
QuickTime 7 for Windows Update Guide
QuickTime

2005-11-09

Apple Inc.
© 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, eMac, iTunes,
Mac, Mac OS, Macintosh, Pages, QuickTime,
and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Introduction to QuickTime 7 for Windows 7

Who Needs To Read This Document 7
How This Document Is Organized 7
See Also 8

Chapter 2 What’s New in QuickTime 7 for Windows 9

Installing QuickTime 7 9
Hardware and Software Requirements 9
New Pro Key Required 9

QuickTime in Perspective 10
New Features of QuickTime 7 for Windows 10
New Directions in QuickTime 7 for Windows 11
In Summary QuickTime 6 through QuickTime 7 12

Changes to QuickTime Player and QuickTime Pro 13
New in QuickTime Player 13
New in QuickTime Pro 13
Other Changes and Enhancements 14

New COM/ActiveX Control 15
Advantages For Developers 16
How It Works 16
Getting Started With QuickTime COM Control 18
Example Code To Create a Simple COM/ActiveX Control Application in Visual Basic 6 20

Audio Enhancements 32
New Abstraction Layer For Audio 33
High-Resolution Audio Support 34
Sound Description Creation and Accessor Functions 39
Audio Playback Enhancements 40
Audio Conversion, Export, and Extraction 42
Standard Audio Compression Enhancements 44
Audio Export Enhancements 44

Video Enhancements 45
Frame Reordering Video 45
H.264 Codec 49

Replacing NewMovieFrom... Functions 49
Using NewMovieFromProperties 50

QuickTime Metadata Enhancements and API 50
How It Works 51
Advantages of the New Metadata Format 52

QuickTime Sample Table API 53
Other Changes and Enhancements 55

3
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

New Install Location 55
Updates to QuickTime for Java 56

Chapter 3 New Functions, Data Types, and Constants in QuickTime 7 for Windows 57

QuickTime 7 API Reference 57
Functions 57
Callbacks 235
Data Structures 239
Constants 244

Document Revision History 261

4
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 2 What’s New in QuickTime 7 for Windows 9

Figure 2-1 The COM/ActiveX control object hierarchy 17
Figure 2-2 Layout of surround speakers 35
Figure 2-3 The QuickTime Settings dialog with the Audio tab selected 37
Figure 2-4 Audio settings dialog, including channel assignment 38
Figure 2-5 Sound settings dialog that includes user-definable choices for format, channels,

and rate of audio playback 39
Figure 2-6 Metadata modes of operations 52
Table 2-1 Surround sound definitions 35
Listing 2-1 The GetFileName function to display a dialog for the QuickTime control 21
Listing 2-2 Adding menu items 21
Listing 2-3 The VB 6 code for the QuickTime control sample movie form 23
Listing 2-4 The VB 6 code for the movie information form 27
Listing 2-5 Code for handling the sizing of the QuickTime movie 30
Listing 2-6 Opting in for high-resolution audio export 45

5
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

QuickTime is the industry standard for multimedia programming and application development, with a rich
and evolving API comprised of more than 2500 function calls. Its component-based architecture is highly
extensible, enabling applications to display, import, export, and modify a broad range of digital media,
including audio, video, still images, text, Flash, MIDI, sprites, VR panoramas, among other media types.
QuickTime is designed from the ground up to work with local disk-based media, media accessed over a
network, or streams of real-time data.

This document provides detailed information about the new features, changes, and enhanced capabilities
that are available in QuickTime 7 for Windows.

QuickTime 7 for Windows is a major release involving a significant update and revision of the QuickTime
code base that includes the introduction of H.264, a new QuickTime Player built from the ground up, CoreAudio
for Windows, QuickTime Audio on top of CoreAudio, with multichannel audio support, and a new QuickTime
7 for Windows installer.

Who Needs To Read This Document

If you are a QuickTime API-level developer, content author, multimedia producer, or Webmaster who is
currently working with QuickTime, you should read this document.

The document is written for developers who use QuickTime on the Windows platform and want to learn
about the new programming features available in QuickTime 7 for Windows.

How This Document Is Organized

This update guide is intended to provide QuickTime developers, as well as other developers new to the
platform, with a comprehensive description of the changes and enhancements in this major software release.
Beyond this brief introductory chapter, the material discussed in Chapter 2 of the guide points to and
cross-references in Chapter 3 the many new functions available in QuickTime 7 for Windows, with an emphasis
on understanding their usage for application developers.

 ■ Chapter 1, “Introduction to QuickTime 7 for Windows” (page 7), discusses who should read this
document, as well as other sources of information about the QuickTime documentation suite.

 ■ Chapter 2, “What’s New in QuickTime 7 for Windows” (page 9), describes in detail the many new and
enhanced features available in QuickTime 7. It is intended to provide developers with a conceptual
overview, in addition to code samples and illustrations of usage, so that developers can take advantage
of many of the new features in QuickTime 7 for Windows in their applications.

 ■ Chapter 3, “New Functions, Data Types, and Constants in QuickTime 7 for Windows” (page 57), describes
all the new QuickTime functions, data structures, constants, and callbacks available in this software
release.

Who Needs To Read This Document 7
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Introduction to QuickTime 7 for Windows

See Also

For developers who want to take advantage of QuickTime features and functionality, the complete suite of
documentation that describes the QuickTime API is available online in HTML and PDF at the QuickTime Ref-
erence Library website.

The reference information currently presented in Chapter 3 of this update guide is also available in the
QuickTime API Reference document. All of the new QuickTime functions, data structures, and callbacks in
QuickTime 7 are incorporated into the QuickTime API Reference for easy access and reference, either in HTML
or PDF formats.

If you are new to QuickTime, you should begin by referring to Getting Started With QuickTime, which describes
the various starting points and learning paths for working with this rich, multimedia API.

Updates to the QuickTime technical documentation website are provided on a regular basis. Developers can
also subscribe to various mailing lists for the latest news and information.

To sign up for any of Apple’s Developer Programs, go to: http://developer.apple.com/membership/index.html.

8 See Also
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Introduction to QuickTime 7 for Windows

http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/referencelibrary/API_Fundamentals/QuickTime-api-date.html
http://developer.apple.com/referencelibrary/GettingStarted/GS_QuickTime/index.html
http://developer.apple.com/membership/index.html

This chapter describes in detail the many new and enhanced features available in QuickTime 7 for Windows.
It is intended to provide developers with a conceptual overview, in addition code samples and illustrations
of usage, so that developers can take advantage of many of these new features in QuickTime 7 for Windows
in their applications.

The new functions discussed in this chapter are cross-referenced, with links, to their complete descriptions
in Chapter 3, “New Functions, Data Types, and Constants in QuickTime 7 for Windows” (page 57).

If you are a QuickTime API-level developer, content author, multimedia producer, or Webmaster who is
currently working with QuickTime, you should read this chapter in order to understand the fundamental
changes that have taken place in the QuickTime software architecture.

Installing QuickTime 7

Both QuickTime 7 Player and QuickTime 7 Pro for Windows are available for download and purchase from
Apple, in the case of the Pro version, and will install on Windows computers that meet the hardware and
software requirements specified below.

Hardware and Software Requirements

QuickTime 7 for Windows requires the following minimum configuration:

 ■ Windows 2000 or Windows XP

 ■ Pentium processor or other processor equivalent

 ■ At least 128 MB of RAM

New Pro Key Required

QuickTime 7 for Windows replaces existing point releases of QuickTime 6 for Windows. A new Pro key is
required; QuickTime 6 Pro keys will not unlock the Pro features of QuickTime 7 for Windows.

Installing QuickTime 7 9
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

QuickTime in Perspective

The QuickTime API is dedicated to extending the reach of application developers by letting them invoke the
full range of multimedia’s capabilities. It supports a wide range of standards-based formats, in addition to
proprietary formats from Apple and others. The QuickTime API is not static, however, and has evolved over
the course of the last decade to adopt new idioms, new data structures, and new ways of doing things.

The C/C++ portion of the QuickTime API comprises more than 2500 functions that provide services to
applications. These services include audio and video playback; movie editing, composition, and streaming;
still image import, export, and display; audio-visual interactivity, and more.

New Features of QuickTime 7 for Windows

This release of QuickTime includes a number of major new features for users, developers, and content creators,
including improvements in the QuickTime architecture, file format, user interface, and API. There are significant
improvements in the audio, video, and metadata capabilities, as well as a new APIs, and numerous other
enhancements.

 ■ “Changes to QuickTime Player and QuickTime Pro” (page 13) describes the new user interface for
QuickTime Player and QuickTime Pro and some of the changes from previous versions of the Player.

 ■ “New COM/ActiveX Control” (page 15) describes the new COM Control and how you can take advantage
of the control using the tools available in Visual Basic .NET, C# and Visual Basic 6.

 ■ “Audio Enhancements” (page 32) describes the many new audio features of QuickTime 7 for Windows,
including support for multichannel sound, playback, compression, and export of high-resolution audio,
a new sound description, and new functions for movie audio control, audio conversion configuration,
audio extraction, movie export, and level and frequency metering.

 ■ “Video Enhancements” (page 45) describes QuickTime’s new support for frame reordering video
compression and the H.264 codec. Frame reordering support is a major advance that involves new
sample tables for video, allowing video frames to have independent decode and display times. This
allows improved display, editing, and compression of H.264 and other advanced video codecs. A new
set of functions and structures are introduced to allow developers to work with samples that have
independent decode and display times.

 ■ “Replacing NewMovieFrom... Functions” (page 49) describes the NewMovieFromProperties function,
which allows you to set up properties before creating a movie. This function also allows you to create
movies that are not necessarily associated with a graphics world, movies that can render their output
to a visual context, such as an OpenGL texture buffer, and movies that play to a particular audio device.

 ■ “QuickTime Metadata Enhancements and API” (page 50) describes the new QuickTime extensible
metadata format, allowing developers to efficiently reference text, audio, video, or other material that
describes a movie, a track, or a media. Support is also added for including metadata from other file types
in native format; the QuickTime 7 for Windows release includes native support for iTunes metadata.

 ■ “QuickTime Sample Table API” (page 53) describes the new API for working with QT Sample Tables, a
logical replacement for arrays of media sample references. The new API greatly extends the functionality
of media sample references, and the new API supports frame reordering compressed media.

10 QuickTime in Perspective
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ “Other Changes and Enhancements” (page 55) discusses QuickTime 7’s new default install location for
QuickTime, which has been moved from the directory \Windows\System32\QuickTime to \Program
Files\QuickTime. A number of new APIs have been created to allow developers to locate the various
directories created by the QuickTime installer. New updates and fixes to QuickTime for Java are also
discussed in this section.

New Directions in QuickTime 7 for Windows

The QuickTime software architecture has been revised to expose platform-native interfaces on Windows to
application developers. On Windows, this includes exposing QuickTime framework APIs via COM interfaces
(ActiveX).

Important: For developers to take advantage of this revised architecture, QuickTime 7 for Windows has
been rewritten from a cross-platform API (QTML) to a Windows-native implementation. This new
implementation takes full advantage of the QuickTime COM ActiveX control. Ultimately, QuickTime 7 for
Windows replaces the cross-platform application and framework that shipped as QuickTime 6.5 and its
predecessors.

Key areas of change in QuickTime 7 for Windows include:

 ■ A shift of emphasis away from the Sound Manager approach throughout QuickTime.

 ■ A shift of emphasis toward configuring components using component properties and an abstraction
layer, or context, and away from the exclusive use of standard dialogs supplemented by direct access
to low-level components.

 ■ A shift of emphasis toward a more object-oriented organization, with more high-level functionality in
QuickTime itself supporting lighter-weight applications.

What Developers Need To Do

If you work with audio at a relatively low level, you should become familiar with the structures available in
CoreAudioTypes.h and learn how they differ from the older Sound Manager. The use of Core Audio concepts
and data structures is becoming ubiquitous in QuickTime.

For details, see Apple’s Core Audio documentation, specifically the in-line comments and documentation in
the header file CoreAudioTypes.h. In particular, developers should look closely at the following structures
for audio in CoreAudioTypes.h:

 ■ AudioStreamBasicDescription. This structure encapsulates all the information for describing the
basic format properties of a stream of audio data.

 ■ AudioChannelLayout. This structure is used to specify channel layouts in files and hardware.

 ■ AudioBufferList. A variable length array of AudioBuffer structures.

If you work directly with components, you should become familiar with the API for discovering, getting, and
setting component properties. While standard dialogs for configuration are still common, there are often
times when either no dialog or an application-specific dialog is preferable, as well as cases where low-level
control or device-specific configuration is needed that a standard dialog cannot supply.

QuickTime in Perspective 11
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

http://developer.apple.com/documentation/MusicAudio/Reference/CoreAudio/index.html

For example, the component property API allows configuration at any level of detail without requiring a user
interface dialog or direct communication with low-level components. In many cases, an abstraction layer, or
context––either visual or audio––can be created, allowing transparent connection to different kinds of
low-level components, devices, or rendering engines.

The new extensible QuickTime metadata format, discussed in the section “QuickTime Metadata Enhancements
and API” (page 50), uses a similar method of configuration through an abstract set of properties, as a means
of “future-proofing” the architecture. The same is true of the new API for working with QuickTime sample
tables, described in the section “QuickTime Sample Table API” (page 53).

Object Model Evolution

A substantial reorganization of the QuickTime engine has been taking place “under the hood” in this software
release. This reorganization is intended to allow increased access to QuickTime functionality from QuickTime
framework APIs via COM interfaces (ActiveX).

As the QuickTime document object model continues to evolve, the goal is to provide developers with easier
access to the more powerful parts of the QuickTime engine using relatively lightweight object-oriented
applications or even scripts––without having to delve into the large and sometimes complex procedural
C/C++ QuickTime API.

In Summary QuickTime 6 through QuickTime 7

The following table summarizes the point releases of QuickTime 6 and the features of QuickTime 7.

FeaturesMac
OS 9

WindowsMac OS
X

QuickTime
version

MPEG-4 and lots more.xxx6

Bug fix for QuickTime 6. Last version for all three platforms.xxx6.01

Bug fixes to address security issues. Mac OS 9 only.x6.03

Improved MPEG-4 video, full-screen modes, wired actions.xx6.1

Support for iTunes 4, enhanced AAC codec, limited DRM.x6.2

Improved AAC codec, 3GPP support, which includes AMR
codec.

xx6.3

New data reference functions, multithreading, new
graphics functions, component and movie property access,
other API additions.

x6.4 for Mac OS
X

3GPP, 3GPP2, and AMC support for mobile multimedia,
Unicode text support.

xx6.5

Apple Lossless codec for audio.xx6.5.1

12 QuickTime in Perspective
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

FeaturesMac
OS 9

WindowsMac OS
X

QuickTime
version

High-resolution, multichannel audio support, frame
reordering video and H.264 support, new metadata format,
QuickTime sample table API, changes to QuickTime Player
and Pro UI.

xx7

Changes to QuickTime Player and QuickTime Pro

QuickTime 7 for Windows introduces a number of new features and changes to the user interface of QuickTime
Player and QuickTime Pro. These are briefly described in this section. New versions of both Player and Pro
are available for download from Apple.

New in QuickTime Player

The new QuickTime Player is a native Windows application. The intent of this new design is to better integrate
QuickTime Player in general with the Windows user experience.

The following are some of the new user-level features available in QuickTime Player:

 ■ H.264 video support. This state-of-the-art, standards-based codec delivers exceptional-quality video at
the lowest data rate possible, across the entire bandwidth spectrum.

 ■ New audio and playback controls. Users can use the new A/V Controls window to adjust settings for
the best audio and playback experience. Users can now easily change settings, including playback speed,
volume, bass, treble, and balance. You can also use the jog shuttle control to easily navigate to a particular
movie frame.

 ■ Zero-configuration streaming. You no longer need to set your Internet connection speed in QuickTime
Preferences. QuickTime automatically determines the best connection speed for your computer. If a
connection is lost during streaming, QuickTime automatically reconnects to the server. Users can also
select a preset connection speed.

 ■ Live resize. Playback continues smoothly as you change the size of the QuickTime Player window.

 ■ Multichannel audio. QuickTime Player can now play 24 audio channels––and beyond. With external
speakers, you can enjoy the full sound effects of movies and games.

By accessing the Window > Show Movie Properties window, selecting an audio track, and then selecting
Audio Settings, you can set the volume, balance, bass, and treble for a QuickTime movie. In addition, if
you select the sound track property in the window, you can set the speaker for each audio channel in
that track, specifying the speaker through which the audio can be heard.

 ■ All-new content guide. The completely redesigned QuickTime Content Guide provides the latest in
news, education, and entertainment on the Internet.

New in QuickTime Pro

The following are some of the new user-level features available in the Pro version of QuickTime Player:

Changes to QuickTime Player and QuickTime Pro 13
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ Creating H.264 video. Users can take advantage of this codec for a variety of video needs, ranging from
HD (high definition) to 3G (for mobile devices). This new codec provides better quality at lower bandwidth,
enabling users to deliver high-quality video over the Internet.

 ■ Creating multichannel audio. Users can create a rich multimedia experience by labeling each audio
channel (for example, Left, Right, Left Surround, LFE, and so on). QuickTime automatically mixes the
audio to work with the speaker setup of each user.

 ■ Recording audio. With a digital audio device that supports USB and line-in microphones connected to
your computer, you can capture and record audio. This new feature enables users to create, with a
minimum of effort, podcasts for posting and publication on the Internet.

 ■ Full screen playback enhancements. Full screen mode now provides floating controls. These include
pause, play, stop, fast forward, and rewind, as well as volume for audio control. Users move the pointer
to display the controller; after a few seconds, the controller fades away. Note that the controller does
not appear with interactive movies when the mouse is moved, so that it does not interfere with movie
content. Users can press the keyboard control-C to make it appear or disappear immediately.

Users can access full screen mode by choosing the View > Full Screen or using its keyboard equivalent,
Control-F. To display the DVD-style full screen controls, users choose QuickTime Player > Preferences >
Player Preferences > Full Screen.

 ■ Enhanced and redesigned interface for movie settings. The Movie Properties window has been
redesigned to facilitate movie authoring.

 ■ New options for image manipulation in the Visual Settings pane of the Movie Properties dialog of a
video track.

In addition, users are provided with other options to manipulate and control image transparency in
QuickTime movies and image files.

Other Changes and Enhancements

The following are some additional changes and enhancements in QuickTime 7 for Windows:

 ■ QuickTime Preferences now has the option “Use high quality video setting when available.” Users can
set this as the default for displaying high-quality video tracks, such as DV.

 ■ The Open File command enables users to open any of a number of digital media types that QuickTime
supports, including movies, still images, VR panoramas, Flash, and so on.

 ■ Choosing the File > New Audio Recording menu item enables you to record audio from an external or
internal audio device. Once recording begins, a new QuickTime Player window specifically for recording
appears.

 ■ To change the audio source for your recording, or to specify the quality of recording you want, you
choose QuickTime Player > Preferences > Recording.

 ■ The Save dialog that the Save As command opens now has “Make movie as a self-contained” selected
by default, which is a change from previous versions of QuickTime Player.

 ■ Choosing the Help > Update Existing Software menu item lets you update the version to the latest
version of QuickTime.

 ■ The menu items in previous versions––Enable, Extract, and Delete––are now available in the Movie
Properties window.

14 Changes to QuickTime Player and QuickTime Pro
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ There is a new command––Trim to Selection––which replaces the previous command Trim. The Replace
command has been removed, which means that users can no longer perform a delete-and-paste operation
as a single operation.

 ■ The Movie menu has been renamed and is now the View menu. The Show Movie Properties command
has been moved to the Windows menu.

 ■ Choosing the Window > Show Movie Properties menu item and selecting a track enables you to specify
certain properties of that track. For example, if you select Annotations and want to add a field, you have
multiple choices, including Album, Artist, Author, and so on.

 ■ Choosing the Window > Show Movie Properties menu item and selecting a track with Other Settings
selected enables you to specify certain properties of that track, including language, preloading of the
track, caching, and so on.

 ■ When the user moves the mouse over a selection of the movie, ticks appear that indicate you can make
a selection over that area. When you move the mouse over the playbar, the movie will appear or disappear.
Users can also set in and out points now by placing the current time marker and typing I or O.

New COM/ActiveX Control

QuickTime 7 for Windows includes a new QuickTime COM/ActiveX control. This new control is fully scriptable
from Visual Basic, C#, JavaScript, C++, and other applications that can host COM objects.

This allows you to build stand-alone Windows applications that use QuickTime without needing to master
QuickTime’s C/C++ API.

Important: This new COM control is included in addition to the QuickTime ActiveX browser plug-in. They
are not the same thing.

The new QuickTime COM control has an API that will be familiar to Visual Basic programmers and others
used to working with COM objects. It is intended to make it easy to create stand-alone Windows applications
that use QuickTime. The new COM control is not a browser plug-in, and will not run in a browser or other
Web-based application.

For Web-based applications, use the QuickTime ActiveX browser plug-in; it is scriptable using JavaScript from
most browsers using the same platform-independent API as the QuickTime browser plug-ins for Netscape
and Safari. The QuickTime browser plug-in is the cross-platform solution for writing Web pages that interact
with QuickTime.

Note: The API for controlling the QuickTime ActiveX browser plug-in using JavaScript can be found at:
http://developer.apple.com/documentation/quicktime/Conceptual/QTScripting_JavaScript/index.html.

The remainder of this section is intended for programmers who want to provide high-level QuickTime movie
playback and control, including some import, export, and editing capabilities, to Windows applications written
in Visual Basic and other languages.

New COM/ActiveX Control 15
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

http://developer.apple.com/documentation/quicktime/Conceptual/QTScripting_JavaScript/index.html

Advantages For Developers

If you are a Visual Basic programmer or enterprise software developer doing in-house development, the COM
control implementation offers a number of important advantages:

 ■ You can build Windows desktop applications more easily with Visual Basic or C#, combining QuickTime
with the rich and powerful .NET Framework.

 ■ You can write useful utility scripts for working with QuickTime in either JavaScript or VBScript. These
scripts can be run within the Windows Scripting Host environment by simply double-clicking the .js or
.vbs script files, or from the command line using cscript.

 ■ You don’t have to access the low-level functionality provided by the full QuickTime API in order to use
QuickTime in your application development.

For example, if your Windows server can run a Visual Basic, C#, or .js application that uses QuickTime, you
have the possibility to create custom QuickTime content interactively, delivering that content over the Web.
As long as your clients have QuickTime installed, your content will work with Windows and non-Windows
clients, Internet Explorer and non-Internet Explorer browsers.

QuickTime Player itself uses the new QuickTime COM control for virtually all of its access to QuickTime.

Important: The QuickTime 7 ActiveX browser plug-in is not scriptable via Visual Basic. It is scriptable, however,
in JavaScript using the same syntax as the Netscape-style plug-in, and works the same on all browsers for
Windows or Macintosh.

How It Works

The new COM control is comprised of two separate DLLs:

 ■ An COM/ActiveX control (QTOControl.dll) that “knows” how to open a movie and manage the
interaction with the operating system and the host application.

 ■ A COM library (QTOLibrary.dll) which provides a COM interface to a movie and to QuickTime itself.

The COM library is a very thin layer that sits on top of the low level QuickTime APIs and provides a COM
wrapper object for each logical QuickTime object. Each COM object exposes the properties, methods, and
notifications of the QuickTime object it wraps.

The object hierarchy is illustrated in Figure 2-1.

16 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Figure 2-1 The COM/ActiveX control object hierarchy

QTControl

QTQuickTime

QTMovie

collection

collection

collection

QTTracks

QTChapters

QTVRNodes

QTFrequencyMeter

QTExporters

QTSettings

QTExporter

collection (Stream track only)

QTTrack

QTStreams

QTStream

QTChapter

collection

QTVRNode

QTHotspots

QTHotspot

Note that the QTMovieEqualizer object illustrated in Figure 2-1 should be QTFrequencyMeter.

If you are a Windows developer, you know that the Component Object Model (COM) specification defines
how a host application accesses the component, how the component notifies the host application of events,
standard data types for data exchange with the OS or other components. A COM control is a type of COM
component that has a visual display of some kind, restricting its placement to visual containers such as a
form or dialog box. COM controls typically manage their own window.

In the .NET environment, the new QuickTime COM control is accessed via the .NET Framework’s COM Interop
layer. Primary Interop Assemblies (.NET wrappers for COM objects) will be provided with the QuickTime 7
SDK.

New COM/ActiveX Control 17
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Note: The COM control does not provide a native managed code interface to QuickTime.

Visual Basic .NET and C#

The QuickTime COM control has a property page––that is, a dialog box that allows you to set some QuickTime
control properties. You access the property page by clicking the Property Pages button in the toolbar on the
Properties window.

To use the constants and enumerations associated with the QuickTime COM control, you must either explicitly
precede them with the QTOControlLib namespace identifier, or else include an import for the
QTOControlLib.

In Visual Basic, you do this with an Imports directive at the beginning of your module.

An example of using an explicit namespace identifier is, as follows:

AxQTControl1.Sizing = QTOControlLib.QTSizingModeEnum.qtControlFitsMovie

AxQTControl1.SetScale(2)

AxQTControl1.Sizing = QTOControlLib.QTSizingModeEnum.qtMovieFitsControl

The same example with imported namespace:

Imports QTOControlLib
AxQTControl1.Sizing = QTSizingModeEnum.qtControlFitsMovie

AxQTControl1.SetScale(2)

AxQTControl1.Sizing = QTSizingModeEnum.qtMovieFitsControl

In C#, the namespace can be imported with the using directive:

using QTOControlLib;

To use the constants and enumerations associated with the QT COM library, you must either explicitly precede
them with the QTOLibrary namespace identifier, or else include an import (C#: using directive) for the
QTOLibrary.

Important: If you are working with QuickTime audio, when you open a movie using the COM/ActiveX
control, you will get the pitch-preserving varispeed by default. This is not the case when you open a movie
using legacy interfaces, nor when using NewMovieFromProperties without having set the
kQTAudioPropertyID_RateChangesPreservePitch property to TRUE.

Getting Started With QuickTime COM Control

Once you instantiate the QuickTime COM control and load a movie into it, you can then get at the QTOLibrary
object model via the control’s Movie property, which returns a QTMovie COM object.

To get started with the new COM control, in VB.NET or C#:

1. Create a new Windows Application project.

18 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

2. Right-click on the Windows Forms toolbox, choose Add/Remove Items... and select the COM Components
tab.

3. Scroll down until you find Apple QuickTime Control 2.0.

4. Click this control and click OK to add the QuickTime control to your toolbox. You should now see a
QuickTime icon.

5. Place the control on Form1.

6. Place two buttons on the form and code as follows:

 Private Sub Button1_Click(...) Handles Button1.Click

 AxQTControl1.URL = "d:\movies\sample.mov" 'Change to your own movie!

 End Sub

 Private Sub Button2_Click(...) Handles Button2.Click

 AxQTControl1.Movie.Play()

 End Sub

After you have completed these steps, you can:

1. Build and run the application.

2. Click Button1 to load a movie; then click Button2 to play the movie.

In Visual Basic 6, you need to follow these steps:

1. Create a new Standard EXE project.

2. Choose Project | Components and scroll down to the Apple QuickTime Control 2.0. Click this component
and click OK to add to the Visual Basic 6 toolbox.

3. Add the QuickTime control to Form1.

4. Create two buttons and code as follows:

Private Sub Command1_Click()
 QTControl1.URL = "d:\movies\sample.mov" 'Change to your own movie!

 End Sub

 Private Sub Command2_Click()

 QTControl1.Movie.Play

 End Sub

Now you can run the application. Click Command1 to load the movie and Command2 to play the movie.

New COM/ActiveX Control 19
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Once you have loaded a movie and have the QTMovie object from the control’s Movie property, you can
proceed to delve down into the object model. For example:

 'Iterate movie tracks (VB6)
 Dim myMovie As QTMovie
 Dim t As String

 Set myMovie = QTControl1.Movie

 Dim trk As QTTrack
 Dim qtu As New QTUtils
 For Each trk In myMovie.Tracks
 t = t + "Track : " + CStr(i) + vbCrLf
 t = t + vbTab + "Type : " + qtu.FourCharCodeToString(trk.Type)
 + vbCrLf
 t = t + vbTab + "Format : " + trk.Format + vbCrLf
 t = t + vbTab + "Duration : " + CStr(trk.Duration) + vbCrLf
 Next trk

 txtResults = t$

In order to use the QuickTime COM object types in your Visual Basic 6 application you will need to add the
QuickTime COM library to your project. Choose Project | References and add the Apple QuickTime Library
2.0.

Example Code To Create a Simple COM/ActiveX Control Application
in Visual Basic 6

This section includes two code samples, one bare bones, letting you simply open and edit a QuickTime movie,
and the other more fully featured. Using this example code you can create a simple COM/ActiveX control
application in Visual Basic 6. The code is provided here with some comments and discussion.

Important: A good learning tutorial on how to script the COM/ActiveX control is available at http://devel-
oper.apple.com/quicktime/activexcontrol.html and the sample code that lets you build a simple movie player
application in Visual Basic 6 is available at http://developer.apple.com/samplecode/MoviePlayer/MoviePlay-
er.html. The sample demonstrates the following capabilities: movie playback with a movie controller, opening
and closing movies, opening and closing movies from URLs, simple editing with cut, copy, and paste commands
implemented; undo, export, export with a dialog, QuickTime event handling, Form resizing, error handling,
fullscreen playback, as well as movie information display, such as duration, track types, track formats, and so
on. If you are a Windows developer working with the new COM/ActiveX control, you are encouraged to
explore both the tutorial and the sample code available, which extends the code examples #1 and #2 described
in the next section, adding, in particular, export and QuickTime event notification functionality.

Code Example #1

The sample COM/ActiveX control application has a Form, with File and Edit menus. The File menu includes
the following menu items:

 ■ Open

 ■ Close

20 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

http://developer.apple.com/quicktime/activexcontrol.html
http://developer.apple.com/quicktime/activexcontrol.html
http://developer.apple.com/samplecode/MoviePlayer/MoviePlayer.html
http://developer.apple.com/samplecode/MoviePlayer/MoviePlayer.html

 ■ Full Screen

 ■ Exit

The Edit menu includes these menu items:

 ■ Undo

 ■ Cut

 ■ Copy

 ■ Paste

If you want to edit any of these menus, you bring up the Form, go to Tools, then open the Menu Editor. The
name of the menu determines the name of the handler that gets called.

In Example #1, Menu File_click is the handler that is called and passed the index. None of the menu items,
as shown in Listing 2-1, are hooked up yet; when you click an item, it will exit the application.

If you look at the Form, you see there is an instance of the QuickTime Control. When you click an object in
Visual Basic, it brings up the Property Inspector.

By default, when you create a new object, it takes the name of the class and appends a number to it. Unless
you change it, it is called QTControl1. When it launches, there is an instance of this QTControl1 created.

Listing 2-1 shows you how to show an open a file and display a common dialog for the QuickTime control.
The code in Listing 2-2 adds menu items to the File and Edit menu. The remaining code listings in Example
#2 deal with sizing the movie, when you want to change the size of the movie to fit the size of the control,
or display the movie at full screen. Example #2 also shows how to add an information window to the control,
in addition to minimal error checking, and demonstrates how to respond to events.

Important: Using Visual Basic, if you run a project, it may keep the control open, even when you quit the
project. For any dll that QuickTime loads, Visual Basic keeps everything in your project loaded, so you can
get into a state where you have to quit QuickTime and relaunch. After doing this, everything will work as
expected.

Remember, you need to add the Apple QuickTime Control 2.0 and Microsoft Common Dialog Control 6.0
components to the project.

Listing 2-1 The GetFileName function to display a dialog for the QuickTime control

Function GetFileName()

 Form1.CommonDialog1.ShowOpen
 GetFileName = Form1.CommonDialog1.FileName

End Function

Listing 2-2 Adding menu items

Private Sub mnuEdit_Click(Index As Integer)

 Select Case Index
 Case 0 'Undo

New COM/ActiveX Control 21
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 Case 2 'Cut
 Case 3 'Copy
 Case 4 'Paste
 End Select

End Sub

Private Sub mnuFile_Click(Index As Integer)

 Select Case Index
 Case 0 'Open
 QTControl1.URL = GetFileName()
 Case 1 'Close
 Case 3 'Full Screen
 Case 5 'Exit
 Unload Me
 End
 End Select

End Sub

Code Example #2

The following code (Example #2) provides a more fully featured QuickTime control. In this example, you add
an information window, minimal error checking, and the capability of responding to events.

Follow these steps:

1. Create a new VB6 Standard EXE project.

2. Add the Apple QuickTime Control 2.0 and Microsoft Common Dialog Control 6.0 components to the
project.

3. Add the Apple QuickTime Library 2.0 reference to the project.

4. Add two forms: Form1 and frmInfo.

5. To Form1 add:

a. File menu (mnuFile) with Open…, Open URL…, Close, Get Info, Full Screen and Exit menu items.

b. Edit menu (mnuEdit) with Undo, Cut, Copy, Paste.

c. A Common Dialog control (CommonDialog1).

d. A QuickTime control (QTControl1).

6. Set the menu items index values to match the corresponding index values in mnuFile_Click and
mnuEdit_Click.

7. To frmInfo add:

a. 4 Label controls: lblName, lblInfo, lblCaptions and lblData with AutoSize = True

22 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

8. Paste Listing 2-3 and Listing 2-4 into the code window of Form1 and Listing 2-5 into the code window
of frmInfo.

Listing 2-3 The VB 6 code for the QuickTime control sample movie form

Object = "{7B92F833-027D-402B-BFF9-A67697366F4E}#1.0#0"; "QTOControl.dll"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; "comdlg32.ocx"
Begin VB.Form MovieForm
 Caption = "Movie"
 ClientHeight = 4260
 ClientLeft = 132
 ClientTop = 816
 ClientWidth = 4080
 LinkTopic = "MovieForm"
 ScaleHeight = 4260
 ScaleWidth = 4080
 StartUpPosition = 3 'Windows Default
 Begin MSComDlg.CommonDialog CommonDialog1
 Left = 3240
 Top = 600
 _ExtentX = 847
 _ExtentY = 847
 _Version = 393216
 End
 Begin QTOControlLibCtl.QTControl QTControl1
 Height = 4332
 Left = 0
 TabIndex = 0
 Top = 0
 Width = 4056
 _cx = 7154
 _cy = 7641
 BackColor = -2147483644
 BorderColor = 0
 BorderStyle = 0
 MovieControllerVisible= -1 'True
 Sizing = 0
 URL = ""
 BaseURL = ""
 AutoPlay = ""
 End
 Begin VB.Menu mnuBar
 Caption = "&File"
 Index = 0
 Begin VB.Menu mnuFile
 Caption = "&Open..."
 Index = 0
 Shortcut = ^O
 End
 Begin VB.Menu mnuFile
 Caption = "Open &URL..."
 Index = 1
 End
 Begin VB.Menu mnuFile
 Caption = "&Close"
 Index = 2
 End

New COM/ActiveX Control 23
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 Begin VB.Menu mnuFile
 Caption = "-"
 Index = 3
 End
 Begin VB.Menu mnuFile
 Caption = "&Full Screen"
 Index = 4
 End
 Begin VB.Menu mnuFile
 Caption = "Get Info"
 Index = 5
 Shortcut = ^I
 End
 Begin VB.Menu mnuFile
 Caption = "-"
 Index = 6
 End
 Begin VB.Menu mnuFile
 Caption = "Exit"
 Index = 7
 End
 End
 Begin VB.Menu mnuBar
 Caption = "Edit"
 Index = 1
 Begin VB.Menu mnuEdit
 Caption = "Undo"
 Index = 0
 End
 Begin VB.Menu mnuEdit
 Caption = "Cut"
 Index = 2
 End
 Begin VB.Menu mnuEdit
 Caption = "Copy"
 Index = 3
 End
 Begin VB.Menu mnuEdit
 Caption = "Paste"
 Index = 4
 End
 End
End
Attribute VB_Name = "MovieForm"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit
Dim gManualFormResize As Boolean

Private Declare Function GetSystemMetrics Lib "user32" (ByVal nIndex As Long)
As Long
Private Const SM_CYCAPTION = 4
Private Const SM_CYFRAME = 33
Private Const SM_CYMENU = 15

Function GetFileName()

24 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 MovieForm.CommonDialog1.InitDir = "d:\QuickTime\Movies"
 MovieForm.CommonDialog1.ShowOpen
 GetFileName = MovieForm.CommonDialog1.FileName
End Function

Function GetFormBorderWidth()
 GetFormBorderWidth = GetSystemMetrics(SM_CYFRAME) * 2
End Function

Function GetFormBorderHeight()
 GetFormBorderHeight = GetSystemMetrics(SM_CYCAPTION) +
GetSystemMetrics(SM_CYMENU) + (GetSystemMetrics(SM_CYFRAME) * 2)
End Function

Private Sub Form_Load()
 QTControl1.ErrorHandling = qtErrorHandlingRaiseException
 QTControl1.Sizing = qtControlFitsMovie
 Load MovieInfo
End Sub

Private Sub Form_Resize()
 Dim oldSizingMode As QTSizingModeEnum

 gManualFormResize = True ' global flag so _SizeChanged won't respond

 ' change sizing mode so the movie tracks the control's size
 oldSizingMode = QTControl1.Sizing
 QTControl1.Sizing = qtMovieFitsControl
 QTControl1.Move 0, 0, Me.Width - (GetFormBorderWidth() *
Screen.TwipsPerPixelX), Me.Height - (GetFormBorderHeight() *
Screen.TwipsPerPixelY)
 QTControl1.Sizing = oldSizingMode

 gManualFormResize = False
End Sub

Private Sub Form_Unload(Cancel As Integer)
 MovieInfo.SetInfoMovie Nothing
 QTControl1.URL = ""
 DoEvents
 End
End Sub

Private Sub mnuEdit_Click(Index As Integer)
 If QTControl1.Movie Is Nothing Then Exit Sub
 Select Case Index
 Case 0 ' Undo
 QTControl1.Movie.Undo
 Case 2 ' Cut
 QTControl1.Movie.Cut
 Case 3 ' Copy
 QTControl1.Movie.Copy
 Case 4 ' Paste
 QTControl1.Movie.Paste
 End Select
End Sub

Private Sub mnuFile_Click(Index As Integer)

New COM/ActiveX Control 25
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 On Error GoTo ErrorHandler
 Dim filePath
 Select Case Index
 Case 0 ' Open
 filePath = GetFileName()
 If filePath <> "" Then
 QTControl1.URL = filePath
 MovieInfo.SetInfoMovie QTControl1.Movie
 End If
 Case 1 ' Open URL
 Dim movieURL As String
 movieURL = InputBox("Enter a URL:", "URL", "http://www.server.com/
 movies/sample.mov")
 If movieURL <> "" Then
 QTControl1.URL = movieURL
 MovieInfo.SetInfoMovie QTControl1.Movie
 End If
 Case 2 ' Close
 QTControl1.URL = ""
 MovieInfo.SetInfoMovie Nothing
 Case 4 'Full Screen
 If QTControl1.URL <> "" Then QTControl1.FullScreen = True
 Case 5 ' Get Info
 MovieInfo.SetInfoMovie QTControl1.Movie
 MovieInfo.Move Me.Left + Me.Width + 200, Me.Top
 MovieInfo.Show
 Case 7 ' Exit
 Unload Me
 End
 End Select

 Exit Sub

ErrorHandler:
 Beep
 Dim errStr As String
 errStr = "Failed with error #" & Hex(Err.Number) & ", " & Err.Description
 MsgBox errStr, vbCritical
End Sub

Private Sub QTControl1_SizeChanged(ByVal Width As Long, ByVal Height As Long)
 ' ignore event if control was resized as a result of form being resized.
 If gManualFormResize Then Exit Sub

 ' resize window to accomodate control
 Me.Move Me.Left, Me.Top, (Width + GetFormBorderWidth()) *
Screen.TwipsPerPixelX, (Height + GetFormBorderHeight()) * Screen.TwipsPerPixelY
End Sub

Private Sub QTControl1_StatusUpdate(ByVal statusCodeType As Long, ByVal statusCode
 As Long, ByVal statusMessage As String)
 Select Case statusCodeType
 Case qtStatusCodeTypeControl
 Select Case statusCode
 Case qtStatusFullScreenBegin
 Me.Hide ' hide movie window

 Case qtStatusFullScreenEnd

26 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 QTControl1.SetScale 1 ' set back to a reasonable size
 Me.Show
 End Select
 End Select
End Sub

Listing 2-4 The VB 6 code for the movie information form

Begin VB.Form MovieInfo
 BorderStyle = 4 'Fixed ToolWindow
 Caption = "Movie Info"
 ClientHeight = 5148
 ClientLeft = 48
 ClientTop = 288
 ClientWidth = 5880
 LinkTopic = "Form2"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 5148
 ScaleWidth = 5880
 ShowInTaskbar = 0 'False
 StartUpPosition = 3 'Windows Default
 Begin VB.Frame Frame1
 Height = 3495
 Left = 120
 TabIndex = 2
 Top = 1560
 Width = 5655
 Begin VB.Label lblData
 Height = 3135
 Left = 1560
 TabIndex = 4
 Top = 240
 Width = 3975
 End
 Begin VB.Label lblCaptions
 Alignment = 1 'Right Justify
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 7.8
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 3135
 Left = 120
 TabIndex = 3
 Top = 240
 Width = 1335
 End
 End
 Begin VB.Label lblInfo
 Alignment = 2 'Center
 BeginProperty Font
 Name = "MS Sans Serif"

New COM/ActiveX Control 27
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 Size = 7.8
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 975
 Left = 120
 TabIndex = 1
 Top = 480
 Width = 5535
 End
 Begin VB.Label lblName
 Alignment = 2 'Center
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 9.6
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 120
 TabIndex = 0
 Top = 120
 Width = 5535
 End
End
Attribute VB_Name = "MovieInfo"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Dim gMovie As QTMovie

Private Sub Form_Load()
 DisplayMovieData
End Sub

Sub SetInfoMovie(myMovie As QTMovie)
 Set gMovie = myMovie
 DisplayMovieData
End Sub

Function MovieAnnotation(annoID As Long, mov As QTMovie) As String
 ' Annotation returns an error if asked for an annotation that
 ' does not exist (so you can tell the difference between an
 ' annotation that is missing and one that is set to an empty
 ' string), so we need to be prepared for an exception
 On Error Resume Next
 Dim anno As String

 anno$ = "" ' value will remain if getting value throws exception

28 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 If Not (mov Is Nothing) Then anno$ = mov.Annotation(annoID)
 MovieAnnotation = anno
End Function

Sub DisplayMovieData()
 Dim dataStr As String
 Dim captionsStr As String
 Dim annoStr As String

 Dim track As QTTrack

 lblName = ""
 lblInfo = ""
 lblCaptions = ""
 lblData = ""

 If gMovie Is Nothing Then Exit Sub

 On Error GoTo ErrorHandler
 lblName = MovieAnnotation(qtAnnotationFullName, gMovie)

 ' get some annotations
 lblInfo = ""
 annoStr = MovieAnnotation(qtAnnotationCopyright, gMovie)
 If Trim(annoStr) <> "" Then lblInfo = lblInfo & annoStr & vbCrLf
 annoStr = MovieAnnotation(qtAnnotationAuthor, gMovie)
 If Trim(annoStr) <> "" Then lblInfo = lblInfo & annoStr & vbCrLf
 annoStr = MovieAnnotation(qtAnnotationComments, gMovie)
 If Trim(annoStr) <> "" Then lblInfo = lblInfo & annoStr & vbCrLf
 annoStr = MovieAnnotation(qtAnnotationDescription, gMovie)
 If Trim(annoStr) <> "" Then lblInfo = lblInfo & annoStr & vbCrLf

 captionsStr = "Source:" & vbCrLf & vbCrLf
 dataStr = Trim(gMovie.URL) & vbCrLf & vbCrLf

 captionsStr = captionsStr & "Size:" & vbCrLf & vbCrLf
 dataStr = dataStr & gMovie.Width & " x " & gMovie.Height & vbCrLf & vbCrLf

 captionsStr = captionsStr & "Duration:" & vbCrLf & vbCrLf
 dataStr = dataStr & gMovie.Duration & vbCrLf & vbCrLf

 For Each track In gMovie.Tracks
 captionsStr = captionsStr & track.DisplayName & ":" & vbCrLf
 dataStr = dataStr & track.Format
 If track.Height > 0 Then
 dataStr = dataStr & ", " & track.Width & " x " & track.Height &
vbCrLf
 End If
 Next track

 lblCaptions = captionsStr
 lblData = dataStr
 Exit Sub

ErrorHandler:
 dataStr = dataStr & "Error #" & Hex(Err.Number) & ", " & Err.Description &
 vbCrLf
 Resume Next

New COM/ActiveX Control 29
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

End Sub

Listing 2-5 Code for handling the sizing of the QuickTime movie

Option Explicit
Dim bFormResized As Boolean

Private Sub Form_Load()

 QTControl1.ErrorHandling = qtErrorHandlingRaiseException
 QTControl1.sizing = qtControlFitsMovie
 Load frmInfo

End Sub

Private Sub Form_Resize()
 Dim sizingMode As QTSizingModeEnum
 Dim resetSizing As Boolean

 bFormResized = True

 ' set the sizing mode to "movie fits control" so the movie will adjust
 ' itself as to the new control size
 sizingMode = QTControl1.sizing
 If sizingMode = qtControlFitsMovie Then
 QTControl1.sizing = qtMovieFitsControl
 resetSizing = True
 Else
 resetSizing = False
 End If

 QTControl1.Move 0, 0, Me.Width - (GetFormBorderWidth() *
Screen.TwipsPerPixelX), Me.Height - (GetFormBorderHeight() *
Screen.TwipsPerPixelY)

 If resetSizing Then QTControl1.sizing = sizingMode

 bFormResized = False
End Sub

Private Sub Form_Unload(Cancel As Integer)

 frmInfo.SetInfoMovie Nothing
 QTControl1.URL = ""
 DoEvents
 End

End Sub

Private Sub mnuEdit_Click(Index As Integer)

 Select Case Index
 Case 0 'Undo
 QTControl1.Movie.Undo
 Case 2 'Cut
 QTControl1.Movie.Cut
 Case 3 'Copy

30 New COM/ActiveX Control
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 QTControl1.Movie.Copy
 Case 4 'Paste
 QTControl1.Movie.Paste
 End Select

End Sub

Private Sub mnuFile_Click(Index As Integer)

 Dim FileName

 Select Case Index

 Case 0 'Open
 ' make the control automatically resize itself whenever the movie
 ' size changes
 QTControl1.sizing = qtControlFitsMovie

 FileName = GetFileName()
 If FileName <> "" Then

 QTControl1.URL = FileName

 If frmInfo.Visible Then
 frmInfo.SetInfoMovie QTControl1.Movie
 End If

 End If

 Case 1 'Open URL
 QTControl1.sizing = qtControlFitsMovie

 Dim URL$

 URL$ = InputBox("Enter a URL:", "URL", "http://www.server.com/movies/
 sample.mov")

 If URL$ <> "" Then

 QTControl1.URL = URL$

 If frmInfo.Visible Then
 frmInfo.SetInfoMovie QTControl1.Movie
 End If

 End If

 Case 2 'Close
 frmInfo.SetInfoMovie Nothing
 QTControl1.URL = ""
 frmInfo.Hide
 Case 4 'Full Screen
 If QTControl1.URL <> "" Then QTControl1.FullScreen = True
 Case 5 'Get Info
 If QTControl1.URL <> "" Then
 frmInfo.SetInfoMovie QTControl1.Movie
 frmInfo.Move Me.Left + Me.Width + 200, Me.Top

New COM/ActiveX Control 31
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 frmInfo.Show
 End If
 Case 7 'Exit
 Unload Me
 End

 End Select

End Sub

Private Sub QTControl1_SizeChanged(ByVal Width As Long, ByVal Height As Long)

 ' Ignore event if control was resized as a result of form being resized.
 ' avoids race condition
 If bFormResized Then Exit Sub

 'Resize window to accomodate control
 Me.Move Me.Left, Me.Top, (Width + GetFormBorderWidth()) *
Screen.TwipsPerPixelX, (Height + GetFormBorderHeight()) * Screen.TwipsPerPixelY

End Sub

Audio Enhancements

QuickTime 7 for Windows breaks free of the limitations of the Sound Manager, adding many new features
and capabilities that developers can take advantage of in their audio playback and authoring applications.

Notably, QuickTime 7 for Windows now supports high-resolution audio, that is, audio sampled at sample
rates higher than 64 kHz and up to 192 kHz, with up to 24 channels and support for surround sound. This is
in stark contrast to the implementation of the Sound Manager, which only supported mono and stereo.

The result of these new audio enhancements is as follows:

 ■ A much richer approach to sound in QuickTime, with support for higher sampling rates, such as 96 kHz
and 192 kHz, multiple channels and multiple channel layouts, including 5.1 surround sound and up to
24 discrete channels, meaning channels without any layout imposed on them. Support is also provided
for a variety of more accurate audio representations, such as 24-bit uncompressed audio, playback, and
export. Synchronization and access to uncompressed audio on a per-sample basis is also greatly improved,
including access to raw PCM audio samples from VBR-compressed audio sources.

 ■ The introduction of a new abstraction layer: the audio context. An audio context represents a connection
to a particular audio device. Using an audio context allows you to easily connect a movie to an audio
device.

 ■ Conversion of audio from one format to another on the fly, performing channel mix-down or remapping,
upsampling or downsampling, and sample conversion as needed. This conversion can be performed
during export, or as part of the output chain to a device with different playback characteristics than the
stored audio.

Most components––with a few exceptions such as streaming and MPEG-4 exporting––will be able to make
use of these new capabilities immediately. This release of QuickTime updates a number of components so
that it is possible to play back, edit, and export a broad variety of enhanced audio right away.

In brief, QuickTime 7 for Windows includes the following enhancements, discussed in this section:

32 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ A new abstraction layer for audio

 ■ A new sound description

 ■ A suite of sound description functions

 ■ New movie property to prevent pitch-shifting

 ■ New functions for gain, balance, and mute

 ■ New level and frequency metering API

 ■ New audio extraction and conversion API

 ■ New audio compression configuration component

 ■ New movie export properties to support high-resolution audio

New Abstraction Layer For Audio

QuickTime 7 for Windows introduces the audio context––a new abstraction that represents playing to an
audio device.

As defined, a QuickTime audio context is an abstraction for a connection to an audio device. This allows you
to work more easily and efficiently with either single or multiple audio devices in your application.

Creating an Audio Context

To create an audio context, you call QTAudioContextCreateForAudioDevice and pass in the UID of the
device, which is a CFStringRef. An audio context is then returned. You can then pass that audio content
either into NewMovieFromProperties, or you can open your movie however you would normally open it
and call SetMovieAudioContext. What that does is route all the sound tracks of the movie to that particular
device.

If you want to create an audio context and assign a device to it on Windows, use the following call:

extern OSStatus
QTAudioContextCreateForAudioDevice(
 CFAllocatorRef allocator,
 CFStringRef audioDeviceUID,
 CFDictionaryRef options,
 QTAudioContextRef * newAudioContextOut);

Then use the SetMovieAudioContext call on your movie, and it will play to that device.

To get a list of devices on Windows––so you can pass an audioDeviceUID CFString to
QTAudioContextCreateForAudioDevice––use the native Windows DirectSound APIs (specifically, the
DirectSoundEnumerate function, from dsound.h). Iterating through the list of DirectSound devices, you
get a callback for each one that gives you the device’s GUID (LPGUID), description (LPCSTR), and module
(LPCSTR). The most important one is the description, which is the device’s name. QuickTime uses this as its
device UID on Windows. So once you find the device you want, you create a CFStringRef for it, and pass
this to QTAudioContextCreateForAudioDevice.

Audio Enhancements 33
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Important: On Windows, the audioDeviceUID is the GUID of a DirectSound device, stringified using such
Win32 functions as StringFromCLSID or StringFromGUID2, then wrapped in a CFStringRef using
CFStringCreateWithCharacters. After passing the audioDeviceUID CFStringRef to
QTAudioContextCreateForAudioDevice, remember to CFRelease the CFStringRef you created.

Note: If you want to route two different movies to the same device, you cannot use the same audio context
because the audio context is a single connection to that device. What you do is call
QTAudioContextCreateForAudioDevice again and pass in the same device UID to get another
AudioContext for the same device, and pass that to your second movie.

High-Resolution Audio Support

High-resolution audio makes use of an enhanced sound description with the ability to describe high sampling
rates, multiple channels, and more accurate audio representation and reproduction.

Significantly, the new sound description has larger fields to describe the sampling rate and number of
channels, so that the sound description is no longer the limiting factor for these characteristics.

The sound description has built-in support for variable-bit-rate (VBR) audio encoding with variable-duration
compressed frames. Extensions to the sound description allow you to describe the spatial layout of the
channels, such as quadraphonic and 5.1 surround sound, or to label channels as discrete––that is, not tied
to a particular geometry. For more information, see “SoundDescriptionV2” (page 243).

New movie audio properties include a summary channel layout property, providing a nonredundant listing
of all the channel types used in the movie—such as L/R for stereo, or L/R/Ls/Rs/C for 5-channel surround
sound—and a device channel layout, listing all the channel types used by the movie’s output device.

Figure 2-2 shows the layout of surround speakers. The terminology is defined in Table 2-1.

34 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Figure 2-2 Layout of surround speakers

LFE

Ls Rs

L R

C

Table 2-1 Surround sound definitions

DefinitionSpeaker

Left speakerL

Right speakerR

Center speakerC

Left surround speakerLs

Right surround speakerRs

Sub-woofer (Note that LFE is an abbreviation for low-frequency effects)LFE

The new sound description is supported by the data types and structures found in CoreAudioTypes.h.
While the Core Audio API itself is not available to Windows programmers, QuickTime for Windows does
include the relevant data structures, such as audio buffers, stream descriptions, and channel layouts defined
in CoreAudioTypes.h.

A suite of functions has been included to support the handling of sound descriptions opaquely.

Playback

Playback at the high level is automatic and transparent; if you play a movie that contains 96 kHz or 192 kHz
sound, it should just work. You should not have to modify your code. The same is true for cut-and-paste
editing. If the chosen output device does not support the channel layout, sampling rate, or sample size of
the movie audio, mix-down and resampling are performed automatically.

Audio Enhancements 35
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Import of high-resolution audio is automatic, provided the import component has been updated to support
high-resolution audio.

QuickTime will play to any device that has a DirectSound driver. If it appears in the list of devices when you
call DirectSoundEnumerate, QuickTime will play to it.

There are some caveats, however. If it is a device that only accepts a compressed stream (that is, an AC-3
stream), you will only hear silence. QuickTime does not provide CoreAudio HAL or AudioUnit or AudioConverter
interfaces on Windows, so you cannot use these to query devices. You may use the facilities that DirectSound
provides. QuickTime provides an audio panel in the QuickTime Preferences on Windows that lets users to
specify the channel layout, sample rate, and bit depth of their playback device.

QuickTime Settings Dialogs

QuickTime 7 for Windows introduces a new series of settings dialogs for improved control over audio playback.

QuickTime does not manage a list of devices that is separate from the list available in Windows. If you want
to set your input and output devices, you click in the appropriate settings field. In the Sound Out area of the
Audio tab in the QuickTime Settings dialog (Figure 2-3), the sound characteristics of the playback device are
not changed. If the user specifies 48 kHz, for example, QuickTime will not go to the output device and flip a
switch to that setting.

Figure 2-3 illustrates the QuickTime Settings dialog with the Audio tab selected. Thisdialog lets users configure
QuickTime to use the proper settings for their audio device. Users can select the output format supported
by aparticular audio device, including sample rate, sample size, and number of channels.(You cannot use
this dialog to change the settings of the actual output device, only the format that QuickTime sends to the
device.)

36 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Figure 2-3 The QuickTime Settings dialog with the Audio tab selected

Figure 2-4 illustrates the various settings that are available for audio, including channel assignment. This
information panel in QuickTime Player lets users modify some aspects of a movie’s audio, such as volume,
balance, bass, and treble.

Audio Enhancements 37
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Figure 2-4 Audio settings dialog, including channel assignment

Figure 2-5 illustrates the Sound Settings dialog in QuickTime 7 for Windows. This audio compression settings
dialog comes up during an export.

38 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Figure 2-5 Sound settings dialog that includes user-definable choices for format, channels, and rate of
audio playback

Export

Export of high-resolution audio is likewise transparent at the high level. Export at the lower levels requires
some additional code. Your application must “opt in” to the new audio features explicitly if it “talks” directly
to an export component instance. You do this by calling QTSetComponentProperty on the exporter
component instance and passing in the
kQTMovieExporterPropertyID_EnableHighResolutionAudioFeatures property. This is illustrated
in the code sample Listing 2-6 (page 45).

Sound Description Creation and Accessor Functions

QuickTime 7 for Windows provides new functions that let you create, access, and convert sound descriptions.

Sound descriptions can take three basic inputs: an AudioStreamBasicDescription, a channel layout, and
a magic cookie. Sound descriptions are now treated as if they are opaque. In QuickTime 7, when you are
handed a sound description, for example, you don’t have to go in and look at the version field.

If you want to create a sound description, you can simply hand it an AudioStreamBasicDescription, an
optional channel layout if you have one, and an optional magic cookie if you need one for the described
audio format. Note that it is the format (codec) of the audio that determines whether it needs a magic cookie,
not the format of the sound description.

By calling QTSoundDescriptionCreate (page 219), you can make a sound description of any version you
choose––for example, one that is of the lowest possible version, given that it is stereo and 16-bit, or one of
any particular version you want or request.

Audio Enhancements 39
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

The main point about the new API is the capability provided to create a sound description and the usage of
new property getters and setters. To accomplish this, follow these steps:

1. Get an AudioStreamBasicDescription from a sound description.

2. Get a channel layout from a sound description (if there is one).

3. Get the magic cookie from magic cookie (if there is one).

You can also:

1. Get a user-readable textual description of the format described by the SoundDescription.

2. Add or replace a channel layout to an existing sound description. For example, this is what QuickTime
Player does in the properties panel where the user can change the channel assignments.

3. Add a magic cookie to a sound description. (This is not needed very often unless you are writing a movie
importer, for example.)

To convert an existing QuickTime sound description into the new V2 sound description, you call
QTSoundDescriptionConvert (page 219). This lets you convert sound descriptions from one version to
another.

For a description of versions 0 and 1 of the SoundDescription record, see the documentation for the
QuickTime File Format.

For a description of version 2 of the SoundDescription record, see “SoundDescriptionV2” (page 243).
For details of the sound description functions, see QTSoundDescriptionCreate (page 219) and
QTSoundDescriptionConvert (page 219).

For details on getting and setting sound description properties, see
QTSoundDescriptionGetProperty (page 222) andQTSoundDescriptionSetProperty (page 223)

Audio Playback Enhancements

In addition to playing back high-resolution audio, QuickTime 7 for Windows introduces the following audio
playback enhancements:

 ■ The ability to play movies at a nonstandard rate without pitch-shifting the audio.

 ■ Getting and setting the gain, balance, and mute values for a movie, or the gain and mute values for a
track.

 ■ Providing audio level and frequency metering during playback.

Preventing Pitch-Shifting

A new property is available for use with the NewMovieFromProperties function:
kQTAudioPropertyID_RateChangesPreservePitch. When this property is set, changing the movie
playback rate will not result in pitch-shifting of the audio. This allows you to fast-forward through a movie
without hearing chipmunks.

40 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Setting this property also affects playback of scaled edits, making it possible to change the tempo of a sound
segment or scale it to line up with a video segment, for example, without changing the pitch of the sound.

Gain, Mute, and Balance

New functions are available to set the left-right balance for a movie, set the gain for a movie or track, or to
mute and unmute a movie or track without changing the gain or balance settings.

The gain and mute functions duplicate existing functions for setting track and movie volume, but the new
functions present a simpler and more consistant programmer interface.

For example, to mute the movie using the old SetMovieVolume function, you would pass in a negative
volume value; to preserve the current volume over a mute and unmute operation, you had to first read the
volume, then negate it and set it for muting, then negate it and set it again to unmute. By comparison, the
new SetMovieAudioMute function simply mutes or unmutes the movie without changing the gain value.

Note: The values set using these functions are not persistent; that is, they are not saved with the movie.

For details, see

 ■ GetTrackAudioGain (page 82)

 ■ SetTrackAudioGain (page 233)

 ■ GetTrackAudioMute (page 83)

 ■ SetTrackAudioMute (page 233)

 ■ GetMovieAudioGain (page 77)

 ■ SetMovieAudioGain (page 231)

 ■ GetMovieAudioMute (page 78)

 ■ SetMovieAudioMute (page 231)

 ■ GetMovieAudioBalance (page 74)

 ■ SetMovieAudioBalance (page 229)

Level and Frequency Metering

It is now easy to obtain real-time measurements of the average audio output power level in one or more
frequency bands.

The only mix supported for volume metering is DeviceMix:

 ■ kQTAudioMeter_DeviceMix: Meter the movie’s mix to the device channel layout. To determine the
channel layout of this mix, call QTGetMovieProperty(...,
kQTAudioPropertyID_DeviceChannelLayout, ...).

 ■ kQTAudioMeter_StereoMix: Meter a stereo (two-channel) mix of the enabled sound tracks in the
movie. This option is offered only for MovieAudioFrequencyMetering.

 ■ kQTAudioMeter_MonoMix: Meter a monaural (one-channel) mix of the enabled sound tracks in the
movie. This option is offered only for MovieAudioFrequencyMetering.

Audio Enhancements 41
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

You can specify the number of frequency bands to meter. QuickTime divides the possible frequency spectrum
(approximately half the audio sampling rate) into that many bands. You can ask QuickTime for the center
frequency of each resulting band for display in your user interface. The
GetMovieAudioFrequencyMeteringBandFrequencies function returns an array containing the center
frequencies of each band.

When using kQTAudioMeter_DeviceMix (which is the only option currently offered for Volume Metering),
levels are computed for each audio channel as it is presented to the output device. In order to obtain accurate
frequency metering information for N-channel devices without requiring that N compute-intensive spectral
analyses be performed, the kQTAudioMeter_MonoMix and kQTAudioMeter_StereoMix options direct
QuickTime to perform an audio mix-down before computing the frequency levels.

For example, if you are playing movies to a 5.1 output device, you might want to meter the frequency levels
of all six output channels.However, if you are playing stereo content, the levels for four of the outputs would
always be zero, so you might prefer to meter just what would be played on a stereo device.

To use the frequency metering API, follow these steps:

1. Set the number of frequency bands to meter using SetMovieAudioFrequencyMeteringNumBands.

2. Call GetMovieAudioFrequencyMeteringBandFrequencies if you need to know the frequencies of
the resulting bands.

3. Finally, make periodic calls to GetMovieAudioFrequencyLevels to obtain measurements in all specified
bands. You can obtain either the average values, the peak hold values, or both.

For details, see

 ■ GetMovieAudioVolumeMeteringEnabled (page 79)

 ■ SetMovieAudioVolumeMeteringEnabled (page 232)

 ■ GetMovieAudioVolumeLevels (page 78)

 ■ GetMovieAudioFrequencyMeteringNumBands (page 76)

 ■ SetMovieAudioFrequencyMeteringNumBands (page 230)

 ■ GetMovieAudioFrequencyMeteringBandFrequencies (page 76)

 ■ GetMovieAudioFrequencyLevels (page 75)

Audio Conversion, Export, and Extraction

The new audio extraction API lets you retrieve mixed, uncompressed audio from a movie.

Note that the audio extraction API currently only mixes audio from sound tracks. Other media types, such as
muxed MPEG-1 audio inside a program stream, are not currently supported.

To use the audio extraction API, follow these steps:

1. Begin by calling MovieAudioExtractionBegin (page 173). This returns an opaque session object that
you pass to subsequent extraction routines.

42 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

2. You can then get theAudioStreamBasicDescription for the audio or layout. Note that some properties
are of variable size, such as the channel layout, depending on the audio format, so getting the information
involves a two-step process.

a. First, you call MovieAudioExtractionGetPropertyInfo (page 176) to find out how much space
to allocate.

b. Next, call MovieAudioExtractionGetProperty (page 175) to obtain the actual value of the
property.

3. You can use the AudioStreamBasicDescription to specify a different uncompressed format than
Float 32. This causes the extraction API to automatically convert from the stored audio format into your
specified format.

4. Use the MovieAudioExtractionSetProperty (page 177) function to specify channel remapping––that
is, a different layout––sample rate conversion, and preferred sample size. You can also use this function
to specify interleaved samples (default is non-interleaved) or to set the movie time to an arbitrary point.

Note that there are basically two things you set here: an audio stream basic description (ASBD) and a channel
layout. (ASBD sets the format, sample, number of channels, interleavings, and so on.)

Setup is now complete. You can now make a series of calls to MovieAudioExtractionFillBuffer to
receive uncompressed PCM audio in your chosen format.

1. The default is for the first call to begin extracting audio at the start of the movie, and for subsequent
calls to begin where the last call left off, but you can set the extraction point anywhere in the movie
timeline by calling MovieAudioExtractionSetProperty and setting the movie time.

2. MovieAudioExtractionFillBufferwill setkMovieAudioExtractionComplete inoutFlagswhen
you reach the end of the movie audio.

3. You must call MovieAudioExtractionEnd when you are done. This deallocates internal buffers and
data structures that would otherwise continue to use memory and resources.

A caveat: Ideally, the uncompressed samples would be bitwise identical whether you obtained the samples
by starting at the beginning of the movie and iterating through it, or by randomly setting the movie time
and extracting audio samples. This is typically the case, but for some compression schemes the output of
the decompressor depends not only on the compressed sample, but the seed value in the decompressor
that remains after previous operations.

The current release of QuickTime does not perform the necessary work to determine what the seed value
would be when the movie time is changed prior to extracting audio; while the extracted audio is generally
indistinguishable by ear, it may not always be bitwise identical.

For details about audio conversion, export, and extraction, refer to the information about the following
functions:

 ■ MovieAudioExtractionBegin (page 173)

 ■ MovieAudioExtractionGetPropertyInfo (page 176)

 ■ MovieAudioExtractionGetProperty (page 175)

 ■ MovieAudioExtractionSetProperty (page 177)

Audio Enhancements 43
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ MovieAudioExtractionFillBuffer (page 174)

 ■ MovieAudioExtractionEnd (page 174)

Standard Audio Compression Enhancements

QuickTime 7 for Windows introduces a new standard compressor component,
StandardCompressionSubTypeAudio, that adds the ability to configure high-resolution audio output
formats. It has a full set of component properties to make configuration easier, especially when the developer
wishes to bring up an application-specific dialog, or no dialog, rather than the typical compression dialog.

This component essentially replaces the StandardCompressionSubTypeSound component, which is limited
to 1 or 2 channel sound with sampling rates of 65 kHz or less. That component is retained for backward
compatability with existing code, but its use is no longer recommended.

The StandardCompressionSubTypeAudio component is configured by getting and setting component
properties, instead of using GetInfo and SetInfo calls. These properties have a class and ID, instead of just a
single selector.

The component property API allows configuration at any level of detail without requiring a user interface
dialog or direct communication with low-level components.

For details, refer to the section “Audio Property Selectors” (page 249).

Note: You can also configure the new standard audio compression component by calling
SCSetSettingsFromAtomContainer. You can pass the new standard audio compression component
either a new atom container obtained from SCGetSettingsAsAtomContainer or an old atom container
returned by calling the same function (SCGetSettingsAsAtomContainer) on the old SubTypeSound
component.

If you use MovieExportToDataRefFromProcedures, your getProperty proc will need to support some of
these property IDs as new selectors. Note that the Movie Exporter getProperty proc API is not changing to
add a class (the class is implied).

Note: Not all properties can be implemented by getProperty procs; the properties that getProperty procs
can implement are marked with the word "DataProc". See the inline documentation in
QuickTimeComponents.h for more information.

Audio Export Enhancements

Some movie export components now support high-resolution audio.

Export of high-resolution audio is transparent at the high level. If you export from a movie containing
high-resolution audio to a format whose export component supports it, the transfer of data is automatic; if
the export component does not support high-resolution audio, mix-down, resampling, and sound description
conversion are automatic.

44 Audio Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Export at the lower levels requires some additional code. Your application must “opt in” to the new audio
features explicitly if it talks directly to an export component instance. (This is to prevent applications that
have inadvisedly chosen to “walk” the opaque atom settings structure from crashing when they encounter
the new and radically different structure.) The following code snippet (Listing 2-6) illustrates the opt-in
process.

Listing 2-6 Opting in for high-resolution audio export

ComponentInstance exporterCI;
ComponentDescription search = { ’spit’, ’MooV’, ’appl’, 0, 0 };
Boolean useHighResolutionAudio = true, canceled;
OSStatus err = noErr;

Component c = FindNextComponent(NULL, &search);
exporterCI = OpenComponent(c);

// Hey exporter, I understand high-resolution audio!!
(void) QTSetComponentProperty(// disregard error
 exporterCI,
 kQTPropertyClass_MovieExporter,
 kQTMovieExporterPropertyID_EnableHighResolutionAudioFeatures,
 sizeof(Boolean),
 &useHighResolutionAudio);

err = MovieExportDoUserDialog(exporterCI, myMovie, NULL, 0, 0, &canceled);

For additional details, see “Movie Exporter Properties” (page 253).

Video Enhancements

QuickTime 7 for Windows introduces a number of important video enhancements, discussed in this section.
These include

 ■ Support for compressed video using frame reordering. Support is added for compression, playback,
streaming, and low-level access to stored samples.

 ■ Support for H.264 video compression, including QuickTime components for export, playback, and live
streaming.

Frame Reordering Video

QuickTime 7 for Windows adds support for frame reordering video compression. This is a major advance
that involves new sample tables for video to allow video frames to have independent decode and display
times.

The result of using frame reordering for video compression is improved display and editing in H.264 and
other advanced video codec formats. Enhancements include a new API for working with media sample times,
adding and finding samples, and a new Image Compression Manager (ICM) API.

Video Enhancements 45
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Understanding Frame Reordering Video Compression

QuickTime supports many types of video compression, including spatial compression algorithms, such as
photo-JPEG, and temporal compression algorithms, in which some video frames are described completely,
while other frames are described in terms of their differences from other video frames.

Up until the introduction of H.264 in QuickTime 7 for Windows, video frames could be of three kinds:

 ■ I-frames (independently decodable)

 ■ P-frames (predicted from a previous I- or P-frame)

 ■ B-frames (predicted from one past and one future I- or P-frame)

Note: B-frame, I-frame, and P-frame are all video compression methods used by the MPEG standard. B-frame
is an abbreviation for bi-directional frame, or bi-directional predictive frame. B-frames rely on the frames
preceding and following them and only contain data that has changed from the preceding frame or is different
from data in the next frame.

P-frame is an abbreviation for predictive frame, or predicted frame. P-frames follow I-frames and contain only
the data that has changed from the preceding I-frame. P-frames rely on I-frames to fill in most of its data.

I-frame, also known as keyframes, is an abbreviation for intraframe. An I-frame stores all the data required
to display the frame. In common usage, I-frames are interspersed with P-frames and B-frames in a compressed
video.

Because B-frames predict from a future frame, that frame has to be decoded before the B-frame, yet displayed
after it; this is why frame reordering is needed.The decoded order is no longer the same as the displayed
order.The QuickTime support for frame reordering is quite general.In the H.264 codec, the concepts of the
direction of prediction, and the numbers of referenced frames, and the kind of frame that is referenced, are
all decoupled. In H.264, an encoder may choose to make a stream in which P-frames refer to a future frame,
or a B-frame which refers to two past or future frames, for example.

Important: Prior to this release, QuickTime supported self-contained video frames (keyframes, also called
sync-frames or I-frames) and frames that depended on previous frames (P-frames). Many modern compressors
also make use of frame reordering, in which frames can depend on future frames.Those future frames have
to be decoded before the frame in question, but displayed after it––hence the reordering. Traditional B-frames
are one example: they depend on a past and a future I- or P-frame.That future I- or P-frame has to be given
to the decoder before the B-frame, but is displayed after the B-frame itself. This means that the frames are
stored or streamed in decode order, rather than in display order.

For decompressors that don’t use frame reorderings, the decode order and the display order are the same,
and QuickTime sample tables are traditionally organized to reflect this. Samples are stored in decode order,
which is presumed to be the display order, and the sample tables specify the duration of each sample’s
display; the display time is the time when the track begins plus the duration of all previous samples.

The addition of frame reordering support means that QuickTime now has an optional sample table for video
that specifies the offset between the decode time and the display time. This allows frames to be stored in
decode order but displayed in a different order. The decode time is still the beginning of the track plus the
decode duration of all previous samples, but it is now necessary to examine the offset table to determine
which samples precede others and calculate the correct display time.

46 Video Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

For high-level programmers, this all happens transparently. Developers who work directly with sample
numbers and sample times, however, must be aware of this new feature. A new, expanded API is available
to support this.

Finding and Adding Samples

Developers who need to work with specific samples based on the samples’ display times, or who are adding
samples to a media directly, need to use a different API when working with media that uses frame reorderings.

For example, programmers who use the functionMediaTimeToSampleNummust instead use the two functions
MediaDecodeTimeToSampleNum andMediaDisplayTimeToSampleNumwhen working with frame reordering
compressed video, as each sample now has a decode time and a display time instead of a single media time
(combined decode/display time).

Similarly, when adding samples to a media that permits display offsets, it is necessary to use the new
AddMediaSample2 instead of AddMediaSample, as the new function permits the user to pass a display
offset and specify properties that are unique to media with display offsets, such as whether subsequent
samples are allowed to have earlier display times than the current sample.

Calling one of the old functions that use a single media time value on new-format media that contains display
offsets will return the error code kQTErrMediaHasDisplayOffsets.

The new API elements all use 64-bit time values, whereas the older API elements use 32-bit values. Calling
one of the old functions with a 64-bit time value returns the error code kQTErrTimeValueTooBig.

When creating a media for frame reordering compressed video track, pass in the new flag
kCharacteristicSupportsDisplayOffsets.

For details, see:

 ■ AddMediaSample2 (page 57)

 ■ ExtendMediaDecodeDurationToDisplayEndTime (page 63)

 ■ GetMediaAdvanceDecodeTime (page 65)

 ■ GetMediaDataSizeTime64 (page 66)

 ■ GetMediaDecodeDuration (page 67)

 ■ GetMediaDisplayDuration (page 67)

 ■ GetMediaDisplayEndTime (page 68)

 ■ GetMediaDisplayStartTime (page 68)

 ■ GetMediaNextInterestingDecodeTime (page 69)

 ■ GetMediaNextInterestingDisplayTime (page 70)

 ■ GetMediaSample2 (page 71)

 ■ MediaContainsDisplayOffsets (page 171)

 ■ MediaDecodeTimeToSampleNum (page 171)

 ■ MediaDisplayTimeToSampleNum (page 172)

 ■ TrackTimeToMediaDisplayTime (page 234)

Video Enhancements 47
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

There is additional support for programmers who work directly with arrays of media sample references.
Although these new functions work with frame reordering video or other media with independent decode
and display times, they can also be used with ordinary media types. See “QuickTime Sample Table API” (page
53).

Compressing Video Using Frame Reordering

When compressing video that uses frame reordering, there is no longer a one-to-one correspondence between
submitting a frame for compression and getting back a compressed sample. The Image Compression Manager
(ICM) and the compressor component may buffer multiple images before determining that a series of frames
should be B-frames and a subsequent image should be decompressed out of order so that the B-frames can
refer to it. The new ICM functions do not require a strict correlation between input frames and output frames.
Frames may be rearranged by compression and decompression modules.

The new functions allow groups of multiple pixel buffers to be in use at various processing points in order
to avoid unnecessary copying of data, using CVPixelBuffers and CVPixelBufferPools. These new types
are Core Foundation based. They follow Core Foundation’s protocols for reference counting
(create/copy/retain/release). Each type has its own retain and release functions which are type-safe and
NULL-safe, but otherwise equivalent to CFRetain and CFRelease. Note that the CVPixelBuffer functions
generally provide their output data through callbacks, rather than as return values or function parameters.

In general, the new functions return OSStatus, with the exception of some simple Get functions that return
single values.

Clients create compression sessions using ICMCompressionSessionCreate (page 94). They then feed
pixel buffers in display order to ICMCompressionSessionEncodeFrame (page 96). Encoded frames may
not be output immediately, and may not be returned in the same order as they are input—encoded frames
will be returned in decode order, which will sometimes differ from display order. One of the parameters to
ICMCompressionSessionCreate specifies a callback routine that QuickTime will call when each encoded
frame is ready. Frames should be stored in the order they are output (decode order).

To force frames up to a certain display time to be encoded and output, call
ICMCompressionSessionCompleteFrames (page 94).

To obtain a pixel buffer pool that satisfies the requirements of both your pixel buffer producer and the
compressor, pass the pixel buffer producer’s pixel buffer options into ICMCompressionSessionCreate,
and then call ICMCompressionSessionGetPixelBufferPool (page 98). The compression session
constructs an appropriate pixel buffer pool.

Alternatively, you can create your own pixel buffer pool by obtaining the compressor’s pixel buffer attributes,
choosing a format compatible with your pixel buffer producer, and setting that compressor’s input format
using the component properties API. The process of obtaining the pixel buffer attributes is illustrated in the
following code snippet.

CFDictionaryRef attributesDictionary = NULL;

err = ICMCompressionSessionGetProperty(
 session,
 kQTPropertyClass_ICMCompressionSession,
 kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes,
 sizeof(CFDictionaryRef),
 &attributesDictionary,
 NULL);

if (attributesDictionary) {

48 Video Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 // ...use...
 CFRelease(attributesDictionary);
}

You can also pass arbitrary pixel buffers to ICMCompressionSessionEncodeFrame; if they’re incompatible
with the compressor’s requirements, then the compression session will make compatible copies and pass
those to the compressor. This requires less setup but can result in significantly slower operation.

When the compressor no longer needs a source pixel buffer, it will release it. You may also pass
ICMCompressionSessionEncodeFrame a callback to be called when the source pixel buffer is released.

Clients may call ICMCompressionSessionGetImageDescription (page 98) to get the image description
for the encoded frames. Where possible, the ICM will allow this to be called before the first frame is encoded.

For additional details, see:

 ■ ICMCompressionSessionCreate (page 94)

 ■ ICMCompressionSessionGetProperty (page 99)

 ■ ICMCompressionSessionGetPixelBufferPool (page 98)

 ■ ICMCompressionSessionEncodeFrame (page 96)

 ■ ICMCompressionSessionGetImageDescription (page 98)

 ■ ICMCompressionSessionCompleteFrames (page 94)

H.264 Codec

The H.264 codec is the latest standards-based video codec. Published jointly by the ITU as H.264––Advanced
Video Coding, and by ISO as MPEG-4 Part 10––Advanced Video Coding, the H.264 codec promises better
image quality at lower bit rates than the current MPEG-4 video codec, and also better live streaming
characteristics than the current H.263 codec.

This represents a significant increase in quality and performance, while operating in a standards-based
framework.

QuickTime 7 for Windows includes a QuickTime decompressor component and an exporter component for
creating and playing H.264-encoded video in QuickTime.

The H.264 codec makes use of QuickTime 7’s new support for frame reordering video compression.

Replacing NewMovieFrom... Functions

QuickTime 7 for Windows introduces a replacement––NewMovieFromProperties (page 178)–– forNewMovie,
NewMovieFromDataRef, and all other NewMovieFrom... functions.

In previous versions of QuickTime, you could use other functions that create new movies, including
NewMovieFromFile and NewMovieFromDataRef. These functions accept flags that allow you to set some
movie characteristics at creation time, but other movie characteristics are always set by default. For example,
there must be a valid graphics port associated with a movie created by these functions, even if the movie
does not output video.

Replacing NewMovieFrom... Functions 49
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

NewMovieFromProperties (page 178) allows you to configure an extensible set of properties before creating
a movie. This has a number of advantages.

 ■ You can open a movie with exactly the properties you want, preventing QuickTime from taking undesired
default actions.

 ■ You can also specify properties that the older functions do not know about, such as a visual context for
the movie.

Using NewMovieFromProperties

To instantiate a movie using NewMovieFromProperties, follow these steps:

1. Pass in a CFString file path, a URL, or set up a data reference, just as you would for NewMovieFromDataRef
or one of the other NewMovieFrom_ functions.

2. Next, set up a visual context for the movie to use by calling a function that creates a context of a the
desired type, such as QTOpenGLTextureContextCreate. Similarly, you can set up an audio context if
you want a device other than the default device.

3. Call NewMovieFromProperties (page 178), passing in the data reference for the movie and the
QTVisualContextRef for the visual context, plus any appropriate properties listed in the
QTNewMoviePropertyArray.

Properties are passed in using a QTNewMoviePropertyElement struct, which specifies the property class
and property ID of each property.

The movie will automatically retain the visual context, so if your application does not need to work with the
context directly, you may release it now.

For additional details, see:

 ■ QTNewMoviePropertyArray

 ■ QTNewMoviePropertyElement

 ■ NewMovieFromProperties (page 178)

QuickTime Metadata Enhancements and API

QuickTime 7 for Windows introduces a new extensible metadata storage format that allows more flexible
and efficient storage of metadata, including encapsulated storage of metadata in native format (without
translating to and from a defined QuickTime format). For developers, this means that you can now write
cleaner, more generic code that enables you to look at, for example, all the metadata in a QuickTime or iTunes
music track using just a single function call.

50 QuickTime Metadata Enhancements and API
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Metadata, of course, is information about a file, track, or media, such as the white balance used to create a
photographic image or the artist, album, and title of an MP3 track. Traditionally, metadata information is
stored in QuickTime user data items or in ancilliary tracks in a movie. For example, copyright information is
normally stored in a ’@cpy’ user data item, while cover art for an AAC audio track is normally stored in a
track that is not displayed by all applications.

The new metadata enhancements in QuickTime 7 for Windows allow you to access both old (QuickTime)
and new (iTunes) formats. The new metadata storage format is intended as a replacement for QuickTime
user data, which was limited in features and robustness. Specifically, the metadata enhancements introduced
in QuickTime 7 for Windows provide the following capabilities:

 ■ The ability to assign data types to any metadata that you place into the new storage format.

 ■ The ability to assign locale information––for example, a particular language or country––to the format.

 ■ The ability to use a more descriptive key in the storage format––for example, a reverse DNS format, such
as com.apple.quicktime.mov.

The new metadata format allows storage of data that is not possible in user data items, without extending
the list of item types exhaustively, and allows labeling of metadata unambiguously, rather than as data in
an undisplayed media track. It also permits inclusion of metadata that is always stored external to the movie,
even when the movie is flattened (saved as self-contained).

How It Works

Metadata is encapsulated in an opaque container and accessed using a QTMetDataRef. A QTMetaDataRef
represents a metadata repository consisting of one or more native metadata containers. The QuickTime
metadata API supports unified access to and management of these containers.

Each container consists of some number of metadata items. Metadata items correspond to individually
labeled values with characteristics such as keys, data types, locale information, and so on. Note that what
QuickTime calls items are sometimes referred to as attributes or properties in other metadata systems.

You address each container by its storage format (kQTMetaDataStorageFormat). Initially, there is support
for classic QuickTime user data items, iTunes metadata, and a richer QuickTime metadata container format.
A QTMetaDataRefmay have one or all of these. No direct access to the native storage containers is provided.

QTMetaDataRefs may be associated with a movie, track or media. This parallels user data atoms usage but
provides access to other kinds of metadata storage at those levels.

A metadata item is assigned a runtime identifier (QTMetaDataItem) that along with the QTMetaDataRef
identifies the particular item (and value) across all native containers managed by the QTMetaDataRef.

Each item is addressed by a key, or label. The key is not necessarily unique within its container, as it is possible
to have multiple items with the same key (for example, multiple author items). Functions exist to enumerate
all items or only items with a particular key.

Because a QTMetaDataRef may provide access to different native metadata containers with differing key
structures—a four-char-code for one, a string for another, and so on—the key structure is also specified. A
QTMetaDataKeyFormat indicates the key structure to functions that take keys. This also supports container
formats that allow multiple key structures or multiple versions of key structures.

QuickTime Metadata Enhancements and API 51
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

To allow unified access across disparate containers, you can specify a wildcard storage format. This can be
used for operations such as searches across container formats. A special key format called
kQTMetaDataKeyFormatCommon indicates one of a set of common keys that can be handled by multiple
native containers (for example, copyright).

Both modes of operation are illustrated in Figure 2-6.

Figure 2-6 Metadata modes of operations

Metadata Container

Abstract Metadata Model

Metadata Item

iTunes metadata

user dataQTMetaDataRef

QuickTime metadata

- Owner

Attributes Metadata value

- Item ID
- Key
- Value Format
- Country
- Language

Metadata Item

Attributes Metadata value

- Item ID
- Key
- Value Format
- Country
- Language

Advantages of the New Metadata Format

The QuickTime metadata format is inherently extensible. Instead of a set of structures and enumerated
parameters, the metadata API uses a set of properties that can be enumerated, and whose characteristics
can be discovered, dynamically at runtime. This is analogous to the QuickTime component property function
in that you first get the property info, such as its size and format, and then you allocate the appropriate
container or structure to get or set the actual property.

The new QuickTime metadata format and API consist of the following structures, enumerations, and functions,
grouped in sections followed by the specific functions:

 ■ “Metadata Format Constants” (page 256)

52 QuickTime Metadata Enhancements and API
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ “Metadata Property IDs” (page 257)

 ■ “Metadata Key Constants” (page 257)

 ■ “Metadata Error Codes” (page 258)

 ■ QTCopyMovieMetaData (page 182)

 ■ QTCopyTrackMetaData (page 183)

 ■ QTCopyMediaMetaData (page 183)

 ■ QTMetaDataAddItem (page 186)

 ■ QTMetaDataGetItemCountWithKey (page 187)

 ■ QTMetaDataGetItemProperty (page 188)

 ■ QTMetaDataGetItemPropertyInfo (page 189)

 ■ QTMetaDataGetItemValue (page 190)

 ■ QTMetaDataGetNextItem (page 191)

 ■ QTMetaDataGetProperty (page 192)

 ■ QTMetaDataGetPropertyInfo (page 193)

 ■ QTMetaDataRetain (page 194)

 ■ QTMetaDataRelease (page 194)

 ■ QTMetaDataRemoveItem (page 194)

 ■ QTMetaDataRemoveItemsWithKey (page 195)

 ■ QTMetaDataSetItem (page 196)

 ■ QTMetaDataSetItemProperty (page 197)

 ■ QTMetaDataSetProperty (page 198)

QuickTime Sample Table API

The new QuickTime sample table API in QuickTime 7 for Windows is used when you need to obtain information
about samples—such as their size, location, and sample descriptions—or to set this kind of information (for
example, when adding samples or blocks of samples to a media directly, without using the services of an
importer).

This new API introduces QTSampleTable as a logical replacement for the arrays of sample reference records
used with the older functions AddMediaSampleReferences and AddMediaSampleReferences64. New
functions allow you to operate on whole tables of data simultaneously.

Like many new QuickTime APIs, the QuickTime sample table API uses opaque data types whose properties
can be discovered dynamically at runtime. This is analogous to the component properties API for configuring
components. You use a GetPropertyInfo function to discover the size and format of a property, then
allocate the necessary container or structure to get or set the actual property.

This API works with both simple media types that have a single media time for each sample and new media
types such as frame reordering video that have independent decode and display times for samples.

QuickTime Sample Table API 53
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Warning: When using the QuickTime sample table API to work with constant-bit-rate (CBR) compressed
audio, the audio is represented in a new way.

In the QuickTime sample table API, sample numbers for audio always refer to packets. This is simpler and
more consistant, but it means that a new function may not return the same value as an older, analogous
function when called with reference to compressed CBR sound. For example,
QTSampleTableGetNumberOfSamplesmay return a different sample count thanGetMediaSampleCount.

All compressed audio is quantized into packets, and each packet can be decompressed into multiple PCM
samples. With previous APIs, media sample numbers for CBR sound refer to PCM samples, rather than the
compressed packets. When the same APIs are applied to variable-bit-rate (VBR) sound, however, the sample
numbers refer to packets. This inconsistency means that code using these older APIs must handle CBR and
VBR differently. In this API, by contrast, sample numbers always refer to packets.

This applies only to compressed CBR sound, however. In uncompressed sound tracks, each packet is simply
an uncompressed PCM frame, so the value is the same whether the sample number refers to packets or PCM
samples.

For full details of the QuickTime sample table API, see:

 ■ QTSampleTableCreateMutable (page 203)

 ■ QTSampleTableCreateMutableCopy (page 204)

 ■ QTSampleTableAddSampleDescription (page 201)

 ■ QTSampleTableCopySampleDescription (page 203)

 ■ QTSampleTableAddSampleReferences (page 201)

 ■ AddSampleTableToMedia (page 60)

 ■ CopyMediaMutableSampleTable (page 61)

 ■ QTSampleTableReplaceRange (page 215)

 ■ QTSampleTableGetProperty (page 209)

 ■ QTSampleTableSetProperty (page 216)

 ■ QTSampleTableGetPropertyInfo (page 210)

 ■ QTSampleTableGetNumberOfSamples (page 208)

 ■ QTSampleTableGetSampleDescriptionID (page 212)

 ■ QTSampleTableGetDataSizePerSample (page 205)

 ■ QTSampleTableGetSampleFlags (page 212)

 ■ QTSampleTableGetDataOffset (page 205)

 ■ QTSampleTableGetDisplayOffset (page 206)

 ■ QTSampleTableGetTypeID (page 214)

 ■ QTSampleTableGetDecodeDuration (page 206)

 ■ QTSampleTableGetNextAttributeChange (page 207)

 ■ QTSampleTableGetTimeScale (page 213)

 ■ QTSampleTableRelease (page 214)

54 QuickTime Sample Table API
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

 ■ QTSampleTableReplaceRange (page 215)

 ■ QTSampleTableRetain (page 215)

 ■ QTSampleTableSetTimeScale (page 217)

Other Changes and Enhancements

This section discusses the following changes and enhancements that are available in QuickTime 7 for Windows.

New Install Location

Beginning with QuickTime 7 for Windows, the default install location for QuickTime has been moved from
the directory:

\Windows\System32\QuickTime

to

\Program Files\QuickTime

Optionally, the user may specify a custom install location when performing the installation.

The QuickTime installer will also create a number of subdirectories within the QuickTime directory where the
various QuickTime files are stored. For example, a QuickTime System directory QTSystem is created as follows:

\QuickTime\QTSystem

to store the various QuickTime system files.

Important: Developers should use the QuickTime APIs and registry locations to determine at runtime where
QuickTime is installed.

New QuickTime DLL

To allow for compatability with applications which rely on the presence of QuickTime in the old

\Windows\System32\QuickTime

directory, QuickTime 7 will install a DLL file for purposes of backward compatibility named QuickTime.qts
to this same directory. This file will do the work of finding the new QuickTime file locations forapplications
that explicitly look in the old location or that use an SDK older than the QuickTime 6 SDK.

Other Changes and Enhancements 55
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

Important: Developers updating their applications should not rely on the presence of this file and should
update any code which expects QuickTime in the old location. Instead, use the new QuickTime directories
APIs to locate installed QuickTime files. In the end, developers are strongly advised to update their applications.
Apple cannot guarantee that the DLL file for backward compatibility will be available beyond this release.

New QuickTime Directories APIs

A number of new APIs have been created to allow developers to locate the various directories created by
the QuickTime installer. These APIs are similar in style to the Win32 GetSystemDirectory function. All of
these APIs are non-dispatched and work without having to call InitializeQTML beforehand.

For full details of the new QuickTime directories APIs, see:

 ■ GetQTApplicationDirectory (page 80)

 ■ GetQTComponentDirectory (page 80)

 ■ GetQTExtensionDirectory (page 81)

 ■ GetQTSystemDirectory (page 82)

 ■ QTLoadLibrary (page 185)

Updates to QuickTime for Java

QuickTime for Java (QTJ) is now fully supported in QuickTime 7 for Windows. QTJ is now installed by default
in QuickTime 7.

This release includes a number of important bug fixes requested by QuickTime for Java developers. These
are as follows:

 ■ Major fixes for issues related to drawing and correct QTComponent rendering

 ■ Compatibility with headless applications

 ■ Fixes for issues related to movie progress procedures and movie exporting

 ■ Fixes for Applet issues, including support for MPEG video playback in an applet

 ■ Support for 2-byte character file names

 ■ Security fixes

56 Other Changes and Enhancements
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

What’s New in QuickTime 7 for Windows

This chapter describes all the new QuickTime functions, data structures, constants, and callbacks available
in this software release.

If you are a QuickTime API-level developer, content author, multimedia producer or Webmaster who is
currently working with QuickTime, you should read this chapter and use it for reference, as needed, in your
application development.

QuickTime 7 API Reference

The following functions, callbacks, structures, and constants are new or changed with this release of QuickTime.

Functions

Functions that are new in QuickTime 7 are described in this section; they are listed in alphabetical order.

AddMediaSample2
Adds sample data and a description to a media.

OSErr AddMediaSample2 (
 Media theMedia,
 const UInt8 *dataIn,
 ByteCount size,
 TimeValue64 decodeDurationPerSample,
 TimeValue64 displayOffset,
 SampleDescriptionHandle sampleDescriptionH,
 ItemCount numberOfSamples,
 MediaSampleFlags sampleFlags,
 TimeValue64 *sampleDecodeTimeOut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

dataIn
A handle to the sample data. The function adds this data to the media specified by theMedia. You
specify the number of bytes of sample data with the size parameter.

QuickTime 7 API Reference 57
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in
QuickTime 7 for Windows

size
The number of bytes of sample data to be added to the media. This parameter indicates the total
number of bytes in the sample data to be added to the media, not the number of bytes per sample.
Use the numberOfSamples parameter to indicate the number of samples that are contained in the
sample data.

decodeDurationPerSample
The duration of each sample to be added, representing the amount of time that passes while the
sample data is being displayed. You must specify this parameter in the media’s time scale. For example,
if you are adding sound that was sampled at 22 kHz to a media that contains a sound track with the
same time scale, you would set durationPerSample to 1. Similarly, if you are adding video that was
recorded at 10 frames per second to a video media that has a time scale of 600, you would set this
parameter to 60. Note that this is the duration per sample, regardless of the number of samples being
added.

displayOffset
A 64-bit time value that specifies the offset between the decode time (the start time of the track plus
the duration of all previous samples) and the display time. This value is normally zero unless the
sample is frame reordering compressed video.

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a SoundDescription structure. If the media does not require a
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of samples contained in the sample data to be added to the media. The Movie Toolbox
considers the value of this parameter as well as the value of the size parameter when it determines
the size of each sample that it adds to the media. You should set the value of this parameter so that
the resulting sample size represents a reasonable compromise between total data retrieval time and
the overhead associated with input and output. You should also consider the speed of the data storage
device; CD-ROM devices are much slower than hard disks, for example, and should therefore have a
smaller sample size. For a video media, set a sample size that corresponds to the size of a frame. For
a sound media, choose a number of samples that corresponds to between 0.5 and 1.0 seconds of
sound. In general, you should not create groups of sound samples that are less than 2 KB in size or
greater than 15 KB. Typically, a sample size of about 8 KB is reasonable for most storage devices.

sampleFlags
Flags that control the add operation; set unused flags to 0:

mediaSampleNotSync

Indicates that the sample to be added is not a sync sample. Set this flag to 1 if the sample is
not a sync sample; set it to 0 if the sample is a sync sample.

sampleDecodeTimeOut
A pointer to a time value that represents the sample decode time. After adding the sample data to
the media, the function returns in this parameter the time where the sample was inserted. If you don’t
want to receive this information, set this parameter to NIL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

58 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
Your application specifies the sample and the media for the operation. This function updates the media so
that it contains the sample data. One call to this function can add several samples to a media. This function
replaces AddMediaSample; it adds 64-bit support and support for frame reordering video compression
(display offset). This function can return these errors:

noErr
Success.

memFullErr
Could not allocate memory.

paramErr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.

Version Notes
Introduced in QuickTime 7. This function extends and supersedes AddMediaSample. Whereas
AddMediaSample takes a Handle+offset+size, AddMediaSample2 takes a Ptr+size.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

AddMediaSampleFromEncodedFrame
Adds sample data and description from an encoded frame to a media.

OSErr AddMediaSampleFromEncodedFrame (
 Media theMedia,
 ICMEncodedFrameRef encodedFrame,
 TimeValue64 *sampleDecodeTimeOut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia

encodedFrame
An encoded frame token returned by an ICMCompressionSequence.

sampleDecodeTimeOut
A pointer to a time value. After adding the sample data to the media, the function returns the decode
time where the first sample was inserted in the time value referred to by this parameter. If you don’t
want to receive this information, set this parameter to NULL.

QuickTime 7 API Reference 59
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
This is a convenience API to make it easy to add frames emitted by new ICM compression functions to media.
It can return these errors:

noErr
Success.

memFullErr
Could not allocate memory.

paramErr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

AddSampleTableToMedia
Adds a sample table to a media.

OSErr AddSampleTableToMedia (
 Media theMedia,
 QTSampleTableRef sampleTable,
 SInt64 startSampleNum,
 SInt64 numberOfSamples,
 TimeValue64 *sampleDecodeTimeOut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

sampleTable
A reference to an opaque sample table object containing sample references to be added to the media.

startSampleNum
The sample number of the first sample reference in the sample table to be added to the media. The
first sample’s number is 1.

60 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

numberOfSamples
The number of sample references from the sample table to be added to the media.

sampleDecodeTimeOut
A pointer to a time value. After adding the sample references to the media, the function returns the
decode time where the first sample was inserted in the time value referred to by this parameter. If
you don’t want to receive this information, set this parameter to NULL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
This function can return these errors:

noErr
Success.

memFullErr
Could not allocate memory.

paramErr
Invalid parameter.

errMediaDoesNotSupportDisplayOffsets
The media does not support nonzero display offsets.

errDisplayTimeAlreadyInUse
There is already a sample with this display time.

errDisplayTimeTooEarly
A sample’s display time would be earlier than the display time of an existing sample that does not
have the mediaSampleEarlierDisplayTimesAllowed flag set.

If errDisplayTimeAlreadyInUse or errDisplayTimeTooEarly is returned, no samples are added.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

CopyMediaMutableSampleTable
Obtains information about sample references in a media in the form of a sample table.

QuickTime 7 API Reference 61
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSErr CopyMediaMutableSampleTable (
 Media theMedia,
 TimeValue64 startDecodeTime,
 TimeValue64 *sampleStartDecodeTime,
 SInt64 maxNumberOfSamples,
 TimeValue64 maxDecodeDuration,
 QTMutableSampleTableRef *sampleTableOut);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

startDecodeTime
A 64-bit time value that represents the starting decode time of the sample references to be retrieved.
You must specify this value in the media’s time scale.

sampleStartDecodeTime
A pointer to a time value. The function updates this time value to indicate the actual decode time of
the first returned sample reference. If you are not interested in this information, set this parameter
to NULL. The returned time may differ from the time you specified with the startDecodeTime
parameter. This will occur if the time you specified falls in the middle of a sample.

maxNumberOfSamples
A 64-bit signed integer that contains the maximum number of sample references to be returned. If
you set this parameter to 0, the Movie Toolbox uses a value that is appropriate to the media.

maxDecodeDuration
A 64-bit time value that represents the maximum decode duration to be returned. The function does
not return samples with greater decode duration than you specify with this parameter. If you set this
parameter to 0, the Movie Toolbox uses a value that is appropriate for the media.

sampleTableOut
A reference to an opaque sample table object. When you are done with the returned sample table,
release it with QTSampleTableRelease.

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if there was an invalid
parameter, or noErr if there is no error. You can access Movie Toolbox error returns through GetMoviesError
and GetMoviesStickyError, as well as in the function result.

Discussion
To find out how many samples were returned in the sample table, callQTSampleTableGetNumberOfSamples.

Version Notes
Introduced in QuickTime 7. This function supersedes GetMediaSampleReferences and
GetMediaSampleReferences64.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

DisposeMovieExportStageReachedCallbackUPP
Disposes of a MovieExportStageReachedCallbackUPP pointer.

62 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

void DisposeMovieExportStageReachedCallbackUPP (
 MovieExportStageReachedCallbackUPP userUPP);

Parameters
userUPP

A MovieExportStageReachedCallbackUPP pointer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

DisposeQTTrackPropertyListenerUPP
Disposes a track property listener UPP.

void DisposeQTTrackPropertyListenerUPP (
 QTTrackPropertyListenerUPP userUPP);

Parameters
userUPP

A QTTrackPropertyListenerUPP pointer. See Universal Procedure Pointers in the QuickTime API
Reference for more information.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

ExtendMediaDecodeDurationToDisplayEndTime
Prepares a media for the addition of a completely new sequence of samples by ensuring that the media
display end time is not later than the media decode end time.

OSErr ExtendMediaDecodeDurationToDisplayEndTime (
 Media theMedia,
 Boolean *mediaChanged);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

mediaChanged
A pointer to a Boolean that returns TRUE if any samples in the media were adjusted, FALSE otherwise.
If you don’t want to receive this information, set this parameter to NULL.

QuickTime 7 API Reference 63
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if there was an invalid
parameter, or noErr if there is no error. You can access Movie Toolbox error returns through GetMoviesError
and GetMoviesStickyError, as well as in the function result.

Discussion
After adding a complete, well-formed set of samples to a media, the media’s display end time should be the
same as the media’s decode end time (also called the media decode duration). However, this is not necessarily
the case after individual sample-adding operations, and hence it is possible for a media to be left with a
display end time later than its decode end time (if adding a sequence of frames is aborted halfway, for
example).

This may make it difficult to add a new group of samples, because a well-formed group of samples’ earliest
display time should be the same as the first frame’s decode time. If such a well-formed group is added to an
incompletely finished media, frames from the old and new groups frames might collide in display time.

This function prevents any such collision or overlap by extending the last sample’s decode duration as
necessary. It ensures that the next added sample will have a decode time no earlier than the media’s display
end time. If this was already the case, it makes no change to the media.

You can call this function before you begin adding samples to a media if you’re not certain that the media
was left in a well-finished state. You do not need to call it before adding samples to a newly created media,
nor should you call it between sample additions from the same compression session.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetDSequenceNonScheduledDisplayDirection
Returns the display direction for a decompress sequence.

OSErr GetDSequenceNonScheduledDisplayDirection (
 ImageSequence sequence,
 Fixed *rate);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.

rate
A pointer to the display direction. Negative values represent backward display and positive values
represent forward display.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

64 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

GetDSequenceNonScheduledDisplayTime
Gets the display time for a decompression sequence.

OSErr GetDSequenceNonScheduledDisplayTime (
 ImageSequence sequence,
 TimeValue64 *displayTime,
 TimeScale *displayTimeScale);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.

displayTime
A pointer to a variable to hold the display time.

displayTimeScale
A pointer to a variable to hold the display time scale.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

GetMediaAdvanceDecodeTime
Returns the advance decode time of a media.

TimeValue64 GetMediaAdvanceDecodeTime (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

QuickTime 7 API Reference 65
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
A 64-bit time value that represents the media’s advance decode time. A media’s advance decode time is the
absolute value of the greatest-magnitude negative display offset of its samples, or 0 if there are no samples
with negative display offsets. This is the amount that the decode time axis must be adjusted ahead of the
display time axis to ensure that no sample’s adjusted decode time is later than its display time. For media
without nonzero display offsets, the advance decode time is 0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDataSizeTime64
Determines the size, in bytes, of the sample data in a media segment.

OSErr GetMediaDataSizeTime64 (
 Media theMedia,
 TimeValue64 startDisplayTime,
 TimeValue64 displayDuration,
 SInt64 *dataSize);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

startDisplayTime
A 64-bit time value that specifies the starting point of the segment in media display time.

displayDuration
A 64-bit time value that specifies the duration of the segment in media display time.

dataSize
A pointer to a variable to receive the size, in bytes, of the sample data in the defined media segment.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError and GetMoviesStickyError, as well as in the function result.

Discussion
The only difference between this function and GetMediaDataSize64 is that this function uses 64-bit time
values and returns a 64-bit size.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

66 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

GetMediaDecodeDuration
Returns the decode duration of a media.

TimeValue64 GetMediaDecodeDuration (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
A 64-bit time value that repre sents the media’s decode duration. A media’s decode duration is the sum of
the decode durations of its samples.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDisplayDuration
Returns the display duration of a media.

TimeValue64 GetMediaDisplayDuration (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
A 64-bit time value that represents the media’s display duration. A media’s display duration is its display end
time minus its display start time. For media without nonzero display offsets, the decode duration and display
duration are the same.

Discussion
When inserting media with display offsets into a track, use display time:

InsertMediaIntoTrack(track,
 0, // track start time
 GetMediaDisplayStartTime(media), // media start time
 GetMediaDisplayDuration(media),
 fixed1);

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference 67
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
Movies.h

GetMediaDisplayEndTime
Returns the display end time of a media.

TimeValue64 GetMediaDisplayEndTime (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
A 64-bit time value that represents the media’s display end time. A media’s display end time is the sum of
the display time and decode duration of the sample with the greatest display time. For media without nonzero
display offsets, the display end time is the same as the media’s decode duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaDisplayStartTime
Returns the display start time of a media.

TimeValue64 GetMediaDisplayStartTime (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
A 64-bit time value that represents the media’s display start time. A media’s display start time is the earliest
display time of any of its samples. For media without nonzero display offsets, the display start time is always
0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

68 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

GetMediaNextInterestingDecodeTime
Searches for decode times of interest in a media.

void GetMediaNextInterestingDecodeTime (
 Media theMedia,
 short interestingTimeFlags,
 TimeValue64 decodeTime,
 Fixed rate,
 TimeValue64 *interestingDecodeTime,
 TimeValue64 *interestingDecodeDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:

nextTimeMediaSample

Set this flag to 1 to search for the next sample.

nextTimeMediaEdit

Set this flag to 1 to search for the next group of samples.

nextTimeSyncSample

Set this flag to 1 to search for the next sync sample.

nextTimeEdgeOK

Set this flag to 1 to accept information about elements that begin or end at the time specified
by the decodeTime parameter. When this flag is set the function returns valid information
about the beginning and end of a media.

decodeTime
Specifies the starting point for the search in decode time. This time value must be expressed in the
media’s time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDecodeTime
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media’s time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to –1. Set this parameter to NULL if you are not interested in this information.

interestingDecodeDuration
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the duration
of the interesting time in the media’s time coordinate system. Set this parameter to NULL if you don’t
want this information; this lets the function works faster.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 69
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaNextInterestingDisplayTime
Searches for display times of interest in a media.

void GetMediaNextInterestingDisplayTime (
 Media theMedia,
 short interestingTimeFlags,
 TimeValue64 displayTime,
 Fixed rate,
 TimeValue64 *interestingDisplayTime,
 TimeValue64 *interestingDisplayDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:

nextTimeMediaSample

Set this flag to 1 to search for the next sample.

nextTimeMediaEdit

Set this flag to 1 to search for the next group of samples.

nextTimeSyncSample

Set this flag to 1 to search for the next sync sample.

nextTimeEdgeOK

Set this flag to 1 to accept information about elements that begin or end at the time specified
by the decodeTime parameter. When this flag is set the function returns valid information
about the beginning and end of a media.

displayTime
Specifies the starting point for the search in display time. This time value must be expressed in the
media’s time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDisplayTime
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media’s time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to –1. Set this parameter to NIL if you are not interested in this information.

70 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

interestingDisplayDuration
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the duration of
the interesting time in the media’s time coordinate system. Set this parameter to NIL if you don’t
want this information; this lets the function works faster.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMediaSample2
Retrieves sample data from a media file.

OSErr GetMediaSample2 (
 Media theMedia,
 UInt8 *dataOut,
 ByteCount maxDataSize,
 ByteCount *size,
 TimeValue64 decodeTime,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *decodeDurationPerSample,
 TimeValue64 *displayOffset,
 SampleDescriptionHandle sampleDescriptionH,
 ItemCount *sampleDescriptionIndex,
 ItemCount maxNumberOfSamples,
 ItemCount *numberOfSamples,
 MediaSampleFlags *sampleFlags);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

dataOut
A pointer to a buffer to receive sample data. The buffer must be large enough to contain at least
maxDataSize bytes. If you do not want to receive sample data, pass NULL.

maxDataSize
The maximum number of bytes allocated to hold the sample data.

size
A pointer to memory where the function returns the number of bytes of sample data returned in the
memory area specified by dataOut. Set this parameter to NULL if you are not interested in this
information.

decodeTime
The starting time of the sample to be retrieved in decode time. You must specify this value in the
media’s time scale.

QuickTime 7 API Reference 71
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sampleDecodeTime
A pointer to a time value in decode time. The function updates this time value to indicate the actual
time of the returned sample data. (The returned time may differ from the time you specified with the
time parameter. This will occur if the time you specified falls in the middle of a sample.) If you are
not interested in this information, set this parameter to NULL.

decodeDurationPerSample
A pointer to a time value in decode time. The Movie Toolbox returns the duration of each sample in
the media. Set this parameter to NULL if you don’t want this information.

displayOffset
A pointer to a time value. The function updates this time value to indicate the display offset of the
returned sample. This time value is expressed in the media’s time scale. Set this parameter to NULL
if you don’t want this information.

sampleDescriptionH
A handle to a SampleDescription structure. The function returns the sample description
corresponding to the returned sample data. The function resizes this handle as appropriate. If you
don’t want a SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. The function returns an index value to the SampleDescription structure
that corresponds to the returned sample data. You can retrieve the structure by calling
GetMediaSampleDescription and passing this index in the descH parameter. If you don’t want
this information, set this parameter to NIL.

maxNumberOfSamples
The maximum number of samples to be returned. The Movie Toolbox does not return more samples
than you specify with this parameter. If you set this parameter to 0, the Movie Toolbox uses a value
that is appropriate for the media, and returns that value in the field referenced by the
numberOfSamples parameter.

numberOfSamples
A pointer to a long integer. The function updates the field referred to by this parameter with the
number of samples it actually returns. If you don’t want this information, set this parameter to NULL.

sampleFlags
A pointer to a short integer in which the function returns flags that describe the sample. Unused flags
are set to 0. If you don’t want this information, set this parameter to NULL:

mediaSampleNotSync

This flag is set to 1 if the sample is not a sync sample and to 0 if the sample is a sync sample.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, maxSizeToGrowTooSmall if the sample data is larger
than maxDataSize, or noErr if there is no error.

Discussion
Whereas GetMediaSample takes a resizable Handle and a maxSizeToGrow parameter, GetMediaSample2
takes a pointer and a maxDataSize parameter. If you want to read a sample into a Handle, you can use the
following code:

 OSErr GetMediaSampleUsingHandle (Media theMedia, Handle dataHOut,
 ByteCount maxSizeToGrow, ByteCount *size,
 TimeValue64 decodeTime, TimeValue64 *sampleDecodeTime,
 TimeValue64 *decodeDurationPerSample,
 TimeValue64 *displayOffset,

72 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

 SampleDescriptionHandle sampleDescriptionH,
 ItemCount *sampleDescriptionIndex,
 ItemCount maxNumberOfSamples,
 ItemCount *numberOfSamples,
 MediaSampleFlags *sampleFlags)
 {
 OSErr err = noErr;
 ByteCount actualSize = 0;

 err = GetMediaSample2(theMedia,
 *dataHOut,
 GetHandleSize(dataHOut),
 &actualSize,
 decodeTime,
 sampleDecodeTime,
 decodeDurationPerSample,
 displayOffset,
 sampleDescriptionH,
 sampleDescriptionIndex,
 maxNumberOfSamples,
 numberOfSamples,
 sampleFlags);

 if ((maxSizeToGrowTooSmall == err)
 && ((0 == maxSizeToGrow) || (actualSize <= maxSizeToGrow)) {
 SetHandleSize(dataHOut, actualSize);
 err = MemError();
 if (err) goto bail;

 err = GetMediaSample2(theMedia,
 *dataHOut,
 GetHandleSize(dataHOut),
 &actualSize,
 decodeTime,
 sampleDecodeTime,
 decodeDurationPerSample,
 displayOffset,
 sampleDescriptionH,
 sampleDescriptionIndex,
 maxNumberOfSamples,
 numberOfSamples,
 sampleFlags);
 }

 if(size)
 *size = actualSize;

 bail:
 return err;
 }

Version Notes
Introduced in QuickTime 7. This function extends and supersedes GetMediaSample. It will only return
multiple samples that all have the same decode duration per sample, the same display offset, the same
sample description, and the same size per sample.

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference 73
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
Movies.h

GetMovieAudioBalance
Returns the balance value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioBalance (
 Movie m,
 Float32 *leftRight,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

leftRight
On return, a pointer to the current balance setting for the movie. The balance setting is a 32-bit
floating-point value that controls the relative volume of the left and right sound channels. A value of
0 sets the balance to neutral. Positive values up to 1.0 shift the balance to the right channel, negative
values up to –1.0 to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie’s balance setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioBalance (page 229).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioContext
Returns the current audio context for a movie.

OSStatus GetMovieAudioContext (
 Movie movie,
 QTAudioContextRef *audioContext);

Parameters
movie

The movie.

74 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

audioContext
A pointer to a variable to receive the audio context.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioFrequencyLevels
Returns the current frequency meter levels of a movie mix.

OSStatus GetMovieAudioFrequencyLevels (
 Movie m,
 FourCharCode whatMixToMeter,
 QTAudioFrequencyLevels *pAveragePowerLevels);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

pAveragePowerLevels
A pointer to a QTAudioFrequencyLevels structure (page 310) (page 240).

Return Value
An error code. Returns noErr if there is no error.

Discussion
In the structure pointed to by pAveragePowerLevels, the numChannels field must be set to the number
of channels in the movie mix being metered and the numBands field must be set to the number of bands
being metered (as previously configured). Enough memory for the structure must be allocated to hold 32-bit
values for all bands in all channels. This function returns the current frequency meter levels in the level
field of the structure, with all the band levels for the first channel first, all the band levels for the second
channel next and so on.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 75
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

GetMovieAudioFrequencyMeteringBandFrequencies
Returns the chosen middle frequency for each band in the configured frequency metering of a particular
movie mix.

OSStatus GetMovieAudioFrequencyMeteringBandFrequencies (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 numBands,
 Float32 *outBandFrequencies);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

numBands
The number of bands to examine.

outBandFrequencies
A pointer to an array of frequencies, each expressed in Hz.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use this function to label a visual meter in a user interface.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioFrequencyMeteringNumBands
Returns the number of frequency bands being metered for a movie’s specified audio mix.

OSStatus GetMovieAudioFrequencyMeteringNumBands (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 *outNumBands);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

76 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

outNumBands
A pointer to memory that stores the number of frequency bands currently being metered for the
movie’s specified audio mix.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioFrequencyMeteringNumBands (page 230).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioGain
Returns the gain value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioGain (
 Movie m,
 Float32 *gain,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is –6 dB, 1.0 is 0 dB (the audio from
the movie is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
movies to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioGain (page 231).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 77
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

GetMovieAudioMute
Returns the mute value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioMute (
 Movie m,
 Boolean *muted,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

muted
Returns TRUE if the movie audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioMute (page 231).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioVolumeLevels
Returns the current volume meter levels of a movie.

OSStatus GetMovieAudioVolumeLevels (
 Movie m,
 FourCharCode whatMixToMeter,
 QTAudioVolumeLevels *pAveragePowerLevels,
 QTAudioVolumeLevels *pPeakHoldLevels);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

78 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

pAveragePowerLevels
A pointer to a QTAudioVolumeLevels structure that stores the average power level of each channel
in the mix, measured in decibels. 0.0 dB for each channel means full volume, –6.0 dB means half
volume, –12.0 dB means quarter volume, and –infinite dB means silence. Pass NULL for this parameter
if you are not interested in average power levels.

pPeakHoldLevels
A pointer to a QTAudioVolumeLevels structure that stores the peak hold level of each channel in
the mix, measured in decibels. 0.0 dB for each channel means full volume, –6.0 dB means half volume,
–12.0 dB means quarter volume, and –infinite dB means silence. Pass NULL for this parameter if you
are not interested in peak hold levels.

Return Value
An error code. Returns noErr if there is no error.

Discussion
If either pAveragePowerLevels or pPeakHoldLevels returns non-NULL, it must have the numChannels
field in its QTAudioVolumeLevels structure set to the number of channels in the movie mix being metered
and the memory allocated for the structure must be large enough to hold levels for all those channels.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetMovieAudioVolumeMeteringEnabled
Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

OSStatus GetMovieAudioVolumeMeteringEnabled (
 Movie m,
 FourCharCode whatMixToMeter,
 Boolean *enabled);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

enabled
Returns TRUE if audio volume metering is enabled, FALSE if it is disabled.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioVolumeMeteringEnabled (page 232).

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 79
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetQTApplicationDirectory
Returns the path of the QuickTime Applications directory.

UINT GetQTApplicationDirectory (
 LPSTR lpBuffer,
 UINT uSize);

Parameters
lpBuffer

A pointer to the buffer to receive the null-terminated string containing the path to the QuickTime
Applications directory. This path does not end with a backslash unless the system directory is the root
directory.

uSize
The maximum size of the buffer, in TCHARs. This value should be set to at least MAX_PATH+1 to allow
sufficient space for the path and the null terminator.

Return Value
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not
including the terminating null character. If the length is greater than the size of the buffer, the return value
is the size of the buffer required to hold the path. If the function fails, the return value is zero. To get extended
error information, call GetLastError.

Discussion
The QuickTime Applications directory contains the QuickTime applications files, such as QuickTime Player
and others. Note that this call looks up the value of HKEY_LOCAL_MACHINE\SOFTWARE\Apple Computer,
Inc.\QuickTime\InstallDir, which is the root QuickTime folder that the user chose to install into.

Version Notes
Introduced in QuickTime 7 for Windows.

Availability
C interface file: QTLoadLibraryUtils.h

GetQTComponentDirectory
Returns the path of the QuickTime Components directory.

UINT GetQTComponentDirectory (
 LPSTR lpBuffer,
 UINT uSize);

Parameters
lpBuffer

A pointer to the buffer to receive the null-terminated string containing the path to the QuickTime
Components directory. This path does not end with a backslash unless the system directory is the
root directory.

80 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

uSize
The maximum size of the buffer, in TCHARs. This value should be set to at least MAX_PATH+1 to allow
sufficient space for the path and the null terminator.

Return Value
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not
including the terminating null character. If the length is greater than the size of the buffer, the return value
is the size of the buffer required to hold the path. If the function fails, the return value is zero. To get extended
error information, call GetLastError.

Discussion
The QuickTime Components directory contains any third-party or user-installed component files. Note that
this call looks up the value of HKEY_LOCAL_MACHINE\SOFTWARE\Apple Computer,
Inc.\QuickTime\QTComponentsDir, which is where you should put your components

Version Notes
Introduced in QuickTime 7 for Windows.

Availability
C interface file: QTLoadLibraryUtils.h

GetQTExtensionDirectory
Returns the path of the QuickTime Extensions directory.

UINT GetQTExtensionDirectory (
 LPSTR lpBuffer,
 UINT uSize);

Parameters
lpBuffer

A pointer to the buffer to receive the null-terminated string containing the path to the QuickTime
Extensions directory. This path does not end with a backslash unless the system directory is the root
directory.

uSize
The maximum size of the buffer, in TCHARs. This value should be set to at least MAX_PATH+1 to allow
sufficient space for the path and the null terminator.

Return Value
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not
including the terminating null character. If the length is greater than the size of the buffer, the return value
is the size of the buffer required to hold the path. If the function fails, the return value is zero. To get extended
error information, call GetLastError.

Discussion
The QuickTime Extensions directory contains the QuickTime extensions files, whose names ends with .qtx
and .qtr . (A .qtx file contains the data fork of an extension––a Windows DLL, while a .qtr file contains
the resource fork of an extension for Macintosh-style resources). Note that this call looks up the value of
HKEY_LOCAL_MACHINE\SOFTWARE\Apple Computer, Inc.\QuickTime\QTExtDir, which points to the
folder where the extensions are installed.

Version Notes
Introduced in QuickTime 7 for Windows.

QuickTime 7 API Reference 81
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
C interface file: QTLoadLibraryUtils.h

GetQTSystemDirectory
Returns the path of the QuickTime System directory.

UINT GetQTSystemDirectory (
 LPSTR lpBuffer,
 UINT uSize);

Parameters
lpBuffer

A pointer to the buffer to receive the null-terminated string containing the path to the QuickTime
System directory. This path does not end with a backslash unless the system directory is the root
directory.

uSize
The maximum size of the buffer, in TCHARs. This value should be set to at least MAX_PATH+1 to allow
sufficient space for the path and the null terminator.

Return Value
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not
including the terminating null character. If the length is greater than the size of the buffer, the return value
is the size of the buffer required to hold the path. If the function fails, the return value is zero. To get extended
error information, call GetLastError.

Discussion
The QuickTime System directory contains all the necessary QuickTime system files such as extensions––that
is, codecs, file importers, and so on––dynamic link libraries, resources, and others. Note that this call looks
up the value of HKEY_LOCAL_MACHINE\SOFTWARE\Apple Computer, Inc.\QuickTime\QTSysDir,
which points to the folder where the system components are installed.

Version Notes
Introduced in QuickTime 7 for Windows.

Availability
C interface file: QTLoadLibraryUtils.h

GetTrackAudioGain
Returns the gain value for the audio mix of a track currently playing.

OSStatus GetTrackAudioGain (
 Track t,
 Float32 *gain,
 UInt32 flags);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

82 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is –6 dB, 1.0 is 0 dB (the audio from
the track is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
tracks to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track gain setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioGain (page 233).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

GetTrackAudioMute
Returns the mute value for the audio mix of a track currently playing.

OSStatus GetTrackAudioMute (
 Track t,
 Boolean *muted,
 UInt32 flags);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Returns TRUE if the track’s audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track’s mute setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioMute (page 233).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

QuickTime 7 API Reference 83
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
Movies.h

GetTrackEditRate64
Returns the rate of the track edit of a specified track at an indicated time.

Fixed GetTrackEditRate64 (
 Track theTrack,
 TimeValue64 atTime);

Parameters
theTrack

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

atTime
A 64-bit time value that indicates the time at which the rate of a track edit (of a track identified in the
parameter theTrack) is to be determined.

Return Value
The rate of the track edit of the specified track at the specified time.

Discussion
This function is useful if you are stepping through track edits directly in your application or if you are a client
of QuickTime’s base media handler.

Version Notes
Introduced in QuickTime 7. This function is a 64-bit replacement for GetTrackEditRate.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

ICMCompressionFrameOptionsCreate
Creates a frame compression options object.

OSStatus ICMCompressionFrameOptionsCreate (
 CFAllocatorRef allocator,
 ICMCompressionSessionRef session,
 ICMCompressionFrameOptionsRef *options);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

options
On return, a reference to a new frame compression options object.

84 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsCreateCopy
Copies a frame compression options object.

OSStatus ICMCompressionFrameOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMCompressionFrameOptionsRef originalOptions,
 ICMCompressionFrameOptionsRef *copiedOptions);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A frame compression options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

copiedOptions
On return, a reference to a copy of the frame compression options object passed in originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetForceKeyFrame
Retrieves the force key frame flag.

Boolean ICMCompressionFrameOptionsGetForceKeyFrame (
 ICMCompressionFrameOptionsRef options);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

QuickTime 7 API Reference 85
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
Returns TRUE if frames are forced to be compressed as key frames, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetFrameType
Retrieves the frame type setting.

ICMFrameType ICMCompressionFrameOptionsGetFrameType (
 ICMCompressionFrameOptionsRef options);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

Return Value
On return, one of the frame types listed below.

Discussion
This function can return one of these constants:

kICMFrameType_I = 'I'
An I frame.

kICMFrameType_P = 'P'
A P frame.

kICMFrameType_B = 'B'
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetProperty
Retrieves the value of a specific property of a compression frame options object.

86 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMCompressionFrameOptionsGetProperty (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 87
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetPropertyInfo
Retrieves information about properties of a compression frame options object.

OSStatus ICMCompressionFrameOptionsGetPropertyInfo (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

88 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetTypeID
Returns the type ID for the current frame compression options object.

CFTypeID ICMCompressionFrameOptionsGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsRelease
Decrements the retain count of a frame compression options object.

void ICMCompressionFrameOptionsRelease (
 ICMCompressionFrameOptionsRef options);

Parameters
options

A reference to a frame compression options object.This reference is returned by
ICMCompressionFrameOptionsCreate (page 84). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 89
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionFrameOptionsRetain
Increments the retain count of a frame compression options object.

ICMCompressionFrameOptionsRef ICMCompressionFrameOptionsRetain (
 ICMCompressionFrameOptionsRef options);

Parameters
options

A reference to a frame compression options object.This reference is returned by
ICMCompressionFrameOptionsCreate (page 84). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetForceKeyFrame
Forces frames to be compressed as key frames.

OSStatus ICMCompressionFrameOptionsSetForceKeyFrame (
 ICMCompressionFrameOptionsRef options,
 Boolean forceKeyFrame);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

forceKeyFrame
Pass TRUE to force frames to be compressed as key frames, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The compressor must obey this flag if set. By default it is set FALSE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

90 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionFrameOptionsSetFrameType
Requests a frame be compressed as a particular frame type.

OSStatus ICMCompressionFrameOptionsSetFrameType (
 ICMCompressionFrameOptionsRef options,
 ICMFrameType frameType);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

frameType
A constant that identifies a frame type. Pass one of the following but do not assume that there are
no other frame types:

kICMFrameType_I = 'I'

An I frame.

kICMFrameType_P = 'P'

A P frame.

kICMFrameType_B = 'B'

A B frame.

kICMFrameType_Unknown = 0

A frame of unknown type.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The frame type setting may be ignored by the compressor if it is not appropriate. By default it is set to
kICMFrameType_Unknown.

Do not assume that kICMFrameType_I sets a key frame; if you need a key frame, call
ICMCompressionFrameOptionsSetForceKeyFrame (page 90).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetProperty
Sets the value of a specific property of a compression frame options object.

QuickTime 7 API Reference 91
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMCompressionFrameOptionsSetProperty (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate (page 84).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

92 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionBeginPass
Announces the start of a specific compression pass.

OSStatus ICMCompressionSessionBeginPass (
 ICMCompressionSessionRef session,
 ICMCompressionPassModeFlags passModeFlags,
 UInt32 flags);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

passModeFlags
Flags that describe how the compressor should behave in this pass of multipass encoding:

kICMCompressionPassMode_OutputEncodedFrames = 1L<<0

Output encoded frames.

kICMCompressionPassMode_NoSourceFrames = 1L<<1

The client need not provide source frame buffers.

kICMCompressionPassMode_WriteToMultiPassStorage = 1L<<2

The compressor may write private data to multipass storage.

kICMCompressionPassMode_ReadFromMultiPassStorage = 1L<<3

The compressor may read private data from multipass storage.

flags
Reserved. Set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The source frames and frame options for each display time should be the same across passes. During multipass
compression, valid displayTimeStamp values must be passed to ICMCompressionSessionEncodeFrame,
because they are used to index the compressor’s stored state.

During an analysis pass (kICMCompressionPassMode_WriteToMultiPassStorage), the compressor does
not output encoded frames but records compressor-private information for each frame. During repeated
analysis passes and the encoding pass (kICMCompressionPassMode_ReadFromMultiPassStorage), the
compressor may refer to this information for other frames and use it to improve encoding. During an encoding
pass (kICMCompressionPassMode_OutputEncodedFrames), the compressor must output encoded frames.
If the compressor sets the kICMCompressionPassMode_NoSourceFrames flag for the pass, the client may
pass NULL pixel buffers to ICMCompressionSessionEncodeFrame.

By default, the ICM provides local storage that lasts only until the compression session is disposed. If the
client provides custom multipass storage, passes may be performed at different times or on different machines;
segments of each pass may even be distributed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 93
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMCompressionSessionCompleteFrames
Forces a compression session to complete encoding frames.

OSStatus ICMCompressionSessionCompleteFrames (
 ICMCompressionSessionRef session,
 Boolean completeAllFrames,
 TimeValue64 completeUntilDisplayTimeStamp,
 TimeValue64 nextDisplayTimeStamp);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 94).

completeAllFrames
Pass TRUE to direct the session to complete all pending frames.

completeUntilDisplayTimeStamp
A 64-bit time value that represents the display time up to which to complete frames. This value is
ignored if completeAllFrames is TRUE.

nextDisplayTimeStamp
A 64-bit time value that represents the display time of the next frame that should be passed to
EncodeFrame. This value is ignored unlessICMCompressionSessionOptionsSetDurationsNeeded
set TRUE and kICMValidTime_DisplayDurationIsValid was 0 in validTimeFlags in the last
call to ICMCompressionSessionEncodeFrame.

Return Value
Returns an error code, or 0 if there is no error. The function may return before frames are completed if the
encoded frame callback routine returns an error.

Discussion
Call this function to force a compression session to complete encoding frames. Set completeAllFrames to
direct the session to complete all pending frames. If completeAllFrames is false, only frames with display
time stamps up to and including the time passed in completeUntilDisplayTimeStamp will be encoded.
If ICMCompressionSessionOptionsSetDurationsNeeded set TRUE and you are passing valid display
timestamps but not display durations to ICMCompressionSessionEncodeFrame, pass in
nextDisplayTimeStamp the display timestamp of the next frame that would be passed to EncodeFrame.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionCreate
Creates a compression session for a specified codec type.

94 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMCompressionSessionCreate (
 CFAllocatorRef allocator,
 int width,
 int height,
 CodecType cType,
 TimeScale timescale,
 ICMCompressionSessionOptionsRef compressionOptions,
 CFDictionaryRef sourcePixelBufferAttributes,
 ICMEncodedFrameOutputRecord *encodedFrameOutputRecord,
 ICMCompressionSessionRef *compressionSessionOut);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

width
The width of frames. Pass 0 to let the compressor control the width.

height
The height of frames. Pass 0 to let the compressor control the height.

cType
The codec type.

timescale
The timescale to be used for all time stamps and durations used in the session.

compressionOptions
A reference to a settings object that configures the session. You create such an object by calling
ICMCompressionSessionOptionsCreate. You can then use these constants to set its properties:

kICMUnlimitedFrameDelayCount

No limit on the number of frames in the compression window.

kICMUnlimitedFrameDelayTime

No time limit on the frames in the compression window.

kICMUnlimitedCPUTimeBudget

No CPU time limit on compression.

sourcePixelBufferAttributes
Required attributes for source pixel buffers, used when creating a pixel buffer pool for source frames.
If you do not want the ICM to create one for you, pass NULL. Using pixel buffers not allocated by the
ICM may increase the chance that it will be necessary to copy image data.

encodedFrameOutputRecord
The callback that will receive encoded frames.

compressionSessionOut
Points to a variable to receive the created session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Some compressors do not support arbitrary source dimensions, and may override the suggested width and
height.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 95
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionEncodeFrame
Presents video frames to a compression session.

OSStatus ICMCompressionSessionEncodeFrame (
 ICMCompressionSessionRef session,
 CVPixelBufferRef pixelBuffer,
 TimeValue64 displayTimeStamp,
 TimeValue64 displayDuration,
 ICMValidTimeFlags validTimeFlags,
 ICMCompressionFrameOptionsRef frameOptions,
 ICMSourceTrackingCallbackRecord *sourceTrackingCallback,
 void *sourceFrameRefCon);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 94).

pixelBuffer
A reference to a buffer containing a source image to be compressed, which must have a nonzero
reference count. The session will retain it as long as necessary. The client should not modify the pixel
buffer’s pixels until the pixel buffer release callback is called. In a multipass encoding session pass,
where the compressor suggested the flag kICMCompressionPassMode_NoSourceFrames, you may
pass NULL in this parameter.

displayTimeStamp
A 64-bit time value that represents the display time of the frame, using the time scale passed to
ICMCompressionSessionCreate. If you pass a valid value, set the
kICMValidTime_DisplayTimeStampIsValid flag in the validTimeFlags parameter (below).

displayDuration
A 64-bit time value that represents the display duration of the frame, using the time scale passed to
ICMCompressionSessionCreate. If you pass a valid value, set the
kICMValidTime_DisplayDurationIsValid flag in the validTimeFlags parameter (below).

validTimeFlags
Flags to indicate which of the values passed in displayTimeStamp and displayDuration are valid:

kICMValidTime_DisplayTimeStampIsValid

The time value passed in displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid

The time value passed in displayDuration is valid.

frameOptions
Options for this frame. Currently not used; pass NULL.

96 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sourceTrackingCallback
A pointer to a callback to be notified about the status of this source frame. Pass NULL if you do not
require notification.

sourceFrameRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
Returns an error code, or 0 if there is no error. Encoded frames may or may not be output before the function
returns.

Discussion
The session will retain the pixel buffer as long as necessary, and the client should not modify the pixel data
until the session releases it. The most practical way to deal with this is by allocating pixel buffers from a pool.
The client may fill in both, either, or neither of displayTimeStamp and displayDuration, but should set
the appropriate flags to indicate which are valid. If the client needs to track the progress of a source frame,
it should provide a source tracking callback. If multipass compression is enabled, calls to this function must
be bracketed by calls to ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionEndPass
Announces the end of a pass.

OSStatus ICMCompressionSessionEndPass (
 ICMCompressionSessionRef session);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 97
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionGetImageDescription
Retrieves the image description for a video compression session.

OSStatus ICMCompressionSessionGetImageDescription (
 ICMCompressionSessionRef session,
 ImageDescriptionHandle *imageDescOut);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 94).

imageDescOut
A handle to an ImageDescription structure. The caller must not dispose of this handle; the ICM will
dispose of it when the compression session is disposed.

Return Value
Returns an error code, or 0 if there is no error. For some codecs, this function may fail if called before the first
frame is compressed.

Discussion
Multiple calls to this function return the same handle.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetPixelBufferPool
Returns a pool that can provide ideal source pixel buffers for a compression session.

CVPixelBufferPoolRef ICMCompressionSessionGetPixelBufferPool (
 ICMCompressionSessionRef session);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

Return Value
A reference to a pool of pixel buffers. The compression session creates this pixel buffer pool based on the
compressor’s pixel buffer attributes and any pixel buffer attributes passed to
ICMCompressionSessionCreate (page 94).

Discussion
A new compression session builds this pixel buffer pool based on the compressor’s pixel buffer attributes
and any pixel buffer attributes passed in to ICMCompressionSessionCreate. If the source pixel buffer
attributes and the compressor pixel buffer attributes cannot be reconciled, the pool is based on the source
pixel buffer attributes and the ICM converts each pixel buffer internally.

98 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetProperty
Retrieves the value of a specific property of a compression session.

OSStatus ICMCompressionSessionGetProperty (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

QuickTime 7 API Reference 99
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetPropertyInfo
Retrieves information about properties of a compression session.

OSStatus ICMCompressionSessionGetPropertyInfo (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

100 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetTimeScale
Retrieves the time scale for a compression session.

TimeScale ICMCompressionSessionGetTimeScale (
 ICMCompressionSessionRef session);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

Return Value
The time scale for the compression session.

QuickTime 7 API Reference 101
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionGetTypeID
Returns the type ID for the current compression session.

CFTypeID ICMCompressionSessionGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsCreate
Creates a compression session options object.

OSStatus ICMCompressionSessionOptionsCreate (
 CFAllocatorRef allocator,
 ICMCompressionSessionOptionsRef *options);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a new compression session options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

102 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionOptionsCreateCopy
Copies a compression session options object.

OSStatus ICMCompressionSessionOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMCompressionSessionOptionsRef originalOptions,
 ICMCompressionSessionOptionsRef *copiedOptions);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

copiedOptions
On return, a reference to a copy of the compression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowFrameReordering
Retrieves the allow frame reordering flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameReordering (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

Return Value
Returns TRUE if frame reordering is allowed, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 103
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionOptionsGetAllowFrameTimeChanges
Retrieves the allow frame time changes flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameTimeChanges (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

Return Value
Returns TRUE if the compressor is allowed to modify frame times, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowTemporalCompression
Retrieves the allow temporal compression flag.

Boolean ICMCompressionSessionOptionsGetAllowTemporalCompression (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

Return Value
Returns TRUE if temporal compression is allowed, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetDurationsNeeded
Retrieves the durations needed flag.

104 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Boolean ICMCompressionSessionOptionsGetDurationsNeeded (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

Return Value
Returns TRUE if the durations of outputted frames must be calculated, FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetMaxKeyFrameInterval
Retrieves the maximum key frame interval.

SInt32 ICMCompressionSessionOptionsGetMaxKeyFrameInterval (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

Return Value
Returns the maximum key frame interval.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetProperty
Retrieves the value of a specific property of a compression session options object.

QuickTime 7 API Reference 105
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMCompressionSessionOptionsGetProperty (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

106 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetPropertyInfo
Retrieves information about properties of a compression session options object.

OSStatus ICMCompressionSessionOptionsGetPropertyInfo (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

QuickTime 7 API Reference 107
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetTypeID
Returns the type ID for the current compression session options object.

CFTypeID ICMCompressionSessionOptionsGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsRelease
Decrements the retain count of a compression session options object.

void ICMCompressionSessionOptionsRelease (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

108 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionOptionsRetain
Increments the retain count of a compression session options object.

ICMCompressionSessionOptionsRef ICMCompressionSessionOptionsRetain (
 ICMCompressionSessionOptionsRef options);

Parameters
options

A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowFrameReordering
Enables frame reordering.

OSStatus ICMCompressionSessionOptionsSetAllowFrameReordering (
 ICMCompressionSessionOptionsRef options,
 Boolean allowFrameReordering);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

allowFrameReordering
Pass TRUE to enable frame reordering, FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
To encode B-frames a compressor must reorder frames, which means that the order in which they will be
emitted and stored (the decode order) is different from the order in which they were presented to the
compressor (the display order). By default, frame reordering is disabled. To encode using B-frames, you must
call this function, passing TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 109
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressionSessionOptionsSetAllowFrameTimeChanges
Allows the compressor to modify frame times.

OSStatus ICMCompressionSessionOptionsSetAllowFrameTimeChanges (
 ICMCompressionSessionOptionsRef options,
 Boolean allowFrameTimeChanges);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

allowFrameTimeChanges
Pass TRUE to let the compressor to modify frame times, FALSE to prohibit it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Some compressors are able to identify and coalesce runs of identical frames and output single frames with
longer durations, or output frames at a different frame rate from the original. This feature is controlled by
the allow frame time changes flag. By default, this flag is set to false, which forces compressors to emit one
encoded frame for every source frame and preserve frame display times.

This function replaces the practice of having compressors return special high similarity values to indicate
that frames could be dropped.

If you want to let the compressor modify frame times in order to improve compression performance, you
should allow frame time changes.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowTemporalCompression
Enables temporal compression.

OSStatus ICMCompressionSessionOptionsSetAllowTemporalCompression (
 ICMCompressionSessionOptionsRef options,
 Boolean allowTemporalCompression);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

allowTemporalCompression
Pass TRUE to enable temporal compression, FALSE to disable it.

110 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Discussion
By default, temporal compression is disabled. If you want temporal compression for P-frames or B-frames
you must call this function and pass TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetDurationsNeeded
Indicates that the durations of outputted frames must be calculated.

OSStatus ICMCompressionSessionOptionsSetDurationsNeeded (
 ICMCompressionSessionOptionsRef options,
 Boolean decodeDurationsNeeded);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

decodeDurationsNeeded
Pass TRUE to indicate that durations must be calculated, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion
If this flag is set and source frames are provided with times but not durations, then frames will be delayed
so that durations can be calculated as the difference between one frame’s time stamp and the next frame’s
time stamp. By default this flag is 0, so frames will not be delayed in order to calculate durations.

If you are passing encoded frames to AddMediaSampleFromEncodedFrame, you must call this function and
pass TRUE.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetMaxKeyFrameInterval
Sets the maximum interval between key frames.

QuickTime 7 API Reference 111
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMCompressionSessionOptionsSetMaxKeyFrameInterval (
 ICMCompressionSessionOptionsRef options,
 SInt32 maxKeyFrameInterval);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

maxKeyFrameInterval
The maximum interval between key frames, also known as the key frame rate.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Compressors are allowed to generate key frames more frequently if this would result in more efficient
compression. The default key frame interval is 0, which indicates that the compressor should choose where
to place all key frames.

This is a break with previous practice, which used a key frame rate of 0 to disable temporal compression.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetProperty
Sets the value of a specific property of a compression session options object.

OSStatus ICMCompressionSessionOptionsSetProperty (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate (page 102).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

112 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionProcessBetweenPasses
Lets the compressor perform processing between passes.

OSStatus ICMCompressionSessionProcessBetweenPasses (
 ICMCompressionSessionRef session,
 UInt32 flags,
 Boolean *interpassProcessingDoneOut,
 ICMCompressionPassModeFlags *requestedNextPassModeFlagsOut);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

flags
Reserved. Set to 0.

QuickTime 7 API Reference 113
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

interpassProcessingDoneOut
A pointer to a Boolean that will be set to FALSE if this function should be called again, TRUE if not.

requestedNextPassModeFlagsOut
A pointer to ICMCompressionPassModeFlags that will be set to the codec’s recommended mode
flags for the next pass. kICMCompressionPassMode_OutputEncodedFrames will be set only if it
recommends that the next pass be the final one:

kICMCompressionPassMode_OutputEncodedFrames = 1L<<0

Output encoded frames.

kICMCompressionPassMode_NoSourceFrames = 1L<<1

The client need not provide source frame buffers.

kICMCompressionPassMode_WriteToMultiPassStorage = 1L<<2

The compressor may write private data to multipass storage.

kICMCompressionPassMode_ReadFromMultiPassStorage = 1L<<3

The compressor may read private data from multipass storage.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Call this function repeatedly until the compressor sets interpassProcessingDoneOut to TRUE to indicate
that it is done with this round of interpass processing. When done, the compressor will indicate its preferred
mode for the next pass. At this point the client may choose to begin an encoding pass, by OR-combining
the kICMCompressionPassMode_OutputEncodedFrames flag, regardless of the compressor’s request.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionRelease
Decrements the retain count of a compression session.

void ICMCompressionSessionRelease (
 ICMCompressionSessionRef session);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the session is disposed.

Version Notes
Introduced in QuickTime 7.

114 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionRetain
Increments the retain count of a compression session.

ICMCompressionSessionRef ICMCompressionSessionRetain (
 ICMCompressionSessionRef session);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in session, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionSetProperty
Sets the value of a specific property of a compression session.

OSStatus ICMCompressionSessionSetProperty (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 115
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressionSessionSupportsMultiPassEncoding
Queries whether a compression session supports multipass encoding.

Boolean ICMCompressionSessionSupportsMultiPassEncoding (
 ICMCompressionSessionRef session,
 UInt32 multiPassStyleFlags,
 ICMCompressionPassModeFlags *firstPassModeFlagsOut);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 94).

multiPassStyleFlags
Reserved; set to 0.

116 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

firstPassModeFlagsOut
A pointer to a variable to receive the session’s requested mode flags for the first pass. The client may
modify these flags, but should not set kICMCompressionPassMode_NoSourceFrames. Pass NULL
if you do not want this information.

Return Value
Returns TRUE if the compression session supports multipass encoding, FALSE otherwise.

Discussion
Even if this function returns FALSE, if you passed TRUE to ICMCompressionSessionOptionsSetMultiPass,
you must call ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSessionDropFrame
Called by a compressor to notify the ICM that a source frame has been dropped and will not contribute to
any encoded frames.

OSStatus ICMCompressorSessionDropFrame (
 ICMCompressorSessionRef session,
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

sourceFrame
A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96). If you pass NULL, nothing happens.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Calling this function does not automatically release the source frame; if the compressor called
ICMCompressorSourceFrameRetain it should still call ICMCompressorSourceFrameRelease.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 117
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressorSessionEmitEncodedFrame
Called by a compressor to output an encoded frame corresponding to one or more source frames.

OSStatus ICMCompressorSessionEmitEncodedFrame (
 ICMCompressorSessionRef session,
 ICMMutableEncodedFrameRef encodedFrame,
 long numberOfSourceFrames,
 ICMCompressorSourceFrameRef sourceFrames[]);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

encodedFrame
A reference to an encoded frame object with write capabilities.

numberOfSourceFrames
The number of source frames encoded in the encoded frame.

sourceFrames
References to frames that have been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

Return Value
An error code. Returns noErr if there is no error.

Discussion
Encoded frames may correspond to more than one source frame only if allowFrameTimeChanges is set in
the compression session’s compressionSessionOptions.

After calling this function, the compressor should release the encoded frame by calling
ICMEncodedFrameRelease. Calling this function does not automatically release the source frames; if the
compressor called ICMCompressorSourceFrameRetain it should still call
ICMCompressorSourceFrameRelease.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetDisplayNumber
Retrieves a source frames display number.

long ICMCompressorSourceFrameGetDisplayNumber (
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

118 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
The display number of the source frame.

Discussion
The ICM tags source frames with display numbers in the order that they are passed to
ICMCompressionSessionEncodeFrame. The first display number is 1. Compressors may compare these
numbers to work out whether prediction is forward or backward, even when display times are not provided.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetDisplayTimeStampAndDuration
Retrieves the display time stamp and duration of a source frame.

OSStatus ICMCompressorSourceFrameGetDisplayTimeStampAndDuration (
 ICMCompressorSourceFrameRef sourceFrame,
 TimeValue64 *displayTimeStampOut,
 TimeValue64 *displayDurationOut,
 TimeScale *timeScaleOut,
 ICMValidTimeFlags *validTimeFlagsOut);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

displayTimeStampOut
A pointer to the source frame’s display time stamp.

displayDurationOut
A pointer to the source frame’s display duration.

timeScaleOut
A pointer to the source frame’s display time scale.

validTimeFlagsOut
A pointer to one of these display time flags for the source frame:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0

The value of displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid = 1L<<1

The value of displayDuration is valid.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 119
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetFrameOptions
Retrieves the frame compression options for a source frame.

ICMCompressionFrameOptionsRef ICMCompressorSourceFrameGetFrameOptions (
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

Return Value
A compression session frame options reference representing options for this frame. A frame options object
is created by ICMCompressionFrameOptionsCreate (page 84).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetPixelBuffer
Retrieves a source frames pixel buffer.

CVPixelBufferRef ICMCompressorSourceFrameGetPixelBuffer (
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

Return Value
A reference to the pixel buffer containing the source frame’s image being compressed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

120 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMCompressorSourceFrameGetTypeID
Returns the type ID for the current source frame object.

CFTypeID ICMCompressorSourceFrameGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameRelease
Decrements the retain count of a source frame object.

void ICMCompressorSourceFrameRelease (
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMCompressorSourceFrameRetain
Increments the retain count of a source frame object.

ICMCompressorSourceFrameRef ICMCompressorSourceFrameRetain (
 ICMCompressorSourceFrameRef sourceFrame);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96). If you pass NULL, nothing happens.

QuickTime 7 API Reference 121
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
A reference to the object passed in sourceFrame, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreate
Creates a frame decompression options object.

OSStatus ICMDecompressionFrameOptionsCreate (
 CFAllocatorRef allocator,
 ICMDecompressionFrameOptionsRef *options);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a frame decompression options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreateCopy
Copies a frame decompression options object.

OSStatus ICMDecompressionFrameOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMDecompressionFrameOptionsRef originalOptions,
 ICMDecompressionFrameOptionsRef *copiedOptions);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 122).

122 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

copiedOptions
On return, a reference to a copy of the frame decompression options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetProperty
Retrieves the value of a specific property of a decompression frame options object.

OSStatus ICMDecompressionFrameOptionsGetProperty (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 122).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 123
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetPropertyInfo
Retrieves information about properties of a decompression frame options object.

124 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMDecompressionFrameOptionsGetPropertyInfo (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 122).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the frame option’s property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 125
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetTypeID
Returns the type ID for the current frame decompression options object.

CFTypeID ICMDecompressionFrameOptionsGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsRelease
Decrements the retain count of a frame decompression options object.

void ICMDecompressionFrameOptionsRelease (
 ICMDecompressionFrameOptionsRef options);

Parameters
options

A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 122). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsRetain
Increments the retain count of a frame decompression options object.

126 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMDecompressionFrameOptionsRef ICMDecompressionFrameOptionsRetain (
 ICMDecompressionFrameOptionsRef options);

Parameters
options

A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate (page 122). If you pass NULL, nothing happens.

Return Value
A reference to the frame decompression options object passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsSetProperty
Sets the value of a specific property of a decompression frame options object.

OSStatus ICMDecompressionFrameOptionsSetProperty (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate (page 122).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 127
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionCreate
Creates a session for decompressing video frames.

OSStatus ICMDecompressionSessionCreate (
 CFAllocatorRef allocator,
 ImageDescriptionHandle desc,
 ICMDecompressionSessionOptionsRef decompressionOptions,
 CFDictionaryRef destinationPixelBufferAttributes,
 ICMDecompressionTrackingCallbackRecord *trackingCallback,
 ICMDecompressionSessionRef *decompressionSessionOut);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

128 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

desc
An image description for the source frames.

decompressionOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134). The session will retain the object. You may
change some options during the session by modifying the object. You may also pass NULL.

destinationPixelBufferAttributes
Requirements for emitted pixel buffers. You may pass NULL.

trackingCallback
A pointer to a structure that designates a callback to be called for information about queued frames
and pixel buffers containing decompressed frames. See
ICMDecompressionTrackingCallbackRecord (page 239) and
ICMDecompressionTrackingCallbackProc (page 235).

decompressionSessionOut
A pointer to a variable to receive a reference to the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames are returned through calls to the callback pointed to by trackingCallback.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionCreateForVisualContext
Creates a session for decompressing video frames.

OSStatus ICMDecompressionSessionCreateForVisualContext (
 CFAllocatorRef allocator,
 /*can be NULL */ ImageDescriptionHandle desc,
 ICMDecompressionSessionOptionsRef decompressionOptions,
 /*can be NULL */ QTVisualContextRef visualContext,
 ICMDecompressionTrackingCallbackRecord *trackingCallback,
 ICMDecompressionSessionRef *decompressionSessionOut);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

desc
An image description for the source frames.

decompressionOptions
Options for the session. The session will retain this options object. You may change some options
during the session by modifying the object.

QuickTime 7 API Reference 129
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

visualContext
The target visual context.

trackingCallback
The callback to be called with information about queued frames, and pixel buffers containing the
decompressed frames.

decompressionSessionOut
Points to a variable to receive the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames will be output to a visual context. If desired, the trackingCallback may attach additional data to
pixel buffers before they are sent to the visual context.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionDecodeFrame
Queues a frame for decompression.

OSStatus ICMDecompressionSessionDecodeFrame (
 ICMDecompressionSessionRef session,
 const UInt8 *data,
 ByteCount dataSize,
 ICMDecompressionFrameOptionsRef frameOptions,
 const ICMFrameTimeRecord *frameTime,
 void *sourceFrameRefCon);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

data
A pointer to the compressed data for this frame. The data must remain in this location until
ICMDecompressionTrackingCallbackProc (page 235) is called with the
kICMDecompressionTracking_ReleaseSourceData flag set indecompressionTrackingFlags.

dataSize
The number of bytes of compressed data. You may not pass 0 in this parameter.

frameOptions
A reference to a frame decompression options object containing options for this frame. You can create
this object by calling ICMDecompressionFrameOptionsCreate (page 122).

frameTime
A pointer to a structure describing the frame’s timing information.

130 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sourceFrameRefCon
Your reference value for the frame.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionFlush
Flushes the frames queued for a decompression session.

OSStatus ICMDecompressionSessionFlush (
 ICMDecompressionSessionRef session);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The tracking callback will be called for each frame with the result –1.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionGetProperty
Retrieves the value of a specific property of a decompression session.

OSStatus ICMDecompressionSessionGetProperty (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

QuickTime 7 API Reference 131
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueAddress
A pointer to a variable to receive the returned property’s value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionGetPropertyInfo
Retrieves information about the properties of a decompression session.

132 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMDecompressionSessionGetPropertyInfo (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 133
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMDecompressionSessionGetTypeID
Returns the type ID for the current decompression session.

CFTypeID ICMDecompressionSessionGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsCreate
Creates a decompression session options object.

OSStatus ICMDecompressionSessionOptionsCreate (
 CFAllocatorRef allocator,
 ICMDecompressionSessionOptionsRef *options);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a decompression session options object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsCreateCopy
Copies a decompression session options object.

134 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMDecompressionSessionOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMDecompressionSessionOptionsRef originalOptions,
 ICMDecompressionSessionOptionsRef *copiedOptions);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134).

copiedOptions
On return, a reference to a copy of the decompression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetPropertyInfo
Retrieves information about properties of a decompression session options object.

OSStatus ICMDecompressionSessionOptionsGetPropertyInfo (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 135
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetProperty
Retrieves the value of a specific property of a decompression session options object.

136 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMDecompressionSessionOptionsGetProperty (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be retrieved.

outPropValueAddress
A pointer to a variable to hold the value of the property.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 137
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetTypeID
Returns the type ID for the current decompression session options object.

CFTypeID ICMDecompressionSessionOptionsGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRelease
Decrements the retain count of a decompression session options object.

void ICMDecompressionSessionOptionsRelease (
 ICMDecompressionSessionOptionsRef options);

Parameters
options

A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRetain
Increments the retain count of a decompression session options object.

138 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMDecompressionSessionOptionsRef ICMDecompressionSessionOptionsRetain (
 ICMDecompressionSessionOptionsRef options);

Parameters
options

A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134). If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsSetProperty
Sets the value of a specific property of a decompression session options object.

OSStatus ICMDecompressionSessionOptionsSetProperty (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate (page 134).

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

QuickTime 7 API Reference 139
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionRetain
Increments the retain count of a decompression session.

ICMDecompressionSessionRef ICMDecompressionSessionRetain (
 ICMDecompressionSessionRef session);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128). If you pass NULL, nothing happens.

Return Value
A copy of the reference passed in session, for convenience.

Version Notes
Introduced in QuickTime 7.

140 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionRelease
Decrements the retain count of a decompression session.

void ICMDecompressionSessionRelease (
 ICMDecompressionSessionRef session);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayDirection
Sets the direction for non-scheduled display time.

OSStatus ICMDecompressionSessionSetNonScheduledDisplayDirection (
 ICMDecompressionSessionRef session,
 Fixed rate);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

rate
The display direction. Negative values represent backward display and positive values represent
forward display.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 141
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayTime
Sets the display time for a decompression session, and requests display of the non-scheduled queued frame
at that display time, if there is one.

OSStatus ICMDecompressionSessionSetNonScheduledDisplayTime (
 ICMDecompressionSessionRef session,
 TimeValue64 displayTime,
 TimeScale displayTimeScale,
 UInt32 flags);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

displayTime
A display time. Usually this is the display time of a non-scheduled queued frame.

displayTimeScale
The timescale according to which displayTime should be interpreted.

flags
Reserved; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMDecompressionSessionSetProperty
Sets the value of a specific property of a decompression session.

OSStatus ICMDecompressionSessionSetProperty (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
session

A decompression session reference. This reference is returned by
ICMDecompressionSessionCreate (page 128).

142 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropClass
Pass the following constant to define the property class:

kComponentPropertyClassPropertyInfo = 'pnfo'

The property information class.

inPropID
Pass one of these constants to define the property ID:

kComponentPropertyInfoList = 'list'

An array of CFData values, one for each property.

kComponentPropertyCacheSeed = 'seed'

A property cache seed value.

kComponentPropertyCacheFlags = 'flgs'

One of the kComponentPropertyCache flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not cached at all.

kComponentPropertyExtendedInfo = 'meta'

A CFDictionary with extended property information.

inPropValueSize
The size in bytes of the property’s value.

inPropValueAddress
A pointer to the property value to be set.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetBufferSize
Gets the size of an encoded frame’s data buffer.

ByteCount ICMEncodedFrameGetBufferSize (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

QuickTime 7 API Reference 143
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
The physical size in bytes of the encoded frame’s data buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameCreateMutable
Called by a compressor to create an encoded-frame token corresponding to a given source frame.

OSStatus ICMEncodedFrameCreateMutable (
 ICMCompressorSessionRef session,
 ICMCompressorSourceFrameRef sourceFrame,
 ByteCount bufferSize,
 ICMMutableEncodedFrameRef *frameOut);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

sourceFrame
A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 96).

bufferSize
The size of the frame buffer in bytes.

frameOut
On return, a reference to an encoded frame object with write capabilities.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The encoded frame will initially show 0 for mediaSampleFlags; if the frame is not a key frame, the compressor
must callICMEncodedFrameSetMediaSampleFlags to setmediaSampleNotSync. If the frame is droppable,
the compressor should set mediaSampleDroppable. If the frame is a partial key frame, the compressor
should set mediaSamplePartialSync.

The encoded frame will initially have undefined decodeTimeStamp and decodeDuration values. The
compressor may set these directly by calling ICMEncodedFrameSetDecodeTimeStamp and
ICMEncodedFrameSetDecodeDuration. If these are not set by the compressor, the ICM will try to derive
values for them.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

144 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMEncodedFrameGetDataPtr
Gets the data buffer for an encoded frame.

UInt8 *ICMEncodedFrameGetDataPtr (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
A pointer to the object’s data buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDataSize
Gets the data size of the compressed frame in an encoded frame’s buffer.

ByteCount ICMEncodedFrameGetDataSize (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The logical size in bytes of the encoded frame’s data buffer, which may be less than the physical size of the
buffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeDuration
Retrieves an encoded frame’s decode duration.

QuickTime 7 API Reference 145
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

TimeValue64 ICMEncodedFrameGetDecodeDuration (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s decode duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeNumber
Retrieves the decode number of an encoded frame.

UInt32 ICMEncodedFrameGetDecodeNumber (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The decode number of the encoded frame.

Discussion
The ICM automatically stamps ascending decode numbers on frames after the compressor emits them. The
first decode number in session is 1. Compressors should not call this function.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeTimeStamp
Retrieves an encoded frame’s decode time stamp.

146 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

TimeValue64 ICMEncodedFrameGetDecodeTimeStamp (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s decode time stamp.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayDuration
Retrieves an encoded frame’s display duration.

TimeValue64 ICMEncodedFrameGetDisplayDuration (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s display duration.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayOffset
Retrieves an encoded frame’s display offset.

TimeValue64 ICMEncodedFrameGetDisplayOffset (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s display offset. This is the time offset from decode time stamp to display time stamp.

QuickTime 7 API Reference 147
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayTimeStamp
Retrieves an encoded frame’s display time stamp.

TimeValue64 ICMEncodedFrameGetDisplayTimeStamp (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s display time stamp.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetFrameType
Retrieves the frame type for an encoded frame.

ICMFrameType ICMEncodedFrameGetFrameType (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s frame type (see below).

Discussion
This function returns one of these values:

kICMFrameType_I = 'I'
An I frame.

kICMFrameType_P = 'P'
A P frame.

148 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kICMFrameType_B = 'B'
A B frame.

kICMFrameType_Unknown = 0
A frame of unknown type.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetImageDescription
Retrieves the image description of an encoded frame.

OSStatus ICMEncodedFrameGetImageDescription (
 ICMEncodedFrameRef frame,
 ImageDescriptionHandle *imageDescOut);

Parameters
frame

A reference to an encoded frame object.

imageDescOut
A pointer to a handle containing the encoded frame’s image description. The caller should not dispose
of this handle.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function returns the same image description handle as
ICMCompressionSessionGetImageDescription.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetMediaSampleFlags
Retrieves the media sample flags for an encoded frame.

QuickTime 7 API Reference 149
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

MediaSampleFlags ICMEncodedFrameGetMediaSampleFlags (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The object’s media sample flags. These flags are listed in the header file Movies.h.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetSimilarity
Retrieves the similarity value for an encoded frame.

Float32 ICMEncodedFrameGetSimilarity (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame’s similarity value. 1.0 means identical; 0.0 means not at all alike. The default value is –1.0,
which means unknown.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetSourceFrameRefCon
Retrieves the reference value of an encoded frame’s source frame.

void *ICMEncodedFrameGetSourceFrameRefCon (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

150 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
The source frame’s reference value is copied from the session’s sourceFrameRefCon parameter that was
passed to ICMCompressionSessionEncodeFrame (page 96).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetTimeScale
Retrieves the timescale of an encoded frame.

TimeScale ICMEncodedFrameGetTimeScale (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
The time scale of an encoded frame. This is always the same as the time scale of the compression session.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameGetTypeID
Returns the type ID for the current encoded frame object.

CFTypeID ICMEncodedFrameGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 151
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMEncodedFrameGetValidTimeFlags
Retrieves an encoded frame’s flags indicating which of its time stamps and durations are valid.

ICMValidTimeFlags ICMEncodedFrameGetValidTimeFlags (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object.

Return Value
One of the constants listed below.

Discussion
This function returns one of these values:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0
The value of displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid = 1L<<1
The value of displayDuration is valid.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameRelease
Decrements the retain count of an encoded frame object.

void ICMEncodedFrameRelease (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

152 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMEncodedFrameRetain
Increments the retain count of an encoded frame object.

ICMEncodedFrameRef ICMEncodedFrameRetain (
 ICMEncodedFrameRef frame);

Parameters
frame

A reference to an encoded frame object. If you pass NULL, nothing happens.

Return Value
A reference to the object passed in frame, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDataSize
Sets the data size of the compressed frame in an encoded frame’s buffer.

OSStatus ICMEncodedFrameSetDataSize (
 ICMMutableEncodedFrameRef frame,
 ByteCount dataSize);

Parameters
frame

A reference to an encoded frame object with write capabilities.

dataSize
The data size of the compressed frame in the encoded frame object’s buffer.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeDuration
Sets an encoded frame’s decode duration.

QuickTime 7 API Reference 153
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMEncodedFrameSetDecodeDuration (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 decodeDuration);

Parameters
frame

A reference to an encoded frame object with write capabilities.

decodeDuration
The encoded frame’s decode duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeDurationIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeTimeStamp
Sets an encoded frame’s decode time stamp.

OSStatus ICMEncodedFrameSetDecodeTimeStamp (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 decodeTimeStamp);

Parameters
frame

A reference to an encoded frame object with write capabilities.

decodeTimeStamp
The encoded frame’s decode time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeTimeStampIsValid flag. If the display time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

154 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMEncodedFrameSetDisplayDuration
Sets an encoded frame’s display duration.

OSStatus ICMEncodedFrameSetDisplayDuration (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 displayDuration);

Parameters
frame

A reference to an encoded frame object with write capabilities.

displayDuration
The encoded frame’s display duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayDurationIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetDisplayTimeStamp
Sets an encoded frame’s display time stamp.

OSStatus ICMEncodedFrameSetDisplayTimeStamp (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 displayTimeStamp);

Parameters
frame

A reference to an encoded frame object with write capabilities.

displayTimeStamp
The encoded frame’s display time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayTimeStampIsValid flag. If the decode time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

QuickTime 7 API Reference 155
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

ICMEncodedFrameSetValidTimeFlags
Sets an encoded frame’s flags that indicate which of its time stamps and durations are valid.

OSStatus ICMEncodedFrameSetValidTimeFlags (
 ICMMutableEncodedFrameRef frame,
 ICMValidTimeFlags validTimeFlags);

Parameters
frame

A reference to an encoded frame object with write capabilities.

validTimeFlags
One of the following constants:

kICMValidTime_DisplayTimeStampIsValid = 1L<<0

The value of displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid = 1L<<1

The value of displayDuration is valid.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Setting an encoded frame’s decode or display time stamp or duration automatically sets the corresponding
valid time flags. For example, calling ICMEncodedFrameSetDecodeTimeStamp sets
kICMValidTime_DisplayTimeStampIsValid. If both the encoded frame’s decode time stamp and display
time stamp are valid, kICMValidTime_DisplayOffsetIsValid is automatically set.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetMediaSampleFlags
Sets the media sample flags for an encoded frame.

OSStatus ICMEncodedFrameSetMediaSampleFlags (
 ICMMutableEncodedFrameRef frame,
 MediaSampleFlags mediaSampleFlags);

Parameters
frame

A reference to an encoded frame object with write capabilities.

156 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

mediaSampleFlags
The object’s media sample flags. These flags are listed in the header file Movies.h.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMEncodedFrameSetFrameType
Sets the frame type for an encoded frame.

OSStatus ICMEncodedFrameSetFrameType (
 ICMMutableEncodedFrameRef frame,
 ICMFrameType frameType);

Parameters
frame

A reference to an encoded frame object with write capabilities.

frameType
The frame type to be set:

kICMFrameType_I = 'I'

An I frame.

kICMFrameType_P = 'P'

A P frame.

kICMFrameType_B = 'B'

A B frame.

kICMFrameType_Unknown = 0

A frame of unknown type.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 157
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMEncodedFrameSetSimilarity
Sets the similarity for an encoded frame.

OSStatus ICMEncodedFrameSetSimilarity (
 ICMMutableEncodedFrameRef frame,
 Float32 similarity);

Parameters
frame

A reference to an encoded frame object with write capabilities.

similarity
The encoded frame’s similarity value to be set. 1.0 means identical; 0.0 means not at all alike. The
default value is –1.0, which means unknown.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMImageDescriptionGetProperty
Returns a particular property of a image description handle.

OSStatus ICMImageDescriptionGetProperty (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
inDesc

The image description handle being interrogated.

inPropClass
The class of property being requested.

inPropID
The ID of the property being requested.

inPropValueSize
The size of the property value buffer.

outPropValueAddress
Points to the buffer to receive the property value.

outPropValueSizeUsed
Points to a variable to receive the actual size of returned property value. (This can be NULL).

158 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns a particular property of a image description handle.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMImageDescriptionGetPropertyInfo
Returns information about a particular property of a image description.

OSStatus ICMImageDescriptionGetPropertyInfo (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 /*can be NULL */ ByteCount *outPropValueSize,
 /*can be NULL */ UInt32 *outPropertyFlags);

Parameters
inDesc

The image description handle being interrogated.

inPropClass
The class of property being requested.

inPropID
The ID of the property being requested.

outPropType
The type of property is returned here. (This can be NULL).

outPropValueSize
The size of property is returned here. (This can be NULL).

outPropertyFlags
The property flags are returned here. (This can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 7 API Reference 159
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMImageDescriptionSetProperty
Sets a particular property of a image description handle.

OSStatus ICMImageDescriptionSetProperty (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
inDesc

The image description handle being modified.

inPropClass
The class of property being set.

inPropID
The ID of the property being set.

inPropValueSize
The size of property value.

inPropValueAddress
Points to the property value buffer.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCopyDataAtTimeStamp
Called by a multipass-capable compressor to retrieve data at a given time stamp.

OSStatus ICMMultiPassStorageCopyDataAtTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 timeStamp,
 long index,
 CFMutableDataRef *dataOut);

Parameters
multiPassStorage

The multipass storage object.

timeStamp
The time stamp at which the value should be retrieved.

index
An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

160 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

dataOut
A pointer to memory to receive the data at the time stamp.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithCallbacks
Assembles a multipass storage mechanism from callbacks.

OSStatus ICMMultiPassStorageCreateWithCallbacks (
 CFAllocatorRef allocator,
 ICMMultiPassStorageCallbacks *callbacks,
 ICMMultiPassStorageRef *multiPassStorageOut);

Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

callbacks
A structure containing a collection of callbacks for creating a custom multipass storage object. See
ICMMultiPassStorageCallbacks (page 240).

multiPassStorageOut
A reference to the new multipass storage object.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithTemporaryFile
Creates multipass storage using a temporary file.

QuickTime 7 API Reference 161
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMMultiPassStorageCreateWithTemporaryFile (
 CFAllocatorRef allocator,
 FSRef *directoryRef,
 CFStringRef fileName,
 ICMMultiPassStorageCreationFlags flags,
 ICMMultiPassStorageRef *multiPassStorageOut);

Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

directoryRef
A reference to a file directory. If you pass NULL, the ICM will use the user’s Temporary Items folder.

fileName
A file name to use for the storage. If you pass NULL, the ICM will pick a unique name. If you pass the
name of a file that already exists, the ICM will assume you are continuing a previous multipass session
where you left off. This file will be deleted when the multipass storage is released, unless you set the
kICMMultiPassStorage_DoNotDeleteWhenDone flag.

flags
Flag controlling this process:

kICMMultiPassStorage_DoNotDeleteWhenDone = 1L<<0

The temporary file should not be deleted when the multipass storage is released.

multiPassStorageOut
A reference to the new multipass storage.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageGetTimeStamp
Called by a multipass-capable compressor to retrieve a time stamp for which a value is stored.

OSStatus ICMMultiPassStorageGetTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 fromTimeStamp,
 ICMMultiPassStorageStep step,
 TimeValue64 *timeStampOut);

Parameters
multiPassStorage

The multipass storage object.

fromTimeStamp
The initial time stamp. This value is ignored for some values of step.

162 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

step
Indicates the kind of time stamp search to perform:

kICMMultiPassStorage_GetFirstTimeStamp = 1

Requests the first time stamp at which a value is stored.

kICMMultiPassStorage_GetPreviousTimeStamp = 2

Requests the previous time stamp before the time stamp specified in fromTimeStamp at
which a value is stored.

kICMMultiPassStorage_GetNextTimeStamp = 3

Requests the next time stamp after the time stamp specified in fromTimeStamp at which a
value is stored.

kICMMultiPassStorage_GetLastTimeStamp = 4

Requests the last time stamp at which a value is stored.

timeStampOut
A pointer to a TimeValue64 value to receive the found time stamp. It will be set to –1 if no time
stamp is found.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageGetTypeID
Returns the type ID for the current multipass storage object.

CFTypeID ICMMultiPassStorageGetTypeID (void);

Return Value
A CFTypeID value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageRelease
Decrements the retain count of a multipass storage object.

QuickTime 7 API Reference 163
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

void ICMMultiPassStorageRelease (
 ICMMultiPassStorageRef multiPassStorage);

Parameters
multiPassStorageOut

A reference to a multipass storage object. You can create this object using
ICMMultiPassStorageCreateWithTemporaryFile (page 161) or
ICMMultiPassStorageCreateWithCallbacks (page 161). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageRetain
Increments the retain count of a multipass storage object.

ICMMultiPassStorageRef ICMMultiPassStorageRetain (
 ICMMultiPassStorageRef multiPassStorage);

Parameters
multiPassStorageOut

A reference to a multipass storage object. You can create this object using
ICMMultiPassStorageCreateWithTemporaryFile (page 161) or
ICMMultiPassStorageCreateWithCallbacks (page 161). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in multiPassStorage, for convenience.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ICMMultiPassStorageSetDataAtTimeStamp
Called by a multipass-capable compressor to store data at a given time stamp.

164 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus ICMMultiPassStorageSetDataAtTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 timeStamp,
 long index,
 CFDataRef data);

Parameters
multiPassStorage

The multipass storage object.

timeStamp
The time stamp at which the value should be stored.

index
An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

data
The data to be stored, or NULL to delete the value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The new data replaces any previous data held at that time stamp. If the value of data is NULL, the data for
that time stamp is deleted. The format of the data is private to the compressor.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

ImageCodecBeginPass
Notifies the compressor that it should operate in multipass mode and use the given multipass storage.

ComponentResult ImageCodecBeginPass (
 ComponentInstance ci,
 ICMCompressionPassModeFlags passModeFlags,
 UInt32 flags,
 ICMMultiPassStorageRef multiPassStorage);

Parameters
ci

A component instance that identifies a connection to an image codec component.

QuickTime 7 API Reference 165
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

passModeFlags
Indicates how the compressor should operate in this pass. If the
kICMCompressionPassMode_WriteToMultiPassStorage flag is set, the compressor may gather
information of interest and store it in multiPassStorage. If the
kICMCompressionPassMode_ReadFromMultiPassStorage flag is set, the compressor may retrieve
information from multiPassStorage. If the kICMCompressionPassMode_OutputEncodedFrames
flag is set, the compressor must encode or drop every frame by calling
ICMCompressorSessionDropFrame or ICMCompressorSessionEmitEncodedFrame. If that flag
is not set, the compressor should not call these routines.

flags
Reserved. Ignore this parameter.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecCompleteFrame
Directs the compressor to finish with a queued source frame, either emitting or dropping it.

ComponentResult ImageCodecCompleteFrame (
 ComponentInstance ci,
 ICMCompressorSourceFrameRef sourceFrame,
 UInt32 flags);

Parameters
ci

A component instance that identifies a connection to an image codec component.

sourceFrame
The source frame that must be completed.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

Discussion
This frame does not necessarily need to be the first or only source frame emitted or dropped during this call,
but the compressor must call either ICMCompressorSessionDropFrame or
ICMCompressorSessionEmitEncodedFramewith this frame before returning. The ICM will call this function

166 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

to force frames to be encoded for the following reasons: (a) the maximum frame delay count or maximum
frame delay time in the compressionSessionOptions does not permit frames to be queued; (b) the client
has called ICMCompressionSessionCompleteFrames.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecDecodeBand
Returns an ImageSubCodecDecompressRecord structure for an image codec component.

ComponentResult ImageCodecDecodeBand (
 ComponentInstance ci,
 ImageSubCodecDecompressRecord *drp,
 unsigned long flags);

Parameters
ci

A component instance that identifies a connection to an image codec component.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

flags
Not used; set to 0.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecEncodeFrame
Presents the compressor with a frame to encode.

QuickTime 7 API Reference 167
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ComponentResult ImageCodecEncodeFrame (
 ComponentInstance ci,
 ICMCompressorSourceFrameRef sourceFrame,
 unsigned long flags);

Parameters
ci

A component instance that identifies a connection to an image codec component.

sourceFrame
The source frame to encode.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

Discussion
The compressor may encode the frame immediately or queue it for later encoding. If the compressor queues
the frame for later decode, it must retain it (by calling ICMCompressorSourceFrameRetain) and release
it when it is done with it (by calling ICMCompressorSourceFrameRelease). Pixel buffers are guaranteed
to conform to the pixel buffer attributes returned by ImageCodecPrepareToCompressFrames. During
multipass encoding, if the compressor requested the kICMCompressionPassMode_NoSourceFrames flag,
the source frame pixel buffers may be NULL. (Note: this replaces ImageCodecBandCompress.)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecPrepareToCompressFrames
Prepares the compressor to receive frames.

ComponentResult ImageCodecPrepareToCompressFrames (
 ComponentInstance ci,
 ICMCompressorSessionRef session,
 ICMCompressionSessionOptionsRef compressionSessionOptions,
 ImageDescriptionHandle imageDescription,
 void *reserved,
 CFDictionaryRef *compressorPixelBufferAttributesOut);

Parameters
ci

A component instance that identifies a connection to an image codec component.

session
The compressor session reference. The compressor should store this in its globals; it will need it when
calling the ICM back (for example, to call ICMEncodedFrameCreateMutable and
ICMCompressorSessionEmitEncodedFrame). This is not a CF type. Do not call CFRetain or
CFRelease on it.

168 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

compressionSessionOptions
The session options from the client. The compressor should retain this and use the settings to guide
compression.

imageDescription
The image description. The compressor may add image description extensions.

reserved
Reserved for future use. Ignore this parameter.

compressorPixelBufferAttributesOut
The compressor should create a pixel buffer attributes dictionary and set
compressorPixelBufferAttributesOut to it. The ICM will release it.

Return Value
An error code, or noErr if there is no error.

Discussion
The compressor should record session and retain compressionSessionOptions for use in later calls. The
compressor may modify imageDescription at this point. The compressor should create and return pixel
buffer attributes, which the ICM will release. (Note: this replaces ImageCodecPreCompress.)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported C interface file: ImageCodec.h

Declared In
ImageCodec.h

ImageCodecProcessBetweenPasses
Provides the compressor with an opportunity to perform processing between passes.

ComponentResult ImageCodecProcessBetweenPasses (
 ComponentInstance ci,
 ICMMultiPassStorageRef multiPassStorage,
 Boolean *interpassProcessingDoneOut,
 ICMCompressionPassModeFlags *requestedNextPassModeFlagsOut);

Parameters
ci

A component instance that identifies a connection to an image codec component.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

interpassProcessingDoneOut
Points to a Boolean. Set this to FALSE if you want your ImageCodecProcessBetweenPasses function
to be called again to perform more processing, TRUE if not.

QuickTime 7 API Reference 169
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

requestedNextPassModeFlagsOut
Set *requestedNextPassModeFlagsOut to indicate the type of pass that should be performed
next: To recommend a repeated analysis pass, set it to
kICMCompressionPassMode_ReadFromMultiPassStorage|
kICMCompressionPassMode_WriteToMultiPassStorage. To recommend a final encoding pass,
set it to kICMCompressionPassMode_ReadFromMultiPassStorage |
kICMCompressionPassMode_OutputEncodedFrames. If source frame buffers are not necessary
for the recommended pass (for example, because all the required data has been copied into multipass
storage), set kICMCompressionPassMode_NoSourceFrames.

Return Value
An error code, or noErr if there is no error.

Discussion
This function will be called repeatedly until it returns TRUE in *interpassProcessingDoneOut. The
compressor may read and write to multiPassStorage. The compressor should indicate which type of pass
it would prefer to perform next by setting *requestedNextPassTypeOut.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Not supported. C interface file: ImageCodec.h

Declared In
ImageCodec.h

InvokeQTTrackPropertyListenerUPP
Invokes the specified property listener of a track.

void InvokeQTTrackPropertyListenerUPP (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 void *inUserData,
 QTTrackPropertyListenerUPP userUPP);

Parameters
inTrack

The track of this operation.

inPropClass
A property class.

inPropID
A property ID.

inUserData
A pointer to user data that will be passed to the callback.

userUPP
A QTTrackPropertyListenerUPP pointer.

Version Notes
Introduced in QuickTime 7

170 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaContainsDisplayOffsets
Tests whether a media contains display offsets.

Boolean MediaContainsDisplayOffsets (
 Media theMedia);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

Return Value
TRUE if the media is valid and contains at least one sample with a nonzero display offset; FALSE otherwise.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaDecodeTimeToSampleNum
Finds the sample for a specified decode time.

void MediaDecodeTimeToSampleNum (
 Media theMedia,
 TimeValue64 decodeTime,
 SInt64 *sampleNum,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *sampleDecodeDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

decodeTime
A 64-bit time value that represents the decode time for which you are retrieving sample information.
You must specify this value in the media's time scale.

sampleNum
A pointer to a variable that is to receive the sample number. The function returns the sample number
that identifies the sample that contains data for the specified decode time, or 0 if it is not found.

QuickTime 7 API Reference 171
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the logicalSampleNum parameter. This time value is expressed in the
media’s time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, invalidTime if sampleDecodeTime is out of the decode
time range, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MediaDisplayTimeToSampleNum
Fnds the sample number for a specified display time.

void MediaDisplayTimeToSampleNum (
 Media theMedia,
 TimeValue64 displayTime,
 SInt64 *sampleNum,
 TimeValue64 *sampleDisplayTime,
 TimeValue64 *sampleDisplayDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

displayTime
A 64-bit time value that represents the display time for which you are retrieving sample information.
You must specify this value in the media’s time scale.

sampleNum
A pointer to a long integer that is to receive the sample number. The function returns the sample
number that identifies the sample for the specified display time, or 0 if it is not found.

sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

172 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
You can access this function's error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, invalidTime if sampleDisplayTime is out of the display
time range, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionBegin
Begins a movie audio extraction session and will return badCallOrderErr if the specified movie is not
Active.

OSStatus MovieAudioExtractionBegin (
 Movie m,
 UInt32 flags,
 MovieAudioExtractionRef *outSession);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

flags
Reserved; must be 0.

outSession
A pointer to an opaque session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function before doing any movie audio extraction, because you will pass the object returned
by outSession to the other movie audio extraction functions. The format of the extracted audio defaults
to the summary channel layout of the movie (all right channels mixed together, all left surround channels
mixed together, and so on.), 32-bit float, de-interleaved, with the sample rate set to the highest sample rate
found in the movie. You can set the audio format to be something else, as long as it is uncompressed and
you do it before your first call to MovieAudioExtractionFillBuffer.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 173
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

MovieAudioExtractionEnd
Ends a movie audio extraction session.

OSStatus MovieAudioExtractionEnd (
 MovieAudioExtractionRef session);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 173).

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function when movie audio extraction is complete.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionFillBuffer
Extracts audio from a movie.

OSStatus MovieAudioExtractionFillBuffer (
 MovieAudioExtractionRef session,
 UInt32 *ioNumFrames,
 AudioBufferList *ioData,
 UInt32 *outFlags);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 173).

ioNumFrames
A pointer to the number of PCM frames to be extracted.

ioData
A pointer to an AudioBufferList allocated by the caller to hold the extracted audio data.

outFlags
A bit flag that indicates when extraction is complete:

kMovieAudioExtractionComplete

The extraction process is complete. Value is (1L << 0).

Return Value
An error code. Returns noErr if there is no error.

174 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
You call this function repeatedly; each call continues extracting audio where the last call left off. The function
will extract as many of the requested PCM frames as it can, given the limits of the buffer supplied and the
limits of the input movie. ioNumFrameswill be updated with the exact number of valid frames being returned.
When there is no more audio to extract from the movie, the function will continue to return noErr but will
return no further audio data. In this case, the outFlags parameter will have its
kMovieAudioExtractionComplete bit set. It is possible that the kMovieAudioExtractionComplete
bit will accompany the last buffer of valid data.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionGetProperty
Gets a property of a movie audio extrraction session.

OSStatus MovieAudioExtractionGetProperty (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 173).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

inPropID
The property ID.

inPropValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
The actual size of the property value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can get and set more than just the channel layout. There are four properties, discussed below, all of
which are gettable and settable (with some having restrictions on not setting after first calling
MovieAudioExtractionFillBuffer).

QuickTime 7 API Reference 175
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Properties of the movie that is extracted from kQTPropertyClass_MovieAudioExtraction_Movie include
the following movie class IDs:

 ■ kQTMovieAudioExtractionMoviePropertyID_CurrentTime. The value is a TimeRecord, which
you can set and get. When setting, you set the timescale to anything you want (for example, the output
audio sample rate or the movie timescale). When getting, the timescale will be output audio sample rate
for best accuracy.

 ■ kQTMovieAudioExtractionMoviePropertyID_AllChannelsDiscrete. The value is Boolean (which
is settable and gettable). Set to implement export of all audio channels without mixing. When this is set
and the extraction audio stream basic description (ASBD) or channel layout are read back, you get
information relating to the re-mapped movie.

 ■ kQTMovieAudioExtractionMoviePropertyID_CurrentTime = ‘time’. The value is aTimeRecord
, which is gettable and settable.

Properties of the output audio extracted from kQTPropertyClass_MovieAudioExtraction_Audio
include the following output audio class properties:

 ■ kQTMovieAudioExtractionAudioPropertyID_AudioStreamBasicDescription. The value is an
AudioStreamBasicDescription. You can get any time and set before first the
MovieAudioExtractionFillBuffer call. If you get this property immediately after beginning an
audio extraction session, it will tell you the default extraction format for the movie. This will include the
number of channels in the default movie mix. If you set the output AudioStreamBasicDescription,
it is recommended that you also set the output channel layout. If your output ASBD has a different
number of channels than the default extraction mix, you must set the output channel layout. You can
only set PCM output formats. Setting a compressed output format will fail.

 ■ :kQTMovieAudioExtractionAudioPropertyID_AudioChannelLayout. The value is
AudioChannelLayout, which you can get any time and set before first the
MovieAudioExtractionFillBuffer call. If you get this property immediately after beginning an
audio extraction session, it tells you what the channel layout is for the default extraction mix.

The information in this discussion also applies to the following functions:

 ■ “MovieAudioExtractionGetPropertyInfo” (page 176)

 ■ “MovieAudioExtractionSetProperty” (page 177)

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionGetPropertyInfo
Gets information about a property of a movie audio extraction session.

176 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus MovieAudioExtractionGetPropertyInfo (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 173).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi

inPropID
The property ID.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the item’s property.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

MovieAudioExtractionSetProperty
Sets a property of a movie audio extraction session.

OSStatus MovieAudioExtractionSetProperty (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 173).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

QuickTime 7 API Reference 177
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kQTAudioPropertyID_SummaryChannelLayout

The summary audio channel layout of a movie, or any other grouping of audio streams. All
like-labeled channels are combined, without duplicates. For example, if there is a stereo (L/R)
track, 5 single-channel tracks marked Left, Right, Left Surround, Right Surround and Center,
and a 4-channel track marked L/R/Ls/Rs, then the summary AudioChannelLayout will be
L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. The value of this constant is 'clay'.

inPropValueSize
The size of the property value.

inPropValueAddress
A const void pointer that points to the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

NewMovieExportStageReachedCallbackUPP
Allocates a new Universal Procedure Pointer for a MovieExportStageReachedCallbackProc callback.

MovieExportStageReachedCallbackUPP NewMovieExportStageReachedCallbackUPP (
 MovieExportStageReachedCallbackProcPtr userRoutine);

Parameters
userRoutine

A pointer to your application-defined callback function; see
ICMDecompressionTrackingCallbackProc (page 235).

Return Value
A new Universal Procedure Pointer that you will use to invoke your callback.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

NewMovieFromProperties
Creates a new movie using movie properties.

178 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus NewMovieFromProperties (
ItemCount inputPropertyCount,
QTNewMoviePropertyElement *inputProperties,
ItemCount outputPropertyCount,
QTNewMoviePropertyElement *outputProperties,
Movie *theMovie);

Parameters
inputPropertyCount

The number of properties in the array passed in inputProperties.

inputProperties
A pointer to a property array describing how to instantiate the movie. See
QTNewMoviePropertyElement (page 241).

outputPropertyCount
The number of properties in the array passed in outputProperties.

outputProperties
A pointer to a property array to receive output parameters. See QTNewMoviePropertyElement (page
241). You may pass NULL if you don’t want this information. The caller is responsible for calling the
appropriate routines to dispose of any property values returned here. Since callers specify the property
classes and IDs, they know who to call to dispose of the property values.

theMovie
A pointer to a variable that receives the new movie.

Return Value
An error code. ReturnsmemFullErr if the function could not allocate memory,paramErr ifinputProperties
or theMovie is NULL, or noErr if there is no error.

Discussion
This function can be used in all the cases where an existing NewMovieFrom... call is used. When calling
this function, you supply a set of input properties that describe the information required to instantiate the
movie (its data reference, audio context, visual context, and so on). You can also supply a set of output
properties that you may be interested in; for example, information about whether the data reference was
changed. See “New Movie Property Codes” (page 258).

This function verifies its input properties is as follows. First, the propStatus field of both the input and
output property arrays is set to kQTPropertyUnprocessedErr. Then the input properties are checked one
by one. If there is no problem with a property, its propStatus is set to noErr (0). If there is a problem, the
propStatus for the property is set to 1 and the function returns paramErr. It is an error if a property is not
recognized;paramErr is returned and the appropriatepropStatus is set tokQTPropertyNotSupportedErr.
Another error is multiple data locations defined. In this case, the property status for the second data location
is set to paramErr. It is not considered a fatal error if this function does not recognize an output property;
the property’s propStatus simply remains kQTPropertyUnprocessedErr.

The only output properties currently defined are those that support the behavior of functions of the form
NewMovieFrom.... For example, if you want to act upon the data reference being updated during the
opening process, you would pass in the
kQTMovieInstantiationPropertyID_ResultDataLocationChanged property.

This function must be used with kQTContextPropertyID_VisualContext to open a movie, for visual
contexts to function with the movie. If you want to use visual contexts with a movie but want to inspect the
movie prior to allocating the visual context to use (for instance you want to get the movie box), use
kQTContextPropertyID_VisualContextwith a NULL value. Otherwise, visual context calls with the movie
will fail with an error. Using GWorld structures with the movie will also fail.

QuickTime 7 API Reference 179
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

To handle special situations where this function cannot be used by your application, there is a method to
switch a movie from GWorld mode to visual context mode. SetMovieVisualContext can be used to set
a NULL visual context, which will disassociate the movie from its current visual context or GWorld. At this
time, either SetMovieGWorld or SetMovieVisualContext can be used. If a movie is associated with a
GWorld, visual context calls such as GetMovieVisualContext will fail. If a movie is a associated with a valid
visual context, GWorld calls such as GetMovieGWorld will fail.

If a call to this function succeeds using a visual context or audio context, those objects will be explicitly
retained for use by the movie. The movie object is responsible for releasing them. If you no longer need
access to a context, it is safe to release it.

If no data location property is specified, then this function will behave like NewMovie, creating an empty
movie. Thus NewMovieFromProperties(0, nil, 0, nil, &movie) is functionally equivalent to movie
= NewMovie(0).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

NewQTTrackPropertyListenerUPP
Creates a new callback to monitor a track property.

QTTrackPropertyListenerUPP NewQTTrackPropertyListenerUPP (
 QTTrackPropertyListenerProcPtr userRoutine);

Parameters
userRoutine

A pointer to a QTTrackPropertyListenerProcPtr callback.

Return Value
A new UPP; see Universal Procedure Pointers in the QuickTime API Reference.

Discussion
This routine creates a new callback to monitor a track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTAddTrackPropertyListener
Installs a callback to monitor a track property.

180 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSErr QTAddTrackPropertyListener (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTTrackPropertyListenerUPP inListenerProc,
 void *inUserData);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTTrackPropertyListenerProc callback.

inUserData
A pointer to user data that will be passed to the callback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine installs a callback to monitor a track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTAudioContextCreateForAudioDevice
Creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.

OSStatus QTAudioContextCreateForAudioDevice (
 CFAllocatorRef allocator,
 CFStringRef coreAudioDeviceUID,
 CFDictionaryRef options,
 QTAudioContextRef *newAudioContextOut);

Parameters
allocator

Allocator used to create the audio context.

coreAudioDeviceUID
CoreAudio device UID. NULL means the default device.

options
Reserved. Pass NULL.

QuickTime 7 API Reference 181
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

newAudioContextOut
Points to a variable to receive the new audio context.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.
This object is suitable for passing to SetMovieAudioContext or NewMovieFromProperties, which targets
the audio output of the movie to that device. A QTAudioContext object cannot be associated with more than
one movie. Each movie needs its own connection to the device. In order to play more than one movie to a
particular device, create a QTAudioContext object for each movie. You are responsible for releasing the
QTAudioContext object created by this routine. After calling SetMovieAudioContext or
NewMovieFromProperties, you can release the object since these APIs will retain it for their own use. On
Windows, the audioDeviceUID is the GUID of a DirectSound device, stringified using such Win32 functions
as StringFromCLSID or StringFromGUID2, then wrapped in a CFStringRef using
CFStringCreateWithCharacters. After passing the audioDeviceUID CFStringRef to
QTAudioContextCreateForAudioDevice, remember to CFRelease the CFStringRef you created.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTCopyMovieMetaData
Retains a movie’s metadata object and returns it.

OSStatus QTCopyMovieMetaData (
Movie inMovie,
QTMetaDataRef *outMetaData);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

outMetaData
A pointer to an opaque metadata object wrapper associated with the movie passed in inMovie.

Return Value
Returns invalidMovie if the movie passed in inMovie is invalid, or noErr if there is no error.

Discussion
This function returns the metadata object associated with a movie. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the movie can be disposed of at any time, the QTMetaDataRef may be valid when the movie no
longer exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr error.

Version Notes
Introduced in QuickTime 7.

182 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTCopyTrackMetaData
Retains a track’s metadata object and returns it.

OSStatus QTCopyTrackMetaData (
Track inTrack,
QTMetaDataRef *outMetaData);

Parameters
inTrack

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

outMetaData
A pointer to an opaque metadata object wrapper associated with the track passed in inTrack.

Return Value
Returns invalidMedia if the track passed in inTrack is invalid, or noErr if there is no error.

Discussion
This function returns the metadata object associated with a track. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the track can be disposed of at any time, the QTMetaDataRefmay be valid when the track no longer
exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTCopyMediaMetaData
Retains a media’s metadata object and returns it.

OSStatus QTCopyMediaMetaData (
Media inMedia,
QTMetaDataRef *outMetaData);

Parameters
inMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

outMetaData
A pointer to an opaque metadata object wrapper associated with the media passed in inMedia.

QuickTime 7 API Reference 183
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
Returns invalidMedia if the media passed in inMedia is invalid, or noErr if there is no error.

Discussion
This function returns the metadata object associated with a media. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease when you are done.
Because the media can be disposed of at any time, the QTMetaDataRef may be valid when the media no
longer exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTGetTrackProperty
Returns the value of a specific track property.

OSErr QTGetTrackProperty (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns the value of a specific track property.

Version Notes
Introduced in QuickTime 7

184 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTGetTrackPropertyInfo
Returns information about the properties of a track.

OSErr QTGetTrackPropertyInfo (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

outPropType
A pointer to memory allocated to hold the property type on return.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns information about the properties of a track.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTLoadLibrary
Finds and loads a QuickTime library DLL.

QuickTime 7 API Reference 185
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

HINSTANCE QTLoadLibrary (
 const char *szDLL);

Parameters
szDLL

The name, not the full path for this operation.

Return Value
If the function succeeds, the return value is the instance handle.

Discussion
This routine takes the name of the QuickTime DLL and searches all the places where it can be installed.

Version Notes
Introduced in QuickTime 7 for Windows.

Availability
C interface file: QTLoadLibraryUtils.h

QTMetaDataAddItem
Adds an inline metadata item to the metadata storage format.

OSStatus QTMetaDataAddItem (
QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
const UInt8 *inValuePtr,
ByteCount inValueSize,
UInt32 inDataType,
QTMetaDataItem *outItem);

Parameters
inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You cannot pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

inValuePtr
A pointer to the value to be added. This can be NULL if inValueSize is 0.

186 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inValueSize
The size of inValuePtr in bytes. Pass 0 if you want to add an item with no value.

inDataType
A data type from the following list:

kQTMetaDataTypeBinary = 0,
kQTMetaDataTypeUTF8 = 1,
kQTMetaDataTypeUTF16BE = 2,
kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE = 21,
kQTMetaDataTypeUnsignedIntegerBE = 22,
kQTMetaDataTypeFloat32BE = 23,
kQTMetaDataTypeFloat64BE = 24

With kQTMetaDataTypeSignedIntegerBE and kQTMetaDataTypeUnsignedIntegerBE, the size
of the integer is determined by the value size.

outItem
On return, a pointer to an opaque, unique UInt64 identifier of the newly added item. Your application
can use this to identify the metadata item within a metadata object for other metadata functions.
You may pass NULL if you are not interested in the identifier of the newly added item. This identifier
does not need to be disposed of.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key or its format is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Discussion
The data type of the metadata item is assumed to be binary.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetItemCountWithKey
Returns the number of items in a metadata storage format with a certain key.

OSStatus QTMetaDataGetItemCountWithKey (
QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
ItemCount *outCount);

Parameters
inMetaData

The metadata object for this operation.

QuickTime 7 API Reference 187
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You cannot pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

outCount
The number of items in the metadata storage format that have the specified key.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key or its format is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetItemProperty
Returns a property of a metadata item.

OSStatus QTMetaDataGetItemProperty (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186) and
QTMetaDataGetNextItem (page 191).

188 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

inPropValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the item’s property value.

outPropValueSizeUsed
On return, the actual size of buffer space used.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the property being asked about, buffersTooSmall if the allocated buffer is too
small to hold the property, or noErr if there is no error. See “Metadata Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetItemPropertyInfo
Returns information about a property of a metadata item.

OSStatus QTMetaDataGetItemPropertyInfo (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropFlags);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186) and
QTMetaDataGetNextItem (page 191).

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

QuickTime 7 API Reference 189
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the item’s property.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the item property being asked about, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetItemValue
Returns the value of a metadata item from an item identifier.

OSStatus QTMetaDataGetItemValue (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem,
UInt8 *outValuePtr,
ByteCount inValueSize,
ByteCount *outActualSize);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application can
obtain this item identifier from such functions as QTMetaDataAddItem (page 186).

outValuePtr
A pointer to the first value of the item. You may pass NULL in this parameter if you just want to find
out the size of the buffer needed.

inValueSize
The number of bytes in the outValuePtr buffer. You may pass 0 if you just want to find out the size
of the buffer needed.

outActualSize
The actual size of the value if this parameter is not NULL.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

190 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
You can use this function to get the value of a metadata item that has a known item identifier.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetNextItem
Returns the next metadata item corresponding to a specified key.

OSStatus QTMetaDataGetNextItem (
QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataItem inCurrentItem,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize,
QTMetaDataItem *outNextItem);

Parameters
inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. Pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inCurrentItem
The opaque, unique UInt64 identifier of the current metadata item to start the search. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186).

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

outNextItem
The ID of the next metadata item after the item specified by inCurrentItem that has the specified
key.

QuickTime 7 API Reference 191
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid,kQTMetaDataInvalidStorageFormatErr
if the metatada storage format is invalid, kQTMetaDataInvalidKeyErr if the key or its format is invalid,
kQTMetaDataNoMoreItemErr if the last item has been fetched, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Discussion
If the item designated by inCurrentItem is kQTMetaDataItemUninitialized, the function returns the
first item with the specified key in the storage format. If it refers to a valid item in the storage format, the
function will return the next item with the key after the item designated by inCurrentItem.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetProperty
Returns a property of a metadata object.

OSStatus QTMetaDataGetProperty (
QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);

Parameters
inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

inPropValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
On return, the actual size of buffer space used.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being asked about,
buffersTooSmall if the allocated buffer is too small to hold the property, or noErr if there is no error. See
“Metadata Error Codes” (page 258).

192 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataGetPropertyInfo
Returns information about a property of a metadata object.

OSStatus QTMetaDataGetPropertyInfo (
QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropFlags);

Parameters
inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

outPropType
A pointer to the type of the returned property’s value.

outPropValueSize
A pointer to the size of the returned property’s value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being asked about, or noErr
if there is no error. See “Metadata Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 193
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTMetaDataRetain
Increments the retain count of a metadata object.

QTMetaDataRef QTMetaDataRetain (QTMetaDataRef inMetaData);

Parameters
inMetaData

A metadata object that you want to retain.

Return Value
If successful, returns a metadata object that is the same as that passed in inMetaData.

Discussion
This function retains a metadata object by incrementing its reference count. You should retain every metadata
object when you receive it from elsewhere and you want it to persist. If you retain a metadata object you
are responsible for releasing it by calling QTMetaDataRelease (page 194).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRelease
Decrements the retain count of a metadata object.

void QTMetaDataRelease (QTMetaDataRef inMetaData);

Discussion
This function releases a metadata object by decrementing its reference count. When the count becomes 0
the memory allocated to the object is freed and the object is destroyed. If you retain a metadata object you
are responsible for releasing it when you no longer need it.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRemoveItem
Removes a metadata item from a storage format.

194 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTMetaDataRemoveItem (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186) and
QTMetaDataGetNextItem (page 191).

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataRemoveItemsWithKey
Removes metadata items with a specific key from the storage format.

OSStatus QTMetaDataRemoveItemsWithKey (
QTMetaDataRef inMetaData,
QTMetaDataStorageFormat inMetaDataFormat,
QTMetaDataKeyFormat inKeyFormat,
const UInt8 *inKeyPtr,
ByteCount inKeySize);

Parameters
inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You can pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be removed. You may pass NULL in this parameter if you want to
remove all items.

inKeySize
The size of the key in bytes.

QuickTime 7 API Reference 195
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key or its format is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataSetItem
Sets the value of the metadata item from the item identifier.

OSStatus QTMetaDataSetItem (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem,
UInt8 *inValuePtr,
ByteCount inValueSize,
UInt32 inDataType);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186) and
QTMetaDataGetNextItem (page 191).

inValuePtr
A pointer to the value to be set. This can be NULL if inValueSize is 0.

inValueSize
The size of inValuePtr in bytes. Pass 0 if you want to set an item with no value.

inDataType
A data type from the following list:

kQTMetaDataTypeBinary = 0,
kQTMetaDataTypeUTF8 = 1,
kQTMetaDataTypeUTF16BE = 2,
kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE = 21,
kQTMetaDataTypeUnsignedIntegerBE = 22,
kQTMetaDataTypeFloat32BE = 23,
kQTMetaDataTypeFloat64BE = 24

With kQTMetaDataTypeSignedIntegerBE and kQTMetaDataTypeUnsignedIntegerBE, the size of the
integer is determined by the value size.

196 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See “Metadata
Error Codes” (page 258).

Discussion
You can use this function to set the value of the metadata item with a given item identifier. You can set an
item with an empty value by passing 0 in inValueSize.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataSetItemProperty
Sets a property of a metadata item.

OSStatus QTMetaDataSetItemProperty (
QTMetaDataRef inMetaData,
QTMetaDataItem inItem,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 186) and
QTMetaDataGetNextItem (page 191).

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
Size of the buffer containing the property value being set.

inPropValueAddress
A pointer to the buffer containing the item property value being set.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the property being set, qtReadOnlyErr if the property being set is read-only, or
noErr if there is no error. See “Metadata Error Codes” (page 258).

QuickTime 7 API Reference 197
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTMetaDataSetProperty
Sets a property of a metadata object.

OSStatus QTMetaDataSetProperty (
QTMetaDataRef inMetaData,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inMetaData

The metadata object for this operation.

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
Size of the buffer containing the property value being set.

inPropValueAddress
A pointer to the buffer containing the property value being set.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being set, qtReadOnlyErr
if the property being set is read-only, or noErr if there is no error. See “Metadata Error Codes” (page
258).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTOpenGLTextureContextCreate
Creates a new OpenGL texture context for a specified OpenGL context and pixel format.

198 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTOpenGLTextureContextCreate (
 CFAllocatorRef allocator,
 CGLContextObj cglContext,
 CGLPixelFormatObj cglPixelFormat,
 CFDictionaryRef attributes,
 QTOpenGLTextureContextRef *newTextureContext);

Parameters
allocator

The allocator used to create the texture context.

cglContext
A pointer to an opaque CGLPContextObj structure representing the OpenGL context used to create
textures. You can create this structure using CGLCreateContext.

cglPixelFormat
The pixel format object that specifies buffer types and other attributes of the new context.

attributes
A dictionary of attributes.

newTextureContext
A pointer to a variable to receive the new OpenGL texture context.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTPixelBufferContextCreate
Creates a new pixel buffer context with the given attributes.

OSStatus QTPixelBufferContextCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef attributes,
 QTVisualContextRef *newPixelBufferContext);

Parameters
allocator

Allocator used to create the pixel buffer context.

attributes
Dictionary of attributes.

newPixelBufferContext
Points to a variable to receive the new pixel buffer context.

Return Value
An error code. Returns noErr if there is no error.

QuickTime 7 API Reference 199
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
This routine creates a new pixel buffer context with the given attributes.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTRemoveTrackPropertyListener
Removes a track property monitoring callback

OSErr QTRemoveTrackPropertyListener (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTTrackPropertyListenerUPP inListenerProc,
 void *inUserData);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTTrackPropertyListenerProc callback.

inUserData
User data to be passed to the callback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine removes a track property monitoring callback.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

200 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTSampleTableAddSampleDescription
Adds a sample description to a sample table, returning a sample description ID that can be used to refer to
it.

OSStatus QTSampleTableAddSampleDescription (
 QTMutableSampleTableRef sampleTable,
 SampleDescriptionHandle sampleDescriptionH,
 long mediaSampleDescriptionIndex,
 QTSampleDescriptionID *sampleDescriptionIDOut);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleDescriptionH
A handle to a SampleDescription structure. QuickTime will make its own copy of this handle.

mediaSampleDescriptionIndex
The sample description index of this sample description in a media. Pass 0 for sample descriptions
you add to sample tables, to indicate that this was not retrieved from a media.

sampleDescriptionIDOut
A pointer to a variable to receive a sample description ID.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use the returned sample description ID when adding samples to the sample table.

Special Considerations

Sample description IDs are local to each sample table. The same sample description handle may have different
IDs when referenced in different sample tables.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableAddSampleReferences
Adds sample references to a sample table.

QuickTime 7 API Reference 201
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTSampleTableAddSampleReferences (
 QTMutableSampleTableRef sampleTable,
 SInt64 dataOffset,
 ByteCount dataSizePerSample,
 TimeValue64 decodeDurationPerSample,
 TimeValue64 displayOffset,
 SInt64 numberOfSamples,
 MediaSampleFlags sampleFlags,
 QTSampleDescriptionID sampleDescriptionID,
 SInt64 *newSampleNumOut);

Parameters
sampleTable

A reference to an opaque sample table object.

dataOffset
A 64-bit signed integer that specifies the offset at which the first sample begins.

dataSizePerSample
The number of bytes of data per sample. You must pass the data size per sample, not the total size
of all the samples as with some other APIs.

decodeDurationPerSample
A 64-bit time value that specifies the decode duration of each sample.

displayOffset
A 64-bit time value that specifies the offset from decode time to display time of each sample. If the
decode times and display times are the same, pass 0.

numberOfSamples
A 64-bit signed integer, which must be greater than 0, that specifies the number of samples.

sampleFlags
Flags that indicate the sync status of all samples:

mediaSampleNotSync

If set to 1, indicates that the sample to be added is not a sync sample. Set this flag to 0 if the
sample is a sync sample.

mediaSampleShadowSync

If set to 1, the sample is a shadow sync sample.

sampleDescriptionID
The ID of a sample description that has been added to the sample table with
QTSampleTableAddSampleDescription.

newSampleNumOut
A 64-bit signed integer that points to a variable to receive the sample number of the first sample that
was added. Pass NULL if you don't want this information.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

202 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
Movies.h

QTSampleTableCopySampleDescription
Retrieves a sample description from a sample table.

OSStatus QTSampleTableCopySampleDescription (
 QTSampleTableRef sampleTable,
 QTSampleDescriptionID sampleDescriptionID,
 long *mediaSampleDescriptionIndexOut,
 SampleDescriptionHandle *sampleDescriptionHOut);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleDescriptionID
The sample description ID.

mediaSampleDescriptionIndexOut
A pointer to a variable to receive a media sample description index. If the sample description came
from a media, this is the index that could be passed to GetMediaSampleDescription to retrieve
the same sample description handle. The index will be 0 if the sample description did not come
directly from a media. Pass NULL if you do not want to receive this information.

sampleDescriptionHOut
A pointer to a variable to receive a newly allocated sample description handle. Pass NULL if you do
not want one. The caller is responsible for disposing the returned sample description handle using
DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableCreateMutable
Creates a new, empty sample table.

QuickTime 7 API Reference 203
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTSampleTableCreateMutable (
 CFAllocatorRef allocator,
 TimeScale timescale,
 void *hints,
 QTMutableSampleTableRef *newSampleTable);

Parameters
allocator

The allocator to use for the new sample table.

timescale
A long integer that represents the timescale to use for durations and display offsets.

hints
Reserved; pass NULL.

newSampleTable
A pointer to a variable that receives a new reference to an opaque sample table object.

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if the time scale is not positive
or newSampleTable is NULL, or noErr if there is no error.

Discussion
The newly created sample table contains no sample references. When sample references are added, their
durations and display offsets are interpreted according to the sample table’s current timescale.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableCreateMutableCopy
Copies a sample table.

OSStatus QTSampleTableCreateMutableCopy (
 CFAllocatorRef allocator,
 QTSampleTableRef sampleTable,
 void *hints,
 QTMutableSampleTableRef *newSampleTable);

Parameters
allocator

The allocator to use for the new sample table.

sampleTable
A reference to an opaque sample table object to copy.

hints
Reserved; set to NULL.

newSampleTable
A pointer to a variable that receives a reference to an opaque sample table object.

204 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if the time scale is not positive
or newSampleTable is NULL, or noErr if there is no error.

Discussion
All the sample references and sample descriptions in the sample table are copied.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDataOffset
Returns the data offset of a sample.

SInt64 QTSampleTableGetDataOffset (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents a sample number. The first sample’s number is 1.

Return Value
A 64-bit signed integer that represents the offset to the sample. Returns 0 if sampleTable is NULL or if the
sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDataSizePerSample
Returns the data size of a sample.

ByteCount QTSampleTableGetDataSizePerSample (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

QuickTime 7 API Reference 205
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
The size of the sample in bytes. Returns 0 if samplTable is NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDecodeDuration
Returns the decode duration of a sample.

TimeValue64 QTSampleTableGetDecodeDuration (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
A 64-bit time value that represents the decode duration of the sample. Returns 0 if samplTable is NULL or
if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetDisplayOffset
Returns the offset from decode time to display time of a sample.

TimeValue64 QTSampleTableGetDisplayOffset (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

206 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
A 64-bit time value that represents the offset from decode time to display time of the sample. Returns 0 if
samplTable is NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetNextAttributeChange
Finds the next sample number at which one or more of a set of given sample attributes change.

OSStatus QTSampleTableGetNextAttributeChange (
 QTSampleTableRef sampleTable,
 SInt64 startSampleNum,
 QTSampleTableAttribute attributeMask,
 SInt64 *sampleNumOut);

Parameters
sampleTable

A reference to an opaque sample table object.

startSampleNum
A 64-bit signed integer that contains the sample number to start searching from.

QuickTime 7 API Reference 207
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

attributeMask
An unsigned 32-bit integer that contains flags indicating which kinds of attribute changes to search
for:

kQTSampleTableAttribute_DiscontiguousData = 1L << 0

Set this flag to find the first sample number num such that samples num-1 and num are not
adjacent; that is, dataOffset of num-1 + dataSize of num-1 != dataOffset of num.

kQTSampleTableAttribute_DataSizePerSampleChange = 1L << 1

Set this flag to find the first sample with data size per sample different from that of the starting
sample.

kQTSampleTableAttribute_DecodeDurationChange = 1L << 2

Set this flag to find the first sample with decode duration different from that of the starting
sample.

kQTSampleTableAttribute_DisplayOffsetChange = 1L << 3

Set this flag to find the first sample with display offset different from that of the starting sample.

kQTSampleTableAttribute_SampleDescriptionIDChange = 1L << 4

Set this flag to find the first sample with sample description ID different from that of the
starting sample.

kQTSampleTableAttribute_SampleFlagsChange = 1L << 5

Set this flag to find the first sample with any media sample flags different from those of the
starting sample.

kQTSampleTableAnyAttributeChange = 0

If no flags are set, find the first sample with any attribute different from the starting sample.

sampleNumOut
A 64-bit signed integer that points to a variable to receive the next sample number after
startSampleNum at which any of the requested attributes change. If no attribute changes are found,
this variable is set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetNumberOfSamples
Returns the number of samples in a sample table.

208 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

SInt64 QTSampleTableGetNumberOfSamples (
 QTSampleTableRef sampleTable);

Parameters
sampleTable

A reference to an opaque sample table object.

Return Value
A 64-bit signed integer that contains the number of samples, or 0 if sampleTable is NULL.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetProperty
Returns the value of a specific sample table property.

OSStatus QTSampleTableGetProperty (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
sampleTable

A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = 'qtst'

Property of a sample table.

QuickTime 7 API Reference 209
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.

kQTSampleTablePropertyID_MinDisplayOffset = '<ddd'

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.

kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd'

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

inPropValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
On return, the actual size of the property value written to the buffer.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetPropertyInfo
Returns information about the properties of a sample table.

210 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTSampleTableGetPropertyInfo (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
sampleTable

A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = 'qtst'

Property of a sample table.

inPropID
Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.

kQTSampleTablePropertyID_MinDisplayOffset = '<ddd'

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.

kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd'

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

outPropType
A pointer to memory allocated to hold the property type on return: Pass NULL if you do not want this
information.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return. Pass NULL if you do
not want this information.

outPropertyFlags
A pointer to memory allocated to hold property flags on return. Pass NULL if you do not want this
information.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 211
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetSampleDescriptionID
Returns the sample description ID of a sample.

QTSampleDescriptionID QTSampleTableGetSampleDescriptionID (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
The sample’s sample description ID. Returns 0 if samplTable is NULL or if the sample number is out of range.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetSampleFlags
Returns the media sample flags of a sample.

MediaSampleFlags QTSampleTableGetSampleFlags (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample’s number is 1.

Return Value
A constant that describes characteristics of the sample (see below). Returns 0 if samplTable is NULL or if
the sample number is out of range.

Discussion
This function can return one or more of the following constants:

212 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

mediaSampleNotSync
Sample is not a sync sample (for example, it is is frame differenced).

mediaSampleShadowSync
Sample is a shadow sync sample.

mediaSampleDroppable
Sample does not need to be decoded for later samples to be decoded properly.

mediaSamplePartialSync
Sample is a partial sync sample (for example, 1 frame after open GOP).

mediaSampleHasRedundantCoding
Sample is known to contain redundant coding.

mediaSampleHasNoRedundantCoding
Sample is known not to contain redundant coding.

mediaSampleIsDependedOnByOthers
One or more other samples depend on this sample being decoded.

mediaSampleIsNotDependedOnByOthers
Synonym for mediaSampleDroppable.

mediaSampleDependsOnOthers
Decoding this sample depends on decoding other samples.

mediaSampleDoesNotDependOnOthers
Decoding this sample does not depend on decoding other samples.

mediaSampleEarlierDisplayTimesAllowed
Samples later in decode order may have earlier display times.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetTimeScale
Returns the timescale of a sample table.

TimeScale QTSampleTableGetTimeScale (
 QTSampleTableRef sampleTable);

Parameters
sampleTable

A reference to an opaque sample table object.

Return Value
A long integer that represents the sample’s time scale, or 0 if sampleTable is NULL.

Version Notes
Introduced in QuickTime 7.

QuickTime 7 API Reference 213
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableGetTypeID
Returns the CFTypeID value for the current sample table.

CFTypeID QTSampleTableGetTypeID (void);

Return Value
A CFTypeID value.

Discussion
You could use this to test whether a CFTypeRef that was extracted from a CF container such as a CFArray
is a QTSampleTableRef.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableRelease
Decrements the retain count of a sample table.

void QTSampleTableRelease (
 QTSampleTableRef sampleTable);

Parameters
sampleTable

A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Discussion
If the retain count decreases to zero, the sample table is disposed.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

214 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTSampleTableReplaceRange
Replaces a range of samples in a sample table with a range of samples from another sample table.

OSStatus QTSampleTableReplaceRange (
 QTMutableSampleTableRef destSampleTable,
 SInt64 destStartingSampleNum,
 SInt64 destSampleCount,
 QTSampleTableRef sourceSampleTable,
 SInt64 sourceStartingSampleNum,
 SInt64 sourceSampleCount);

Parameters
destSampleTable

A reference to an opaque sample table object to be modified.

destStartingSampleNum
A 64-bit signed integer that represents the first sample number in destSampleTable to be replaced
or deleted, or the sample number at which samples should be inserted.

destSampleCount
A 64-bit signed integer that represents the number of samples to be removed from destSampleTable.
Pass 0 to insert samples without removing samples.

sourceSampleTable
A reference to an opaque sample table object from which samples should be copied, or NULL to
delete samples.

sourceStartingSampleNum
A 64-bit signed integer that represents the first sample number to be copied. This parameter is ignored
when deleting samples.

sourceSampleCount
A 64-bit signed integer that represents the number of samples which should be copied. Pass 0 to
delete samples.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function removes destSampleCount samples from destSampleTable starting with
destStartingSampleNum, and then inserts sourceSampleCount samples from sourceSampleTable
starting with sourceStartingSampleNum where the removed samples were. Sample descriptions will be
copied if necessary and new sample description IDs defined. This function can also be used to delete a range
of samples, or to insert samples without removing any.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableRetain
Increments the retain count of a sample table.

QuickTime 7 API Reference 215
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTSampleTableRef QTSampleTableRetain (
 QTSampleTableRef sampleTable);

Parameters
sampleTable

A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Return Value
A pointer to the OpaqueQTSampleTable structure that is returned for your convenience, or NULL if the
function fails.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableSetProperty
Sets the value of a specific sample table property.

OSStatus QTSampleTableSetProperty (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress);

Parameters
sampleTable

A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class:

kQTPropertyClass_SampleTable = 'qtst'

Property of a sample table.

216 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropID
Pass one of these constants to define the property ID:

kQTSampleTablePropertyID_TotalDecodeDuration = 'tded'

The total decode duration of all samples in the sample table. Read-only.

kQTSampleTablePropertyID_MinDisplayOffset = '<ddd'

The least display offset in the table. Negative offsets are less than positive offsets. Read-only.

kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd'

The greatest display offset in the table. Positive offsets are greater than negative offsets.
Read-only.

kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis'

The least display time of all samples in the table, relative to the decode time of the first sample
in the table. Read-only.

kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis'

The greatest display time of all samples in the table, relative to the decode time of the first
sample in the table. Read-only.

inPropValueSize
Pass the size of the property value.

inPropValueAddress
Pass a const void pointer to the property value.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSampleTableSetTimeScale
Changes the timescale of a sample table.

OSStatus QTSampleTableSetTimeScale (
 QTMutableSampleTableRef sampleTable,
 TimeScale newTimeScale);

Parameters
sampleTable

A reference to an opaque sample table object.

newTimeScale
A long integer whose value is the time scale to be set.

Return Value
An error code. Returns paramErr if the time scale is not positive or sampleTable is NULL, or noErr if there
is no error.

QuickTime 7 API Reference 217
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Discussion
The durations and display offsets of all the sample references in the sample table are scaled from the old
timescale to the new timescale. No durations are scaled to a value less than 1. Display offsets are adjusted
to avoid display time collisions.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSetTrackProperty
Sets the value of a specific track property.

OSErr QTSetTrackProperty (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the property value.

inPropValueAddress
A pointer to the the property value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine sets the value of a specific track property.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

218 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTSoundDescriptionConvert
Converts a sound description from one version to another.

OSStatus QTSoundDescriptionConvert (
QTSoundDescriptionKind fromKind,
SoundDescriptionHandle fromDescription,
QTSoundDescriptionKind toKind,
SoundDescriptionHandle *toDescription);

Parameters
fromKind

Reserved. Set to kSoundDescriptionKind_Movie_AnyVersion.

fromDescription
A handle to the sound description to be converted.

toKind
The version you want fromDescription to be.

toDescription
A reference to the resulting SoundDescription structure. You must dispose of the reference using
DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The fromKind parameter is reserved for future expansion; at present you must set it to
kSoundDescriptionKind_Movie_AnyVersion. Depending on the value you pass in toKind, you can
specify that you would like a specific SoundDescription version, the lowest possible version (given the
constraints of the format described by fromDescription), or any version at all.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionCreate
Creates a sound description structure of the requested kind from an AudioStreamBasicDescription,
optional audio channel layout, and optional magic cookie.

QuickTime 7 API Reference 219
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTSoundDescriptionCreate (
AudioStreamBasicDescription *inASBD,
AudioChannelLayout *inLayout,
ByteCount inLayoutSize,
void *inMagicCookie
ByteCount inMagicCookieSize
QTSoundDescriptionKind inRequestedKind
SoundDescriptionHandle *outSoundDesc);

Parameters
inASBD

A description of the format.

inLayout
The audio channel layout (can be NULL if there isn’t one).

inLayoutSize
The size of the audio channel layout (should be 0 if inLayout is NULL).

inMagicCookie
The magic cookie for the decompressor (can be NULL if the decompressor doesn’t require one).

inMagicCookieSize
The size of the magic cookie (should be 0 if the inMagicCookie parameter is NULL).

inRequestedKind
The kind of sound description to create.

outSoundDesc
The resulting sound description. The caller must dispose of it with DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionGetPropertyInfo
Gets information about a particular property of a sound description.

OSStatus QTSoundDescriptionGetPropertyInfo (
SoundDescriptionHandle inDesc,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
QTPropertyValueType *outPropType,
ByteCount *outPropValueSize,
UInt32 *outPropertyFlags);

Parameters
inDesc

The sound description being interrogated.

220 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inPropClass
The class of the property being requested.

inPropID
The ID of the property being requested.

outPropType
The type of the property returned here (can be NULL).

outPropValueSize
The size of the property returned here (can be NULL).

outPropertyFlags
The property flags returned here (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum {
 kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay',
 kQTSoundDescriptionPropertyID_MagicCookie = 'kuki',
 kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd',
 kQTSoundDescriptionPropertyID_UserReadableText = 'text'
};

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay'
Used to get or set an AudioChannelLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = 'kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd'
Used to get an AudioStreamBasicDescription value.

kQTSoundDescriptionPropertyID_UserReadableText = 'text'
Used to get a CFStringRef value. QTSoundDescriptionGetProperty does a CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QuickTime 7 API Reference 221
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTSoundDescriptionGetProperty
Gets a particular property of a sound description.

OSStatus QTSoundDescriptionGetProperty (
SoundDescriptionHandle inDesc,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
QTPropertyValuePtr outPropValueAddress,
ByteCount *outPropValueSizeUsed);

Parameters
inDesc

The sound description being interrogated.

inPropClass
The class of the property being requested.

inPropID
The ID of the property being requested.

inPropValueSize
The size of the property value buffer.

outPropValueAddress
A pointer to the property value buffer.

outPropValueSizeUsed
The actual size of the returned property value (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum {
 kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay',
 kQTSoundDescriptionPropertyID_MagicCookie = 'kuki',
 kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd',
 kQTSoundDescriptionPropertyID_UserReadableText = 'text'
};

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay'
Used to get or set an AudioChannelLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = 'kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd'
Used to get an AudioStreamBasicDescription value.

222 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kQTSoundDescriptionPropertyID_UserReadableText = 'text'
Used to get a CFStringRef value. QTSoundDescriptionGetProperty does a CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

kQTAudioPropertyID_FormatString = 'fstr'
Used with kQTPropertyClass_Audio to get a CFStringRef value containing a localized, human
readable string that describes an audio format; for example, “MPEG Layer 3.” You may get this property
from a SoundDescription handle by calling QTSoundDescriptionGetProperty or from a
StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_ChannelLayoutString = 'lstr'
Used with kQTPropertyClass_Audio to get a CFStringRef value containing a localized, human
readable string that describes an audio channel layout; for example, “5.0 (L R C Ls Rs).” You may get
this property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or
from a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_SampleRateString = 'rstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample rate; for example, “44.100 kHz.” You may get this property from a SoundDescription
handle by calling QTSoundDescriptionGetProperty or from a StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SampleSizeString = 'sstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample size; for example, “24-bit.” This property will return a valid string only if the audio format
is uncompressed (LPCM). You may get this property from a SoundDescription handle by calling
QTSoundDescriptionGetProperty or from a StandardAudioCompression (scdi or audi)
component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_BitRateString = 'bstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio bit rate; for example, “12 kbps.” You may get this property from a StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SummaryString = 'asum'
Used to get a CFStringRef value containing a localized, human readable string that summarizes an
audio format; for example, “16-bit Integer (Big Endian), Stereo (L R), 48.000 kHz.” You may get this
property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or from
a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

QTSoundDescriptionSetProperty
Sets a particular property of a sound description.

QuickTime 7 API Reference 223
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSStatus QTSoundDescriptionSetProperty (
SoundDescriptionHandle inDesc,
QTPropertyClass inPropClass,
QTPropertyID inPropID,
ByteCount inPropValueSize,
ConstQTPropertyValuePtr inPropValueAddress);

Parameters
inDesc

The sound description being modified.

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
The size of the property value buffer.

inPropValueAddress
A pointer to the property value buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

enum {
 kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay',
 kQTSoundDescriptionPropertyID_MagicCookie = 'kuki',
 kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd',
 kQTSoundDescriptionPropertyID_UserReadableText = 'text'
};

Special Considerations

kQTSoundDescriptionPropertyID_AudioChannelLayout = 'clay'
Used to get or set an AudioChannelLayout value. This is a variable-size property because it may
contain an array of Channel Descriptions. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_MagicCookie = 'kuki'
Used to get or set opaque bytes. This is a variable-size property, because it is completely defined by
the codec that uses the cookie. You must get the size by calling
QTSoundDescriptionGetPropertyInfo, allocate a structure of that size, and then get the property.

kQTSoundDescriptionPropertyID_AudioStreamBasicDescription = 'asbd'
Used to get an AudioStreamBasicDescription value.

kQTSoundDescriptionPropertyID_UserReadableText = 'text'
Used to get a CFStringRef value. QTSoundDescriptionGetProperty does a CFRetain of the
returned CFString on behalf of the caller, so the caller is responsible for calling CFRelease on the
returned CFString.

Version Notes
Introduced in QuickTime 7.

224 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SampleNumToMediaDecodeTime
Finds the decode time for a specified sample.

void SampleNumToMediaDecodeTime (
 Media theMedia,
 SInt64 logicalSampleNum,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *sampleDecodeDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

logicalSampleNum
A 64-bit signed integer that contains the sample number.

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the logicalSampleNum parameter. This time value is expressed in the
media's time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function’s error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SampleNumToMediaDisplayTime
Finds the display time for a specified sample.

QuickTime 7 API Reference 225
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

void SampleNumToMediaDisplayTime (
 Media theMedia,
 SInt64 logicalSampleNum,
 TimeValue64 *sampleDisplayTime,
 TimeValue64 *sampleDisplayDuration);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

logicalSampleNum
A 64-bit signed integer that contains the sample number.

sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media’s
time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function’s error returns through GetMoviesError and GetMoviesStickyError. It
returns paramErr if there is a bad parameter value, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SCAudioInvokeLegacyCodecOptionsDialog
Invokes the legacy code options dialog of an audio codec component.

ComponentResult SCAudioInvokeLegacyCodecOptionsDialog (
 ComponentInstance ci);

Parameters
ci

A component instance that identifies a connection to an audio codec component.

Return Value
An error code, or noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

226 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
QuickTimeComponents.h

SCCopyCompressionSessionOptions
Creates a compression session options object based upon the settings in the Standard Compression
component.

ComponentResult SCCopyCompressionSessionOptions (
 ComponentInstance ci,
 ICMCompressionSessionOptionsRef *outOptions);

Parameters
ci

A component instance of Standard Compression component.

outOptions
On return, a reference to a new compression session options object.

Return Value
An error code. Returns noErr if there is no error. paramErr if the client did not set the
scAllowEncodingWithCompressionSession preference flag.

Discussion
This function creates a new compression session options object using the compression settings of the Standard
Compression component instance. You can use other Standard Compression component calls to set up the
compression settings. Then you call this function to extract the compression settings in the form of a
compression session options object. The returned object can be used to create a compression session object
through ICMCompressionSessionCreate().

The caller must indicate that he or she intends to use the new ICM compression session API to perform the
compression operation, by setting the scAllowEncodingWithCompressionSession preference flag
through SCSetInfo() with the scPreferenceFlagsType selector.

The caller of this function is expected to release the returned compression session options object through
ICMCompressionSessionOptionsRelease when it is done.

Version Notes
Introduced in QuickTime 7

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

SetDSequenceNonScheduledDisplayDirection
Sets the display direction for a decompress sequence.

QuickTime 7 API Reference 227
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

OSErr SetDSequenceNonScheduledDisplayDirection (
 ImageSequence sequence,
 Fixed rate);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.

rate
The display direction to be set. Negative values represent backward display and positive values
represent forward display.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

Declared In
ImageCompression.h

SetDSequenceNonScheduledDisplayTime
Sets the display time for a decompression sequence.

OSErr SetDSequenceNonScheduledDisplayTime (
 ImageSequence sequence,
 TimeValue64 displayTime,
 TimeScale displayTimeScale,
 UInt32 flags);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin
function.

displayTime
The display time to be set.

displayTimeScale
The display time scale to be set.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: QuickTimeComponents.h

228 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Declared In
ImageCompression.h

SetMovieAudioBalance
Sets the balance level for the mixed audio output of a movie.

OSStatus SetMovieAudioBalance (
 Movie m,
 Float32 leftRight,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

leftRight
A pointer to the new balance setting for the movie. The balance setting is a 32-bit floating-point value
that controls the relative volume of the left and right sound channels. A value of 0 sets the balance
to neutral. Positive values up to 1.0 shift the balance to the right channel, negative values up to –1.0
to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie’s balance setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioBalance (page 74).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioContext
Targets a movie to render into an audio context.

OSStatus SetMovieAudioContext (
 Movie movie,
 QTAudioContextRef audioContext;

Parameters
movie

The movie.

QuickTime 7 API Reference 229
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

audioContext
The audio context that the movie will render into.

Return Value
An error code. Returns noErr if there is no error. .

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioFrequencyMeteringNumBands
Configures frequency metering for a particular audio mix in a movie.

OSStatus SetMovieAudioFrequencyMeteringNumBands (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 *ioNumBands);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

ioNumBands
A pointer to memory that stores the number of bands being metered. On calling this function, you
specify the number of frequency bands you want to meter. If that number is higher than is possible
(determined by factors such as the sample rate of the audio being metered), the function will return
the number of bands it is actually going to meter. You can pass NIL or a pointer to 0 to disable
metering.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioFrequencyMeteringNumBands (page 76).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

230 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

SetMovieAudioGain
Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the movie’s
playback.

OSStatus SetMovieAudioGain (
 Movie m,
 Float32 gain,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is –6 dB, 1.0 is 0 dB (the audio from
the movie is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
movies to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioGain (page 77).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioMute
Sets the mute value for the audio mix of a movie currently playing.

OSStatus SetMovieAudioMute (
 Movie m,
 Boolean muted,
 UInt32 flags);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

muted
Pass TRUE to mute the movie audio, FALSE otherwise.

QuickTime 7 API Reference 231
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioMute (page 78).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetMovieAudioVolumeMeteringEnabled
Enables or disables volume metering of a particular audio mix of a movie.

OSStatus SetMovieAudioVolumeMeteringEnabled (
 Movie m,
 FourCharCode whatMixToMeter,
 Boolean enabled);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle.

whatMixToMeter
The applicable mix of audio channels in the movie; see “Movie Audio Mixes” (page 248).

enabled
Pass TRUE to enable audio volume metering; pass FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioVolumeMeteringEnabled (page 79).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

232 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

SetTrackAudioGain
Sets the audio gain level for the audio output of a track, altering the perceived volume of the track’s playback.

OSStatus SetTrackAudioGain (
 Track t,
 Float32 gain,
 UInt32 flags);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

gain
A 32-bit floating-point gain value of 0 or greater. 0.0 is silent, 0.5 is –6 dB, 1.0 is 0 dB (the audio from
the track is not modified), 2.0 is +6 dB, etc. The gain level can be set higher than 1.0 to allow quiet
tracks to be boosted in volume. Gain settings higher than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track’s gain setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioGain (page 82).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

SetTrackAudioMute
Mutes or unmutes the audio output of a track.

OSStatus SetTrackAudioMute (
 Track t,
 Boolean muted,
 UInt32 flags);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Pass TRUE to mute the track’s audio, FALSE to unmute it.

flags
Not used; set to 0.

QuickTime 7 API Reference 233
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track mute setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioMute (page 83).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

TrackTimeToMediaDisplayTime
Converts a track’s time value to a display time value that is appropriate to the track’s media, using the track’s
edit list.

TimeValue64 TrackTimeToMediaDisplayTime (
 TimeValue64 value,
 Track theTrack);

Parameters
value

A 64-bit time value that represents the track’s time value; it must be expressed in the time scale of
the movie that contains the track.

theTrack
A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

Return Value
A 64-bit time value that represents the corresponding time in media display time, in the media's time
coordinate system. If the track time corresponds to empty space, this function returns a value of –1.

Discussion
This function maps the track time through the track’s edit list to come up with the media time. This time
value contains the track’s time value according to the media’s time coordinate system. If the time you specified
lies outside of the movie’s active segment or corresponds to empty space in the track, this function returns
a value of –1. Hence you can use it to determine whether a specified track edit is empty.

Version Notes
Introduced in QuickTime 7. This function is a 64-bit replacement for TrackTimeToMediaTime.

Availability
Carbon status: Supported C interface file: Movies.h

Declared In
Movies.h

234 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Callbacks

The callback functions new to the QuickTime 7 API are documented alphabetically in this section.

ICMDecompressionTrackingCallbackProc
The callback through which a client of an ICM decompression session receives decoded frames and information
about decoding.

typedef void (*ICMDecompressionTrackingCallback)(
void *decompressionTrackingRefCon, OSStatus result, ICMDecompressionTrackingFlags
 decompressionTrackingFlags, CVPixelBufferRef pixelBuffer, TimeValue64 displayTime,
TimeValue64 displayDuration, ICMValidTimeFlags validTimeFlags,
void *sourceFrameRefCon, void *reserved);

// Declaration of a typical application-defined function
Boolean MyICMDecompressionTrackingCallbackProc (
 void *decompressionTrackingRefCon,
 OSStatus result,
 ICMDecompressionTrackingFlags decompressionTrackingFlags,
 CVPixelBufferRef pixelBuffer,
 TimeValue64 displayTime,
 TimeValue64 displayDuration,
 ICMValidTimeFlags validTimeFlags,
 void *sourceFrameRefCon,
 void *reserved);

Parameters
decompressionTrackingRefCon

The callback’s reference value, copied from the decompressionTrackingRefCon field of an
ICMDecompressionTrackingCallbackRecord (page 239) structure.

result
Indicates whether there was an error in decompression.

QuickTime 7 API Reference 235
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

decompressionTrackingFlags
One or more flags describing the a frame's state transitions:

kICMDecompressionTracking_LastCall = 1L<<0

This is the last call for this sourceFrameRefCon.

kICMDecompressionTracking_ReleaseSourceData = 1L<<1

The session no longer needs the source data pointer.

kICMDecompressionTracking_EmittingFrame = 1L<<2

A frame is being emitted. The pixelBuffer parameter contains the decompressed frame. If
the decompression session is targetting a visual context, the frame has not yet been sent to
the visual context but will be sent after the callback returns.

kICMDecompressionTracking_FrameDecoded = 1L<<3

This frame was decoded.

kICMDecompressionTracking_FrameDropped = 1L<<4

The codec decided to drop this frame.

kICMDecompressionTracking_FrameNeedsRequeueing = 1L<<5

This frame will not be able to be displayed unless it is queued for redecode (this constant is
also known as FrameNotDisplayable).

pixelBuffer
When the kICMDecompressionTracking_EmittingFrame flag is set in
decompressionTrackingFlags, this parameter must reference a pixel buffer containing the
decompressed frame.

displayTime
If kICMValidTime_DisplayTimeStampIsValid is set in validTimeFlags, this parameter must
pass the display time of the frame.

displayDuration
If kICMValidTime_DisplayDurationIsValid is set in validTimeFlags, this parameter must
pass the display duration of the frame.

validTimeFlags
Indicates which of displayTime and displayDuration is valid:

kICMValidTime_DisplayTimeStampIsValid

The time value passed in displayTimeStamp is valid.

kICMValidTime_DisplayDurationIsValid

The time value passed in displayDuration is valid.

sourceFrameRefCon
The frame’s reference value, copied from the sourceFrameRefCon parameter passed to
ICMDecompressionSessionDecodeFrame (page 130).

reserved
Reserved for future use.

Discussion
This callback is referenced by an ICMDecompressionTrackingCallbackRecord (page 239).

236 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

MovieExportStageReachedCallbackProc
Installed by NewMovieExportStageReachedCallbackUPP (page 178).

typedef OSErr (*MovieExportStageReachedCallbackProcPtr)(OSType inStage, Movie
inMovie, ComponentInstance inDataHandler, Handle inDataRef,
OSType inDataRefType, void *refCon);

// Declaration of a typical application-defined function
Boolean MyMovieExportStageReachedCallbackProc (
 OSType inStage,
 Movie inMovie,
 ComponentInstance inDataHandler,
 Handle inDataRef,
 OSType inDataRefType,
 void *refCon);

Parameters
inStage

A movie export stage.

inMovie
A movie.

inDataHandler
A data handler component.

inDataRef
A handle to a data reference.

inDataRefType
The type of the data reference.

refCon
A reference constant to be passed to the callback specified in
NewMovieExportStageReachedCallbackUPP (page 178). Use this parameter to point to a data
structure containing any information your callback needs.

SGAudioCallbackProc
Provides access to a SGAudioMediaType channel’s data at various point along the signal flow.

typedef OSStatus (*SGAudioCallbackProcPtr)
(SGChannel c, void *inRefCon, SGAudioCallbackFlags *ioFlags, const AudioTimeStamp
 *inTimeStamp, const UInt32 *inNumberPackets,
const AudioBufferList *inData, const AudioStreamPacketDescription
*inPacketDescriptions);

QuickTime 7 API Reference 237
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

// Declaration of a typical application-defined function
OSStatus MySGAudioCallbackProc (
 SGChannel c,
 void *inRefCon,
 SGAudioCallbackFlags *ioFlags,
 const AudioTimeStamp *inTimeStamp,
 const UInt32 *inNumberPackets,
 const AudioBufferList *inData,
 const AudioStreamPacketDescription *inPacketDescriptions);

Parameters
c

The sequence grabber channel that has originating this callback.

inRefCon
A reference constant passed by the caller. Use this parameter to point to a data structure containing
any information your callback needs.

ioFlags
Currently not used.

inTimeStamp
The time stamp associated with the first sample passed in inData.

inNumberPackets
The number of data packets held in inData. With LPCM formats the number of packets is the same
as number of frames.

inData
A bufferlist containing the requested sample data.

inPacketDescriptions
If the packets contained in inData are of variable size, this parameter should pass an array of
inNumberPackets packet descriptions.

Discussion
Use QTSetComponentPropertywith kQTPropertyClass_SGAudio and any of the following property IDs
to specify which callback you would like to receive:

 ■ kQTSGAudioPropertyID_PreMixCallback

 ■ kQTSGAudioPropertyID_PostMixCallback

 ■ kQTSGAudioPropertyID_PreConversionCallback

 ■ kQTSGAudioPropertyID_PostConversionCallback

Pass an SGAudioCallbackStruct (page 242)as the data payload. Clients define an SGAudioCallbackProc
in order to tap into a SGAudioMediaType channel, gaining access to its data at various points along the
signal flow chain. Clients should be aware that they may be called back on threads other than the thread on
which they registered for the callback. They should do as little work as possible inside their callback, returning
control as soon as possible to the channel.

QTOpenGLTextureAvailableCallbackProc
Receives notifications when a new OpenGL texture becomes available.

238 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

typedef void (*QTOpenGLTextureAvailableCallback)(QTOpenGLTextureContextRef
textureContext, const CVTimeStamp *timeStamp, void *refCon);

// Declaration of a typical application-defined function
OSStatus MyQTOpenGLTextureAvailableCallback (
 QTOpenGLTextureContextRef textureContext,
 const CVTimeStamp *timeStamp,
 void *refCon);

Parameters
textureContext

The OpenGL texture context invoking the callback.

timeStamp
Time for which a new texture has become available.

refCon
A reference constant passed by the caller. Use this parameter to point to a data structure containing
any information your callback needs.

Discussion
Due to unpredictible activity, such as user seeks or the arrival of streaming video packets from a network,
new textures may become available for times supposedly occupied by previous textures. Responsive
applications, therefore, should use this callback to discover as soon as possible when a movie needs to be
updated.

Data Structures

The public data structures new to the QuickTime 7 API are documented alphabetically in this section. Certain
other data structures are referenced by QuickTime 7 functions but are opaque.

ICMDecompressionTrackingCallbackRecord
Designates a tracking callback for an ICM decompression session.

struct ICMDecompressionTrackingCallbackRecord {
ICMDecompressionTrackingCallback decompressionTrackingCallback;
void *decompressionTrackingRefCon;
};

Fields
decompressionTrackingCallback

The callback function pointer. See ICMDecompressionTrackingCallbackProc (page 235).

decompressionTrackingRefCon
The callback’s reference value.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

QuickTime 7 API Reference 239
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICMMultiPassStorageCallbacks
Designates a collection of callbacks for creating a custom multipass storage object.

struct ICMMultiPassStorageCallbacks {
UInt32 version;
void *storageRefCon;
ICMMultiPassSetDataAtTimeStampCallback setDataAtTimeStampCallback;
ICMMultiPassGetTimeStampCallback getTimeStampCallback;
ICMMultiPassCopyDataAtTimeStampCallback copyDataAtTimeStampCallback;
ICMMultiPassReleaseCallback releaseCallback;
};

Fields
version

The version of this structure. Set to kICMMultiPassStorageCallbacksVersionOne.

storageRefCon
A pointer to a reference constant. Use this parameter to point to a data structure containing any
information your callback needs.

setDataAtTimeStampCallback
A callback for storing values.

getTimeStampCallback
A callback for finding time stamps.

copyDataAtTimeStampCallback
A callback for retrieving values.

releaseCallback
A callback for disposing the callback's state when done.

Discussion
This structure is used by ICMMultiPassStorageCreateWithCallbacks (page 161).

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

QTAudioFrequencyLevels
Stores the frequency meter level settings for the audio channels in a movie mix.

struct QTAudioFrequencyLevels {
 UInt32 numChannels;
 UInt32 numFrequencyBands;
 Float32 level[1];
};

Fields
numChannels

The number of audio channels.

numFrequencyBands
The number of frequency bands for each channel.

240 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

level
A 32-bit floating-point value for each frequency band. The frequency bands for each channel are
stored contiguously, with all the band levels for the first channel first, all the band levels for the second
channel next, etc. The total number of 32-bit values in this field equals numFrequencyBands times
numChannels.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: GetMovieAudioFrequencyLevels (page 75)

QTAudioVolumeLevels
Stores the volume level settings for the audio channels in a movie mix.

struct QTAudioVolumeLevels {
 UInt32 numChannels;
 Float32 level;
};

Fields
numChannels

The number of audio channels.

level
A 32-bit floating-point value for each channel’s volume.

Discussion
Note that these are variable-sized structures that must be allocated large enough.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: GetMovieAudioVolumeLevels (page 78)

QTNewMoviePropertyElement
Stores a movie property for NewMovieFromProperties (page 178).

QuickTime 7 API Reference 241
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

struct QTNewMoviePropertyElement {
QTPropertyClass propClass;
QTPropertyID propID;
ByteCount propValueSize;
QTPropertyValuePtr propValueAddress;
OSStatus propStatus;
};

Fields
propClass

A four-character code designating the class of a movie property. See “New Movie Property Codes” (page
258).

propID
The ID of the property.

propValueSize
The size in bytes of the property passed in propValueAddress.

propValueAddress
A pointer to a movie property. Since the data type is fixed for each element’s property class and ID,
these is no ambiguity about the data type for its property value.

propStatus
Indicates any problems with the property. For example, if a property is not understood by the function
it is passed to, this field is set appropriately. See the discussion in NewMovieFromProperties (page
178).

Discussion
When you call NewMovieFromProperties, you allocate and own arrays of these elements to pass to it, as
well as the property values that each element points to. You are responsible for disposing of all of these
memory allocations.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

Associated function: NewMovieFromProperties (page 178)

SGAudioCallbackStruct
Used to call an SGAudioCallbackProc (page 237).

struct SGAudioCallbackStruct {
 SGAudioCallback inputProc;
 void *inputProcRefCon;
};

Fields
inputProc

An SGAudioCallbackProc (page 237).

242 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

inputProcRefCon
A reference constant. Use this parameter to point to a data structure containing any information your
callback needs.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

SoundDescriptionV2
Provides version 2 of the SoundDescription data structure.

struct SoundDescriptionV2 {
 SInt32 descSize;
 OSType dataFormat;
 SInt32 resvd1;
 SInt16 resvd2;
 SInt16 dataRefIndex;
 SInt16 version;
 SInt16 revlevel;
 SInt32 vendor;
 SInt16 always3;
 SInt16 always16;
 SInt16 alwaysMinus2;
 SInt16 always0;
 UInt32 always65536;
 UInt32 sizeOfStructOnly;
 Float64 audioSampleRate;
 UInt32 numAudioChannels;
 SInt32 always7F000000;
 UInt32 constBitsPerChannel;
 UInt32 formatSpecificFlags;
 UInt32 constBytesPerAudioPacket;
 UInt32 constLPCMFramesPerAudioPacket;
 /* additional atom-based extensions ([long size, long type,
 some data], repeat) */
};

Fields
descSize

Total size of this structure, including extra data.

dataFormat
Set to'lpcm' for uncompressed data; otherwise set to the compression type. For a list of compression
type codes, see the QuickTime API Reference.

resvd1
Reserved; set to 0.

resvd2
Reserved; set to 0.

dataRefIndex
Reserved; set to 0.

QuickTime 7 API Reference 243
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

http://developer.apple.com/referencelibrary/API_Fundamentals/QuickTime-api-date.html

version
Version of this structure; set to 2.

revlevel
Set to codec version number.

always3
Reserved; set to 3.

always16
Reserved; set to 16 (0x0010).

alwaysMinus2
Reserved; set to –2 (0xFFFE).

always0
Reserved; set to 0.

always65536
Reserved; set to 65536 (0x00010000).

sizeOfStructOnly
Set to sizeof(SoundDescriptionV2), equivalent to the offset to any structure extensions.

audioSampleRate
Set to a 64-bit floating-point number representing the number of audio frames per second; for
example, 44100.0.

numAudioChannels
Set to the number of audio channels; any channel assignment info will be in an extension.

always7F000000
Reserved; set to 7F000000.

constBitsPerChannel
Set to the number of bits per channel only if this value is constant and the audio is uncompressed.
Otherwise set to 0.

formatSpecificFlags
See LPCM flag definitions in CoreAudioTypes.h.

constBytesPerAudioPacket
Set to the number of bytes per packet only if this value is constant. Otherwise set to 0.

constLPCMFramesPerAudioPacket
Set to the number of PCM frames per packet only if this value is constant. Otherwise set to 0.

Version Notes
Introduced in QuickTime 7.

Availability
Carbon status: Supported; C interface file: Movies.h

Platform Considerations

You should never have to know this definition, except for debugging purposes. Use the new QuickTime
sound description APIs to treat sound descriptions as if they are opaque.

Constants

This section lists constants that are newly defined in QuickTime 7.

244 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

ICM Compression Session Options

The following values are used to select options for ICM compression session objects:

kQTPropertyClass_ICMCompressionSessionOptions = 'icso',
kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion = 'asok',
kICMCompressionSessionOptionsPropertyID_AllowFrameReordering = 'b ok',
kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges = '+ ok',
kICMCompressionSessionOptionsPropertyID_AllowTemporalCompression = 'p ok',
kICMCompressionSessionOptionsPropertyID_AverageDataRate = 'aver',
kICMCompressionSessionOptionsPropertyID_ColorTable = 'clut',
kICMCompressionSessionOptionsPropertyID_CompressorComponent = 'imco',
kICMCompressionSessionOptionsPropertyID_CompressorSettings = 'cost',
kICMCompressionSessionOptionsPropertyID_CPUTimeBudget = 'cput',
kICMCompressionSessionOptionsPropertyID_DataRateLimitCount = 'har#',
kICMCompressionSessionOptionsPropertyID_DataRateLimits = 'hard',
kICMCompressionSessionOptionsPropertyID_Depth = 'deep',
kICMCompressionSessionOptionsPropertyID_DurationsNeeded = 'need',
kICMCompressionSessionOptionsPropertyID_MaxDataRateLimits = 'mhar',
kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount = 'cwin',
kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime = 'cwit',
kICMCompressionSessionOptionsPropertyID_MaxKeyFrameInterval = 'kyfr',
kICMCompressionSessionOptionsPropertyID_MultiPassStorage = 'imps',
kICMCompressionSessionOptionsPropertyID_Quality = 'qual',
kICMCompressionSessionOptionsPropertyID_SourceFrameCount = 'frco',
kICMCompressionSessionOptionsPropertyID_WasCompressed = 'wasc'

kQTPropertyClass_ICMCompressionSessionOptions = 'icso'
Class identifier for compression session option object properties.

kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion = 'asok'
Enables the compressor to call the encoded-frame callback from a different thread. By default this
option is FALSE, which means that the compressor must call the encoded-frame callback from the
same thread as ICMCompressionSessionEncodeFrame and
ICMCompressionSessionCompleteFrames.

kICMCompressionSessionOptionsPropertyID_AllowFrameReordering = 'b ok'
Enables frame reordering. To encode B-frames a compressor must reorder frames, which may mean
that the order in which they are emitted and stored (the decode order) may be different from the
order in which they are presented to the compressor (the display order). By default, frame reordering
is disabled. To encode using B-frames, you must enable frame reordering by passing TRUE in this
property.

kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges = '+ ok'
Enables the compressor to modify frame times, improving its performance. Some compressors are
able to identify and coalesce runs of identical frames and emit single frames with longer duration, or
emit frames at a different frame rate from the original. By default, this flag is set to FALSE, which
forces the compressor to emit one encoded frame for every source frame and to preserve frame
display times. This option replaces the practice of having compressors return special high similarity
values to indicate that frames can be dropped.

kICMCompressionSessionOptionsPropertyID_AllowTemporalCompression = 'p ok'
Enables temporal compression of P-frames and B-frames. By default, temporal compression is disabled.

kICMCompressionSessionOptionsPropertyID_AverageDataRate = 'aver'
The long-term desired average data rate in bytes per second. This is not an absolute limit. The default
data rate is zero, indicating that the setting of
kICMCompressionSessionOptionsPropertyID_Quality should determine the size of compressed

QuickTime 7 API Reference 245
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

data. Data rate settings have effect only when timing information is provided for source frames. Some
codecs do not accept limiting to specified data rates.

kICMCompressionSessionOptionsPropertyID_ColorTable = 'clut'
The color table for compression, used with indexed-color depths. Clients who are passed this property
are responsible for disposing the returned CTabHandle.

kICMCompressionSessionOptionsPropertyID_CompressorComponent = 'imco'
Sets a specific compressor component or component instance to be used, or passes one of the
wildcards anyCodec, bestSpeedCodec, bestFidelityCodec, or bestCompressionCodec. Pass
this option to force the Image Compression Manager to use a specific compressor component or
compressor component instance. To allow the Image Compression Manager to choose the compressor
component, set the compressorComponent to anyCodec (the default), bestSpeedCodec,
bestFidelityCodec, or bestCompressionCodec. If you pass in a component instance that you
opened, the ICM will not close that instance; you must do so after the compression session is released.

kICMCompressionSessionOptionsPropertyID_CompressorSettings = 'cost'
A handle containing compressor settings. The compressor will be configured with these settings (by
a call to ImageCodecSetSettings) during the ICMCompressionSessionCreate process.

kICMCompressionSessionOptionsPropertyID_CPUTimeBudget = 'cput'
Recommends a CPU time budget for a compressor in microseconds per frame. Zero means to go as
fast as possible. By default, this is set to kICMUnlimitedCPUTimeBudget, which sets no limit. This
option provides only an advisory hint, and some compressors may ignore it. Compressors are not
compelled to use the full time budget if they complete ahead of time. Multithreaded compressors
may use this amount of CPU time on each processor.

kICMCompressionSessionOptionsPropertyID_DataRateLimitCount = 'har#'
The current number of data rate limits.

kICMCompressionSessionOptionsPropertyID_DataRateLimits = 'hard'
Zero, one, or two hard limits on data rate. Each hard limit is described by a data size in bytes and a
duration in seconds. It requires that the total size of compressed data for any contiguous segment of
that duration (in decode time) must not exceed the data size. By default, no data rate limits are set.
When setting this property, the inPropValueSize parameter should be the number of data rate
limits multiplied by sizeof(ICMDataRateLimit). Data rate settings have an effect only when
timing information is provided for source frames. Some codecs do not accept limiting to specified
data rates.

kICMCompressionSessionOptionsPropertyID_Depth = 'deep'
The depth for compression. If a compressor does not support a specific depth, the closest supported
depth will be used, preferring deeper depths to shallower depths. The default depth is
k24RGBPixelFormat.

kICMCompressionSessionOptionsPropertyID_DurationsNeeded = 'need'
Indicates that durations of emitted frames are needed. If this option is set and source frames are
provided with times but not durations, then frames will be delayed so that durations can be calculated
as the difference between one frame’s time stamp and the next frame’s time stamp. By default, this
flag is FALSE, so frames will not be delayed in order to calculate durations. If you pass encoded frames
to AddMediaSampleFromEncodedFrame, you must set this flag to TRUE.

kICMCompressionSessionOptionsPropertyID_MaxDataRateLimits = 'mhar'
The maximum allowed number of data rate limits, currently 2.

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount = 'cwin'
The maximum frame delay count is the maximum number of frames that a compressor is allowed to
hold before it must output a compressed frame. This value limits the number of frames that may be
held in the “compression window.” If the maximum frame delay count is M, then before the call to

246 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

encode frame N returns, frame N-M must have been emitted. The default value is
kICMUnlimitedFrameDelayCount, which sets no limit on the compression window.

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime = 'cwit'
The maximum frame delay time is the maximum difference between a source frame’s display time
and the corresponding encoded frame»s decode time. This value limits the span of display time that
may be held in the “compression window.” If the maximum frame delay time is TM, then before the
call to encode a frame with display time TN returns, all frames with display times up to and including
TN-TM must have been emitted. The default value is kICMUnlimitedFrameDelayTime, which sets
no time limit on the compression window.

kICMCompressionSessionOptionsPropertyID_MaxKeyFrameInterval = 'kyfr'
The maximum interval between key frames, also known as the key frame rate. Compressors are allowed
to generate key frames more frequently if this would result in more efficient compression. The default
key frame interval is 0, which indicates that the compressor should choose where to place all key
frames. This differs from previous practice, in which a key frame rate of zero disabled temporal
compression.

kICMCompressionSessionOptionsPropertyID_MultiPassStorage = 'imps'
A multipass compression client must provide a storage location for multipass data. Pass
ICMMultiPassStorageCreateWithTemporaryFile to make the ICM store multipass data in a
temporary file. Pass ICMMultiPassStorageCreateWithCallbacks to manage the storage yourself.
Note that the amount of multipass data to be stored can be substantial; it could be greater than the
size of the output movie file. If this property is not NULL, the client must call
ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass around groups of
calls to ICMCompressionSessionEncodeFrame. By default, this property is NULL and multipass
compression is not enabled. The compression session options object retains the multipass storage
object when one is set.

kICMCompressionSessionOptionsPropertyID_Quality = 'qual'
The compression quality. This value is always used to set the spatial quality; if temporal compression
is enabled, it is also used to set temporal quality. The default quality is codecNormalQuality.

kICMCompressionSessionOptionsPropertyID_SourceFrameCount = 'frco'
Indicates the number of source frames, if known. If nonzero, this value should equal the exact number
of times that the client calls ICMCompressionSessionEncodeFrame in each pass. The default is 0,
which indicates that the number of source frames is not known.

kICMCompressionSessionOptionsPropertyID_WasCompressed = 'wasc'
Indicates that the source was previously compressed. This property is an optional information hint
to the compressor; by default it is FALSE.

ICM Compression Session Properties

The following constants represent properties of ICM compression sessions:

kQTPropertyClass_ICMCompressionSession = 'icse',
kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes = 'batt',
kICMCompressionSessionPropertyID_ImageDescription = 'idsc',
kICMCompressionSessionPropertyID_PixelBufferPool = 'pool',
kICMCompressionSessionPropertyID_TimeScale = 'tscl'

kQTPropertyClass_ICMCompressionSession = 'icse'
Class identifier for compression session properties.

QuickTime 7 API Reference 247
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes = 'batt'
The compressor’s pixel buffer attributes for the compression session. You can use these to create a
pixel buffer pool for source pixel buffers. This is not the same as the sourcePixelBufferAttributes
property passed to ICMCompressionSessionCreate. Getting this property does not change its
retain count.

kICMCompressionSessionPropertyID_ImageDescription = 'idsc'
The image description for a compression session. For some codecs, the image description may not
be available before the first frame is compressed. Multiple calls to retrieve this property will return
the same handle. The ICM will dispose of this handle when the compression session is disposed; the
caller must not dispose of it.

kICMCompressionSessionPropertyID_PixelBufferPool = 'pool'
A pool that can provide ideal source pixel buffers for a compression session. The compression session
creates this pixel buffer pool based on the compressor’s pixel buffer attributes and any pixel buffer
attributes passed in to ICMCompressionSessionCreate. If the source pixel buffer attributes and
the compressor pixel buffer attributes can not be reconciled, the pool is based on the source pixel
buffer attributes and the ICM converts each CVPixelBuffer internally.

kICMCompressionSessionPropertyID_TimeScale = 'tscl'
The time scale for the compression session.

Movie Audio Mixes

Three new four-character constants define the mix of audio channels for several functions:

kQTAudioMeter_StereoMix = 'stmx'
kQTAudioMeter_MonoMix = 'momx'
kQTAudioMeter_DeviceMix = kQTAudioPropertyID_DeviceChannelLayout = 'dcly'

kQTAudioMeter_StereoMix
Meter a stereo (two-channel) mix of the enabled sound tracks in the movie. This option is offered
only for MovieAudioFrequencyMetering.

kQTAudioMeter_MonoMix
Meter the movie as if it had been mixed to monaural. This option is offered only for
MovieAudioFrequencyMetering.

kQTAudioMeter_DeviceMix
Meter the movie’s mix to the AudioChannelLayout of the device the movie is playing to.

The constants listed above are passed by the following QuickTime 7 functions:

GetMovieAudioFrequencyLevels
GetMovieAudioFrequencyMeteringBandFrequencies
GetMovieAudioFrequencyMeteringNumBands
GetMovieAudioVolumeLevels
GetMovieAudioVolumeMeteringEnabled
SetMovieAudioFrequencyMeteringNumBands
SetMovieAudioVolumeMeteringEnabled

248 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Audio Property Selectors

The following values are used as ComponentPropertyID selectors. Use these with the
StandardCompressionSubTypeAudio ('scdi'/'audi') component. All property IDs are to be used in
conjunction with the kQTPropertyClass_SCAudio property class.

kQTSCAudioPropertyID_AvailableCompressionFormatList = 'acf#'
A read/listen C-style array of OSType values that specifies the list of available output compression
formats. This list includes all the kAudioEncoderComponentType components and
kSoundCompressor type components on the user’s system. You can restrict the list by using the
kQTSCAudioPropertyID_CompressionFormatListproperty. UseQTGetComponentPropertyInfo
to discover the number of bytes you should allocate for this array.

kQTSCAudioPropertyID_ClientRestrictedCompressionFormatList = 'crf#'
A read/write/listen C-style array of OSType values that specifies a client-restricted set of output
compression formats that you should list as available. Use QTGetComponentPropertyInfo to
discover the number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_AvailableCompressionFormatNamesList = 'cnm#'
A read/write CFArrayRef structure of CFStringRef structures that reference the human-readable
names of each item in a kQTSCAudioPropertyID_AvailableCompressionFormatList. The caller
assumes responsibility for calling CFRelease to dispose of the CFArrayRef structure.

kQTSCAudioPropertyID_HasLegacyCodecOptionsDialog = 'opn?'
Some compression formats have format-specific properties that are accessible only via a
compressor-provided dialog. This constant specifies a read/listen Boolean value that lets you know
if the current compression format has such a dialog.

kQTSCAudioPropertyID_ConstantBitRateFormatsOnly = '!vbr'
By default, constant as well as variable bit rate compression formats are shown in the available format
list. This constant specifies a read/write/listen Boolean value that lets you restrict the available formats
to constant bit rate formats by setting this property to TRUE.

kQTSCAudioPropertyID_AvailableSampleRateList = 'avr#'
A read/listen C-style array of AudioValueRange values that specifies a list of available output sample
rates. This list is specific to the compression format and takes into account any restrictions imposed
by a client using the kQTSCAudioPropertyID_ClientRestrictedSampleRateList property.
Use QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold
this array.

kQTSCAudioPropertyID_SampleRateRecommended = 'reco'
Clients not wishing to set an output sample rate manually may set the output rate to the recommended
rate. Some compressors can perform rate conversion, and can pick optimal settings for a desired
bitrate (AAC is one example). For other formats, the recommended rate is simply the closest output
rate to the input rate that's allowed by the output format.
kQTSCAudioPropertyID_SampleRateIsRecommended is read-only. To set the sample rate to
recommended, a client sets the kQTSCAudioPropertyID_BasicDescriptionwith mSampleRate
= 0.0. To unset the sample rate as recommended, the client sets the
kQTSCAudioPropertyID_BasicDescription with a non-zero mSampleRate field.

kQTSCAudioPropertyID_ApplicableSampleRateList = 'avr#'
A read/listen C-style array of AudioValueRange values that specifies which of the value ranges in
the kQTSCAudioPropertyID_AvailableSampleRateList are currently applicable. The
kQTSCAudioPropertyID_AvailableSampleRateList takes into account client restrictions, and
a compression format's general sample rate restrictions.
kQTSCAudioPropertyID_ApplicableSampleRateList further filters the list to just those sample
rates that are legal and valid given the current codec configuration. Use

QuickTime 7 API Reference 249
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_ClientRestrictedSampleRateList = 'crr#'
A read/write/listen C-style array of AudioValueRange values that specifies a client-restricted set of
output sample rate ranges that should be listed as available. Use QTGetComponentPropertyInfo
to discover the number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_InputMagicCookie = 'ikki'
A read/write/listen opaque data structure that contains an untyped codec-specific data structure (a
“magic cookie”), which some decompressors use to decode their input. Cookies are variable size, so
you must call QTGetComponentPropertyInfo to discover the size of the buffer you should allocate
to hold the cookie.

kQTSCAudioPropertyID_MagicCookie = 'kuki'
A read/write/listen opaque data structure that contains an untyped codec-specific data structure (a
“magic cookie”), which some decompressors use to configure their output. Cookies are variable size,
so you must call QTGetComponentPropertyInfo to discover the size of the buffer you should
allocate to hold the cookie.

kQTSCAudioPropertyID_ClientRestrictedLPCMBitsPerChannelList = 'crb#'
Specifies a client-restricted set of output bits per channel that should be listed as available. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_AvailableLPCMBitsPerChannelList = 'avb#'
A read/listen C-style array of UInt32 values that contains a list of available bits per audio channel.
This list is specific to LPCM, and takes into account any restrictions imposed by a client using the
kQTSCAudioPropertyID_LPCMBitsPerChannelList property. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold this
array.

kQTSCAudioPropertyID_ApplicableLPCMBitsPerChannelList = 'apb#'
Specifies which of the values in thekQTSCAudioPropertyID_AvailableLPCMBitsPerChannelList
are currently applicable. The kQTSCAudioPropertyID_AvailableLPCMBitsPerChannelList
takes into account client restrictions, and LPCM’s general bits per channel restrictions.
kQTSCAudioPropertyID_ApplicableLPCMBitsPerChannelList further filters the list to just
those bits per channel that are legal and valid given the current LPCM configuration. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_LPCMBitsPerChannelList = 'sbc#'
A read/write/listen C-style array of UInt32 values that contains a client-restricted set of output bits
per channel, which you should list as available. Use QTGetComponentPropertyInfo to discover the
number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_AvailableNumChannelsList = 'anc#'
A read/listen C-style array of UInt32 values that contains a list of available numbers of channels. This
list is specific to the compression format and takes into account any restrictions imposed by a client
using the kQTSCAudioPropertyID_NumChannelsList property. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold this
array.

kQTSCAudioPropertyID_NumChannelsList = 'snc#'
A read/write/listen C-style array of UInt32 values that contains a client-restricted set of numbers of
channels that you should list as available. Use QTGetComponentPropertyInfo to discover the
number of bytes you should allocate to hold this array.

250 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kQTSCAudioPropertyID_InputChannelLayout = 'icly'
A read/write/listen variable-size AudioChannelLayout structure that specifies the audio channel
layout of the input description. AudioChannelLayout is a variable-size structure, so you must use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate for it.

kQTSCAudioPropertyID_InputChannelLayoutName = 'icln'
A read-only CFStringRef structure that specifies the human-readable name for a
kQTSCAudioPropertyID_InputChannelLayout structure, if one exists. The caller is responsible
for calling CFRelease to dispose of the resulting string.

kQTSCAudioPropertyID_ChannelLayout = 'clay'
A read/write/listen variable-size AudioChannelLayout structure that specifies the audio channel
layout of the output description. AudioChannelLayout is a variable size structure, so you must use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate.

kQTSCAudioPropertyID_ChannelLayoutName = 'clyn'
A read-only CFStringRef structure that specifies the human-readable name for a
kQTSCAudioPropertyID_ChannelLayout, if one exists. The caller is responsible for calling
CFRelease to dispose of the resulting string.

kQTSCAudioPropertyID_ClientRestrictedChannelLayoutTagList = 'crl#'
Specifies a client-restricted set of channel layout tags that should be listed as available. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_AvailableChannelLayoutTagList = 'acl#'
A read/listen C-style array of AudioChannelLayoutTag values that specifies a list of available audio
channel layout tags. This list is specific to the compression format and takes into account any
restrictions imposed by a client using the kQTSCAudioPropertyID_ChannelLayoutTagList
property. Use QTGetComponentPropertyInfo to discover the number of bytes you should allocate
to hold this array.

kQTSCAudioPropertyID_ChannelLayoutTagList = 'cly#'
A read/write C-style array of AudioChannelLayoutTag values that specifies a client-restricted set
of channel layout tags, which you should list as available. Use QTGetComponentPropertyInfo to
discover the number of bytes you should allocate to hold this array.

kQTSCAudioPropertyID_AvailableChannelLayoutTagNamesList = 'cln#'
A read-only CFArrayRef array that specifies the human-readable names for the
AudioChannelLayoutTag values in a
kQTSCAudioPropertyID_AvailableChannelLayoutTagList. Each element in the array is a
CFStringRef structure. The caller is responsible for calling CFRelease to dispose of this array.

kQTSCAudioPropertyID_ApplicableChannelLayoutTagNamesList = 'apl#'
Specifies which of the values in the kQTSCAudioPropertyID_AvailableChannelLayoutTagList
are currently applicable. The kQTSCAudioPropertyID_AvailableChannelLayoutTagList takes
into account client restrictions, and the current output format’s general channel layout restrictions.
kQTSCAudioPropertyID_ApplicableChannelLayoutTagList further filters the list to just those
channel layouts that are legal and valid given the current codec configuration. Use
QTGetComponentPropertyInfo to discover the number of bytes you should allocate to hold the
array.

kQTSCAudioPropertyID_ClientRestrictedPCMFlags = 'crip'
Specifies a client-restricted set of flags corresponding to the mFormatFlags fields in an
AudioStreamBasicDescription. Data type is a SCAudioFormatFlagsRestrictions struct. For
instance, if a client wishes to specify to the StandardAudioCompression component that their file
format requires little endian pcm data, the client may set this property, with formatFlagsMask set

QuickTime 7 API Reference 251
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

to kAudioFormatFlagIsBigEndian, and formatFlagsValues set to zero (indicating that the
IsBigEndian bit should be interpreted as LittleEndian only).

kQTSCAudioPropertyID_DiscreteChannelsOK = 'dscr'
A read/write/listen Boolean value that lets you tell the StandardCompressionSubTypeAudio
dialog to not show “Discrete” as an available option. Each AudioChannelLayout structure assigns
specific spatial orientation to specific channels (for example, Channel 1 = Left). “Discrete” is a special
channel layout that does not assign spatial characteristics to channels, but instead labels them as
distinct outputs. For example, the first channel in the audio source is played through the first channel
on the output device, the second channel in the source is played through the second channel, and
so on. If this property is set to FALSE, the StandardCompressionSubTypeAudio dialog will not
show “Discrete” as an available option.

kQTSCAudioPropertyID_LPCMSpecificFlagsMask = 'sffm'
A read/write/listen UInt32 value that specifies which flag fields in
kQTSCAudioPropertyID_FormatSpecificFlags should be made available in the
StandardCompressionSubTypeAudio dialog. For instance, a value of 0xFFFFFFFD (all bits except
kAudioFormatFlagIsBigEndian set) tells the StandardCompressionSubTypeAudio component
to disable any UI that would allow a choice between little and big endian. This selector is valid only
for PCM formats and is ignored for others.

kQTSCAudioPropertyID_InputSoundDescription = 'isdh'
A read/write SoundDescriptionHandle value that specifies the current input description as a
SoundDescriptionHandle (lowest possible version for the current format). When calling
QTGetComponentProperty, the caller passes a pointer to an unallocated Handle and assumes
responsibility for calling DisposeHandle when done.

kQTSCAudioPropertyID_SoundDescription = 'osdh'
A read/write SoundDescriptionHandle value that specifies the current output description as a
SoundDescriptionHandle (lowest possible version for the current format). When calling
QTGetComponentProperty, the caller passes a pointer to an unallocated Handle and assumes
responsibility for calling DisposeHandle when done.

kQTSCAudioPropertyID_InputBasicDescription = 'isbd'
A read/write/DataProc/listen AudioStreamBasicDescription value that specifies that the current
input description is an AudioStreamBasicDescription value.

kQTSCAudioPropertyID_BasicDescription = 'osbd'
A read/write/DataProc/listen AudioStreamBasicDescription value that specifies that the current
output description is an AudioStreamBasicDescription value.

kQTSCAudioPropertyID_CodecSpecificSettingsArray = 'cdst'
A read/write CFArrayRef structure that designates a CFArray of CFDictionary structures, which
describe various parameters specific to configuring a codec. This array of dictionaries, which is published
by some compressors, can be parsed to generate UI information. When any value in the array changes,
a client should call QTSetComponentProperty, passing the entire array.

kQTSCAudioPropertyID_SettingsState = scSettingsStateType
A read/write Handle value that is used to save the current state of the
StandardCompressionSubTypeAudio component, so that its state may be restored at a later time
with a single call. A StandardCompressionSubTypeAudio component can accept a saved settings
state from a legacy StandardCompressionSubTypeSound component as write-only.

kQTSCAudioPropertyID_ExtendedProcs = scExtendedProcsType
A read/write/listen SCExtendedProcs value that is used to get or set an SCExtendedProcs structure.

kQTSCAudioPropertyID_PreferenceFlags = scPreferenceFlagsType
A read/write/listen SInt32 value that is used to specify dialog preferences such as
scUseMovableModal.

252 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kQTSCAudioPropertyID_WindowOptions = scWindowOptionsType
A read/write/listen SCWindowSettings structure that is used to set an SCWindowSettings structure,
which tells the dialog about its parent window so that it can draw itself as a sheet on top of the parent.

Movie Exporter Properties

The following constants are used by movie export getProperty functions only (not SCAudio), so that
variable size properties can be handled in that API where there is no associated size parameter. The
getProperty function can be asked the size first, then the caller can allocate memory for the associated
SCAudio property and call getProperty again to get the property.

enum {
 movieExportChannelLayoutSize = 'clsz', /* UInt32 */
 movieExportMagicCookieSize = 'mcsz', /* UInt32 */
 movieExportUseHighResolutionAudioProperties = 'hrau' /* Boolean */
};

The movieExportUseHighResolutionAudioProperties constant is not a size. It is how the exporter
asks a propertyProc if it is prepared to deal with high-res properties.

The kPropertyClass_MovieExporter constant defines the movie exporter class:

enum {
 kPropertyClass_MovieExporter = 'spit'
};

The kMovieExporterPropertyID_EnableHighResolutionAudioFeatures constant enables
high-resolution audio features for kPropertyClass_MovieExporter. Its value is Boolean:

enum {
 kMovieExporterPropertyID_EnableHighResolutionAudioFeatures = 'hrau'
};

Audio Property IDs

The following constants identify audio properties.

enum {
 kQTAudioPropertyID_Gain = 'gain',
 kQTAudioPropertyID_Mute = 'mute',
 kQTAudioPropertyID_Balance = 'bala',
 kQTAudioPropertyID_SummaryChannelLayout = 'clay',
 kQTAudioPropertyID_DeviceChannelLayout = 'dcly',
 kQTAudioPropertyID_FormatString = 'fstr',
 kQTAudioPropertyID_ChannelLayoutString = 'lstr',
 kQTAudioPropertyID_SampleRateString = 'rstr',
 kQTAudioPropertyID_SampleSizeString = 'sstr',
 kQTAudioPropertyID_BitRateString = 'bstr',
 kQTAudioPropertyID_SummaryString = 'asum'
};

kQTAudioPropertyID_Gain = 'gain'
Used to get and set a Float32 value that represents the audio gain of a movie or track. The gain
level is multiplicative; eg. 0.0 is silent, 0.5 is –6dB, 1.0 is 0dB (ie. the audio from the movie is not
modified), 2.0 is +6dB, etc. The gain level can be set higher than 1.0 in order to allow quiet movies

QuickTime 7 API Reference 253
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

and tracks to be boosted in volume. Settings higher than 1.0 may result in audio clipping, of course.
The setting is not stored in the movie or track; it is used only until the movie or track is disposed.

kQTAudioPropertyID_Mute = 'mute'
Used to get and set a Boolean value that indicates the audio mute state of a movie or track. If TRUE,
the movie or track is muted. The setting is not stored in the movie or track; it is used only until the
movie or track is disposed.

kQTAudioPropertyID_Balance = 'bala'
Used to get and set a Float32 value that represents the audio balance of a movie. It is supported
only for movies, not tracks. –1.0 means full left, 0.0 means centered, and 1.0 means full right. The
setting is not stored in the movie; it is used only until the movie is disposed.

kQTAudioPropertyID_SummaryChannelLayout = 'clay'
Used to get an AudioChannelLayout value that represents the summary audio channel layout of
a movie or other grouping of audio streams. All like-labelled channels are combined, so there are no
duplicates. For example, if there is a stereo (L/R) track, 5 single-channel tracks marked Left, Right, Left
Surround, Right Surround and Center, and a 4 channel track marked L/R/Ls/Rs, then the summary
AudioChannelLayout will be L/R/Ls/Rs/C—It will _not_ be L/R/L/R/Ls/Rs/C/L/R/Ls/Rs. This is a
variable-size property, because it it may contain an array of channel descriptions. You must get the
size by calling a function such as QTGetMoviePropertyInfo, allocate a structure of that size, and
then get the property.

kQTAudioPropertyID_DeviceChannelLayout = 'dcly'
Used to get an AudioChannelLayout value that represents the audio channel layout of the device
a movie is playing to. This is a variable-size property, because it it may contain an array of channel
descriptions. You must get the size by calling a function such as QTGetMoviePropertyInfo, allocate
a structure of that size, and then get the property.

kQTAudioPropertyID_FormatString = 'fstr'
Used with kQTPropertyClass_Audio to get a CFStringRef value containing a localized, human
readable string that describes an audio format; for example, “MPEG Layer 3.” You may get this property
from a SoundDescription handle by calling QTSoundDescriptionGetProperty or from a
StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_ChannelLayoutString = 'lstr'
Used with kQTPropertyClass_Audio to get a CFStringRef value containing a localized, human
readable string that describes an audio channel layout; for example, “5.0 (L R C Ls Rs).” You may get
this property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or
from a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

kQTAudioPropertyID_SampleRateString = 'rstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample rate; for example, “44.100 kHz.” You may get this property from a SoundDescription
handle by calling QTSoundDescriptionGetProperty or from a StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SampleSizeString = 'sstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio sample size; for example, “24-bit.” This property will return a valid string only if the audio format
is uncompressed (LPCM). You may get this property from a SoundDescription handle by calling
QTSoundDescriptionGetProperty or from a StandardAudioCompression (scdi or audi)
component instance by calling QTGetComponentProperty.

254 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kQTAudioPropertyID_BitRateString = 'bstr'
Used to get a CFStringRef value containing a localized, human readable string that describes an
audio bit rate; for example, “12 kbps.” You may get this property from a StandardAudioCompression
(scdi or audi) component instance by calling QTGetComponentProperty.

kQTAudioPropertyID_SummaryString = 'asum'
Used to get a CFStringRef value containing a localized, human readable string that summarizes an
audio format; for example, “16-bit Integer (Big Endian), Stereo (L R), 48.000 kHz.” You may get this
property from a SoundDescription handle by calling QTSoundDescriptionGetProperty or from
a StandardAudioCompression (scdi or audi) component instance by calling
QTGetComponentProperty.

Dictionary Keys

The dictionary keys listed in this section are used with c ertain of the property IDs. They may be used to parse
CF dictionaries returned by kQTSGAudioPropertyID_DeviceListWithAttributes and
kQTSGAudioPropertyID_DeviceAttributes IDs for SGAudioMediaType channels.

kQTAudioDeviceAttribute_DeviceUIDKey = 'uid '
A CFStringRef containing a unique identifier for a device.

kQTAudioDeviceAttribute_DeviceNameKey = 'name'
A CFStringRef containing a device’s printable name, suitable for the user interface.

kQTAudioDeviceAttribute_DeviceManufacturerKey = 'manu'
A CFStringRef containing a device manufacturer’s printable name, suitable for the user interface.

kQTAudioDeviceAttribute_DeviceTransportTypeKey = 'tran'
A CFNumberRef that wraps an OSType; for example, '1394' for fw. See the file IOAudioTypes.h.

kQTAudioDeviceAttribute_DeviceAliveKey = 'aliv'
A CFBooleanRef value that is TRUE if the device is present.

kQTAudioDeviceAttribute_DeviceCanRecordKey = 'rec ' [last char = space]
A CFBooleanRef value that is TRUE if the device can be used for recording (some devices can only
play back).

kQTAudioDeviceAttribute_DeviceCanPreviewKey = 'prev'
A CFBooleanRef value that is TRUE if the device can be used to preview a grabbed sequence.

kQTAudioDeviceAttribute_DeviceHoggedKey = 'hogg'
A CFNumberRef that wraps the unique process ID that is hogging the device, or –1 if the device is
currently not being hogged. The process ID comes from a call to getpid.

kQTAudioDeviceAttribute_DeviceInUseKey = 'used'
A CFBooleanRef value that is TRUE if the device is performing I/O in any process.

kQTAudioDeviceAttribute_DeviceSupportsHardwarePlaythruKey = 'hard'
A CFBooleanRef value that is TRUE if the device supports hardware playthrough of inputs to outputs.

kQTAudioDeviceAttribute_DefaultInputDeviceKey = 'dIn ' [last char = space]
A CFBooleanRef value that’s TRUE if the device is the user-selected default input in an audio MIDI
setup.

kQTAudioDeviceAttribute_DefaultOutputDeviceKey = 'dOut'
A CFBooleanRef value that’s TRUE if the device is the user-selected default output in an audio MIDI
setup.

QuickTime 7 API Reference 255
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

kQTAudioDeviceAttribute_DefaultSystemOutputDeviceKey = 'sOut'
A CFBooleanRef value that’s TRUE if the device is the user-selected device where system alerts play.

kQTAudioDeviceAttribute_IsCoreAudioDeviceKey = 'hal!'
A CFBooleanRef value that’s TRUE if the device is a Core Audio device.

Device Attribute Keys for Inputs and Outputs

The following dictionary keys may be used to parse CF dictionaries returned by
kQTSGAudioPropertyID_DeviceListWithAttributes and
kQTSGAudioPropertyID_DeviceAttributes IDs for SGAudioMediaType channels.

kQTAudioDeviceAttribute_DeviceInputID = 'inID'
A CFNumberRef that wraps an OSType value.

kQTAudioDeviceAttribute_DeviceInputDescription = 'inds'
A CFStringRef that is suitable for displaying to the user.

kQTAudioDeviceAttribute_DeviceOutputID = 'otID'
A CFNumberRef that wraps an OSType value.

kQTAudioDeviceAttribute_DeviceOutputDescription = 'otds'
A CFStringRef that is suitable for displaying to the user.

Metadata Format Constants

The format constants in this section are used with functions of the form QTMetaData...

Following are constants for the QTMetaDataStorageFormat type:

kQTMetaDataStorageFormatQuickTime = 'mdta'
The QuickTime metadata storage format

kQTMetaDataKeyFormatQuickTime = 'mdta'
Reverse DNS format

kQTMetaDataStorageFormatiTunes = 'itms'
The iTunes metadata storage format

Following are constants for the QTMetaDataKeyFormat type:

kQTMetaDataKeyFormatiTunesShortForm = 'itsk'
A four-character code

kQTMetaDataKeyFormatiTunesLongForm = 'itlk'
Reverse DNS format

Following are constants for user data formats:

kQTMetaDataStorageFormatUserData = 'udta'
User data storage format

kQTMetaDataKeyFormatUserData = 'udta',
User data key storage format

256 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

Metadata Property IDs

The property IDs in this section are used with functions of the form QTMetaData...

Following are constants for the QTMetaDataRef type:

kPropertyClass_QTMetaData = 'meta'
The QuickTime metadata property class.

kQTMetaDataPropertyID_StorageFormats = 'fmts'
The list of storage formats of type QTMetaDataStorageFormat associated with a QTMetaDataRef
object. The read-only return value is a C-style array of OSType values.

kQTMetaDataPropertyID_OwnerType = 'ownt'
The owner type associated with a QTMetaDataRef object. The read-only return value is an OSType
(QT_MOVIE_TYPE, QT_TRACK_TYPE, or QT_MEDIA_TYPE).

kQTMetaDataPropertyID_Owner = 'ownr'
The owner associated with a QTMetaDataRef object, which does not necessarily need an owner. The
read-only return value is type Movie, Track, or Media.

Following are constants for the QTMetaDataItem type:

kPropertyClass_QTMetaDataItem = 'mdit'
The metadata item property class ID

kQTMetaDataItemPropertyID_Value = 'valu'
The value of the metadata item. The read-only return value is a C-style array of values of type UInt8.

kQTMetaDataItemPropertyID_DataType = 'dtyp'
The value type of the metadata item. The read/write return value is type UInt32.

kQTMetaDataItemPropertyID_StorageFormat = 'sfmt'
The storage format of the metadata item. The read-only return value is type
QTMetaDataStorageFormat.

kQTMetaDataItemPropertyID_Key = 'key ' [last char is space]
The key associated with the metadata item. The read/write return value is a C-style array of values of
type UInt8.

kQTMetaDataItemPropertyID_KeyFormat = 'keyf'
The format of the metadata item key. The read/write return value is type OSType.

kQTMetaDataItemPropertyID_Locale = 'loc '
The locale identifier based on the naming convention defined by the International Components for
Unicode (ICU). The identifier consists of two pieces of ordered information: a language code and a
region code. The language code is based on the ISO 639-1 standard, which defines two-character
codes, such as en and fr, for the world’s most commonly used languages. If a two-letter code is not
available, then ISO 639-2 three-letter identifiers are accepted as well; for example, haw for Hawaiian.
The region code is defined by ISO 3166-1. It is all uppercase and is appended, with an underscore,
after the language code; for example en_US, en_GB, and fr_FR. The read/write return value is a C
string of type UInt32.

Metadata Key Constants

The following key constants are used with functions of the form QTMetaData...

// Pre-defined common keys

QuickTime 7 API Reference 257
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

 kQTMetaDataCommonKeyAuthor = 'auth'
 kQTMetaDataCommonKeyComment = 'cmmt'
 kQTMetaDataCommonKeyCopyright = 'cprt'
 kQTMetaDataCommonKeyDirector = 'dtor'
 kQTMetaDataCommonKeyDisplayName = 'name'
 kQTMetaDataCommonKeyInformation = 'info'
 kQTMetaDataCommonKeyKeywords = 'keyw'
 kQTMetaDataCommonKeyProducer = 'prod'

// Mapping from common keys to user data identifiers:
 kQTMetaDataCommonKeyAuthor -> kUserDataTextAuthor
 kQTMetaDataCommonKeyComment -> kUserDataTextComment
 kQTMetaDataCommonKeyCopyright -> kUserDataTextCopyright
 kQTMetaDataCommonKeyDirector -> kUserDataTextDirector
 kQTMetaDataCommonKeyDisplayName -> kUserDataTextFullName
 kQTMetaDataCommonKeyInformation -> kUserDataTextInformation
 kQTMetaDataCommonKeyKeywords -> kUserDataTextKeywords
 kQTMetaDataCommonKeyProducer -> kUserDataTextProducer

Metadata Error Codes

The following error codes are returned by functions of the form QTMetaData...

kQTMetaDataInvalidMetaDataErr = -2173
kQTMetaDataInvalidItemErr = -2174
kQTMetaDataInvalidStorageFormatErr = -2175
kQTMetaDataInvalidKeyFormatErr = -2176
kQTMetaDataNoMoreItemsErr = -2177

New Movie Property Codes

The following codes are stored in the propClass fields of QTNewMoviePropertyElement (page 241) data
structures, which pass them to NewMovieFromProperties (page 178).

kQTPropertyClass_DataLocation = 'dloc',
 kQTDataLocationPropertyID_DataReference = 'dref',
 // DataReferenceRecord *
 kQTDataLocationPropertyID_CFStringNativePath = 'cfnp',
 // CFStringRef *
 kQTDataLocationPropertyID_CFStringPosixPath = 'cfpp',
 // CFStringRef *
 kQTDataLocationPropertyID_CFStringHFSPath = 'cfhp',
 // CFStringRef *
 kQTDataLocationPropertyID_CFStringWindowsPath = 'cfwp',
 // CFStringRef *
 kQTDataLocationPropertyID_CFURL = 'cfur',
 // CFURLRef *
 kQTDataLocationPropertyID_QTDataHandler = 'qtdh',
 // DataHandler *
 kQTDataLocationPropertyID_Scrap = 'scrp',
 // NULL
 kQTDataLocationPropertyID_LegacyMovieResourceHandle = 'rezh',
 // Handle *
 kQTDataLocationPropertyID_MovieUserProc = 'uspr',
 // QTNewMovieUserProcRecord *
 kQTDataLocationPropertyID_ResourceFork = 'rfrk',

258 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

 // SInt16 *
 kQTDataLocationPropertyID_DataFork = 'dfrk',
 // SInt16 *

kQTPropertyClass_Audio = 'audi',
 kQTAudioPropertyID_RateChangesPreservePitch = 'aucp', // Boolean
 *

 kQTPropertyClass_Context = 'ctxt',
 kQTContextPropertyID_AudioContext = 'audi',
 // QTAudioContextRef *
 kQTContextPropertyID_VisualContext = 'visu',
 // QTVisualContextRef *

 kQTPropertyClass_MovieResourceLocator = 'rloc',
 kQTMovieResourceLocatorPropertyID_LegacyResID = 'rezi',
 // SInt16 * (input/output property)
 kQTMovieResourceLocatorPropertyID_LegacyResName = 'rezn',
 // Str255 (output property)
 kQTMovieResourceLocatorPropertyID_FileOffset = 'foff',
 // UInt64 *
 kQTMovieResourceLocatorPropertyID_Callback = 'calb',
 // User-defined

 kQTPropertyClass_MovieInstantiation = 'mins',
 kQTMovieInstantiationPropertyID_DontResolveDataRefs = 'rdrn',
 // Boolean *
 kQTMovieInstantiationPropertyID_DontAskUnresolvedDataRefs = 'aurn',
 // Boolean *
 kQTMovieInstantiationPropertyID_DontAutoAlternates = 'aaln',
 // Boolean *
 kQTMovieInstantiationPropertyID_DontUpdateForeBackPointers = 'fbpn',
 // Boolean *
 kQTMovieInstantiationPropertyID_AsyncOK = 'asok',
 // Boolean *
 kQTMovieInstantiationPropertyID_IdleImportOK = 'imok',
 // Boolean *
 kQTMovieInstantiationPropertyID_DontAutoUpdateClock = 'aucl',
 // Boolean *
 kQTMovieInstantiationPropertyID_ResultDataLocationChanged = 'dlch',
 // Boolean * (output property)

 kQTPropertyClass_NewMovieProperty = 'mprp',
 kQTNewMoviePropertyID_DefaultDataRef = 'ddrf',
 // DataReferenceRecord *
 kQTNewMoviePropertyID_Active = 'actv',
 // Boolean *
 kQTNewMoviePropertyID_DontInteractWithUser = 'intn',
 // Boolean *

QuickTime 7 API Reference 259
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

260 QuickTime 7 API Reference
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

New Functions, Data Types, and Constants in QuickTime 7 for Windows

This table describes the changes to QuickTime 7 for Windows Update Guide.

NotesDate

Added section pointing to new COM/ActiveX tutorial and sample code available
on Apple website. Updated section on creating an audio context, with additional
description of how to use QTAudioContextCreateForAudioDevice routine.

2005-11-09

New document describing all the new features and APIs available in QuickTime
7 for Windows.

2005-09-08

261
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

262
2005-11-09 | © 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime 7 for Windows Update Guide
	Contents
	Figures, Tables, and Listings
	Introduction to QuickTime 7 for Windows
	Who Needs To Read This Document
	How This Document Is Organized
	See Also

	What’s New in QuickTime 7 for Windows
	Installing QuickTime 7
	Hardware and Software Requirements
	New Pro Key Required

	QuickTime in Perspective
	New Features of QuickTime 7 for Windows
	New Directions in QuickTime 7 for Windows
	What Developers Need To Do
	Object Model Evolution

	In Summary QuickTime 6 through QuickTime 7

	Changes to QuickTime Player and QuickTime Pro
	New in QuickTime Player
	New in QuickTime Pro
	Other Changes and Enhancements

	New COM/ActiveX Control
	Advantages For Developers
	How It Works
	Visual Basic .NET and C#

	Getting Started With QuickTime COM Control
	Example Code To Create a Simple COM/ActiveX Control Application in Visual Basic 6
	Code Example #1
	Code Example #2

	Audio Enhancements
	New Abstraction Layer For Audio
	Creating an Audio Context

	High-Resolution Audio Support
	Playback
	QuickTime Settings Dialogs
	Export

	Sound Description Creation and Accessor Functions
	Audio Playback Enhancements
	Preventing Pitch-Shifting
	Gain, Mute, and Balance
	Level and Frequency Metering

	Audio Conversion, Export, and Extraction
	Standard Audio Compression Enhancements
	Audio Export Enhancements

	Video Enhancements
	Frame Reordering Video
	Understanding Frame Reordering Video Compression
	Finding and Adding Samples
	Compressing Video Using Frame Reordering

	H.264 Codec

	Replacing NewMovieFrom... Functions
	Using NewMovieFromProperties

	QuickTime Metadata Enhancements and API
	How It Works
	Advantages of the New Metadata Format

	QuickTime Sample Table API
	Other Changes and Enhancements
	New Install Location
	New QuickTime DLL
	New QuickTime Directories APIs

	Updates to QuickTime for Java

	New Functions, Data Types, and Constants in QuickTime 7 for Windows
	QuickTime 7 API Reference
	Functions
	AddMediaSample2
	AddMediaSampleFromEncodedFrame
	AddSampleTableToMedia
	CopyMediaMutableSampleTable
	DisposeMovieExportStageReachedCallbackUPP
	DisposeQTTrackPropertyListenerUPP
	ExtendMediaDecodeDurationToDisplayEndTime
	GetDSequenceNonScheduledDisplayDirection
	GetDSequenceNonScheduledDisplayTime
	GetMediaAdvanceDecodeTime
	GetMediaDataSizeTime64
	GetMediaDecodeDuration
	GetMediaDisplayDuration
	GetMediaDisplayEndTime
	GetMediaDisplayStartTime
	GetMediaNextInterestingDecodeTime
	GetMediaNextInterestingDisplayTime
	GetMediaSample2
	GetMovieAudioBalance
	GetMovieAudioContext
	GetMovieAudioFrequencyLevels
	GetMovieAudioFrequencyMeteringBandFrequencies
	GetMovieAudioFrequencyMeteringNumBands
	GetMovieAudioGain
	GetMovieAudioMute
	GetMovieAudioVolumeLevels
	GetMovieAudioVolumeMeteringEnabled
	GetQTApplicationDirectory
	GetQTComponentDirectory
	GetQTExtensionDirectory
	GetQTSystemDirectory
	GetTrackAudioGain
	GetTrackAudioMute
	GetTrackEditRate64
	ICMCompressionFrameOptionsCreate
	ICMCompressionFrameOptionsCreateCopy
	ICMCompressionFrameOptionsGetForceKeyFrame
	ICMCompressionFrameOptionsGetFrameType
	ICMCompressionFrameOptionsGetProperty
	ICMCompressionFrameOptionsGetPropertyInfo
	ICMCompressionFrameOptionsGetTypeID
	ICMCompressionFrameOptionsRelease
	ICMCompressionFrameOptionsRetain
	ICMCompressionFrameOptionsSetForceKeyFrame
	ICMCompressionFrameOptionsSetFrameType
	ICMCompressionFrameOptionsSetProperty
	ICMCompressionSessionBeginPass
	ICMCompressionSessionCompleteFrames
	ICMCompressionSessionCreate
	ICMCompressionSessionEncodeFrame
	ICMCompressionSessionEndPass
	ICMCompressionSessionGetImageDescription
	ICMCompressionSessionGetPixelBufferPool
	ICMCompressionSessionGetProperty
	ICMCompressionSessionGetPropertyInfo
	ICMCompressionSessionGetTimeScale
	ICMCompressionSessionGetTypeID
	ICMCompressionSessionOptionsCreate
	ICMCompressionSessionOptionsCreateCopy
	ICMCompressionSessionOptionsGetAllowFrameReordering
	ICMCompressionSessionOptionsGetAllowFrameTimeChanges
	ICMCompressionSessionOptionsGetAllowTemporalCompression
	ICMCompressionSessionOptionsGetDurationsNeeded
	ICMCompressionSessionOptionsGetMaxKeyFrameInterval
	ICMCompressionSessionOptionsGetProperty
	ICMCompressionSessionOptionsGetPropertyInfo
	ICMCompressionSessionOptionsGetTypeID
	ICMCompressionSessionOptionsRelease
	ICMCompressionSessionOptionsRetain
	ICMCompressionSessionOptionsSetAllowFrameReordering
	ICMCompressionSessionOptionsSetAllowFrameTimeChanges
	ICMCompressionSessionOptionsSetAllowTemporalCompression
	ICMCompressionSessionOptionsSetDurationsNeeded
	ICMCompressionSessionOptionsSetMaxKeyFrameInterval
	ICMCompressionSessionOptionsSetProperty
	ICMCompressionSessionProcessBetweenPasses
	ICMCompressionSessionRelease
	ICMCompressionSessionRetain
	ICMCompressionSessionSetProperty
	ICMCompressionSessionSupportsMultiPassEncoding
	ICMCompressorSessionDropFrame
	ICMCompressorSessionEmitEncodedFrame
	ICMCompressorSourceFrameGetDisplayNumber
	ICMCompressorSourceFrameGetDisplayTimeStampAndDuration
	ICMCompressorSourceFrameGetFrameOptions
	ICMCompressorSourceFrameGetPixelBuffer
	ICMCompressorSourceFrameGetTypeID
	ICMCompressorSourceFrameRelease
	ICMCompressorSourceFrameRetain
	ICMDecompressionFrameOptionsCreate
	ICMDecompressionFrameOptionsCreateCopy
	ICMDecompressionFrameOptionsGetProperty
	ICMDecompressionFrameOptionsGetPropertyInfo
	ICMDecompressionFrameOptionsGetTypeID
	ICMDecompressionFrameOptionsRelease
	ICMDecompressionFrameOptionsRetain
	ICMDecompressionFrameOptionsSetProperty
	ICMDecompressionSessionCreate
	ICMDecompressionSessionCreateForVisualContext
	ICMDecompressionSessionDecodeFrame
	ICMDecompressionSessionFlush
	ICMDecompressionSessionGetProperty
	ICMDecompressionSessionGetPropertyInfo
	ICMDecompressionSessionGetTypeID
	ICMDecompressionSessionOptionsCreate
	ICMDecompressionSessionOptionsCreateCopy
	ICMDecompressionSessionOptionsGetPropertyInfo
	ICMDecompressionSessionOptionsGetProperty
	ICMDecompressionSessionOptionsGetTypeID
	ICMDecompressionSessionOptionsRelease
	ICMDecompressionSessionOptionsRetain
	ICMDecompressionSessionOptionsSetProperty
	ICMDecompressionSessionRetain
	ICMDecompressionSessionRelease
	ICMDecompressionSessionSetNonScheduledDisplayDirection
	ICMDecompressionSessionSetNonScheduledDisplayTime
	ICMDecompressionSessionSetProperty
	ICMEncodedFrameGetBufferSize
	ICMEncodedFrameCreateMutable
	ICMEncodedFrameGetDataPtr
	ICMEncodedFrameGetDataSize
	ICMEncodedFrameGetDecodeDuration
	ICMEncodedFrameGetDecodeNumber
	ICMEncodedFrameGetDecodeTimeStamp
	ICMEncodedFrameGetDisplayDuration
	ICMEncodedFrameGetDisplayOffset
	ICMEncodedFrameGetDisplayTimeStamp
	ICMEncodedFrameGetFrameType
	ICMEncodedFrameGetImageDescription
	ICMEncodedFrameGetMediaSampleFlags
	ICMEncodedFrameGetSimilarity
	ICMEncodedFrameGetSourceFrameRefCon
	ICMEncodedFrameGetTimeScale
	ICMEncodedFrameGetTypeID
	ICMEncodedFrameGetValidTimeFlags
	ICMEncodedFrameRelease
	ICMEncodedFrameRetain
	ICMEncodedFrameSetDataSize
	ICMEncodedFrameSetDecodeDuration
	ICMEncodedFrameSetDecodeTimeStamp
	ICMEncodedFrameSetDisplayDuration
	ICMEncodedFrameSetDisplayTimeStamp
	ICMEncodedFrameSetValidTimeFlags
	ICMEncodedFrameSetMediaSampleFlags
	ICMEncodedFrameSetFrameType
	ICMEncodedFrameSetSimilarity
	ICMImageDescriptionGetProperty
	ICMImageDescriptionGetPropertyInfo
	ICMImageDescriptionSetProperty
	ICMMultiPassStorageCopyDataAtTimeStamp
	ICMMultiPassStorageCreateWithCallbacks
	ICMMultiPassStorageCreateWithTemporaryFile
	ICMMultiPassStorageGetTimeStamp
	ICMMultiPassStorageGetTypeID
	ICMMultiPassStorageRelease
	ICMMultiPassStorageRetain
	ICMMultiPassStorageSetDataAtTimeStamp
	ImageCodecBeginPass
	ImageCodecCompleteFrame
	ImageCodecDecodeBand
	ImageCodecEncodeFrame
	ImageCodecPrepareToCompressFrames
	ImageCodecProcessBetweenPasses
	InvokeQTTrackPropertyListenerUPP
	MediaContainsDisplayOffsets
	MediaDecodeTimeToSampleNum
	MediaDisplayTimeToSampleNum
	MovieAudioExtractionBegin
	MovieAudioExtractionEnd
	MovieAudioExtractionFillBuffer
	MovieAudioExtractionGetProperty
	MovieAudioExtractionGetPropertyInfo
	MovieAudioExtractionSetProperty
	NewMovieExportStageReachedCallbackUPP
	NewMovieFromProperties
	NewQTTrackPropertyListenerUPP
	QTAddTrackPropertyListener
	QTAudioContextCreateForAudioDevice
	QTCopyMovieMetaData
	QTCopyTrackMetaData
	QTCopyMediaMetaData
	QTGetTrackProperty
	QTGetTrackPropertyInfo
	QTLoadLibrary
	QTMetaDataAddItem
	QTMetaDataGetItemCountWithKey
	QTMetaDataGetItemProperty
	QTMetaDataGetItemPropertyInfo
	QTMetaDataGetItemValue
	QTMetaDataGetNextItem
	QTMetaDataGetProperty
	QTMetaDataGetPropertyInfo
	QTMetaDataRetain
	QTMetaDataRelease
	QTMetaDataRemoveItem
	QTMetaDataRemoveItemsWithKey
	QTMetaDataSetItem
	QTMetaDataSetItemProperty
	QTMetaDataSetProperty
	QTOpenGLTextureContextCreate
	QTPixelBufferContextCreate
	QTRemoveTrackPropertyListener
	QTSampleTableAddSampleDescription
	QTSampleTableAddSampleReferences
	QTSampleTableCopySampleDescription
	QTSampleTableCreateMutable
	QTSampleTableCreateMutableCopy
	QTSampleTableGetDataOffset
	QTSampleTableGetDataSizePerSample
	QTSampleTableGetDecodeDuration
	QTSampleTableGetDisplayOffset
	QTSampleTableGetNextAttributeChange
	QTSampleTableGetNumberOfSamples
	QTSampleTableGetProperty
	QTSampleTableGetPropertyInfo
	QTSampleTableGetSampleDescriptionID
	QTSampleTableGetSampleFlags
	QTSampleTableGetTimeScale
	QTSampleTableGetTypeID
	QTSampleTableRelease
	QTSampleTableReplaceRange
	QTSampleTableRetain
	QTSampleTableSetProperty
	QTSampleTableSetTimeScale
	QTSetTrackProperty
	QTSoundDescriptionConvert
	QTSoundDescriptionCreate
	QTSoundDescriptionGetPropertyInfo
	QTSoundDescriptionGetProperty
	QTSoundDescriptionSetProperty
	SampleNumToMediaDecodeTime
	SampleNumToMediaDisplayTime
	SCAudioInvokeLegacyCodecOptionsDialog
	SCCopyCompressionSessionOptions
	SetDSequenceNonScheduledDisplayDirection
	SetDSequenceNonScheduledDisplayTime
	SetMovieAudioBalance
	SetMovieAudioContext
	SetMovieAudioFrequencyMeteringNumBands
	SetMovieAudioGain
	SetMovieAudioMute
	SetMovieAudioVolumeMeteringEnabled
	SetTrackAudioGain
	SetTrackAudioMute
	TrackTimeToMediaDisplayTime

	Callbacks
	ICMDecompressionTrackingCallbackProc
	MovieExportStageReachedCallbackProc
	SGAudioCallbackProc
	QTOpenGLTextureAvailableCallbackProc

	Data Structures
	ICMDecompressionTrackingCallbackRecord
	ICMMultiPassStorageCallbacks
	QTAudioFrequencyLevels
	QTAudioVolumeLevels
	QTNewMoviePropertyElement
	SGAudioCallbackStruct
	SoundDescriptionV2

	Constants
	ICM Compression Session Options
	ICM Compression Session Properties
	Movie Audio Mixes
	Audio Property Selectors
	Movie Exporter Properties
	Audio Property IDs
	Dictionary Keys
	Device Attribute Keys for Inputs and Outputs
	Metadata Format Constants
	Metadata Property IDs
	Metadata Key Constants
	Metadata Error Codes
	New Movie Property Codes

	Revision History

