
QuickTime Kit Programming Guide
QuickTime > Cocoa

2005-11-09

Apple Inc.
© 2004, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, Objective-C, QuickDraw,
QuickTime, Sherlock, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Kit Programming Guide 9

Who Should Read This Document 9
Organization of This Document 9
See Also 10

Chapter 1 The QuickTime Kit API 11

Working With the QuickTime Kit API 11
The QuickTime Kit Classes 12

QTMovie 13
QTMovieView 13
QTTrack 14
QTMedia 14
QTDataReference 14

QuickTime Kit Functions 14
QTTime 14
QTTimeRange 14

Chapter 2 Building a Simple QTKitPlayer Application 15

Creating the QTKitPlayer Project 16
Working With the QTKit Palette 19
Extending the Functionality of QTKitPlayer 24

Chapter 3 Extending the QTKitPlayer Application 27

Creating the Extended QTKitPlayer Project 30
Getting Started 30
Creating the QTMovieView Object with Outlets and Actions 31
Creating the Export View Object 34
Adding Outlets and Actions to The MovieView Object 36
Wiring Up The MainMenu.nib 38

Adding Code to the MovieDocument Class Interface 43
Adding Code to MovieDocument.m 45
Modifying the Info.plist File 53
Running and Building Your QTKitPlayer 55
What’s Ahead? 56

Chapter 4 Adding New Capabilities to the QTKitPlayer Application 57

Design Strategy 58

3
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

Tasks to Accomplish 58
Project Complexity 59
Class Model 59

Adding a Cocoa Drawer to the QTKitPlayer 60
Adding Code To Your QTKitPlayer Project 68

Adding Code To The Movie Document Class 68
Adding Code To Make the Drawer Work 69

The Completed Project 73

Chapter 5 Extending the QTKitPlayer To Stream Audio and Video 75

Tasks to Accomplish 76
Constructing the Open URL Panel 77
Adding Code To Stream Audio and Video 83

Adding Code For The OpenURLPanel Class Interface 84
Adding Code To OpenURLPanel.m 85
Adding Code to QTKitPlayerDelegate 89
Adding Code To Your QTKitPlayerDelegate.m 90

What’s Next? 92

Chapter 6 Adding Multimedia Playback Capability 95

Tasks to Accomplish 97
Constructing The Multimedia Playback Engine 99
Adding Code To Display and Playback Multimedia 108

Adding Code To Your ViewTestsController Class Interface 109
Adding Code To Your ViewTestController.m 110

The Completed QTKit Multimedia Player 112

Document Revision History 113

4
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 The QuickTime Kit API 11

Figure 1-1 The QuickTime Kit framework class hierarchy 12

Chapter 2 Building a Simple QTKitPlayer Application 15

Figure 2-1 The completed QTKitPlayer application 15
Figure 2-2 The completed QTKitPlayer application with a contextual menu 16
Figure 2-3 The Cocoa New Project Assistant window with the Cocoa Document-based

Application option selected 17
Figure 2-4 The QTKitPlayer application in Xcode 17
Figure 2-5 The QuickTime Kit framework in the Frameworks directory 18
Figure 2-6 Adding QTKit.framework to the QTKitPlayer target 18
Figure 2-7 The Target “QTKitPlayer” Info window with the Properties pane displayed 19
Figure 2-8 The Cocoa-QTKit palette 20
Figure 2-9 MyDocument.nib with the QTKit palette and a window selected 20
Figure 2-10 The QTKit icon dragged to the application window 21
Figure 2-11 The QuickTime movie view object enlarged to fill the entire contents of the window

21
Figure 2-12 The QTMovieView Attributes pane 22
Figure 2-13 The Is Editable item selected and the slider changed 22
Figure 2-14 A QuickTime movie in your window 23
Figure 2-15 The QuickTime movie object window with texture added 23
Figure 2-16 The QTKitPlayer with an editable movie displayed 24
Figure 2-17 The Edit menu in QTKitPlayer 24

Chapter 3 Extending the QTKitPlayer Application 27

Figure 3-1 The completed QTKitPlayer application with extended import and export capabilities
27

Figure 3-2 The completed QTKitPlayer application with an MP4 movie, an MP3 audio clip, and
a JPEG still image displayed 28

Figure 3-3 The added editing capabilities in your QTKitPlayer project 29
Figure 3-4 The Movie menu commands for movie control and playback 29
Figure 3-5 The QTKitPlayer project in Xcode with nib, declaration, and implementation files

renamed 31
Figure 3-6 The Cocoa-QTKit palette 32
Figure 3-7 The QuickTime movie view object dragged to fill the entire contents of the window

32
Figure 3-8 The QTMovieView Info pane with a blue fill color selected for the QTMovieView

object window 33
Figure 3-9 The File’s Owner connections to various outlets, with actions specified 34
Figure 3-10 The export view pop-up menu constructed in Interface Builder 35

5
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

Figure 3-11 The export view object with the NSPopUpButton Info window displayed and various
attributes specified 35

Figure 3-12 The export view object with the NSTextField Info window displayed and various
attributes specified 36

Figure 3-13 The QTMovieView subclass selected in MovieDocument nib file 37
Figure 3-14 The QTMovieView Class Attributes pane with list of actions added to the

QTMovieView object 38
Figure 3-15 The MainMenu nib file with changes to the application menu 39
Figure 3-16 The MainMenu nib file additions to the File menu 39
Figure 3-17 The MainMenu nib file with the Import menu item hooked up to First Responder

and the openDocument action connected 40
Figure 3-18 The MainMenu nib file with additions to the Edit menu 41
Figure 3-19 The MainMenu nib file with the Replace menu item selected and its connection

specified 42
Figure 3-20 The MainMenu nib file with additions to the Movie menu 42
Figure 3-21 The MainMenu nib file with the Start menu item selected and its connection

specified 43
Figure 3-22 The Apple 1984-2004 QuickTime movie with the editing trim feature enabled 55
Figure 3-23 Exporting the Apple 1984-2004 QuickTime movie in your QTKitPlayer application

56
Figure 3-24 The export sheet for exporting a QuickTime movie to MPEG-4 56
Table 3-1 Edit commands added to the QTKitPlayer application 28

Chapter 4 Adding New Capabilities to the QTKitPlayer Application 57

Figure 4-1 An untitled QuickTime movie with an open Cocoa drawer 57
Figure 4-2 An mp4 QuickTime movie playing with the current time, duration, movie size, and

movie displayed in the open Cocoa drawer 58
Figure 4-3 A class model of the MovieDocument class with a list of properties 60
Figure 4-4 The Cocoa-Windows and the NSDrawer object added in MovieDocument.nib 61
Figure 4-5 The CustomView object in the Cocoa-Containers palette and in the

MovieDocument.nib as Drawer ContentView 62
Figure 4-6 The NSDrawer wired up and connected to the contentView outlet 63
Figure 4-7 The NSButton info pane with attributes and the type specified as disclosure 64
Figure 4-8 Size attributes added to the Drawer Content View 65
Figure 4-9 The Size settings for autosizing of springs in the Drawer Contents object 65
Figure 4-10 Text fields and their attributes added to the Drawer Content View 66
Figure 4-11 Hooking up the textfields and adding outlets 67
Figure 4-12 Wiring up the toggle drawer target and action in the MovieDocument.nib 68
Figure 4-13 Open drawer with movie Show Controller selected 73

Chapter 5 Extending the QTKitPlayer To Stream Audio and Video 75

Figure 5-1 An Open URL dialog in the completed QTKitPlayer application 75
Figure 5-2 The movie window launched by the QTKitPlayer to stream audio and video with

the big blue Q at its center 76
Figure 5-3 The Open URL panel nib and dialog for entry of a movie URL 77

6
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

Figure 5-4 The ComboBox attributes 78
Figure 5-5 The size settings and spring positions in the OpenURLPanel object 79
Figure 5-6 The outlets for the OpenURLPanel class 80
Figure 5-7 Action added to the OpenURLPanel 80
Figure 5-8 The main menu nib with the menu attributes specified 81
Figure 5-9 Actions added to the QTKitPlayAppDelegate class in the Attributes pane 82
Figure 5-10 Wiring to nib 83
Figure 5-11 The class model for the OpenURLPanel class 84
Figure 5-12 Class model for delegate 89

Chapter 6 Adding Multimedia Playback Capability 95

Figure 6-1 Opening six QuickTime movies of the user’s choosing for display in the multimedia
content window of the QTKitPlayer application 96

Figure 6-2 All six movies selected by the user playing in different views 97
Figure 6-3 The layout of the objects in the content window with the Present Movies menu

item selected 98
Figure 6-4 The attributes pane for the View Tests Window object 99
Figure 6-5 The size of the View Tests Window with the springs set 100
Figure 6-6 The layout of QTMovieView objects with textfields added for different views 101
Figure 6-7 Button attributes 102
Figure 6-8 Split View attributes specified 103
Figure 6-9 Tab view attributes specified 103
Figure 6-10 Text attribute specified 104
Figure 6-11 Scroll View attributes specified 104
Figure 6-12 Outlet connections for the ViewTestsController 105
Figure 6-13 Connecting the ViewTestsController to an outlet 106
Figure 6-14 The present movie connection to the ViewTestsController and target 107
Figure 6-15 Connecting the Show Movies button to the ViewTestsController with its target

108
Figure 6-16 The class model in Xcode 2.0 of the ViewTestsController class 109
Figure 6-17 Full screen multimedia playback with resizing of the QuickTime VR movie in the

lower left portion of the window 112

7
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

8
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

The QuickTime Kit is a new framework (QTKit.framework) developed by Apple for working with QuickTime
movies in Cocoa applications on Mac OS X. The QuickTime Kit framework, which offers a rich API for
manipulating time-based media, is designed as an alternative to and eventual replacement for the existing
Cocoa Application Kit classes NSMovie and NSMovieView. Using this new API provides developers with more
extensive coverage of QuickTime functions and data types than is offered by those Application Kit classes
and achieves this in a way that minimizes the requirement for Cocoa programmers to be conversant with
Carbon data types such as handles, aliases, file-system specifications, and the like.

The QuickTime Kit also comes with a new QuickTime palette, which lets you drag a QuickTime movie object
into your project window, and display, control, and edit that movie without writing a single line of code.

To work with this new framework, you don’t need to know anything about the existing NSMovie and
NSMovieView classes, but you should be familiar with developing Cocoa applications using Xcode and
Interface Builder. Because the framework is flexible and relatively easy to use in Cocoa, you won’t need to
have a comprehensive understanding of the QuickTime C API in order to build your application or extend
its functionality.

The QuickTime Kit framework is available in Mac OS X v10.4 and later. The framework also supports applications
running in Mac OS X v10.3, but requires QuickTime 7 or later.

Who Should Read This Document

If you are a Cocoa developer who wants to integrate QuickTime movies in your application, you should read
the material presented in this document. The various QuickTime and Cocoa mailing lists provide a useful
developer forum for raising issues and answering questions that are posted.

If you are new to Cocoa or QuickTime, you should read these webpages, which are intended to get you up
to speed with both Apple technologies: Getting Started with Cocoa and Getting Started with QuickTime.

Organization of This Document

This document follows a progressive, learn-as-you-go structure. Each chapter depends, to a certain extent,
on understanding the material in any previous chapters.

 ■ “The QuickTime Kit API” (page 11) describes the various classes and functions in the QuickTime Kit and
some of their possible uses.

 ■ “Building a Simple QTKitPlayer Application” (page 15) explains how you can build a simple QTKitPlayer
application.

 ■ “Extending the QTKitPlayer Application” (page 27) discusses how you can extend the functionality of
the QTKitPlayer application by adding Cocoa code to your Xcode project.

Who Should Read This Document 9
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Kit Programming
Guide

 ■ “Adding New Capabilities to the QTKitPlayer Application” (page 57) discusses how you can add a simple
Cocoa drawer with a timer to your QTKitPlayer application and how you can take advantage of the
QuickTime C API.

 ■ “Extending the QTKitPlayer To Stream Audio and Video” (page 75) describes how you can add the
streaming of audio and video to your QTKitPlayer application.

 ■ “Adding Multimedia Playback Capability” (page 95) explains in detail how you can extend your QTKitPlayer
application to add multimedia playback capabilities.

See Also

This introductory and tutorial document is designed as companion text to the reference material in QTKit
Framework Reference. The various classes and methods in the QuickTime Kit framework are described in detail
therein. Have that document handy as you learn the API and work through the various steps you need to
follow in building a QuickTime application.

10 See Also
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Kit Programming Guide

The QuickTime Kit framework was developed by Apple to provide support for the most common media-related
needs of Cocoa developers. This support was accomplished by using certain abstractions and data types
familiar to Cocoa programmers and by defining other abstractions and data types that are new––but only
where necessary. This chapter describes the various Objective-C classes and methods implemented with
QuickTime that make up the QuickTime Kit framework and discusses some of their features and possible
uses.

You’ll want to read this chapter, which is brief, for an overview of the QuickTime Kit classes and functions.
For more detailed information, refer to QTKit Framework Reference.

If you want to see the framework header files, you can find them in the Mac OS X
/System/Library/Frameworks directory as QTKit.framework. The new QuickTime palette resides in
the /Developer/Extras/Palettes directory as QTKit.palette.

In the next chapter, you’ll work with the new QTKit palette and explore its capabilities in building a simple
QTKitPlayer application.

Working With the QuickTime Kit API

The QuickTime Kit is an Objective-C API designed for the basic manipulation of media, including movie
playback, editing, and import and export to standard media formats.

The framework is at once powerful, yet easy to use in your Cocoa application. The QTKit palette provided in
Interface Builder, for example, lets you simply drag a QuickTime movie object, complete with a controller for
playback, into a window, and then set attributes for the movie––all of this without writing a single line of
code.

Notably, the QuickTime Kit provides Objective-C classes that are suitable for use within a wide range of
Cocoa-based software, including applications with a GUI and tools intended to run in a “headless” environment.
For example, you can use the QuickTime Kit framework to write command-line tools that manipulate QuickTime
movie files.

One distinct advantage in working with the QuickTime Kit framework is that it does not require, in most
cases, a thorough knowledge of the QuickTime C API, which can be in itself something of a daunting task.
(The QuickTime C API contains over 2500 function calls and although those calls are documented, developers
who are new to QuickTime may find the API more than a bit overwhelming.) Nor does it require an
understanding of the fundamentals of Carbon, including but not limited to QuickDraw, the File Manager,
and the Memory Manager.

The QuickTime Kit classes are intended to replace NSMovie and NSMovieView, which will be deprecated in
a future release of Mac OS X. If you are using those classes in your application, it is recommended that you
plan to make a transition to the new QTMovie and QTMovieView classes in the QuickTime Kit framework. If
you are writing an application designed to run in Mac OS X v10.4 and later, you should definitely move your
code to QuickTime Kit in order to take advantage of this new functionality.

Working With the QuickTime Kit API 11
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Kit API

The classes in the current release of the QuickTime Kit framework are expected to grow in number and
functionality as the framework evolves. This document reflects the current state of the art.

The QuickTime Kit Classes

The QuickTime Kit framework contains only five classes, along with a number of useful methods, functions,
and protocols. Using these classes and methods, you can display, control, and edit QuickTime movies in your
Cocoa application. Figure 1-1 shows the QuickTime Kit framework’s class hierarchy.

Figure 1-1 The QuickTime Kit framework class hierarchy

NSObject

QuickTime Kit Framework

QTMovie

QTTrack

QTDataReference

QTMedia

QTMovieViewNSView

Two of these new classes––QTMovie and QTMovieView––are similar in concept to the existing Application
Kit classes NSMovie and NSMovieView, but they offer the advantage of providing greater functionality than
those classes, which were limited to simple movie playback and rudimentary pasteboard editing. They also
expose more of QuickTime’s capabilities in an object-oriented fashion. For example, QuickTime Kit provides
Cocoa methods for working with data references, thus reducing the need for developers to work with
Macintosh Carbon APIs, such as the File Manager and the Memory Manager.

The principal class in the QTKit framework is QTMovie. This class serves as a Cocoa representation of a
QuickTime movie and its associated movie controller. QTMovie objects typically can be associated with movie
data contained in files, URLs, memory blocks, the pasteboard, or even an existing open QuickTime movie.
QTMovie provides methods for getting and setting movie properties and for editing movies.

To display a QTMovie object in a window, you use the QTMovieView class. QTMovieView is a subclass of
NSView that supports movie playback and editing. A movie controller bar is displayed in the view, but can
optionally be hidden.

A QuickTime movie consists of one or more tracks, each of which is associated with a single media. Similarly,
a QTMovie is associated with one or more objects of type QTTrack, each of which is associated with a single
QTMedia object. The QTTrack and QTMedia classes provide a number of methods for operating on QuickTime
tracks and media.

The QTDataReference class represents a data reference, which is QuickTime’s standard way of picking out
movie data, whether stored in files, URLs, memory blocks, or elsewhere.

The QuickTime Kit also defines the QTTime and QTTimeRange structures for representing specific times and
time ranges in a movie or track.

12 The QuickTime Kit Classes
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Kit API

QTMovie

The QTMovie class represents a QuickTime movie, which is a collection of playable and editable media content.
A movie describes the sources and types of the media in that collection and their spatial and temporal
organization. These collections may be used for presentation (such as playback on the screen) or for the
organization of media for processing (such as composition and transcoding to a different compression type).

Just as a QuickTime movie contains a set of tracks, each of which defines the type, the segments, and the
ordering of the media data it presents, a QTMovie object is associated with instances of the QTTrack class.
In turn, a QTTrack object is associated with a single QTMedia object.

A QTMovie object can be initialized from a file, from a resource specified by a URL, from a block of memory,
from a pasteboard, or from an existing QuickTime movie.

Once a QTMovie object has been initialized, it is used in combination with a QTMovieView for playback.

The QTMovie class includes an extensive number of instance and class methods that let you perform a wide
range of operations on QuickTime movies. Some of these capabilities include:

 ■ Creating and initializing a QTMovie object

 ■ Getting a list of supported file types

 ■ Setting movie properties and attributes

 ■ Getting and setting selection times

 ■ Getting movie tracks and movie images

 ■ Storing movie data

 ■ Controlling movie playback

 ■ Editing and saving a movie

 ■ Getting QTMovie primitives—that is, getting the movie or movie controller associated with a QTMovie
object

The QTMovie class also includes a large number of constants you can use to specify movie attributes.

QTMovieView

QTMovieView, a subclass of NSView, can be used to display and control QuickTime movies. A QTMovieView
is typically used in combination with a QTMovie object, which supplies the movie being displayed. A
QTMovieView also supports editing operations on the movie.

The movie may be placed within an arbitrary bounding rectangle in the view’s coordinate system, and the
remainder of the view can be filled with a fill color. The movie controller, if visible, can also be placed within
an arbitrary bounding rectangle in the view’s coordinate system.

The QuickTime Kit Classes 13
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Kit API

QTTrack

The QTTrack class represents a QuickTime track (of type Track). QTTrack objects are associated with QTMovie
objects and support methods for getting and setting the track properties. If necessary, you can retrieve the
track identifier associated with a QTTrack object by calling its quickTimeTrack: method.

QTMedia

The QTMedia class represents a QuickTime media (of type Media). QTMedia objects are associated with
QTTrack objects and support methods for getting and setting the media properties. If necessary, you can
retrieve the media identifier associated with a QTMedia object by calling its quickTimeMedia: method.

QTDataReference

A QTDataReference object is a representation of a QuickTime data reference, which is used to specify the
location of a movie or its media data. You can create QTDataReference objects that refer to data stored in
files accessed using filenames or URLs, or in memory accessed using handles, pointers, or NSData objects.

QuickTime Kit Functions

The QuickTime Kit framework provides a number of functions for working with QTTime and QTTimeRange
structures.

QTTime

The QTTime structure defines the value and time scale of a time.

Functions are available for creating a QTTime structure, getting and setting times, comparing QTTime
structures, adding and subtracting times, and getting a description.

QTTimeRange

The QTTimeRange structure defines a range of time. It’s used, for instance, to specify the active segment of
a movie or track.

Functions are available for creating a QTTimeRange structure, querying time ranges, creating unions and
intersections of time ranges, and getting a description.

14 QuickTime Kit Functions
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Kit API

In this chapter, you’ll build QTKitPlayer, a simple application that demonstrates some of the power and
flexibility of the QuickTime Kit framework. When completed, your QTKitKPlayer application will allow you to
open and play QuickTime movies, as shown in Figure 2-1. Amazingly, you won’t have to write a single line
of code to implement this media player.

Using Xcode as your integrated development environment (IDE), you’ll see how easy it is to work with the
QuickTime Kit framework. In this example, you’ll use the new QTKit palette provided in the Interface Builder
collection of palettes. The QTKit palette will do a lot of the work for you in constructing this application.

Figure 2-1 The completed QTKitPlayer application

Using the QTKit palette and Xcode, you’ll be able to build a functioning media player application that displays
and controls the playback of QuickTime movies, including QuickTime movies that support sprites, QuickTime
VR, Flash, and 3GPP, among other file types. You’ll even be able to add a contextual menu that includes
editing commands, as shown in Figure 2-2––again, without writing a single line of code.

15
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

Figure 2-2 The completed QTKitPlayer application with a contextual menu

Creating the QTKitPlayer Project

If you’ve worked with Cocoa and Xcode before, you know that every Cocoa application starts out as a project.
A project is simply a repository for all the elements that go into the application, such as source code files,
frameworks, libraries, the application’s user interface, sounds, and images. You use Xcode to create and
manage your project.

The QTKitPlayer application is a good learning example for developers who may be new to Cocoa and
QuickTime. If you already know Cocoa, you probably won’t be surprised at how quickly and effortlessly you
can build this media player application.

To create the project, follow these steps:

1. Launch Xcode and choose File > New Project.

16 Creating the QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

2. When the new project window appears, select Cocoa Document-based Application, as shown in Figure
2-3. Click Next.

Figure 2-3 The Cocoa New Project Assistant window with the Cocoa Document-based Application
option selected

3. Name the project QTKitPlayer and place it in the directory of your choice.

4. The Xcode project window appears as show in Figure 2-4. Verify the files shown are in your project. Note
this illustration includes the QuickTime Kit framework, which you won’t see until you add it in the next
step.

Figure 2-4 The QTKitPlayer application in Xcode

Creating the QTKitPlayer Project 17
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

5. Next, you need to add the QuickTime Kit framework to your QTKitPlayer project. Choose Project > Add
to Project.

6. The QuickTime Kit framework resides in the System/Library/Frameworks directory. Select the
framework, shown in Figure 2-5, and click Add to add it to your QTKitPlayer project.

Figure 2-5 The QuickTime Kit framework in the Frameworks directory

7. Another sheet opens, as shown in Figure 2-6. You don’t need to change any of the settings, so just click
Add to add the framework to the QTKitPlayer Target.

Figure 2-6 Adding QTKit.framework to the QTKitPlayer target

18 Creating the QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

8. In your QTKitPlayer Xcode project window, open Targets in the Groups & Files list and then double-click
QTKitPlayer. When the Target “QTKitPlayer” Info window opens, select the Properties pane, as shown in
Figure 2-7.

Figure 2-7 The Target “QTKitPlayer” Info window with the Properties pane displayed

9. Select the DocumentType row and in the Extensions column, enter mov and in the OS Types column,
enter MooV. Note that, strictly speaking, this step is not necessary if you use Interface Builder to specify
the movie––it knows how to open movies.

The next section discusses how to use the new QTKit palette in Interface Builder to construct the QTKitPlayer
application.

Working With the QTKit Palette

In this phase of constructing your QTKitPlayer application, you’ll work with the new QTKit palette in Interface
Builder. After you’ve completed these steps, you’ll be able to build and run the QTKitPlayer in Xcode––without
modifying any of your source files or adding any lines of code to them.

The QTKit palette resides in the /Developer/Extras/Palettes directory. To access the palette, you can
either double-click to launch it in Interface Builder, or drag the palette into the /Developer/Palettes
directory, in which case it will appear among the palettes in the toolbar shown in Figure 2-8. You can place
the QTKit palette at any position in the row of palettes, in this case next to the Sherlock icon.

To finish building your QTKitPlayer, follow these steps:

Working With the QTKit Palette 19
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

1. Open Interface Builder by double-clicking MyDocument.nib in your Xcode project window and select
the blue QuickTime icon in the palettes collection at the far right, next to the Sherlock icon, as shown
in Figure 2-8. Note that the QuickTime icon in this palette looks like the one available in the
Cocoa-GraphicsViews palette. Be sure that you select the Cocoa-QTKit palette.

Figure 2-8 The Cocoa-QTKit palette

2. Delete the “Your document contents here” text in the window object shown in Figure 2-9.

Figure 2-9 MyDocument.nib with the QTKit palette and a window selected

20 Working With the QTKit Palette
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

3. Drag the QTKit icon to the bottom-left corner of the project window, as shown in Figure 2-10.

Figure 2-10 The QTKit icon dragged to the application window

4. You now have a QuickTime movie view object with a control bar in the bottom-left corner of the window.
Drag the QuickTime movie view object by its corner handle to the upper-right corner of the window,
filling the entire window, so the movie view object with its control bar is visible, as shown in Figure 2-11.

Figure 2-11 The QuickTime movie view object enlarged to fill the entire contents of the window

Working With the QTKit Palette 21
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

5. Click the QuickTime movie view object in the window, then press Command-1 to open the QTMovieView
Info window. The Attributes pane is shown in Figure 2-12 with the default fill color of black and the Show
Controller item selected. Note that the field that lets you select a movie from a list of files by clicking the
File button is initially blank. The illustration in Figure 2-12 shows a partial file path for a movie to be
selected.

Figure 2-12 The QTMovieView Attributes pane

6. To add editing capabilties to your QTKitPlayer, select the Is Editable item. Notice that the slider in the
control bar in your player changes from a button to another shape, shown in Figure 2-13, similar to)(,
which allows for editing of a movie.

Figure 2-13 The Is Editable item selected and the slider changed

22 Working With the QTKit Palette
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

7. Now you’re ready to specify a movie to play and edit. In the QTMovieView Info Attributes pane, click the
File button.

8. In the open dialog that appears, select a QuickTime movie and click Open. Your player window will look
similar to the one illustrated in Figure 2-14. Note that the movie in Figure 2-14 has movie editing enabled,
as shown by the appearance of the slider in the control bar.

Figure 2-14 A QuickTime movie in your window

9. If you want to modify the attributes of the window in any way, you can open the NSWindow Info pane.
To add texture to the movie window, for example, select the Window icon in the MyDocument.nib
window and press Command-1 to open the NSWindow Info window with the Attributes pane displayed.
Select the “Has texture” option, as shown in Figure 2-15.

Figure 2-15 The QuickTime movie object window with texture added

10. Save the MyDocument.nib file and quit Interface Builder.

Working With the QTKit Palette 23
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

11. In Xcode, run and build the QTKitPlayer application. When the movie runs, it will open a document-based
window with the movie you’ve specified as Untitled. The movie is completely editable. Control-click
anywhere in the movie. A contextual menu appears, as shown in Figure 2-16.

Figure 2-16 The QTKitPlayer with an editable movie displayed

12. To access the editing features of the player, choose from the menu options shown in Figure 2-17 or use
the contextual menu.

Figure 2-17 The Edit menu in QTKitPlayer

Extending the Functionality of QTKitPlayer

If you’ve followed correctly all the steps described in the previous section of this document, you’ll have built
successfully the QTKitPlayer application, which lets you display, control, and edit QuickTime movies. This is
only the beginning, however. You can extend the functionality of your media player by taking advantage of
the new classes and methods provided in the QuickTime Kit framework.

24 Extending the Functionality of QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

For example, with the addition of a few hundred lines of code, you can add import and export capabilities
to your application, so it can play QuickTime VR movies, display still images, or export movies to different
file formats, such as MPEG-4 and 3GPP.

If you’re a Cocoa programmer, you’ll already be able to envision the possibilities. If you’re new to Cocoa or
QuickTime, you’ll be amazed how quickly and easily you can extend the functionality of your media player.
The next chapter describes how you can accomplish this.

Extending the Functionality of QTKitPlayer 25
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

26 Extending the Functionality of QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building a Simple QTKitPlayer Application

If you’ve built the simple QTKitPlayer application described in the previous chapter, you are now ready to
extend its functionality by following the steps outlined in this chapter. If you skipped the previous chapter,
you may want to familiarize yourself with the section “Working With the QTKit Palette” (page 19), which
introduces the new Cocoa-QTKit palette available in the QuickTime Kit framework. This chapter assumes that,
at very least, you have:

 ■ A basic knowledge of Cocoa development as well as the fundamentals of the Objective-C programming
language

 ■ An understanding of Xcode, Interface Builder, and the QTKit palette

When completed, your extended QTKitKPlayer application will allow you not only to open and play QuickTime
movies, but also to import and export them, as shown in Figure 3-1.

This added capability means that your application will be able to import and display a wide range of media
types that QuickTime understands and supports in Mac OS X, including but not restricted to MP4 clips, JPEG
images, and audio files, as you can see in the illustration in Figure 3-2 (page 28). In so doing, your application
moves beyond a simple media player and provides useful functionality for handling a variety of media types
and playback tasks.

Figure 3-1 The completed QTKitPlayer application with extended import and export capabilities

You’ll be able to accomplish all of this by working with Interface Builder to construct the QTKitPlayer user
interface and then adding several hundred lines of code to your Xcode project.

27
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

Note that the QTKitPlayer application runs in both Mac OS X v10.4 and Mac OS X v10.3. You need QuickTime
Player 7 (the latest version) installed on your system, however, to take full advantage of the new QuickTime
Kit framework capabilities.

Important: The complete source code for the extended QTKitPlayer application is available for Mac OS X
v10.4 in the folder Developer > Examples > QuickTime > QTKit > QTKitPlayer. You may find it useful to build
and compile the QTKitPlayer project in Xcode after you have worked through the steps in this programming
guide. The QuickTime Kit Reference, which documents all the classes and methods in the QTKit framework,
is also available in Developer > Examples > QuickTime > QTKit > QTKitObjC.pdf. The reference document is
periodically updated at http://developer.apple.com/referencelibrary/QuickTime/index.html as new methods
and classes are added.

Figure 3-2 The completed QTKitPlayer application with an MP4 movie, an MP3 audio clip, and a JPEG
still image displayed

Beyond importing and exporting of QuickTime-supported media types, your completed QTKitPlayer application
will also include editing capabilities more extensive than just cut, copy, and paste. You’ll add editing features
such as add, add scaled, replace, and trim, all of which are supported by the QTKit framework in Mac OSX
10.4. These features will enable you to edit QuickTime movies with greater control and precision, as described
in Table 3-1. If you look at the illustration shown in Figure 3-3, you’ll see the Edit menu in the QTKitPlayer
with the additional commands available.

Table 3-1 Edit commands added to the QTKitPlayer application

DescriptionEdit Command

Adds a new chunk to a movie in one or more new tracks––on top of what’s already
there––instead of inserting it as the Paste command does.

Add

Scales the chunk being pasted in time, and the chunk becomes stretched or compressed
so that it plays for the same duration as the current selection in the receiving movie,
which can result in slow-motion or fast-motion effects.

Add Scaled

28
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

http://developer.apple.com/referencelibrary/QuickTime/index.html

DescriptionEdit Command

Replaces the current selection in the receiving movie. If there is no current selection, the
command will replace the entire movie.

Replace

Deletes everything in the current movie except the current selection.Trim

Figure 3-3 The added editing capabilities in your QTKitPlayer project

Following the steps in this chapter, you’ll also be able to provide more extensive control of movie playback
and display, as shown in the Movie menu commands (Figure 3-4), including looping and cloning of your
QuickTime movies.

Figure 3-4 The Movie menu commands for movie control and playback

29
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

Creating the Extended QTKitPlayer Project

Before you get started with your extended QTKitPlayer project, be sure that you are running either Mac OS
X v10.4 or Mac OS X v10.3 and have the following items installed on your system:

 ■ Xcode 2.0 or later and Interface Builder 2.5 or later. Note that you can use Xcode 1.1 or Xcode 1.5 to build
your project, but to take full advantage of the new programming and navigational features available,
such as class model visualization, you’ll want to use Xcode 2.0.

 ■ The QuickTime Kit framework, which is in the Mac OS X /System/Library/Frameworks directory as
QTKit.framework

 ■ The new QuickTime palette, which resides in the /Developer/Extras/Palettes directory as
QTKit.palette. If you are running Mac OS X v10.4, the palette is installed automatically. If you are
running Mac OS X v10.3, you will have to install it manually into the /Developer/Palettes directory,
so that it appears in the Interface Builder palettes toolbar when you start up Interface Builder.

 ■ QuickTime Player version 7

Note: To create the QTKitPlayer project, you can either develop on Mac OS X v10.4 or Mac OSX v10.3. If
you’re using Xcode 2.0 or later as your IDE, you’ll want to develop your project on Mac OSX 10.4.

Now that you’ve verified you have all these items, let’s get cooking.

Getting Started

You’ll want to set aside the QTKitPlayer application you built following the steps in the previous chapter and
start fresh with a new Xcode project.

There are a number of reasons for this, but suffice to say, you’ll find it easier to extend your media player
application by starting from scratch. You’ll still be using the new QTKit palette to drag a QTMovieView object
into a window in Interface Builder. The steps you take beyond that will nonetheless be different from those
described in the previous chapter.

Note again that the QTKit palette resides in the /Developer/Extras/Palettes directory. To access the
palette, you can either double-click its icon to launch it in Interface Builder, or drag the palette into the
/Developer/Palettes directory, in which case it will appear among the palettes in the toolbar shown in
Figure 3-6 (page 32) when Interface Builder starts up.

To create the project, follow these steps:

1. Launch Xcode and choose File > New Project.

2. When the new project window appears, select Cocoa Document-based Application. Click Next.

3. Name the project QTKitPlayer and place it in the directory of your choice. Note that you’re naming
the project the same as the project you built in the previous chapter, so you should place it in another
directory.

4. Next, you need to add the QuickTime Kit framework to your QTKitPlayer project. Choose Project > Add
to Project.

30 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

5. The QTKit framework resides in the System/Library/Frameworks/QTKit.framework directory.
Select the framework, and click Add to add it to your QTKitPlayer project.

6. In the Add To Targets sheet, click the Add button.

7. Now you need to rename the nib, declaration, and implementation files with the Rename command in
the File menu. Select each file in turn and rename MyDocument.h to MovieDocument.h, and
MyDocument.m to MovieDocument.m. To rename the nib file, you need to open the MyDocument.nib
in Interface Builder and save it as MovieDocument.nib, then delete the MyDocument.nib.Using Xcode
2.1, you won't be able to rename the nib from the File > Rename menu item, which is grayed out when
you click a nib in the Project window.

8. The Xcode project window appears as shown in Figure 3-5, with your files renamed accordingly. Verify
that the files shown in the illustration are the same as those in your project. Note that you won’t have
to rename the MainMenu.nib file.

Figure 3-5 The QTKitPlayer project in Xcode with nib, declaration, and implementation files renamed

Creating the QTMovieView Object with Outlets and Actions

In this next sequence of steps, you’ll work with the QTKit palette and add outlets and actions in Interface
Builder to your Xcode project.

Creating the Extended QTKitPlayer Project 31
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

1. Open Interface Builder by double-clicking MovieDocument.nib in your Xcode project window and
select the blue QuickTime icon in the toolbar, as shown in Figure 3-6. Note that the QuickTime icon in
this palette looks like the one available in the Cocoa-GraphicsViews palette, but they are different. The
one in the QTKit palette gives you the QTMovieView object rather than an NSMovieView object. Be sure
that you select the item in the Cocoa-QTKit palette.

Figure 3-6 The Cocoa-QTKit palette

2. Delete the text “Your document contents here” in the window object.

3. Drag the QuickTime icon from the QTKit palette to the bottom-left corner of the project window.

4. You now have a QuickTime movie view object with a control bar in the bottom-left corner of the window.
Drag the upper-right handle of the movie view object to the upper-right corner of the window, filling
the entire window, so the movie view object with its control bar is visible, as shown in Figure 3-7.

Figure 3-7 The QuickTime movie view object dragged to fill the entire contents of the window

5. Click the QuickTime movie object in the window, then press Command-1 to open the QTMovieView Info
window. The Attributes pane appears with the default fill color of black and the Show Controller item
selected. Note that the field that lets you select a movie from a list of files by clicking the File button is
initially blank. Don’t click the File button to open a QuickTime movie that will be displayed in your
window.

6. Leave the Show Controller item selected.

32 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

7. If you want to change the fill color of the movie view, click the Fill Color box and choose a new color.
Figure 3-8 shows the window with a fill color of blue.

Figure 3-8 The QTMovieView Info pane with a blue fill color selected for the QTMovieView object
window

8. Next, you want to add outlets to your QTKitPlayer project. Double-click File’s Owner in your
MovieDocument.nib window.

Creating the Extended QTKitPlayer Project 33
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

9. Enter mMovieView and QTMovieView, and mMovieWindow and NSWindow in their respective fields of
the Connections pane, as shown in Figure 3-9. The illustration shows the Export view object in the
MovieDocument.nib window, as well as the outlet mExportAccessoryView and its destination as
NSView, and the outlet mExportTypePopUpButton and its destination as NSPopUpButton. You’ll enter
these in a later step.

Figure 3-9 The File’s Owner connections to various outlets, with actions specified

10. Select the File’s Owner icon and press the Control key. A wire appears with a small square at one end.
Make sure the square lands on the File Owner’s icon. You want to hook up the File’s Owner to the
QTMovieView object. Select the outlet mMovieView and click Connect to wire up the File’s Owner with
the QTMovieView object, as shown in Figure 3-9.

11. Repeat the same step to connect the File’s Owner icon to the NSWindow object. Choose the outlet
mMovieWindow and click Connect to wire up the File’s Owner with the NSWindow object.

Creating the Export View Object

In this sequence of steps, you want to create an Export view object in Interface Builder, as shown in Figure
3-10. This will enable your application to display a dialog and pop-up menu when you want to export a
QuickTime movie to another file type.

34 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

Figure 3-10 The export view pop-up menu constructed in Interface Builder

1. In the Interface Builder palette toolbar, choose Cocoa-Containers and drag the CustomView container
to your MovieDocument.nib window. It appears as a View object.

2. Rename the View object Export view.

3. Now you want to add a pop-up menu labeled Export to the Export view object. Drag a pop-up menu
from the Cocoa-Controls palette into the Export view window. In the Attributes pane of the
NSPopUpButton Info window, type QuickTime Movie in the Title field, as shown in Figure 3-11.

Figure 3-11 The export view object with the NSPopUpButton Info window displayed and various
attributes specified

Creating the Extended QTKitPlayer Project 35
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

4. To add a label for the pop-up menu, drag a text field from the Cocoa-Text palette and position it to the
left of the pop-up menu as shown in Figure 3-12. In the Attributes pane of the NSTextField Info window,
type Export: in the Title field. In the Options section, deselect the Editable option and the Selectable
option.

Figure 3-12 The export view object with the NSTextField Info window displayed and various attributes
specified

5. Now you are ready to wire up the Export view object. Select the File’s Owner icon and press the Control
key. You want to hook up the File’s Owner to the Export view object. Choose the outlet
exportAccessoryView and click Connect to wire up the File’s Owner with the NSView object. Select
the outlet exportTypePopUpButton and click Connect to wire up the File’s Owner with the
NSPopUpButton object.

Adding Outlets and Actions to The MovieView Object

Now you want to add outlets and actions to the MovieView object.

1. In the MovieDocument.nib window, double-click the File’s Owner icon. The MovieDocument Class Info
window Attributes pane appears with four outlets selected and one deselected.

36 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

2. To add actions to the MovieDocument class, click the Actions tab, click Add, and type doClone:. Repeat
for the following actions: doExport:, doLoop:, doLoopPalindrome:, doPreservesAspectRatio:,
doSetFillColor:, doSetFillColorPanel:, doSetPosterTime:, and doShowController:. These
are some of the actions that you want to add to your QTKitPlayer through various menu items.

3. Now you want to add more actions to your QTMovieView object using Interface Builder. In the
MovieDocument.nib window, click the Classes tab, scroll down the list, and select the NSResponder class.
From the list of subclasses, select NSView. Scroll down again and select QTMovieView, as shown in Figure
3-13.

Figure 3-13 The QTMovieView subclass selected in MovieDocument nib file

4. Press Command-1 to open the QTMovieView Class Info window. This displays the attributes of your
QTMovieView object, deselected in grayed out text. You want to add these actions: add:, addScaled:,
copy:, cut:, delete:, gotoBeginning:, gotoEnd:, gotoPosterFrame:, paste:, replace:,
stepBackward:, stepForward:, and trim:.

Creating the Extended QTKitPlayer Project 37
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

To add these actions, you need to parse the QTMovieView header file. In Interface Builder, select Classes
> Read Files... A dialog opens. Select System > Library > Frameworks > QTKit.framework > Headers >
QTMovieView.h. Click Parse. The QTMovieView window now shows the actions hilighted and added(Figure
3-14).

Figure 3-14 The QTMovieView Class Attributes pane with list of actions added to the QTMovieView
object

Wiring Up The MainMenu.nib

In this next sequence of steps, you want to change the NSApplication menu title in the MainMenu.nib -
MainMenu file to QTKitPlayer and add items to each of the menu choices. You’ll also want to modify the
attributes of each NSMenuItem.

38 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

1. In the MainMenu.nib - MainMenu file, you want to change the NSApplication menu title to QTKitPlayer.
Select the menu title so that the item is highlighted. Then, double-click the item and enter the new text
QTKitPlayer. Do this for the About, Hide, and Quit menu items in the MainMenu.nib window, so that
each item refers to the QTKitPlayer, as shown in Figure 3-15.

Figure 3-15 The MainMenu nib file with changes to the application menu

2. In the MainMenu.nib - MainMenu file, add to the File menu the items Import and Export, so your File
menu appears as shown in Figure 3-16.

Figure 3-16 The MainMenu nib file additions to the File menu

Creating the Extended QTKitPlayer Project 39
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

3. In the File menu, select the Import menu item and press Command-2 to open the Connections pane of
the NSMenuItem Info window. Press Control and hook up the Import menu item to First Responder.
Scroll down the list of the actions for First Responder and select openDocument, as shown in Figure
3-17. Click the Connect button.

Figure 3-17 The MainMenu nib file with the Import menu item hooked up to First Responder and the
openDocument action connected

40 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

4. In the MainMenu.nib - MainMenu file, add to the Edit menu the items shown in Figure 3-18. These items
include Undo, Redo, Cut, Copy, Paste, Delete, Select All, Add, Add Scaled, Replace, and Trim.

Figure 3-18 The MainMenu nib file with additions to the Edit menu

5. Before you hook up these items to actions in First Responder, you need to double-click the First Responder
icon in the MainMenu.nib. The info panel brings up a list of the attributes available. Select the Actions
tab. Now you want to add the following actions: add:, addScaled:, copy:,cut:, delete:,
gotoBeginning:, gotoEnd:, gotoPosterFrame:, paste:, replace:, stepBackward:,
stepForward:, and trim: Enter each action and click Add.

Creating the Extended QTKitPlayer Project 41
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

Now you want to hook up these items to actions in First Responder. In the Edit menu, select each of the
new menu items and connect it to the appropriate action in the actions list for First Responder, as shown
in Figure 3-19.

Figure 3-19 The MainMenu nib file with the Replace menu item selected and its connection specified

6. In the MainMenu.nib - MainMenu file, add the Movie menu and those items shown in Figure 3-20.

Figure 3-20 The MainMenu nib file with additions to the Movie menu

42 Creating the Extended QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

7. Hook up these items to actions in First Responder. In the Movie menu, select each item and connect it
to the appropriate action. Rename Start to play: and Stop to pause:, as shown in Figure 3-21.

Figure 3-21 The MainMenu nib file with the Start menu item selected and its connection specified

8. Save your MainMenu.nib file and quit Interface Builder.

You’ve now completed the first part of your project. In the next part, you’ll add the Cocoa code that makes
your QTKitPlayer application work and perform like a champion.

Adding Code to the MovieDocument Class Interface

In this next sequence of steps, you’ll be adding a small amount of code to your MovieDocument.h class
interface file.

To begin, open the MovieDocument.h declaration file in your Xcode project and delete any existing code
in the file. Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import <Cocoa/Cocoa.h>
#import <QTKit/QTKit.h>

2. Add the following declaration code after your import statements:

@interface MovieDocument : NSDocument
{
 // movie window
 IBOutlet NSWindow *mMovieWindow;
 IBOutlet QTMovieView *mMovieView;

Adding Code to the MovieDocument Class Interface 43
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 // export
 IBOutlet NSView *mExportAccessoryView;
 IBOutlet NSPopUpButton *mExportTypePopUpButton;

 // movie document
 QTMovie *mMovie;
}

The first line defines the MovieDocument class and specifies that it inherits from the NSDocument class.
The first four statements declare the outlets you set up and connected in Interface Builder. The
movieWindow instance variable, for example, points to the NSWindow object while the movieView
instance variable points to the QTMovieView object. The last line declares that the mMovie instance
variable points to the QTMovie object.

3. Define a class method with the following line of code:

+ (id)movieDocumentWithMovie:(QTMovie *)movie;

4. To initialize movies, add this code line:

- (id)initWithMovie:(QTMovie *)movie;

5. For the NSMenu validation protocol, which returns a BOOL value, as it validates the menu items in your
project, add this:

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem;

6. The following line of code, which enables you to set a movie to the QTMovie object using the setMovie:
method, is one of the most common you’ll use in building projects with the QuickTime Kit framework.
Add it:

- (void)setMovie:(QTMovie *)movie;

7. Insert the following block of action method declarations in your MovieDocument.h file:

- (IBAction)doExport:(id)sender; // run the export sheet
- (IBAction)doSetFillColorPanel:(id)sender; // update the fill color
- (IBAction)doSetFillColor:(id)sender;
- (IBAction)doSetPosterTime:(id)sender;
- (IBAction)doShowController:(id)sender;//toggle controller visibility
- (IBAction)doPreserveAspectRatio:(id)sender;// toggle aspect ratio
- (IBAction)doLoop:(id)sender; // toggle looping
- (IBAction)doLoopPalindrome:(id)sender; // toggle palindrome looping
- (IBAction)doClone:(id)sender;

8. To handle NSDocument overrides, add the following lines of code:

- (NSString *)windowNibName;
- (void)windowControllerDidLoadNib:(NSWindowController*)windowController;
- (NSData *)dataRepresentationOfType:(NSString *)docType;
- (BOOL)writeWithBackupToFile:(NSString *)fullDocumentPath ofType:(NSString
*)type saveOperation:(NSSaveOperationType)saveOperation;
- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type;
- (void)printShowingPrintPanel:(BOOL)showPanels;

9. Insert the following method before the @end directive in the file:

- (BOOL)createMovieDocumentWithFile:(NSString *)fileName asData:(BOOL)asData;

44 Adding Code to the MovieDocument Class Interface
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

@end

10. To save your NSSavePanel delegate, which handles your export dialog, insert these lines:

- (void)exportPanelDidEnd:(NSSavePanel *)sheet returnCode:(int)returnCode
contextInfo:(void *)contextInfo;

11. Save your MovieDocument.h file (Command-S).

This completes the first part of code additions to your Xcode project.

Adding Code to MovieDocument.m

In this next sequence of steps, you’ll be adding a larger chunk of code to your MovieDocument.m
implementation file.

To begin, open the MovieDocument.m file in your Xcode project and delete any existing code in the file.
Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import "MovieDocument.h"
#import <QTKit/QTKit.h>

2. Following your import statements, you want to define a constant for movies that are not necessarily
visual––that is, audio files. Specify the width as 320. Insert these lines:

#define kDefaultWidthForNonvisualMovies 320
@implementation MovieDocument

3. Now you want to add the following class method and deal with memory allocation. Note that this is just
a convenience method if you want to create a document given a movie. By calling autorelease, you
auto release the movie. Add these lines:

+ (id)movieDocumentWithMovie:(QTMovie *)movie
{
 return [[(MovieDocument *)[self alloc] initWithMovie:movie] autorelease];
}

4. Next, you need to add initialization code to initialize a MovieDocument instance and set the file type.
Setting the movie to nil will release it. Add these lines:

- (id)initWithMovie:(QTMovie *)movie
{
 [super init];

 // init
 [self setFileType:@"MovieDocument"];
 [self setMovie:movie];

 if (mMovie == nil)
 {
 [self release];
 self = nil;

Adding Code to MovieDocument.m 45
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 }
 return self;
}

5. Insert the following code to handle deallocation of memory and notifications:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [self setMovie:nil];
 [super dealloc];
}

6. To deal with NSMenu validations for enabling and disabling of menu items, insert this chunk of code:

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem
{
 BOOL valid = NO;
 SEL action;

 // init
 action = [menuItem action];
 // validate
 if (action == @selector(doExport:))
 valid = (mMovie != nil);

 else if (action == @selector(doSetFillColorPanel:))
 valid = YES;

 else if (action == @selector(doShowController:))
 {
 [menuItem setState:([mMovieView isControllerVisible] ? NSOnState :
NSOffState)];
 valid = YES;
 }
 else if (action == @selector(doPreserveAspectRatio:))
 {
 [menuItem setState:([mMovieView preservesAspectRatio] ? NSOnState :
NSOffState)];
 valid = (mMovie != nil);
 }
 else if ((action == @selector(doLoop:)) && mMovie)
 {
 [menuItem setState:([[mMovie attributeForKey:QTMovieLoopsAttribute]
boolValue] ? NSOnState : NSOffState)];
 valid = YES;
 }
 else if ((action == @selector(doLoopPalindrome:)) && mMovie)
 {
 if ([[mMovie attributeForKey:QTMovieLoopsAttribute] boolValue])
 {
 [menuItem setState:([[mMovie
attributeForKey:QTMovieLoopsBackAndForthAttribute] boolValue] ? NSOnState :
NSOffState)];
 valid = YES;
 }
 }

46 Adding Code to MovieDocument.m
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 else if (action == @selector(doClone:))
 valid = (mMovie != nil);

 else
 valid = [super validateMenuItem:menuItem];

 return valid;
}

7. To set the instance variable of the movie (one of the most common operations in the QuickTime Kit
framework), add the following code:

- (void)setMovie:(QTMovie *)movie
{
 [movie retain];
 [mMovie release];
 mMovie = movie;
}

8. The next block of code is a bit more complicated. You want to set the movie window size to fit the movie,
so that it is the “natural” movie size. (Natural size is the size of the movie when it was first created. After
opening the movie, you can resize it.) The code here sets the coordinates, specifying that the movie
window appears in the top-left corner of the window. Otherwise, the movie appears in the bottom-left
corner. The code lets you move the movie around, but pegs it initially to the top-left corner. Insert the
following code:

- (void)sizeWindowToMovie:(NSNotification *)notification
{
 NSRect currWindowBounds, newWindowBounds;
 NSPoint topLeft;
 static BOOL nowSizing = NO;

 if (nowSizing)
 return;

 nowSizing = YES;

 NSSize contentSize = [[mMovie attributeForKey:QTMovieCurrentSizeAttribute]
 sizeValue];
 if ([mMovieView isControllerVisible])
 contentSize.height += [mMovieView controllerBarHeight];

// get the current location and size of the movie window, so we can keep // the
 top-left corner pegged, i.e. fixed
 currWindowBounds = [[mMovieView window] frame];
 topLeft.x = currWindowBounds.origin.x;
 topLeft.y = currWindowBounds.origin.y + currWindowBounds.size.height;

 if (contentSize.width == 0)
 contentSize.width = currWindowBounds.size.width;

 newWindowBounds = [[mMovieView window] frameRectForContentRect:NSMakeRect(0,
 0, contentSize.width, contentSize.height)];

 [[mMovieView window] setFrame:NSMakeRect(topLeft.x, topLeft.y -
newWindowBounds.size.height, newWindowBounds.size.width,
newWindowBounds.size.height) display:YES];

Adding Code to MovieDocument.m 47
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 nowSizing = NO;
}

9. To deal with NSDocument overrides, add these lines:

- (NSString *)windowNibName
{
 return @"MovieDocument";
}

10. To set up the movie view and set the editable state of the controller, you need to add this chunk of code.
You also want to “listen” for any movie size changes, so notifications are added here. Insert the following:

- (void)windowControllerDidLoadNib:(NSWindowController *)windowController
{

 // set up the movie view
 if (mMovie)
 {
 NSSize contentSize = [[mMovie attributeForKey:QTMovieNaturalSizeAttribute]
 sizeValue];
 [mMovieView setMovie:mMovie];
 if ([mMovieView isControllerVisible])
 {
 contentSize.height += [mMovieView movieControllerBounds].size.height;
 if (contentSize.width == 0)
 {
 contentSize.width = kDefaultWidthForNonvisualMovies;
 }
 }
 [[mMovieView window] setContentSize:contentSize];
 }
 else
 [mMovieView setMovie:[QTMovie movie]];

 // set the editable state
 [mMovie setAttribute:[NSNumber numberWithBool:YES]
forKey:QTMovieEditableAttribute];

 // watch for movie resizings
 if (mMovie)
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(sizeWindowToMovie:) name:QTMovieSizeDidChangeNotification
object:mMovie];
}

11. To write to handle updates and saves, add the following code:

- (BOOL)writeWithBackupToFile:(NSString *)fullDocumentPath ofType:(NSString
*)type saveOperation:(NSSaveOperationType)saveOperation
{
 BOOL success = NO;

 // update/save
 if (saveOperation == NSSaveOperation)
 success = [mMovie updateMovieFile];
 else

48 Adding Code to MovieDocument.m
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 success = [super writeWithBackupToFile:fullDocumentPath ofType:type
saveOperation:saveOperation];

 return success;
}

12. Add these lines of code:

- (NSData *)dataRepresentationOfType:(NSString *)docType
{
 return [mMovie movieFormatRepresentation];
}

13. Add these lines to handle reading the movie from a file:

- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type
{
 BOOL success = NO;
 NSData *data;

 // read the movie
 if ([QTMovie canInitWithFile:fileName])
 {
 if ([type isEqualTo:@"MovieDocumentData"])
 {
 data = [NSData dataWithContentsOfFile:fileName];

 }
 else
 {
 [self setMovie:((QTMovie *)[QTMovie movieWithFile:fileName])];
 success = (mMovie != nil);
 }
 }

 return success;
}

14. The following chunk of code is intended to deal with opening movies and other media that QuickTime
“understands” using an instance method and setting a flag. Add these lines:

- (id)openDocumentWithContentsOfFile:(NSString *)fileName
display:(BOOL)displayFlag
{
 // first check whether we already have a document for this file
 NSDocumentController *sharedDocController = [NSDocumentController
sharedDocumentController];
 MovieDocument *movieDocument = [sharedDocController
documentForFileName:fileName];

 if (movieDocument)
 {// we've got one, just bring it forward
 if (displayFlag)
 {
 [movieDocument showWindows];
 }
 }
 else

Adding Code to MovieDocument.m 49
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 {// we must create a new document.
 // we always create a movie document regardless of type
 // init
 movieDocument = [[[MovieDocument allocWithZone:[self zone]]
initWithContentsOfFile:fileName ofType:@"mov"] autorelease];

 // set up the document
 if (movieDocument)
 {

 // add the document
 [sharedDocController addDocument:movieDocument];

 // set up the document
 if ([sharedDocController shouldCreateUI])
 {
 [movieDocument makeWindowControllers];
 if (displayFlag)
 {
 [movieDocument showWindows];
 }
 }
 }
 }
 return movieDocument;
}

15. Add the following code to locate the file to be opened:

- (BOOL)panel:(id)sender shouldShowFilename:(NSString *)filename
{
 BOOL isDir = NO;

 [[NSFileManager defaultManager] fileExistsAtPath:filename isDirectory:&isDir];

 if (isDir)
 {
 return YES;
 }
 else
 {
 return [QTMovie canInitWithFile:filename];
 }
}

16. Add this code to filter files through an Open dialog and display them:

- (void)openDocument:(id)sender {
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];

 [openPanel setDelegate:self];
 [openPanel setAllowsMultipleSelection:NO];

 // files are filtered through the panel:shouldShowFilename: method above
 if ([openPanel runModalForTypes:nil] == NSOKButton) {
 [self openDocumentWithContentsOfFile:[[openPanel filenames] lastObject]
 display:YES];
 }

50 Adding Code to MovieDocument.m
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

}

17. Add the following lines of code:

- (BOOL)application:(NSApplication *)theApplication openFile:(NSString *)filename
{
 return (nil != [self openDocumentWithContentsOfFile:filename display:YES]);
}

18. Insert the following code to display the Print dialog:

- (void)printShowingPrintPanel:(BOOL)showPanels
{
 NSPrintOperation *printOperation;

 // init
 printOperation = [NSPrintOperation printOperationWithView:mMovieView
printInfo:[self printInfo]];
 [printOperation setShowPanels:showPanels];

 // print
 [self runModalPrintOperation:printOperation delegate:nil didRunSelector:nil
 contextInfo:nil];
}

19. You add the following code to handle the NSSavePanel delegate for the export sheet. Note that you use
an NSArray to list export types, such as mpg4, bmpf, aiff, and so on. These types are hard-coded here.
You can add to the list if you want to and include, for example, 3gpp or mpg3.

- (void)exportPanelDidEnd:(NSSavePanel *)sheet returnCode:(int)returnCode
contextInfo:(void *)contextInfo
{
 int selectedItem;
 NSMutableDictionary*settings = nil;
 static NSArray *exportTypes = nil;

 // init
 if (exportTypes == nil)
 {
 exportTypes = [[NSArray arrayWithObjects:
 [NSNumber numberWithLong:'AIFF'], [NSNumber numberWithLong:'BMPf'],
 [NSNumber numberWithLong:'dvc!'],
 [NSNumber numberWithLong:'FLC '], [NSNumber numberWithLong:'mpg4'],
 [NSNumber numberWithLong:'MooV'],
 [NSNumber numberWithLong:'embd'], nil] retain];
 }

 // export
 if (returnCode == NSOKButton)
 {
 // init
 selectedItem = [mExportTypePopUpButton indexOfSelectedItem];
 settings = [NSMutableDictionary dictionaryWithCapacity:5];
 [settings setObject:[NSNumber numberWithBool:YES] forKey:QTMovieExport];

 if ((selectedItem >= 0) && (selectedItem < [exportTypes count]))
 [settings setObject:[exportTypes objectAtIndex:selectedItem]
forKey:QTMovieExportType];

Adding Code to MovieDocument.m 51
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 // export
 if (![mMovie writeToFile:[sheet filename] withAttributes:settings])
 NSRunAlertPanel(@"Error", @"Error exporting movie.", nil, nil, nil);
 }
}

20. Add the following actions to your file:

- (IBAction)doExport:(id)sender
{
 NSSavePanel *savePanel;

 // init
 savePanel = [NSSavePanel savePanel];

 // run the export sheet
 [savePanel setAccessoryView:mExportAccessoryView];
 [savePanel beginSheetForDirectory:nil file:[[self fileName] lastPathComponent]
 modalForWindow:mMovieWindow modalDelegate:self
 didEndSelector:@selector(exportPanelDidEnd: returnCode: contextInfo:)
contextInfo:nil];
}

- (IBAction)doSetFillColorPanel:(id)sender
{
 NSColorPanel *colorPanel;

 // init
 colorPanel = [NSColorPanel sharedColorPanel];
 [colorPanel setAction:@selector(doSetFillColor:)];
 [colorPanel setTarget:self];
 [colorPanel setColor:[mMovieView fillColor]];

 // run the panel
 [colorPanel makeKeyAndOrderFront:nil];
}

- (IBAction)doSetFillColor:(id)sender
{
 // update the fill color
 [mMovieView setFillColor:[sender color]];
}

- (IBAction)doShowController:(id)sender
{
 // toggle the controller visibility
 [mMovieView setControllerVisible:([sender state] == NSOffState)];
}

- (IBAction)doPreserveAspectRatio:(id)sender
{
 // toggle the aspect ratio preservation
 [mMovieView setPreservesAspectRatio:([sender state] == NSOffState)];
}

- (IBAction)doLoop:(id)sender
{

52 Adding Code to MovieDocument.m
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 // toggle looping
 [mMovie setAttribute:[NSNumber numberWithBool:([sender state] == NSOffState)]
 forKey:QTMovieLoopsAttribute];
}

- (IBAction)doLoopPalindrome:(id)sender
{
 // toggle palindrome looping
 [mMovie setAttribute:[NSNumber numberWithBool:([sender state] == NSOffState)]
 forKey:QTMovieLoopsBackAndForthAttribute];
}

- (IBAction)doClone:(id)sender
{
 MovieDocument *movieDocument;

 // init
 movieDocument = [MovieDocument movieDocumentWithMovie:[[mMovie copy]
autorelease]];

 // set up the document
 if (movieDocument)
 {
 // add the document
 [[NSDocumentController sharedDocumentController]
addDocument:movieDocument];

 // set up the document
 [movieDocument makeWindowControllers];
 [movieDocument showWindows];
 }
}

@end

21. Save your MovieDocument.m file (Command-S).

This completes the steps for adding code to your MovieDocument.m implementation file. There is only one
more step, described in the next section, before you can run and build your QTKitPlayer application.

Modifying the Info.plist File

The is the last step to complete before you can build and run your QTKitPlayer application.

1. In your Xcode project, double-click the Info.plist file to open it.

2. Delete the existing contents of the Info.plist file.

3. Replace the contents of the file with the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

Modifying the Info.plist File 53
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>mov</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>MovieDocument</string>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>MooV</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <key>NSDocumentClass</key>
 <string>MovieDocument</string>
 </dict>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>mov</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>MovieDocumentData</string>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>????</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 <key>NSDocumentClass</key>
 <string>MovieDocument</string>
 </dict>
 </array>
 <key>CFBundleExecutable</key>
 <string>QTKitPlayer</string>
 <key>CFBundleGetInfoString</key>
 <string>QTKitPlayer 1.0</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.QTKitPlayer</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>QTKitPlayer</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
 <key>NSMainNibFile</key>

54 Modifying the Info.plist File
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

 <string>MainMenu</string>
 <key>NSPrincipalClass</key>
 <string>NSApplication</string>
</dict>
</plist>

Running and Building Your QTKitPlayer

If you’ve followed correctly all the steps described in this chapter, you’ll be ready to build and run the
QTKitPlayer application. In Xcode, simply click the hammer icon with the play button on top, or press
Command-R, as you would if you were compiling any other Xcode project.

The QTKitPlayer appears with the blue default movie displayed. Now you can open and import other media,
export them to different formats, edit the contents of that media, and control movie playback and display,
such as showing or not showing the movie controller.

You’ll also be able to perform a variety of movie-editing operations discussed earlier in this chapter, such as
trimming (shown in Figure 3-22).

Figure 3-22 The Apple 1984-2004 QuickTime movie with the editing trim feature enabled

Again, the Add command lets you add a new chunk to a movie in one or more new tracks––on top of what’s
already there––instead of inserting it like you would do using the Paste command. The Add Scaled command
scales the chunk you are pasting in time, and the chunk becomes stretched or compressed so that it plays
for the same duration as the current selection in the receiving movie, which can result in a slow-motion or
fast-motion effects. The Trim command deletes everything in the current movie except the current selection

If you want to export your movie to another media format, such as MPEG-4, choose the Export command in
the Edit menu, as shown in Figure 3-23, and the export sheet (Figure 3-24) will appear.

Running and Building Your QTKitPlayer 55
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

Figure 3-23 Exporting the Apple 1984-2004 QuickTime movie in your QTKitPlayer application

Figure 3-24 The export sheet for exporting a QuickTime movie to MPEG-4

What’s Ahead?

By working through the example code in this chapter and building the extended QTKitPlayer project, you’ve
laid the foundation for an even more powerful and robust media player application to come.

In the next chapters of this tutorial, you’ll move into a more advanced learning phase. You’ll add new features
and capabilities to your QTKitPlayer, such as the ability to open QuickTime streaming movies from URLs.
You’ll also learn how to implement a Cocoa drawer with a timer that updates synchronously in real time the
rate at which a QuickTime movie is displayed. In later chapters, you’ll extend the QTKitPlayer to handle more
robust play back of multimedia content, with up to six movies, video streams, and QuickTime virtual reality
movies playing at the same time.

Each chapter is intended to demonstrate, step by step, how you can enhance your QTKitPlayer
application—and in the process, learn how to tap into the awesome power of Apple’s QTKit framework.

56 What’s Ahead?
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Extending the QTKitPlayer Application

In this chapter, you’ll extend the QTKitPlayer application beyond what you have constructed in the previous
chapter. You’ll add an NSDrawer object to the QTMovieView window, which toggles open and close with
the click of a mouse. The drawer will also have new, enhanced functionality, including the capability of
displaying a movie’s current time and duration, its normal and current size, and its source.

Notably, as you work through the steps outlined in this chapter and add new chunks of code to your Xcode
project, you’ll implement a callback mechanism from the QuickTime C API.

When you’ve completed your Xcode project, you’ll be able to choose File > New in your extended QTKitPlayer
and an untitled QuickTime movie with a black screen will open for you. If you click the button in the middle
of the frame to the right, as shown in Figure 4-1, a Cocoa drawer pops open.

Figure 4-1 An untitled QuickTime movie with an open Cocoa drawer

The button in the movie frame lets you toggle the drawer open and closed, with fields of useful information
about the movie being displayed. The information displayed, however, is not static.

By implementing a callback mechanism from the QuickTime C API, your QTKitPlayer will be able to synchronize
the current time to the playback of the movie itself.

When a QuickTime movie plays, for example, the current time field is updated synchronously with the movie,
as illustrated in Figure 4-2.

57
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer
Application

Figure 4-2 An mp4 QuickTime movie playing with the current time, duration, movie size, and movie
displayed in the open Cocoa drawer

Design Strategy

Building on the existing functionality of your QTKitPlayer application, you’ll add new text fields to your
NSDrawer object that provide information about the size of the movie playing, its source path on the user’s
computer, as well as the time and duration of play. These new fields may serve to enhance the user’s ability,
for example, to edit a QuickTime movie with a specific timeline, or to resize a movie to a particular pixel ratio.
The location of the source movie may also be useful.

Because you are adding to the existing QTKitPlayer application, all the functionality of the player is still intact.
All the controls for movie playback are available for starting and stopping, showing and hiding the controller,
stepping forward and backward frame by frame, and so on.

This chapter depends on your having worked through the construction of the QTKitPlayer application in the
previous chapter. If you haven’t studied the steps described in that chapter, or simply skimmed over them,
it might be a good idea to go back there first and refresh your memory before proceeding.

In this, as well as in the following chapters, you’ll break down the tasks you need to accomplish into a series
of discrete steps. The goal is to work as efficiently as possible by first laying the foundation for your enhanced
player application in Interface Builder, and then adding the code you need to make it work.

Tasks to Accomplish

The tasks you want to accomplish in adding new functionality to your QTKitPlayer application are
straightforward enough if you have already developed projects with Cocoa and Xcode. You’ll do this:

1. Add a new Cocoa NSDrawer object to your project, using the tools available to you in Interface Builder
and Xcode 2.0. The goal is for the user to be able to toggle the drawer open and closed, and for the
drawer object to have the necessary logic to display and synchronously update the movie content as it
plays.

2. Add a small chunk of code to the MovieDocument.h class interface to specify the movie attributes of
the drawer.

58 Design Strategy
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

3. Add a larger chunk of code to your MovieDocument.m implementation file. This will involve working
with a callback mechanism from the QuickTime C API. The goal is to learn how you can tap into the rich
library of the QuickTime C API, when you want to add specific functionality to your Cocoa project that
may not be available, for whatever reason, in the Cocoa API.

Project Complexity

The complexity of the project comes with the addition of a callback mechanism from the QuickTime C API.

Basically, as the movie is playing, you need a mechanism to update the timer field in the drawer. The movie
controller component calls your action filter function each time the component receives an action for its
movie controller. In your action filter, you will use the idle action (mcActionIdle) to update your time
display. The idle action is sent continuously while the movie is being serviced.

You could do a similar thing with an NSTimer, but the action filter technique is a bit easier to implement.

The function prototype for the QuickTime C callback mechanism is defined as follows:

Boolean MyMCActionFilterWithRefConProc
 (MovieController mc,
 short action,
 void *params,
 long refCon);

The MyMCActionFilterWithRefConProc function responds to the actions of a movie controller with a
reference constant. The parameters specify the movie controller (mc) for the operation, the movie controller
action (action), a pointer to a structure that passes information to the callback, and a reference constant
(refCon) that your code supplies to your callback. Your QTKitPlayer application can invoke these actions by
calling MCDoAction. An action filter function will receive any of the controller actions sent to it.

You’ll add this callback to the code in your MovieDocument.m implementation file. The way to accomplish
this is explained in detail in the section “Adding Code To Make the Drawer Work” (page 69).

Class Model

When you’ve completed all these tasks, you’ll see the class model of your QTKitPlayer code in Xcode 2.0, as
shown in Figure 4-3. The class model includes a list of the MovieDocument instance variables you’ll add to
your QTKitPlayer project and a visualization of their connections and inheritance paths.

Tasks to Accomplish 59
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

Figure 4-3 A class model of the MovieDocument class with a list of properties

Note that this class model diagram is only available using Xcode 2.0. As illustrated in Figure 4-3, it also lists
the classes you’ll work with in subsequent chapters of this programming tutorial. Just ignore these for the
moment, as you focus on the properties you’ll add to the MovieDocument class.

Adding a Cocoa Drawer to the QTKitPlayer

In this sequence of steps, you’ll add a Cocoa drawer to the QTKitPlayer. Adding drawers to a window is
relatively easy to accomplish using Interface Builder.

To extend your QTKitPlayer, follow these steps:

1. Launch Interface Builder 2.5 and open your MovieDocument.nib.

60 Adding a Cocoa Drawer to the QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

2. Drag the drawer object from your Cocoa-Windows palette into your nib, shown in Figure 4-4. The drawer
object becomes an NSDrawer in your nib.

Figure 4-4 The Cocoa-Windows and the NSDrawer object added in MovieDocument.nib

Adding a Cocoa Drawer to the QTKitPlayer 61
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

3. To add the drawer content view, drag a CustomView object from the Cocoa-Containers palette into the
nib. Double-click the icon and rename it as “Drawer ContentView”. That gives you the content view, as
shown in Figure 4-5.

Figure 4-5 The CustomView object in the Cocoa-Containers palette and in the MovieDocument.nib
as Drawer ContentView

4. Add the mDrawer outlet to File’s Owner. Double-click the File’s Owner icon. This brings up the Attributes
pane for the MovieDocument Info window. Click Add to add an mDrawer outlet.

5. Wire up the connection from the File’s Owner to the mDrawer outlet. Click File’s Owner, press the Control
key, and drag wire to the NSDrawer icon in the MovieDocument.nib. Click connect.

62 Adding a Cocoa Drawer to the QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

6. Now you want to select the NSDrawer object in your nib and press Command-2 to open the NSDrawer
Info pane. Select the NSDrawer icon and press the Control key. Now Control-drag to the Drawer Content
View icon and press the Connect button in the NSDrawerInfo window, as shown in Figure 4-6. You want
to wire up your connections from the NSDrawer object to the Drawer Content View object.

Figure 4-6 The NSDrawer wired up and connected to the contentView outlet

7. Similarly, select the NSDrawer icon and press the Control key. Now control-drag to the window icon to
wire up your connections from the NSDrawer object to its parent window.

8. In the MovieDocument.nib, double-click the window icon to select the QTMovieView window object.
You want to leave a portion of the window available for the button that will toggle your NSDrawer object
open and closed.

9. Select the Cocoa-Controls palette and drag an NSButton object from the collections of control object to
the right portion of your window.

Adding a Cocoa Drawer to the QTKitPlayer 63
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

10. Press Command-1 to open the Attributes pane, as shown in Figure 4-7.

Figure 4-7 The NSButton info pane with attributes and the type specified as disclosure

11. Specify the Type as Disclosure in the attributes pane of NSButton Info (Figure 4-7). This enables the
button to toggle. The toggle option is available in Cocoa by enabling disclosure.

12. Set the springs for the disclosure button.

64 Adding a Cocoa Drawer to the QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

13. Click the NSDrawer icon, then set the Size attributes in the NSDrawer Info pane, as shown in Figure 4-8.

Figure 4-8 Size attributes added to the Drawer Content View

14. Now you want to set the springs in the Size attribute pane so that when the user resizes the drawer, the
toggle button is not crunched. Set the springs for autosizing, as shown in Figure 4-9.

Figure 4-9 The Size settings for autosizing of springs in the Drawer Contents object

Adding a Cocoa Drawer to the QTKitPlayer 65
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

15. Add NSTextField objects corresponding to “Current Time,” “Duration,” “Normal Size,” “Current Size,” and
“Source” (all static text), as shown in Figure 4-10. In the attributes pane of each text field, specify the
title, color, alignment, text border, and other information.

Figure 4-10 Text fields and their attributes added to the Drawer Content View

16. You want to be sure that you specify in the NSTextfield Info panes for Current Time and Duration by
entering the Title attribute as 00:00:00:00, as shown in Figure 4-10.

17. Now add the outlets to your document subclass. Double-click the File’s Owner icon. This brings up the
Info window attributes pane for the MovieDocument class. Use the Add button and add the following
outlets: mCurrentSize, mDuration, mNormalSize, mSourceSize, and mTimeDisplay.

66 Adding a Cocoa Drawer to the QTKitPlayer
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

18. Now you are ready to hook up the File’s Owner to the various textfields that you have specified in the
Drawer Content View. Select the File’s Owner icon and press the Control key. Connect the wire to each
textfield in the Drawer Content View, as shown in Figure 4-11 and click Connect for each outlet.

Figure 4-11 Hooking up the textfields and adding outlets

19. Add toggle drawer action to the MovieDocument class. Double-click File’s Owner, and in the Attributes
pane of the Info window for the MovieDocument, click the “O Actions” pane. Now click the Add button,
and add a toggleDrawer action.

Adding a Cocoa Drawer to the QTKitPlayer 67
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

20. Wire up the disclosure button to the toggleDrawer action. Click the disclosure button in the
MovieDocument window. Press the Control key, then drag the wire to the File Owner’s icon. In the
Connections pane of the Info window for NSButton, click the Target/Action pane. Select the
toggleDrawer action and click the Connect button, as shown in Figure 4-12.

Figure 4-12 Wiring up the toggle drawer target and action in the MovieDocument.nib

This completes the steps you need to follow in order to construct the Cocoa drawer and hook up the outlets
and actions in Interface Builder.

Adding Code To Your QTKitPlayer Project

In this section, you’ll add less than one hundred lines of code to your QTKitPlayer project by modifying your
MovieDocument.h and MovieDocument.m class files.

Adding Code To The Movie Document Class

In this next sequence of steps, you’ll be adding a small amount of code to your MovieDocument.h class
interface file. You want to declare the instance variables that you have specified as your outlets and target
actions in Interface Builder. You also want to define in code the methods that will enable you to set these
variables.

To begin, open the MovieDocument.h declaration file in your Xcode project. Follow these steps to add to
your existing code in the file:

68 Adding Code To Your QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

1. Insert the following line of code in the @interface directive block after your export outlet declarations.
This enables you to specify the movie attributes for your NSDrawer object:

IBOutlet NSDrawer *mDrawer;

2. Add the following code (also in the @interface block) to specify the drawer elements for your movie
attributes:

 IBOutlet NSTextField *mCurrentSize;
 IBOutlet NSTextField *mDuration;
 IBOutlet NSTextField *mNormalSize;
 IBOutlet NSTextField *mSourceName;
 IBOutlet NSTextField *mTimeDisplay;

3. Define a getter for your drawer with the following line of code:

- (id)drawer;

4. Add to your IBActions to toggle the drawer open and closed, with the following line of code:

- (IBAction)toggleDrawer:(id)sender;

5. Insert the following methods before the @end directive in the file:

- (void)setDurationDisplay;
- (void)setNormalSizeDisplay;
- (void)setCurrentSizeDisplay;
- (void)setSource:(NSString *)name;
- (void)setTimeDisplay;

6. Add these two methods to install and remove the movie callback before the @end directive in the file:

-(void)removeMovieIdleCallback;
-(void)installMovieIdleCallback;

Adding Code To Make the Drawer Work

In this next sequence of steps, you’ll be adding a larger chunk of code to your MovieDocument.m
implementation file.

To begin, open the MovieDocument.m file in your Xcode project. You’ll add the following blocks of code to
your file. Just follow these steps:

1. After your import and #define statements, add this line of C code to set your timer display. You pass
your movie document in the refcon parameter and that gives you a way to call the setTimeDisplay:
method. This is the function prototype you add:

pascal Boolean MyActionFilter (MovieController mc, short action, void* params,
 long refCon);

As the movie is being serviced by QuickTime, the movie controller component calls your action filter
procedure each time the component receives an action for its movie controller. You use the idle action
in your filter procedure to update your timer display.

2. Next, you want to add these initializations for your movie drawer items. Insert these lines:

Adding Code To Your QTKitPlayer Project 69
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

-(void)awakeFromNib
{
 // initialize movie drawer items
 [self setDurationDisplay];
 [self setNormalSizeDisplay];
 [self setCurrentSizeDisplay];
 [self setSource:[self fileName]];
}

3. You want to return the mDrawer instance variable. Insert these lines before you add your setters, in a
block identified as Getters:

- (id)drawer
{
 return mDrawer;
}

4. Now you want to add the following block of code, which enables you to read the movie. This is also
where you install the movie action callback. Add these lines:

- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type
{
 BOOLsuccess = NO;

 // read the movie
 if ([QTMovie canInitWithFile:fileName])
 {
 if ([type isEqualTo:@"MovieDocumentData"])
 {
 NSData*data = [NSData dataWithContentsOfFile:fileName];
 [self setMovie:[QTMovie movieWithData:data error:nil]];
 }
 else
 {
 [self setMovie:((QTMovie *)[QTMovie movieWithFile:fileName
error:nil])];
 }

 success = (mMovie != nil);

 if (success)
 {
 [self installMovieIdleCallback];
 }

 }

 return success;
}

5. Next, you need to install a movie controller action filter. If the movie is successfully created, the callback
is installed. To get the controller from the movie and set the movie control filter, add this block of code:

-(void)installMovieIdleCallback
{
 ComponentResult cr = noErr;

 MovieController mc = [mMovie quickTimeMovieController];

70 Adding Code To Your QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

 if (!mc) goto bail;

 MCActionFilterWithRefConUPP upp =
NewMCActionFilterWithRefConUPP(MyActionFilter);
 if (!upp) goto bail;

 cr = MCSetActionFilterWithRefCon(mc, upp, (long)self);
 DisposeMCActionFilterWithRefConUPP(upp);

bail:
 return;
}

6. When the movie is closed, you remove the existing callback by passing NIL for the callback parameter.
Add these lines of code:

-(void)removeMovieIdleCallback
{
 [MCSetActionFilterWithRefCon([mMovie quickTimeMovieController],
 nil,
 (long)self);
}

7. Insert the following code to toggle the drawer state:

- (IBAction)toggleDrawer:(id)sender
{
 [mDrawer toggle:sender];

8. In the next sequence of steps (8-12), you add these chunks of code to the fields in the drawer. To set the
current time text field, insert this chunk of code:

- (void)setTimeDisplay
{
 if (mMovie)
 {
 QTTime currentPlayTime = [[mMovie
attributeForKey:QTMovieCurrentTimeAttribute] QTTimeValue];
 [mTimeDisplay setStringValue:QTStringFromTime(currentPlayTime)];
 }
}

9. To set the duration text field, insert this chunk of code:

- (void)setDurationDisplay
{
 if (mMovie)
 {
 [mDuration setStringValue:QTStringFromTime([mMovie duration])];
 }
}

10. To set the normal size text field, add this:

- (void)setNormalSizeDisplay
{
 NSMutableString *sizeString = [NSMutableString string];
 NSSize movSize = NSMakeSize(0,0);

Adding Code To Your QTKitPlayer Project 71
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

 movSize = [[mMovie attributeForKey:QTMovieNaturalSizeAttribute] sizeValue];

 [sizeString appendFormat:@"%.0f", movSize.width];
 [sizeString appendString:@" x "];
 [sizeString appendFormat:@"%.0f", movSize.height];

 [mNormalSize setStringValue:sizeString];
}

11. To set the current size text field, add:

- (void)setCurrentSizeDisplay
{
 NSSize movCurrentSize = NSMakeSize(0,0);
 movCurrentSize = [[mMovie attributeForKey:QTMovieCurrentSizeAttribute]
sizeValue];
 NSMutableString *sizeString = [NSMutableString string];

 if (mMovie && [mMovieView isControllerVisible])
 movCurrentSize.height -= [mMovieView controllerBarHeight];

 [sizeString appendFormat:@"%.0f", movCurrentSize.width];
 [sizeString appendString:@" x "];
 [sizeString appendFormat:@"%.0f", movCurrentSize.height];

 [mCurrentSize setStringValue:sizeString];
}

12. To set the source text field, add:

- (void)setSource:(NSString *)name
{
 NSArray *pathComponents = [[NSFileManager defaultManager]
componentsToDisplayForPath:name];
 NSEnumerator *pathEnumerator = [pathComponents objectEnumerator];
 NSString *component = [pathEnumerator nextObject];
 NSMutableString *displayablePath = [NSMutableString string];

 while (component != nil) {
 if ([component length] > 0) {
 [displayablePath appendString:component];

 component = [pathEnumerator nextObject];
 if (component != nil)
 [displayablePath appendString:@":"];
 } else {
 component = [pathEnumerator nextObject];
 }
 }

 [mSourceName setStringValue:displayablePath];
}

13. After the @end directive, you add this chunk of code to intercept some actions for the movie controller
and to update the current time display in the drawer. Note that the refCon parameter is a document
id:

72 Adding Code To Your QTKitPlayer Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

pascal Boolean MyActionFilter (MovieController mc, short action, void* params,
 long refCon)
{
 MovieDocument *doc = (MovieDocument *)refCon;

 switch (action)
 {
 // handle idle events
 case mcActionIdle:
 // update the current time display in the info drawer
 if ([[doc drawer] state] != NSDrawerClosedState)
 [doc setTimeDisplay];
 break;
 }

 return false;
}

This wraps up the additions to the code you need to make in your MovieDocument implementation file.
You’re now ready to build and compile your Xcode project.

The Completed Project

If you’ve followed the steps outlined in this chapter, you’ll have successfully extended the QTKitPlayer
application with a Cocoa drawer you can toggle open and closed. The drawer will display and update the
time of any QuickTime movie you want to play.

You can control movie playback as you have before, with QTKitPlayer functionality still in place for movie
control, as shown in Figure 4-13.

Figure 4-13 Open drawer with movie Show Controller selected

In a short series of steps, you’ve significantly extended the capabilities of your QTKitKPlayer application. Now
you’re ready to enhance the media player by adding the capability to stream audio and video. That’s explained
in the next chapter.

The Completed Project 73
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

74 The Completed Project
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Adding New Capabilities to the QTKitPlayer Application

If you’ve been working diligently through the code examples in the last two chapters, you’ve no doubt
advanced your knowledge of how to extend your QTKitPlayer application with the tools available in Xcode
and Interface Builder. The goal has been to enhance the functionality of the media player by tapping into
the power of the QTKit framework and in the process learn by doing.

In this chapter, you’ll jump into another level of programming skill by adding the capability of streaming
audio and video in your application. Streaming, of course, is not the same thing as downloading a QuickTime
movie file.

Note: Streams, which can originate from a live source or stored video on a server, are data packets that are
assembled into sound and video, displayed briefly, then discarded. No movie file is created on the user’s
computer. The way streaming works is that a streaming server responds to requests for streaming movies,
and then transmits those streams to users in response to requests. The requests are handled using RTSP
(Real-Time Streaming Protocol); streams are sent over the Internet using RTP (Real-Time Transport Protocol).

The URL for a streaming movie starts with the RTSP protocol identifier and looks like this

rtsp://YourStreamServer.com/YourPath/YourMovie.mov

After you complete the steps in this chapter, your QTKitPlayer application will be able to play audio and video
streams in real time over the Internet. You’ll be able to open a streaming movie by choosing Open URL from
the File menu and entering the URL string, as shown in Figure 5-1.

Figure 5-1 An Open URL dialog in the completed QTKitPlayer application

Clicking OK launches an Untitled QTKitPlayer movie window with a big blue Q at the center, as shown in
Figure 5-2.

75
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio
and Video

Figure 5-2 The movie window launched by the QTKitPlayer to stream audio and video with the big blue
Q at its center

When you click the play button in the control bar at the lower left, your application will send a request to a
server to fetch the audio or video stream with the RTSP protocol identifier. A few seconds later, the stream
will appear in the player window. You can then resize the window accordingly, as you wish.

You’ll follow the same procedure as defined in the previous chapter: identify the tasks to accomplish, construct
and wire together the necessary objects for your user interface, and then add the code to make it work.

Tasks to Accomplish

The tasks you need to accomplish to extend the capability of your streaming QTKitPlayer are more complex
than those described in the previous chapter. You’ll build on the existing QTKitPlayer application, using the
tools available to you in Interface Builder 2.5 and Xcode 2.0. But you’ll also be adding more code to the project
to deal with the handling of URL streams. You’ll do this:

1. Construct an OpenURL panel in Interface Builder with a ComboBox object for entering a movie URL.

2. Add actions and outlets to the OpenURL panel you’ve constructed.

3. Add a new menu item to the File menu to open the URL.

4. Subclass NSObject with a QTKitAppDelegate class in your MainMenu.nib and wire it up to handle the
opening of a URL in your OpenURL panel.

5. Add to your Xcode project a new OpenURLPanel.h declaration file in which you define the class methods,
getters and setters, delegates, notifications, and actions for your URL panel.

6. Add an OpenURLPanel.m implementation file in which you get the URL from a string, validate and save
the URL, and inform the delegate before closing down the URL panel.

7. Add an QTKitPlayerAppDelegate.h class interface file to your project with IBActions for opening the
URL panel.

8. Add an QTKitPlayerAppDelegate.m implementation file to your project in order to create the movie
document from the URL.

Each task is outlined, step by step, in the next sections of this chapter. You’ll start as you have before with
Interface Builder and then move on to add the code you need in four separate Xcode files.

76 Tasks to Accomplish
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

Constructing the Open URL Panel

By now you should be familiar with how to work with Interface Builder and its various palettes, icons, and
objects. For purposes of simplicity and to move things forward a bit faster, this means combining a few basic
steps in constructing your Open URL Panel. To start:

1. Create a new nib and call it OpenURLPanel.nib.

2. Create an Open URL panel object with Cancel and OK buttons, which are positioned according to Human
Interface Guidelines, as shown in Figure 5-3.

3. Create a ComboBox object from the Cocoa-Data palette, where the user can enter a movie URL, as also
shown in Figure 5-3.

Figure 5-3 The Open URL panel nib and dialog for entry of a movie URL

Constructing the Open URL Panel 77
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

4. In the ComboBox, specify the attributes shown in Figure 5-4.

Figure 5-4 The ComboBox attributes

78 Constructing the Open URL Panel
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

5. In the Size pane of the OpenURLPanel object, set the springs and the size of the panel, as shown in Figure
5-5.

Figure 5-5 The size settings and spring positions in the OpenURLPanel object

Constructing the Open URL Panel 79
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

6. Now in the OpenURLPanel.nib, select OpenURLPanel from the list of classes. You can type “OpenURLPanel”
in the search box and press return, or click NSObject to locate the OpenURLPanel class. Add mPanel and
mUrlComboBox as your outlets, as shown in Figure 5-6.

Figure 5-6 The outlets for the OpenURLPanel class

7. Now add one action to the the OpenURLPanel class in the Attributes pane, as shown in Figure 5-7.

Figure 5-7 Action added to the OpenURLPanel

8. Save the nib and open the MainMenu.nib - MainMenu.

80 Constructing the Open URL Panel
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

9. Add a menu item in the File menu as Open URL. . . with a key equivalent of Command-U, and specify its
attributes as shown in Figure 5-8.

Figure 5-8 The main menu nib with the menu attributes specified

10. Now subclass NSObject and create a new class called QTKitPlayerAppDelegate.

11. Select QTKitPlayerAppDelegate from the list of classes in your MainMenu.nib and open the Attributes
pane.

Constructing the Open URL Panel 81
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

12. Add the doOpenURL action to your QTKitPlayerAppDelegate, as shown in Figure 5-9.

Figure 5-9 Actions added to the QTKitPlayAppDelegate class in the Attributes pane

82 Constructing the Open URL Panel
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

13. Now add the wiring to connect the OpenURL menu item and its action doOpenURL to the
QTKitPlayAppDelegate class, as shown in Figure 5-10.

Figure 5-10 Wiring to nib

14. Save the files in Interface Builder and Quit.

If you’ve completed the steps outlined this section, you’ll be ready now to add the necessary code to your
project.

Adding Code To Stream Audio and Video

In this section, you’ll add four new files to your Xcode project, including a OpenURLPanel.h declaration file,
an OpenURLPanel.m implementation file, a QTKitPlayerAppDelegate.h class interface file, and a
QTKitPlayerAppDelegate.m implementation file. Figure 5-11 shows the class model for the OpenURLPanel
class with its properties and their connections listed.

Adding Code To Stream Audio and Video 83
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

Figure 5-11 The class model for the OpenURLPanel class

Adding Code For The OpenURLPanel Class Interface

In this next sequence of steps, you’ll add the code you need for your OpenURLPanel.h class interface file.

To begin, in your QTKitPlayer project, choose File > New File. In the Assistant window for your new file in
Xcode 2.0, select Cocoa > Objective-C class and in the window that opens enter the title OpenURLPanel.h
. Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import <Cocoa/Cocoa.h>
#import <QTKit/QTKit.h>

2. Add the following declaration code after your import statements:

@interface OpenURLPanel : NSObject
{
// panel
 IBOutlet NSPanel *mPanel;
 IBOutlet NSComboBox *mUrlComboBox;
// open url panel
 id mDelegate;
 SEL mDidEndSelector;
 void *mContextInfo;
 NSMutableArray *mUrlArray;

84 Adding Code To Stream Audio and Video
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

 BOOL mIsSheet;
 }

3. Define a class method with the following line of code:

+ (id)openURLPanel;

4. Define the getters you need with the following lines of code:

-(NSString *)urlString;
- (NSURL *)url;

5. Define the setters with the following line of code:

- (void)setURLArray:(NSMutableArray *)urlArray;

6. Define the delegate with the following line of code:

- (void)awakeFromNib;

7. Define the notifications:

- (void)writeURLs:(NSNotification *)notification;

8. Define the actions you need:

(IBAction)doOpenURL:(id)sender;

9. Define the delegate methods:

 - (void)beginSheetWithWindow:(NSWindow *)window delegate:(id)delegate
didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo;

Save the file in the Classes folder in your QTKitPlayer project.

Adding Code To OpenURLPanel.m

In this next sequence of steps, you’ll be adding a larger chunk of code to your OpenURLPanel.m
implementation file.

To begin, in your QTKitPlayer project, choose File > New File. In the Assistant window for your new file in
Xcode 2.0, select Cocoa > Objective-C class and in the window that opens enter the title OpenURLPanel.m
. (Note that if you check the box in the title window, your implementation will already be created for you.)
Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import "OpenURLPanel.h"

2. Following your import statement, you want to define a constant for specifying user default keys. Insert
this line:

#define kUserDefaultURLsKey @"UserDefaultURLsKey"

3. You also want to define the maximum number of URLs, in this case 15. Insert this line:

Adding Code To Stream Audio and Video 85
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

#define kMaximumURLs 15

4. Now you want to add the following class methods to deal with opening the URL panel. Add these lines:

+ (id)openURLPanel
{
 if (openURLPanel == nil)
 openURLPanel = [[self alloc] init];
return openURLPanel;
}

5. Next, you need to add initialization code to initialize an OpenURLPanel instance and listen for application
termination notifications. Add these lines:

- (id)init
{
 [super init];

 // init
 [self setURLArray:[NSMutableArray arrayWithCapacity:10];

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(writeURLs:) name:NSApplicationWillTerminateNotification
object:NSApp];

 return self;
}

6. Insert the following code to handle deallocation of memory and notifications:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [self setURLArray:nil];
 [super dealloc];
}

7. To get the URL string, insert this chunk of code:

- (NSString *)urlString
{
 NSString *urlString = nil;

 // get the url
 urlString = [mUrlComboBox stringValue];

 if (urlString == nil)
 urlString = [mUrlComboBox objectValueOfSelectedItem];

 if ([urlString length] == 0)
 urlString = nil;

 return urlString;
}

8. To set the instance variable of the URL array, add the following code:

- (void)setURLArray:(NSMutableArray *)urlLArray
{

86 Adding Code To Stream Audio and Video
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

 [urlLArray retain];
 [mUrlLArray retain];
 mUrlLArray = urlLArray;
}

9. The next block of code lets you restore the previous URLs. Insert the following block of code:

- (void)awakeFromNib
{
 NSArray *urls;

 // restore the previous urls
 urls = [[NSUserDefaults standardUserDefaults]
objectForKey:kUserDefaultURLsKey];
 [mUrlArray addObjectsFromArray:urls];

 if (urls)
 [mUrlComboBox addItemsWithObjectValues:urls];
}

10. To set up deal with notifications, you need to add this chunk of code. This will enable you to “listen” for
any notifications. Insert the following:

- (void)writeURLs:(NSNotification *)notification
{

 NSUserDefaults *userDefaults;
 if ([mUrlArray count]
 {
 // init
 userDefaults = [NSUserDefaults standardUserDefaults];

 // write out the urls
 [userDefaults setObject:mUrlArray forKey:kUserDefaultURLsKey];
 [userDefaults synchronize];
 }
}

11. To write to actions, validate and save the URL, add the following code:

- (IBAction)doOpenURL:(id)sender
{
{
 NSString*urlString;
 NSURL*url;
 BOOLinformDelegate = YES;
 IMP callback;

 if ([sender tag] == NSOKButton)
 {
 // validate the URL
 url = [self url];
 urlString = [self urlString];

 if (url)
 {
 // save the url
 if (![mUrlArray containsObject:urlString])

Adding Code To Stream Audio and Video 87
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

 {
 // save the url
 [mUrlArray addObject:urlString];

 // add the url to the combo box
 [mUrlComboBox addItemWithObjectValue:urlString];

 // remove the oldest url if the maximum has been exceeded
 if ([mUrlArray count] > kMaximumURLs)
 {
 [mUrlArray removeObjectAtIndex:0];
 [mUrlComboBox removeItemAtIndex:0];
 }
 }
 else
 {
 // move the url to the bottom of the list
 [mUrlArray removeObject:urlString];
 [mUrlArray addObject:urlString];
 [mUrlComboBox removeItemWithObjectValue:urlString];
 [mUrlComboBox addItemWithObjectValue:urlString];
 }
 }
 else
 {
 if (mIsSheet)
 NSRunAlertPanel(@"Invalid URL", @"The URL is not valid.", nil,
 nil, nil);
 else
 NSBeginAlertSheet(@"Invalid URL", nil, nil, nil, mPanel, nil,
nil, nil, nil, @"The URL is not valid.");

 informDelegate = NO;
 }
 }

 // inform the delegate
 if (informDelegate && mDelegate && mDidEndSelector)
 {
 callback = [mDelegate methodForSelector:mDidEndSelector];
 callback(mDelegate, mDidEndSelector, self, [sender tag], mContextInfo);
 }
}

12. Add these lines of code to save the delegate and start the sheet:

- (void)beginSheetWithWindow:(NSWindow *)window delegate:(id)delegate
didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo
{
 // will this run as a sheet
 mIsSheet = (window ? YES : NO);

 // save the delegate, did end selector, and context info
 mDelegate = delegate;
 mDidEndSelector = didEndSelector;
 mContextInfo = contextInfo;

 // load the bundle (if necessary)

88 Adding Code To Stream Audio and Video
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

 if (mPanel == nil)
 [NSBundle loadNibNamed:@"OpenURLPanel" owner:self];

 // start the sheet (or window)
 [NSApp beginSheet:mPanel modalForWindow:window modalDelegate:nil
didEndSelector:nil contextInfo:nil];
}

13. Add these lines to close it down:

- (void)close
{
 // close it down
 [NSApp endSheet:mPanel];
 [mPanel close];
}

This completes the steps for adding code to your OpenURLPanel.m implementation file. There is only one
more sequence of steps, described in the next section, before you can run and build your QTKitPlayer
application for streaming audio and video.

Adding Code to QTKitPlayerDelegate

In this next sequence of steps, you’ll be adding a small amount of code to your QTKitPlayerAppDelegate.h
class interface file.

In Xcode 2.0, you’ll see the class model for the delegate, as shown in Figure 5-12.

Figure 5-12 Class model for delegate

Adding Code To Stream Audio and Video 89
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

To begin, in your QTKitPlayer project, choose File > New File. In the Assistant window for your new file in
Xcode 2.0, select Cocoa > Objective-C class and in the window that opens enter the title
QTKitPlayerAppDelegate.h and check the box that also lets you create a QTKitPlayerAppDelegate.m
file. Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import <Cocoa/Cocoa.h>
#import "OpenURLPanel.h"

2. Add the following declaration code after your import statements:

@interface QTKitPlayerAppDelegate : NSObject

3. Define a NSMenu validation protocol with the following line of code:

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem;

4. Define the OpenURLPanel delegates with the following lines of code:

- (void)openURLPanelDidEnd:(OpenURLPanel *)openURLPanel returnCode:(int)returnCode
 contextInfo:(void *)contextInfo;

5. Define the actions with the following lines of code:

- (IBAction)doOpenURL:(id)sender;
- (IBAction)doOpenURLData:(id)sender;

6. Define the method with the following line of code:

 - (BOOL)createMovieDocumentWithURL:(NSURL *)url asData:(BOOL)asData;

You’re done with the QTKitPlayerAppDelegate.h declaration file.

Adding Code To Your QTKitPlayerDelegate.m

In this next sequence of steps, you’ll be adding a larger chunk of code to your QTKitPlayerAppDelegate.m
implementation file.

To begin, in the QTKitPlayerAppDelegate.m file, you want to follow these steps:

1. Insert the following import code at the beginning of your file:

#import "QTKit/QTKit.h"
#import "QTKitPlayerAppDelegate.h"
#import “MovieDocument.h.”

2. Following your import statement, you want add these enumerations. Insert these lines:

{
 kQTKitPlayerOpenAsURL = 0,
 kQTKitPlayerOpenAsData

};

90 Adding Code To Stream Audio and Video
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

3. You also want to add QTKitPlayAppDelegate after the @implementation directive. Insert this line:

@implementation QTKitPlayerAppDelegate

4. Now you want to add the following lines for NSMenu validation protocols. Insert this block of code:

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem
{
 BOOLvalid = NO;
 SEL action;

 // init
 action = [menuItem action];

 // validate
 if (action == @selector(doOpenURL:))
 valid = YES;
 else if (action == @selector(doOpenURLData:))
 valid = YES;
 else
 valid = [[NSDocumentController sharedDocumentController]
validateMenuItem:menuItem];

 return valid;
}

5. Next, you need to add these OpenURLPanel delegates. Insert these lines:

- (void)openURLPanelDidEnd:(OpenURLPanel *)openURLPanel returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 BOOL closePanel = YES;

 // create the movie document
 if (returnCode == NSOKButton)
 closePanel = [self createMovieDocumentWithURL:[openURLPanel url]
asData:((long)contextInfo == kQTKitPlayerOpenAsData)];

 if (closePanel)
 [openURLPanel close];
}

6. Insert the following code to handle the necessary actions for opening the sheet with a window:

- (IBAction)doOpenURL:(id)sender
{
 [[OpenURLPanel openURLPanel] beginSheetWithWindow:nil delegate:self
didEndSelector:@selector(openURLPanelDidEnd:returnCode:contextInfo:)
contextInfo:((void *)kQTKitPlayerOpenAsURL)];
}

- (IBAction)doOpenURLData:(id)sender
{
 [[OpenURLPanel openURLPanel] beginSheetWithWindow:nil delegate:self
didEndSelector:@selector(openURLPanelDidEnd:returnCode:contextInfo:)
contextInfo:((void *)kQTKitPlayerOpenAsData)];
}

Adding Code To Stream Audio and Video 91
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

7. These are the methods you need to create and set up the movie document with an associated URL.
Insert this chunk of code:

- (BOOL)createMovieDocumentWithURL:(NSURL *)url asData:(BOOL)asData
{
 NSDocument *movieDocument = nil;
 NSDocumentController*documentController;
 BOOL success = YES;

 // init
 documentController = [NSDocumentController sharedDocumentController];

 // try to create the document from the URL
 if (url)
 {
 if (asData)
 movieDocument = [documentController makeDocumentWithContentsOfURL:url
 ofType:@"MovieDocumentData"];
 else
 movieDocument = [documentController makeDocumentWithContentsOfURL:url
 ofType:@"MovieDocument"];
 }

 // add the document
 if (movieDocument)
 {
 [documentController addDocument:movieDocument];

 // setup
 [movieDocument makeWindowControllers];
 [movieDocument updateChangeCount:NSChangeCleared];
 [movieDocument showWindows];
 }
 else
 {
 NSRunAlertPanel(@"Invalid movie", @"The url is not a valid movie.", nil,
 nil, nil);
 success = NO;
 }

 return success;
}

This wraps up the code additions for your QTKitPlayer application. Now you’re ready to build and compile
the application and play streaming audio and video over the Internet.

What’s Next?

You’ve extended the QTKitPlayer beyond its early incarnations as a simple media player, adding editing,
importing, exporting, and now streaming capabilities. In the next chapter, you’ll provide new enhancements
to the player that will enable you to play back as many as six different QuickTime movies, including QuickTime
VR, streaming audio and video, wired sprite movies, and other multimedia content.

92 What’s Next?
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

You’ll have a multimedia engine at your disposal that you can use to launch a variety of QuickTime content,
much as you would do with an interactive movie kiosk. The steps to create this engine are spelled out in the
next chapter and enable you to build on what you’ve learned so far in this programming guide.

What’s Next? 93
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

94 What’s Next?
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Extending the QTKitPlayer To Stream Audio and Video

In this chapter, you’ll add multimedia playback to your QTKitPlayer, working with the tools available to you
in Interface Builder and Xcode 2.0. The goal is, as in previous chapters, to build on the code you’ve written
and the interface you’ve constructed, so that you can enhance the capabilities of the QTKitPlayer—with a
minimum of programming effort.

When completed, the results will be dramatic and visually exciting: a multimedia playback engine capable
of simultaneously playing in real time as many as six different QuickTime movies, QuickTime VR panoramas
and object movies, streaming audio and video, animation and wired sprite movies, and other content that
QuickTime can import and display. The user experience will be enhanced and require some degree of
interactivity with the multimedia content that is displayed. Just controlling multichannel sound or interactive
VR movies will alter the user experience.

Note: Multimedia is an often misused term, with different meanings, implied or otherwise. To developers
of digital media, “multimedia is defined by a set of standards that enable media to be acquired, represented,
compressed, delivered and displayed,” according to Phillip John McKerrow, a computer scientist and teacher
of multimedia programming, in a recent article in the journal IEEE Multimedia. “For a production to be
considered multimedia it must include a provision for the user to interact with the content and influence
the course of the presentation.”

In the completed project, you’ll add a new menu title, Studio, to the QTKitPlayer and a menu item, Present
Movies. You’ll also add code to open and display all six QuickTime movies in a window, with multiple—and
resizable—views of each movie.

Clicking a button in the Play Multimedia Content window will open a dialog box from which users will be
able to select any movie or media type of their choice (Figure 6-1). After each movie is chosen, a new dialog
box appears, prompting the user for another selection until the user has populated the window with all six
QuickTime movies, as shown in Figure 6-2.

95
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

Figure 6-1 Opening six QuickTime movies of the user’s choosing for display in the multimedia content
window of the QTKitPlayer application

The window in which the movies are displayed can be resized to full screen for maximum visual impact and
the toolbar at the top can be collapsed for a kiosk-like effect. The three movies displayed at the top of window
contain an NSSplitView, while an NSTabView is provided for two movies and a text view below, and an
NSScrollView with a movie appears in the right corner of the window.

The intended effect is for some degree of user interactivity with one or all of the QuickTime movies displayed,
either by splitting the views and tabbing through them, or starting and stopping the playback of each movie.
If all six movies are different QuickTime VR panoramas or object movies, for example, the user will be able
to point and click through a variety of landscapes or hotspots from different points of view. The result is a
heightened user experience.

96
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

Figure 6-2 All six movies selected by the user playing in different views

Users may interact as they would with a multimedia kiosk or presentation, playing each movie at a different
rate using the playback commands available in the QTKitPlayer.

At the programming level, each movie is simply a QTMovieView object and is intended to interact with other
standard Cocoa views. The Show Movies button in the Play Multimedia Content window will launch each of
the six dialogs that enable the user to choose a movie for display and playback. Users can then control the
playback of each movie using the commands available in the QTKitPlayer to start, stop, go to the beginning,
go to the end, show poster frame, step forward and step backward. Movies can also be controlled by toggling
the spacebar to start and stop playback. Movie editing, however, is not enabled for any movie being displayed.

If you’ve worked through the examples in the previous chapters, you’ll be ready to move ahead with
constructing and coding the multimedia playback enhancement for your QTKitPlayer.

Tasks to Accomplish

The tasks you want to accomplish in adding this new functionality to your QTKitPlayer application are less
complex than those in the previous chapter. You’ll build on the existing QTKitPlayer, using the tools available
to you in Interface Builder 2.5 and Xcode 2.0. The code you’ll need to add to the project in order to make it
work will be surprisingly simple—but powerful. You’ll do this:

Tasks to Accomplish 97
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

1. Add a View Tests Window to your MainMenu.nib in Interface Builder and populate that window with
the QTMovieView objects you need to display QuickTime movies, as indicated in Figure 6-3.

2. Specify the attributes of the View Tests Window you’ve added to the nib.

3. Subclass NSObject with a ViewTestsController class in your MainMenu.nib and wire it up with outlets
and actions to handle the opening and display of movies in the View Tests Window.

4. Add to your Xcode project a new ViewTestsController.h declaration file in which you define the
instance variables and actions for your ViewTestsController class.

5. Add an ViewTestsController.m implementation file to your QTKitPlayer project in which you handle
getting and setting the movies you want to play, notifications, stopping and clearing the movies that
are playing, and adding a toolbar which can be shown or not shown.

6. Add a new menu title to the QTKitPlayer and a menu item to open the window

7. Connect the Show Movies button to the ViewTestsController object.

Figure 6-3 The layout of the objects in the content window with the Present Movies menu item
selected

98 Tasks to Accomplish
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

Each task is outlined in the next sections of this chapter. You’ll start as you have before with Interface Builder
and then move on to add the code you need in two separate Xcode files.

Constructing The Multimedia Playback Engine

By now you should be familiar with how to work with Interface Builder and its various palettes, icons, and
objects. For purposes of simplicity and to move things forward a bit faster, this means combining a few basic
steps in constructing your multimedia playback engine with all the different QTMovieView objects in view.
To start:

1. Drag a window object from the Cocoa-Windows palette in Interface Builder into your MainMenu.nib and
name it View Tests Window.

2. Command-1 to open the NSWindow info panel and set the attributes for the window object, as shown
in Figure 6-4. Enter the window title Play Multimedia Content.

Figure 6-4 The attributes pane for the View Tests Window object

Constructing The Multimedia Playback Engine 99
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

3. Press Command-3 to open the Size of the View Tests Window and set the size and springs, as shown in
Figure 6-5.

Figure 6-5 The size of the View Tests Window with the springs set

4. Now you want to construct your Play Multimedia Content window, as shown completed in Figure 6-6.
Drag CustomView objects into the window and subclass them as QTMovieView objects. (In the Info
window, use the Custom Class pop-up to subclass the objects.)

5. Figure 6-6 shows a lot of steps that may not be obvious. To simplify, do this: Drag the TabView object
into the window from the palette. Drag three CustomView objects into the window, select all three by
shift-clicking, and choose Layout > Make Subviews Of > Split View. Repeat this for the ScrollView. This
is the preferred way of working with these objects in your window.

6. Now you want to drag CustomView objects onto the TabView, SplitView, and ScrollView objects. Subclass
them as QTMovieView objects.

100 Constructing The Multimedia Playback Engine
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

7. Add textfields for Split View:, Tab View:, and Scroll View. Also, you want to add buttons in Tab View for
Movie, Text, and Movie, as shown in Figure 6-6.

Figure 6-6 The layout of QTMovieView objects with textfields added for different views

Constructing The Multimedia Playback Engine 101
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

8. Drag a button from the Cocoa-Controls palette into the upper right corner of the window. Name the
button Show Movies and specify its attributes, as shown in Figure 6-7.

Figure 6-7 Button attributes

9. Create an action doSetMovies: for the Show Movies button in the upper right hand corner of the
window. Double-click the ViewTestsController object. Click the actions pane. Click the Add button to
add an action doSetMovies:.

10. Wire the Show Movies button to the doSetMovies: action. Click t he Show Movies button and press the
Control key. Click-drag from the button to the ViewTestsController object. In the Info window for the
ViewTestsController object, click the Connect button.

102 Constructing The Multimedia Playback Engine
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

11. Now you want to specify the window attributes for the Split View, shown in Figure 6-8.

Figure 6-8 Split View attributes specified

12. Specify the window attributes for the Tab View. Note the number of items in the TabView object, as
shown in Figure 6-9.

Figure 6-9 Tab view attributes specified

Constructing The Multimedia Playback Engine 103
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

13. Specify the attributes in the Text TabViewItem, as shown in Figure 6-10. The user will be able to enter
text into this window.

Figure 6-10 Text attribute specified

14. Specify the attributes of the Scroll View object, with border style, and vertical and horizontal scroller
checked, as shown in Figure 6-11.

Figure 6-11 Scroll View attributes specified

104 Constructing The Multimedia Playback Engine
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

15. To make the controller, subclass NSObject, and name the controller ViewTestsController.

16. Add outlets to ViewTestsController. Double-click the ViewTestsController object. In the Info window,
click the Add button to add the following outlets: mScrollViewMovieView, mSplitViewMovieView1,
mSplitViewMovieView2, mSplitViewMovieView3, mTabViewMovieView1, mTabViewMovieView2,
and mViewTestsWindow, as shown in Figure 6-12.

Figure 6-12 Outlet connections for the ViewTestsController

Constructing The Multimedia Playback Engine 105
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

17. Now you want to wire up the connections from the various QTMovieView objects in the window to their
respective outlets. Control-drag from the ViewTestController object to the ScrollView, TabView, and
SplitView objects in the window and click the Connect button, as shown in Figure 6-13.

Figure 6-13 Connecting the ViewTestsController to an outlet

18. Add another menu to the MainMenu.nib - MainMenu in Interface Builder with the title Studio, and add
a menu item entitled Present Movies with a Command-1 keystroke equivalent.

19. Add an action doShowViewTestsWindow: to ViewTestsController. Double-click the ViewTestsController
icon. In the Info window, click the Actions pane. Click the Add button to add an action
doShowViewTestsWindow:.

106 Constructing The Multimedia Playback Engine
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

20. Connect the Present Movies menu item by pressing the Control key and drag-connecting the wire to
the ViewTestsController object. Make the connection to the doShowViewTestsWindow target, as
shown in Figure 6-14.

Figure 6-14 The present movie connection to the ViewTestsController and target

Constructing The Multimedia Playback Engine 107
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

21. Connect the Show Movies button to the ViewTestsController object, as shown in Figure 6-15.

Figure 6-15 Connecting the Show Movies button to the ViewTestsController with its target

This completes the steps you need to follow in Interface Builder. You’re now ready to add the code to make
the project work.

Adding Code To Display and Playback Multimedia

In this section, you’ll add two new files to your Xcode project, including a ViewTestsController.h
declaration file and an ViewTestsController.m implementation file. Figure 6-16 shows the class model
for the ViewTestsController class with its properties and their connections listed

108 Adding Code To Display and Playback Multimedia
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

Figure 6-16 The class model in Xcode 2.0 of the ViewTestsController class

Adding Code To Your ViewTestsController Class Interface

In this next sequence of steps, you’ll be adding a small amount of code to your ViewTestsController.h
class interface file.

To begin, in your QTKitPlayer project, choose File > New File. In the Assistant window for your new file in
Xcode 2.0, select Cocoa > Objective-C class and in the window that opens enter the title
ViewTestsController.h . Now follow these steps:

1. Insert the following import code at the beginning of your file:

#import <Cocoa/Cocoa.h>
#import <QTKit/QTKit.h>

2. Add this line of code:

@class QTMovieView;

3. Add the following block of code declaring the instance variables that belong to your
ViewTestsController class:

@interface ViewTestsController : NSObject
{
 IBOutlet NSWindow *mViewTestsWindow;
 IBOutlet QTMovieView *mSplitViewMovieView1;
 IBOutlet QTMovieView *mSplitViewMovieView2;
 IBOutlet QTMovieView *mSplitViewMovieView3;
 IBOutlet QTMovieView *mTabViewMovieView1;
 IBOutlet QTMovieView *mTabViewMovieView2;
 IBOutlet QTMovieView *mScrollViewMovieView;

Adding Code To Display and Playback Multimedia 109
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

 }

4. Define the actions you need before the @end directive in order to show movies in your window and to
show the window itself:

- (IBAction)doSetMovies:(id)sender;
- (IBAction)doShowViewTestsWindow:(id)sender;

That’s it. Save your ViewTestsController.h file.

Adding Code To Your ViewTestController.m

In this next sequence of steps, you’ll be adding a larger chunk of code to your ViewTestsController.m
implementation file.

To begin, in your QTKitPlayer project, choose File > New File. In the Assistant window for your new file in
Xcode 2.0, select Cocoa > Objective-C class and in the window that opens enter the title
ViewTestsController.m . Now follow these steps

1. Insert the following import line at the beginning of your file:

#import "ViewTestsController.h"

2. Following your import statement, you want to add this line:

@implementation ViewTestsController

3. You want to be notified when the window is closing so you can do a cleanup. Insert these lines of code:

-(void)awakeFromNib
{
 [[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(closeWin:)
 name:NSWindowWillCloseNotification object:mViewTestsWindow];
}

4. Add this next block to specify if the movie is playing or not. If the movie is currently playing, it returns
YES. If not, it returns NO.

-(BOOL)isPlaying:(QTMovie *)aMovie
{
 if ([aMovie rate] == 0)
 {
return NO;
}
return YES:
}

5. Next, you need to add code to stop the movie from playing. Add these lines:

-(void)stopPlayingMovie:(QTMovie *)aMovie
{
 if ([self isPlaying:aMovie] == YES)
 {
 [aMovie stop];

110 Adding Code To Display and Playback Multimedia
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

 }
}

6. Insert the following code to handle stopping of any currently playing movies and to clear the movies
that were previously set for each view:

- (void)closeWin:(void *)userInfo
{
 // stop any currently playing movies
 [self stopPlayingMovie:[mSplitViewMovieView1 movie]];
 [self stopPlayingMovie:[mSplitViewMovieView2 movie]];
 [self stopPlayingMovie:[mSplitViewMovieView3 movie]];
 [self stopPlayingMovie:[mTabViewMovieView1 movie]];
 [self stopPlayingMovie:[mTabViewMovieView2 movie]];
 [self stopPlayingMovie:[mScrollViewMovieView movie]];

 // clear the movies that were previously set for each view
 [mSplitViewMovieView1 setMovie:NULL];
 [mSplitViewMovieView2 setMovie:NULL];
 [mSplitViewMovieView3 setMovie:NULL];
 [mTabViewMovieView1 setMovie:NULL];
 [mTabViewMovieView2 setMovie:NULL];
 [mScrollViewMovieView setMovie:NULL];

}

7. To get the movies you want to play and open the panel so the user can choose, insert this chunk of code:

- (QTMovie *)getAMovieFile
{
 NSOpenPanel *openPanel;
 openPanel = [NSOpenPanel openPanel];
 [openPanel setCanChooseDirectories:NO];

 if ([openPanel runModalForTypes:[QTMovie movieUnfilteredFileTypes]] ==
NSOKButton)
 {
 return [QTMovie movieWithFile:[openPanel filename] error:NULL];
 }

 return nil;

8. To set the movies, add this chunk of code:

- (IBAction)doSetMovies:(id)sender
 // set the movies
 [mSplitViewMovieView1 setMovie:[self getAMovieFile]];
 [mSplitViewMovieView2 setMovie:[self getAMovieFile]];
 [mSplitViewMovieView3 setMovie:[self getAMovieFile]];
 [mTabViewMovieView1 setMovie:[self getAMovieFile]];
 [mTabViewMovieView2 setMovie:[self getAMovieFile]];
 [mScrollViewMovieView setMovie:[self getAMovieFile]];
}

9. To add a toolbar and to show the window, add the following code:

- (IBAction)doShowViewTestsWindow:(id)sender
{

Adding Code To Display and Playback Multimedia 111
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

 // add a toolbar
 if ([mViewTestsWindow toolbar] == nil)
 [mViewTestsWindow setToolbar:[[[NSToolbar alloc]
initWithIdentifier:@"QTKitPlayer"] autorelease]];

 // show the window
 [mViewTestsWindow makeKeyAndOrderFront:nil];
}

@end

This completes the steps for adding code to your ViewTestsController.m implementation file. You can
build and compile your QTKitPlayer application for multimedia playback.

The Completed QTKit Multimedia Player

If you’ve worked through the steps outlined in this chapter, you’ll have extended your knowledge of how to
build a media player that is capable of displaying and playing back up to six QuickTime movies. You can
modify the code to meet your own needs, if, for example, you want to set up the QTKitPlayer so that it only
displays movies that are pre-selected. This is possible with a minimum amount of code tweaking.

The goal is to expand the possibilities that are available to you with the new QTKit framework.

The effect of multimedia playback can be dramatic, indeed, when the user is able to view all six movies at
full screen on their computer and even resize each movie to meet their viewing needs. In the illustration
shown in Figure 6-17, the QuickTime VR movie in the lower left portion of the playback window is stretched
out for improved VR viewing and navigation.

Figure 6-17 Full screen multimedia playback with resizing of the QuickTime VR movie in the lower left
portion of the window

112 The Completed QTKit Multimedia Player
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Adding Multimedia Playback Capability

This table describes the changes to QuickTime Kit Programming Guide.

NotesDate

Added new task information in the sequence of steps required to build and
extend the example QTKitPlayer application. Minor edits throughout, along with
code formatting updates and fixes.

2005-11-09

Updated for public release of Mac OS X v10.4. Added chapters on how to
implement advanced features in the QTKitPlayer sample application. First public
version.

2005-04-29

113
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

114
2005-11-09 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Kit Programming Guide
	Contents
	Figures and Tables
	Introduction
	The QuickTime Kit API
	Working With the QuickTime Kit API
	The QuickTime Kit Classes
	QTMovie
	QTMovieView
	QTTrack
	QTMedia
	QTDataReference

	QuickTime Kit Functions
	QTTime
	QTTimeRange

	Building a Simple QTKitPlayer Application
	Creating the QTKitPlayer Project
	Working With the QTKit Palette
	Extending the Functionality of QTKitPlayer

	Extending the QTKitPlayer Application
	Creating the Extended QTKitPlayer Project
	Getting Started
	Creating the QTMovieView Object with Outlets and Actions
	Creating the Export View Object
	Adding Outlets and Actions to The MovieView Object
	Wiring Up The MainMenu.nib

	Adding Code to the MovieDocument Class Interface
	Adding Code to MovieDocument.m
	Modifying the Info.plist File
	Running and Building Your QTKitPlayer
	What’s Ahead?

	Adding New Capabilities to the QTKitPlayer Application
	Design Strategy
	Tasks to Accomplish
	Project Complexity
	Class Model

	Adding a Cocoa Drawer to the QTKitPlayer
	Adding Code To Your QTKitPlayer Project
	Adding Code To The Movie Document Class
	Adding Code To Make the Drawer Work

	The Completed Project

	Extending the QTKitPlayer To Stream Audio and Video
	Tasks to Accomplish
	Constructing the Open URL Panel
	Adding Code To Stream Audio and Video
	Adding Code For The OpenURLPanel Class Interface
	Adding Code To OpenURLPanel.m
	Adding Code to QTKitPlayerDelegate
	Adding Code To Your QTKitPlayerDelegate.m

	What’s Next?

	Adding Multimedia Playback Capability
	Tasks to Accomplish
	Constructing The Multimedia Playback Engine
	Adding Code To Display and Playback Multimedia
	Adding Code To Your ViewTestsController Class Interface
	Adding Code To Your ViewTestController.m

	The Completed QTKit Multimedia Player

	Revision History

