode time where the first sample was inserted in the time value referred to by this parameter. If
you don’t want to receive this information, set this parameter to NULL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
This function can return these errors:

nokErr
Success.

memFul TErr
Could not allocate memory.

paramkrr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.

IferrDisplayTimeAlreadyInUseorerrDisplayTimeTooEarly is returned, no samples are added.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

CopyMediaMutableSampleTable

Obtains information about sample references in a media in the form of a sample table.

QuickTime 7 API Reference 67
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

68

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SErr CopyMediaMutableSampleTable (

Media theMedia,

TimeValue64 startDecodeTime,
TimeValue64d *sampleStartDecodeTime,
SInt64 maxNumberOfSamples,
TimeValue64 maxDecodeDuration,

QTMutableSampleTableRef *sampleTableOut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

startDecodeTime
A 64-bit time value that represents the starting decode time of the sample references to be retrieved.
You must specify this value in the media’s time scale.

sampleStartDecodeTime
A pointer to a time value. The function updates this time value to indicate the actual decode time of
the first returned sample reference. If you are not interested in this information, set this parameter
to NULL. The returned time may differ from the time you specified with the startDecodeTime
parameter. This will occur if the time you specified falls in the middle of a sample.

maxNumberOfSamples
A 64-bit signed integer that contains the maximum number of sample references to be returned. If
you set this parameter to 0, the Movie Toolbox uses a value that is appropriate to the media.

maxDecodeDuration
A 64-bit time value that represents the maximum decode duration to be returned. The function does
not return samples with greater decode duration than you specify with this parameter. If you set this
parameter to 0, the Movie Toolbox uses a value that is appropriate for the media.

sampleTableQut
A reference to an opaque sample table object. When you are done with the returned sample table,
release it with QTSampleTableRelease.

Return Value

An error code. Returns memFul1Err if it could not allocate memory, paramtrr if there was an invalid
parameter, or nok rr if there is no error. You can access Movie Toolbox error returns through GetMoviesError
and GetMoviesStickyError, as well as in the function result.

Discussion
To find out how many samples were returned in the sample table, call QTSampleTableGetNumber0fSamples.

Version Notes
Introduced in QuickTime 7. This function supersedes GetMediaSampleReferences and
GetMediaSampleReferences64.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

DisposeMovieExportStageReachedCallbackUPP
Disposes of a MovieExportStageReachedCallbackUPP pointer.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

void DisposeMovieExportStageReachedCallbackUPP (
MovieExportStageReachedCallbackUPP userUpp J;

Parameters

userUpPpP
AMovieExportStageReachedCallbackUPP pointer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

DisposeQTTrackPropertyListenerUPP
Disposes a track property listener UPP.

void DisposeQTTrackPropertylListenerUPP (
QTTrackPropertylListenerUPP userUPP);

Parameters
userUpPp

A QTTrackPropertyListenerUPP pointer. See Universal Procedure Pointers in the QuickTime API
Reference for more information.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

ExtendMediaDecodeDurationToDisplayEndTime

Prepares a media for the addition of a completely new sequence of samples by ensuring that the media
display end time is not later than the media decode end time.

0SErr ExtendMediaDecodeDurationToDisplayEndTime (

Media theMedia,
Boolean *mediaChanged);
Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

mediaChanged
A pointertoaBoolean thatreturns TRUE if any samples in the media were adjusted, FALSE otherwise.
If you don't want to receive this information, set this parameter to NULL.

QuickTime 7 API Reference 69
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

70

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value

An error code. Returns memFul1Err if it could not allocate memory, paramtrr if there was an invalid
parameter, or nokE rr if there is no error. You can access Movie Toolbox error returns through GetMoviesError
and GetMoviesStickyError, as well as in the function result.

Discussion

After adding a complete, well-formed set of samples to a media, the media’s display end time should be the
same as the media’s decode end time (also called the media decode duration). However, this is not necessarily
the case after individual sample-adding operations, and hence it is possible for a media to be left with a
display end time later than its decode end time (if adding a sequence of frames is aborted halfway, for
example).

This may make it difficult to add a new group of samples, because a well-formed group of samples’ earliest
display time should be the same as the first frame’s decode time. If such a well-formed group is added to an
incompletely finished media, frames from the old and new groups frames might collide in display time.

This function prevents any such collision or overlap by extending the last sample’s decode duration as
necessary. It ensures that the next added sample will have a decode time no earlier than the media’s display
end time. If this was already the case, it makes no change to the media.

You can call this function before you begin adding samples to a media if you're not certain that the media
was left in a well-finished state. You do not need to call it before adding samples to a newly created media,
nor should you call it between sample additions from the same compression session.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetDSequenceNonScheduledDisplayDirection

Returns the display direction for a decompress sequence.

0SErr GetDSequenceNonScheduledDisplayDirection (

ImageSequence sequence,
Fixed *rate);
Parameters
sequence
Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.
rate

A pointer to the display direction. Negative values represent backward display and positive values
represent forward display.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

GetDSequenceNonScheduledDisplayTime

Gets the display time for a decompression sequence.

0SErr GetDSequenceNonScheduledDisplayTime (

ImageSequence sequence,
TimeValueb64 *displayTime,
TimeScale *displayTimeScale);
Parameters
sequence
Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.
displayTime

A pointer to a variable to hold the display time.

displayTimeScale
A pointer to a variable to hold the display time scale.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

GetMediaAdvanceDecodeTime

Returns the advance decode time of a media.
TimeValue64 GetMediaAdvanceDecodeTime (
Media theMedia);

Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

QuickTime 7 API Reference 71
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

72

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value

A 64-bit time value that represents the media’s advance decode time. A media’s advance decode time is the
absolute value of the greatest-magnitude negative display offset of its samples, or 0 if there are no samples
with negative display offsets. This is the amount that the decode time axis must be adjusted ahead of the
display time axis to ensure that no sample’s adjusted decode time is later than its display time. For media
without nonzero display offsets, the advance decode time is 0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDataSizeTime64

Determines the size, in bytes, of the sample data in a media segment.

O0SErr GetMediaDataSizeTime64 (
Media theMedia,
TimeValueb64 startDisplayTime,
TimeValue64d displayDuration,
SInt64 *dataSize);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

startDisplayTime
A 64-bit time value that specifies the starting point of the segment in media display time.

displayDuration
A 64-bit time value that specifies the duration of the segment in media display time.

dataSize

A pointer to a variable to receive the size, in bytes, of the sample data in the defined media segment.
Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
The only difference between this function and GetMediaDataSize64 is that this function uses 64-bit time
values and returns a 64-bit size.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

GetMediaDecodeDuration

Returns the decode duration of a media.

TimeValue64 GetMediaDecodeDuration (
Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
A 64-bit time value that repre sents the media’s decode duration. A media’s decode duration is the sum of
the decode durations of its samples.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDisplayDuration

Returns the display duration of a media.

TimeValue64 GetMediaDisplayDuration (
Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMed1i a
and GetTrackMedia.

Return Value

A 64-bit time value that represents the media’s display duration. A media’s display duration is its display end
time minus its display start time. For media without nonzero display offsets, the decode duration and display
duration are the same.

Discussion
When inserting media with display offsets into a track, use display time:

InsertMedialntoTrack(track,
g, // track start time
GetMediaDisplayStartTime(media), // media start time
GetMediaDisplayDuration(media),
fixedl);

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference 73
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

74

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
Movies.h

GetMediaDisplayEndTime

Returns the display end time of a media.

TimeValue64 GetMediaDisplayEndTime (
Media theMedia);

Parameters
theMedia
The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.
Return Value
A 64-bit time value that represents the media’s display end time. A media’s display end time is the sum of
the display time and decode duration of the sample with the greatest display time. For media without nonzero
display offsets, the display end time is the same as the media’s decode duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDisplayStartTime

Returns the display start time of a media.

TimeValue64 GetMediaDisplayStartTime (
Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value

A 64-bit time value that represents the media’s display start time. A media’s display start time is the earliest
display time of any of its samples. For media without nonzero display offsets, the display start time is always
0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

GetMediaNextInterestingDecodeTime

Searches for decode times of interest in a media.

void GetMediaNextInterestingDecodeTime (

Media theMedia,

short interestingTimeFlags,
TimeValue64 decodeTime,

Fixed rate,

TimeValue64 *interestingDecodeTime,
TimeValue64 *interestingDecodeDuration);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

interestingTimefFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, ornextTimeSyncSample flags to 1. Set unused flags to 0:

nextTimeMediaSample

Set this flag to 1 to search for the next sample.
nextTimeMediakdit

Set this flag to 1 to search for the next group of samples.

nextTimeSyncSample

Set this flag to 1 to search for the next sync sample.

nextTimeEdgeOK

Set this flag to 1 to accept information about elements that begin or end at the time specified
by the decodeTime parameter. When this flag is set the function returns valid information
about the beginning and end of a media.

decodeTime
Specifies the starting point for the search in decode time. This time value must be expressed in the
media’s time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the t ime parameter. Other values cause a forward search.

interestingDecodeTime
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the 77ags parameter. This time value is in the
media’s time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to —1. Set this parameter to NULL if you are not interested in this information.

interestingDecodeDuration
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the duration
of the interesting time in the media’s time coordinate system. Set this parameter to NULL if you don't
want this information; this lets the function works faster.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 75
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

76

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability

Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaNextinterestingDisplayTime

Searches for display times of interest in a media.

void GetMediaNextInterestingDisplayTime (

Media
short
TimeValue64
Fixed
TimeValue64
TimeValue64

Parameters
theMedia

theMedia,
interestingTimeFlags,
displayTime,

rate,

*interestingDisplayTime,
*interestingDisplayDuration);

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

interestingTimefFlags

Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediakdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:

nextTimeMediaSample

Set this flag to 1 to search for the next sample.

nextTimeMediaEdit

Set this flag to 1 to search for the next group of samples.

nextTimeSyncSample

Set this flag to 1 to search for the next sync sample.
nextTimeEdgeOK

Set this flag to 1 to accept information about elements that begin or end at the time specified
by the decodeTime parameter. When this flag is set the function returns valid information
about the beginning and end of a media.

displayTime

Specifies the starting point for the search in display time. This time value must be expressed in the
media’s time scale.

rate

The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the t ime parameter. Other values cause a forward search.

interestingDisplayTime
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the f7ags parameter. This time value is in the
media’s time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to —1. Set this parameter to NIL if you are not interested in this information.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

interestingDisplayDuration
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the duration of
the interesting time in the media’s time coordinate system. Set this parameter to N1 L if you don't
want this information; this lets the function works faster.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaSample2

Retrieves sample data from a media file.

0SErr GetMediaSample?2 (

Media theMedia,

UInt8 *datalut,

ByteCount maxDataSize,

ByteCount *sijze,

TimeValue64 decodeTime,

TimeValueb64 *sampleDecodeTime,
TimeValue64d *decodeDurationPerSample,
TimeValueb4 *displayOffset,
SampleDescriptionHandle sampleDescriptionH,
ItemCount *sampleDescriptionIndex,
ItemCount maxNumberOfSamples,
ItemCount *numberOfSamples,
MediaSampleFlags *sampleFlags);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

datalOut
A pointer to a buffer to receive sample data. The buffer must be large enough to contain at least
maxDataSize bytes. If you do not want to receive sample data, pass NULL.

maxDataSize
The maximum number of bytes allocated to hold the sample data.
size
A pointer to memory where the function returns the number of bytes of sample data returned in the

memory area specified by dataOut. Set this parameter to NULL if you are not interested in this
information.

decodeTime
The starting time of the sample to be retrieved in decode time. You must specify this value in the
media’s time scale.

QuickTime 7 API Reference 77
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

78

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sampleDecodeTime
A pointer to a time value in decode time. The function updates this time value to indicate the actual
time of the returned sample data. (The returned time may differ from the time you specified with the
t ime parameter. This will occur if the time you specified falls in the middle of a sample.) If you are
not interested in this information, set this parameter to NULL.

decodeDurationPerSample
A pointer to a time value in decode time. The Movie Toolbox returns the duration of each sample in
the media. Set this parameter to NUL L if you don't want this information.

displayOffset
A pointer to a time value. The function updates this time value to indicate the display offset of the
returned sample. This time value is expressed in the media’s time scale. Set this parameter to NULL
if you don’t want this information.

sampleDescriptionH
A handle to a SampTleDescription structure. The function returns the sample description
corresponding to the returned sample data. The function resizes this handle as appropriate. If you
don't want a SampleDescription structure, set this parameter to NI L.

sampleDescriptionlndex
A pointer to along integer. The function returns an index value to the SampleDescription structure
that corresponds to the returned sample data. You can retrieve the structure by calling
GetMediaSampleDescription and passing this index in the descH parameter. If you don’t want
this information, set this parameter to NIL.

maxNumberOfSamples
The maximum number of samples to be returned. The Movie Toolbox does not return more samples
than you specify with this parameter. If you set this parameter to 0, the Movie Toolbox uses a value
that is appropriate for the media, and returns that value in the field referenced by the
number0fSamples parameter.

numberOfSamples
A pointer to a long integer. The function updates the field referred to by this parameter with the
number of samples it actually returns. If you don’t want this information, set this parameter to NULL.

sampleflags
A pointer to a short integer in which the function returns flags that describe the sample. Unused flags
are set to 0. If you don’t want this information, set this parameter to NULL:

mediaSampleNotSync
This flag is set to 1 if the sample is not a sync sample and to 0 if the sample is a sync sample.

Return Value

You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, maxSizeToGrowTooSmal1 if the sample data is larger
than maxDataSize, or noErr if there is no error.

Discussion

Whereas GetMediaSamp]e takes a resizable Handle and a maxSizeToGrow parameter, GetMediaSample?
takes a pointer and a maxDataS7ze parameter. If you want to read a sample into a Handle, you can use the
following code:

0SErr GetMediaSampleUsingHandle (Media theMedia, Handle dataHOut,
ByteCount maxSizeToGrow, ByteCount *size,
TimeValue64 decodeTime, TimeValue64 *sampleDecodeTime,
TimeValue64 *decodeDurationPerSample,
TimeValue64 *displayOffset,

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

SampleDescriptionHandle sampleDescriptionH,
ItemCount *sampleDescriptionIndex,
ItemCount maxNumberOfSamples,

ItemCount *numberOfSamples,
MediaSampleFlags *sampleFlags)

0SErr err = nokrr;
ByteCount actualSize = 0;

err = GetMediaSample2(theMedia,
*dataHOut,
GetHandleSize(dataHOut),
&actualSize,
decodeTime,
sampleDecodeTime,
decodeDurationPerSample,
displayOffset,
sampleDescriptionH,
sampleDescriptionlndex,
maxNumberOfSamples,
numberOfSamples,
sampleFlags);

if ((maxSizeToGrowTooSmall == err)

&& ((0 == maxSizeToGrow) || (actualSize <= maxSizeToGrow)) f{
SetHandleSize(dataHOut, actualSize);
err = MemError();
if (err) goto bail;

err = GetMediaSample2(theMedia,

*dataHOut,
GetHandleSize(dataHOut),
&actualSize,
decodeTime,
sampleDecodeTime,
decodeDurationPerSample,
displayOffset,
sampleDescriptionH,
sampleDescriptionindex,
maxNumberQOfSamples,
numberOfSamples,
sampleFlags);

}

if(size)
*size = actualSize;

bail:
return err;
}

Version Notes

Introduced in QuickTime 7. This function extends and supersedes GetMediaSamp1e. It will only return
multiple samples that all have the same decode duration per sample, the same display offset, the same
sample description, and the same size per sample

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

79

80

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
Movies.h

GetMovieAudioBalance

Returns the balance value for the audio mix of a movie currently playing.

0SStatus GetMovieAudioBalance (

Movie m,
Float3? *leftRight,
UInt32 flags);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

leftRight
On return, a pointer to the current balance setting for the movie. The balance setting is a 32-bit
floating-point value that controls the relative volume of the left and right sound channels. A value of
0 sets the balance to neutral. Positive values up to 1.0 shift the balance to the right channel, negative
values up to -1.0 to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie’s balance setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioBalance (page 244).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioContext

Returns the current audio context for a movie.

0SStatus GetMovieAudioContext (
Movie movie,
QTAudioContextRef *audioContext);

Parameters

movie
The movie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

audioContext
A pointer to a variable to receive the audio context.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioFrequencyLevels

Returns the current frequency meter levels of a movie mix.

0SStatus GetMovieAudioFrequencylevels (

Movie m,
FourCharCode whatMixToMeter,
QTAudioFrequencylevels *pAveragePowerlevels);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

pAveragePowerlevels
A pointer to a QTAudioFrequencylevels structure (page 339) (page 259).

Return Value
An error code. Returns noErr if there is no error.

Discussion

In the structure pointed to by pAveragePowerlevels, the numChannels field must be set to the number
of channels in the movie mix being metered and the numBands field must be set to the number of bands
being metered (as previously configured). Enough memory for the structure must be allocated to hold 32-bit
values for all bands in all channels. This function returns the current frequency meter levels in the Teve]
field of the structure, with all the band levels for the first channel first, all the band levels for the second
channel next and so on.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 81
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

82

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

GetMovieAudioFrequencyMeteringBandFrequencies

Returns the chosen middle frequency for each band in the configured frequency metering of a particular
movie mix.

0SStatus GetMovieAudioFrequencyMeteringBandFrequencies (

Movie m,

FourCharCode whatMixToMeter,

UInt3?2 numBands,

Float32 *outBandFrequencies);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

numBands
The number of bands to examine.

outBandFrequencies
A pointer to an array of frequencies, each expressed in Hz.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use this function to label a visual meter in a user interface.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioFrequencyMeteringNumBands

Returns the number of frequency bands being metered for a movie's specified audio mix.

0SStatus GetMovieAudioFrequencyMeteringNumBands (

Movie m,
FourCharCode whatMixToMeter,
UInt32 *outNumBands);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as

NewMovie, NewMovieFromProperties, NewMovieFromFile,and NewMovieFromHandle.
whatMixToMeter

The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

outNumBands
A pointer to memory that stores the number of frequency bands currently being metered for the
movie's specified audio mix.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioFrequencyMeteringNumBands (page 246).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioGain

Returns the gain value for the audio mix of a movie currently playing.

0SStatus GetMovieAudioGain (

Movie m,
Float3? *gain,
UInt32 flags);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from
the movie is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
movies to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioGain (page 246).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 83
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

84

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

GetMovieAudioMute

Returns the mute value for the audio mix of a movie currently playing.

0SStatus GetMovieAudioMute (

Movie m,
Boolean *muted,
UInt32 flags)
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile,and NewMovieFromHandle.

muted
Returns TRUE if the movie audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioMute (page 247).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioVolumelevels

Returns the current volume meter levels of a movie.

0SStatus GetMovieAudioVolumelevels (

Movie m,
FourCharCode whatMixToMeter,
QTAudioVolumelevels *pAveragePowerlevels,

QTAudioVolumelevels *pPeakHoldLevels);

Parameters
m
The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.
whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

pAveragePowerlevels
A pointertoa QTAudioVolumelevels structure that stores the average power level of each channel
in the mix, measured in decibels. 0.0 dB for each channel means full volume, -6.0 dB means half
volume, -12.0 dB means quarter volume, and —infinite dB means silence. Pass NUL L for this parameter
if you are not interested in average power levels.

pPeakHoldlLevels
A pointer to a QTAudioVolumelevels structure that stores the peak hold level of each channel in
the mix, measured in decibels. 0.0 dB for each channel means full volume, -6.0 dB means half volume,
-12.0 dB means quarter volume, and —infinite dB means silence. Pass NUL L for this parameter if you
are not interested in peak hold levels.

Return Value
An error code. Returns noErr if there is no error.

Discussion

If either pAveragePowerlevels or pPeakHoldlLevels returns non-NULL, it must have the numChannels
fieldinits QTAudioVolumelevels structure set to the number of channels in the movie mix being metered
and the memory allocated for the structure must be large enough to hold levels for all those channels.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioVolumeMeteringEnabled

Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

0SStatus GetMovieAudioVolumeMeteringEnabled (

Movie m,
FourCharCode whatMixToMeter,
Boolean *enabled);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile,and NewMovieFromHandle.

whatMixToMeter

The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).
enabled

Returns TRUE if audio volume metering is enabled, FALSE if it is disabled.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioVolumeMeteringEnabled (page 248).

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 85
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieVisualBrightness

Returns the brightness adjustment for the movie.

0SStatus GetMovieVisualBrightness (
Movie movie,

Float32 *brightnessOut,

UInt32 flags);

Parameters
movie
The movie.

brightnessOut

Current brightness adjustment.
flags

Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieVisualContext

Returns the current visual context for a movie.
0SStatus GetMovieVisualContext (
Movie movie,

QTVisualContextRef *visualContext;
Parameters

movie
The movie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

visualContext

A pointer to a variable to receive the visual context.
Return Value
An error code. Returns noE rr if there is no error. Returns memFu11E rr if memory cannot be allocated. Returns
kQTVisualContextRequiredErr if the movieis not using a visual context. Returns paramErr if the movie
orvisualContextOutis NULL.

Discussion

Returns the QTVisualContext object associated with the movie. You are responsible for retaining and releasing
the object as needed (that is, if the returned object has not been retained for you). If the visual context was
setto NULL (see SetMovieVisualContext), noErrisreturned and visualContextOut receives NULL.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieVisualContrast

Returns the contrast adjustment for the movie.

0SStatus GetMovieVisualContrast (

Movie movie,
Float3?2 *contrastOut,
UInt32 flags);
Parameters
movie
The movie.
contrastout

Current contrast adjustment.
flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid grey.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 87
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

GetMovieVisualHue

Returns the hue adjustment for the movie.

0SStatus GetMovieVisualHue (
Movie movie,

Float32 *huelOut,

UInt32 flags);

Parameters
movie
The movie.
hueOut
Current hue adjustment. (Float32)
flags
Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

Discussion

The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieVisualSaturation

Returns the color saturation adjustment for the movie.

0SStatus GetMovieVisualSaturation (
Movie movie,

Float32 *saturationOut,

UInt32 flags);

Parameters
movie
The movie.

saturationOut

Current saturation adjustment.(Float32)
flags

Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetTrackAudioGain

Returns the gain value for the audio mix of a track currently playing.

0SStatus GetTrackAudioGain (

Track t,
Float3?2 *gain,
UInt32 flags);
Parameters

t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is —6 dB, 1.0 is 0 dB (the audio from
the track is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
tracks to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track gain setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioGain (page 252).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetTrackAudioMute

Returns the mute value for the audio mix of a track currently playing.

QuickTime 7 API Reference 89
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

920

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus GetTrackAudioMute (

Track t,
Boolean *muted,
UInt32 flags);
Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Returns TRUE if the track’s audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track’s mute setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioMute (page 252).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetTrackEditRate64

Returns the rate of the track edit of a specified track at an indicated time.

Fixed GetTrackEditRate64 (
Track theTrack,
TimeValue64 atTime);

Parameters

theTrack
A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

atTime
A 64-bit time value that indicates the time at which the rate of a track edit (of a track identified in the
parameter theTrack) is to be determined.

Return Value
The rate of the track edit of the specified track at the specified time.

Discussion
This function is useful if you are stepping through track edits directly in your application or if you are a client
of QuickTime's base media handler.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes

Introduced in QuickTime 7. This function is a 64-bit replacement for GetTrackEditRate.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

HiMovieViewChangeAttributes

Changes the views attributes.

0SStatus HIMovieViewChangeAttributes (
HIViewRef inView,

OptionBits inAttributesToSet,
OptionBits inAttributesToClear);

Parameters
inView
The HIMovieView.

inAttributesToSet
Attributes to set.

inAttributesToClear
Attributes to clear.

Return Value
An error code. Returns noErr if there is no error.

Discussion

Setting an attribute takes precedence over clearing the attribute.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewCreate

Creates an HIMovieView object.

0SStatus HIMovieViewCreate (
Movie inMovie,

OptionBits inAttributes,
HIViewRef *outMovieView);

Parameters
inMovie
Initial movie to view; may be NULL.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

91

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inAttributes
Initial HIMovieView attributes.

outMovieliew

Points to variable to receive new HIMovieView.
Return Value
Undocumented.

Discussion
If successful, the created view will have a single retain count.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HIMovieViewGetAttributes
Returns the view’s current attributes.

OptionBits HIMovieViewGetAttributes (
HIViewRef inView);

Parameters
inView

The HIMovieView.
Return Value
Undocumented.

Discussion
The view’s current attributes are returned.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewGetControllerBarSize

Returns the size of the visible movie controller bar.

92 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

HISize HIMovieViewGetControllerBarSize (
HIViewRef inView);

Parameters
inliew

The HIMovieView.
Return Value
Undocumented.

Discussion
The size of the visible movie controller bar is returned.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewGetMovie
Returns the view’s current movie.

Movie HIMovieViewGetMovie (
HIViewRef inView);

Parameters
inlView

The HIMovieView.
Return Value
Undocumented.

Discussion
The view’s current movie is returned.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewGetMovieController

Returns the view’s current movie controller.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

93

94

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

MovieController HIMovieViewGetMovieController (
HIViewRef inView);
Parameters
inView
The HIMovieView.

Return Value
Undocumented.

Discussion
The view’s current movie controller is returned.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewPause
Pauses the view’s current movie.

0SStatus HIMovieViewPause (
HIViewRef movieView);

Parameters

movieliew
The movie view.
Return Value
An error code. Returns noErr if there is no error.

Discussion
This is a convenience routine to pause the view's current movie. If the movie is already paused, this function
does nothing.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewPlay

Plays the view’s current movie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus HIMovieViewPlay (
HIViewRef movieView);

Parameters
movieliew
The movie view.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This is a convenience routine to play the view’s current movie. If the movie is already playing, this function
does nothing.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

HiMovieViewSetMovie

Sets the view’s current movie.

0SStatus HIMovieViewSetMovie (
HIViewRef inView,
Movie inMovie);

Parameters
inView

The HIMovieView.
inMovie

The new movie to display.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine sets the view’s current movie.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: HIMovieView.h

Declared In
HIMovieView.h

QuickTime 7 API Reference 95
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

96

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionFrameOptionsCreate

Creates a frame compression options object.

0SStatus ICMCompressionFrameOptionsCreate (
CFATTocatorRef allocator,
ICMCompressionSessionRef session,

ICMCompressionFrameOptionsRef *options);

Parameters

allocator
An allocator. Pass NULL to use the default allocator.

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

options
On return, a reference to a new frame compression options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsCreateCopy

Copies a frame compression options object.

0SStatus ICMCompressionFrameOptionsCreateCopy (
CFATTocatorRef allocator,
ICMCompressionFrameOptionsRef originalOptions,
ICMCompressionFrameOptionsRef *copiedOptions);

Parameters
allocator
An allocator. Pass NULL to use the default allocator.
originalOptions
A frame compression options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).
copiedOptions
On return, a reference to a copy of the frame compression options object passedin originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetForceKeyFrame
Retrieves the force key frame flag.

Boolean ICMCompressionfFrameOptionsGetForceKeyFrame (
ICMCompressionFrameOptionsRef options);
Parameters

options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

Return Value
Returns TRUE if frames are forced to be compressed as key frames, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetFrameType

Retrieves the frame type setting.

ICMFrameType ICMCompressionfFrameOptionsGetFrameType (
ICMCompressionFrameOptionsRef options);
Parameters

options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

Return Value
On return, one of the frame types listed below.

Discussion
This function can return one of these constants:

kICMFrameType_I = 'I'

An | frame.
kICMFrameType_P = "'P'
A P frame.
QuickTime 7 API Reference 97

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

98

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kICMFrameType_B = "B’
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetProperty

Retrieves the value of a specific property of a compression frame options object.

0SStatus ICMCompressionFrameOptionsGetProperty (
ICMCompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizelsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetPropertyinfo

Retrieves information about properties of a compression frame options object.

QuickTime 7 API Reference 929
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionFrameOptionsGetPropertylInfo (
ICMCompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.
outPropValueSize
A pointer to the size of the returned property’s value.
outPropfFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

100 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetTypelD

Returns the type ID for the current frame compression options object.
CFTypelID ICMCompressionFrameOptionsGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsRelease
Decrements the retain count of a frame compression options object.

void ICMCompressionfFrameOptionsRelease (
ICMCompressionFrameOptionsRef options);

Parameters
options

A reference to a frame compression options object.This reference is returned by
ICMCompressionFrameOptionsCreate (page 96). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsRetain

Increments the retain count of a frame compression options object.

QuickTime 7 API Reference 101
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

102

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionFrameOptionsRef ICMCompressionFrameOptionsRetain (
ICMCompressionFrameOptionsRef options);

Parameters

options
A reference to a frame compression options object.This reference is returned by
ICMCompressionFrameOptionsCreate (page 96). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetForceKeyFrame
Forces frames to be compressed as key frames.

0SStatus ICMCompressionFrameOptionsSetForceKeyFrame (
ICMCompressionFrameOptionsRef options,

Boolean forceKeyFrame);
Parameters

options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

forceKeyFrame
Pass TRUE to force frames to be compressed as key frames, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The compressor must obey this flag if set. By default it is set FALSE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetFrameType

Requests a frame be compressed as a particular frame type.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionFrameOptionsSetFrameType (
ICMCompressionFrameOptionsRef options,
ICMFrameType frameType);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

framelype

A constant that identifies a frame type. Pass one of the following but do not assume that there are

no other frame types:

kICMFrameType_I = 'I'

An | frame.
kICMFrameType_P = 'P'
A P frame.
kICMFrameType_B = 'B'
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.
Return Value
An error code. Returns noErr if there is no error.

Discussion
The frame type setting may be ignored by the compressor if it is not appropriate. By default it is set to
kICMFrameType_Unknown.

Do not assume that kICMFrameType_T sets a key frame; if you need a key frame, call
ICMCompressionFrameOptionsSetForceKeyFrame (page 102).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetProperty

Sets the value of a specific property of a compression frame options object.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

103

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionFrameOptionsSetProperty (
ICMCompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 96).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertylInfo = 'pnfo'
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize

The size of the property value to be set.
inPropValueAddress

A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

104 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionBeginPass

Announces the start of a specific compression pass.

0SStatus ICMCompressionSessionBeginPass (

ICMCompressionSessionRef session,
ICMCompressionPassModeFTags passModeFlags,
UInt32 flags);
Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

passModeFlags
Flags that describe how the compressor should behave in this pass of multipass encoding:

kICMCompressionPassMode_QOutputEncodedFrames = 11L<<0
Output encoded frames.
kICMCompressionPassMode_NoSourcefFrames = 10L<<1
The client need not provide source frame buffers.
kICMCompressionPassMode_WriteToMultiPassStorage = 1L<K2
The compressor may write private data to multipass storage.
kICMCompressionPassMode_ReadFromMultiPassStorage = 1L<<3
The compressor may read private data from multipass storage.
flags
Reserved. Set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The source frames and frame options for each display time should be the same across passes. During multipass
compression, valid d7splayTimeStamp values must be passed to ICMCompressionSessionEncodeFrame,
because they are used to index the compressor’s stored state.

During an analysis pass (kICMCompressionPassMode_WriteToMultiPassStorage), the compressor does
not output encoded frames but records compressor-private information for each frame. During repeated
analysis passes and the encoding pass (kICMCompressionPassMode_ReadFromMultiPassStorage), the
compressor may refer to this information for other frames and use it to improve encoding. During an encoding
pass (kICMCompressionPassMode_OutputEncodedFrames), the compressor must output encoded frames.
If the compressor sets the kICMCompressionPassMode_NoSourceFrames flag for the pass, the client may
pass NULL pixel buffers to ICMCompressionSessionEncodeFrame.

By default, the ICM provides local storage that lasts only until the compression session is disposed. If the
client provides custom multipass storage, passes may be performed at different times or on different machines;
segments of each pass may even be distributed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 105
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

106

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMCompressionSessionCompleteFrames

Forces a compression session to complete encoding frames.

0SStatus ICMCompressionSessionCompleteFrames (

ICMCompressionSessionRef session,

Boolean completeAllFrames,

TimeValueb4d completeUntilDisplayTimeStamp,
TimeValue64 nextDisplayTimeStamp);
Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 106).

completeAllFrames
Pass TRUE to direct the session to complete all pending frames.

completeUntilDisplayTimeStamp
A 64-bit time value that represents the display time up to which to complete frames. This value is
ignored if completeAllFramesis TRUE.

nextDisplayTimeStamp
A 64-bit time value that represents the display time of the next frame that should be passed to
EncodeFrame. This value is ignored unless ICMCompressionSessionOptionsSetDurationsNeeded
set TRUE and kICMValidTime_DisplayDurationIsValidwasOQin validTimeflags inthe last
call to ICMCompressionSessionEncodeFrame.

Return Value
Returns an error code, or 0 if there is no error. The function may return before frames are completed if the
encoded frame callback routine returns an error.

Discussion

Call this function to force a compression session to complete encoding frames. Set completeAllframes to
direct the session to complete all pending frames. If completeAllFrames is false, only frames with display
time stamps up to and including the time passed in completeUntilDisplayTimeStamp will be encoded.
If ICMCompressionSessionOptionsSetDurationsNeeded set TRUE and you are passing valid display
timestamps but not display durations to ICMCompressionSessionEncodeFrame, passin
nextDisplayTimeStamp the display timestamp of the next frame that would be passed to EncodeFrame.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionCreate

Creates a compression session for a specified codec type.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionSessionCreate (

CFATlocatorRef allocator,
int width,
int height,
CodecType cType,
TimeScale timescale,
ICMCompressionSessionOptionsRef compressionOptions,
CFDictionaryRef sourcePixelBufferAttributes,
ICMEncodedFrameQutputRecord *encodedFrameQutputRecord,
ICMCompressionSessionRef *compressionSessionQut);
Parameters
allocator
An allocator for the session. Pass NULL to use the default allocator.
width
The width of frames. Pass 0 to let the compressor control the width.
height
The height of frames. Pass 0 to let the compressor control the height.
cType
The codec type.
timescale

The timescale to be used for all time stamps and durations used in the session.

compressionOptions
A reference to a settings object that configures the session. You create such an object by calling
ICMCompressionSessionOptionsCreate. You can then use these constants to set its properties:

kICMUnTimitedFrameDelayCount

No limit on the number of frames in the compression window.
kICMUnTimitedFrameDelayTime

No time limit on the frames in the compression window.
kICMUnTimitedCPUTimeBudget

No CPU time limit on compression.

sourcePixelBufferAttributes
Required attributes for source pixel buffers, used when creating a pixel buffer pool for source frames.
If you do not want the ICM to create one for you, pass NUL L. Using pixel buffers not allocated by the
ICM may increase the chance that it will be necessary to copy image data.

encodedFrameQutputRecord

The callback that will receive encoded frames.
compressionSessionOut

Points to a variable to receive the created session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Some compressors do not support arbitrary source dimensions, and may override the suggested width and
height.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 107
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

108

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionEncodeFrame

Presents video frames to a compression session.

0SStatus ICMCompressionSessionEncodeFrame (

ICMCompressionSessionRef session,
CVPixelBufferRef pixelBuffer,
TimeValue64d displayTimeStamp,
TimeValue64 displayDuration,
ICMValidTimeFTlags validTimeFlags,
ICMCompressionFrameOptionsRef frameOptions,
ICMSourceTrackingCallbackRecord *sourcelrackingCallback,
void *sourcefFrameRefCon);
Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 106).

pixelBuffer
A reference to a buffer containing a source image to be compressed, which must have a nonzero
reference count. The session will retain it as long as necessary. The client should not modify the pixel
buffer’s pixels until the pixel buffer release callback is called. In a multipass encoding session pass,
where the compressor suggested the flag k ICMCompressionPassMode_NoSourceFrames, you may
pass NULL in this parameter.

displayTimeStamp
A 64-bit time value that represents the display time of the frame, using the time scale passed to
ICMCompressionSessionCreate. If you pass a valid value, set the
kICMValidTime_DisplayTimeStampIsValidflaginthe validTimeflags parameter (below).

displayDuration
A 64-bit time value that represents the display duration of the frame, using the time scale passed to
ICMCompressionSessionCreate. If you pass a valid value, set the
kICMValidTime_DisplayDurationIsValidflaginthe validTimeFTags parameter (below).

validTimeFlags
Flags to indicate which of the values passed in displayTimeStampand displayDurationare valid:

kICMValidTime_DisplayTimeStampIsValid

The time value passed in displayTimeStamp is valid.
kICMValidTime_DisplayDurationIsValid

The time value passed in displayDurationis valid.

frameOptions
Options for this frame. Currently not used; pass NULL.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sourcelrackingCallback
A pointer to a callback to be notified about the status of this source frame. Pass NULL if you do not
require notification.

sourceframeRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
Returns an error code, or 0 if there is no error. Encoded frames may or may not be output before the function
returns.

Discussion

The session will retain the pixel buffer as long as necessary, and the client should not modify the pixel data
until the session releases it. The most practical way to deal with this is by allocating pixel buffers from a pool.
The client may fill in both, either, or neither of displayTimeStampand displayDuration, but should set
the appropriate flags to indicate which are valid. If the client needs to track the progress of a source frame,

it should provide a source tracking callback. If multipass compression is enabled, calls to this function must
be bracketed by calls to ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionEndPass

Announces the end of a pass.

0SStatus ICMCompressionSessionEndPass (
ICMCompressionSessionRef session);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 109
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

110

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionGetimageDescription

Retrieves the image description for a video compression session.

0SStatus ICMCompressionSessionGetImageDescription (

ICMCompressionSessionRef session,
ImageDescriptionHandle *imageDescOut);
Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 106).

imageDescOut
A handle toan ImageDescription structure. The caller must not dispose of this handle; the ICM will
dispose of it when the compression session is disposed.

Return Value
Returns an error code, or 0 if there is no error. For some codecs, this function may fail if called before the first
frame is compressed.

Discussion
Multiple calls to this function return the same handle.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetPixelBufferPool

Returns a pool that can provide ideal source pixel buffers for a compression session.

CVPixelBufferPoolRef ICMCompressionSessionGetPixelBufferPool (
ICMCompressionSessionRef session);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

Return Value

A reference to a pool of pixel buffers. The compression session creates this pixel buffer pool based on the
compressor’s pixel buffer attributes and any pixel buffer attributes passed to
ICMCompressionSessionCreate (page 106).

Discussion

A new compression session builds this pixel buffer pool based on the compressor’s pixel buffer attributes
and any pixel buffer attributes passed in to ICMCompressionSessionCreate. If the source pixel buffer
attributes and the compressor pixel buffer attributes cannot be reconciled, the pool is based on the source
pixel buffer attributes and the ICM converts each pixel buffer internally.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetProperty

Retrieves the value of a specific property of a compression session.

0SStatus ICMCompressionSessionGetProperty (
ICMCompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist’

An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'

A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’

A CFDictionary with extended property information.

outPropTlype
A pointer to the type of the returned property’s value.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

m

112

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetPropertyinfo

Retrieves information about properties of a compression session.

0SStatus ICMCompressionSessionGetPropertylInfo (
ICMCompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplID,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.
outPropValueSize
A pointer to the size of the returned property’s value.
outPropfFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetTimeScale

Retrieves the time scale for a compression session.

TimeScale ICMCompressionSessionGetTimeScale (
ICMCompressionSessionRef session);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

Return Value
The time scale for the compression session.

QuickTime 7 API Reference 13
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

14

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetTypelD

Returns the type ID for the current compression session.
CFTypelID ICMCompressionSessionGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsCreate

Creates a compression session options object.

0SStatus ICMCompressionSessionOptionsCreate (
CFATlocatorRef allocator,
ICMCompressionSessionOptionsRef *options);

Parameters
allocator
An allocator. Pass NULL to use the default allocator.
options
On return, a reference to a new compression session options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionOptionsCreateCopy

Copies a compression session options object.

0SStatus ICMCompressionSessionOptionsCreateCopy (
CFATTocatorRef allocator,
ICMCompressionSessionOptionsRef originalOptions,
ICMCompressionSessionOptionsRef *copiedOptions);

Parameters

allocator
An allocator. Pass NULL to use the default allocator.

originalOptions
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

copiedOptions
On return, a reference to a copy of the compression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowFrameReordering

Retrieves the allow frame reordering flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameReordering (
ICMCompressionSessionOptionsRef options);

Parameters

options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

Return Value
Returns TRUE if frame reordering is allowed, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 115
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionOptionsGetAllowFrameTimeChanges
Retrieves the allow frame time changes flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameTimeChanges (
ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

Return Value
Returns TRUE if the compressor is allowed to modify frame times, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowTemporalCompression
Retrieves the allow temporal compression flag.

Boolean ICMCompressionSessionOptionsGetAllowTemporalCompression (
ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

Return Value
Returns TRUE if temporal compression is allowed, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetDurationsNeeded

Retrieves the durations needed flag.

116 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Boolean ICMCompressionSessionOptionsGetDurationsNeeded (
ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

Return Value
Returns TRUE if the durations of outputted frames must be calculated, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetMaxKeyFramelnterval
Retrieves the maximum key frame interval.

SInt32 ICMCompressionSessionOptionsGetMaxKeyFrameInterval (
ICMCompressionSessionOptionsRef options);

Parameters

options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

Return Value
Returns the maximum key frame interval.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetProperty

Retrieves the value of a specific property of a compression session options object.

QuickTime 7 API Reference 17
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionSessionOptionsGetProperty (
ICMCompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType

A pointer to the type of the returned property’s value.
outPropValueAddress

A pointer to a variable to receive the returned property’s value.
outPropValueSizelsed

On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

18 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetPropertyinfo

Retrieves information about properties of a compression session options object.

0SStatus ICMCompressionSessionOptionsGetPropertyInfo (
ICMCompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist’
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropTlype
A pointer to the type of the returned property’s value.
outProplValueSize
A pointer to the size of the returned property’s value.
outPropfFlags
On return, a pointer to flags representing the requested information about the property.

QuickTime 7 API Reference 19
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

120

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetTypelD

Returns the type ID for the current compression session options object.
CFTypeID ICMCompressionSessionOptionsGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsRelease

Decrements the retain count of a compression session options object.

void ICMCompressionSessionOptionsRelease (
ICMCompressionSessionOptionsRef options);

Parameters

options
A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionOptionsRetain

Increments the retain count of a compression session options object.

ICMCompressionSessionOptionsRef ICMCompressionSessionOptionsRetain (
ICMCompressionSessionOptionsRef options);

Parameters

options
A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowFrameReordering

Enables frame reordering.

0SStatus ICMCompressionSessionOptionsSetAllowFrameReordering (
ICMCompressionSessionOptionsRef options,
Boolean allowFrameReordering);

Parameters

options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

allowFrameReordering
Pass TRUE to enable frame reordering, FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion

To encode B-frames a compressor must reorder frames, which means that the order in which they will be
emitted and stored (the decode order) is different from the order in which they were presented to the
compressor (the display order). By default, frame reordering is disabled. To encode using B-frames, you must
call this function, passing TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In

ImageCompression.h

QuickTime 7 API Reference 121
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

122

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressionSessionOptionsSetAllowFrameTimeChanges

Allows the compressor to modify frame times.

0SStatus ICMCompressionSessionOptionsSetAllowFrameTimeChanges (
ICMCompressionSessionOptionsRef options,
Boolean allowFrameTimeChanges);

Parameters

options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

allowFrameTimeChanges
Pass TRUE to let the compressor to modify frame times, FALSE to prohibit it.

Return Value
An error code. Returns noErr if there is no error.

Discussion

Some compressors are able to identify and coalesce runs of identical frames and output single frames with
longer durations, or output frames at a different frame rate from the original. This feature is controlled by
the allow frame time changes flag. By default, this flag is set to false, which forces compressors to emit one
encoded frame for every source frame and preserve frame display times.

This function replaces the practice of having compressors return special high similarity values to indicate
that frames could be dropped.

If you want to let the compressor modify frame times in order to improve compression performance, you
should allow frame time changes.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowTemporalCompression

Enables temporal compression.

0SStatus ICMCompressionSessionOptionsSetAllowTemporalCompression (
ICMCompressionSessionOptionsRef options,
Boolean allowTemporalCompression);

Parameters
options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).
allowTemporalCompression
Pass TRUE to enable temporal compression, FALSE to disable it.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noErr if there is no error.

Discussion
By default, temporal compression is disabled. If you want temporal compression for P-frames or B-frames
you must call this function and pass TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetDurationsNeeded

Indicates that the durations of outputted frames must be calculated.

0SStatus ICMCompressionSessionOptionsSetDurationsNeeded (
ICMCompressionSessionOptionsRef options,
Boolean decodeDurationsNeeded);

Parameters
options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).
decodeDurationsNeeded
Pass TRUE to indicate that durations must be calculated, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion

If this flag is set and source frames are provided with times but not durations, then frames will be delayed
so that durations can be calculated as the difference between one frame’s time stamp and the next frame's
time stamp. By default this flag is 0, so frames will not be delayed in order to calculate durations.

If you are passing encoded frames to AddMediaSampleFromEncodedF rame, you must call this function and
pass TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetMaxKeyFramelnterval

Sets the maximum interval between key frames.

QuickTime 7 API Reference 123
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMCompressionSessionOptionsSetMaxKeyFramelnterval (
ICMCompressionSessionOptionsRef options,
SInt32 maxKeyFramelInterval);

Parameters

options
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

maxKeyFramelnterval

The maximum interval between key frames, also known as the key frame rate.
Return Value
An error code. Returns noErr if there is no error.

Discussion

Compressors are allowed to generate key frames more frequently if this would result in more efficient
compression. The default key frame interval is 0, which indicates that the compressor should choose where
to place all key frames.

This is a break with previous practice, which used a key frame rate of 0 to disable temporal compression.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetProperty

Sets the value of a specific property of a compression session options object.

0SStatus ICMCompressionSessionOptionsSetProperty (
ICMCompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 114).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

124 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionProcessBetweenPasses

Lets the compressor perform processing between passes.

0SStatus ICMCompressionSessionProcessBetweenPasses (

ICMCompressionSessionRef session,
UInt3?2 flags,
Boolean *interpassProcessingDoneQut,

ICMCompressionPassModeFlags *requestedNextPassModeFlagsOut);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

flags
Reserved. Set to 0.

QuickTime 7 API Reference 125
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

126

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

interpassProcessingDoneQut
A pointer to a BooTlean that will be set to FALSE if this function should be called again, TRUE if not.

requestedNextPassModeFlagsOut

A pointer to ICMCompressionPassModeFlags that will be set to the codec’s recommended mode
flags for the next pass. kICMCompressionPassMode_QutputEncodedFrames will be set only if it
recommends that the next pass be the final one:

kICMCompressionPassMode_OutputEncodedFrames = 1L<<0
Output encoded frames.
kICMCompressionPassMode_NoSourceFrames = 10L<<1
The client need not provide source frame buffers.
kICMCompressionPassMode_WriteToMultiPassStorage = 11L<<K2
The compressor may write private data to multipass storage.
kICMCompressionPassMode_ReadFromMultiPassStorage = 1L<<3
The compressor may read private data from multipass storage.
Return Value

An error code. Returns noErr if there is no error.

Discussion

Call this function repeatedly until the compressor sets interpassProcessingDoneOut to TRUE to indicate
that it is done with this round of interpass processing. When done, the compressor will indicate its preferred
mode for the next pass. At this point the client may choose to begin an encoding pass, by OR-combining
the kICMCompressionPassMode_OutputEncodedFrames flag, regardless of the compressor’s request.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionRelease

Decrements the retain count of a compression session.

void ICMCompressionSessionRelease (
ICMCompressionSessionRef session);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the session is disposed.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionRetain
Increments the retain count of a compression session.

I[CMCompressionSessionRef ICMCompressionSessionRetain (
ICMCompressionSessionRef session);

Parameters

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in session, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionSetProperty

Sets the value of a specific property of a compression session.

0SStatus ICMCompressionSessionSetProperty (
ICMCompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplID,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 127
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionSupportsMultiPassEncoding

Queries whether a compression session supports multipass encoding.

Boolean ICMCompressionSessionSupportsMultiPassEncoding (

ICMCompressionSessionRef session,
UInt3?2 multiPassStyleFlags,
ICMCompressionPassModeFlags *firstPassModeFlagsOut);
Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 106).

multiPassStyleFlags
Reserved; set to 0.

128 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

firstPassModefFlagsOut
A pointer to a variable to receive the session’s requested mode flags for the first pass. The client may
modify these flags, but should not set kICMCompressionPassMode_NoSourceFrames. Pass NULL
if you do not want this information.

Return Value
Returns TRUE if the compression session supports multipass encoding, FALSE otherwise.

Discussion
Even if this function returns FALSE, if you passed TRUE to ICMCompressionSessionOptionsSetMultiPass,
you must call ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSessionDropFrame

Called by a compressor to notify the ICM that a source frame has been dropped and will not contribute to
any encoded frames.

0SStatus ICMCompressorSessionDropFrame (
ICMCompressorSessionRef session,
ICMCompressorSourcefFrameRef sourcefFrame);

Parameters
session
A reference to the compression session between the ICM and an image compressor component.

sourceframe
A reference to a frame that has been passed in sourceframeRefCon to
ICMCompressionSessionEncodeFrame (page 108). If you pass NULL, nothing happens.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Calling this function does not automatically release the source frame; if the compressor called
ICMCompressorSourceFrameRetain it should still call ICMCompressorSourceFrameRelease.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 129
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

130

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressorSessionEmitEncodedFrame

Called by a compressor to output an encoded frame corresponding to one or more source frames.

0SStatus ICMCompressorSessionEmitEncodedFrame (

ICMCompressorSessionRef session,
ICMMutableEncodedFrameRef encodedFrame,
long numberOfSourceFrames,

ICMCompressorSourcefFrameRef sourceframes[]);

Parameters

session
A reference to the compression session between the ICM and an image compressor component.

encodedframe
A reference to an encoded frame object with write capabilities.

numberOfSourceFrames
The number of source frames encoded in the encoded frame.

sourceframes
References to frames that have been passed in sourceframeRefCon to
ICMCompressionSessionEncodeFrame (page 108).

Return Value
An error code. Returns noErr if there is no error.

Discussion
Encoded frames may correspond to more than one source frame only if alTowFrameTimeChanges is set in
the compression session’s compressionSessionOptions.

After calling this function, the compressor should release the encoded frame by calling
ICMEncodedFrameRelease. Calling this function does not automatically release the source frames; if the
compressor called ICMCompressorSourceFrameRetain it should still call
I[CMCompressorSourcefFrameRelease.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetDisplayNumber
Retrieves a source frames display number.

long ICMCompressorSourcefFrameGetDisplayNumber (
ICMCompressorSourcefFrameRef sourcefFrame);
Parameters

sourceframe

A reference to a frame that has been passed in sourcefFrameRefCon to
ICMCompressionSessionEncodeFrame (page 108).

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
The display number of the source frame.

Discussion

The ICM tags source frames with display numbers in the order that they are passed to
ICMCompressionSessionEncodeFrame. The first display number is 1. Compressors may compare these
numbers to work out whether prediction is forward or backward, even when display times are not provided.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetDisplayTimeStampAndDuration

Retrieves the display time stamp and duration of a source frame.

0SStatus ICMCompressorSourcefFrameGetDisplayTimeStampAndDuration (

ICMCompressorSourceFrameRef sourcefFrame,
TimeValueb4d *displayTimeStampOQut,
TimeValue64 *displayDurationQut,
TimeScale *timeScalelut,
ICMValidTimeFTlags *validTimeFlagsOut);
Parameters
sourceframe

A reference to a frame that has been passed in sourcefFrameRefCon to
ICMCompressionSessionEncodeFrame (page 108).

displayTimeStampOut
A pointer to the source frame’s display time stamp.

displayDurationOut
A pointer to the source frame’s display duration.

timeScalelOut
A pointer to the source frame’s display time scale.

validTimeFlagsOut
A pointer to one of these display time flags for the source frame:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0
The value of displayTimeStamp is valid.
kICMValidTime_DisplayDurationIsValid = 1L<<1
The value of displayDurationis valid.
Return Value

An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 131
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetFrameOptions

Retrieves the frame compression options for a source frame.

ICMCompressionFrameOptionsRef ICMCompressorSourcefFrameGetFrameOptions (
ICMCompressorSourcefFrameRef sourcefFrame);

Parameters

sourceframe
A reference to a frame that has been passed in sourceframeRefCon to
ICMCompressionSessionEncodeFrame (page 108).

Return Value
A compression session frame options reference representing options for this frame. A frame options object
is created by ICMCompressionFrameOptionsCreate (page 96).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetPixelBuffer

Retrieves a source frames pixel buffer.

CVPixelBufferRef ICMCompressorSourcefFrameGetPixelBuffer (
ICMCompressorSourceFrameRef sourcefFrame);

Parameters

sourceframe
A reference to a frame that has been passed in sourceframeRefCon to
ICMCompressionSessionEncodeFrame (page 108).

Return Value
A reference to the pixel buffer containing the source frame's image being compressed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

132 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMCompressorSourceFrameGetTypelD

Returns the type ID for the current source frame object.
CFTypelID ICMCompressorSourcefFrameGetTypeID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameRelease

Decrements the retain count of a source frame object.

void ICMCompressorSourcefFrameRelease (
ICMCompressorSourcefFrameRef sourcefFrame);

Parameters

sourceframe
A reference to a frame that has been passed in sourceframeRefCon to

ICMCompressionSessionEncodeFrame (page 108). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameRetain

Increments the retain count of a source frame object.

ICMCompressorSourceFrameRef ICMCompressorSourceFrameRetain (
ICMCompressorSourcefFrameRef sourcefFrame);

Parameters
sourceframe
A reference to a frame that has been passed in sourceFrameRefCon to

ICMCompressionSessionEncodeFrame (page 108). If you pass NULL, nothing happens.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

133

134

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
A reference to the object passed in sourceFrame, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreate

Creates a frame decompression options object.

0SStatus ICMDecompressionFrameOptionsCreate (
CFATlocatorRef allocator,
ICMDecompressionfFrameOptionsRef *options);

Parameters
allocator
An allocator. Pass NULL to use the default allocator.
options
On return, a reference to a frame decompression options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreateCopy

Copies a frame decompression options object.

0SStatus ICMDecompressionFrameOptionsCreateCopy (
CFATTocatorRef allocator,
ICMDecompressionFrameOptionsRef originalOptions,
ICMDecompressionFrameOptionsRef *copiedOptions);

Parameters

allocator
An allocator. Pass NULL to use the default allocator.

originalOptions
A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 134).

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

copiedOptions
On return, a reference to a copy of the frame decompression options object passed in
originalOptions.

Return Value

An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetProperty

Retrieves the value of a specific property of a decompression frame options object.

0SStatus ICMDecompressionFrameOptionsGetProperty (
ICMDecompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplID,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizelUsed);
Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’

The property information class.

QuickTime 7 API Reference 135
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizelsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetPropertyinfo

Retrieves information about properties of a decompression frame options object.

136 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMDecompressionFrameOptionsGetPropertylInfo (
ICMDecompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.
outPropValueSize
A pointer to the size of the returned property’s value.
outPropfFlags
On return, a pointer to flags representing the requested information about the frame option’s property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 137
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetTypelD

Returns the type ID for the current frame decompression options object.
CFTypelID ICMDecompressionFrameOptionsGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsRelease
Decrements the retain count of a frame decompression options object.

void ICMDecompressionfFrameOptionsRelease (
ICMDecompressionFrameOptionsRef options);

Parameters

options
A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 134). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsRetain

Increments the retain count of a frame decompression options object.

138 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

[CMDecompressionFrameOptionsRef ICMDecompressionfFrameOptionsRetain (
ICMDecompressionFrameOptionsRef options);

Parameters
options

A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 134). If you pass NULL, nothing happens.

Return Value
A reference to the frame decompression options object passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsSetProperty

Sets the value of a specific property of a decompression frame options object.

0SStatus ICMDecompressionFrameOptionsSetProperty (
ICMDecompressionFrameOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

139

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionCreate

Creates a session for decompressing video frames.

0SStatus ICMDecompressionSessionCreate (

CFATlocatorRef allocator,
ImageDescriptionHandle desc,
ICMDecompressionSessionOptionsRef decompressionOptions,
CFDictionaryRef destinationPixelBufferAttributes,
ICMDecompressionTrackingCallbackRecord *trackingCallback,
ICMDecompressionSessionRef *decompressionSessionQut);
Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

140 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

desc
An image description for the source frames.

decompressionOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146). The session will retain the object. You may
change some options during the session by modifying the object. You may also pass NULL.
destinationPixelBufferAttributes
Requirements for emitted pixel buffers. You may pass NULL.

trackingCallback

A pointer to a structure that designates a callback to be called for information about queued frames
and pixel buffers containing decompressed frames. See
ICMDecompressionTrackingCallbackRecord (page 258) and
ICMDecompressionTrackingCallbackProc (page 254).

decompressionSessionOut
A pointer to a variable to receive a reference to the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames are returned through calls to the callback pointed to by trackingCallback.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionCreateForVisualContext

Creates a session for decompressing video frames.

0SStatus ICMDecompressionSessionCreateForVisualContext (
CFATlocatorRef allocator,
/*can be NULL */ ImageDescriptionHandle desc,
ICMDecompressionSessionOptionsRef decompressionOptions,
/*can be NULL */ QTVisualContextRef visualContext,
ICMDecompressionTrackingCallbackRecord *trackingCallback,
ICMDecompressionSessionRef *decompressionSessionQut);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.
desc

An image description for the source frames.
decompressionOptions

Options for the session. The session will retain this options object. You may change some options
during the session by modifying the object.

QuickTime 7 API Reference 141
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

142

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

visualContext
The target visual context.

trackingCallback
The callback to be called with information about queued frames, and pixel buffers containing the
decompressed frames.

decompressionSessionOut
Points to a variable to receive the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames will be output to a visual context. If desired, the trackingCallback may attach additional data to
pixel buffers before they are sent to the visual context.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionDecodeFrame

Queues a frame for decompression.

0SStatus ICMDecompressionSessionDecodeFrame (

ICMDecompressionSessionRef session,

const UInt8 *data,

ByteCount dataSize,

ICMDecompressionFrameOptionsRef frameOptions,

const ICMFrameTimeRecord *frameTime,

void *sourceFrameRefCon);
Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

data
A pointer to the compressed data for this frame. The data must remain in this location until

ICMDecompressionTrackingCallbackProc (page 254) is called with the
kICMDecompressionTracking_ReleaseSourceDataflagsetin decompressionTrackingflags.

dataSize
The number of bytes of compressed data. You may not pass 0 in this parameter.

frameOptions
A reference to a frame decompression options object containing options for this frame. You can create
this object by calling ICMDecompressionFrameOptionsCreate (page 134).

frameTime
A pointer to a structure describing the frame's timing information.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sourceframeRefCon

Your reference value for the frame.
Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionFlush
Flushes the frames queued for a decompression session.

0SStatus ICMDecompressionSessionFlush (
ICMDecompressionSessionRef session);

Parameters

session
A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The tracking callback will be called for each frame with the result -1.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionGetProperty

Retrieves the value of a specific property of a decompression session.

0SStatus ICMDecompressionSessionGetProperty (
ICMDecompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

QuickTime 7 API Reference 143
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizelsed

On return, a pointer to the number of bytes actually used to store the property.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionGetPropertylnfo

Retrieves information about the properties of a decompression session.

144 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMDecompressionSessionGetPropertylInfo (
ICMDecompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplID,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.
outPropValueSize
A pointer to the size of the returned property’s value.
outPropfFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 145
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMDecompressionSessionGetTypelD

Returns the type ID for the current decompression session.
CFTypelID ICMDecompressionSessionGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsCreate
Creates a decompression session options object.
0SStatus ICMDecompressionSessionOptionsCreate (

CFATlocatorRef allocator,
ICMDecompressionSessionOptionsRef *options);

Parameters
allocator
An allocator. Pass NULL to use the default allocator.

options

On return, a reference to a decompression session options object.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsCreateCopy

Copies a decompression session options object.

146 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMDecompressionSessionOptionsCreateCopy (
CFATlocatorRef allocator,
ICMDecompressionSessionOptionsRef originalOptions,
ICMDecompressionSessionOptionsRef *copiedOptions);

Parameters

allocator
An allocator. Pass NULL to use the default allocator.

originalOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146).

copiedOptions
On return, a reference to a copy of the decompression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetPropertyinfo

Retrieves information about properties of a decompression session options object.

0SStatus ICMDecompressionSessionOptionsGetPropertylInfo (
ICMDecompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ComponentValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 147
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropfFlags

On return, a pointer to flags representing the requested information about the property.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetProperty

Retrieves the value of a specific property of a decompression session options object.

148 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMDecompressionSessionOptionsGetProperty (
ICMDecompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo’
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be retrieved.
outPropValueAddress
A pointer to a variable to hold the value of the property.
outPropValueSizelsed
On return, a pointer to the number of bytes actually used to store the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 149
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

150

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetTypelD

Returns the type ID for the current decompression session options object.
CFTypelID ICMDecompressionSessionOptionsGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRelease
Decrements the retain count of a decompression session options object.

void ICMDecompressionSessionOptionsRelease (
ICMDecompressionSessionOptionsRef options);

Parameters

options
A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRetain

Increments the retain count of a decompression session options object.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

[CMDecompressionSessionOptionsRef ICMDecompressionSessionOptionsRetain (

ICMDecompressionSessionOptionsRef options);

Parameters
options

A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsSetProperty

Sets the value of a specific property of a decompression session options object.

0SStatus ICMDecompressionSessionOptionsSetProperty (
ICMDecompressionSessionOptionsRef options,

ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 146).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

151

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "Tist'
An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'
A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'
One of the kComponentPropertyCache flags:
kComponentPropertyCacheFlagNotPersistent
Property metadata should not be saved in persistent cache.
kComponentPropertyCacheFlaglsDynamic
Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’
A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress

A pointer to the value of the property to be set.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionRetain
Increments the retain count of a decompression session.

ICMDecompressionSessionRef ICMDecompressionSessionRetain (
ICMDecompressionSessionRef session);

Parameters

session
A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140). If you pass NULL, nothing happens.

Return Value
A copy of the reference passed in session, for convenience.

Version Notes
Introduced in QuickTime 7.

152 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionRelease

Decrements the retain count of a decompression session.

void ICMDecompressionSessionRelease (
ICMDecompressionSessionRef session);

Parameters

session
A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayDirection

Sets the direction for non-scheduled display time.

0SStatus ICMDecompressionSessionSetNonScheduledDisplayDirection (
ICMDecompressionSessionRef session,
Fixed rate);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

rate
The display direction. Negative values represent backward display and positive values represent
forward display.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 153
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

154

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayTime
Sets the display time for a decompression session, and requests display of the non-scheduled queued frame
at that display time, if there is one.

0SStatus ICMDecompressionSessionSetNonScheduledDisplayTime (
ICMDecompressionSessionRef session,

TimeValueb4d displayTime,
TimeScale displayTimeScale,
UInt32 flags);
Parameters

session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

displayTime
A display time. Usually this is the display time of a non-scheduled queued frame.

displayTimeScale
The timescale according to which dispTlayTime should be interpreted.

flags
Reserved; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionSetProperty

Sets the value of a specific property of a decompression session.

0SStatus ICMDecompressionSessionSetProperty (
ICMDecompressionSessionRef session,

ComponentPropertyClass inPropClass,
ComponentPropertylID inProplD,
ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);
Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 140).

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'
The property information class.

inProplD
Pass one of these constants to define the property ID:

kComponentPropertyInfolist = "lTist'

An array of CFData values, one for each property.
kComponentPropertyCacheSeed = 'seed'

A property cache seed value.
kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlaglsDynamic

Property metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta’

A CFDictionary with extended property information.

inPropValueSize
The size in bytes of the property’s value.

inPropValueAddress

A pointer to the property value to be set.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetBufferSize

Gets the size of an encoded frame’s data buffer.

ByteCount ICMEncodedFrameGetBufferSize (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

155

156

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
The physical size in bytes of the encoded frame’s data buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameCreateMutable

Called by a compressor to create an encoded-frame token corresponding to a given source frame.

0SStatus ICMEncodedFrameCreateMutable (

ICMCompressorSessionRef session,
ICMCompressorSourcefFrameRef sourcefFrame,
ByteCount bufferSize,
ICMMutableEncodedFrameRef *frameQut);
Parameters
session

A reference to the compression session between the ICM and an image compressor component.

sourceframe
A reference to a frame that has been passed in sourceframeRefCon to
ICMCompressionSessionEncodeFrame (page 108).

bufferSize
The size of the frame buffer in bytes.

frameOut
On return, a reference to an encoded frame object with write capabilities.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The encoded frame will initially show 0 formediaSamp1eF1ags;if the frame is not a key frame, the compressor
must call ICMEncodedFrameSetMediaSampleFlags tosetmediaSampleNotSync.If the frameis droppable,
the compressor should set mediaSampleDroppable. If the frame is a partial key frame, the compressor
should set mediaSamplePartialSync.

The encoded frame will initially have undefined decodeTimeStamp and decodeDuration values. The
compressor may set these directly by calling ICMEncodedFrameSetDecodeTimeStamp and
ICMEncodedFrameSetDecodeDuration. If these are not set by the compressor, the ICM will try to derive
values for them.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMEncodedFrameGetDataPtr

Gets the data buffer for an encoded frame.

UInt8 *ICMEncodedFrameGetDataPtr (
ICMEncodedFrameRef frame);
Parameters

frame

A reference to an encoded frame object.
Return Value
A pointer to the object’s data buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDataSize
Gets the data size of the compressed frame in an encoded frame’s buffer.

ByteCount ICMEncodedFrameGetDataSize (
ICMEncodedFrameRef frame);

Parameters
frame
A reference to an encoded frame object.

Return Value
The logical size in bytes of the encoded frame’s data buffer, which may be less than the physical size of the
buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeDuration

Retrieves an encoded frame’s decode duration.

QuickTime 7 API Reference 157
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

TimeValue64 ICMEncodedFrameGetDecodeDuration (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame’s decode duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeNumber
Retrieves the decode number of an encoded frame.

UInt32 ICMEncodedFrameGetDecodeNumber (
ICMEncodedFrameRef frame);

Parameters

frame

A reference to an encoded frame object.
Return Value
The decode number of the encoded frame.

Discussion
The ICM automatically stamps ascending decode numbers on frames after the compressor emits them. The
first decode number in session is 1. Compressors should not call this function.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeTimeStamp

Retrieves an encoded frame’s decode time stamp.

158 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

TimeValue64 ICMEncodedFrameGetDecodeTimeStamp (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame's decode time stamp.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayDuration

Retrieves an encoded frame’s display duration.

TimeValue64 ICMEncodedFrameGetDisplayDuration (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame’s display duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayOffset

Retrieves an encoded frame’s display offset.

TimeValue64 ICMEncodedFrameGetDisplayOffset (
ICMEncodedFrameRef frame);

Parameters
frame
A reference to an encoded frame object.

Return Value
The encoded frame’s display offset. This is the time offset from decode time stamp to display time stamp.

QuickTime 7 API Reference 159
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayTimeStamp

Retrieves an encoded frame’s display time stamp.
TimeValue64 ICMEncodedFrameGetDisplayTimeStamp (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame’s display time stamp.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetFrameType
Retrieves the frame type for an encoded frame.

ICMFrameType ICMEncodedFrameGetFrameType (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame’s frame type (see below).

Discussion
This function returns one of these values:

kICMFrameType_I = "I

An | frame.
kICMFrameType_P = 'P'

A P frame.
160 QuickTime 7 APl Reference

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kICMFrameType_B = "B’
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetimageDescription

Retrieves the image description of an encoded frame.

0SStatus ICMEncodedFrameGetImageDescription (
ICMEncodedFrameRef frame,
ImageDescriptionHandle *imageDescOut);

Parameters
frame
A reference to an encoded frame object.

imageDescOut

A pointer to a handle containing the encoded frame's image description. The caller should not dispose
of this handle.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function returns the same image description handle as
I[CMCompressionSessionGetImageDescription.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetMediaSampleFlags

Retrieves the media sample flags for an encoded frame.

QuickTime 7 API Reference 161
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

MediaSampleFlags ICMEncodedFrameGetMediaSampleFlags (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The object’s media sample flags. These flags are listed in the header file Movies. h.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetSimilarity

Retrieves the similarity value for an encoded frame.
Float32 ICMEncodedFrameGetSimilarity (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

Return Value
The encoded frame’s similarity value. 1.0 means identical; 0.0 means not at all alike. The default value is -1.0,
which means unknown.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetSourceFrameRefCon

Retrieves the reference value of an encoded frame's source frame.

void *ICMEncodedFrameGetSourceFrameRefCon (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object.

162 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion
The source frame's reference value is copied from the session’s sourceFrameRefCon parameter that was
passed to ICMCompressionSessionEncodeFrame (page 108).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetTimeScale

Retrieves the timescale of an encoded frame.

TimeScale ICMEncodedFrameGetTimeScale (
ICMEncodedFrameRef frame);

Parameters
frame
A reference to an encoded frame object.

Return Value
The time scale of an encoded frame. This is always the same as the time scale of the compression session.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetTypelD

Returns the type ID for the current encoded frame object.
CFTypelID ICMEncodedFrameGetTypelID (void);

Return Value
A CFTypelID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 163
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMEncodedFrameGetValidTimeFlags

Retrieves an encoded frame’s flags indicating which of its time stamps and durations are valid.

ICMValidTimeFlags ICMEncodedFrameGetValidTimeFTlags (
ICMEncodedFrameRef frame);

Parameters
frame
A reference to an encoded frame object.

Return Value
One of the constants listed below.

Discussion
This function returns one of these values:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0
The value of displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid = 1L<<1
The value of displayDurationis valid.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameRelease

Decrements the retain count of an encoded frame object.
void ICMEncodedFrameRelease (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

164 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMEncodedFrameRetain
Increments the retain count of an encoded frame object.

ICMEncodedFrameRef ICMEncodedFrameRetain (
ICMEncodedFrameRef frame);

Parameters

frame
A reference to an encoded frame object. If you pass NULL, nothing happens.

Return Value
A reference to the object passed in frame, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDataSize

Sets the data size of the compressed frame in an encoded frame’s buffer.
0SStatus ICMEncodedFrameSetDataSize (
ICMMutableEncodedFrameRef frame,

ByteCount dataSize);

Parameters

frame
A reference to an encoded frame object with write capabilities.

dataSize
The data size of the compressed frame in the encoded frame object’s buffer.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeDuration

Sets an encoded frame’s decode duration.

QuickTime 7 API Reference 165
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMEncodedFrameSetDecodeDuration (
ICMMutableEncodedFrameRef frame,
TimeValue64 decodeDuration);

Parameters
frame

A reference to an encoded frame object with write capabilities.
decodeDuration

The encoded frame’s decode duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeDurationIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeTimeStamp

Sets an encoded frame’s decode time stamp.

0SStatus ICMEncodedFrameSetDecodeTimeStamp (
ICMMutableEncodedFrameRef frame,
TimeValue64 decodeTimeStamp);

Parameters
frame
A reference to an encoded frame object with write capabilities.

decodeTimeStamp
The encoded frame's decode time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeTimeStampIsValid flag. If the display time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

166 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMEncodedFrameSetDisplayDuration

Sets an encoded frame’s display duration.

0SStatus ICMEncodedFrameSetDisplayDuration (
ICMMutableEncodedFrameRef frame,
TimeValue64 displayDuration);

Parameters
frame

A reference to an encoded frame object with write capabilities.
displayDuration

The encoded frame’s display duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayDurationIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDisplayTimeStamp

Sets an encoded frame’s display time stamp.

0SStatus ICMEncodedFrameSetDisplayTimeStamp (
ICMMutableEncodedFrameRef frame,
TimeValue64 displayTimeStamp);

Parameters
frame

A reference to an encoded frame object with write capabilities.
displayTimeStamp

The encoded frame’s display time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayTimeStampIsValid flag.If the decode time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 167
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

168

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

ICMEncodedFrameSetValidTimeFlags
Sets an encoded frame’s flags that indicate which of its time stamps and durations are valid.
0SStatus ICMEncodedFrameSetValidTimeFlags (

ICMMutableEncodedFrameRef frame,
ICMValidTimeFlags validTimeFlags);

Parameters

frame
A reference to an encoded frame object with write capabilities.

validTimeFlags
One of the following constants:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0
The value of displayTimeStamp is valid.
kICMValidTime_DisplayDurationlsValid = 1L<<1
The value of displayDurationis valid.
Return Value

An error code. Returns noErr if there is no error.

Discussion

Setting an encoded frame's decode or display time stamp or duration automatically sets the corresponding
valid time flags. For example, calling ICMEncodedFrameSetDecodeTimeStamp sets
kICMValidTime_DisplayTimeStampIsValid.Ifboththe encoded frame’s decode time stamp and display
time stamp are valid, kICMValidTime_DisplayOffsetIsValid is automatically set.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetMediaSampleFlags

Sets the media sample flags for an encoded frame.

0SStatus ICMEncodedFrameSetMediaSampleFlags (
ICMMutableEncodedFrameRef frame,
MediaSampleFlags mediaSampleFlags);
Parameters

frame
A reference to an encoded frame object with write capabilities.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

mediaSampleflags
The object’s media sample flags. These flags are listed in the header file Movies. h.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetFrameType
Sets the frame type for an encoded frame.
0SStatus ICMEncodedFrameSetFrameType (

ICMMutableEncodedFrameRef frame,
ICMFrameType frameType);

Parameters
frame
A reference to an encoded frame object with write capabilities.

framelype
The frame type to be set:

kICMFrameType_lI

e

An | frame.
kICMFrameType_P = 'P'
A P frame.
kICMFrameType_B = 'B'
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 169
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMEncodedFrameSetSimilarity

Sets the similarity for an encoded frame.

0SStatus ICMEncodedFrameSetSimilarity (
ICMMutableEncodedFrameRef frame,
Float3? similarity);

Parameters

frame
A reference to an encoded frame object with write capabilities.

similarity
The encoded frame’s similarity value to be set. 1.0 means identical; 0.0 means not at all alike. The
default value is 1.0, which means unknown.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMImageDescriptionGetProperty

Returns a particular property of a image description handle.

0SStatus ICMImageDescriptionGetProperty (
ImageDescriptionHandle inDesc,
ComponentPropertyClass inPropClass,
ComponentPropertyID inProplID,

ByteCount inPropValueSize,
ComponentValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);

Parameters
inDesc

The image description handle being interrogated.
inPropClass

The class of property being requested.
inProplD

The ID of the property being requested.
inProplValueSize

The size of the property value buffer.

outPropValueAddress
Points to the buffer to receive the property value.

outPropValueSizeUsed
Points to a variable to receive the actual size of returned property value. (This can be NULL).

170 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns a particular property of a image description handle.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMImageDescriptionGetPropertyinfo

Returns information about a particular property of a image description.

0SStatus ICMImageDescriptionGetPropertylInfo (
ImageDescriptionHandle inDesc,
ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,
ComponentValueType *outPropType,
/*can be NULL */ ByteCount *outPropValueSize,
/*can be NULL */ UInt32 *outPropertyFlags);

Parameters
inDesc
The image description handle being interrogated.
inPropClass
The class of property being requested.
inProplD
The ID of the property being requested.

outPropType
The type of property is returned here. (This can be NULL).

outPropValueSize

The size of property is returned here. (This can be NULL).
outPropertyFlags

The property flags are returned here. (This can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 171
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMImageDescriptionSetProperty

Sets a particular property of a image description handle.

0SStatus ICMImageDescriptionSetProperty (
ImageDescriptionHandle inDesc,
ComponentPropertyClass inPropClass,
ComponentPropertyID inProplD,

ByteCount inPropValueSize,
ConstComponentValuePtr inPropValueAddress);

Parameters

inDesc
The image description handle being modified.

inPropClass
The class of property being set.

inProplD
The ID of the property being set.

inPropValueSize
The size of property value.

inPropValueAddress

Points to the property value buffer.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCopyDataAtTimeStamp

Called by a multipass-capable compressor to retrieve data at a given time stamp.

0SStatus ICMMultiPassStorageCopyDataAtTimeStamp (
ICMMultiPassStorageRef multiPassStorage,

TimeValueb64 timeStamp,

long index,

CFMutableDataRef *datalOut);
Parameters

multiPassStorage
The multipass storage object.

timeStamp
The time stamp at which the value should be retrieved.

index
An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

172 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

datalOut
A pointer to memory to receive the data at the time stamp.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithCallbacks

Assembles a multipass storage mechanism from callbacks.

0SStatus ICMMultiPassStorageCreateWithCallbacks (

CFATTocatorRef allocator,
ICMMultiPassStorageCallbacks *callbacks,
ICMMultiPassStorageRef *multiPassStorageQut);
Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

callbacks
A structure containing a collection of callbacks for creating a custom multipass storage object. See
ICMMultiPassStorageCallbacks (page 259).

multiPassStoragelOut
A reference to the new multipass storage object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithTemporaryFile

Creates multipass storage using a temporary file.

QuickTime 7 API Reference 173
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

174

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMMultiPassStorageCreateWithTemporaryFile (

CFATlocatorRef allocator,
FSRef *directoryRef,
CFStringRef fileName,
ICMMultiPassStorageCreationFlags flags,
ICMMultiPassStorageRef *multiPassStorageQut);
Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

directoryRef
A reference to a file directory. If you pass NULL, the ICM will use the user’s Temporary Items folder.

fileName
A file name to use for the storage. If you pass NULL, the ICM will pick a unique name. If you pass the
name of a file that already exists, the ICM will assume you are continuing a previous multipass session
where you left off. This file will be deleted when the multipass storage is released, unless you set the
kICMMultiPassStorage_DoNotDeleteWhenDone flag.

flags
Flag controlling this process:

kICMMultiPassStorage_DoNotDeleteWhenDone = 1L<<0
The temporary file should not be deleted when the multipass storage is released.

multiPassStorageQut
A reference to the new multipass storage.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageGetTimeStamp

Called by a multipass-capable compressor to retrieve a time stamp for which a value is stored.

0SStatus ICMMultiPassStorageGetTimeStamp (
ICMMultiPassStorageRef multiPassStorage,

TimeValueb4 fromTimeStamp,

ICMMuTtiPassStorageStep step,

TimeValue64 *timeStampOut);
Parameters

multiPassStorage
The multipass storage object.

fromTimeStamp
The initial time stamp. This value is ignored for some values of step.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ste
’ Indicates the kind of time stamp search to perform:
kICMMultiPassStorage_GetFirstTimeStamp = 1
Requests the first time stamp at which a value is stored.
KICMMultiPassStorage_GetPreviousTimeStamp = 2
Requests the previous time stamp before the time stamp specified in fromTimeStamp at
which a value is stored.
kKICMMultiPassStorage_GetNextTimeStamp = 3
Requests the next time stamp after the time stamp specified in fromTimeStamp at which a
value is stored.
kKICMMultiPassStorage_GetLastTimeStamp = 4
Requests the last time stamp at which a value is stored.
timeStampOut

A pointer to a TimeValue64 value to receive the found time stamp. It will be set to -1 if no time
stamp is found.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageGetTypelD

Returns the type ID for the current multipass storage object.
CFTypelID ICMMultiPassStorageGetTypelD (void);

Return Value
A CFTypelD value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageRelease

Decrements the retain count of a multipass storage object.

QuickTime 7 API Reference 175
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

void ICMMultiPassStorageRelease (
ICMMultiPassStorageRef multiPassStorage);

Parameters

multiPassStoragelut
A reference to a multipass storage object. You can create this object using
ICMMultiPassStorageCreateWithTemporaryFile (page 173) or
ICMMultiPassStorageCreateWithCallbacks (page 173).If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageRetain

Increments the retain count of a multipass storage object.

ICMMultiPassStorageRef ICMMultiPassStorageRetain (
ICMMultiPassStorageRef multiPassStorage);

Parameters

multiPassStoragelOut
A reference to a multipass storage object. You can create this object using
ICMMuTltiPassStorageCreateWithTemporaryFile (page 173) or
ICMMultiPassStorageCreateWithCallbacks (page 173). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in multiPassStorage, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageSetDataAtTimeStamp

Called by a multipass-capable compressor to store data at a given time stamp.

176 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus ICMMultiPassStorageSetDataAtTimeStamp (
ICMMultiPassStorageRef multiPassStorage,

TimeValue64 timeStamp,

long index,

CFDataRef data);
Parameters

multiPassStorage
The multipass storage object.

timeStamp
The time stamp at which the value should be stored.

index

An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

data
The data to be stored, or NULL to delete the value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The new data replaces any previous data held at that time stamp. If the value of data is NULL, the data for
that time stamp is deleted. The format of the data is private to the compressor.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ImageCodecBeginPass

Notifies the compressor that it should operate in multipass mode and use the given multipass storage.

ComponentResult ImageCodecBeginPass (

ComponentlInstance ci,
ICMCompressionPassModeFTags passModeFlags,
UInt32 flags,
ICMMultiPassStorageRef multiPassStorage);
Parameters
ci

A component instance that identifies a connection to an image codec component.

QuickTime 7 API Reference 177
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

178

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

passModeFlags
Indicates how the compressor should operate in this pass. If the
kICMCompressionPassMode_WriteToMultiPassStorage flagis set, the compressor may gather
information of interest and store itin multiPassStorage. If the
kICMCompressionPassMode_ReadFromMultiPassStorage flagis set, the compressor may retrieve
informationfrommultiPassStorage.lfthe kICMCompressionPassMode_OutputEncodedFrames
f1ag is set, the compressor must encode or drop every frame by calling
ICMCompressorSessionDropFrame or ICMCompressorSessionEmitEncodedFrame. If that flag
is not set, the compressor should not call these routines.

flags
Reserved. Ignore this parameter.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecCompleteFrame

Directs the compressor to finish with a queued source frame, either emitting or dropping it.

ComponentResult ImageCodecCompleteFrame (

ComponentInstance ci,
ICMCompressorSourceFrameRef sourcefFrame,
UInt32 flags);
Parameters
ci

A component instance that identifies a connection to an image codec component.

sourcefFrame
The source frame that must be completed.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

Discussion

This frame does not necessarily need to be the first or only source frame emitted or dropped during this call,
but the compressor must call either ICMCompressorSessionDropFrame or
ICMCompressorSessionEmitEncodedFrame with this frame before returning. The ICM will call this function

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

to force frames to be encoded for the following reasons: (a) the maximum frame delay count or maximum
frame delay time in the compressionSessionOptions does not permit frames to be queued; (b) the client
has called ICMCompressionSessionCompleteFrames.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecDecodeBand

Returns an ImageSubCodecDecompressRecord structure for an image codec component.

ComponentResult ImageCodecDecodeBand (

ComponentInstance ci,
ImageSubCodecDecompressRecord *drp,
unsigned Tlong flags);
Parameters

ci

A component instance that identifies a connection to an image codec component.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

flags
Not used; set to 0.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecEncodeFrame

Presents the compressor with a frame to encode.

QuickTime 7 API Reference 179
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

180

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ComponentResult ImageCodecEncodeFrame (

ComponentInstance ci,
ICMCompressorSourcefFrameRef sourcefFrame,
unsigned Tong flags);
Parameters

ci

A component instance that identifies a connection to an image codec component.

sourceframe
The source frame to encode.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

Discussion

The compressor may encode the frame immediately or queue it for later encoding. If the compressor queues
the frame for later decode, it must retain it (by calling ICMCompressorSourcefFrameRetain) and release
it when it is done with it (by calling ICMCompressorSourceFrameRelease). Pixel buffers are guaranteed
to conform to the pixel buffer attributes returned by ImageCodecPrepareToCompressFrames. During
multipass encoding, if the compressor requested the kICMCompressionPassMode_NoSourceFrames flag,
the source frame pixel buffers may be NUL L. (Note: this replaces ImageCodecBandCompress.)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecPrepareToCompressFrames

Prepares the compressor to receive frames.

ComponentResult ImageCodecPrepareToCompressFrames (

ComponentInstance ci,

ICMCompressorSessionRef session,

ICMCompressionSessionOptionsRef compressionSessionOptions,

ImageDescriptionHandle imageDescription,

void *reserved,

CFDictionaryRef *compressorPixelBufferAttributesOut);
Parameters

ci

A component instance that identifies a connection to an image codec component.

session
The compressor session reference. The compressor should store this in its globals; it will need it when
calling the ICM back (for example, to call ICMEncodedFrameCreateMutable and
ICMCompressorSessionEmitEncodedFrame). This is not a CF type. Do not call CFRetain or
CFRelease onit.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

compressionSessionOptions
The session options from the client. The compressor should retain this and use the settings to guide
compression.

imageDescription
The image description. The compressor may add image description extensions.

reserved
Reserved for future use. Ignore this parameter.
compressorPixelBufferAttributesOut
The compressor should create a pixel buffer attributes dictionary and set
compressorPixelBufferAttributesQut to it. The ICM will release it.

Return Value
An error code, or noErr if there is no error.

Discussion

The compressor should record session and retain compressionSessionOptions for use in later calls. The
compressor may modify imageDescription at this point. The compressor should create and return pixel
buffer attributes, which the ICM will release. (Note: this replaces ImageCodecPreCompress.)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecProcessBetweenPasses

Provides the compressor with an opportunity to perform processing between passes.

ComponentResult ImageCodecProcessBetweenPasses (

ComponentInstance ci,
ICMMultiPassStorageRef multiPassStorage,
Boolean *interpassProcessingDoneQut,
ICMCompressionPassModeFTags *requestedNextPassModeFTagsOut);
Parameters
ci

A component instance that identifies a connection to an image codec component.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

interpassProcessingDonelOut

Points to a Boolean. Set this to FALSE if you want your ImageCodecProcessBetweenPasses function
to be called again to perform more processing, TRUE if not.

QuickTime 7 API Reference 181
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

182

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

requestedNextPassModeFlagsOut
Set *requestedNextPassModeFlagsQut to indicate the type of pass that should be performed
next: To recommend a repeated analysis pass, set it to
kICMCompressionPassMode_ReadFromMultiPassStorage]|
kICMCompressionPassMode_WriteToMultiPassStorage.Torecommend a final encoding pass,
setitto kICMCompressionPassMode_ReadFromMultiPassStorage |
kICMCompressionPassMode_OutputEncodedFrames. If source frame buffers are not necessary
for the recommended pass (for example, because all the required data has been copied into multipass
storage), set kICMCompressionPassMode_NoSourceFrames.

Return Value

An error code, or noErr if there is no error.

Discussion

This function will be called repeatedly until it returns TRUE in *interpassProcessingDoneOut. The
compressor may read and write tomu1tiPassStorage. The compressor should indicate which type of pass
it would prefer to perform next by setting *requestedNextPassTypeQut.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported. C interface file: ImageCodec.h

Declared In
ImageCodec.h

InvokeQTTrackPropertyListenerUPP

Invokes the specified property listener of a track.

void InvokeQTTrackPropertyListenerUPP (
Track inTrack,

QTPropertyClass inPropClass,
QTPropertyID inProplD,

void *inUserData,
QTTrackPropertylListenerUPP userUPP);

Parameters
inTrack
The track of this operation.
inPropClass
A property class.
inProplD
A property ID.
inUserData
A pointer to user data that will be passed to the callback.
userUpPpP
AQTTrackPropertylListenerUPP pointer.

Version Notes
Introduced in QuickTime 7

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaContainsDisplayOffsets
Tests whether a media contains display offsets.

Boolean MediaContainsDisplayOffsets (
Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
TRUE if the media is valid and contains at least one sample with a nonzero display offset; FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaDecodeTimeToSampleNum

Finds the sample for a specified decode time.

void MediaDecodeTimeToSampleNum (

Media theMedia,
TimeValueb4 decodeTime,
SInt64d *sampleNum,
TimeValue64 *sampleDecodeTime,
TimeValue64d *sampleDecodeDuration);
Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

decodeTime
A 64-bit time value that represents the decode time for which you are retrieving sample information.
You must specify this value in the media's time scale.

sampleNum

A pointer to a variable that is to receive the sample number. The function returns the sample number
that identifies the sample that contains data for the specified decode time, or 0 if it is not found.

QuickTime 7 API Reference 183
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

184

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the TogicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.
sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the TogicalSampleNum parameter. This time value is expressed in the
media’s time scale. Set this parameter to NULL if you do not want this information.

Discussion

You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramtrr if there is a bad parameter value, invalidTime if sampTeDecodeT1imeis out of the decode
time range, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaDisplayTimeToSampleNum

Fnds the sample number for a specified display time.

void MediaDisplayTimeToSampleNum (

Media theMedia,

TimeValueb64 displayTime,

SInté4 *sampleNum,

TimeValueb4 *sampleDisplayTime,
TimeValueb4d *sampleDisplayDuration);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMed1i a
and GetTrackMedia.

displayTime
A 64-bit time value that represents the display time for which you are retrieving sample information.
You must specify this value in the media’s time scale.

sampleNum
A pointer to a long integer that is to receive the sample number. The function returns the sample
number that identifies the sample for the specified display time, or 0 if it is not found.

sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the
sample specified by the TogicalSampleNumparameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the TogicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramkrr if there is a bad parameter value, invalidTime if sampleD7splayTimeisout of the display
time range, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionBegin

Begins a movie audio extraction session.

0SStatus MovieAudioExtractionBegin (

Movie m,
UInt3?2 flags,
MovieAudioExtractionRef *outSession);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

flags
Reserved; must be 0.

outSession
A pointer to an opaque session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion

You must call this function before doing any movie audio extraction, because you will pass the object returned
by outSession to the other movie audio extraction functions. The format of the extracted audio defaults
to the summary channel layout of the movie (all right channels mixed together, all left surround channels
mixed together, and so on.), 32-bit float, de-interleaved, with the sample rate set to the highest sample rate
found in the movie. You can set the audio format to be something else, as long as it is uncompressed and
you do it before your first call to MovieAudioExtractionFillBuffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 185
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

186

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

MovieAudioExtractionEnd

Ends a movie audio extraction session.

0SStatus MovieAudioExtractionEnd (
MovieAudioExtractionRef session);

Parameters
session
The session object returned by MovieAudioExtractionBegin (page 185).

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function when movie audio extraction is complete.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionFillBuffer

Extracts audio from a movie.

0SStatus MovieAudioExtractionFillBuffer (

MovieAudioExtractionRef session,
UInt32 *ioNumFrames,
AudioBufferList *ioData,
UInt3?2 *outFlags);
Parameters
session

The session object returned by MovieAudioExtractionBegin (page 185).

ioNumFrames
A pointer to the number of PCM frames to be extracted.

joData
A pointer to an AudioBufferlist allocated by the caller to hold the extracted audio data.

outFlags
A bit flag that indicates when extraction is complete:

kMovieAudioExtractionComplete
The extraction process is complete. Value is (1L << 0).

Return Value
An error code. Returns noErr if there is no error.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

You call this function repeatedly; each call continues extracting audio where the last call left off. The function
will extract as many of the requested PCM frames as it can, given the limits of the buffer supplied and the
limits of the input movie. 7 oNumframes will be updated with the exact number of valid frames being returned.
When there is no more audio to extract from the movie, the function will continue to return noErr but will
return no further audio data. In this case, the outFlags parameter will have its
kMovieAudioExtractionComplete bit set. It is possible that the kMovieAudioExtractionComplete
bit will accompany the last buffer of valid data.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionGetProperty

Gets a property of a movie audio extrraction session.

0SStatus MovieAudioExtractionGetProperty (

MovieAudioExtractionRef session,
QTPropertyClass inPropClass,
QTPropertyID inProplD,
ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters
session

The session object returned by MovieAudioExtractionBegin (page 185).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
"audi’.

inProplD
Pass one of these constants to define the property ID:

kAudioPropertyID_Channellayout

The summary audio channel layout of a movie, or any other grouping of audio streams. All
like-labeled channels are combined, without duplicates. For example, if there is a stereo (L/R)
track, 5 single-channel tracks marked Left, Right, Left Surround, Right Surround and Center,
and a 4-channel track marked L/R/Ls/Rs, then the summary AudioChannelLayout will be
L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. The value of this constantis 'clay".

inProplValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizelsed
The actual size of the property value.

QuickTime 7 API Reference 187
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

188

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noErr if there is no error.

Discussion

You can get and set more than just the channel layout. There are four properties, discussed below, all of
which are gettable and settable (with some having restrictions on not setting after first calling
MovieAudioExtractionFillBuffer).

Properties of the movie that is extracted from kQTPropertyClass_MovieAudioExtraction_Movieinclude
the following movie class IDs:

kQTMovieAudioExtractionMoviePropertyID_CurrentTime.The valueisa TimeRecord, which
you can set and get. When setting, you set the timescale to anything you want (for example, the output
audio sample rate or the movie timescale). When getting, the timescale will be output audio sample rate
for best accuracy.

kQTMovieAudioExtractionMoviePropertyID_Al1ChannelsDiscrete.ThevalueisBoolean (which
is settable and gettable). Set to implement export of all audio channels without mixing. When this is set
and the extraction audio stream basic description (ASBD) or channel layout are read back, you get
information relating to the re-mapped movie.

Properties of the output audio extracted from kQTPropertyClass_MovieAudioExtraction_Audio
include the following output audio class properties:

kQTMovieAudioExtractionAudioPropertyID_AudioStreamBasicDescription. The valueisan
AudioStreamBasicDescription. You can get any time and set before first the
MovieAudioExtractionFil1Buffer call. If you get this property immediately after beginning an
audio extraction session, it will tell you the default extraction format for the movie. This will include the
number of channels in the default movie mix. If you set the output AudioStreamBasicDescription,
it is recommended that you also set the output channel layout. If your output ASBD has a different
number of channels than the default extraction mix, you must set the output channel layout. You can
only set PCM output formats. Setting a compressed output format will fail.

:kQTMovieAudioExtractionAudioPropertyID_AudioChannelLlayout. The valueis
AudioChannelLlayout, which you can get any time and set before first the
MovieAudioExtractionFillBuffer call. If you get this property immediately after beginning an
audio extraction session, it tells you what the channel layout is for the default extraction mix.

The information in this discussion also applies to the following functions:

“MovieAudioExtractionGetPropertylnfo” (page 189)
“MovieAudioExtractionSetProperty” (page 189)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

MovieAudioExtractionGetPropertyinfo

Gets information about a property of a movie audio extraction session.

0SStatus MovieAudioExtractionGetPropertylInfo (

MovieAudioExtractionRef session,
QTPropertyClass inPropClass,
QTPropertyID inProplD,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);
Parameters

session

The session object returned by MovieAudioExtractionBegin (page 185).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
"audi

inProplD
Pass one of these constants to define the property ID:

kAudioPropertyID_Channellayout

The summary audio channel layout of a movie, or any other grouping of audio streams. All
like-labeled channels are combined, without duplicates. For example, if there is a stereo (L/R)
track, 5 single-channel tracks marked Left, Right, Left Surround, Right Surround and Center,
and a 4-channel track marked L/R/Ls/Rs, then the summary AudioChannelLayout will be
L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. The value of this constantis 'clay".

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropfFlags
On return, a pointer to flags representing the requested information about the item's property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionSetProperty

Sets a property of a movie audio extraction session.

QuickTime 7 API Reference 189
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

190

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus MovieAudioExtractionSetProperty (

MovieAudioExtractionRef session,
QTPropertyClass inPropClass,
QTPropertyID inProplD,
ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);
Parameters
session

The session object returned by MovieAudioExtractionBegin (page 185).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
"audi'.

inPropID
Pass one of these constants to define the property ID:

kAudioPropertyID_SummaryChannellayout

The summary audio channel layout of a movie, or any other grouping of audio streams. All
like-labeled channels are combined, without duplicates. For example, if there is a stereo (L/R)
track, 5 single-channel tracks marked Left, Right, Left Surround, Right Surround and Center,
and a 4-channel track marked L/R/Ls/Rs, then the summary AudioChannelLayout will be
L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. The value of this constantis 'clay".

inPropValueSize
The size of the property value.

inPropValueAddress
A const void pointer that points to the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

NewMovieExportStageReachedCallbackUPP

Allocates a new Universal Procedure Pointer for a MovieExportStageReachedCallbackProc callback.

MovieExportStageReachedCallbackUPP NewMovieExportStageReachedCallbackUPP (
MovieExportStageReachedCallbackProcPtr userRoutine);

Parameters

userRoutine
A pointer to your application-defined callback function; see
ICMDecompressionTrackingCallbackProc (page 254).

Return Value
A new Universal Procedure Pointer that you will use to invoke your callback.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

NewMovieFromProperties

Creates a new movie using movie properties.

0SStatus NewMovieFromProperties (

I[temCount inputPropertyCount,
QTNewMoviePropertyElement *inputProperties,
I[temCount outputPropertyCount,
QTNewMoviePropertyElement *outputProperties,
Movie *theMovie);
Parameters

inputPropertyCount

The number of properties in the array passed in 7nputProperties.

inputProperties
A pointer to a property array describing how to instantiate the movie. See
QTNewMoviePropertyElement (page 260).

outputPropertyCount
The number of properties in the array passed in outputProperties.

outputProperties
A pointer to a property array to receive output parameters. See QTNewMoviePropertyElement (page
260). You may pass NULL if you don’t want this information. The caller is responsible for calling the
appropriate routines to dispose of any property values returned here. Since callers specify the property
classes and IDs, they know who to call to dispose of the property values.

theMovie
A pointer to a variable that receives the new movie.

Return Value
An error code. Returns memFul11Err if the function could not allocate memory, paramErrif inputProperties
or theMovieis NULL, or noErr if there is no error.

Discussion

This function can be used in all the cases where an existing NewMovieFrom. .. call is used. When calling
this function, you supply a set of input properties that describe the information required to instantiate the
movie (its data reference, audio context, visual context, and so on). You can also supply a set of output
properties that you may be interested in; for example, information about whether the data reference was
changed. See “New Movie Property Codes” (page 285).

This function verifies its input properties is as follows. First, the propStatus field of both the input and

output property arrays is setto kQTPropertyUnprocessedErr. Then the input properties are checked one
by one. If there is no problem with a property, its propStatus is set to noErr (0). If there is a problem, the
propStatus for the property is set to 1 and the function returns paramtrr. It is an error if a property is not
recognized; paramErris returned and the appropriate propStatusissetto kQTPropertyNotSupportedErr.

QuickTime 7 API Reference 191
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

192

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Another error is multiple data locations defined. In this case, the property status for the second data location
is set to paramErr. It is not considered a fatal error if this function does not recognize an output property;
the property’s propStatus simply remains kQTPropertyUnprocessedErr.

The only output properties currently defined are those that support the behavior of functions of the form
NewMovieFrom....Forexample, if you want to act upon the data reference being updated during the
opening process, you would pass in the
kQTMovielnstantiationPropertyID_ResultDatalocationChanged property.

This function must be used with kQTContextPropertyID_VisualContext to open a movie, for visual
contexts to function with the movie. If you want to use visual contexts with a movie but want to inspect the
movie prior to allocating the visual context to use (for instance you want to get the movie box), use
kQTContextPropertyID_VisualContext withaNULL value. Otherwise, visual context calls with the movie
will fail with an error. Using GWor1d structures with the movie will also fail.

To handle special situations where this function cannot be used by your application, there is a method to
switch a movie from GWorld mode to visual context mode. SetMovieVisualContext can be used to set
a NULL visual context, which will disassociate the movie from its current visual context or GWorld. At this
time, either SetMovieGWorld or SetMovieVisualContext can be used. If a movie is associated with a
GWorld, visual context calls such as GetMovieVisualContext will fail. If a movie is a associated with a valid
visual context, GWorld calls such as GetMovieGWor1d will fail.

If a call to this function succeeds using a visual context or audio context, those objects will be explicitly
retained for use by the movie. The movie object is responsible for releasing them. If you no longer need
access to a context, it is safe to release it.

If no data location property is specified, then this function will behave like NewMov i e, creating an empty
movie. Thus NewMovieFromProperties(0, nil, 0, nil, &movie) isfunctionally equivalenttomovie
= NewMovie(0).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

NewQTTrackPropertyListenerUPP

Creates a new callback to monitor a track property.
QTTrackPropertyListenerUPP NewQTTrackPropertylListenerUPP (
QTTrackPropertylListenerProcPtr userRoutine);

Parameters

userRoutine
A pointer to a QT TrackPropertyListenerProcPtr callback.

Return Value
A new UPP; see Universal Procedure Pointers in the QuickTime API Reference.

Discussion
This routine creates a new callback to monitor a track property.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTAddTrackPropertyListener

Installs a callback to monitor a track property.

O0SErr QTAddTrackPropertylListener (

Track inTrack,

QTPropertyClass inPropClass,

QTPropertyID inProplD,
QTTrackPropertylListenerUPP inListenerProc,
void *inUserData);

Parameters

inTrack
The track for this operation.

inPropClass
A property class.
inProplD
A property ID.
inListenerProc
A Universal Procedure Pointer to a QT TrackPropertyListenerProc callback.

inUserData
A pointer to user data that will be passed to the callback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine installs a callback to monitor a track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTAudioContextCreateForAudioDevice

Creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

193

194

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTAudioContextCreateForAudioDevice (
CFATlocatorRef allocator,

CFStringRef coreAudioDeviceUID,
CFDictionaryRef options,

QTAudioContextRef *newAudioContextOut);

Parameters
allocator
Allocator used to create the audio context.

coreAudioDeviceUID
CoreAudio device UID. NULL means the default device.

options
Reserved. Pass NULL.
newAudioContextOut
Points to a variable to receive the new audio context.

Return Value
An error code. Returns noErr if there is no error.

Discussion

This routine creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.
This object is suitable for passing to SetMovieAudioContext or NewMovieFromProperties, which targets
the audio output of the movie to that device. A QTAudioContext object cannot be associated with more than
one movie. Each movie needs its own connection to the device. In order to play more than one movie to a
particular device, create a QTAudioContext object for each movie. You are responsible for releasing the
QTAudioContext object created by this routine. After calling SetMovieAudioContext or
NewMovieFromProperties, you can release the object since these APIs will retain it for their own use.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTCopyMovieMetaData

Retains a movie's metadata object and returns it.

0SStatus QTCopyMovieMetaData (
Movie inMovie,
QTMetaDataRef *outMetaData);

Parameters

inMovie
The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

outMetaData
A pointer to an opaque metadata object wrapper associated with the movie passed in inMovie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
Returns invalidMovie if the movie passed in 7nMovieisinvalid, or noErr if there is no error.

Discussion

This function returns the metadata object associated with a movie. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the movie can be disposed of at any time, the QTMetaDataRef may be valid when the movie no
longer exists. In this case, the function will fail with a kQTMetaDatalnvalidMetaDatakrr error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTCopyTrackMetaData

Retains a track’s metadata object and returns it.

0SStatus QTCopyTrackMetaData (
Track inTrack,
QTMetaDataRef *outMetaData);

Parameters

inTrack
A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

outMetaData
A pointer to an opaque metadata object wrapper associated with the track passed in inTrack.

Return Value
Returns invalidMedia if the track passed in inTrack is invalid, or noErr if there is no error.

Discussion

This function returns the metadata object associated with a track. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the track can be disposed of at any time, the QTMetaDataRef may be valid when the track no longer
exists. In this case, the function will fail with a kQTMetaDatalInvalidMetaDataErr error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 195
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTCopyMediaMetaData

Retains a media’s metadata object and returns it.

0SStatus QTCopyMediaMetaData (
Media inMedia,
QTMetaDataRef *outMetaData);

Parameters

inMedia
The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

outMetaData
A pointer to an opaque metadata object wrapper associated with the media passed in 7nMed7a.

Return Value
Returns invalidMedia if the media passed in inMedia is invalid, or noErr if there is no error.

Discussion

This function returns the metadata object associated with a media. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the media can be disposed of at any time, the QTMetaDataRef may be valid when the media no
longer exists. In this case, the function will fail with a kQTMetaDatalnvalidMetaDataErr error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTGetTrackProperty

Returns the value of a specific track property.

OSErr QTGetTrackProperty (

Track inTrack,

QTPropertyClass inPropClass,
QTPropertyID inProplID,

ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);

Parameters
inTrack
The track for this operation.

inPropClass

A property class.
inProplD

A property ID.

196 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress

A pointer to the buffer allocated to hold the property value.
outPropValueSizelUsed

On return, the actual size of the value written to the buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns the value of a specific track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTGetTrackPropertyinfo

Returns information about the properties of a track.

O0SErr QTGetTrackPropertyInfo (
Track inTrack,

QTPropertyClass inPropClass,
QTPropertyID inProplD,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);

Parameters

inTrack
The track for this operation.

inPropClass
A property class.

inProplD
A property ID.

outPropTlype
A pointer to memory allocated to hold the property type on return.

outPropValueSize

A pointer to memory allocated to hold the size of the property value on return.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
An error code. Returns noErr if there is no error.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

197

198

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion
This routine returns information about the properties of a track.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataAddItem

Adds an inline metadata item to the metadata storage format.

0SStatus QTMetaDataAddItem (

QTMetaDataRef inMetaData,
QTMetaDataStoragefFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
const UInt8 *inValuePtr,
ByteCount inValueSize,
UInt32 inDataType,
QTMetaDataltem *outltem);
Parameters

inMetaData

The metadata object for this operation.

inMetaDataformat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You cannot pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr

A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize

The size of the key in bytes.
inValuePtr

A pointer to the value to be added. This can be NULL if inValueSizeisO.
inValueSize

The size of 7nValuePtrin bytes. Pass 0 if you want to add an item with no value.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inDatalype
A data type from the following list:

kQTMetaDataTypeBinary =0,
kQTMetaDataTypeUTF8 =1,
kQTMetaDataTypeUTF16BE =2,
kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE =21,
kQTMetaDataTypeUnsignedIntegerBE =22,
kQTMetaDataTypeFloat32BE = 23,
kQTMetaDataTypeFloat64BE = 24

With kQTMetaDataTypeSignedIintegerBE and kQTMetaDataTypeUnsignedIntegerBE, the size
of the integer is determined by the value size.

outltem
On return, a pointer to an opaque, unique UInt64 identifier of the newly added item. Your application
can use this to identify the metadata item within a metadata object for other metadata functions.
You may pass NULL if you are not interested in the identifier of the newly added item. This identifier
does not need to be disposed of.

Return Value

Returns kQTMetaDatalnvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDatalnvalidKeyErr if the key orits formatisinvalid, or noErr if there is no error. See “Metadata
Error Codes” (page 285).

Discussion
The data type of the metadata item is assumed to be binary.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetltemCount

Returns the number of items in a metadata storage format with a certain key.

0SStatus QTMetaDataGetItemCount (

QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
ItemCount *outCount);
Parameters

inMetaData

The metadata object for this operation.

QuickTime 7 API Reference 199
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inMetaDataformat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You cannot pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

outCount
The number of items in the metadata storage format that have the specified key.

Return Value

Returns kQTMetaDatalnvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key orits format is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

QTMetaDataGetltemProperty

Returns a property of a metadata item.

0SStatus QTMetaDataGetItemProperty (

QTMetaDataRef inMetaData,
QTMetaDataltem inltem,

QTPropertyClass inPropClass,
QTPropertylID inProplD,

ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters

inMetaData

The metadata object for this operation.

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198) and
OQTMetaDataGetNextItem (page 203).

inPropClass
The class of the property being asked about.

inProplD
The ID of the property being asked about.

200 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the item'’s property value.

outPropValueSizelUsed
On return, the actual size of buffer space used.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalnvalidItemErr if the metatadaitem IDis invalid, errPropNotSupported if the metatada
object does not support the property being asked about, buffersTooSmall if the allocated buffer is too
small to hold the property, or noErr if there is no error. See “Metadata Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetltemPropertyinfo

Returns information about a property of a metadata item.

0SStatus QTMetaDataGetItemPropertylInfo (

QTMetaDataRef inMetaData,
QTMetaDataltem inltem,
QTPropertyClass inPropClass,
QTPropertyID inProplID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropFlags);
Parameters

inMetaData
The metadata object for this operation.

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198) and
OQTMetaDataGetNextItem (page 203).

inPropClass

The class of the property being asked about.
inProplD

The ID of the property being asked about.

outPropType
A pointer to the type of the returned property’s value.

outProplValueSize
A pointer to the size of the returned property’s value.

QuickTime 7 API Reference 201
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

202

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

outPropflags

On return, a pointer to flags representing the requested information about the item's property.
Return Value
Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalnvalidItemErr if the metatadaitem IDis invalid, errPropNotSupported if the metatada
object does not support the item property being asked about, or noErr if there is no error. See “Metadata
Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetltemValue

Returns the value of a metadata item from an item identifier.

0SStatus QTMetaDataGetItemValue (

QTMetaDataRef inMetaData,
QTMetaDataltem inltem,

UInt8 *outValuePtr,
ByteCount inValueSize,
ByteCount *outActualSize);
Parameters

inMetaData

The metadata object for this operation.

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application can
obtain this item identifier from such functions as QTMetaDataAddItem (page 198).

outValuePtr
A pointer to the first value of the item. You may pass NUL L in this parameter if you just want to find
out the size of the buffer needed.

inValueSize
The number of bytes in the out ValuePtr buffer. You may pass 0 if you just want to find out the size
of the buffer needed.

outActualSize
The actual size of the value if this parameter is not NULL.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidItemErr if the metatadaitem IDisinvalid, or noErr if thereis no error.See “Metadata
Error Codes” (page 285).

Discussion
You can use this function to get the value of a metadata item that has a known item identifier.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetNextitem

Returns the next metadata item corresponding to a specified key.

0SStatus QTMetaDataGetNextItem (

QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataltem inCurrentltem,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
QTMetaDataltem *outNextItem);
Parameters

inMetaData
The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData.The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. Pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inCurrentlItem
The opaque, unique UInt64 identifier of the current metadata item to start the search. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198).

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

outNextitem
The ID of the next metadata item after the item specified by 7nCurrentItemthat has the specified
key.
Return Value
Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidItemErr if the metatadaitem IDisinvalid, kQTMetaDatalnvalidStorageFormatErr
if the metatada storage format is invalid, kQTMetaDatalnvalidKeyErr if the key or its format is invalid,
kQTMetaDataNoMorelItemErr if the last item has been fetched, or noErr if there is no error. See “Metadata
Error Codes” (page 285).

QuickTime 7 API Reference 203
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

If the item designated by inCurrentitemis kQTMetaDataltemUninitialized, the function returns the
first item with the specified key in the storage format. If it refers to a valid item in the storage format, the
function will return the next item with the key after the item designated by inCurrentItem.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetProperty

Returns a property of a metadata object.

0SStatus QTMetaDataGetProperty (

QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inProplD,

ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters

inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inProplD
The ID of the property being asked about.

inPropValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
On return, the actual size of buffer space used.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being asked about,
buffersTooSmall if the allocated buffer is too small to hold the property, or noErr if there is no error. See
“Metadata Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

204 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
Movies.h

QTMetaDataGetPropertyinfo

Returns information about a property of a metadata object.

0SStatus QTMetaDataGetPropertylInfo (

QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inProplID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropFlags);
Parameters

inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inProplD
The ID of the property being asked about.

outPropType

A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropfFlags

On return, a pointer to flags representing the requested information about the property.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,

errPropNotSupported if the metatada object does not support the property being asked about, or noErr

if there is no error. See “Metadata Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRetain

Increments the retain count of a metadata object.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

205

206

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTMetaDataRef QTMetaDataRetain (QTMetaDataRef inMetaData);

Parameters
inMetaData
A metadata object that you want to retain.

Return Value
If successful, returns a metadata object that is the same as that passed in inMetaData.

Discussion

This function retains a metadata object by incrementing its reference count. You should retain every metadata
object when you receive it from elsewhere and you want it to persist. If you retain a metadata object you
are responsible for releasing it by calling QTMetaDataRelease (page 206).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRelease

Decrements the retain count of a metadata object.
void QTMetaDataRelease (QTMetaDataRef inMetaData);

Discussion

This function releases a metadata object by decrementing its reference count. When the count becomes 0
the memory allocated to the object is freed and the object is destroyed. If you retain a metadata object you
are responsible for releasing it when you no longer need it.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRemoveltem

Removes a metadata item from a storage format.
0SStatus QTMetaDataRemoveltem (
QTMetaDataRef inMetaData,
QTMetaDataltem inltem);

Parameters

inMetaData
The metadata object for this operation.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198) and
OTMetaDataGetNextItem (page 203).
Return Value
Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidItemErr if the metatadaitem IDisinvalid, or noErr if thereis no error. See “Metadata
Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRemoveltemsWithKey

Removes metadata items with a specific key from the storage format.

0SStatus QTMetaDataRemoveltemsWithKey (

QTMetaDataRef inMetaData,
QTMetaDataStoragefFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize);
Parameters

inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You can pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be removed. You may pass NULL in this parameter if you want to
remove all items.

inKeySize
The size of the key in bytes.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalnvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDatalnvalidKeyErr if the key orits format is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 285).

QuickTime 7 API Reference 207
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

208

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataSetltem

Sets the value of the metadata item from the item identifier.

0SStatus QTMetaDataSetItem (

QTMetaDataRef inMetaData,
QTMetaDataltem inltem,
UInt8 *inValuePtr,
ByteCount inValueSize,
UInt32 inDataType);
Parameters

inMetaData

The metadata object for this operation.

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198) and
OTMetaDataGetNextItem (page 203).

inValuePtr
A pointer to the value to be set. This can be NULL if inValueSizeisO.

inValueSize
The size of inlaluePtrin bytes. Pass 0 if you want to set an item with no value.

inDataType
A data type from the following list:

kQTMetaDataTypeBinary =0,
kQTMetaDataTypeUTF8 =1,
kQTMetaDataTypeUTF16BE =2,
kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE =21,
kQTMetaDataTypeUnsignedIntegerBE = 22,
kQTMetaDataTypeFloat32BE = 23,
kQTMetaDataTypeFloat64BE = 24

With kQTMetaDataTypeSignedintegerBE and kQTMetaDataTypeUnsignedintegerBE, the size of the
integer is determined by the value size.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalInvalidItemErr if the metatadaitem IDisinvalid, or noErr if thereis no error. See “Metadata
Error Codes” (page 285).

Discussion
You can use this function to set the value of the metadata item with a given item identifier. You can set an
item with an empty value by passing 0 in 7nValueSize.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataSetltemProperty

Sets a property of a metadata item.

0SStatus QTMetaDataSetItemProperty (

QTMetaDataRef inMetaData,
QTMetaDataltem inltem,
QTPropertyClass inPropClass,
QTPropertyID inProplID,
ByteCount inPropValueSize,

ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inMetaData
The metadata object for this operation.

inltem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 198) and
OQTMetaDataGetNextItem (page 203).

inPropClass
The class of the property being set.

inProplD
The ID of the property being set.

inPropValueSize
Size of the buffer containing the property value being set.

inPropValueAddress
A pointer to the buffer containing the item property value being set.

Return Value

Returns kQTMetaDatalnvalidMetaDatakrr if the metadata object or its reference is invalid,
kQTMetaDatalnvalidItemErr if the metatadaitem IDis invalid, errPropNotSupported if the metatada
object does not support the property being set, gtReadOn1yErr if the property being set is read-only, or
noErr if there is no error. See “Metadata Error Codes” (page 285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 209
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

210

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTMetaDataSetProperty

Sets a property of a metadata object.

0SStatus QTMetaDataSetProperty (

QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inProplID,
ByteCount inPropValueSize,

ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inMetaData
The metadata object for this operation.
inPropClass
The class of the property being set.
inProplD
The ID of the property being set.
inPropValueSize
Size of the buffer containing the property value being set.
inPropValueAddress
A pointer to the buffer containing the property value being set.

Return Value

Returns kQTMetaDatalnvalidMetaDataktrr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being set, gtReadOnlyErr
if the property being set is read-only, or noErr if there is no error. See “Metadata Error Codes” (page
285).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTOpenGLTextureContextCreate

Creates a new OpenGL texture context for a specified OpenGL context and pixel format.

0SStatus QTOpenGLTextureContextCreate (

CFATTocatorRef allocator,
CGLContextObj cglContext,
CGLPixelFormatObj cglPixelFormat,
CFDictionaryRef attributes,
QTOpenGLTextureContextRef *newTextureContext);
Parameters
allocator

The allocator used to create the texture context.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

cglContext
A pointer to an opaque CGLPContext0b] structure representing the OpenGL context used to create
textures. You can create this structure using CGLCreateContext.
cglPixelFormat
The pixel format object that specifies buffer types and other attributes of the new context.
attributes
A dictionary of attributes.
newTextureContext
A pointer to a variable to receive the new OpenGL texture context.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTPixelBufferContextCreate

Creates a new pixel buffer context with the given attributes.

0SStatus QTPixelBufferContextCreate (
CFATlocatorRef allocator,

CFDictionaryRef attributes,
QTVisualContextRef *newPixelBufferContext);

Parameters
allocator
Allocator used to create the pixel buffer context.
attributes
Dictionary of attributes.
newPixelBufferContext
Points to a variable to receive the new pixel buffer context.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine creates a new pixel buffer context with the given attributes.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 21
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTRemoveTrackPropertyListener

Removes a track property monitoring callback

O0SErr QTRemoveTrackPropertylistener (

Track inTrack,

QTPropertyClass inPropClass,

QTPropertyID inProplID,
QTTrackPropertylListenerUPP inListenerProc,
void *inUserData);

Parameters

inTrack
The track for this operation.

inPropClass
A property class.

inProplD
A property ID.
inListenerProc
A Universal Procedure Pointer to a QT TrackPropertyListenerProc callback.

inUserData

User data to be passed to the callback.
Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine removes a track property monitoring callback.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableAddSampleDescription
Adds a sample description to a sample table, returning a sample description ID that can be used to refer to
it.

0SStatus QTSampleTableAddSampleDescription (
QTMutableSampleTableRef sampleTable,

SampleDescriptionHandle sampleDescriptionH,

long mediaSampleDescriptionlndex,

QTSampleDescriptionlID *sampleDescriptionIDOut);
Parameters

sampleTable
A reference to an opaque sample table object.

212 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sampleDescriptionH
A handle to a SampleDescription structure. QuickTime will make its own copy of this handle.

mediaSampleDescriptionlndex
The sample description index of this sample description in a media. Pass 0 for sample descriptions
you add to sample tables, to indicate that this was not retrieved from a media.

sampleDescriptionIDOut

A pointer to a variable to receive a sample description ID.
Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use the returned sample description ID when adding samples to the sample table.

Special Considerations

Sample description IDs are local to each sample table. The same sample description handle may have different
IDs when referenced in different sample tables.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableAddSampleReferences

Adds sample references to a sample table.

0SStatus QTSampleTableAddSampleReferences (
QTMutableSampleTableRef sampleTable,

SInté4 dataOffset,

ByteCount dataSizePerSample,

TimeValueb4 decodeDurationPerSample,

TimeValueb4d displayOffset,

SInt64 numberQfSamples,

MediaSampleFlags sampleFlags,

QTSampleDescriptionID sampleDescriptionlID,

SInt64 *newSampleNumOut);
Parameters

sampleTable
A reference to an opaque sample table object.

dataOffset
A 64-bit signed integer that specifies the offset at which the first sample begins.

dataSizePerSample
The number of bytes of data per sample. You must pass the data size per sample, not the total size
of all the samples as with some other APIs.

decodeDurationPerSample
A 64-bit time value that specifies the decode duration of each sample.

QuickTime 7 API Reference 213
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

214

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

displayOffset
A 64-bit time value that specifies the offset from decode time to display time of each sample. If the
decode times and display times are the same, pass 0.

numberOfSamples
A 64-bit signed integer, which must be greater than 0, that specifies the number of samples.

sampleflags
Flags that indicate the sync status of all samples:

mediaSampleNotSync

If set to 1, indicates that the sample to be added is not a sync sample. Set this flag to 0 if the
sample is a sync sample.

mediaSampleShadowSync
If set to 1, the sample is a shadow sync sample.

sampleDescriptionID
The ID of a sample description that has been added to the sample table with
QTSampleTableAddSampleDescription.

newSampleNumOut
A 64-bit signed integer that points to a variable to receive the sample number of the first sample that
was added. Pass NULL if you don't want this information.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableCopySampleDescription

Retrieves a sample description from a sample table.

0SStatus QTSampleTableCopySampleDescription (

QTSampleTableRef sampleTable,

QTSampleDescriptionlID sampleDescriptionlD,

long *mediaSampleDescriptionlndexOut,

SampleDescriptionHandle *sampleDescriptionHOut);
Parameters

sampleTable
A reference to an opaque sample table object.

sampleDescriptionID
The sample description ID.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

mediaSampleDescriptionlindexOut
A pointer to a variable to receive a media sample description index. If the sample description came
from a media, this is the index that could be passed to GetMediaSampleDescription to retrieve
the same sample description handle. The index will be 0 if the sample description did not come
directly from a media. Pass NULL if you do not want to receive this information.

sampleDescriptionHOut
A pointer to a variable to receive a newly allocated sample description handle. Pass NULL if you do
not want one. The caller is responsible for disposing the returned sample description handle using
DisposeHandTe.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableCreateMutable

Creates a new, empty sample table.

0SStatus QTSampleTableCreateMutable (

CFATTocatorRef allocator,
TimeScale timescale,
void *hints,

QTMutableSampleTableRef *newSampleTable);

Parameters

allocator
The allocator to use for the new sample table.

timescale
A long integer that represents the timescale to use for durations and display offsets.

hints
Reserved; pass NULL.

newSampleTable
A pointer to a variable that receives a new reference to an opaque sample table object.

Return Value
An error code. Returns memFul1Err if it could not allocate memory, paramt rr if the time scale is not positive
or newSampleTableis NULL, or noErr if there is no error.

Discussion
The newly created sample table contains no sample references. When sample references are added, their
durations and display offsets are interpreted according to the sample table’s current timescale.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 215
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableCreateMutableCopy

Copies a sample table.

0SStatus QTSampleTableCreateMutableCopy (

CFATTocatorRef allocator,
QTSampleTableRef sampleTable,
void *hints,

QTMutableSampleTableRef *newSampleTable);

Parameters
allocator
The allocator to use for the new sample table.
sampleTable
A reference to an opaque sample table object to copy.
hints
Reserved; set to NULL.
newSampleTable
A pointer to a variable that receives a reference to an opaque sample table object.

Return Value
An error code. Returns memFu11Err ifit could not allocate memory, paramt rr if the time scale is not positive
or newSampleTableis NULL, or noErr if there is no error.

Discussion
All the sample references and sample descriptions in the sample table are copied.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDataOffset

Returns the data offset of a sample.

216 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

SInt64 QTSampleTableGetDataOffset (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters

sampleTable
A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents a sample number. The first sample’s number is 1.

Return Value
A 64-bit signed integer that represents the offset to the sample. Returns 0 if sampleTableis NULL or if the
sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDataSizePerSample

Returns the data size of a sample.

ByteCount QTSampleTableGetDataSizePerSample (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters

sampleTable
A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
The size of the sample in bytes. Returns 0 if samp7Tableis NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDecodeDuration

Returns the decode duration of a sample.

QuickTime 7 API Reference 217
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

218

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

TimeValue64 QTSampleTableGetDecodeDuration (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters
sampleTable
A reference to an opaque sample table object.
sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
A 64-bit time value that represents the decode duration of the sample. Returns 0 if samp7Tableis NULL or
if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDisplayOffset

Returns the offset from decode time to display time of a sample.

TimeValue64 QTSampleTableGetDisplayOffset (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters

sampleTable
A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
A 64-bit time value that represents the offset from decode time to display time of the sample. Returns 0 if
samplTableis NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetNextAttributeChange

Finds the next sample number at which one or more of a set of given sample attributes change.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTSampleTableGetNextAttributeChange (

QTSampleTableRef sampleTable,

SInt64 startSampleNum,

QTSampleTableAttribute attributeMask,

SInt64 *sampleNumOut);
Parameters

sampleTable
A reference to an opaque sample table object.

startSampleNum
A 64-bit signed integer that contains the sample number to start searching from.

attributeMask

An unsigned 32-bit integer that contains flags indicating which kinds of attribute changes to search
for:

kQTSampleTableAttribute_DiscontiguousData = 1L << 0

Set this flag to find the first sample number num such that samples num-1 and num are not
adjacent; thatis, dataOffset of num-1 + dataSize of num-1 != dataOffset of num.

kQTSampleTableAttribute_DataSizePerSampleChange = 1L << 1

Set this flag to find the first sample with data size per sample different from that of the starting
sample.

kQTSampleTableAttribute_DecodeDurationChange = 1L << 2

Set this flag to find the first sample with decode duration different from that of the starting
sample.

kQTSampleTableAttribute_DisplayOffsetChange = 1L << 3
Set this flag to find the first sample with display offset different from that of the starting sample.
kQTSampleTableAttribute_SampleDescriptionIDChange = 1L << 4

Set this flag to find the first sample with sample description ID different from that of the
starting sample.

kQTSampleTableAttribute_SampleFlagsChange = 1L << 5

Set this flag to find the first sample with any media sample flags different from those of the
starting sample.

kQTSampleTableAnyAttributeChange = 0
If no flags are set, find the first sample with any attribute different from the starting sample.

sampleNumOut

A 64-bit signed integer that points to a variable to receive the next sample number after
startSampleNumatwhich any of the requested attributes change. If no attribute changes are found,
this variable is set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference 219
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
Movies.h

QTSampleTableGetNumberOfSamples

Returns the number of samples in a sample table.

SIntée4 QTSampleTableGetNumberOfSamples (
QTSampleTableRef sampleTable);

Parameters

sampleTable
A reference to an opaque sample table object.

Return Value
A 64-bit signed integer that contains the number of samples, or 0 if sampleTableis NULL.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetProperty

Returns the value of a specific sample table property.

0SStatus QTSampleTableGetProperty (

QTSampleTableRef sampleTable,

QTPropertyClass inPropClass,

QTPropertyID inProplID,

ByteCount inPropValueSize,

QTPropertyValuePtr outPropValueAddress,

ByteCount *outPropValueSizeUsed);
Parameters

sampleTable
A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = 'gtst'

Property of a sample table.

220 QuickTime 7 APl Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD
Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.
kQTSampleTablePropertyID_MinDisplayOffset = '<ddd’

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd’

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = ">dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

inPropValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizelUsed

On return, the actual size of the property value written to the buffer.
Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetPropertyinfo
Returns information about the properties of a sample table.

QuickTime 7 API Reference 221
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

222

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTSampleTableGetPropertylInfo (

QTSampleTableRef sampleTable,

QTPropertyClass inPropClass,

QTPropertyID inProplD,

QTPropertyValueType *outPropType,

ByteCount *outPropValueSize,

UInt32 *outPropertyFlags);
Parameters

sampleTable
A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = "qtst’
Property of a sample table.

inPropID
Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.
kQTSampleTablePropertyID_MinDisplayOffset = '<ddd’

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd’

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

outPropType
A pointer to memory allocated to hold the property type on return: Pass NUL L if you do not want this
information.

outProplValueSize
A pointer to memory allocated to hold the size of the property value on return. Pass NULL if you do
not want this information.

outPropertyFlags
A pointer to memory allocated to hold property flags on return. Pass NULL if you do not want this
information.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetSampleDescriptionID

Returns the sample description ID of a sample.

QTSampleDescriptionID QTSampleTableGetSampleDescriptionID (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters
sampleTable
A reference to an opaque sample table object.
sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
The sample’s sample description ID. Returns 0 if samp1Tableis NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetSampleFlags

Returns the media sample flags of a sample.

MediaSampleFTags QTSampleTableGetSampleFTags (
QTSampleTableRef sampleTable,
SInt64 sampleNum);

Parameters
sampleTable
A reference to an opaque sample table object.
sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.
Return Value

A constant that describes characteristics of the sample (see below). Returns 0 if samp7Tableis NULL or if
the sample number is out of range.

Discussion
This function can return one or more of the following constants:

QuickTime 7 API Reference 223
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

224

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

mediaSampleNotSync
Sample is not a sync sample (for example, it is is frame differenced).

mediaSampleShadowSync
Sample is a shadow sync sample.

mediaSampleDroppable
Sample does not need to be decoded for later samples to be decoded properly.

mediaSamplePartialSync
Sample is a partial sync sample (for example, 1 frame after open GOP).

mediaSampleHasRedundantCoding
Sample is known to contain redundant coding.

mediaSampleHasNoRedundantCoding
Sample is known not to contain redundant coding.

mediaSamplelsDependedOnByOthers
One or more other samples depend on this sample being decoded.

mediaSamplelsNotDependedOnByOthers
Synonym for mediaSampleDroppable.

mediaSampleDependsOnOthers
Decoding this sample depends on decoding other samples.

mediaSampleDoesNotDependOnOthers
Decoding this sample does not depend on decoding other samples.

mediaSamplektarlierDisplayTimesAllowed
Samples later in decode order may have earlier display times.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetTimeScale

Returns the timescale of a sample table.
TimeScale QTSampleTableGetTimeScale (
QTSampleTableRef sampleTable);
Parameters

sampleTable
A reference to an opaque sample table object.

Return Value
A long integer that represents the sample’s time scale, or 0 if sampleTableis NULL.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetTypelD

Returns the CFTypeID value for the current sample table.
CFTypelID QTSampleTableGetTypelID (void);

Return Value
A CFTypelD value.

Discussion
You could use this to test whether a CFTypeRef that was extracted from a CF container such asa CFArray
isaQTSampleTableRef.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableRelease

Decrements the retain count of a sample table.
void QTSampleTableRelease (
QTSampleTableRef sampleTable);

Parameters

sampleTable
A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Discussion
If the retain count decreases to zero, the sample table is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 225
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

226

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTSampleTableReplaceRange

Replaces a range of samples in a sample table with a range of samples from another sample table.

0SStatus QTSampleTableReplaceRange (
QTMutableSampleTableRef destSampleTable,

SInt64 destStartingSampleNum,
SInt64d destSampleCount,
QTSampleTableRef sourceSampleTable,
SInt64d sourceStartingSampleNum,
SInt64 sourceSampleCount);
Parameters
destSampleTable

A reference to an opaque sample table object to be modified.

destStartingSampleNum
A 64-bit signed integer that represents the first sample numberin destSampleTab]e to be replaced
or deleted, or the sample number at which samples should be inserted.

destSampleCount
A 64-bit signed integer that represents the number of samples to be removed from destSampleTable.
Pass 0 to insert samples without removing samples.

sourceSampleTable
A reference to an opaque sample table object from which samples should be copied, or NULL to
delete samples.

sourceStartingSampleNum

A 64-bit signed integer that represents the first sample number to be copied. This parameter is ignored
when deleting samples.

sourceSampleCount
A 64-bit signed integer that represents the number of samples which should be copied. Pass 0 to
delete samples.

Return Value
An error code. Returns noErr if there is no error.

Discussion

This function removes destSampleCount samples from destSampleTab]e starting with
destStartingSampleNum, and then inserts sourceSampleCount samples from sourceSampleTable
starting with sourceStartingSampleNumwhere the removed samples were. Sample descriptions will be
copied if necessary and new sample description IDs defined. This function can also be used to delete a range
of samples, or to insert samples without removing any.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableRetain

Increments the retain count of a sample table.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTSampleTableRef QTSampleTableRetain (
QTSampleTableRef sampleTable);

Parameters
sampleTable

A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Return Value

A pointer to the OpaqueQTSampleTab1e structure that is returned for your convenience, or NULL if the

function fails.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableSetProperty

Sets the value of a specific sample table property.

0SStatus QTSampleTableSetProperty (

QTSampleTableRef sampleTable,
QTPropertyClass inPropClass,
QTPropertyID inProplD,
ByteCount inPropValueSize,

ConstQTPropertyValuePtr inPropValueAddress);

Parameters
sampleTable
A reference to an opaque sample table object.

inPropClass

Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = "qtst'

Property of a sample table.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

227

228

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inProplD

Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.
kQTSampleTablePropertyID_MinDisplayOffset = '<ddd’

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd’

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = ">dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

inPropValueSize

Pass the size of the property value.

inPropValueAddress

Pass a const void pointer to the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableSetTimeScale

Changes the timescale of a sample table.

0SStatus QTSampleTableSetTimeScale (
QTMutableSampleTableRef sampleTable,
TimeScale newTimeScale);

Parameters
sampleTable

A reference to an opaque sample table object.

newTimeScale

A long integer whose value is the time scale to be set.

Return Value
An error code. Returns paramt rr if the time scale is not positive or sampleTableis NULL, or noErr if there

is no error.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

The durations and display offsets of all the sample references in the sample table are scaled from the old
timescale to the new timescale. No durations are scaled to a value less than 1. Display offsets are adjusted
to avoid display time collisions.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSetTrackProperty

Sets the value of a specific track property.

O0SErr QTSetTrackProperty (

Track inTrack,

QTPropertyClass inPropClass,

QTPropertyID inProplD,

ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inTrack

The track for this operation.
inPropClass

A property class.
inProplD

A property ID.
inPropValueSize

The size of the property value.
inPropValueAddress

A pointer to the the property value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine sets the value of a specific track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 229
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

230

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTSoundDescriptionConvert

Converts a sound description from one version to another.

0SStatus QTSoundDescriptionConvert (
QTSoundDescriptionKind fromKind,

SoundDescriptionHandle fromDescription,
QTSoundDescriptionKind toKind,
SoundDescriptionHandle *toDescription);
Parameters

fromKind

Reserved. Set to kSoundDescriptionKind_Movie_AnyVersion.

fromDescription
A handle to the sound description to be converted.

toKind
The version you want fromDescription to be.

toDescription
A reference to the resulting SoundDescription structure. You must dispose of the reference using
DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The fromKind parameter is reserved for future expansion; at present you must set it to
kSoundDescriptionKind_Movie_AnyVersion. Depending on the value you pass in toK7nd, you can
specify that you would like a specific SoundDescription version, the lowest possible version (given the
constraints of the format described by fromDescription), or any version at all.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionCreate

Creates a sound description structure of the requested kind from an AudioStreamBasicDescription,
optional audio channel layout, and optional magic cookie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTSoundDescriptionCreate (

AudioStreamBasicDescription *inASBD,
AudioChannellayout *inlLayout,
ByteCount inLayoutSize,
void *inMagicCookie
ByteCount inMagicCookieSize
QTSoundDescriptionKind inRequestedKind
SoundDescriptionHandle *outSoundDesc);
Parameters

TnASBD

A description of the format.

inLayout
The audio channel layout (can be NULL if there isn’t one).

inLayoutSize
The size of the audio channel layout (should be 0 if inLayout is NULL).

inMagicCookie
The magic cookie for the decompressor (can be NUL L if the decompressor doesn't require one).

inMagicCookieSize
The size of the magic cookie (should be 0 if the inMagicCookie parameteris NULL).

inRequestedKind
The kind of sound description to create.

outSoundDesc
The resulting sound description. The caller must dispose of it with DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionGetPropertyinfo

Gets information about a particular property of a sound description.

0SStatus QTSoundDescriptionGetPropertylnfo (

SoundDescriptionHandle inDesc,
QTPropertyClass inPropClass,
QTPropertyID inProplID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt3z *outPropertyFlags);
Parameters

inDesc

The sound description being interrogated.

QuickTime 7 API Reference 231
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

232

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inPropClass
The class of the property being requested.

inPropID
The ID of the property being requested.

outProplype
The type of the property returned here (can be NULL).

outPropValueSize
The size of the property returned here (can be NULL).

outPropertyFlags
The property flags returned here (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum {
kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay’,
kQTSoundDescriptionPropertyID_MagicCookie = "kuki',
kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbhd',
kQTSoundDescriptionPropertylID_UserReadableText = 'text'

b

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay'
Used to get or set an AudioChannellayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate astructure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = "kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = "asbd'
Used to get an AudioStreamBasicDescription value.

kQTSoundDescriptionPropertyID_UserReadableText = '"text'
Used to geta CFStringRef value. QTSoundDescriptionGetProperty doesa CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTSoundDescriptionGetProperty

Gets a particular property of a sound description.

0SStatus QTSoundDescriptionGetProperty (

SoundDescriptionHandle inDesc,

QTPropertyClass inPropClass,
QTPropertyID inProplID,

ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);
Parameters

inDesc

The sound description being interrogated.

inPropClass
The class of the property being requested.

inProplD
The ID of the property being requested.

inPropValueSize
The size of the property value buffer.

outPropValueAddress
A pointer to the property value buffer.

outPropValueSizelUsed
The actual size of the returned property value (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum {
kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay’,
kQTSoundDescriptionPropertyID_MagicCookie = "kuki',
kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd',
kQTSoundDescriptionPropertyID_UserReadableText = 'text'

Vs

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay'
Used to get or set an AudioChannelLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = "kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by

the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'ashd'
Used to get an AudioStreamBasicDescription value.

QuickTime 7 API Reference 233
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

234

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSoundDescriptionPropertyID_UserReadableText = 'text'
Used to geta CFStringRef value. QTSoundDescriptionGetProperty doesa CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

kQTAudioPropertyID_FormatString = "fstr'
Used with kQTPropertyClass_Audiotogeta CFStringRef value containing a localized, human
readable string that describes an audio format; for example, “MPEG Layer 3.” You may get this property
from a SoundDescription handle by calling QTSoundDescriptionGetProperty or from a
StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_ChannellayoutString = "lstr'
Used with kQTPropertyClass_Audio togeta CFStringRef value containing a localized, human
readable string that describes an audio channel layout; for example, “5.0 (L R C Ls Rs).” You may get
this property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or
froma StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_SampleRateString = 'rstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample rate; for example, “44.100 kHz.” You may get this property from a SoundDescription
handle by calling QTSoundDescriptionGetProperty orfroma StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SampleSizeString = 'sstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample size; for example, “24-bit.” This property will return a valid string only if the audio format
is uncompressed (LPCM). You may get this property from a SoundDescription handle by calling
QTSoundDescriptionGetProperty or froma StandardAudioCompression (scdi or audi)
component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_BitRateString = "bstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio bit rate; for example, “12 kbps.” You may get this property froma StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.
kQTAudioPropertyID_SummaryString = "asum'
Used to geta CFStringRef value containing a localized, human readable string that summarizes an
audio format; for example, “16-bit Integer (Big Endian), Stereo (L R), 48.000 kHz.” You may get this
property froma SoundDescriptionhandle by calling QTSoundDescriptionGetProperty orfrom
a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionSetProperty

Sets a particular property of a sound description.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTSoundDescriptionSetProperty (

SoundDescriptionHandle inDesc,
QTPropertyClass inPropClass,
QTPropertylID inProplD,

ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);
Parameters

inDesc

The sound description being modified.

inPropClass
The class of the property being set.

inProplD
The ID of the property being set.

inPropValueSize
The size of the property value buffer.

inPropValueAddress
A pointer to the property value buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum |
kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay’,
kQTSoundDescriptionPropertyID_MagicCookie = "kuki',
kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = "asbd',
kQTSoundDescriptionPropertyID_UserReadableText = 'text'

b

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay'
Used to get or set an AudioChannellLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = '"kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertylInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = "asbd'
Used to get an AudioStreamBasicDescription value.

kQTSoundDescriptionPropertylID_UserReadableText = "text'
Used to geta CFStringRef value. QTSoundDescriptionGetProperty doesa CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 235
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTVisualContextCopylmageForTime

Retrieves an image buffer from the visual context, indexed by the provided time.

0SStatus QTVisualContextCopylImageForTime (
QTVisualContextRef visualContext,
CFATlocatorRef allocator,

const CVTimeStamp *timeStamp,
CVImageBufferRef *newlmage);

Parameters
visualContext
The visual context.

allocator

Allocator used to create new CVImageBufferRef.
CVTimeStamp *timeStamp

Time in question. Pass NULL to request the image at the current time.
newlmage

Points to variable to receive the new image.

Return Value
An error code. Returns noErr if there is no error.

Discussion

You should not request image buffers further ahead of the current time than the read-ahead time specified
with the kQTVisualContextExpectedReadAheadKey attribute.You may skip images by passing later
times, but you may not pass an earlier time than passed to a previous call to this function.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextGetAttribute

Returns a visual context attribute.

236 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus QTVisualContextGetAttribute (
QTVisualContextRef visualContext,
CFStringRef attributeKey,

CFTypeRef *attributeValueOut);

Parameters
visualContext
The visual context.

attributeKey
Identifier of attribute to get.

attributelValueOut
A pointer to a variable that will receive the attribute value or NULL if the attribute is not set.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns a visual context attribute.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextGetTypelD
Returns the CFTypelD for QTVisualContextRef.

CFTypelID QTVisualContextGetTypelD (
void);

Return Value
Undocumented.

Discussion
Use this function to test whether a CFTypeRef that extracted from a CF container such as a CFArray was a
QTVisualContextRef.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextlsNewlmageAvailable

Queries whether a new image is available for a given time.

QuickTime 7 API Reference 237
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Boolean QTVisualContextIsNewImageAvailable (
QTVisualContextRef visualContext,
const CVTimeStamp *timeStamp);

Parameters
visualContext
The visual context.
CVTimeStamp *timeStamp
Time in question.

Return Value
A Boolean.

Discussion
This function returns TRUE if there is a image available for the specified time that is different from the last
image retrieved from QTVisualContextCopyImageForTime.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextSetAttribute

Sets a visual context attribute.

0SStatus QTVisualContextSetAttribute (
QTVisualContextRef visualContext,
CFStringRef attributeKey,

CFTypeRef attributeValue);

Parameters
visualContext
The visual context.
attributeKey
Identifier of attribute to set
attributelValue
The value of the attribute to set, or NULL to remove a value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

238 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

QTVisualContextSetimageAvailableCallback

Installs a user-defined callback to receive notifications when a new image becomes available.

0SStatus QTVisualContextSetImageAvailableCallback (
QTVisualContextRef visualContext,
QTVisualContextImageAvailableCallback imageAvailableCallback,
void *refCon);

Parameters
visualContext

The visual context invoking the callback.
imageAvailableCallback

Time for which a new image has become available. May be NULL.
refCon

A user-defined value passed to QTImageAvailableCallback.

Return Value
An error code. Returns noErr if there is no error.

Discussion

Due to unpredictible activity, such as user seeks or the arrival of streaming video packets from a network,
new images may become available for times supposedly occupied by previous images. Applications using
the CoreVideo display link to drive rendering probably do not need to install a callback of this type, since

they will already be checking for new images at a sufficient rate.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextRelease

Releases a visual context object.
void QTVisualContextRelease (QTVisualContextRef visualContext);

Parameters
visualContext
A reference to a visual context object. If you pass NULL, nothing happens.

Discussion
When the retain count decreases to zero the visual context is disposed.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

239

240

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Declared In
ImageCompression.h

QTVisualContextRetain

Retains a visual context object.

QTVisualContextRef QTVisualContextRetain (
QTVisualContextRef visualContext);

Parameters
visualContext
A reference to a visual context object. If you pass NULL, nothing happens.

Return Value
On return, a reference to the same visual context object, for convenience.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTVisualContextTask

Causes visual context to release internally held resources for later re-use.

void QTVisualContextTask (
QTVisualContextRef visualContext);

Parameters
visualContext
The visual context.
Discussion
For optimal resource management, this function should be called in every rendering pass, after old images

have been released, new images have been used and all rendering has been flushed to the screen. This call
is not mandatory.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

SampleNumToMediaDecodeTime

Finds the decode time for a specified sample.

void SampleNumToMediaDecodeTime (

Media theMedia,

SInt64 logicalSampleNum,
TimeValue64d *sampleDecodeTime,
TimeValueb4d *sampleDecodeDuration);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

logicalSampleNum
A 64-bit signed integer that contains the sample number.

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the TogicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the TogicalSampleNumparameter. This time value is expressed in the
media's time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function’s error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SampleNumToMediaDisplayTime

Finds the display time for a specified sample.

void SampleNumToMediaDisplayTime (

Media theMedia,

SInté4 logicalSampleNum,
TimeValue64d *sampleDisplayTime,
TimeValueb4d *sampleDisplayDuration);
Parameters

theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

QuickTime 7 API Reference 241
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

242

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

logicalSampleNum
A 64-bit signed integer that contains the sample number.
sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the

sample specified by the TogicalSamp1eNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the TogicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NUL L if you do not want this information.

Discussion
You can access this function’s error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SCAudiolnvokeLegacyCodecOptionsDialog
Invokes the legacy code options dialog of an audio codec component.

ComponentResult SCAudiolnvokelegacyCodecOptionsDialog (
ComponentInstance ci);

Parameters
ci
A component instance that identifies a connection to an audio codec component.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

SCCopyCompressionSessionOptions

Creates a compression session options object based upon the settings in the Standard Compression
component.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ComponentResult SCCopyCompressionSessionOptions (
ComponentInstance ci,
ICMCompressionSessionOptionsRef *outOptions);

Parameters
ci

A component instance of Standard Compression component.
outOptions

On return, a reference to a new compression session options object.
Return Value

An error code. Returns noErr if there is no error. param£rrif the client did not set the
scAllowEncodingWithCompressionSession preference flag.

Discussion

This function creates a new compression session options object using the compression settings of the Standard
Compression component instance. You can use other Standard Compression component calls to set up the
compression settings. Then you call this function to extract the compression settings in the form of a
compression session options object. The returned object can be used to create a compression session object
through ICMCompressionSessionCreate().

The caller must indicate that he or she intends to use the new ICM compression session APl to perform the
compression operation, by setting the scAlTowEncodingWithCompressionSession preference flag
through SCSetInfo() with the scPreferenceFlagsType selector.

The caller of this function is expected to release the returned compression session options object through
ICMCompressionSessionOptionsRelease whenitis done.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

SetDSequenceNonScheduledDisplayDirection

Sets the display direction for a decompress sequence.

0SErr SetDSequenceNonScheduledDisplayDirection (

ImageSequence sequence,
Fixed rate);
Parameters
sequence
Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.
rate

The display direction to be set. Negative values represent backward display and positive values
represent forward display.

QuickTime 7 API Reference 243
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
ImageCompression.h

SetDSequenceNonScheduledDisplayTime

Sets the display time for a decompression sequence.

0SErr SetDSequenceNonScheduledDisplayTime (

ImageSequence sequence,
TimeValue64 displayTime,
TimeScale displayTimeScale,
UInt32 flags);
Parameters
sequence
Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.
displayTime

The display time to be set.

displayTimeScale
The display time scale to be set.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
ImageCompression.h

SetMovieAudioBalance

Sets the balance level for the mixed audio output of a movie.

244 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus SetMovieAudioBalance (

Movie m,

Float32 leftRight,
UInt32 flags);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

leftRight
A pointer to the new balance setting for the movie. The balance setting is a 32-bit floating-point value
that controls the relative volume of the left and right sound channels. A value of 0 sets the balance
to neutral. Positive values up to 1.0 shift the balance to the right channel, negative values up to -1.0
to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie’s balance setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioBalance (page 80).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioContext

Targets a movie to render into an audio context.

0SStatus SetMovieAudioContext (
Movie movie,
QTAudioContextRef audioContext;

Parameters

movie
The movie.

audioContext
The audio context that the movie will render into.

Return Value
An error code. Returns noErr if there is no error. .

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 245
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

246

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioFrequencyMeteringNumBands

Configures frequency metering for a particular audio mix in a movie.

0SStatus SetMovieAudioFrequencyMeteringNumBands (

Movie m,
FourCharCode whatMixToMeter,
UInt32 *ioNumBands);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as

NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.
whatMixToMeter

The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

7oNumBands
A pointer to memory that stores the number of bands being metered. On calling this function, you
specify the number of frequency bands you want to meter. If that number is higher than is possible
(determined by factors such as the sample rate of the audio being metered), the function will return
the number of bands it is actually going to meter. You can pass NIL or a pointer to 0 to disable
metering.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioFrequencyMeteringNumBands (page 82).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioGain

Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the movie's
playback.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus SetMovieAudioGain (

Movie m,
Float32 gain,
UInt32 flags);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from
the movie is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
movies to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioGain (page 83).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioMute

Sets the mute value for the audio mix of a movie currently playing.

0SStatus SetMovieAudioMute (

Movie m,
Boolean muted,
UInt32 flags)
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile,and NewMovieFromHandle.
muted
Pass TRUE to mute the movie audio, FALSE otherwise.
flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

QuickTime 7 API Reference 247
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

248

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioMute (page 84).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioVolumeMeteringEnabled

Enables or disables volume metering of a particular audio mix of a movie.

0SStatus SetMovieAudioVolumeMeteringEnabled (

Movie m,
FourCharCode whatMixToMeter,
Boolean enabled);
Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 268).

enabled
Pass TRUE to enable audio volume metering; pass FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioVolumeMeteringEnabled (page 85).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieVisualBrightness

Sets the brightness adjustment for the movie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus SetMovieVisualBrightness (
Movie movie,

Float32 brightness,

UInt32 flags);

Parameters
movie
The movie.

brightness
New brightness adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieVisualContext

Targets a movie to render into a visual context.

0SStatus SetMovieVisualContext (
Movie movie,
QTVisualContextRef visualContext;

Parameters
movie
The movie.

visualContext
The visual context that the movie will render into. May be NULL..

Return Value

An error code. Returns noE rr if there is no error. Returns memFu11E rr if memory cannot be allocated. Returns
kQTVisualContextNotAl1lowed if the movie is not able to render using a visual context. Returns paramErr
if the movie is NULL.

Discussion

When SetMovieVisualContext succeeds, it will retain the QTVisualContext object for its own use. If
visualContextis NULL, the movie will not render any visual media. SetMovieVisualContext will fail if
a different movie is already using the visual context, so you should first disassociate the other movie by
calling SetMovieVisualContext witha NULL visualContext.

QuickTime 7 API Reference 249
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

250

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Special Considerations

Note that calling SetMovieGWor1d on a movie that is connected to a visual context will work, but it may
still keep a reference to the visual context. If you wish to completely disconnect the visual context, make
sure to first call SetMovieVisualContext witha NULL visualContext.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieVisualContrast

Sets the contrast adjustment for the movie.

0SStatus SetMovieVisualContrast (
Movie movie,

Float32 contrast,

UInt32 flags);

Parameters
movie
The movie.

contrast

The new contrast adjustment.
flags

Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid grey. The setting is not stored in the movie. It is only used until the movie is closed, at which time it is
not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieVisualHue

Sets the hue adjustment for the movie.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus SetMovieVisualHue (
Movie movie,

Float32 hue,

UInt32 flags);

Parameters
movie
The movie.

hue
New hue adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieVisualSaturation

Sets the color saturation adjustment for the movie.

0SStatus SetMovieVisualSaturation (
Movie movie,

Float32 saturation,

UInt32 flags);

Parameters
movie
The movie.

saturation
The new saturation adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion

The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

QuickTime 7 API Reference 251
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

252

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetTrackAudioGain

Sets the audio gain level for the audio output of a track, altering the perceived volume of the track’s playback.

0SStatus SetTrackAudioGain (

Track t,
Float3? gain,
UInt32 flags);
Parameters

t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from
the track is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
tracks to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track’s gain setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioGain (page 89).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetTrackAudioMute

Mutes or unmutes the audio output of a track.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

0SStatus SetTrackAudioMute (

Track t,
Boolean muted,
UInt32 flags);
Parameters

t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Pass TRUE to mute the track’s audio, FALSE to unmute it.

flags
Not used; set to 0.
Return Value
An error code. Returns noErr if there is no error.

Discussion
The track mute setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioMute (page 89).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

TrackTimeToMediaDisplayTime

Converts a track’s time value to a display time value that is appropriate to the track’s media, using the track’s
edit list.

TimeValue64 TrackTimeToMediaDisplayTime (

TimeValue64 value,
Track theTrack);
Parameters
value

A 64-bit time value that represents the track’s time value; it must be expressed in the time scale of
the movie that contains the track.

theTrack
A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

Return Value
A 64-bit time value that represents the corresponding time in media display time, in the media's time
coordinate system. If the track time corresponds to empty space, this function returns a value of -1.

QuickTime 7 API Reference 253
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

254

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Discussion

This function maps the track time through the track’s edit list to come up with the media time. This time
value contains the track’s time value according to the media’s time coordinate system. If the time you specified
lies outside of the movie's active segment or corresponds to empty space in the track, this function returns
a value of —1. Hence you can use it to determine whether a specified track edit is empty.

Version Notes
Introduced in QuickTime 7. This function is a 64-bit replacement for TrackTimeToMediaTime.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

Callbacks

The callback functions new to the QuickTime 7 API are documented alphabetically in this section.

ICMDecompressionTrackingCallbackProc

The callback through which a client of an ICM decompression session receives decoded frames and information
about decoding.

typedef void (*ICMDecompressionTrackingCallback)(

void *decompressionTrackingRefCon, 0SStatus result, ICMDecompressionTrackingFlags
decompressionTrackingFlags, CVYPixelBufferRef pixelBuffer, TimeValue64 displayTime,
TimeValue64 displayDuration, ICMValidTimeFlags validTimeFlags,

void *sourceFrameRefCon, void *reserved);

// Declaration of a typical application-defined function
Boolean MyICMDecompressionTrackingCallbackProc (

void *decompressionTrackingRefCon,
0SStatus result,
I[CMDecompressionTrackingFlags decompressionTrackingFlags,
CVPixelBufferRef pixelBuffer,
TimeValue64 displayTime,
TimeValue64d displayDuration,
ICMValidTimeFlags validTimeFTags,
void *sourcefFrameRefCon,
void *reserved);

Parameters

decompressionirackingRefCon
The callback’s reference value, copied from the decompressionTrackingRefCon field of an
ICMDecompressionTrackingCallbackRecord (page 258) structure.

result
Indicates whether there was an error in decompression.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

decompressionlrackingFlags
One or more flags describing the a frame's state transitions:

kICMDecompressionTracking_LastCall = 1L<<0
This is the last call for this sourceFrameRefCon.
kICMDecompressionTracking_ReleaseSourceData = 1L<<1
The session no longer needs the source data pointer.
kICMDecompressionTracking_EmittingFrame = 1L<<2

A frame is being emitted. The pixelBuffer parameter contains the decompressed frame. If
the decompression session is targetting a visual context, the frame has not yet been sent to
the visual context but will be sent after the callback returns.

kICMDecompressionTracking_FrameDecoded = 1L<<3

This frame was decoded.
kICMDecompressionTracking_FrameDropped = 1L<<4

The codec decided to drop this frame.
kICMDecompressionTracking_FrameNeedsRequeueing = 1L<<5

This frame will not be able to be displayed unless it is queued for redecode (this constant is
also known as FrameNotDisplayable).

pixelBuffer
When the kICMDecompressionTracking_EmittingFrame flag is setin
decompressionTrackingflags, this parameter must reference a pixel buffer containing the
decompressed frame.

displayTime
If KICMValidTime_DisplayTimeStampIsValidissetin validTimeFlags, this parameter must
pass the display time of the frame.

displayDuration
If KICMValidTime_DisplayDurationIsValidissetin validTimeF]ags,this parameter must
pass the display duration of the frame.

validTimeFlags
Indicates which of displayTimeand displayDurationis valid:

kICMValidTime_DisplayTimeStampIsValid

The time value passed in displayTimeStamp is valid.
kICMValidTime_DisplayDurationIsValid

The time value passed in displayDurationis valid.

sourceframeRefCon
The frame’s reference value, copied from the sourceframeRefCon parameter passed to
ICMDecompressionSessionDecodeFrame (page 142).

reserved
Reserved for future use.

Discussion
This callback is referenced by an 1CMDecompressionTrackingCallbackRecord (page 258).

QuickTime 7 API Reference 255
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

256

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

MovieExportStageReachedCallbackProc
Installed by NewMovieExportStageReachedCallbackUPP (page 190).
typedef 0SErr (*MovieExportStageReachedCallbackProcPtr)(0SType inStage, Movie

inMovie, ComponentInstance inDataHandler, Handle inDataRef,
0SType inDataRefType, void *refCon);

// Declaration of a typical application-defined function
Boolean MyMovieExportStageReachedCallbackProc (

0SType inStage,
Movie inMovie,
ComponentInstance inDataHandler,
Handle inDataRef,
0SType inDataRefType,
void *refCon);
Parameters
inStage
A movie export stage.
inMovie
A movie.
inDataHandler
A data handler component.
inDataRef

A handle to a data reference.

inDataRefType
The type of the data reference.

refCon
A reference constant to be passed to the callback specified in
NewMovieExportStageReachedCallbackUPP (page 190). Use this parameter to point to a data
structure containing any information your callback needs.

SGAudioCallbackProc

Provides access to a SGAudioMediaType channel’s data at various point along the signal flow.

typedef 0SStatus (*SGAudioCallbackProcPtr)

(SGChannel ¢, void *inRefCon, SGAudioCallbackFlags *ioFlags, const AudioTimeStamp
*inTimeStamp, const UInt32 *inNumberPackets,

const AudioBufferList *inData, const AudioStreamPacketDescription
*inPacketDescriptions);

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

// Declaration of a typical application-defined function
0SStatus MySGAudioCallbackProc (

SGChannel c,

void *inRefCon,

SGAudioCallbackFlags *ioFlags,

const AudioTimeStamp *inTimeStamp,

const UInt32 *inNumberPackets,

const AudioBufferlList *inData,

const AudioStreamPacketDescription *inPacketDescriptions);
Parameters

c
The sequence grabber channel that has originating this callback.

inRefCon
A reference constant passed by the caller. Use this parameter to point to a data structure containing
any information your callback needs.

ioFlags
Currently not used.

inTimeStamp
The time stamp associated with the first sample passed in inData.

inNumberPackets
The number of data packets held in inData. With LPCM formats the number of packets is the same
as number of frames.

inData
A bufferlist containing the requested sample data.

inPacketDescriptions
If the packets contained in inData are of variable size, this parameter should pass an array of
inNumberPackets packet descriptions.

Discussion
Use QTSetComponentProperty with kQTPropertyClass_SGAudio and any of the following property IDs

to specify which callback you would like to receive:

m kQTSGAudioPropertyID_PreMixCallback

m kQTSGAudioPropertyID_PostMixCallback

m kQTSGAudioPropertyID_PreConversionCallback
kQTSGAudioPropertyID_PostConversionCallback

Passan SGAudioCallbackStruct (page 261)as the data payload. Clients define an SGAudioCallbackProc
in order to tap into a SGAudioMediaType channel, gaining access to its data at various points along the
signal flow chain. Clients should be aware that they may be called back on threads other than the thread on
which they registered for the callback. They should do as little work as possible inside their callback, returning
control as soon as possible to the channel.

QTOpenGLTextureAvailableCallbackProc

Receives notifications when a new OpenGL texture becomes available.

QuickTime 7 API Reference 257
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

258

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

typedef void (*QTOpenGLTextureAvailableCallback)(QTOpenGLTextureContextRef
textureContext, const CVTimeStamp *timeStamp, void *refCon);

// Declaration of a typical application-defined function
0SStatus MyQTOpenGLTextureAvailableCallback (
QTOpenGLTextureContextRef textureContext,

const CVTimeStamp *timeStamp,
void *refCon);
Parameters
textureContext

The OpenGL texture context invoking the callback.

timeStamp
Time for which a new texture has become available.

refCon
A reference constant passed by the caller. Use this parameter to point to a data structure containing
any information your callback needs.

Discussion

Due to unpredictible activity, such as user seeks or the arrival of streaming video packets from a network,
new textures may become available for times supposedly occupied by previous textures. Responsive
applications, therefore, should use this callback to discover as soon as possible when a movie needs to be
updated.

Data Structures

The public data structures new to the QuickTime 7 APl are documented alphabetically in this section. Certain
other data structures are referenced by QuickTime 7 functions but are opaque.

ICMDecompressionTrackingCallbackRecord

Designates a tracking callback for an ICM decompression session.

struct ICMDecompressionTrackingCallbackRecord f{

ICMDecompressionTrackingCallback decompressionTrackingCallback;
void *decompressionTrackingRefCon;
b

Fields

decompressionTrackingCallback

The callback function pointer. See ICMDecompressionTrackingCallbackProc (page 254).
decompressionTrackingRefCon

The callback’s reference value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICMMultiPassStorageCallbacks

Designates a collection of callbacks for creating a custom multipass storage object.

struct ICMMultiPassStorageCallbacks {

UInt32 version;

void *storageRefCon;
ICMMultiPassSetDataAtTimeStampCallback setDataAtTimeStampCallback;
I[CMMultiPassGetTimeStampCallback getTimeStampCallback;
ICMMultiPassCopyDataAtTimeStampCallback copyDataAtTimeStampCallback;
ICMMuTltiPassReleaseCallback releaseCallback;

b

Fields

version

The version of this structure. Set to kICMMultiPassStorageCallbacksVersionOne.

storageRefCon
A pointer to a reference constant. Use this parameter to point to a data structure containing any
information your callback needs.

setDataAtTimeStampCallback
A callback for storing values.

getTimeStampCallback
A callback for finding time stamps.

copyDataAtTimeStampCallback
A callback for retrieving values.

releaseCallback
A callback for disposing the callback's state when done.

Discussion
This structure is used by ICMMultiPassStorageCreateWithCallbacks (page 173).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

QTAudioFrequencyLevels

Stores the frequency meter level settings for the audio channels in a movie mix.

struct QTAudioFrequencylevels ({
UInt32 numChannels;
UInt32 numkFrequencyBands;
Float3? levell[1l];
b

Fields
numChannels

The number of audio channels.

numFrequencyBands
The number of frequency bands for each channel.

QuickTime 7 API Reference 259
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

level
A 32-bit floating-point value for each frequency band. The frequency bands for each channel are
stored contiguously, with all the band levels for the first channel first, all the band levels for the second
channel next, etc. The total number of 32-bit values in this field equals numFrequencyBands times
numChannels.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: GetMovieAudioFrequencylevels (page 81)

QTAudioVolumelevels

Stores the volume level settings for the audio channels in a movie mix.

struct QTAudioVolumelevels f
UInt3?2 numChannels;

Float3? Tevell[l];

b

Fields
numChannels
The number of audio channels.
level
A 32-bit floating-point value for each channel’s volume.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: GetMovieAudioVolumelevels (page 84)

QTNewMoviePropertyElement

Stores a movie property for NewMovieFromProperties (page 191).

260 QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

struct QTNewMoviePropertyElement {

QTPropertyClass propClass;
QTPropertylID proplD;
ByteCount propValueSize;
QTPropertyValuePtr propValueAddress;
0SStatus propStatus;
b
Fields
propClass
A four-character code designating the class of a movie property. See “New Movie Property Codes” (page
285).
proplD

The ID of the property.

propValueSize
The size in bytes of the property passed in propValueAddress.

propValueAddress
A pointer to a movie property. Since the data type is fixed for each element’s property class and ID,
these is no ambiguity about the data type for its property value.

propStatus
Indicates any problems with the property. For example, if a property is not understood by the function
it is passed to, this field is set appropriately. See the discussion in NewMovieFromProperties (page
191).

Discussion

When you call NewMovieFromProperties, you allocate and own arrays of these elements to pass to it, as
well as the property values that each element points to. You are responsible for disposing of all of these
memory allocations.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: NewMovieFromProperties (page 191)

SGAudioCallbackStruct
Used to call an SGAudioCallbackProc (page 256).

struct SGAudioCallbackStruct ({
SGAudioCallback inputProc;
void *inputProcRefCon;
b

Fields
inputProc
An SGAudioCallbackProc (page 256).

QuickTime 7 API Reference 261
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

262

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

inputProcRefCon
A reference constant. Use this parameter to point to a data structure containing any information your
callback needs.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

SoundDescriptionV2

Provides version 2 of the SoundDescription data structure.

struct SoundDescriptionV2 ({

SInt32 descSize;

0SType dataFormat;

SInt32 resvdl;

SIntlé6 resvdz;

SIntlé6 dataRefIndex;

SIntlé6 version;

SIntlé6 revlievel;

SInt32 vendor;

SIntlé6 always3;

SIntlé6 alwaysl6;

SIntlé6 alwaysMinus?2;

SIntlé6 alwaysO;

UInt3?2 always65536;

UInt32 size0fStructOnly;
Float64 audioSampleRate;
UInt32 numAudioChannels;
SInt32 always7F000000;
UInt3?2 constBitsPerChannel;
UInt32 formatSpecificFlags;
UInt32 constBytesPerAudioPacket;
UInt3?2 constLPCMFramesPerAudioPacket;

/* additional atom-based extensions ([long size, Tong type,
some data], repeat) */
b

Fields
descSize
Total size of this structure, including extra data.

dataFormat

Setto' 1pcm' for uncompressed data; otherwise set to the compression type. For a list of compression
type codes, see the QuickTime API Reference.

resvdl

Reserved; set to 0.
resvdz

Reserved; set to 0.
dataRefIndex

Reserved; set to 0.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/referencelibrary/API_Fundamentals/QuickTime-api-date.html

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

version
Version of this structure; set to 2.

revlievel
Set to codec version number.

always3
Reserved; set to 3.

alwayslé6
Reserved:; set to 16 (0x0010).

alwaysMinus?2
Reserved; set to —2 (OxFFFE).

alwaysO
Reserved; set to 0.

always65536

Reserved; set to 65536 (0x00010000).
sizeO0fStructOnly

Setto sizeof(SoundDescriptionV2), equivalent to the offset to any structure extensions.
audioSampleRate

Set to a 64-bit floating-point number representing the number of audio frames per second; for
example, 44100.0.

numAudioChannels

Set to the number of audio channels; any channel assignment info will be in an extension.
always7F000000

Reserved; set to 7F000000.

constBitsPerChannel
Set to the number of bits per channel only if this value is constant and the audio is uncompressed.
Otherwise set to 0.
formatSpecificFlags
See LPCM flag definitions in CoreAudioTypes.h.
constBytesPerAudioPacket
Set to the number of bytes per packet only if this value is constant. Otherwise set to 0.

constLPCMFramesPerAudioPacket
Set to the number of PCM frames per packet only if this value is constant. Otherwise set to 0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

You should never have to know this definition, except for debugging purposes. Use the new QuickTime
sound description APIs to treat sound descriptions as if they are opaque.

Constants

This section lists constants that are newly defined in QuickTime 7.

QuickTime 7 API Reference 263
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

264

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

ICM Compression Session Options

The following values are used to select options for ICM compression session objects:

kQTPropertyClass_ICMCompressionSessionOptions = 'icso',
kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion = 'asok',
kICMCompressionSessionOptionsPropertyID_AllowFrameReordering = 'b ok',
kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges = '+ ok',
kICMCompressionSessionOptionsPropertyID_ATTowTemporalCompression = 'p ok',
kICMCompressionSessionOptionsPropertyID_AverageDataRate = 'aver',
kICMCompressionSessionOptionsPropertyID_ColorTable = 'clut',
kICMCompressionSessionOptionsPropertyID_CompressorComponent = 'imco',
kICMCompressionSessionOptionsPropertyID_CompressorSettings = 'cost',
kICMCompressionSessionOptionsPropertyID_CPUTimeBudget = 'cput',
kICMCompressionSessionOptionsPropertyID_DataRateLimitCount = 'hari#',
kICMCompressionSessionOptionsPropertyID_DataRatelLimits = "hard',
kICMCompressionSessionOptionsPropertyID_Depth = 'deep',

kICMCompressionSessionOptionsPropertyID_DurationsNeeded = 'need',
kICMCompressionSessionOptionsPropertyID_MaxDataRatelLimits = 'mhar',
kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount = 'cwin',
kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime = 'cwit',
kICMCompressionSessionOptionsPropertyID_MaxKeyFramelnterval = 'kyfr",
kICMCompressionSessionOptionsPropertyID_MultiPassStorage = "imps"',
kICMCompressionSessionOptionsPropertyID_Quality = 'qual’',
kICMCompressionSessionOptionsPropertyID_SourcefFrameCount = 'frco',
kICMCompressionSessionOptionsPropertyID_WasCompressed = 'wasc'
kQTPropertyClass_ICMCompressionSessionOptions = "icso'

Class identifier for compression session option object properties.

kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion = 'asok'
Enables the compressor to call the encoded-frame callback from a different thread. By default this
option is FALSE, which means that the compressor must call the encoded-frame callback from the
same thread as ICMCompressionSessionEncodeFrame and
I[CMCompressionSessionCompleteFrames.

kICMCompressionSessionOptionsPropertyID_AllowFrameReordering = 'b ok’
Enables frame reordering. To encode B-frames a compressor must reorder frames, which may mean
that the order in which they are emitted and stored (the decode order) may be different from the
order in which they are presented to the compressor (the display order). By default, frame reordering
is disabled. To encode using B-frames, you must enable frame reordering by passing TRUE in this
property.

kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges = '+ ok'
Enables the compressor to modify frame times, improving its performance. Some compressors are
able to identify and coalesce runs of identical frames and emit single frames with longer duration, or
emit frames at a different frame rate from the original. By default, this flag is set to FALSE, which
forces the compressor to emit one encoded frame for every source frame and to preserve frame
display times. This option replaces the practice of having compressors return special high similarity
values to indicate that frames can be dropped.

kICMCompressionSessionOptionsPropertyID_AllowTemporalCompression = 'p ok'
Enables temporal compression of P-frames and B-frames. By default, temporal compression is disabled.

kICMCompressionSessionOptionsPropertyID_AverageDataRate = "aver'
The long-term desired average data rate in bytes per second. This is not an absolute limit. The default
data rate is zero, indicating that the setting of
kICMCompressionSessionOptionsPropertyID_Quality should determine the size of compressed

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

data. Data rate settings have effect only when timing information is provided for source frames. Some
codecs do not accept limiting to specified data rates.

kICMCompressionSessionOptionsPropertyID_ColorTable = 'clut'
The color table for compression, used with indexed-color depths. Clients who are passed this property
are responsible for disposing the returned CTabHand1e.

kICMCompressionSessionOptionsPropertyID_CompressorComponent = '"imco'
Sets a specific compressor component or component instance to be used, or passes one of the
wildcards anyCodec, bestSpeedCodec, bestFidelityCodec, or bestCompressionCodec. Pass
this option to force the Image Compression Manager to use a specific compressor component or
compressor component instance. To allow the Image Compression Manager to choose the compressor
component, set the compressorComponent to anyCodec (the default), bestSpeedCodec,
bestFidelityCodec, or bestCompressionCodec. If you pass in a component instance that you
opened, the ICM will not close that instance; you must do so after the compression session is released.

kICMCompressionSessionOptionsPropertyID_CompressorSettings = 'cost'
A handle containing compressor settings. The compressor will be configured with these settings (by
acall to ImageCodecSetSettings) during the ICMCompressionSessionCreate process.

kICMCompressionSessionOptionsPropertyID_CPUTimeBudget = 'cput'
Recommends a CPU time budget for a compressor in microseconds per frame. Zero means to go as
fast as possible. By default, this is set to kKICMUn1imitedCPUTimeBudget, which sets no limit. This
option provides only an advisory hint, and some compressors may ignore it. Compressors are not
compelled to use the full time budget if they complete ahead of time. Multithreaded compressors
may use this amount of CPU time on each processor.

kICMCompressionSessionOptionsPropertyID_DataRateLimitCount = 'har#'
The current number of data rate limits.

kICMCompressionSessionOptionsPropertyID_DataRatelLimits = "hard'
Zero, one, or two hard limits on data rate. Each hard limit is described by a data size in bytes and a
duration in seconds. It requires that the total size of compressed data for any contiguous segment of
that duration (in decode time) must not exceed the data size. By default, no data rate limits are set.
When setting this property, the 7nProplValueSize parameter should be the number of data rate
limits multiplied by sizeof(ICMDataRatelimit). Data rate settings have an effect only when
timing information is provided for source frames. Some codecs do not accept limiting to specified
data rates.

kICMCompressionSessionOptionsPropertyID_Depth = 'deep'
The depth for compression. If a compressor does not support a specific depth, the closest supported
depth will be used, preferring deeper depths to shallower depths. The default depth is
k24RGBPixelFormat.

kICMCompressionSessionOptionsPropertyID_DurationsNeeded = 'need'
Indicates that durations of emitted frames are needed. If this option is set and source frames are
provided with times but not durations, then frames will be delayed so that durations can be calculated
as the difference between one frame’s time stamp and the next frame’s time stamp. By default, this
flagis FALSE, so frames will not be delayed in order to calculate durations. If you pass encoded frames
to AddMediaSampleFromEncodedFrame, you must set this flag to TRUE.

kICMCompressionSessionOptionsPropertyID_MaxDataRatelLimits = 'mhar'
The maximum allowed number of data rate limits, currently 2.

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount = 'cwin'
The maximum frame delay count is the maximum number of frames that a compressor is allowed to
hold before it must output a compressed frame. This value limits the number of frames that may be
held in the “compression window.” If the maximum frame delay count is M, then before the call to

QuickTime 7 API Reference 265
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

266

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

encode frame N returns, frame N-M must have been emitted. The default value is
kICMUnlimitedFrameDelayCount, which sets no limit on the compression window.

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime = 'cwit'
The maximum frame delay time is the maximum difference between a source frame’s display time
and the corresponding encoded frame»s decode time. This value limits the span of display time that
may be held in the “compression window.” If the maximum frame delay time is TM, then before the
call to encode a frame with display time TN returns, all frames with display times up to and including
TN-TM must have been emitted. The default value is kICMUn1imitedFrameDelayTime, which sets
no time limit on the compression window.

kICMCompressionSessionOptionsPropertyID_MaxKeyFrameInterval = 'kyfr'
The maximum interval between key frames, also known as the key frame rate. Compressors are allowed
to generate key frames more frequently if this would result in more efficient compression. The default
key frame interval is 0, which indicates that the compressor should choose where to place all key
frames. This differs from previous practice, in which a key frame rate of zero disabled temporal
compression.

kICMCompressionSessionOptionsPropertyID_MultiPassStorage = "imps'
A multipass compression client must provide a storage location for multipass data. Pass
ICMMultiPassStorageCreateWithTemporaryFile to make the ICM store multipass data in a
temporary file. Pass ICMMultiPassStorageCreateWithCallbacks to manage the storage yourself.
Note that the amount of multipass data to be stored can be substantial; it could be greater than the
size of the output movie file. If this property is not NULL, the client must call
ICMCompressionSessionBeginPass and ICMCompressionSessionkEndPass around groups of
calls to ICMCompressionSessionEncodeFrame. By default, this property is NULL and multipass
compression is not enabled. The compression session options object retains the multipass storage
object when one is set.

kICMCompressionSessionOptionsPropertyID_Quality = 'qual'’
The compression quality. This value is always used to set the spatial quality; if temporal compression
is enabled, it is also used to set temporal quality. The default quality is codecNormalQuality.
kICMCompressionSessionOptionsPropertyID_SourceFrameCount = '"frco'
Indicates the number of source frames, if known. If nonzero, this value should equal the exact number

of times that the client calls ICMCompressionSessionEncodeFrame in each pass. The default is 0,
which indicates that the number of source frames is not known.

kICMCompressionSessionOptionsPropertyID_WasCompressed = 'wasc'
Indicates that the source was previously compressed. This property is an optional information hint
to the compressor; by default it is FALSE.

ICM Compression Session Properties

The following constants represent properties of ICM compression sessions:

kQTPropertyClass_ICMCompressionSession = 'icse',
kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes = 'batt',
kICMCompressionSessionPropertyID_ImageDescription = "idsc',
kICMCompressionSessionPropertyID_PixelBufferPool = 'pool’,
kICMCompressionSessionPropertyID_TimeScale = 'tscl'
kQTPropertyClass_ICMCompressionSession = "icse'

Class identifier for compression session properties.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes = 'batt'
The compressor’s pixel buffer attributes for the compression session. You can use these to create a
pixel buffer pool for source pixel buffers. This is not the same as the sourcePixelBufferAttributes
property passed to ICMCompressionSessionCreate. Getting this property does not change its
retain count.

kICMCompressionSessionPropertyID_ImageDescription = 'idsc'
The image description for a compression session. For some codecs, the image description may not
be available before the first frame is compressed. Multiple calls to retrieve this property will return
the same handle. The ICM will dispose of this handle when the compression session is disposed; the
caller must not dispose of it.

kICMCompressionSessionPropertyID_PixelBufferPool = 'pool'
A pool that can provide ideal source pixel buffers for a compression session. The compression session
creates this pixel buffer pool based on the compressor’s pixel buffer attributes and any pixel buffer
attributes passed in to ICMCompressionSessionCreate. If the source pixel buffer attributes and
the compressor pixel buffer attributes can not be reconciled, the pool is based on the source pixel
buffer attributes and the ICM converts each CVPixelBuffer internally.

kICMCompressionSessionPropertyID_TimeScale = 'tscl'
The time scale for the compression session.

Visual Context Types

The following are values for kQTVisualContextTypeKey, a read-only CFStringRef that defines the type
of the visual context:

kQTVisualContextType_PixelBuffer
The value of kQTVisualContextTypeKey for pixel buffer visual contexts.

kQTVisualContextType_OpenGLTexture
The value of kQTVisualContextTypeKey for OpenGL texture visual contexts.

kQTVisualContextColorSpaceKey

A CGColorSpaceRef that defines the color space of images produced by a visual context. If this
attribute is not set, images may use any color space.

kQTVisualContextExpectedReadAheadKey
A CFNumberRef that defines the number of seconds ahead of real time that the client expects to pull
images out of a visual context. Applications using the Core Video display link should set this attribute
according to the value returned by CVDisplaylLinkGetOutputVideolLatency.

kQTVisualContextPixelBufferAttributesKey
A CFDictionaryRef that defines the dictionary containing pixel buffer attributes. See
kICMCompressionSessionPropertyID_PixelBufferPoolin ICM Compression Session
Properties (page 266).

kQTVisualContextTargetDimensionsKey
A CFDictionaryRef that defines the dictionary containing
kQTVisualContextTargetDimensions_WidthKey and
kQTVisualContextTargetDimensions_HeightKey values (see below). This key is used as a hint
to optimize certain media types, such as text, that can be rendered at any resolution. If this attribute
is not set, the movie will be rendered at its native resolution.

kQTVisualContextTargetDimensions_WidthKey
A CFNumberRef that defines the width, in pixels, of the rendering target.

QuickTime 7 API Reference 267
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

268

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTVisualContextTargetDimensions_HeightKey
A CFNumberRef that defines the height, in pixels, of the rendering target.

Movie Audio Mixes

Three new four-character constants define the mix of audio channels for several functions:

kQTAudioMeter_StereoMix = 'stmx'

kQTAudioMeter_DeviceMix = kQTAudioPropertyID_DeviceChannellayout = 'dcly'
kQTAudioMeter_MonoMix = "momx'

kQTAudioMeter_StereoMix
Meter a stereo (two-channel) mix of the enabled sound tracks in the movie. This option is offered
only for MovieAudioFrequencyMetering.

kQTAudioMeter_DeviceMix
Meter the movie’s mix to the AudioChannelLayout of the device the movie is playing to. To determine
the channel layout of this mix, you call the kAudioPropertyID_DeviceChannellayout movie
property.

kQTAudioMeter_MonoMix
Meter the movie as if it had been mixed to monaural. This option is offered only for
MovieAudioFrequencyMetering.

The constants listed above are passed by the following QuickTime 7 functions:

GetMovieAudioFrequencylevels
GetMovieAudioFrequencyMeteringBandFrequencies
GetMovieAudioFrequencyMeteringNumBands
GetMovieAudioVolumeLevels
GetMovieAudioVolumeMeteringEnabled
SetMovieAudioFrequencyMeteringNumBands
SetMovieAudioVolumeMeteringEnabled

Audio Property Selectors

The following values are used as ComponentPropertyID selectors. Use these with the
StandardCompressionSubTypeAudio (' scdi'/"audi ') component. All property IDs are to be used in
conjunction with the kQTPropertyClass_SCAudio property class.

kQTSCAudioPropertyID_AvailableCompressionFormatlList = 'acfi'
A read/listen C-style array of 0SType values that specifies the list of available output compression
formats. This list includes all the kAudioEncoderComponentType components and
kSoundCompressor type components on the user’s system. You can restrict the list by using the
kQTSCAudioPropertyID_CompressionFormatlList property.Use QTGetComponentPropertyInfo
to discover the number of bytes you should allocate for this array.

kQTSCAudioPropertyID_ClientRestrictedCompressionFormatList = 'crfi’

A read/write/listen C-style array of 0SType values that specifies a client-restricted set of output
compression formats that you should list as available. Use QTGetComponentPropertyInfo to
discover the number of bytes you should allocate to hold this array.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSCAudioPropertyID_AvailableCompressionFormatNamesList = 'cnmi'
A read/write CFArrayRef structure of CFStringRef structures that reference the human-readable
names of each itemina kQTSCAudioPropertyID_AvailableCompressionFormatlList.The caller
assumes responsibility for calling CFRelease to dispose of the CFArrayRef structure.

kQTSCAudioPropertyID_HaslegacyCodecOptionsDialog = 'opn?'
Some compression formats have format-specific properties that are accessible only via a
compressor-provided dialog. This constant specifies a read/listen Boo1ean value that lets you know
if the current compression format has such a dialog.

kQTSCAudioPropertyID_ConstantBitRateFormatsOnly = "lvbr'
By default, constant as well as variable bit rate compression formats are shown in the available format
list. This constant specifies a read/write/listen Boo1ean value that lets you restrict the available formats
to constant bit rate formats by setting this property to TRUE.

kQTSCAudioPropertyID_AvailableSampleRatelList = 'avri'
A read/listen C-style array of AudioValueRange values that specifies a list of available output sample
rates. This list is specific to the compression format and takes into account any restrictions imposed
by a client using the kQTSCAudioPropertyID_ClientRestrictedSampleRatelist property.
Use QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold
this array.

kQTSCAudioPropertyID_SampleRateRecommended = 'reco'
Clients not wishing to set an output sample rate manually may set the output rate to the recommended
rate. Some compressors can perform rate conversion, and can pick optimal settings for a desired
bitrate (AAC is one example). For other formats, the recommended rate is simply the closest output
rate to the input rate that's allowed by the output format.
kQTSCAudioPropertyID_SampleRatelsRecommended is read-only. To set the sample rate to
recommended, a client sets the kQTSCAudioPropertyID_BasicDescriptionwithmSampleRate
= 0.0. To unset the sample rate as recommended, the client sets the
kQTSCAudioPropertyID_BasicDescription with a non-zero mSampleRate field.

kQTSCAudioPropertyID_ApplicableSampleRatelist = "avri'
A read/listen C-style array of AudioValueRange values that specifies which of the value ranges in
the kQTSCAudioPropertyID_AvailableSampleRatelist are currently applicable. The
kQTSCAudioPropertyID_AvailableSampleRatelist takes into account client restrictions, and
a compression format's general sample rate restrictions.
kQTSCAudioPropertyID_ApplicableSampleRatelist furtherfilters the list to just those sample
rates that are legal and valid given the current codec configuration. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_ClientRestrictedSampleRatelist = 'crri'
A read/write/listen C-style array of AudioValueRange values that specifies a client-restricted set of
output sample rate ranges that should be listed as available. Use QTGetComponentPropertyInfo
to discover the number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_InputMagicCookie = "ikki'
A read/write/listen opaque data structure that contains an untyped codec-specific data structure (a
“magic cookie”), which some decompressors use to decode their input. Cookies are variable size, so
you must call QTGetComponentPropertyInfo to discover the size of the buffer you should allocate
to hold the cookie.

kQTSCAudioPropertyID_MagicCookie = "kuki'
A read/write/listen opaque data structure that contains an untyped codec-specific data structure (a
“magic cookie”), which some decompressors use to configure their output. Cookies are variable size,

QuickTime 7 API Reference 269
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

270

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

so you must call QTGetComponentPropertyInfo to discover the size of the buffer you should
allocate to hold the cookie.

kQTSCAudioPropertyID_ClientRestrictedLPCMBitsPerChannellist = 'crbi’
Specifies a client-restricted set of output bits per channel that should be listed as available. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_AvailablelLPCMBitsPerChannellist = 'avbit'
A read/listen C-style array of UInt32 values that contains a list of available bits per audio channel.
This list is specific to LPCM, and takes into account any restrictions imposed by a client using the
kQTSCAudioPropertyID_LPCMBitsPerChannellist property. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold this
array.

kQTSCAudioPropertyID_ApplicablelPCMBitsPerChannellist = "apb#’
Specifies which of the values in the kQTSCAudioPropertyID_AvailablelPCMBitsPerChannellist
are currently applicable. The kQTSCAudioPropertyID_AvailablelLPCMBitsPerChannellist
takes into account client restrictions, and LPCM'’s general bits per channel restrictions.
kQTSCAudioPropertyID_ApplicablelPCMBitsPerChannellist further filters the list to just
those bits per channel that are legal and valid given the current LPCM configuration. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_LPCMBitsPerChannellList = 'sbc#'
A read/write/listen C-style array of UInt32 values that contains a client-restricted set of output bits
per channel, which you should list as available. Use QTGetComponentPropertyInfo to discover the
number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_AvailableNumChannelsList = 'anci#'
A read/listen C-style array of UInt32 values that contains a list of available numbers of channels. This
list is specific to the compression format and takes into account any restrictions imposed by a client
using the kQTSCAudioPropertyID_NumChannelslist property. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold this
array.

kQTSCAudioPropertyID_NumChannelsList = 'snci'

A read/write/listen C-style array of UInt32 values that contains a client-restricted set of numbers of

channels that you should list as available. Use QTGetComponentPropertyInfo to discover the

number of bytes you should allocate to hold this array.
kQTSCAudioPropertyID_InputChannellayout = "icly'

A read/write/listen variable-size AudioChannellLayout structure that specifies the audio channel

layout of the input description. AudioChannellayout is a variable-size structure, so you must use

QTGetComponentPropertyInfo to discover the number of bytes you should allocate for it.
kQTSCAudioPropertyID_InputChannellayoutName = "icln'

A read-only CFStringRef structure that specifies the human-readable name for a

kQTSCAudioPropertyID_InputChannellayout structure, if one exists. The caller is responsible

for calling CFRelease to dispose of the resulting string.
kQTSCAudioPropertyID_Channellayout = 'clay'

A read/write/listen variable-size AudioChannellayout structure that specifies the audio channel

layout of the output description. AudioChannelLlayout is a variable size structure, so you must use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSCAudioPropertyID_ChannellLayoutName = 'clyn'
A read-only CFStringRef structure that specifies the human-readable name for a
kQTSCAudioPropertyID_Channellayout, if one exists. The caller is responsible for calling
CFRelease to dispose of the resulting string.

kQTSCAudioPropertyID_ClientRestrictedChannellayoutTaglList = 'cril{'
Specifies a client-restricted set of channel layout tags that should be listed as available. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_AvailableChannellayoutTaglList = 'acl#'
A read/listen C-style array of AudioChannelLayoutTag values that specifies a list of available audio
channel layout tags. This list is specific to the compression format and takes into account any
restrictions imposed by a client using the kQTSCAudioPropertyID_ChannellayoutTaglist
property. Use QTGetComponentPropertyInfo to discover the number of bytes you should allocate
to hold this array.

kQTSCAudioPropertyID_ChannellayoutTaglList = 'cly#'
A read/write C-style array of AudioChannellLayoutTag values that specifies a client-restricted set
of channel layout tags, which you should list as available. Use QTGetComponentPropertyInfo to
discover the number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_AvailableChannellLayoutTagNamesList = 'clIn#'
A read-only CFArrayRef array that specifies the human-readable names for the
AudioChannellayoutTag valuesina
kQTSCAudioPropertyID_AvailableChannellayoutTaglList.Each elementin the array is a
CFStringRef structure. The caller is responsible for calling CFRelease to dispose of this array.

kQTSCAudioPropertyID_ApplicableChannellayoutTagNamesList = 'apl4#'
Specifies which of the values in the kQTSCAudioPropertyID_AvailableChannellayoutTaglList
are currently applicable. The kQTSCAudioPropertyID_AvailableChannellayoutTaglist takes
into account client restrictions, and the current output format’s general channel layout restrictions.
kQTSCAudioPropertyID_ApplicableChannellayoutTaglist furtherfiltersthe list tojust those
channel layouts that are legal and valid given the current codec configuration. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_ClientRestrictedPCMFlags = 'crip’
Specifies a client-restricted set of flags corresponding to the mFormatFlags fields in an
AudioStreamBasicDescription.Datatypeisa SCAudioFormatFlagsRestrictions struct. For
instance, if a client wishes to specify to the StandardAudioCompression component that their file
format requires little endian pcm data, the client may set this property, with formatFlagsMask set
to kAudioFormatFlagIsBigEndian,and formatFlagsValues setto zero (indicating that the
IsBigEndian bit should be interpreted as LittleEndian only).

kQTSCAudioPropertyID_DiscreteChannelsOK = 'dscr'
A read/write/listen Boolean value that lets you tell the StandardCompressionSubTypeAudio
dialog to not show “Discrete” as an available option. Each AudioChannellLayout structure assigns
specific spatial orientation to specific channels (for example, Channel 1 = Left). “Discrete” is a special
channel layout that does not assign spatial characteristics to channels, but instead labels them as
distinct outputs. For example, the first channel in the audio source is played through the first channel
on the output device, the second channel in the source is played through the second channel, and
so on. If this property is set to FALSE, the StandardCompressionSubTypeAudio dialog will not
show “Discrete” as an available option.

QuickTime 7 API Reference 271
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

272

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSCAudioPropertyID_LPCMSpecificFlagsMask = 'sffm'
A read/write/listen UInt 32 value that specifies which flag fields in
kQTSCAudioPropertyID_FormatSpecificFlags should be made available in the
StandardCompressionSubTypeAudio dialog. For instance, a value of 0OxFFFFFFFD (all bits except
kAudioFormatFlagIsBigEndian set)tellsthe StandardCompressionSubTypeAudiocomponent
to disable any Ul that would allow a choice between little and big endian. This selector is valid only
for PCM formats and is ignored for others.

kQTSCAudioPropertyID_InputSoundDescription = "isdh'
A read/write SoundDescriptionHand]e value that specifies the current input description as a
SoundDescriptionHandle (lowest possible version for the current format). When calling
QTGetComponentProperty, the caller passes a pointer to an unallocated Hand1e and assumes
responsibility for calling DisposeHand1e when done.

kQTSCAudioPropertyID_SoundDescription = 'osdh'
A read/write SoundDescriptionHandle value that specifies the current output description as a
SoundDescriptionHandle (lowest possible version for the current format). When calling
QTGetComponentProperty, the caller passes a pointer to an unallocated Hand1e and assumes
responsibility for calling DisposeHandle when done.

kQTSCAudioPropertyID_InputBasicDescription = "isbd'
Aread/write/DataProc/listen AudioStreamBasicDescription value that specifies that the current
input description is an AudioStreamBasicDescription value.

kQTSCAudioPropertyID_BasicDescription = 'osbd'
Aread/write/DataProc/listen AudioStreamBasicDescription value that specifies that the current
output description is an AudioStreamBasicDescription value.

kQTSCAudioPropertyID_CodecSpecificSettingsArray = 'cdst'
A read/write CFArrayRef structure that designates a CFArray of CFDictionary structures, which
describe various parameters specific to configuring a codec. This array of dictionaries, which is published
by some compressors, can be parsed to generate Ul information. When any value in the array changes,
a client should call QTSetComponentProperty, passing the entire array.

kQTSCAudioPropertyID_SettingsState = scSettingsStateType
A read/write Hand1 e value that is used to save the current state of the
StandardCompressionSubTypeAudio component, so that its state may be restored at a later time
with a single call. A StandardCompressionSubTypeAudio component can accept a saved settings
state from a legacy StandardCompressionSubTypeSound component as write-only.

kQTSCAudioPropertylID_ExtendedProcs = scExtendedProcsType
Aread/write/listen SCExtendedProcs value that is used to get or setan SCExtendedProcs structure.

kQTSCAudioPropertyID_PreferencefFlags = scPreferenceFlagsType
A read/write/listen SInt32 value that is used to specify dialog preferences such as
scUseMovableModal.

kQTSCAudioPropertyID_WindowOptions = scWindowOptionsType
A read/write/listen SCWindowSettings structure thatis used to setan SCWindowSettings structure,
which tells the dialog about its parent window so that it can draw itself as a sheet on top of the parent.

Movie Exporter Properties

The following constants are used by movie export getProperty functions only (not SCAudio), so that
variable size properties can be handled in that APl where there is no associated size parameter. The
getProperty function can be asked the size first, then the caller can allocate memory for the associated
SCAudio property and call getProperty again to get the property.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

enum {
movieExportChannellayoutSize = 'clsz', /* UInt32 */
movieExportMagicCookieSize = 'mcsz', /* UInt32 */
movieExportUseHighResolutionAudioProperties = "hrau' /* Boolean */

b

The movieExportUseHighResolutionAudioProperties constantis not a size. It is how the exporter
asks a propertyProc if it is prepared to deal with high-res properties.

The kPropertyClass_MovieExporter constant defines the movie exporter class:
enum {
kPropertyClass_MovieExporter = 'spit'

b

The kMovieExporterPropertyID_EnableHighResolutionAudioFeatures constant enables
high-resolution audio features for kPropertyClass_MovieExporter.Its valueis Boolean:

enum {

kMovieExporterPropertyID_EnableHighResolutionAudioFeatures = 'hrau'
b

SGAudio Component Property Classes

Every SGAudioMediaType channel uses standard QuickTime component property selectors to get, set, and
listen to properties. Each component property takes a property class as well as a property ID.
SGAudioMediaType channels use the property classes listed in this section.

SGAudioMediaType = 'audi'

kQTPropertyClass_SGAudio = 'audo'
kQTPropertyClass_SGAudioRecordDevice = 'audr'
kQTPropertyClass_SGAudioPreviewDevice = 'audp'

"audo'
Used with properties that pertain to the SGChannel as a whole, or to the output of an
SGAudioChannel (that is, with the resulting track in a QuickTime movie).

"audr'
Used with properties that pertain specifically to an SGAudioChannel recording device's physical
settings.

"audp'
Used with properties that pertain specifically to an SGAudioChannel preview device’s physical
settings.

For the property IDs used with these classes. see “SGAudio Component Property IDs” (page 273).

SGAudio Component Property IDs

This section lists the property IDs for SGAudioMediaType channels. Besides the IDs defined below,
SGAudioMediaType channels respond to kComponentPropertyInfolist and
kComponentPropertyClassPropertyInfo selectors, which return CFDataRef structures containing
arrays of ComponentPropertyInfo structures as defined in the file ImageCompression.h.

QuickTime 7 API Reference 273
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

274

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSGAudioPropertyID_DevicelListWithAttributes = '#dva’
Used with kQTPropertyClass_SGAudio in read and listen modes to get an array of
CFDictionaryRef structures. Each dictionary represents the attributes of one audio device. See
Dictionary Keys (page 281) for a list of supported dictionary keys. If the device list changes (for
example, if a device is hotplugged or unplugged), listeners of this property will be notified. The caller
is responsible for calling CFRelease to release the resulting CFArray.

kQTSGAudioPropertyID_DeviceAttributes = 'deva'
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice inread only mode togeta CFDictionaryRef
structure representing the attributes of a specified audio device (record or preview).See Dictionary
Keys (page 281) for a list of supported dictionary keys. Not all keys are guaranteed to be present for
a given device. The caller is responsible for calling CFRe1ease to release the resulting CFDictionary.

kQTSGAudioPropertyID_DeviceUID = 'uid ' [last character is space]
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice in read and write modes to geta CFString with
an audio device’s unique ID for the current recording or preview or set the current recording or
preview device to a specified audio device’s unique ID. You can obtain a list of devices on the user’s
system with kQTSGAudioPropertyID_DevicelistWithAttributes. The calleris responsible for
calling CFRelease to release the resulting CFString.

kQTSGAudioPropertyID_Channellayout = 'clay'
Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice in read and write modes to get or set an
AudioChannellayout structure representing the spatial or discrete channel layout. If used with
kQTPropertyClass_SGAudio, the AudioChannelLlayout refers to the channels in the resulting
QuickTime movie sound track. If used with kQTPropertyClass_SGAudioRecordDevice, the
AudioChannellayout refers to the input channels on the record device. If used with
kQTPropertyClass_SGAudioPreviewDevice, the AudioChannellayout refers to the preview
device's output channels. AudioChannellayout is a variable size structure, so before calling
QTGetComponentProperty you should call QTGetComponentPropertyInfo to discover the size
of the block of memory you must allocate to hold the result.

kQTSGAudioPropertyID_MagicCookie = "kuki'
Used with kQTPropertyClass_SGAudio in read and write modes to access opaque data structures
representing get or set compressor-specific out-of-band settings. This property is applicable only to
compressed formats that use a cookie, such as AAC and AMR.

kQTSGAudioPropertyID_ChannelMap = 'cmap'
Used with kQTPropertyClass_SGAudioRecordDeviceinread and write modes to access a C-style
array of SInt32 structures that let a client enable or disable channels on a recording device, as well
as reorder them or duplicate them to several output channels. This property need not be set if a client
wishes to capture all channels from the record device; this is the default behavior. Each element in
the SInt32 array represents one output bus (into the SGAudioChannel) from the record device. The
value of each element is the zero-based source channel on the input device that should feed the
specified output. Channel-disabling example: if you wish to capture just the 1st, 3rd, and 5th channels
from a 6-channel input device, your channel map should be SInt32 map[3]1 = { 0, 2, 4 }.
Channel-reordering example: if you wish to capture both channels from a stereo input device, but
you know the left and right channels are reversed in the data source, set your channel map to SInt32
map[2] = { 1, 0 }.Channel-duplication example: if you wish to duplicate the second source
channelinto 4 outputs, set your channelmapto SInt32 map[4] = { 1, 1, 1, 1 }.Emptychannel
example: if you need to produce a conformant stream of audio (such as a 6-channel stream to send
to an external 5.1 AC3 encoder), but you have audio only for the L, R, and C channels (on record device
channels 0, 1, and 2), you may set your channel map to SInt32 map[6] = { 0, 1, 2, -1, -1,
-1 }.The last 3 channels will be filled with silence.

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSGAudioPropertyID_StreamFormat = 'frmt'
Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice in read and write modes to access
AudioStreamBasicDescription structures that let you get or set the format of the audio as it will
be written to the destination QuickTime movie track. When used with
kQTPropertyClass_SGAudioRecordDevice, this property ID gets and sets the format of audio as
it is physically recorded on the device. The format must be one of the formats passed in
kQTSGAudioPropertyID_StreamFormatlList.ThemChannelsPerFrame of the StreamFormat
read from the record device will not reflect channels that have been enabled or disabled with the
ChannelMap property.

kQTSGAudioPropertyID_StreamFormatList = "#frm’
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice in read-only mode to get an array of
AudioStreamBasicDescription structures that describe valid combinations of settings supported
by the physical device in its current configuration (sample rate, bit depth, number of channels).

kQTSGAudioPropertyID_InputSelection = "inpt'
Used with kQTPropertyClass_SGAudioRecordDevice inread and write modes to getan 0SType
value that lets you change the current input selection in devices that allow switching between data
sources, such as analog, adat, sdi, aes/ebu, and spdif. When the input selection changes, the
StreamFormat of the device may change as well; in particular, the number of channels may change.

kQTSGAudioPropertyID_InputListWithAttributes = "#inp’
Used with kQTPropertyClass_SGAudioRecordDevice inread-only mode to geta CFArrayRef
structure that represents the list of available input sources for a given device. A CFArrayRef of
CFDictionaryRef values is returned, where each one represents the attributes of one input. See
“Dictionary Keys” (page 281) for alist of valid keys. The caller is responsible for calling CFReTease
to release the returned array.

kQTSGAudioPropertyID_OutputSelection = 'otpt'
Used with kQTPropertyClass_SGAudioPreviewDeviceinread and write modesto getan 0SType
value that lets you change the current output selection in devices that allow switching between
output destinations, such as analog, adat, sdi, aes/ebu, and spdif. When the output selection
changes, the StreamFormat of the device may change as well; in particular, the number of channels
may change.

kQTSGAudioPropertyID_OutputListWithAttributes = 'fotp’
Used with kQTPropertyClass_SGAudioPreviewDevice in read-only mode togeta CFArrayRef
structure that represents the list of available output destinations for a given device. A CFArrayRef
of CFDictionaryRef values is returned, where each one represents the attributes of one output.
See “Dictionary Keys” (page 281) for a list of valid keys. The caller is responsible for calling
CFRelease to release the returned array.

kQTSGAudioPropertyID_SoundDescription = 'snds'
Used with kQTPropertyClass_SGAudio in read and write modes to get a
SoundDescriptionHandle value for the sound description that describes the data written to a
QuickTime movie track. AQTGetComponentProperty call allocates the SoundDescriptionHandle
for you. The caller should declare the SoundDescriptionHandle and set it to NULL, then pass its
address to QTGetComponentProperty. The caller must call DisposeHand]e to dispose of the
resulting SoundDescriptionHandle when done with it.

kQTSGAudioPropertyID_LevelMetersEnabled = "Tmet’
Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice inread and write modes to access a Boolean value
that controls metering. When used with kQTPropertyClass_SGAudioRecordDevice or
kQTPropertyClass_SGAudioPreviewDevice, this property ID turns device level metering on or

QuickTime 7 API Reference 275
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

276

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

off. When used with kQTPropertyClass_SGAudio, it turns output level metering on or off. When
level meters are enabled, you can use kQTSGAudioPropertyID_AveragePowerlevels to get
instantaneous levels, or kQTSGAudioPropertyID_PeakHoldlLevels to get peak-hold style meters,
which are better for clipping detection. Level meters should be enabled only if you intend to poll for
levels, because they place an added load on the CPU when enabled.

kQTSGAudioPropertyID_PeakHoldLevels = 'phlv'

Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice inread-only mode to geta C-stylearray of F10at32
values representing in dB the peak hold levels for each channel on a device or output. This property
ID may be used only when level meters are enabled (by using
kQTSGAudioPropertyID_LevelMetersEnabled). Poll for peak hold levels as often as you would
like, to update the user interface or look for clipping. The number of elements in the F10at32 array
will be equal to the number of input channels on your record device for
kQTPropertyClass_SGAudioRecordDevice, or the number of elements in your
kQTSGAudioPropertyID_ChannelMap, if you've set one. It will be equal to the number of output
channels on your preview device for kQTPropertyClass_SGAudioPreviewDevice and equal to
the number of channels in your kQTSGAudioPropertyID_StreamFormat
(format.mChannelsPerFrame)forkQTPropertyClass_SGAudio.If nochannel mixdown is being
performed between record device and output formats, then the
kQTSGAudioPropertyID_PeakHoldlLevels valuesforkQTPropertyClass_SGAudioRecordDevice
and kQTPropertyClass_SGAudio will be equivalent. If you have requested hardware playthrough,
level metering will be unavailable.

kQTSGAudioPropertyID_AveragePowerlLevels = "aplv'

Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDeviceinread-only mode to geta C-style array of F10at32
values representing in dB the average power levels for each channel on a device or output. This
property ID may be used only when level meters are enabled (by using
kQTSGAudioPropertyID_LevelMetersEnabled). Poll for average power levels as often as you
would like, to update the user interface. The number of elements in the F1oat32 array will be equal
to the number of input channels on your record device for
kQTPropertyClass_SGAudioRecordDevice, or the number of elements in your
kQTSGAudioPropertyID_ChannelMap, if you've set one. It will be equal to the number of output
channels on your preview device for kQTPropertyClass_SGAudioPreviewDevice and equal to
the number of channels in your kQTSGAudioPropertyID_StreamFormat
(format.mChannelsPerFrame)forkQTPropertyClass_SGAudio.If nochannel mixdown is being
performed between record device and output formats, then the
kQTSGAudioPropertyID_AveragePowerLevels values for
kQTPropertyClass_SGAudioRecordDeviceand kQTPropertyClass_SGAudio will be equivalent.
If you have requested hardware playthrough, level metering will be unavailable.

kQTSGAudioPropertyID_Settings = 'setu’

Used with kQTPropertyClass_SGAudio in read and write modes to access UserData values. This
property takes supersedes the SGGet/SetChannelSettings calls. An SGAudioMediaType channel
accepts old-style 'soun' SGChannel settingsina QTSetComponentProperty call, but always
produces new-style settings ina QTGetComponentProperty call.

kQTSGAudioPropertyID_MasterGain = 'mgan'

Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice inread and write modes to accessa F1oat32 value
that represents the master gain on a physical recording device with 0.0 = minimum volume and 1.0
= the maximum volume of the device. With kQTPropertyClass_SGAudioPreviewDevice, this
property gets or sets the master gain on the physical previewing device with 0.0 = minimum volume
and 1.0 = the maximum volume of the device. With kQTPropertyClass_SGAudio, this property

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

gets or sets the master gain (volume) of the recorded audio data in software (pre-mixdown) with
minimum = 0.0, maximum = unbounded. Normally you wouldn't set the volume greater than 1.0,
but if the source sound level provided by the device is too low, you may set a gain greater than 1.0
to boost the gain. Some devices cannot respond to this property setting.

kQTSGAudioPropertyID_PerChannelGain = 'cgan'
Used with kQTPropertyClass_SGAudioRecordDevice, kQTPropertyClass_SGAudio, and
kQTPropertyClass_SGAudioPreviewDevice in read and write modes to access a C-style array of
F1oat32 value that represents the gain of each channel on a physical recording device. The number
of channels in the array for kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice is equal to the total number of channels on the
device, which can be discovered using kQTSGAudioPropertyID_StreamFormat. The number and
order of channels in the array for the kQTPropertyClass_SGAudio class must correspond to the
valence of channels on the output (which is affected by a channel map, if you've set one). With
kQTPropertyClass_SGAudio, this property gets and sets the gain (volume) of each channel of
recorded audio data in software. Levels set on the record device or preview device must be in the
range minimum = 0.0, maximum = 1.0. Levels set in software may be set to values greater than 1.0
in order to boost low signals. The caller may specify that a particular channel gain level should be left
alone by setting the value to —1.0. For instance, to set the gain of channels 1,2,and 3to0.50na 6
channel device, pass the following array values in a SetProperty call: { 0.5, 0.5, 0.5, -1.,
-1, -1.).

kQTSGAudioPropertyID_HardwarePlaythrukEnabled = 'hard'
Used with kQTPropertyClass_SGAudioRecordDevice inread and write modes to accessaBoolean
value representing the state of hardware playthrough during seqGrabPreview or
seqGrabPlayDuringRecord operations. Setting this value will have no effect if the record device
and preview device are not the same. Some devices do not support hardware playthrough; devices
report whether or not they support this feature through the
kQTSGAudioPropertyID_DevicelistWithAttributes property.

kQTSGAudioPropertyID_ChunkSize = 'chnk'
Used with kQTPropertyClass_SGAudio in read and write modes to access a F10at32 value
representing the number of seconds of audio that the SGAudioChannel should buffer before writing.

kComponentPropertyInfolist = "Tist'
Used with kComponentPropertyClassPropertyInfo in read-only mode as defined in the file
ImageCompression.h.

kQTSGAudioPropertyID_DeviceAlive = "aliv'
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice in read and listen modes to get a Boolean value
telling whether or not a device is alive. If the device is hot unplugged, listeners of this property will
be notified. If a record or preview operation is in progress it will be stopped, but it is left to the client
to select a new device.

kQTSGAudioPropertyID_DeviceHogged = "hogg'
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice in read, write, and listen modes to get a Boolean
value telling whether a device has become hogged or unhogged by another process. If so, listeners
of this property will be notified. SGAudioMediaType channel does not hog devices, but a client that
has reason to gain exclusive access to a device may set this property to TRUE.

kQTSGAudioPropertyID_DevicelnUse = 'used'
Used with kQTPropertyClass_SGAudioRecordDevice and
kQTPropertyClass_SGAudioPreviewDevice in read and listen modes to get a Boolean value
that tells whether a device is in use. If the device starts to be used (for instance, when another process
starts performing 1/O with it), listeners of this property will be notified.

QuickTime 7 API Reference 277
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

278

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTSGAudioPropertyID_MixerCoefficients = 'mixc'
Used with kQTPropertyClass_SGAudio inread and write modes to access a C-style array of F10at32
values representing a set of coefficients for mixdown. If you wish to perform a custom mixdown from
the incoming record device channel valence (discoverable using a combination of
kQTPropertyClass_SGAudioRecordDevice, kQTSGAudioPropertyID_StreamFormat,
kQTPropertyClass_SGAudioRecordDevice,and kQTSGAudioPropertyID_ChannelMap)toa
different output number of channels (using kQTPropertyClass_SGAudio and
kQTSGAudioPropertyID_StreamFormat), you may specify your own set of mixer coefficients which
will be set as volume values at each crosspoint in SGAudioMediaType’s internal matrix mixer. The
value you pass is a two-dimensional array of F10at32 values where the first dimension (rows) is the
input channel and the second dimension (columns) is the output channel. Each F1o0at32 value
contains one gain level to apply.

kQTSGAudioPropertyID_PreMixCallback = '"_mxc'
Used with kQTPropertyClass_SGAudio in read and write modes to access a pre-mix
SGAudioCallbackStruct (page 261). If you wish to receive a callback when new audio samples
become available from a recording device (before they've been mixed down), set this property using
an SGAudioCallbackStruct containing a pointer to your SGAudioCallback function and a
reference constant (Re fCon). If you have previously registered a callback and no longer wish to receive
it, call QTSetComponentProperty again, this time passing NULL for your inputProc and 0 for your
inputRefCon.

kQTSGAudioPropertyID_PreMixCallbackFormat = '_mcf'
Used with kQTPropertyClass_SGAudio in read-only mode to get an
AudioStreamBasicDescription structure representing the format of the audio that will be received
by your pre-mix SGAudioCallback function. Note that the format may not be available until you've
called SGPrepare.

kQTSGAudioPropertyID_PostMixCallback = "mx_c'
Used with kQTPropertyClass_SGAudio in read and write modes to access a post-mix
SGAudioCallbackStruct (page 261). If you wish to receive a callback after audio samples have
been mixed (the first step after they are received from a recording device by SGAudioMediaType
channel), set this property ID using an SGAudioCallbackStruct containing a pointer to your
SGAudioCallback function and a reference constant (RefCon). If you have previously registered a
callback and no longer wish to receive it, call QTSetComponentProperty again, this time passing
NULL for your inputProc and 0 for your inputRefCon.

kQTSGAudioPropertyID_PostMixCallbackFormat = 'm_cf'
Used with kQTPropertyClass_SGAudio in read-only mode to get an
AudioStreamBasicDescription structure representing the format of the audio that will be received
by your post-mix SGAudioCallback function. Note that the format may not be available until you've
called SGPrepare.

kQTSGAudioPropertyID_PreConversionCallback = "_cvc'
Used with kQTPropertyClass_SGAudio in read and write modes to access a pre-conversion
SGAudioCallbackStruct (page 261). If you wish to receive a callback just before audio samples are
about to be sent through an audio converter (for format conversion or compression), set this property
ID using an SGAudioCallbackStruct containing a pointer to your SGAudioCallback function
and a reference constant (RefCon). If you have previously registered a callback and no longer wish
toreceiveit, call QTSetComponentProperty again, this time passing NUL L for your inputProcand
0 for your inputRefCon.

kQTSGAudioPropertyID_PreConversionCallbackFormat = '_ccf’
Used with kQTPropertyClass_SGAudio in read-only mode to get an
AudioStreamBasicDescription structure representing the format of the audio that will be received

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

by your pre-conversion SGAudioCallback function. Note that the format may not be available until
you've called SGPrepare.

kQTSGAudioPropertyID_PostConversionCallback = "cv_c'
Used with kQTPropertyClass_SGAudio in read and write modes to access a post-conversion
SGAudioCallbackStruct (page 261).If you wish to receive a callback right after audio samples have
been sent through an audio converter (for format conversion or compression), set this property ID
using an SGAudioCallbackStruct containing a pointer to your SGAudioCallback function and
a reference constant (RefCon). If you have previously registered a callback and no longer wish to
receive it, call QTSetComponentProperty again, this time passing NULL for your inputProc and 0
for your inputRefCon.

kQTSGAudioPropertyID_PostConversionCallbackFormat = 'c_cf'
Used with kQTPropertyClass_SGAudio in read-only mode to get an
AudioStreamBasicDescription structure representing the format of the audio that will be received
by your post-conversion SGAudioCal1back function. Note that the format may not be available until
you've called SGPrepare.

Sound Description Property IDs

The following constants identify sound description properties.

enum {
kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay’,
kQTSoundDescriptionPropertyID_MagicCookie = "kuki',
kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = "asbhd',
kQTSoundDescriptionPropertyID_UserReadableText = 'text'

b

kQTSoundDescriptionPropertyID_AudioChannellayout = 'clay'
Used to get or set an AudioChannelLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = "kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo,allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'ashd'

Used to get an AudioStreamBasicDescription value.
kQTSoundDescriptionPropertylID_UserReadableText = 'text'

Used to geta CFStringRef value. QTSoundDescriptionGetProperty doesa CFRetain of the

returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

Audio Property IDs

The following constants identify audio properties.

enum {
kQTAudioPropertyID_Gain = 'gain',
kQTAudioPropertyID_Mute 'mute’,
kQTAudioPropertyID_Balance = 'bala',
kQTAudioPropertyID_Fade = 'fade',

QuickTime 7 API Reference 279
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

280

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTAudioPropertyID_SummaryChannellayout = 'clay',
kQTAudioPropertyID_DeviceChannellayout = 'dcly"',
kQTAudioPropertyID_FormatString = 'fstr',
kQTAudioPropertyID_ChannellLayoutString = "Istr',
kQTAudioPropertyID_SampleRateString = 'rstr',
kQTAudioPropertyID_SampleSizeString = 'sstr',
kQTAudioPropertyID_BitRateString = 'bstr',
kQTAudioPropertyID_SummaryString = "asum'

b

kQTAudioPropertyID_Gain = 'gain'
Used to get and set a F10at32 value that represents the audio gain of a movie or track. The gain
level is multiplicative; eg. 0.0 is silent, 0.5 is -6dB, 1.0 is 0dB (ie. the audio from the movie is not
modified), 2.0 is +6dB, etc. The gain level can be set higher than 1.0 in order to allow quiet movies
and tracks to be boosted in volume. Settings higher than 1.0 may result in audio clipping, of course.
The setting is not stored in the movie or track; it is used only until the movie or track is disposed.

kQTAudioPropertyID_Mute = 'mute’
Used to get and set a Boo1ean value that indicates the audio mute state of a movie or track. If TRUE,
the movie or track is muted. The setting is not stored in the movie or track; it is used only until the
movie or track is disposed.

kQTAudioPropertyID_Balance = 'bala'
Used to get and set a F10at32 value that represents the audio balance of a movie. It is supported
only for movies, not tracks. -1.0 means full left, 0.0 means centered, and 1.0 means full right. The
setting is not stored in the movie; it is used only until the movie is disposed.

kQTAudioPropertylID_Fade = 'fade'
Used to get and set a F10at32 value that represents the audio fade of a movie. It is supported only
for movies, not tracks. 1.0 means full forward, 0.0 means centered, and —1.0 means full rearward. The
setting is not stored in the movie; it is used only until the movie is disposed.

kQTAudioPropertyID_SummaryChannellayout = 'clay'
Used to get an AudioChannellayout value that represents the summary audio channel layout of
a movie or other grouping of audio streams. All like-labelled channels are combined, so there are no
duplicates. For example, if there is a stereo (L/R) track, 5 single-channel tracks marked Left, Right, Left
Surround, Right Surround and Center, and a 4 channel track marked L/R/Ls/Rs, then the summary
AudioChannelLayout will be L/R/Ls/Rs/C—It will _not_ be L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. This is a
variable-size property, because it it may contain an array of channel descriptions. You must get the
size by calling a function such as QTGetMoviePropertyInfo, allocate a structure of that size, and
then get the property.

kQTAudioPropertyID_DeviceChannellayout = 'dcly'
Used to get an AudioChannellayout value that represents the audio channel layout of the device
a movie is playing to. This is a variable-size property, because it it may contain an array of channel
descriptions. You must get the size by calling a function suchas QTGetMoviePropertyInfo,allocate
a structure of that size, and then get the property.

kQTAudioPropertyID_FormatString = "fstr'
Used with kQTPropertyClass_Audiotogeta CFStringRef value containing a localized, human
readable string that describes an audio format; for example, “MPEG Layer 3.” You may get this property
from a SoundDescription handle by calling QTSoundDescriptionGetProperty or froma
StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_ChannellayoutString = 'Istr'
Used with kQTPropertyClass_Audio togeta CFStringRef value containing a localized, human
readable string that describes an audio channel layout; for example, “5.0 (L R C Ls Rs).” You may get

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

this property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or
froma StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_SampleRateString = 'rstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample rate; for example, “44.100 kHz.” You may get this property from a SoundDescription
handle by calling QTSoundDescriptionGetProperty orfroma StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SampleSizeString = 'sstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample size; for example, “24-bit.” This property will return a valid string only if the audio format
is uncompressed (LPCM). You may get this property from a SoundDescription handle by calling
QTSoundDescriptionGetProperty or froma StandardAudioCompression (scdi or audi)
component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_BitRateString = 'bstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio bit rate; for example, “12 kbps.” You may get this property froma StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SummaryString = "asum'
Used to geta CFStringRef value containing a localized, human readable string that summarizes an
audio format; for example, “16-bit Integer (Big Endian), Stereo (L R), 48.000 kHz.” You may get this
property froma SoundDescription handle by calling QTSoundDescriptionGetProperty orfrom
a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

Dictionary Keys

The dictionary keys listed in this section are used with c ertain of the property IDs listed in “SGAudio
Component Property IDs” (page 273). They may be used to parse CF dictionaries returned by
kQTSGAudioPropertyID_DevicelistWithAttributes and
kQTSGAudioPropertyID_DeviceAttributes IDs for SGAudioMediaType channels.

kQTAudioDeviceAttribute_DeviceUIDKey = 'uid '
A CFStringRef containing a unique identifier for a device.

kQTAudioDeviceAttribute_DeviceNameKey = 'name'
A CFStringRef containing a device’s printable name, suitable for the user interface.

kQTAudioDeviceAttribute_DeviceManufacturerKey = 'manu'
A CFStringRef containing a device manufacturer’s printable name, suitable for the user interface.

kQTAudioDeviceAttribute_DeviceTransportTypeKey = 'tran'
A CFNumberRef that wraps an 0SType; for example, '1394 "' for fw. See the file I0AudioTypes.h.

kQTAudioDeviceAttribute_DeviceAliveKey = 'aliv'
A CFBooleanRef value that is TRUE if the device is present.

kQTAudioDeviceAttribute_DeviceCanRecordKey = 'rec [Tast char = space]
A CFBooleanRef value that is TRUE if the device can be used for recording (some devices can only
play back).

kQTAudioDeviceAttribute_DeviceCanPreviewKey = 'prev'’
A CFBooleanRef value that is TRUE if the device can be used to preview a grabbed sequence.

QuickTime 7 API Reference 281
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

282

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTAudioDeviceAttribute_DeviceHoggedKey = "hogg'
A CFNumberRef that wraps the unique process ID that is hogging the device, or -1 if the device is
currently not being hogged. The process ID comes from a call to getpid.
kQTAudioDeviceAttribute_DevicelnUseKey = 'used'
A CFBooleanRef value that is TRUE if the device is performing 1/O in any process.

kQTAudioDeviceAttribute_DeviceSupportsHardwarePlaythruKey = "hard'
A CFBooleanRef value thatis TRUE if the device supports hardware playthrough of inputs to outputs.

kQTAudioDeviceAttribute_DefaultInputDeviceKey = 'dIn ' [last char = space]
A CFBooleanRef value that's TRUE if the device is the user-selected default input in an audio MIDI
setup.
kQTAudioDeviceAttribute_DefaultOutputDeviceKey = 'dOut'
A CFBooleanRef value that's TRUE if the device is the user-selected default output in an audio MIDI
setup.
kQTAudioDeviceAttribute_DefaultSystemOutputDeviceKey = 'sOut'
A CFBooleanRef value that's TRUE if the device is the user-selected device where system alerts play.
kQTAudioDeviceAttribute_IsCoreAudioDeviceKey = 'hal!'
A CFBooleanRef value that's TRUE if the device is a Core Audio device.

Device Attribute Keys for Inputs and Outputs

The following dictionary keys may be used to parse CF dictionaries returned by
kQTSGAudioPropertyID_DevicelistWithAttributes and
kQTSGAudioPropertyID_DeviceAttributes IDs for SGAudioMediaType channels.

kQTAudioDeviceAttribute_DevicelnputID = "inID'
A CFNumberRef that wraps an 0SType value.

kQTAudioDeviceAttribute_DevicelnputDescription = "inds'
A CFStringRef that is suitable for displaying to the user.

kQTAudioDeviceAttribute_DeviceOutputID = 'otID'
A CFNumberRef that wraps an 0SType value.

kQTAudioDeviceAttribute_DeviceOutputDescription = 'otds'
A CFStringRef that is suitable for displaying to the user.

Sequence Grabber Setting Codes

The following setting codes are used by sequence grabber channels of type SGAudioMediaType.

enum {
sgcAudioRecordDeviceSettingsAtom = kQTPropertyClass_SGAudioRecordDevice,
sgcAudioPreviewDeviceSettingsAtom = kQTPropertyClass_SGAudioPreviewDevice,

sgcAudioQutputSettingsAtom = kQTPropertyClass_SGAudio,
sgcAudioSettingsVersion = 'vers',

sgcAudioDeviceUID = kQTAudioDeviceAttribute_DeviceUIDKey,
sgcAudioDeviceName = kQTAudioDeviceAttribute_DeviceNameKey,
sgcAudioStreamFormat = kQTSGAudioPropertyID_StreamFormat,
sgcAudiolnputSelection = kQTSGAudioPropertyID_InputSelection,
sgcAudioQutputSelection = kQTSGAudioPropertyID_OutputSelection,
sgcAudioChannelMap = kQTSGAudioPropertyID_ChannelMap,
sgcAudioMasterGain = kQTSGAudioPropertyID_MasterGain,

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

sgcAudioPerChannelGain kQTSGAudioPropertyID_PerChannelGain,

sgcAudiolLevelMetersEnabled = kQTSGAudioPropertylID_LevelMeterstnabled,
sgcAudioChannellayout = kQTSGAudioPropertyID_Channellayout,
sgcAudioMixerCoefficients = kQTSGAudioPropertyID_MixerCoefficients,

sgcAudioMagicCookie kQTSGAudioPropertyID_MagicCookie

Metadata Format Constants

The format constants in this section are used with functions of the form QTMetaData...

Following are constants for the QTMetaDataStorageFormat type:

kQTMetaDataStorageFormatQuickTime = 'mdta’
The QuickTime metadata storage format

kQTMetaDataKeyFormatQuickTime = 'mdta’
Reverse DNS format

kQTMetaDataStorageFormatiTunes = 'itms'
The iTunes metadata storage format

Following are constants for the QTMetaDataKeyFormat type:

kQTMetaDataKeyFormatiTunesShortForm = "itsk'
A four-character code

kQTMetaDataKeyFormatiTunesLongForm = "itlk'
Reverse DNS format

Following are constants for user data formats:

kQTMetaDataStorageFormatUserData = 'udta'
User data storage format

kQTMetaDataKeyFormatUserData = 'udta',
User data key storage format

Metadata Property IDs

The property IDs in this section are used with functions of the form QTMetaData...

Following are constants for the QTMetaDataRef type:

kPropertyClass_QTMetaData = 'meta’
The QuickTime metadata property class.

kQTMetaDataPropertyID_StorageFormats = 'fmts'
The list of storage formats of type QTMetaDataStorageFormat associated with a QTMetaDataRef
object. The read-only return value is a C-style array of 0SType values.

kQTMetaDataPropertyID_OwnerType = 'ownt'
The owner type associated with a QTMetaDataRef object. The read-only return value is an 0SType
(QT_MOVIE_TYPE, QT_TRACK_TYPE, or QT_MEDIA_TYPE).

kQTMetaDataPropertyID_Owner = 'ownr'
The owner associated with a QTMetaDataRef object, which does not necessarily need an owner. The
read-only return value is type Movie, Track, or Media.

QuickTime 7 API Reference 283
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Following are constants for the QTMetaDataltem type:

kPropertyClass_QTMetaDataltem = 'mdit’
The metadata item property class ID

kQTMetaDataltemPropertyID_Value = 'valu'
The value of the metadata item. The read-only return value is a C-style array of values of type UInt8.

kQTMetaDataltemPropertyID_DataType = 'dtyp'
The value type of the metadata item. The read/write return value is type UInt32.

kQTMetaDataltemPropertyID_StorageFormat = 'sfmt'
The storage format of the metadata item. The read-only return value is type
QTMetaDataStorageFormat.

kQTMetaDataltemPropertyID_Key = 'key ' [last charis space]
The key associated with the metadata item. The read/write return value is a C-style array of values of
type UInt8.

kQTMetaDataltemPropertyID_KeyFormat = 'keyf'
The format of the metadata item key. The read/write return value is type 0SType.

kQTMetaDataltemPropertyID_Locale = "loc '
The locale identifier based on the naming convention defined by the International Components for
Unicode (ICU). The identifier consists of two pieces of ordered information: a language code and a
region code. The language code is based on the I1SO 639-1 standard, which defines two-character
codes, such as en and fr, for the world’s most commonly used languages. If a two-letter code is not
available, then I1SO 639-2 three-letter identifiers are accepted as well; for example, haw for Hawaiian.
The region code is defined by ISO 3166-1. It is all uppercase and is appended, with an underscore,
after the language code; for example en_US, en_GB, and fr_FR. The read/write return value is a C
string of type UInt32.

Metadata Key Constants

The following key constants are used with functions of the form QTMetaData...

// Pre-defined common keys
kQTMetaDataCommonKeyAuthor = 'auth'
kQTMetaDataCommonKeyComment ‘cmmt!
kQTMetaDataCommonKeyCopyright "cprt!
kQTMetaDataCommonKeyDirector = 'dtor'

kQTMetaDataCommonKeyDisplayName = '"name’
kQTMetaDataCommonKeyInformation = "info'
kQTMetaDataCommonKeyKeywords = 'keyw'
kQTMetaDataCommonKeyProducer = 'prod'

// Mapping from common keys to user data identifiers:

kQTMetaDataCommonKeyAuthor -> kUserDataTextAuthor
kQTMetaDataCommonKeyComment -> kUserDataTextComment
kQTMetaDataCommonKeyCopyright -> kUserDataTextCopyright
kQTMetaDataCommonKeyDirector -> kUserDataTextDirector
kQTMetaDataCommonKeyDisplayName -> kUserDataTextFullName
kQTMetaDataCommonKeyInformation -> kUserDataTextInformation
kQTMetaDataCommonKeyKeywords -> kUserDataTextKeywords
kQTMetaDataCommonKeyProducer -> kUserDataTextProducer
284 QuickTime 7 API Reference

2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

Metadata Error Codes

The following error codes are returned by functions of the form QTMetaData...

kQTMetaDatalnvalidMetaDataErr = -2173
kQTMetaDatalnvalidItemErr = -2174
kQTMetaDatalnvalidStorageFormatErr = -2175
kQTMetaDatalnvalidKeyFormatErr = -2176
kQTMetaDataNoMoreltemsErr = -2177

New Movie Property Codes

The following codes are stored in the propCiass fields of QTNewMoviePropertyElement (page 260) data
structures, which pass them to NewMovieFromProperties (page 191).

kQTPropertyClass_Datalocation = 'dloc"',
kQTDatalocationPropertyID_DataReference
// DataReferenceRecord *

= 'dref"’

kQTDatalLocationPropertyID_CFStringNativePath = 'cfnp'

// CFStringRef *

kQTDatalLocationPropertyID_CFStringPosixPath

// CFStringRef *

kQTDatalocationPropertyID_CFStringHFSPath

// CFStringRef *

kQTDatalLocationPropertyID_CFStringWindowsPath

// CFStringRef *
kQTDatalLocationPropertyID_CFURL

// CFURLRef *
kQTDatalocationPropertyID_QTDataHandler

// DataHandler *
kQTDatalLocationPropertyID_Scrap

// NULL

"cthp'

"cfwp'

B

>

"cfpp’,

B

>

= 'cfur',

"qtdh’

= 'scrp'

B

>

kQTDatalLocationPropertyID_LegacyMovieResourceHandle = 'rezh',

// Handle *
kQTDatalocationPropertyID_MovieUserProc

// QTNewMovieUserProcRecord *
kQTDatalLocationPropertyID_ResourceFork

// SIntle *
kQTDatalLocationPropertyID_DataFork

// SIntl6e *

kQTPropertyClass_Context = 'ctxt',
kQTContextPropertyID_AudioContext
// QTAudioContextRef *
kQTContextPropertyID_VisualContext
// QTVisualContextRef *

kQTPropertyClass_MovieResourcelocator = 'rloc’',

= 'uspr'

"rfrk'

= 'dfrk’

"audi',

"visu',

kQTMovieResourcelocatorPropertyID_LegacyResID = 'rezi',

// SIntl6 * (input/output property)

kQTMovieResourcelocatorPropertyID_LegacyResName = 'rezn',

// Str255 (output property)

kQTMovieResourcelocatorPropertyID_FileOffset

// Ulnte4 *

kQTMovieResourcelocatorPropertyID_Callback

// User-defined

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

"foff"',

= 'calb',

>

s

285

286

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7

kQTPropertyClass_Movielnstantiation = 'mins’,

kQTMovielnstantiationPropertyID_DontResolveDataRefs

// Boolean *
kQTMovielnstantiationPropertyID_DontAskUnresolvedDataRefs

// Boolean *
kQTMovielnstantiationPropertyID_DontAutoAlternates

// Boolean *
kQTMovielnstantiationPropertyID_DontUpdateForeBackPointers

// Boolean *
kQTMovielnstantiationPropertyID_AsyncOK

// Boolean *
kQTMovielInstantiationPropertyID_IdleImportOK

// Boolean *
kQTMovielnstantiationPropertyID_DontAutoUpdateClock

// Boolean *
kQTMovielnstantiationPropertyID_ResultDatalocationChanged

// Boolean * (output property)

kQTPropertyClass_NewMovieProperty = "'mprp',
kQTNewMoviePropertyID_DefaultDataRef = 'ddrf',
// DataReferenceRecord *
kQTNewMoviePropertyID_Active
// Boolean *
kQTNewMoviePropertyID_DontInteractWithUser = 'intn',
// Boolean *

"actv',

QuickTime 7 API Reference
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

"rdrn',
"aurn',
"aaln',
"fbpn',
"asok',
"imok"',
"aucl',

"dlch',

REVISION HISTORY

Document Revision History

This table describes the changes to QuickTime 7 Update Guide.

Date Notes

2005-04-29 Updated for public release of QuickTime 7. Changed title from "What's New in
QuickTime 6.6 Developer Preview."

287
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

288
2005-04-29 | © 2005 Apple Computer, Inc. All Rights Reserved.

	QuickTime 7 Update Guide
	Contents
	Figures, Tables, and Listings
	Introduction to QuickTime 7
	Who Needs To Read This Document
	How This Document Is Organized
	See Also

	What’s New in QuickTime 7
	Installing QuickTime 7
	Hardware and Software Requirements
	New Pro Key Required

	QuickTime in Perspective
	New Features of QuickTime 7
	New Directions in QuickTime 7
	What Developers Need To Do
	Object Model Evolution

	In Summary QuickTime 6 through QuickTime 7

	Changes to QuickTime Player and QuickTime Pro
	New in QuickTime Player
	New in QuickTime Pro
	Other Changes and Enhancements

	New QuickTime Kit Framework
	Audio Enhancements
	New Abstraction Layer For Audio
	High-Resolution Audio Support
	Playback
	Export
	Capture

	Sound Description Creation and Accessor Functions
	Audio Playback Enhancements
	Preventing Pitch-Shifting
	Gain, Mute, and Balance
	Level and Frequency Metering

	Audio Conversion, Export, and Extraction
	Standard Audio Compression Enhancements
	Audio Export Enhancements
	Audio Capture Enhancements
	Configuring Audio Channel Components
	Sequence Grabber Audio Channel Mapping

	Using Sequence Grabber Audio Features

	Video Enhancements
	Frame Reordering Video
	Understanding Frame Reordering Video Compression
	Finding and Adding Samples
	Compressing Video Using Frame Reordering

	H.264 Codec
	New Abstractions Layers For OpenGL Rendering
	QuickTime Visual Context
	OpenGL Texture Context
	Limitation Working With QuartzExtreme

	Replacing NewMovieFrom... Functions
	Using NewMovieFromProperties

	QuickTime Metadata Enhancements and API
	How It Works
	Advantages of the New Metadata Format

	QuickTime Sample Table API
	JavaScript Support and Accessibility in Safari
	Other Changes and Enhancements
	New Persistent Cache Option
	Changes to File Caching
	How To Control File Caching

	Updates to QuickTime for Java
	Support for Quartz Composer

	New Functions, Data Types, and Constants in QuickTime 7
	QuickTime 7 API Reference
	Functions
	AddMediaSample2
	AddMediaSampleFromEncodedFrame
	AddSampleTableToMedia
	CopyMediaMutableSampleTable
	DisposeMovieExportStageReachedCallbackUPP
	DisposeQTTrackPropertyListenerUPP
	ExtendMediaDecodeDurationToDisplayEndTime
	GetDSequenceNonScheduledDisplayDirection
	GetDSequenceNonScheduledDisplayTime
	GetMediaAdvanceDecodeTime
	GetMediaDataSizeTime64
	GetMediaDecodeDuration
	GetMediaDisplayDuration
	GetMediaDisplayEndTime
	GetMediaDisplayStartTime
	GetMediaNextInterestingDecodeTime
	GetMediaNextInterestingDisplayTime
	GetMediaSample2
	GetMovieAudioBalance
	GetMovieAudioContext
	GetMovieAudioFrequencyLevels
	GetMovieAudioFrequencyMeteringBandFrequencies
	GetMovieAudioFrequencyMeteringNumBands
	GetMovieAudioGain
	GetMovieAudioMute
	GetMovieAudioVolumeLevels
	GetMovieAudioVolumeMeteringEnabled
	GetMovieVisualBrightness
	GetMovieVisualContext
	GetMovieVisualContrast
	GetMovieVisualHue
	GetMovieVisualSaturation
	GetTrackAudioGain
	GetTrackAudioMute
	GetTrackEditRate64
	HIMovieViewChangeAttributes
	HIMovieViewCreate
	HIMovieViewGetAttributes
	HIMovieViewGetControllerBarSize
	HIMovieViewGetMovie
	HIMovieViewGetMovieController
	HIMovieViewPause
	HIMovieViewPlay
	HIMovieViewSetMovie
	ICMCompressionFrameOptionsCreate
	ICMCompressionFrameOptionsCreateCopy
	ICMCompressionFrameOptionsGetForceKeyFrame
	ICMCompressionFrameOptionsGetFrameType
	ICMCompressionFrameOptionsGetProperty
	ICMCompressionFrameOptionsGetPropertyInfo
	ICMCompressionFrameOptionsGetTypeID
	ICMCompressionFrameOptionsRelease
	ICMCompressionFrameOptionsRetain
	ICMCompressionFrameOptionsSetForceKeyFrame
	ICMCompressionFrameOptionsSetFrameType
	ICMCompressionFrameOptionsSetProperty
	ICMCompressionSessionBeginPass
	ICMCompressionSessionCompleteFrames
	ICMCompressionSessionCreate
	ICMCompressionSessionEncodeFrame
	ICMCompressionSessionEndPass
	ICMCompressionSessionGetImageDescription
	ICMCompressionSessionGetPixelBufferPool
	ICMCompressionSessionGetProperty
	ICMCompressionSessionGetPropertyInfo
	ICMCompressionSessionGetTimeScale
	ICMCompressionSessionGetTypeID
	ICMCompressionSessionOptionsCreate
	ICMCompressionSessionOptionsCreateCopy
	ICMCompressionSessionOptionsGetAllowFrameReordering
	ICMCompressionSessionOptionsGetAllowFrameTimeChanges
	ICMCompressionSessionOptionsGetAllowTemporalCompression
	ICMCompressionSessionOptionsGetDurationsNeeded
	ICMCompressionSessionOptionsGetMaxKeyFrameInterval
	ICMCompressionSessionOptionsGetProperty
	ICMCompressionSessionOptionsGetPropertyInfo
	ICMCompressionSessionOptionsGetTypeID
	ICMCompressionSessionOptionsRelease
	ICMCompressionSessionOptionsRetain
	ICMCompressionSessionOptionsSetAllowFrameReordering
	ICMCompressionSessionOptionsSetAllowFrameTimeChanges
	ICMCompressionSessionOptionsSetAllowTemporalCompression
	ICMCompressionSessionOptionsSetDurationsNeeded
	ICMCompressionSessionOptionsSetMaxKeyFrameInterval
	ICMCompressionSessionOptionsSetProperty
	ICMCompressionSessionProcessBetweenPasses
	ICMCompressionSessionRelease
	ICMCompressionSessionRetain
	ICMCompressionSessionSetProperty
	ICMCompressionSessionSupportsMultiPassEncoding
	ICMCompressorSessionDropFrame
	ICMCompressorSessionEmitEncodedFrame
	ICMCompressorSourceFrameGetDisplayNumber
	ICMCompressorSourceFrameGetDisplayTimeStampAndDuration
	ICMCompressorSourceFrameGetFrameOptions
	ICMCompressorSourceFrameGetPixelBuffer
	ICMCompressorSourceFrameGetTypeID
	ICMCompressorSourceFrameRelease
	ICMCompressorSourceFrameRetain
	ICMDecompressionFrameOptionsCreate
	ICMDecompressionFrameOptionsCreateCopy
	ICMDecompressionFrameOptionsGetProperty
	ICMDecompressionFrameOptionsGetPropertyInfo
	ICMDecompressionFrameOptionsGetTypeID
	ICMDecompressionFrameOptionsRelease
	ICMDecompressionFrameOptionsRetain
	ICMDecompressionFrameOptionsSetProperty
	ICMDecompressionSessionCreate
	ICMDecompressionSessionCreateForVisualContext
	ICMDecompressionSessionDecodeFrame
	ICMDecompressionSessionFlush
	ICMDecompressionSessionGetProperty
	ICMDecompressionSessionGetPropertyInfo
	ICMDecompressionSessionGetTypeID
	ICMDecompressionSessionOptionsCreate
	ICMDecompressionSessionOptionsCreateCopy
	ICMDecompressionSessionOptionsGetPropertyInfo
	ICMDecompressionSessionOptionsGetProperty
	ICMDecompressionSessionOptionsGetTypeID
	ICMDecompressionSessionOptionsRelease
	ICMDecompressionSessionOptionsRetain
	ICMDecompressionSessionOptionsSetProperty
	ICMDecompressionSessionRetain
	ICMDecompressionSessionRelease
	ICMDecompressionSessionSetNonScheduledDisplayDirection
	ICMDecompressionSessionSetNonScheduledDisplayTime
	ICMDecompressionSessionSetProperty
	ICMEncodedFrameGetBufferSize
	ICMEncodedFrameCreateMutable
	ICMEncodedFrameGetDataPtr
	ICMEncodedFrameGetDataSize
	ICMEncodedFrameGetDecodeDuration
	ICMEncodedFrameGetDecodeNumber
	ICMEncodedFrameGetDecodeTimeStamp
	ICMEncodedFrameGetDisplayDuration
	ICMEncodedFrameGetDisplayOffset
	ICMEncodedFrameGetDisplayTimeStamp
	ICMEncodedFrameGetFrameType
	ICMEncodedFrameGetImageDescription
	ICMEncodedFrameGetMediaSampleFlags
	ICMEncodedFrameGetSimilarity
	ICMEncodedFrameGetSourceFrameRefCon
	ICMEncodedFrameGetTimeScale
	ICMEncodedFrameGetTypeID
	ICMEncodedFrameGetValidTimeFlags
	ICMEncodedFrameRelease
	ICMEncodedFrameRetain
	ICMEncodedFrameSetDataSize
	ICMEncodedFrameSetDecodeDuration
	ICMEncodedFrameSetDecodeTimeStamp
	ICMEncodedFrameSetDisplayDuration
	ICMEncodedFrameSetDisplayTimeStamp
	ICMEncodedFrameSetValidTimeFlags
	ICMEncodedFrameSetMediaSampleFlags
	ICMEncodedFrameSetFrameType
	ICMEncodedFrameSetSimilarity
	ICMImageDescriptionGetProperty
	ICMImageDescriptionGetPropertyInfo
	ICMImageDescriptionSetProperty
	ICMMultiPassStorageCopyDataAtTimeStamp
	ICMMultiPassStorageCreateWithCallbacks
	ICMMultiPassStorageCreateWithTemporaryFile
	ICMMultiPassStorageGetTimeStamp
	ICMMultiPassStorageGetTypeID
	ICMMultiPassStorageRelease
	ICMMultiPassStorageRetain
	ICMMultiPassStorageSetDataAtTimeStamp
	ImageCodecBeginPass
	ImageCodecCompleteFrame
	ImageCodecDecodeBand
	ImageCodecEncodeFrame
	ImageCodecPrepareToCompressFrames
	ImageCodecProcessBetweenPasses
	InvokeQTTrackPropertyListenerUPP
	MediaContainsDisplayOffsets
	MediaDecodeTimeToSampleNum
	MediaDisplayTimeToSampleNum
	MovieAudioExtractionBegin
	MovieAudioExtractionEnd
	MovieAudioExtractionFillBuffer
	MovieAudioExtractionGetProperty
	MovieAudioExtractionGetPropertyInfo
	MovieAudioExtractionSetProperty
	NewMovieExportStageReachedCallbackUPP
	NewMovieFromProperties
	NewQTTrackPropertyListenerUPP
	QTAddTrackPropertyListener
	QTAudioContextCreateForAudioDevice
	QTCopyMovieMetaData
	QTCopyTrackMetaData
	QTCopyMediaMetaData
	QTGetTrackProperty
	QTGetTrackPropertyInfo
	QTMetaDataAddItem
	QTMetaDataGetItemCount
	QTMetaDataGetItemProperty
	QTMetaDataGetItemPropertyInfo
	QTMetaDataGetItemValue
	QTMetaDataGetNextItem
	QTMetaDataGetProperty
	QTMetaDataGetPropertyInfo
	QTMetaDataRetain
	QTMetaDataRelease
	QTMetaDataRemoveItem
	QTMetaDataRemoveItemsWithKey
	QTMetaDataSetItem
	QTMetaDataSetItemProperty
	QTMetaDataSetProperty
	QTOpenGLTextureContextCreate
	QTPixelBufferContextCreate
	QTRemoveTrackPropertyListener
	QTSampleTableAddSampleDescription
	QTSampleTableAddSampleReferences
	QTSampleTableCopySampleDescription
	QTSampleTableCreateMutable
	QTSampleTableCreateMutableCopy
	QTSampleTableGetDataOffset
	QTSampleTableGetDataSizePerSample
	QTSampleTableGetDecodeDuration
	QTSampleTableGetDisplayOffset
	QTSampleTableGetNextAttributeChange
	QTSampleTableGetNumberOfSamples
	QTSampleTableGetProperty
	QTSampleTableGetPropertyInfo
	QTSampleTableGetSampleDescriptionID
	QTSampleTableGetSampleFlags
	QTSampleTableGetTimeScale
	QTSampleTableGetTypeID
	QTSampleTableRelease
	QTSampleTableReplaceRange
	QTSampleTableRetain
	QTSampleTableSetProperty
	QTSampleTableSetTimeScale
	QTSetTrackProperty
	QTSoundDescriptionConvert
	QTSoundDescriptionCreate
	QTSoundDescriptionGetPropertyInfo
	QTSoundDescriptionGetProperty
	QTSoundDescriptionSetProperty
	QTVisualContextCopyImageForTime
	QTVisualContextGetAttribute
	QTVisualContextGetTypeID
	QTVisualContextIsNewImageAvailable
	QTVisualContextSetAttribute
	QTVisualContextSetImageAvailableCallback
	QTVisualContextRelease
	QTVisualContextRetain
	QTVisualContextTask
	SampleNumToMediaDecodeTime
	SampleNumToMediaDisplayTime
	SCAudioInvokeLegacyCodecOptionsDialog
	SCCopyCompressionSessionOptions
	SetDSequenceNonScheduledDisplayDirection
	SetDSequenceNonScheduledDisplayTime
	SetMovieAudioBalance
	SetMovieAudioContext
	SetMovieAudioFrequencyMeteringNumBands
	SetMovieAudioGain
	SetMovieAudioMute
	SetMovieAudioVolumeMeteringEnabled
	SetMovieVisualBrightness
	SetMovieVisualContext
	SetMovieVisualContrast
	SetMovieVisualHue
	SetMovieVisualSaturation
	SetTrackAudioGain
	SetTrackAudioMute
	TrackTimeToMediaDisplayTime

	Callbacks
	ICMDecompressionTrackingCallbackProc
	MovieExportStageReachedCallbackProc
	SGAudioCallbackProc
	QTOpenGLTextureAvailableCallbackProc

	Data Structures
	ICMDecompressionTrackingCallbackRecord
	ICMMultiPassStorageCallbacks
	QTAudioFrequencyLevels
	QTAudioVolumeLevels
	QTNewMoviePropertyElement
	SGAudioCallbackStruct
	SoundDescriptionV2

	Constants
	ICM Compression Session Options
	ICM Compression Session Properties
	Visual Context Types
	Movie Audio Mixes
	Audio Property Selectors
	Movie Exporter Properties
	SGAudio Component Property Classes
	SGAudio Component Property IDs
	Sound Description Property IDs
	Audio Property IDs
	Dictionary Keys
	Device Attribute Keys for Inputs and Outputs
	Sequence Grabber Setting Codes
	Metadata Format Constants
	Metadata Property IDs
	Metadata Key Constants
	Metadata Error Codes
	New Movie Property Codes

	Revision History

