
QuickTime Video Effects and Transitions
Guide
QuickTime > Video Effects & Transitions

2007-05-03

Apple Inc.
© 2005, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Chicago, ColorSync,
Geneva, Mac, and QuickTime are trademarks
of Apple Inc., registered in the United States
and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Video Effects and Transitions Guide 9

Organization of This Document 9
See Also 10

Chapter 1 How To Add QuickTime Video Effects 11

Effect Tracks 11
Adding Video Effects to a QuickTime Movie 11

Preparing an Effect for Direct Execution 12
Executing the Decompression Sequence 12

Creating an Effects Track 13
Creating an Effect Description 13

Structure of an Effect Description 14
Adding the Sample to the Media 14
Required Atoms of an Effects Description 15
Example: Cross Fade 15
Creating an Input Map 16
Parameter Atoms of an Effects Description 16

Working with Source Tracks 17
Zero-Source Effects 18
One-Source Effects (Filters) 18
Two-Source Effects (Transitions) 18

Sources Other Than Video Tracks 20
Using Video Effects Outside a QuickTime Movie 21

Chapter 2 Constructing a Video Effects User Interface 23

Displaying the Effects User Interface Using the High-Level API 23
Getting a List of Effects 23
Displaying the Standard Parameters Dialog Box 24

Processing Standard Parameter Dialog Box Events 25
Adding Video Effects Controls to an Existing Dialog Box 27
Creating Your Application's Dialog Box 27
Incorporating Controls From the Standard Parameters Dialog Box 28
Adding a Preview to Your Dialog Box 29

Chapter 3 Built-in QuickTime Video Effects 31

What Each Effect Does 32
Push 32
The SMPTE Video Effects 33

3
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

SMPTE Wipe Effects 33
SMPTE Iris Effects 35
SMPTE Radial Effects 37
SMPTE Matrix Effects 40
Video Effects from Apple 42
Alpha Compositor 42

Blend Mode Enum 43
Alpha Gain filter 43
Blur Filter 44
Chroma Key 45
Cloud 45
Color Style 46
ColorSync filter 46
Color Tint filter 47
Edge Detection Filter 48
Emboss Filter 48
Explode 49
Film Noise Filter 49

The Film Fade Enum 51
Fire 51
General Convolution Filter 52
Gradient Wipe 53
HSL Balance Filter 54
Implode 55
Lens Flare 55
RGB Balance Filter 57
Ripple 57
Sharpen Filter 58

Chapter 4 Creating New Video Effects 59

What Effects Components Do 59
The Effect Component Interface 60
Supplying Parameter Description Information 61
Implementing the EffectBegin and EffectRenderFrame Functions 62

The EffectBegin function 62
Checking Source and Destination References 62
Reading Parameter Values 64
Tweening Parameter Values 66
The EffectRenderFrame Function 67

Handling Multiple Formats 67
Implementing a Bit-depth Specific Version of Your Algorithm 68
Including the Bit-depth Implementations in Your Effect Code 69
Calling the Effect Implementations from EffectRenderFrame 70

The Sample Effect Component 71
The Dimmer Effect 71

4
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CONTENTS

The Standard Effect Framework 71
Structure of the Framework 71
Naming Conventions 72

Writing an Effect Component Using the Framework 72
Synchronous vs. Asynchronous Processing 72
Defining the Number of Sources 72
Adding to the Global Data Structures 73
Preflighting the Blitter 73
Setting the Destination 74
The BlitterRenderFrame function 74
The EffectsFrameClose function 74
Reading the Effect Parameters 74
Implementing your Effect 74

Adding an 'atms' Resource to your Component 75
The Standard Information in an 'atms' Resource 76
The Parameter Information in an 'atms' Resource 76

The Parameter Description Format 78
Parameter Atom Type and ID 78

Special Description Types 79
Groups 79
Enumeration Lists 80
Source Count 81
Parameter Data Type 81
Parameter Alternate Data Type 82
Parameter Data Range 83
Parameter Data Behavior 85
Parameter Data Usage 87
Parameter Data Default Item 88

Tweening Parameters 88
Slide 89
Parameter Descriptions 90
Component-Defined Functions 91

MyEffectSetup 91
MyEffectBegin 92
MyEffectRenderFrame 92
MyEffectCancel 93
MyEffectGetCodecInfo 93
MyEffectGetParameterListHandle 94
MyEffectGetSpeed 94
MyEffectValidateParameters 95

Chapter 5 Video Effects API 97

Introduction 97
Constants 97

Effects List Atom Names 97

5
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Effect Action Selectors 98
Get Options for QTGetEffectsList 99
Standard Parameter Dialog Box Options 99
ImageCodecValidateParameters Options 99
Effect Speed Flag 100

Data Types 100
Parameter Dialog Box Preview Image Specifier 100
Effect Source Descriptors 101
Effect Frame Description 102
The Decompression Parameters Structure 102

Functions 104

Document Revision History 105

6
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 1 How To Add QuickTime Video Effects 11

Listing 1-1 Defining the RunEffect function, which executes one frame of an effect 12
Listing 1-2 Executing an effect directly by calling the RunEffect function 13
Listing 1-3 Calling AddMediaSample to add an effect description 14
Listing 1-4 Adding a kParameterWhatName atom with the value kCrossFadeTransitionType to

the QTAtomContainer effectDesc 15

Chapter 2 Constructing a Video Effects User Interface 23

Listing 2-1 An example event loop showing use of QTIsStandardParameterDialogEvent 26
Listing 2-2 Creating a dialog box and adding effect controls 28

Chapter 4 Creating New Video Effects 59

Listing 4-1 Implementing the GetParameterListHandle function using GetComponentResource
61

Listing 4-2 Storing information about a new destination frame 63
Listing 4-3 Checking for source changes 63
Listing 4-4 Storing information about a new source frame 64
Listing 4-5 Reading a parameter value 65
Listing 4-6 Reading a tweened parameter value 65
Listing 4-7 Tweening parameter values 66
Listing 4-8 A sample effect algorithm for 16-bit frames 68
Listing 4-9 Including the 16-bit implementation into the main effect source code 70
Listing 4-10 Calling pixel format specific versions of the 16-bit effect implementation 70
Listing 4-11 An example 'atms' atom declaration 75
Listing 4-12 An example set of parameter description atoms 77
Listing 4-13 An example group atom from an 'atms' resource definition. 80
Listing 4-14 An example enumeration list from an 'atms' resource definition 81
Listing 4-15 Opening the image decompressor component 90

7
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

8
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

LISTINGS

This book introduces you to QuickTime video effects and transitions. You can use effects and transitions to
control the visual transition between two sources. Sources can be tracks in a QuickTime movie or they can
be graphics worlds. You can use filter effects to visually alter a single source, such as applying a blur or ripple.
You can also use free-standing effects, such as a cloud or fire effect, that do not require a source (though
they can be composited with other video).

Note: This document was previously titled “Filters, Effects, and Transitions.”

Because visual effects are calculated and executed at runtime, they typically result in a much smaller file than
a pre-rendered version of the same effect.

Effects tracks can be created, edited, and used in essentially the same manner as other video tracks. You can
“stack” effects by using one effects track as the source for another effect. You can also use an effect as the
source for a sprite track, making the fire effect into a sprite, for example.

QuickTime includes over 145 effects, and its extensible architecture allows you to create additional effects
of your own if you need them in your application development.

You need to read this document if you are writing an application that creates QuickTime movies and you
want to add video effects to those movies, or if you want to use video effects on graphics worlds without
creating a QuickTime movie, or if you want to create new video effects of your own.

This document discusses the high-level functions available to you that provide your application with
pre-packaged access to the video effects architecture, and are designed to be easy to use and give you access
to the most common uses of the QuickTime Video Effects architecture.

The low-level functions provide more complex and comprehensive interfaces to the effects dialog functionality.
Using the low-level functions, you can gain more control over the standard parameters dialog box, such as
the ability to incorporate user interface elements from the dialog box into your own application-defined
dialog box.

Organization of This Document

This document is divided into five chapters:

 ■ How To Add QuickTime Video Effects (page 11) discusses how QuickTime video effects are implemented
and how you can add effects to QuickTime movies.

 ■ Constructing a Video Effects User Interface (page 23) discusses how to construct a user interface that
enables users to select an effect, change its parameters, and preview the results.

 ■ Built-in QuickTime Video Effects (page 31) discusses SMTPE effects, which are implementations of over
100 standard effects defined by the Society of Motion Picture and Television Engineers, plus the set of
effects implemented by Apple Computer, which you can use for a variety of purposes.

Organization of This Document 9
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Video Effects and
Transitions Guide

 ■ Creating New Video Effects (page 59) describes how you can create your own video effects. The chapter
walks you through the implementation of a sample effect component. The sample effect is built on a
framework of code that you can reuse when you implement your own effect component.

 ■ Video Effects API (page 97) describes the constants, data types, and functions defined in QuickTime that
support video effects.

See Also

The following Apple books cover related aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

10 See Also
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Video Effects and Transitions Guide

This chapter discusses how QuickTime video effects are implemented and how you can add effects to
QuickTime movies.

The first step in adding effects to a QuickTime movie is to create an effects track. This is accomplished by
using the standard QuickTime API for track creation, as explained in this chapter.

You can also use QuickTime video effects to transition between two graphics worlds. Your application does
not have to generate a QuickTime movie to use the video effects.

Effect Tracks

QuickTime video effects are implemented as components, which are the standard mechanism used to extend
QuickTime. Effect components are actually a specialized type of image decompressor component.

To use an effect component in a QuickTime movie, you add an effect track to the movie. The size and duration
of the track determines the area of the movie that is affected and how long the effect runs.

The effect track has two important attributes: the effect description and the input map. The effect description
is a sample, added to the media of the effects track, that selects which effect to use and contains the
parameters for that effect. The input map describes the sources that the effect works on. Effect components
use whole tracks as sources. A track reference redirects the output of the source track to the effect track. You
may need to make new tracks, referencing parts of existing video tracks, to act as sources for your effects.

Once you have arranged your source tracks and added the effects track to your movie, QuickTime automatically
executes the effect when the movie plays. QuickTime generates as many frames per second as possible for
the effect, so the effect will run as smoothly as the CPU and display hardware of the target machine permit.

You can also use the QuickTime video effects outside the context of a QuickTime movie. You still supply an
effect description, but instead of creating an effect track, you write code that executes the individual steps
of the effect. For details, see the section Using Video Effects Outside a QuickTime Movie (page 21).

Adding Video Effects to a QuickTime Movie

This section explains the steps you need to take in order to add video effects to a QuickTime movie. In brief,
you proceed as follows:

1. You create and arrange any source tracks that will be used by the effect.

2. You add a new effect track to your movie: the offset and duration of the track determine when the effect
takes place.

Effect Tracks 11
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

3. You create an effect description that selects the particular effect you want and supplies values for any
parameters the effect has.

4. You create an input map that defines which tracks in the movie serve as sources for the effect.

5. Finally, you add the effect description as a new sample to the media of the effect track. As part of this
process, you create a sample description, which describes the sample being added.

There are high-level routines that can be used to greatly simplify this process. For example,
QTCreateStandardParameterDialog can automatically obtain a list of available effects, allow the user
to choose an effect and set its parameters, and return an effect description for the chosen effect.

Preparing an Effect for Direct Execution

The code that prepares the data structures required to directly execute an effect is broadly similar to the
code to set up effects within a QuickTime movie.

You first provide an effect description and sample description for the effect component you are going to
use. Then you prepare a decompression sequence that will actually playback the effect.

Executing the Decompression Sequence

With the effect and sample descriptions built and the decompression sequence prepared, you can now
execute the effect. The function shown in Listing 1-1 executes a single frame of a decompression sequence.

The parameter theTime contains the number of the frame to be executed. The parameter theNumberOfSteps
contains the total number of frames that will be used to run the effect.

Listing 1-1 Defining the RunEffect function, which executes one frame of an effect

// Decompress a single step of the effect sequence at time.
OSErr RunEffect(TimeValue theTime, int theNumberOfSteps)
{
 OSErr err = noErr;
 ICMFrameTimeRecord frameTime;
 // Set the timebase time to the step of the sequence to be rendered
 SetTimeBaseValue(gTimeBase, theTime, theNumberOfSteps);
 frameTime.value.lo = theTime;
 frameTime.value.hi = 0;
 frameTime.scale = theNumberOfSteps;
 frameTime.base = 0;
 frameTime.duration = theNumberOfSteps;
 frameTime.rate = 0;
 frameTime.recordSize = sizeof(frameTime);
 frameTime.frameNumber = 1;
 frameTime.flags = icmFrameTimeHasVirtualStartTimeAndDuration;
 frameTime.virtualStartTime.lo = 0;
 frameTime.virtualStartTime.hi = 0;
 frameTime.virtualDuration = theNumberOfSteps;
 HLock(myEffectDesc);
 DecompressSequenceFrameWhen(gEffectSequenceID,
 StripAddress(*myEffectDesc),

12 Adding Video Effects to a QuickTime Movie
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

 GetHandleSize(myEffectDesc),
 0,
 0,
 nil,
 &frameTime);
 HUnlock(myEffectDesc);
}

The code in Listing 1-2 executes this effect in 30 steps.

Listing 1-2 Executing an effect directly by calling the RunEffect function

for (currentTime = 0; currentTime < 30; currentTime++)
{
 myErr = RunEffect(currentTime, 30);
 if (myErr != noErr)
 goto bail;
}

Creating an Effects Track

The first step in adding effects to a QuickTime movie is to create an effects track. This is accomplished by
using the standard QuickTime API for track creation, for example:

theEffectsTrack = NewMovieTrack(theMovie, kTrackWidth, kTrackHeight, 0);

You then call the NewTrackMedia function to add a media to the track. The type of the media for an effects
track should always be VideoMediaType, and the media should have whatever duration you want the effect
to have. Here is a sample call to NewTrackMedia :

theEffectsMedia = NewTrackMedia(theEffectsTrack, VideoMediaType, 600, nil, 0);

Creating an Effect Description

An effect description tells QuickTime which effect to execute and contains the parameters that control how
the effect behaves at runtime. You create an effect description by creating an atom container, inserting a QT
atom that specifies the effect, and inserting a set of QT atoms that set its parameters.

There are support functions you can call to assist you in this process. QTCreateStandardParameterDialog
returns a complete effect description that you can use, including user-selected settings; you only need to
add kEffectSourceName atoms to the description for effects that require sources. At a lower level,
QTGetEffectsList returns a list of the available effects and ImageCodecGetParameterList will return
a description of the parameters for an effect, including the default value for each parameter in the form of
a QT atom that can be inserted directly into an effect description.

Creating an Effects Track 13
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

Structure of an Effect Description

An effect description is the sole media sample for an effect track. An effect description is implemented as a
QTAtomContainer structure, the general QuickTime structure for holding a set of QuickTime atoms. All
effect descriptions must contain the set of required atoms, which specify attributes such as which effect
component to use. In addition, effect descriptions can contain a variable number of parameter atoms, which
hold the values of the parameters for the effect.

Each atom contains either data or a set of child atoms. If a parameter atom contains data, the data is the
value of the parameter, and this value remains constant while the effect executes. If a parameter atom contains
a set of child atoms, they typically contain a tween entry so the value of the parameter will be interpolated
for the duration of the effect.

You assemble an effect description by adding the appropriate set of atoms to a QTAtomContainer structure.

You can find out what the appropriate atoms are by making an ImageCodecGetParameterList call to the
effect component. This fills an atom container with a set of parameter description atoms. These atoms
contain descriptions of the effect parameters, such as each parameter’s atom type, data range, default value,
and so on. The default value in each description atom is itself a QuickTime atom that can be inserted directly
into your effect description.

You can modify the data in the parameter atoms directly, or let the user set them by calling
QTCreateStandardParameterDialog, which returns a complete effect description (you need to add
kEffectSourceName atoms for effects that require sources).

You then add the effect description to the media of the effect track, as described in the section Adding the
Sample to the Media (page 14).

Adding the Sample to the Media

Once you have the sample description prepared, you can call AddMediaSample to add the effect description
to the media. Listing 1-3 shows a sample call.

Listing 1-3 Calling AddMediaSample to add an effect description

// Always call BeginMediaEdits before adding sample to a media
BeginMediaEdits(theEffectsMedia);
// Add the sample to the media
AddMediaSample(theEffectsMedia,
 (Handle) theEffectDescription,
 0,
 GetHandleSize((Handle) theEffectDescription),
 600,
 (SampleDescriptionHandle) sampleDescription,
 1,
 0,
 &sampleTime);
// End the media editing session
EndMediaEdits(theEffectsMedia);

14 Creating an Effect Description
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

Required Atoms of an Effects Description

There are several required atoms that an effect description must contain. The first is the kParameterWhatName
atom, which contains the name of the effect. This specifies which of the available effects to use.

The code snippet shown in Listing 1-4 adds a kParameterWhatName atom to the atom containereffectDesc.
The constant kCrossFadeTransitionType contains the name of the cross-fade effect. The cross-fade effect
is described in detail in Example: Cross Fade (page 15).

Listing 1-4 Adding a kParameterWhatName atom with the value kCrossFadeTransitionType to the
QTAtomContainer effectDesc

effectCode = kCrossFadeTransitionType;
QTInsertChild(effectDescription,
 kParentAtomIsContainer,
 kParameterWhatName,
 kParameterWhatID,
 0,
 sizeof(effectCode),
 &effectCode,
 nil);

In addition to the kParameterWhatName atom, the effect description for an effect that uses sources must
contain one or more kEffectSourceName atoms. Each of these atoms contains the name of one of the
effect’s sources. An input map is used to map these names to the actual tracks of the movie that are the
sources. Creating an Input Map (page 16) describes how to create the input map.

Example: Cross Fade

kCrossFadeTransitionType ('dslv')

A “cross fade” or “dissolve” provides a smooth alpha blending between two video sources, changing over
time to give a smooth fade out from the first source into the second.

This effect takes a maximum of two sources and has a single parameter.

Use the description below to help you understand what the parameter does. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect progresses,
QuickTime renders the frame of the effect indicated by the
tween's current value as a percentage of the whole effect.
For example, if the tween goes from 0 to 100, the effect
renders completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and terminates 75%
through the effect.

kParameterType-
DataFixed; Always a
tween

'pcnt'Percentage

Creating an Effect Description 15
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

Creating an Input Map

The input map is another QTAtomContainer structure that you attach to the effects track. It describes the
sources used in the effect and gives a name to each source. This name is used to refer to the source in the
effect description.

An input map works in concert with track reference atoms in the source tracks. A track reference atom of
type kTrackModifierReference is added to each source track, which causes that source track’s output
to be redirected to the effects track. An input map is added to the effects track to identify the source tracks
and give a name to each source, such as 'srcA' and 'srcB'. The effect can then refer to the sources by
name, specifying that 'srcB' should slide in over 'srcA', for example.

Parameter Atoms of an Effects Description

In addition to the required atoms, the effects description contains a variable number of parameter atoms.
The number and types of parameter atoms vary from effect to effect. For example, the cross fade effect has
only one parameter, while the general convolution filter effect has nine. Some effects have no parameters
at all, and do not require any parameter atoms. The chapter Built-in QuickTime Video Effects (page 31)
describes the parameters expected by the built-in effects.

You can obtain the list of parameter atoms for a given effect by calling the effect component using the
ImageCodecGetParameterList function. The parameter description atoms it returns include default
settings for each parameter in the form of parameter atoms that you can insert into your effect description.

The QTInsertChild function is used to add these parameters to the effect description, as seen in the code
example in Listing 1-4 above.

Consider, for instance, the push effect. It’s effect description contains a kParameterWhatName atom, two
kEffectSourceName atoms, and two parameter atoms, one of which is a tween.

The kParameterWhatName atom specifies that this is a 'push' effect.

The two kEffectSourceName atoms specify the two sources that this effect will use, in this case 'srcA'
and 'srcB'. The names correspond to entries in the effect track’s input map.

The 'pcnt' parameter atom defines which frames of the effect are shown. This parameter contains a tween
entry, so that the value of this parameter is interpolated as the effect runs. The interpolation of the 'pcnt'
parameter causes consecutive frames of the effect to be rendered, creating the push effect.

The 'from' parameter determines the direction of the push. This parameter is set from an enumeration list,
with 2 being defined as the bottom of the screen.

In this example, the source 'srcB' will push in from the bottom, covering the source 'srcA'.

The 'pcnt' parameter is normally tweened from 0 to 100, so that the effect renders completely, from 0 to
100 percent. In this example, the 'pcnt' parameter is tweened from 25 to 75, so the effect will start 25% of
the way through (with 'srcB' already partly on screen) and finish 75% of the way through (with part of
'srcA' still visible).

Figure 1-1 shows the set of atoms that must be added to the entry description.

16 Creating an Effect Description
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

'pcnt" 1

kTweenType

kParamTypeDataFixed

1

kTweenData

0.25

0.75

1

'from'

2

1

kEffectSourceName

'srcB'

2

kEffectSourceName

'srcA'

1

Required Atoms

Use the effect component
with the name 'push'

The first source is 'srcA' which
is the name of a source defined
in the input map.

The first source is 'srcB' from
the input map.

The percentage value, which is
tweened from 25% to 75%

The direction from which the second
source pushes the first. The value 2
indicates it pushes in from below.

kParameterWhatName

'push'

Parameter Atoms

1

An important property of effect parameters is that most can be tweened (and some must be tweened).
Tweening is QuickTime’s general purpose interpolation mechanism. For many parameters, it is desirable to
allow the value of the parameter to change as the effect executes.

Working with Source Tracks

You will probably need to do some track-level editing on the tracks your effect will use as sources, depending
mainly on the type of effect you choose. There are different considerations for an effect that requires no
sources, such as the cloud effect, an effect that requires one source, such as the blur filter, or an effect that
requires two or more sources, such as a wipe effect.

An effect component can use any track with video output as a source. Effects are normally applied to video
tracks, but a sprite track or a text track can also be a source for an effect. It is even possible to “stack” effects,
simply by making one effect track a source for another. Stacking effects this way will make serious real-time
demands on the target system’s processor, however, and the end result may not be satisfactory on all
machines.

Generally speaking, an effect uses an entire video track as a source. A track reference atom of type
kTrackModifierReference is added to the source track, causing the output of the source track to be
redirected through the effect.

To make a video track into a source track, for example, you call the AddTrackReference function, as shown
below.

long addedIndex;
AddTrackReference(theEffectTrack, theSourceTrack,

Working with Source Tracks 17
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

kTrackModifierReference, &addedIndex);

The kTrackModifierReference track reference sends all of the source track’s output to an effect track,
even if the effect track has a smaller duration than the source. If you want to apply an effect to just part of
a track, you need to create a new track that references the portions of source media that you want the effect
to use. This is explained in more detail in the examples below.

Zero-Source Effects

Effects that don’t require a source, such as the fire or cloud effect, are free-standing special effects that can
be added anywhere in a movie. Just set the offset and duration of the effects track to the part of the movie
where you want the effect to appear. If there is already an active video track at that point in the movie, you
control the interaction between the video track and the effects track in the usual ways: putting one track in
front of the other, using an alpha channel to allow one track to be partly visible through the other, and so
on.

Effect Effect

Video track ‘A’

One-Source Effects (Filters)

Effects that require a source, such as a blur filter, steal the output of a video track by using an input map.
The video track’s output is sent to the effects track, and the effect component acts as a special kind of codec
to convert the video into the desired effect.

If you want to apply a filter effect to a whole video track, create an effects track with the same offset and
duration as the source track. The input map does the rest.

If you want to apply a filter effect to part of a video track, make a new track that references the desired part
of the video, then create an effects track with the same offset and duration as this new track. The new track
is the source for the effect. You normally want to put the effects track in front of the original track.

Effect

Source A

Video track ‘A’

New track references video
to be used for effect

Two-Source Effects (Transitions)

An effect that requires two sources, such as a wipe transition, requires some forethought when setting up
the source tracks. If you want to create a transition effect between two video clips, you normally make each
clip a separate video track, setting the offset of the second track so that it overlaps the end of the first track
by the duration of the transition (see the illustration below). You then make two new tracks that reference
the end of the first clip and the beginning of the second clip. These new tracks will act as sources for the
effect. The effects track and both source tracks should share the same offset and duration, which correspond
to the overlap between the two original tracks, as shown in Figure 1-4.

18 Working with Source Tracks
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

Effect

Source B

Source A

Video track ‘A’

New tracks reference video
to be used for effect

Video track ‘B’

If you want to insert an effect between a sequence of images that now follow each other directly, you face
some choices. One choice is to create an effect that overlaps the end of the first sequence with the beginning
of the second sequence, making the movie shorter by the length of the effect. This is the usual approach to
take, and is illustrated in Figure 1-5.

Effect

Source B

Source A

Sequence ‘A’

Sequence ‘A’

New tracks reference video
to be used for effect

Sequence ‘B’

Sequence ‘B’

New track offset into effect

Shortened movie with transition effect

Original movie

Alternately, you can create an effect that transitions between the last image of the first sequence and the
first image of the following sequence, freezing both sequences during the transition, and making the movie
longer by the duration of the effect, as shown in Figure 1-6. You would normally use this approach to create
a transition between two still images, and you could then restore the movie length by shortening the duration
of one or both images.

Working with Source Tracks 19
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

Effect

Source B

Source A

Sequence ‘A’

Sequence ‘A’

Image referenced as new
track with extended duration

Image referenced as new
track with extended duration

Sequence ‘B’

Sequence ‘B’

New track offset after effect

Lengthened movie with freeze-frame effect

Original movie

Either shortening or lengthening a movie can cause problems, particularly if there is a single continuous
sound track. To add a transition between two elements that are now sequential, without changing the length
of the movie or removing part of the original tracks, you create one frozen source track and one moving
source track. In traditional movie editing, this type of transition freezes the first clip, while the second clip is
active during the transition, but you can reverse this for a more unusual effect. This technique is illustrated
in Figure 1-7.

Sequence ‘A’ Sequence ‘B’

Original movie

Effect

Source A

Clip referenced as new track

Image referenced as new
track with extended duration

New track

New movie with freeze-frame/live-frame effect

Sequence ‘B’

Source B

Sequence ‘A’

Sources Other Than Video Tracks

Any track that produces video output, such as a sprite track, a text track, or another effect track, can be used
as the source for an effect. Generally speaking, you use these track types as sources in the same way you use
a video track, but some special considerations apply.

If you use sprite tracks as sources, and the sprites can move as a result of user interaction, it may be difficult
to accurately predict what a transition effect will look like when it executes at run time.

20 Sources Other Than Video Tracks
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

If you “stack” effects, by using an effects track as a source, the target system must have enough speed to
render the source frames for the original effect, then render the effect that is acting as a source, then render
the stacked effect, while maintaining a reasonable frame rate. For example, the target system might need
to decode a pair of Sorenson frames from two video source tracks, apply a cross-fade transition effect between
them, and then apply a ripple effect to the final output. This will only give good results on a fast system.

Similarly, you can use an effect as the source for a sprite track, making the cloud effect a sprite, for example.
Build the effect description and sample description as described later in this section, then add the effect
description to the sprite track as a media sample, just as you would add an ordinary video sample.

Using Video Effects Outside a QuickTime Movie

Adding video effects to a QuickTime movie, as discussed in this chapter, is straightforward enough. You can
also use QuickTime video effects to transition between two graphics worlds. Your application does not have
to generate a QuickTime movie to use the video effects. This section deals with the task of running an effect
that transitions between two graphics worlds. The general principles also apply to filtering a single image
held in a graphics world.

Preparing to execute an effect outside the context of a QuickTime movie is similar to preparing to add a
video effect to a movie: you provide an effect description and a sample description. The main difference is
that instead of building an input map to describe the sources used by the effect, you use the function
CDSequenceNewDataSource to use a graphics world as the source for the effect.

As well as setting up the effect, you must provide code to run it, since QuickTime cannot directly control the
playback of the effect. Because effects are just a type of image decompressor, the code to execute an effect
is the same code you would use to decompress and display an image sequence.

Using Video Effects Outside a QuickTime Movie 21
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

22 Using Video Effects Outside a QuickTime Movie
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

How To Add QuickTime Video Effects

This chapter discusses how to construct a user interface that enables users to select an effect, change its
parameters, and preview the results.

If your application creates QuickTime movies with video effects, you need to provide the user with a way to
choose an effect, adjust its parameters, and preview the results. Although you are free to write your own
code for these user interface tasks, you are encouraged to use the APIs that QuickTime provides.

QuickTime provides a standard dialog box (called the standard parameters dialog box) that allows the user
to select an effect, choose values for its parameters, and preview the effect. Using this dialog box means that
your users see an interface that is standard across applications. In addition, if effects parameters change in
the future, your application will not need to be rebuilt to use them.

In most applications, it is appropriate to show the standard parameters dialog box to let users choose and
customize effects. QuickTime provides a set of high-level API functions that you can call to do this. Displaying
the Effects User Interface Using the High-Level API (page 23) explains the use of these functions.

In some cases, you might need greater control over the effects user interface than these high-level functions
provide. You might, for example, want to add the controls from the standard dialog box to one of your
application’s own dialog boxes. QuickTime provides a set of low-level APIs that let you do this. They give you
greater control and flexibility than the high-level functions, but they are more complex to use. These low-level
functions are discussed in Adding Video Effects Controls to an Existing Dialog Box (page 27).

Displaying the Effects User Interface Using the High-Level API

This section describes the set of functions you call to invoke the standard parameters dialog box in your
applications.

Getting a List of Effects

Before your application presents the standard parameters dialog box to users, you will probably want to
build a list of the effects that are available. QuickTime provides the QTGetEffectsList function to do this
for you. This returns a QTAtomContainer structure that contains a list of all the effects currently available.

Important: The QTGetEffectsList function can take several seconds to execute, so you should typically
call it only once when your application is launched (or after a pair of suspend and resume events).

You can remove effects from the returned list if you want to restrict the set of effects the user can choose
from.

Displaying the Effects User Interface Using the High-Level API 23
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

If you present the standard parameters dialog box without providing a list of effects, the dialog function gets
the list of available effects automatically. This can save you a few lines of code, but your users must wait
while QuickTime searches for available effects and generates the list every time you open the dialog box.

Displaying the Standard Parameters Dialog Box

Use the QTCreateStandardParameterDialog function to display the standard parameters dialog box.
This allows the user to choose an effect, adjust the settings for that effect, and see a preview of the effect
with the selected settings. The use of this function is described below.

When you call the QTCreateStandardParameterDialog function, QuickTime creates a standard parameters
dialog box. The contents of the dialog box vary, depending on the list of effects you pass to the function and
the set of parameters for the currently chosen effect.

Calling QTCreateStandardParameterDialog does not immediately display the dialog box; it only prepares
it for display. The dialog box is shown the first time you call QTIsStandardParameterDialogEvent to
process events for the dialog box. Event handling is described in Processing Standard Parameter Dialog Box
Events (page 25).

The standard parameters dialog box for Apple’s film noise effect is shown in Figure 2-1.

Notice that the dialog box has three main sections. In the upper-left corner is a scrolling list of all the effect
components. To the right of this are the parameters of the chosen effect. As you select different items in the
list of effects, the parameters change appropriately. There is also an effect preview area below the list of
effects. This shows a preview of the chosen effect and parameter settings.

24 Displaying the Effects User Interface Using the High-Level API
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

The user interface for setting the value of a parameter may be a slider, as shown in the example above, a set
of radio buttons, an editable text field, or any of several other interfaces specified in the parameter description’s
kParameterDataBehavior field.

For parameters that are always tweens, the user is presented with a starting and ending value. For parameters
that can be tweened optionally, the dialog box presents the user with a single value by default. In order to
set such a parameter to a tweened value, the user must hold down the Option key when selecting an effect.

Note that your application does not need to know what effects are available, what their parameters are, or
what kind of control to use when setting a parameter. All these details are handled by the standard dialog
box function.

The function call to create and display this dialog box is

QTCreateStandardParameterDialog(theEffectList,
 theEffectParameters,
 0,
 &createdDialogID);

The variable theEffectList holds the list of effects returned by the QTGetEffectsList function. You
can also pass nil for this value, in which case QTCreateStandardParameterDialog calls
QTGetEffectsList to generate the list of all the currently installed effects, then shows these effects. On
input, theEffectParameters contains a QTAtomContainer structure that holds the initial values of the
effect’s parameters. In most cases, you should pass an empty QTAtomContainer structure as this argument,
in which case the default values of each effect are shown.

The third argument specifies how to deal with parameters that can be tweened. Passing in 0 selects the
default behavior, which allows the user to set a starting and ending value for parameters that must be tweens,
but only allows the user to set a single value for parameters that are optionally tweens.

When the user selects the dialog box’s OK button, the chosen effect’s parameter values are returned in
theEffectParameters. The parameter values are returned in a QTAtomContainer structure that you can
use as an effect description. You will need to add kEffectSourceName atoms for effects that use one or
more sources.

The createdDialog argument returns an ID number that is passed to the other functions that deal with
the standard parameters dialog box. This is explained in detail in the next section.

Processing Standard Parameter Dialog Box Events

Once the dialog box has been created, you must process the events sent to it using an event loop. You
repeatedly call WaitNextEvent and pass the events returned through the
QTIsStandardParameterDialogEvent function.

The QTIsStandardParameterDialogEvent function checks each event to see if it relates to the standard
parameters dialog box. You should continue to handle events that are not related to the standard parameters
dialog box as usual.

Processing Standard Parameter Dialog Box Events 25
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

Warning: You should not use the ModalDialog function to process events for a standard parameters
dialog box. The ModalDialog function is not guaranteed to work correctly in all circumstances with a
standard parameters dialog box.

You pass the event record returned from WaitNextEvent to the QTIsStandardParameterDialogEvent
function, then check the return value to find out how the events was handled. Common return values are
shown in the table below.

DefinitionTerm

The event was related to the standard parameters dialog box and was completely
processed. Your application should not process this event, instead it should poll
WaitNextEvent again.

noErr

The event was not related to the standard parameters dialog box. Your application
should process the event in the normal way.

featureUnsupported

The user clicked the OK button in the standard parameters dialog box. Your
application should call QTDismissStandardParameterDialog to close the
dialog box. The values chosen by the user are put into the atom container you
passed in the parameters parameter when you called QTCreateStandard-
ParameterDialog. This atom container now holds an effect description that is
ready to insert into an effects track (it may require one or two kEffectSourceName
atoms to be complete).

codecParameter-
DialogConfirm

The user clicked the Cancel button in the standard parameters dialog box. Your
application should call QTDismissStandardParameterDialog to close the
dialog box.

userCanceledErr

The QTIsStandardParameterDialogEvent function may also return error codes, such as memory errors.

Your application should only process the event returned from WaitNextEvent if
QTIsStandardParameterDialogEvent returns an error or a featureUnsupported code.

The code in Listing 2-1 is an example event loop showing how QTIsStandardParameterDialogEvent is
used.

Listing 2-1 An example event loop showing use of QTIsStandardParameterDialogEvent

while (result == noErr)
{
 EventRecord theEvent;
 WaitNextEvent(everyEvent, &theEvent, 0, nil);
 result = QTIsStandardParameterDialogEvent(&theEvent,
 createdDialogID);
 switch (result)
 {
 case featureUnsupported:
 {
 result = noErr;
 switch (theEvent.what)
 {
 case updateEvt:

26 Processing Standard Parameter Dialog Box Events
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

 BeginUpdate((WindowPtr) theEvent.message);
 EndUpdate((WindowPtr) theEvent.message);
 break;
 }
 break;
 }

 case codecParameterDialogConfirm:
 case userCanceledErr:
 QTDismissStandardParameterDialog(createdDialogID);
 createdDialogID = nil;
 break;
 }
 }
}

Adding Video Effects Controls to an Existing Dialog Box

In most circumstances, it is best to use high-level functions to create a user interface for video effects. However,
if you need finer control over the way the interface is presented, QuickTime provides a set of low-level API
functions to assist you.

For example, you may want to incorporate the controls from the standard parameters dialog box into an
existing dialog box that your application displays, rather than using a completely independent dialog box.
This would be necessary if you wanted a single dialog box that allowed users to customize an effect and also
specify its duration. To do this, you would create a dialog box with a control for the duration of the effect
and then, at runtime, you would add the customization controls from the standard parameters dialog box
by calling the ImageCodecCreateStandardParameterDialog function.

Note: The low-level APIs follow the same naming convention as their high-level counterparts, except that
the low-level versions begin with ImageCodec, whereas the high-level versions begin with QT.

Creating Your Application's Dialog Box

First create the dialog box that will incorporate the controls from the standard parameters dialog box. This
dialog box must contain a user item that is large enough to hold the controls that will be added. For example,
if you are using 12-point Chicago as your dialog box font, the user item should be 250 pixels wide and 300
pixels high. If you are using 9-point Geneva, the user item should be 150 pixels wide and 200 pixels high.

Figure 2-2 shows a dialog box in a running application after a custom effects control has been incorporated.

Adding Video Effects Controls to an Existing Dialog Box 27
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

Note: You should make sure that the dialog box resource is marked as not initially visible. You then call a
QuickTime function to add the effects controls from the standard parameter dialog box to the application’s
dialog box before showing it.

Incorporating Controls From the Standard Parameters Dialog Box

Once you have defined the resource for your dialog box, you are ready to add code to your application to
create the dialog box and add the effects controls to it. First, call GetNewDialog in the usual way to create
an instance of the dialog box. Then call ImageCodecCreateStandardParameterDialog to incorporate
the controls from the standard parameter dialog box into the dialog box. You then show the dialog box in
the usual way.

The code in Listing 2-2 shows these steps.

Listing 2-2 Creating a dialog box and adding effect controls

movableModalDialog = GetNewDialog(kExtraDialogID, nil, (WindowPtr) -1);
if (movableModalDialog!=nil)
{
 // Add the user interface elements from the standard parameters
 // dialog box to the modal dialog box just created
 ImageCodecCreateStandardParameterDialog(gCompInstance,
 parameterDescription,
 gEffectSample,
 pdOptionsModelDialogBox,
 movableModalDialog,
 kExtraUserItemID,
 &createdDialogID);
 // Now show the dialog box and make it the default port
 ShowWindow(movableModalDialog);

28 Incorporating Controls From the Standard Parameters Dialog Box
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

 SelectWindow(movableModalDialog);
 SetPort(movableModalDialog);
}

The call to ImageCodecCreateStandardParameterDialog shows how to pass the existing dialog box
(movableModalDialog) and the item number of the user item (kExtraUserItemID) that will be replaced
with the controls from the standard parameter dialog box.

Once the effect controls have been added, the dialog box is shown, selected, and made the default port.

The rest of the code needed to handle the dialog box is largely the same as dealing with a stand-alone
parameters dialog box. You pass every non-null event returned from WaitNextEvent through
ImageCodecIsStandardParameterDialogEvent, and continue processing events yourself only if it returns
featureUnsupported.

You track MouseDown events sent to the dialog box as usual. When the user clicks the OK button in the dialog
box, you need to retrieve the values from the incorporated standard parameters dialog box. To do this, call
the function ImageCodecStandardParameterDialogDoAction with the pdActionConfirmDialog
action selector. This retrieves an effect description that describes the parameter values the user has chosen.
You then call ImageCodecDismissStandardParameterDialog to dispose of the incorporated elements.
After this is done, you call DisposeDialog to correctly dispose of the application’s dialog box.

Adding a Preview to Your Dialog Box

You may have noticed that the incorporated control shown in Figure 2-2 does not include a preview, as the
standard parameters dialog box does (Figure 2-1).

In order for your dialog box to show a preview of the effect, include another user item in the application’s
dialog box to contain the preview movie clip. Then call the
ImageCodecStandardParameterDialogDoAction function with the pdActionSetPreviewUserItem
action selector, as shown in the following code snippet:

myErr = ImageCodecStandardParameterDialogDoAction(gCompInstance,
 gEffectsDialog,
 pdActionSetPreviewUserItem,
 (void *) kPreviewUserItemID);

This makes the user item whose item number is kPreviewUserItemID (an application-defined constant in
this example) the previewer for your dialog box.

You can use the ImageCodecStandardParameterDialogDoAction function to perform a number of
similar customizations.

Adding a Preview to Your Dialog Box 29
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

30 Adding a Preview to Your Dialog Box
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Constructing a Video Effects User Interface

QuickTime includes a set of built-in video effects. There are two classes of effects provided for your use,
discussed in this chapter:

 ■ The SMTPE effects, which are implementations of over 100 standard effects defined by the Society of
Motion Picture & Television Engineers.

 ■ A set of effects implemented by Apple Computer, which you can use for a variety of purposes.

The following video effects are built into QuickTime, including the standard SMPTE effects and several effects
from Apple Computer:

 ■ The SMPTE Video Effects (page 33)

 ■ SMPTE Wipe Effects (page 33)

 ■ SMPTE Iris Effects (page 35)

 ■ SMPTE Radial Effects (page 37)

 ■ SMPTE Matrix Effects (page 40)

 ■ Video Effects from Apple (page 42)

 ■ Alpha Compositor (page 42)

 ■ Alpha Gain filter (page 43)

 ■ Blur Filter (page 44)

 ■ Chroma Key (page 45)

 ■ Cloud (page 45)

 ■ Color Style (page 46)

 ■ ColorSync filter (page 46)

 ■ Color Tint filter (page 47)

 ■ Example: Cross Fade (page 15)

 ■ Edge Detection Filter (page 48)

 ■ Emboss Filter (page 48)

 ■ Explode (page 49)

 ■ Film Noise Filter (page 49)

 ■ Fire (page 51)

 ■ General Convolution Filter (page 52)

 ■ Gradient Wipe (page 53)

 ■ HSL Balance Filter (page 54)

 ■ Implode (page 55)

31
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

 ■ Lens Flare (page 55)

 ■ Push (page 32)

 ■ RGB Balance Filter (page 57)

 ■ Ripple (page 57)

 ■ Sharpen Filter (page 58)

 ■ Slide (page 89)

What Each Effect Does

The next sections describe what each effect does. They also define the effect name and the parameter atoms
you need in order to create an effect description atom container to implement each effect. For details on
how to insert an effect into your movie or application, see Adding Video Effects to a QuickTime Movie (page
11) and Using Video Effects Outside a QuickTime Movie (page 21).

Push

kPushTransitionType ('push')

In a push effect, one source image replaces another with both images moving at the same time. For example,
source A would typically occupy the entire frame, then source B would push in from the right while source
A slides out to the left, as if source B were pushing source A out of the frame. Unlike the slide effect, both
sources are moving. The push effect executes from one of four fixed directions: top, right, bottom, or left.

The push effect takes a maximum of two sources and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect progresses,
QuickTime renders the frame of the effect indicated by
the tween's current value, as a percentage of the whole
effect. For example, if the tween goes from 0 to 100, the
effect renders completely; if the tween goes from 25 to
75, rendering begins 25% into the effect and terminates
75% through the effect.

kParameterType-
DataFixed; Always a
tween

'pcnt'Percentage

Contains one of four directions from which source B will
replace source A: top, right, bottom, or left.

kParameterType-
DataEnum

'from'From
direction

The 'from' direction parameter can contain the following values:

 ■ Top

32 What Each Effect Does
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

 ■ Right

 ■ Bottom

 ■ Left

The SMPTE Video Effects

The SMPTE effects are available in four separate effect components, divided by the type of effect they
implement.

There are Wipe effects, Iris effects, Radial effects, and Matrix effects.

SMPTE Wipe Effects

kWipeTransitionType ('smpt')

This effect is an implementation of the 34 wipes from ANSI/SMPTE 258M-1993, plus two Apple-defined wipes
that choose a random effect. These are a series of masking or “reveal” type wipes that take place between
two sources. For full definitions of these 34 wipes and what they look like, refer to the SMPTE documentation.

The SMPTE wipe effects take two sources and seven parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as a
percentage of the whole effect. For example, if the
tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a tween

'pcnt'Percentage

The SMPTE ID for the effect. By setting this
parameter, you control which of the 47 available
wipes is used. See the enumeration list below.

kParameterTypeDataEnum'wpID'Wipe ID

If this parameter contains true, the border drawn
around the second source is blurred.

kParameterType-
DataBitField

'soft'Soft border

The width, in pixels, of a border that is drawn
around the second source.

kParameterType-
DataFixed; Can be a tween

'widt'Border width

The SMPTE Video Effects 33
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The RGB color of the border around the second
source.

kParameterType-
DataRGBValue; Can be a
tween

'bclr'Border color

The number of horizontal repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'hori'Horizontal
repeat

The number of vertical repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'vert'Vertical repeat

The Wipe ID parameter can take the following values:

DescriptionValue

Slide horizontal1

Slide vertical2

Top left3

Top right4

Bottom right5

Bottom left6

Four corner7

Four box8

Barn vertical21

Barn horizontal22

Top center23

Right center24

Bottom center25

Left center26

Diagonal left down41

Diagonal right down42

Vertical bow tie43

Horizontal bow tie44

Diagonal left out45

Diagonal right out46

34 SMPTE Wipe Effects
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionValue

Diagonal cross47

Diagonal box48

Filled V61

Filled V right62

Filled V bottom63

Filled V left64

Hollow V65

Hollow V right66

Hollow V bottom67

Hollow V left68

Vertical zig zag71

Horizontal zig zag72

Vertical barn zig zag73

Horizontal barn zig zag74

Random effect (One of the 133 SMPTE effects is chosen at random)409

Random wipe (One of the 34 SMPTE wipe effects is chosen at random)501

SMPTE Iris Effects

kIrisTransitionType ('smp2')

This effect is an implementation of the 26 iris effects from ANSI/SMPTE 258M-1993, plus two Apple-defined
wipes that choose a random effect. These are a series of “reveal” type effects that take place between two
sources. For full definitions of these 26 iris effects and what they look like, refer to the SMPTE documentation.

The SMPTE iris effects take two sources and seven parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

SMPTE Iris Effects 35
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as
a percentage of the whole effect. For example, if
the tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a tween

'pcnt'Percentage

The SMPTE ID for the effect. By setting this
parameter, you control which of the 26 available
iris effects is used. See the enumeration list below.

kParameterTypeDataEnum'wpID'Wipe ID

If this parameter contains true, the border drawn
around the second source is blurred.

kParameterType-
DataBitField; Can be a
tween

'soft'Soft border

The width, in pixels, of a border that is drawn
around the second source.

kParameterType-
DataFixed; Can be a tween

'widt'Border width

The RGB color of the border around the second
source.

kParameterType-
DataRGBValue; Can be a
tween

'bclr'Border color

The number of horizontal repeats of the effect
that are executed in a single source.

kParameterTypeDataLong;
Can be a tween

'hori'Horizontal
repeat

The number of vertical repeats of the effect that
are executed in a single source.

kParameterTypeDataLong;
Can be a tween

'vert'Vertical repeat

The Wipe ID parameter can take the following values:

DescriptionValue

Rectangle101

Diamond102

Triangle103

Triangle right104

Triangle upside down105

Triangle left106

Arrowhead107

Arrowhead right108

Arrowhead upside down109

36 SMPTE Iris Effects
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionValue

Arrowhead left110

Pentagon111

Pentagon upside down112

Hexagon113

Hexagon side114

Circle119

Oval120

Oval side121

Cat eye122

Cat eye side123

Round rect124

Round rect side125

4 point star127

5 point star128

6 point star129

Heart130

Keyhole131

Random effect (One of the 133 SMPTE effects is chosen at random)409

Random iris (One of the 26 SMPTE iris effects is chosen at random)502

SMPTE Radial Effects

kRadialTransitionType ('smp3')

This effect is an implementation of the 39 radial effects from ANSI/SMPTE 258M-1993, plus two Apple-defined
wipes that choose a random effect. These are a series of radial “reveal” type effects that take place between
two sources. For full definitions of these 39 radial effects and what they look like, refer to the SMPTE
documentation.

The SMPTE radial effects take two sources and seven parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

SMPTE Radial Effects 37
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as a
percentage of the whole effect. For example, if the
tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a tween

'pcnt'Percentage

Contains the SMPTE ID for the effect. By setting
this parameter, you control which of the 39
available radial effects is used. See the
enumeration list below.

kParameterType-
DataEnum

'wpID'Wipe ID

If this parameter contains true, the border drawn
around the second source is blurred.

kParameterType-
DataBitField

'soft'Soft border

The width, in pixels, of a border that is drawn
around the second source.

kParameterType-
DataFixed; Can be a tween

'widt'Border width

The RGB color of the border around the second
source.

kParameterType-
DataRGBValue; Can be a
tween

'bclr'Border color

The number of horizontal repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'hori'Horizontal
repeat

The number of vertical repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'vert'Vertical repeat

The Wipe ID parameter can take the following values:

DescriptionValue

Rotating top201

Rotating right202

Rotating bottom203

Rotating left204

Rotating top bottom205

Rotating left right206

Rotating quadrant207

Top to bottom 180 degrees211

Right to left 180 degrees212

38 SMPTE Radial Effects
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionValue

Top to bottom 90 degrees213

Right to left 90 degrees214

Top 180 degrees221

Right 180 degrees222

Bottom 180 degrees223

Left 180 degrees224

Counter rotating top bottom225

Counter rotating left right226

Double rotating top bottom227

Double rotating left right228

V Open top231

V Open right232

V Open bottom233

V Open left234

V Open top bottom235

V Open left right236

Rotating top left241

Rotating bottom left242

Rotating bottom right243

Rotating top right244

Rotating top left bottom right245

Rotating bottom left top right246

Rotating top left right251

Rotating left top bottom252

Rotating bottom left right253

Rotating right top bottom254

Rotating double center right261

SMPTE Radial Effects 39
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionValue

Rotating double center top262

Rotating double center top bottom263

Rotating double center left right264

Random effect (One of the 133 SMPTE effects is chosen at random)409

Random radial (One of the 39 SMPTE radial effects is chosen at random)503

SMPTE Matrix Effects

kMatrixTransitionType ('smp4')

This effect is an implementation of the 34 matrix effects from ANSI/SMPTE 258M-1993, plus two Apple-defined
wipes that choose a random effect. These are a series of matrix “reveal” type effects that take place between
two sources. For full definitions of these 34 matrix effects and what they look like, refer to the SMPTE
documentation.

The SMPTE matrix effects take two sources and seven parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as a
percentage of the whole effect. For example, if the
tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a tween

'pcnt'Percentage

Contains the SMPTE ID for the effect. By setting
this parameter, you control which of the 34
available matrix effects is used. See the
enumeration list below.

kParameterType-
DataEnum

'wpID'Wipe ID

If this parameter contains true, the border drawn
around the second source is blurred.

kParameterType-
DataBitField

'soft'Soft border

The width, in pixels, of a border that is drawn
around the second source.

kParameterType-
DataFixed; Can be a tween

'widt'Border width

The RGB color of the border around the second
source.

kParameterType-
DataRGBValue; Can be a
tween

'bclr'Border color

40 SMPTE Matrix Effects
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The number of horizontal repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'hori'Horizontal
repeat

The number of vertical repeats of the effect that
are executed in a single source.

kParameterType-
DataLong; Can be a tween

'vert'Vertical repeat

The Wipe ID parameter can take the following values:

DescriptionValue

Horizontal matrix301

Vertical matrix302

Top left diagonal matrix303

Top right diagonal matrix304

Bottom right diagonal matrix305

Bottom left diagonal matrix306

Clockwise top left matrix310

Clockwise top right matrix311

Clockwise bottom right matrix312

Clockwise bottom left matrix313

Counter clockwise top left matrix314

Counter clockwise top right matrix315

Counter clockwise bottom right matrix316

Counter clockwise bottom left matrix317

Vertical start top matrix320

Vertical start bottom matrix321

Vertical start top opposite matrix322

Vertical start bottom opposite matrix323

Horizontal start left matrix324

Horizontal start right matrix325

Horizontal start left opposite matrix326

Horizontal start right opposite matrix327

SMPTE Matrix Effects 41
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionValue

Double diagonal top right matrix328

Double diagonal bottom right matrix329

Double spiral Top matrix340

Double spiral bottom matrix341

Double spiral left matrix342

Double spiral right matrix343

Quad spiral vertical matrix344

Quad spiral horizontal matrix345

Vertical waterfall left matrix350

Vertical waterfall right matrix351

Horizontal waterfall left matrix352

Horizontal waterfall right matrix353

Random effect (One of the 133 SMPTE effects is chosen at random)409

Random matrix (One of the 34 SMPTE matrix effects is chosen at random)504

Video Effects from Apple

The following video effects are supplied by Apple Computer and are built into QuickTime.

Alpha Compositor

kAlphaCompositorTransitionType ('blnd')

This effect is used to combine two images using the alpha channels of the images to control the blending.
It provides for the standard alpha blending options, and can handle pre-multiplying by any color, although
white and black are most common and often run faster.

The alpha compositor effect takes a maximum of two sources and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

42 Video Effects from Apple
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

Contains the blend mode for the effect. See the
enumeration list below.

kParameterType-
DataEnum

'bMod'Blend mode

If the blend mode is "pre-multiply alpha," this
parameter contains the color used in the
pre-multiply blend, otherwise it is ignored.

kParameterType-
DataRGBValue

'mclr'Pre-multiply color

Blend Mode Enum

The blend mode parameter can contain one of the following values:

 ■ Straight alpha: perform a standard alpha blend. The alpha channel value of the first source defines the
amount of the first source that is included in the composited image, and one minus the alpha channel
value of the first source defines the amount of the second source that is included in the composited
image.

 ■ Pre-multiply alpha: calculates the destination pixel according to the following formulae:

 DestinationRed = PreMultiplyRed * (1-alphaC) + temp1 * alphaC
 DestinationGreen = PreMultiplyGreen * (1-alphaC) + temp2 * alphaC
 DestinationBlue = PreMultiplyBlue * (1-alphaC) + temp3 * alphaC

where:

 alphaC = alphaB + (1-alphaB) * alphaA
 temp1 = (alphaA * SourceARed + alphaB * sourceBRed)/alphaC
 temp2 = (alphaA * SourceAGreen + alphaB * sourceBGreen)/alphaC
 temp3 = (alphaA * SourceABlue + alphaB * sourceBBlue)/alphaC

 ■ Reverse alpha: perform a reverse alpha blend. The one minus the alpha channel value of the first source
defines the amount of the first source that is included in the composited image, and the alpha channel
value of the first source defines the amount of the second source that is included in the composited
image.

Alpha Gain filter

kAlphaGainImageFilterType ('gain')

The alpha gain filter is used to alter the alpha channel of a single source. This operation is commonly applied
before passing the source to the alpha compositor effect described above. The following equation describes
the alteration that is made to the source’s alpha channel:

newAlpha = bottomPin <= (gain*oldAlpha + offset) <= topPin

This means that to increase the alpha channel by a set amount, you set the gain parameter to 1.0, and the
offset to the desired increase. Similarly, to increase the alpha channel by a fixed percentage, set the offset
to 0.0 and the gain to the percentage increase desired. The topPin and bottomPin parameters allow you
to set upper and lower bounds on the value of the alpha channel, respectively.

Alpha Gain filter 43
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

The alpha gain filter effect takes a maximum of one source and has four parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This value is multiplied by the original alpha
channel value.

kParameterType-
DataFixed

'gain'Gain value

This value is added to the old alpha channel,
after it has been multiplied by the gain
parameter.

kParameterType-
DataFixed

'offs'Offset value

The maximum value that the alpha channel can
take after the gain and offset parameters have
been applied.

kParameterType-
DataFixed

'pinT'Top alpha pin

The minimum value that the alpha channel can
take after the gain and offset parameters have
been applied.

kParameterType-
DataFixed

'pinB'Bottom alpha pin

Blur Filter

kBlurImageFilterType ('blur')

This effect applies a convolution blur effect to a single source. The actual blur that is applied is determined
by the convolution kernel. This is a matrix of values that are applied to each pixels of the source to produce
the destination.

The Blur effect takes a maximum of one source and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The size of the blur kernel to apply. This value must be
one of 3, 5, 7, 9, 11, 13 or 15. The larger the kernel, the
longer the effect will take to run and the greater the
degree of blurring.

kParameterType-
DataEnum

'ksiz'Amount of
blurring

This is the total value of the elements of the blur kernel.
Normally this value will be 1.0, which blurs the source but
doesn't change its brightness. If the value is between 0.0
and 1.0, the brightness is decreased, if the value is greater
than 1.0, the brightness is increased.

kParameterType-
DataFixed

'ksum'Brightness

44 Blur Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

Chroma Key

kChromaKeyTransitionType ('ckey')

The chroma key effect combines two sources by replacing all the pixels of the first source that are the specified
color with the corresponding pixels of the second source. This allows the second source to “show through”
the first in those places where the first source is the given color.

This has the effect of putting the second source “behind” the first source, and making the selected color
“transparent”.

The chroma key effect takes a maximum of two sources and has one parameter.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

Pixels of this color in the first source will be
replaced by pixels from the second source.

kParameterTypeDataRGBValue'keyc'Key color

Cloud

kCloudCodecType ('clou')

The cloud effect uses a fractal noise generator to simulate a cloud formation. This can be transparently
overlaid on an image. The cloud formation’s colors can be controlled, and the cloud randomly changes shape
over time.

The cloud effect takes no sources and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The foreground color of the cloud.kParameterTypeDataRGBValue;
Can be a tween

'fgdc'Cloud color

The background color of the cloud.kParameterTypeDataRGBValue;
Can be a tween

'bckc'Background color

The vertical rotation of the cloud
around its axis. Legal range is 0 to
360.

kParameterTypeDataDouble; Can
be a tween

'rotc'Rotation

Chroma Key 45
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

Color Style

kSolarizeImageFilterType ('solr')

The color style effect allows you to apply two color stylizations to a single source. They are:

 ■ Solarization: adjusts the color balance of the source by constructing a table of replacement color values
from two parameters. These parameters are the maximum color intensity and the peak point of the color
spread. The table starts at zero intensity and increases to the maximum intensity at the peak point. After
that it falls back to zero. For example, if the color values range from 0 to 255, the maximum intensity is
5 and the peak point is at 150, the resulting table’s profile will look like Figure 3-1.

5

0
0 128 150 255

 ■ Posterization: reduces the number of colors in an image by replacing all pixels whose color is in a
consecutive range with the middle color from that range. This produces a “color banding” effect.

Both these effects work on a per-channel basis, which means that the red, green and blue components of
each pixel are independently passed through the respective algorithm.

For solarization, a maximum intensity of 1 and a peak point of 128 are the most commonly used values.

The color style effect takes a maximum of one source and has three parameters.

DescriptionQTAtom TypeCodeName

The maximum intensity of the
solarization table.

kParameterTypeDataLong; Can
be a tween

'solr'Solarize amount

The peak point of the solarization table.kParameterTypeDataLong; Can
be a tween

'solp'Solarize point

The number of colors that are grouped
and replaced with the mid-range color.

kParameterTypeDataLong; Can
be a tween

'post'Posterize amount

ColorSync filter

kColorSyncImageFilterType ('sync')

46 Color Style
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

The color sync filter adjusts the color balance of an image to match a specified color sync profile. Typically,
you would use this to adjust the color profile of an image to match the current display device. This allows
you to maintain accurate color representations across devices. You specify both the color sync profile of the
source image and the color sync profile of the destination device the image will be rendered to.

The color sync filter takes a maximum of one source and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The color sync profile of the source image.kParameterTypeDataEnum'srcP'Source profile

The color sync profile of the target device.kParameterTypeDataEnum'destP'Destination profile

Color Tint filter

kColorTintImageFilterType ('tint')

The color tint filter converts its source into greyscale, then applies a light and a dark color to the image. The
light color replaces the white in the greyscale image, and the dark color replaces the black. This filter also
includes brightness and contrast controls. The end result is a tinted duochrome version of the source image.

You can use this filter, for example, to apply a sepia tone to a source.

The color tint filter takes a maximum of one source and has four parameters

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

1 = Black and White; 2 = X-Ray; 3 = Sepia; 4 = Cobalt;
0 = dividing line for pop up; 100 = custom, in which
case the other parameters take effect.

kParameterTypeDataEnum'tint'Tint

The color to use to replace the black of the greyscale
image.

kParameterType-
DataRGBValue; Can be a
tween

'back'Dark color

The color to use to replace the white of the greyscale
image.

kParameterType-
DataRGBValue; Can be a
tween

'fore'Light color

The amount to adjust the brightness of the source
by, ranging from -255 (all colors are replaced with
black) to 255 (all colors are replaced with white).
A value of 0 will leave the brightness unchanged.

kParameterTypeDataLong;
Can be a tween

'brig'Brightness

Color Tint filter 47
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The amount to adjust the contrast of the source by,
ranging from -255 (minimum contrast) to 255
(maximum contrast). A value of 0 will leave the
contrast unchanged.

kParameterTypeDataLong;
Can be a tween

'cont'Contrast

Edge Detection Filter

kEdgeDetectImageFilterType ('edge')

This effect applies an edge detection convolution to a single source. The performance of the edge detection
is determined by the convolution kernel. This is a matrix of values applied to each pixel of the source to
produce the resulting image.

This effect takes a maximum of one source, and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The size of the kernel to apply. This value must be one
of 3, 5, 7, 9, 11, 13 or 15. Larger kernels will produce
thicker edges in the resulting image.

kParameterType-
DataEnum

'ksiz'Edge
thickness

If this parameter is set to true, the color of the edges
produced by the effect are based on the color of the
source pixels around them. Otherwise, edges are
rendered as light grey against a dark grey background.

kParameterType-
DataBitField

'colz'Colorize

Emboss Filter

kEmbossImageFilterType ('embs')

This effect applies an emboss convolution to a single source. The performance of the embossing operation
is determined by the convolution kernel. This is a matrix of values applied to each pixel of the source to
produce the resulting image.

This effect takes a maximum of one source, and has one parameter, amount of embossing.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

48 Edge Detection Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The size of the kernel to apply. This value must
be one of 3, 5, 7, 9, 11, 13 or 15. Larger kernels
will produce a more heavily embossed result.

kParameterType-
DataEnum

'ksiz'Amount of
embossing

Explode

kExplodeTransitionType ('xplo')

In an explode effect, source B grows from a single point, expanding out until it entirely covers source A. The
center point of the explosion is defined in the effect parameters.

This effect takes a maximum of two sources, and has three parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as a
percentage of the whole effect. For example, if
the tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a
tween

'pcnt'Percentage

The x-coordinate of the explosion centre.kParameterType-
DataFixed; Can be a tween

'xcnt'Explode centre
X

The y-coordinate of the explosion centre.kParameterType-
DataFixed; Can be a tween

'ycnt'Explode centre
Y

Film Noise Filter

kFilmNoiseImageFilterType ('fmns')

The film noise filter alters a single source, simulating some of the effects that are seen on aged film stock.
This effect can be used to transform a video source into one that looks like it was shot on film that has suffered
the effects of age and mishandling.

The specific features, which can be controlled independently, are:

 ■ Hairs. These are a simulation of hairs lying on the surface of the film. Each hair is randomly generated,
and is colored in a randomly chosen shade of light grey.

Explode 49
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

 ■ Scratches. These are vertical or near-vertical one-pixel lines drawn onto the destination image that
simulate scratches in the film. Each scratch lasts for a pre-calculated length of time. During its lifespan
the scratch’s position is randomly perturbed. Shortly before the scratch is removed, it will begin to
shorten. The color of the scratches is a randomly chosen shade of light grey.

 ■ Dust. These simulate dust particles on the surface of the film. Dust particles are drawn using the same
algorithm that generates the hairs, but the particles are more tightly curled, and drawn in a darker shade
of grey.

 ■ Film fade. This simulates an overall change in the color of the film stock. Every pixel of the source image
is passed through the film fade algorithm, so this can be processor-intensive.

The film noise effect takes a single source and has eight parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter controls the number of hairs that are drawn
on each frame and the frequency with which hairs appear.
The maximum number of hairs per frame is a randomly
generated number between 1 and the value of this
parameter. The chance of each hair appearing on a single
frame is 1 in (the value of this parameter).

kParameterType-
DataLong

'hden'Hair density

The maximum length (in pixels) of the hairs being drawn.kParameterType-
DataLong

'hlen'Hair length

This parameter controls the number of scratches that are
drawn on each frame and the frequency with which
scratches appear. The maximum number of scratches per
frame is a randomly generated number between 1 and
the value of this parameter. The chance of each scratch
appearing on a single frame is 1 in (the value of this
parameter).

kParameterType-
DataLong

'sden'Scratch
density

The maximum number of frames that each scratch appears
for. The actual number of frames for each scratch is a
randomly chosen value between 1 and this value plus 20.

kParameterType-
DataLong

'sdur'Scratch
duration

The maximum width, in pixels, of a scratch. The actual
width is a randomly chosen number between 1 and this
value.

kParameterType-
DataLong

'swid'Scratch width

This parameter controls the number of dust particles that
are drawn on each frame and the frequency with which
dust particles appear. The maximum number of dust
particles per frame is a randomly generated number
between 1 and the value of this parameter. The chance of
each dust particle appearing on a single frame is 1 in (the
value of this parameter).

kParameterType-
DataLong

'dden'Dust density

50 Film Noise Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

For each dust particle, the length in pixels is a random
number between 1 and 5, plus the value of the Dust Size
parameter.

kParameterType-
DataLong

'dsiz'Dust size

The type of film fade effect (if any) to apply. See list below.kParameterType-
DataEnum

'fade'Film fade

The Film Fade Enum

The film fade parameter can take one of the following values:

DescriptionStringValue

The destination image is a copy of the source.None1

The destination is a slightly saturated, monochromatic version of the source,
colorized into shades of light red-brown.

Sepia tone2

The destination is a greyscale version of the source.Black and white3

The destination is a color desaturated version of the source.Faded color film4

The destination is a color supersaturated version of the source.1930's color film5

Fire

kFireCodecType ('Fire')

The fire effect simulates a fire by generating a number of individual flames of randomized appearance. You
can control various parameters that define how the flames are generated and how they change over time.

The fire effect takes no sources and has four parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

How quickly the fire expands to its highest level from its
starting point. The higher the value, the more quickly
the fire starts up and reaches its maximum burn rate.

kParameterType-
DataLong

'sprd'Spread rate

How quickly the flames die down as they move up the
screen. Low numbers result in very tall flames, high
numbers in very low flames.

kParameterType-
DataLong

'decy'Sputter rate

Fire 51
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

How often "water" is tossed on the base of the fire,
instantly putting out the fire at that point. High numbers
result in a fire that's very broken up (i.e. many areas of
burning and non-burning) while lower numbers result
in a wider, smoother fire.

kParameterType-
DataLong

'watr'Water rate

How often entire fire is put out, then allowed to restart.kParameterType-
DataLong

'rset'Restart rate

General Convolution Filter

kConvolveImageFilterType ('genk')

This effect applies a general purpose convolution effect to a single source. The effect that results is completely
determined by the values entered into the kernel parameters of the effect. The kernel for this convolution is
always a 3-by-3 matrix of values.

The values of the cells of the convolution kernel determine the value that is assigned to each pixel of the
destination frame. The convolution algorithm examines every pixel of the source, and the eight pixels
surrounding it. These values are multiplied by the appropriate values in the cells and summed. This sum is
then used as the value of the corresponding destination pixel.

Many computer graphics textbooks offer a more complete and rigorous explanation of convolution, and you
are encouraged to consult these for useful values that the kernel can take. A great introduction to convolution
for programmers can be found inHigh Performance Computer Imaging, Chapter 6, by Ihtisham Kabir, Manning
Publications, 1996. ISBN 1-884777-26-0. A somewhat more classical reference is Computer Graphics: Principles
and Practice, 2nd. Edition, pp. 629-636, Foley J.D., van Dam A., Feiner S.K. and Hughes J.F., Addison-Wesley,
1990. ISBN 0-201-12110-7.

As an example of a kernel that produces a useful result, the kernel values shown in Figure 3-2 will shift an
image left by one pixel.

00 0

01 0

00 0

The General Convolution Filter effect takes a maximum of one sources and has nine parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The value to be placed into the first cell of the kernel.kParameterTypeDataFixed'cel1'Cell one

The value to be placed into the second cell of the
kernel.

kParameterTypeDataFixed'cel2'Cell two

52 General Convolution Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The value to be placed into the third cell of the
kernel.

kParameterTypeDataFixed'cel3'Cell three

The value to be placed into the fourth cell of the
kernel.

kParameterTypeDataFixed'cel4'Cell four

The value to be placed into the fifth cell of the
kernel.

kParameterTypeDataFixed'cel5'Cell five

The value to be placed into the sixth cell of the
kernel.

kParameterTypeDataFixed'cel6'Cell six

The value to be placed into the seventh cell of the
kernel.

kParameterTypeDataFixed'cel7'Cell seven

The value to be placed into the eighth cell of the
kernel.

kParameterTypeDataFixed'cel8'Cell eight

The value to be placed into the ninth cell of the
kernel.

kParameterTypeDataFixed'cel9'Cell nine

The nine cells in the kernel are laid out as shown in Figure 3-3.

Cell one Cell two Cell three

Cell four Cell five Cell six

Cell seven Cell eight Cell nine

Gradient Wipe

kGradientTransitionType ('matt')

The gradient wipe effect uses a matte image to create a transition between two source images. The transition
from source 'A' to source 'B' will occur first where the matte image is darkest, last where the matte image is
brightest.

During the effect, if the luminance value of the matte image at a given point is greater than the alpha threshold
for the effect, the pixel from source 'A' is displayed. If the matte image’s luminance value at that point is less
than the alpha threshold, the pixel from source 'B' is displayed.

The alpha threshold increases as the effect progresses, eventually causing it to be higher than the luminance
value of the matte image at all points, so that only the pixels from source 'B' are displayed.

The equation for the change in the alpha threshold as the effect progresses is:

alphaTheshold = (percent_complete / 100) * 255

so the alpha threshold goes from 0 to 255 over the course of the effect.

Gradient Wipe 53
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

The algorithm used to animate the transition is:

for (y=0; y<height; y++) {
 for (x=0; x<width; x++) {
 if (matte_image_luminiance(x,y) > alphaThreshold) {
 output pixel source_A(x,y);
 else
 output pixel source_B(x,y);
 }
 }
}

The gradient wipe effect takes two sources and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect progresses,
QuickTime renders the frame of the effect indicated by the
tween's current value, as a percentage of the whole effect.
For example, if the tween goes from 0 to 100, the effect
renders completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and terminates 75%
through the effect.

kParameterType-
DataFixed; Always a
tween

'pcnt'Percentage

The matte image. The transition from source 'A' to source
'B' will occur first where the matte image is darkest, last
where the matte image is brightest. A greyscale matte
image is recommended.

kParameterType-
DataImage

'matt'Matte
image

HSL Balance Filter

kHSLColorBalanceImageFilterType ('hsvb')

This filter effect allows you to independently adjust the hue, saturation and lightness (also known as value
or brightness) channels of a single source. The effect adjusts every pixel in the source, multiplying the hue
component of the pixel by the value of the hue multiplier parameter, the saturation component by the value
of the saturation multiplier parameter, and so on.

The HSL balance filter effect takes one source and has three parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The amount by which to adjust the hue
channel value of each pixel.

kParameterTypeDataFixed;
Can be a tween

'hmul'Hue multiplier

54 HSL Balance Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionQTAtom TypeCodeName

The amount by which to adjust the
saturation channel value of each pixel.

kParameterTypeDataFixed;
Can be a tween

'smul'Saturation
multiplier

The amount by which to adjust the
lightness channel value of each pixel.

kParameterTypeDataFixed;
Can be a tween

'vmul'Lightness multiplier

Implode

kImplodeTransitionType ('mplo')

In an implode effect, source A shrinks down to a single point, revealing source B. The center point of the
implosion is defined in the effect parameters.

The implode effect takes a maximum of two sources and has three parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect
progresses, QuickTime renders the frame of the
effect indicated by the tween's current value, as
a percentage of the whole effect. For example, if
the tween goes from 0 to 100, the effect renders
completely; if the tween goes from 25 to 75,
rendering begins 25% into the effect and
terminates 75% through the effect.

kParameterType-
DataFixed; Always a
tween

'pcnt'Percentage

The x-coordinate of the implosion centre.kParameterType-
DataFixed; Can be a
tween

'xcnt'Implode centre
X

The y-coordinate of the implosion centre.kParameterType-
DataFixed; Can be a
tween

'ycnt'Implode centre
Y

Lens Flare

kLensFlareImageFilterType ('lens')

The lens flare effect simulates the effect of light reflecting from a camera lens. You can select the shape of
the flare from a list, set the size and brightness of the flare effect, and set x and y values that will cause the
flare to move accross the lens during the effect. You can also set several parameters that affect specific aspects
of the flare, such as the number of sides for a polygon flare or the flare color.

Implode 55
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

The lens flare effect takes one source and has fifteen parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

Size of the effect Range 1-20. Default 1.kParameterTypeDataFixed;
Can be a tween

'size'Size

Brightness of the effect Range 0-1. Default 1.kParameterTypeDataFixed;
Can be a tween

'gbri'Brightness

X-coordinate of the effect center Range -2 to
2. Default 0.

kParameterTypeDataFixed;
Always a tween

'xcnt'X

Y-coordinate of the effect center Range -2 to
2. Default 0.

kParameterTypeDataFixed;
Always a tween

'ycnt'Y

Type of flare See enumeration list below.kParameterEnumList'ftyp'Type

Flare color Black or white. Default white.kParameterTypeDataRGBValue'flrc'Color

Flare brightness Range 0-2. Default 1.kParameterTypeDataFixed'fbri'Brightness

Flare size Range 0-1. Default 0.5.kParameterTypeDataFixed'fsiz'Size

Position of flare element along centerline
Range -2 to 2. Default 0.

kParameterTypeDataFixed'fylc'Position

Offset of flare element's center (creates a hole
if nonzero) Range -2 to 2. Default 0.

kParameterTypeDataFixed'fxlc'Offset

Portion of flare that doesn't fade Range -2 to
2. Default 0.

kParameterTypeDataFixed'fsz1'Solid

Flare is round if false, oval if true. Default false.kParameterTypeDataBitField'fana'Anamorphic

The number of spikes (for a starburst) or sides
(for a polygon) Range 1-20. Default 1.

kParameterTypeDataLong'fnum'Number

The number of flare elements. If Count = N > 1,
there are a random number of flare elements
(1 to N). Range 1-50. Default 1.

kParameterTypeDataLong'fcnt'Count

Seed for the random number generator if
Count > 1. Range 0-1000. Default 500.

kParameterTypeDataLong'fsed'Seed

The following table list spot values.

DescriptionStringValue

A linear spotSpot1

56 Lens Flare
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

DescriptionStringValue

A squared-distance spotRound Spot2

A linear spot, center dark rather than lightReverse Spot3

A squared-distance spot, center dark rather than lightReverse Round Spot4

A spikey ball with 'Number' spikesStar Burst5

A polygon with 'Number' sidesPolygon6

RGB Balance Filter

kRGBColorBalanceImageFilterType ('rgbb')

The RGB balance filter allows you to independently adjust the red, green, blue, and alpha channels of a single
source. The effect adjusts every pixel in the source, multiplying the red component of the pixel by the value
of the red multiplier parameter, the green component by the value of the green multiplier parameter, and
so on.

The RGB balance filter takes a maximum of one source and has three parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

The amount to adjust the red channel
value of each pixel by.

kParameterTypeDataFixed; Can
be a tween

'rmul'Red multiplier

The amount to adjust the green channel
value of each pixel by.

kParameterTypeDataFixed; Can
be a tween

'gmul'Green multiplier

The amount to adjust the blue channel
value of each pixel by.

kParameterTypeDataFixed; Can
be a tween

'bmul'Blue multiplier

Ripple

kWaterRippleCodecType ('ripl')

The ripple effect simulates a pool of water that overlays an image. The area within the ripple mask will
undulate, giving the appearance of water. If the user clicks within the ripple area, concentric waves are sent
across the water, simulating a stone dropped into the pool.

The ripple effect takes no sources and has one parameter, ripple mask.

RGB Balance Filter 57
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

A 1-bit image that acts as a mask; the ripple effect
is seen at every pixel corresponding to a pixel in the
mask that is set.

kParameterType-
DataImage

'mask'Ripple mask

Sharpen Filter

kSharpenImageFilterType ('shrp')

This effect applies a convolution sharpen effect to a single source. The sharpening that is applied is determined
by the convolution kernel. This is a matrix of values that are applied to each pixel of the source to produce
the destination.

The sharpen filter effect takes one source and has two parameters.

Use the descriptions below to help you understand what the parameters do.

DescriptionQTAtom TypeCodeName

The size of the sharpen kernel to apply. This value must
be one of 3, 5, 7, 9, 11, 13 or 15. The smaller the kernel,
the faster the effect will run and the greater the degree
of sharpening.

kParameterType-
DataEnum

'ksiz'Amount of
sharpening

This is the total value of the elements of the sharpen
kernel. Normally this value will be 1.0, which sharpens
the source but doesn't change its brightness. If the value
is between 0.0 and 1.0, the brightness is decreased, if the
value is greater than 1.0, the brightness is increased.

kParameterType-
DataFixed

'ksum'Brightness

To learn how to use parameter atoms, see Adding Video Effects to a QuickTime Movie (page 11).

58 Sharpen Filter
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Built-in QuickTime Video Effects

This chapter discusses how to write your own video effects. If you are only interested in building applications
that use effects, you can skip this chapter.

QuickTime video effects are implemented as Component Manager components, the standard mechanism
for extending QuickTime. To implement your own effect, you create a new effect component. An effect
component is a specialized type of image decompressor component.

This chapter walks you through the implementation of a sample effect component. The sample effect is built
on a framework of code that you can reuse when you implement your own effect component.

What Effects Components Do

The basic task of every effect component is very simple. The component is passed zero or more source frames
and must produce a single destination frame. The destination frame is the source frame or frames after
processing by the effect-rendering algorithm.

The component must provide a set of services that QuickTime can call. These services allow QuickTime (or
any other client software that uses your component) to perform actions such as these:

 ■ Open a connection to your component.

 ■ Retrieve information about your effect, particularly descriptions of the parameters your effect can take.

 ■ Set the source or sources for the effect.

 ■ Set the destination for the effect.

 ■ Request that a single frame of the effect be rendered.

 ■ Cancel the rendering of a frame.

 ■ Close the connection to your component.

Your effect component must be able to service such requests. To do so, it implements a set of standard
interface functions that are called through a component dispatch function. Details of these functions are
given in the section The Effect Component Interface (page 60).

The main task of the effect component is to implement the specific algorithm that transforms source frames
into a destination frame. You need to supply versions of your algorithm for each bit depth and pixel format
that your component supports. Choosing which bit depths and pixel formats to support, and implementing
algorithms for each combination of these, are a significant part of building your effect component.

In addition, your effect component must provide a parameter description that describes the parameters
that the effect takes. The parameter description can be used by the software that is calling your component
to construct a user interface that allows users to change the value of the parameters sent to your component.
This is described in detail in the section Supplying Parameter Description Information (page 61).

What Effects Components Do 59
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The Effect Component Interface

Effect components, as with all other types of QuickTime components, must implement a defined set of
functions. To ease the component development process, the Generic Effect component is provided for you.
This component implements many of the “housekeeping” functions that all components must perform. In
most cases, these default implementations are appropriate for your effect, and you simply delegate these
functions to the generic effect component. In the rare instances when you need to provide your own
implementations of one of these basic functions, you can override the generic version and provide your own
implementation.

By delegating many of the functions to the generic effect, you not only decrease the number of functions
you must implement, you also produce a smaller effect component, because common code is stored only
once, in the generic effect.

The framework code provided in the dimmer effect sample (The Dimmer Effect (page 71)), shows how to
delegate interface functions to the generic effect component.

Your component must provide implementations for these functions:

DefinitionTerm

Opens a connection between the client software and your component.Open

Closes the connection between the client and your component.Close

Returns the version number of your component.Version

Called once before a sequence of frames are rendered. This gives your effect
the chance to set up variables that will alter their value during the execution
of a sequence of frames.

EffectSetup

Called once before a frame is rendered. Your component can safely perform
operations that move memory when this function is called.

EffectBegin

Called to render a frame. Because this function can be called asynchronously,
it is not safe to perform operations that may move memory during this call.

EffectRenderFrame

Cancels the rendering of a frame. If your component supports asynchronous
operation, this function can be called while a frame is being rendered.

EffectCancel

Returns a parameter description atom container, as described in the section
"Supplying Parameter Description Information" [link s Creating New Video
Effects].

GetParameter-
ListHandle

Returns information to the codec manager about the capabilities of your
component.

GetCodecInfo

Returns the approximate number of frames per second that your effect is
capable of transforming.

EffectGetSpeed

These functions can be categorized into four groups. The Open and Close functions deal with maintaining
a connection between your component and client software. In most cases, you can implementation these
functions using the sample code provided by Apple without modification.

60 The Effect Component Interface
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The Version, GetParameterListHandle, GetCodecInfo and EffectGetSpeed functions return
information about your component. The most important of these functions is GetParameterListHandle,
which returns a description of the parameters that your effect can take. See Supplying Parameter Description
Information (page 61) for more details of this what this function should do.

The EffectSetup function is called immediately before your component is required to render a sequence
of frames. On entry, the function contains a description of the sequence that is about to be rendered. Most
importantly, it describes the bit depth and pixel format of the sources that your component has to deal with.
Your Setup function can then verify that your component can handle these formats. If it cannot, EffectSetup
should return the “closest” bit depth and pixel format combination that it can handle, and QuickTime will
generate versions of the sources and destination in the requested format. This ensures that your effect
component is given source and destination buffers in a format that it understands. See The EffectRenderFrame
Function (page 67) for more details.

The most significant function group contains the EffectBegin, EffectRenderFrame, and EffectCancel
functions. These functions contain the implementation of your effect algorithm. In most cases, you can
implement the EffectCancel function simply by using the sample code provided by Apple. The
implementation of the EffectBegin and RenderFrame functions is covered in Implementing the EffectBegin
and EffectRenderFrame Functions (page 62).

Full details of the interface functions your component must supply are given in Component-Defined
Functions (page 91).

Supplying Parameter Description Information

Your effect component must supply information that describes the parameters that your effect takes. This
information is used to create an appropriate user interface for setting the parameters to your effect. The
parameter description lists your effect’s parameters and their data types and indicates the appropriate
selection interface for each parameter, such as a slider or a pull-down list, as well as information such as the
minimum, maximum, and default values for each parameter. Each parameter is described using a specific
format, which is shown in The Parameter Description Format (page 78).

Your effect component returns its parameter description information through the GetParameterListHandle
function. The easiest way to provide this information back to the client software is to add an 'atms' resource
to your component. The 'atms' resource contains the parameter descriptions in the required format. You
can then retrieve the resource by calling the GetComponentResource function, returning it to the client
through your implementation of GetParameterListHandle, as shown in Listing 4-1.

Listing 4-1 Implementing the GetParameterListHandle function using GetComponentResource

pascal ComponentResult GetParameterListHandle(EffectGlobals *glob,
 Handle *theHandle)
{
 OSErr err = noErr;
 err = GetComponentResource((Component) glob->self,
 OSTypeConst('atms'),
 kEffectatmsRes,
 theHandle);
 return err;
}

Supplying Parameter Description Information 61
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

By implementing the GetParameterListHandle function in this way, you can simplify the process of
packaging the necessary information in the proper format.

Implementing the EffectBegin and EffectRenderFrame Functions

The core of implementing an effect component is implementing the EffectBegin and EffectRenderFrame
functions. Together, these functions handle the rendering of a single frame of the effect.

The EffectBegin function is called immediately before each frame is to be rendered. It is guaranteed that
this function is never called from an interrupt, so it is safe to perform actions that could move memory within
this function. In general, the EffectBegin function should set up the internal state of your component so
it has all the information it needs to render a single frame.

The EffectRenderFrame function is called to actually render the frame. This can be called at interrupt time,
so it is not safe to move or allocate memory in this function. You should also take care not to call functions
that would do so. Your EffectRenderFrame function should actually render a single frame of your effect.

The EffectBegin function

The main tasks that the EffectBegin function should perform are:

 ■ Ensure that the effect component has valid references to the current sources. If the component does
not have a reference to the sources, or the sources have changed since the last call to EffectBegin,
they must be updated.

 ■ Ensure that the component has a valid reference to the current destination. If the component does not
have a reference to the destination, or the destination has changed since the last call to EffectBegin,
it must be updated.

 ■ Ensure that the component has the current parameter values. If the source or destination has changed,
or the component does not currently have values for the effect parameters, these parameter values are
read.

 ■ If any of the parameter values are tweened, tweening is performed to determine the actual value for
those parameters.

Checking Source and Destination References

The following code checks to see if the destination has changed since the last call to the EffectBegin
function:

if (p->conditionFlags & (codecConditionNewClut+
 codecConditionFirstFrame+codecConditionNewDepth+
 codecConditionNewDestination+codecConditionNewTransform))

If this evaluates to true, the destination has changed. This expression checks a series of flags that are passed
to the EffectBegin function in the conditionsFlags field of the decompressParams parameter. When
the destination is changed, QuickTime sets these flags to alert the effect component to update its internal
state.

62 Implementing the EffectBegin and EffectRenderFrame Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The most important information that you need to store about the new destination is its base address and
its rowBytes value. These values allow you to draw onto the destination surface.

Listing 4-2 shows an example function that stores information in the effect component’s global data structure
about the destination PixMap passed to the function.

Listing 4-2 Storing information about a new destination frame

static long BlitterSetDest(BlitGlobals*glob, // input: our globals
 PixMap *dstPixMap, // input: pixels we will draw into
 Rect *dstRect) // input: area of pixels we will draw into
{
 OSErr result = noErr;
 long offsetH,offsetV;
 char *baseAddr;
 // Calculate the based address according to the format of the
 // destination PixMap
 offsetH = (dstRect->left - dstPixMap->bounds.left);
 if (dstPixMap->pixelSize == 16)
 {
 offsetH <<= 1; // 1 pixel = 2 bytes
 }
 else
 {
 if (dstPixMap->pixelSize == 32)
 {
 offsetH <<= 2; // 1 pixel = 4 bytes
 }
 else
 {
 result = -1; // this is a data format we can't handle
 }
 }
 offsetV = (dstRect->top - dstPixMap->bounds.top)
 * dstPixMap->rowBytes;
 baseAddr = dstPixMap->baseAddr + offsetH + offsetV;
 glob->dstBaseAddr = baseAddr;
 glob->dstRowBytes = dstPixMap->rowBytes;
 return result;
} // BlitterSetDest

The process for checking for new sources is broadly similar. The CodecDecompressParams data structure
passed into the EffectBegin function has a field called majorSourceChangeSeed. This contains a seed
number generated from the characteristics of the set of sources for the effect. If the sources change, the
majorSourceChangeSeed value will also change, so the effect can store the current value in its global data
structure and compare it to the current value. If they are different, the effect knows its sources have changed.

When the effect detects that one or more of its sources have changed, it must iterate through all its sources
and reload information about them.

Listing 4-3 shows example code that performs these operations. Listing 4-4 shows the BlitterSetSource
function that is called by this example code. The BlitterSetSource function is analogous to the
BlitterSetDest function shown in Listing 4-2.

Listing 4-3 Checking for source changes

// Check to see if one or more sources have changed

Implementing the EffectBegin and EffectRenderFrame Functions 63
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

if (p->majorSourceChangeSeed != glob->majorSourceChangeSeed)
{
 // grab start of input chain for this effect
 source = effect->source;
 // we can play with up to kMaxSources sources, so go get them
 while (source != nil && numSources < kMaxSources)
 {
 // now give that source to our blitter
 err = BlitterSetSource(glob, numSources, source);
 if (err != noErr)
 goto bail;
 source = source->next;
 ++numSources;
 }
}

Listing 4-4 Storing information about a new source frame

static long BlitterSetSource(BlitGlobals*glob, // input: our globals
 long sourceNumber, // input: source index to set
 CDSequenceDataSourcePtr source) // input: source value
{
 OSErr err = noErr;
 if (sourceNumber >= kMaxSources)
 {
 // too many sources for us to handle
 return noErr;
 }
 else
 {
 // a source we can handle, save it away
 err = RequestImageFormat(source, glob->width, glob->height,
 glob->dstPixelFormat);
 if (err == noErr)
 {
 glob->sources[sourceNumber].src = source;
 }
 else
 {
 glob->sources[sourceNumber].src = nil;
 }
 }
 return (err);
} // BlitterSetSource

Reading Parameter Values

Listing 4-5 shows how to read the value of a non-tweened parameter. The QTFindChildByID function is
used to retrieve the atom containing the parameter value. The parameter value is then copied from the atom
using the function QTCopyAtomDataToPtr. If the value is successfully copied, it is endian-flipped to ensure
it is in native-endian format (parameter values are always stored in big-endian format). If the copy failed, a
default value is provided.

64 Implementing the EffectBegin and EffectRenderFrame Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The value retrieved from the parameter is stored in the component’s global data structure (called, in this
example, global -> blitter). This allows the value to be used by other functions, notably the component’s
EffectRenderFrame function.

Listing 4-5 Reading a parameter value

{
 Ptr data = p->data;
 QTAtom atom;
 QTAtomID atomID = 1;
 long actSize;
 // Find the 'sden' atom
 atom = QTFindChildByID((QTAtomContainer) &data,
 kParentAtomIsContainer,
 OSTypeConst('sden'), // The name of the parameter
 atomID, // The ID of the parameter
 nil);
 // Copy the parameter value from the atom
 if (QTCopyAtomDataToPtr((QTAtomContainer) &data,
 atom,
 false,
 sizeof(long),
 &((glob->blitter).scratchDensity),
 &actSize)!=noErr)
 {
 // If the copy failed, use a default value for this parameter
 ((glob->blitter).scratchDensity) = 1;
 }
 else
 {
 // Otherwise, the copy succeeded, so endian flip and store the
 // parameter value
 ((glob->blitter).scratchDensity) =
EndianS32_BtoN(((glob->blitter).scratchDensity));
 }
}

If the parameter value can contain a tweened value, you can use code similar to that shown in Listing 4-6 to
retrieve the parameter value. The functions InitializeTweenGlobals and CreateTweenRecord are
utility functions that Apple provides as part of the dimmer effect sample framework (see The Sample Effect
Component (page 71)).

Listing 4-6 Reading a tweened parameter value

{
 Ptr data = p->data;
 OSErr err;
 long index = 1;
 err = InitializeTweenGlobals(&glob->tweenGlobals, p);
 if (err!=noErr)
 goto bail;
 // Make our tweener, return if we already have it
 err = CreateTweenRecord(&glob->tweenGlobals,
 &glob->percentage,
 OSTypeConst('pcnt'), // The name of the parameter
 1, // The ID of the parameter
 sizeof(Fixed),

Implementing the EffectBegin and EffectRenderFrame Functions 65
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

 kTweenTypeFixed,
 (void*) 0,
 (void*) fixed1,
 effect->frameTime.virtualDuration);
 if (err!=noErr)
 goto bail;
 glob->initialized = true;
}

Tweening Parameter Values

If you have specified that one or more of your parameter’s values can be tweened, you need to implement
code to perform the tweening in the EffectBegin function.

Listing 4-7 shows an example of tweening a parameter value. The current frame time is retrieved and
subtracted from the effect’s virtualStartTime. This calculates how far through the execution of the current
effect sequence we are, expressed as a percentage.

With this information, the code then calls QTDoTween to interpolate the parameter value, leaving the resulting
value in glob -> comp1Tween.tweenData.

Listing 4-7 Tweening parameter values

wide percentage;
// Find out how far through the effect we are
percentage = effect->frameTime.value;
CompSub(&effect->frameTime.virtualStartTime, &percentage);
// Tween our parameters and get the current value for this frame, prepare
// to render it when the EffectRenderFrame happens
{
 Fixed thePercentage;
 if (glob->percentage.tween)
 QTDoTween(glob->percentage.tween, percentage.lo,
 glob->percentage.tweenData, nil, nil, nil);
 thePercentage = **(Fixed**) (glob->percentage.tweenData);
 // If we are before the half-way point of this transition, we should
 // be fading the first source to black
 if (thePercentage < fixed1/2)
 {
 (glob->blitter).direction = 1;
 (glob->blitter).dimValue = FixedToInt(FixMul(IntToFixed(512),
thePercentage));
 }
 // Otherwise, we are fading up onto the new source
 else
 {
 (glob->blitter).direction = 0;
 (glob->blitter).dimValue = FixedToInt(FixMul(IntToFixed(512),
 thePercentage)) - 255;
 }
}

66 Implementing the EffectBegin and EffectRenderFrame Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The EffectRenderFrame Function

The EffectRenderFrame function is called to actually render a single frame of your effect. This is where
you transform the sources of your effect into the destination frame, using the algorithm that implements
your effect.

This is also where you have to handle multiple bit depth and pixel format combinations.

Internally, QuickTime stores bitmaps in a wide variety of formats. The system can handle images in a number
of bit depths and with many different pixel formats. Effect components must have some ability to handle
source and destination frames that are at any of the bit depths and in any of the pixel formats that QuickTime
supports.

Obviously, providing a separate implementation of your effect algorithm for every combination of bit depth
and pixel format could be an enormous task. Fortunately, QuickTime provides mechanisms for you to limit
the number of formats you have to explicitly support.

When your effect component’s EffectSetup function is called, it is passed information about the bit depth
and pixel formats that the source frames are in. Your component should examine the formats and react in
one of two ways:

 ■ If the format is one of those which your effect does support, the EffectSetup function does nothing.

 ■ If the format is not supported by your effect, EffectSetup returns the nearest format that is supported.

In the second case, where you do not directly support the format, QuickTime automatically creates buffers
in the format returned by EffectSetup. The source frames are written into the buffer before
EffectRenderFrame is called, so that source data is always available in a supported format. The destination
frame is also buffered, and QuickTime automatically transforms the image into the required format for you.

This way, you only need to support a limited number of image formats, and QuickTime will ensure that
EffectRenderFrame isn’t called with data in any other format.

Note: If your effect does not handle the bit depth and pixel format combination passed to the Setup
function, and it requests an alternative format, QuickTime generates new offscreen buffers for each source
and destination frame your effect uses. This will result in a memory and execution time overhead for your
effect. If you want your effect to execute quickly in a wide range of circumstances, your effect should explicitly
handle as many bit depth and pixel format combinations as possible.

Handling Multiple Formats

Although you can write separate versions of your effect algorithm for each combination of bit depth and
pixel format, Apple recommends that you implement your effect algorithm once for each bit depth. You
should then use the Apple-supplied blit macros to automatically generate versions of these implementations
for each supported pixel format. This significantly reduces the number of separate implementations you
have to maintain, and allows easy support of multiple pixel formats.

The blit macros are contained in the file BltMacros.h, which is included with the sample effect framework
code.

Handling Multiple Formats 67
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

To use the blit macros in your effect component, you must store each bit depth implementation of your
effect algorithm in a separate file. These files are then included into the effect component’s main source code
file multiple times, once per pixel format supported. Each inclusion is surrounded by #define statements
that define the pixel format version to be generated.

Each file uses a #include statement to include BltMacros.h, and all operations that read pixels from a
source buffer or write pixels to the destination buffer are performed using appropriate macros.

The macros are automatically converted to the correct operations for the pixel format when the file is included
into the main source code. This generates a version of the algorithm for each pixel format.

Finally, code is put into place in the effect component’s EffectRenderFrame function, which calls the
appropriate generated algorithm according to the current bit depth and pixel format of the source buffers.

Implementing a Bit-depth Specific Version of Your Algorithm

Listing 4-8 shows an example implementation of an effect algorithm. The code uses the blit macros to read
pixels from the source frame and write them to the destination frame. This example shows a filter that changes
a single source. It also shows how to read and alter a single pixel at a time; other effects may handle multiple
pixels at a time for efficiency.

The sample shows the following operations for each pixel of the source frame:

 ■ Retrieving the next pixel from the source, using the Get16 (which reads a 16-bit pixel from a memory
address) and cnv16SPFto16RG (which converts a 16-bit pixel in the current pixel format to the
standardized 16-bit ARGB format) macros to handle pixel format conversion;

 ■ Decomposing the pixel into alpha, red, green and blue components;

 ■ Reassembling the alpha, red, green and blue components into a standardized ARGB pixel value;

 ■ Writing the pixel value to the destination buffer, using the cnv16RGto16DPF (which converts the 16-bit
standardized format pixel back into the current buffer’s 16-bit pixel format) and Set16 (which writes a
16-bit pixel to a memory address) macros to handle pixel format conversion.

The actual effect implementation, which would alter the alpha, red, green and blue values of each pixel
according to the effect specification, is not shown in this example code.

Listing 4-8 A sample effect algorithm for 16-bit frames

#include <BltMacros.h>
void EffectFilter16(BlitGlobals *glob);
void EffectFilter16(BlitGlobals *glob)
{
 long height = glob->height; // Local copy of the height of
 // the buffers
 UInt16 *srcA = glob->sources[0].srcBaseAddr; // Local pointer to
 // the first source image
 UInt16 *dst = glob->dstBaseAddr; // Local pointer to the
 // destination
 long srcABump;
 long dstBump;

 // Work out the source and destination "bumps". The rowBytes value
 // gives you the number of bytes in each scanline of an image. This

68 Handling Multiple Formats
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

 // is not necessarily the same as the number of pixels in a scanline
 // multiplied by the number of bytes each pixel occupies. When
 // we copy pixels from source to destination, via our effect
 // algorithm, we need to account for this discrepancy. The following
 // lines lines pre-calculate the differences.
 srcABump = glob->sources[0].srcRowBytes - (glob->width * 2);
 dstBump = glob->dstRowBytes - (glob->width * 2);
 // Now, for every scanline in the source image we are dealing with...
 while (height--)
 {
 long width = glob->width;
 // ...iterate through every pixel in that scanline
 while (width--)
 {
 UInt16 thePixelValue;
 // Retrieve the next pixel value
 thePixelValue = Get16(srcA);
 srcA++;
 // Call to blit macros to ensure the pixel format is
 // converted appropriately
 cnv16SPFto16RG(thePixelValue);
 // Get the alpha, red, green and blue values of the pixel
 alpha = 0x8000 & thePixelValue;
 red = (thePixelValue & 0x7C00) >> 10;
 green = (thePixelValue & 0x03E0) >> 5;
 blue = (thePixelValue & 0x001F) >> 0;
 // IMPLEMENT YOUR EFFECT ALGORITHM HERE ON EACH PIXEL
 // Re-assemble the A, R, G and B values into a 16-bit
 // destination pixel
 thePixelValue = alpha | (red << 10) | (green << 5)
 | (blue << 0));
 // Set the destination pixel,first passing it through the
 // appropriate blit macro to
 // ensure the correct pixel format conversion is performed
 cnv16RGto16DPF(thePixelValue);
 Set16(dst, thePixelValue);
 dst++;
 }
 // Bump the source and destination pointers we are using, to
 // avoid problems when moving from one scanline to the next
 srcA = (void *) (((Ptr) srcA) + srcABump);
 dst = (void *) (((Ptr) dst) + dstBump);
 }
}

Including the Bit-depth Implementations in Your Effect Code

Once you have produced separate implementations of your effect algorithm for each bit depth you support,
you need to include these in your main effect source code file. Each bit depth implementation is included
once for every pixel format you support.

Listing 4-9 shows statements to include the 16-bit implementation of the effect into the main effect source
code file. The implementation is included three times, for the following pixel formats:

 ■ Big-endian 555 RGB

Handling Multiple Formats 69
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

 ■ Little-endian 555 RGB

 ■ Little-endian 565 RGB

The result of the code in Listing 4-9 is that your effect source code contains three separate versions of the
effect algorithm for handling 16-bit sources. These are named EffectFilter16BE555,
EffectFilter16LE555, and EffectFilter16LE565, respectively.

Listing 4-9 Including the 16-bit implementation into the main effect source code

// 16-bit, Big Endian 555 pixel format
#define EffectFilter16 EffectFilter16BE555
#define srcIs16BE555 1
#define dstIs16BE555 1
#include "EffectFilter16.c"
#undef EffectFilter16
#undef srcIs16BE555
#undef dstIs16BE555
// 16-bit, Little Endian, 555 pixel format
#define EffectFilter16 EffectFilter16LE555
#define srcIs16LE555 1
#define dstIs16LE555 1
#include "EffectFilter16.c"
#undef EffectFilter16
#undef srcIs16LE555
#undef dstIs16LE555
// 16-bit, Little Endian, 565 pixel format
#define EffectFilter16 EffectFilter16LE565
#define srcIs16LE565 1
#define dstIs16LE565 1
#include "EffectFilter16.c"
#undef EffectFilter16
#undef srcIs16LE565
#undef dstIs16LE565

Calling the Effect Implementations from EffectRenderFrame

Finally, you must provide code inside your EffectRenderFrame function to call the appropriate
implementation of your effect algorithm, depending on the pixel format and bit depth of the source frames
you are dealing with. Listing 4-10 shows how to do this for the 16-bit pixel formats.

Listing 4-10 Calling pixel format specific versions of the 16-bit effect implementation

switch (glob->dstPixelFormat)
{
 case k16BE555PixelFormat:
 EffectFilter16BE555(glob);
 break;
 case k16LE565PixelFormat:
 EffectFilter16LE565(glob);
 break;
 case k16LE555PixelFormat:
 EffectFilter16LE555(glob);
 break;
}

70 Handling Multiple Formats
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

The code to handle the 32-bit pixel formats is an easy extension of the code shown in this section, and can
be found in the sample effect component included in the QuickTime SDK and described in detail in the next
section.

The Sample Effect Component

This section introduces you to the sample effect component supplied as part of the QuickTime SDK. It takes
you through the parts of the code that you will need to change in order to implement your own effect
component.

The Dimmer Effect

The sample effect described in this section is a dimmer effect. This simple effect fades the first source to
black, then fades up to show the second source. The source code for this effect is provided as a CodeWarrior
Pro project as part of the QuickTime SDK.

The Standard Effect Framework

Much of the code required to implement an effect component is the same for all components. Apple has
provided a framework of code that you can adapt to create your own effect components. In most cases, you
only have to change limited portions of the framework code to create your new component.

Structure of the Framework

The effect framework is one approach to writing effects components. It has been designed to provide most
of the basic code required to implement an effect component, leaving the implementation of the effect
algorithm to you. It should be possible to write most effects using the framework, though you may need to
adapt the framework code for more complex effect components.

The framework implements the required component functions for an effect. The main body of the framework
is the Effect.c file, which contains the source code for the framework and an implementation of the dimmer
effect. This file is made up of four main parts:

 ■ The global data structures used by the framework. You will need to update some of the data structures
to reflect the capabilities of the effect you are implementing.

 ■ The dispatcher is the entry point to your component. Because all effects components have the same
set of component functions, you should not need to alter the dispatcher.

 ■ The internal functions are the set of functions that actually execute your effect. This is where most of
your own code will be added.

 ■ The component functions are the standard functions called by the dispatcher. These functions call the
internal functions to actually execute the effect. For most effects, you won’t need to change much code
in this section.

The Sample Effect Component 71
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Naming Conventions

All the function and data structure names in the framework are arbitrary. The names have been chosen to
reflect their purpose, but you are free to change the names, as long as they remain internally consistent.

If you choose to change the names of the component functions, you will have to change the
CALLCOMPONENT_BASENAME #define in Effect.c. This defines the root of the name used for component
functions. For example, if CALLCOMPONENT_BASENAME is set to SlideEffect, then the Open component
function must be called SlideEffectOpen, the Close component function must be called
SlideEffectClose, and so forth.

Apple recommends that you do not change the names used in the framework.

Writing an Effect Component Using the Framework

The effect component framework is provided for you to simplify the development of QuickTime video effects
components.

The QuickTime SDK includes the folder DimmerEffect, which contains the framework, complete with
associated resources and makefiles. See the ReadMe file in the DimmerEffect folder for full installation and
use instructions.

To adapt the dimmer framework to create your own component, search through the source code file Effect.c
for the comments CHANGE. These comments mark the sections of the source code you will need to change
to write your own effect.

The following sections take you through the specific changes you need to make to the framework. All the
changes except the last, which implements the actual effect algorithm, are made to the Effect.c file.

Synchronous vs. Asynchronous Processing

The first change you may need to make is to the following #define :

#define kMaxAsyncFrames 0

This value defines the number of frames that can be queued for asynchronous rendering by this effect. If
your effect declares that is can handle more than 0 asynchronous frames, frames may be queued for rendering.
If you wish to render synchronously, set kMaxAsyncFrames to 0; otherwise set it to the number of frames
that can be held in the queue.

Defining the Number of Sources

Most effects require one or more sources to operate on, though some effects (such as Apple’s fire effect)
operate without any sources. The dimmer effect uses two sources: the first is the source to fade to black, the
second is the source to fade up on. Most effects transition between two sources. Sometimes, effects control
the transition between two scenes by blending in one or more other sources, in which case the effect may
require three or more sources. You may also want to implement a filter effect that has only a single source
and produces a transformed version of that source.

72 Writing an Effect Component Using the Framework
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

You set the value of kMaxSources to the maximum number of sources required by the effect. Effects that
can take more than one source should be prepared to handle the case when fewer than the maximum
number of sources are actually provided. For example, if your effect expects two sources to transition between
and a third source to use as a mask, your code must handle the case where only the two transition sources
are provided. In this case you should use a default mask instead of a third source.

Adding to the Global Data Structures

The framework defines two global data structures: BlitGlobals and EffectGlobals. The BlitGlobals
structure holds information related to drawing a single frame of the effect, while the EffectGlobals holds
data for the entire effect as it is executed. These data structures are global to an instance of the effect
component. That is, if you have multiple instances of the component opened, each instance gets its own
copy of both data structures.

You can add fields to the BlitGlobals data structure to hold information specific to your effect. A set of
standard fields are already defined, which hold information used by the framework. You can add your own
effect-specific fields between the CHANGE and END CHANGE comments.

The example defines two fields, dimValue and direction. These hold the current dim value for the effect
and a flag indicating whether it is fading down or up, respectively. Because the dimmer fades the first scene
down to black then fades up on the second scene, it also needs to store the dim value between individual
frames. This value is stored in the dimValue field of BlitGlobals.

You can also add fields to the EffectGlobals structure. Generally, you will read the values for the parameters
to your effect in these fields so that they can be referenced while the effect executes.

Preflighting the Blitter

The internal function BlitterPreflight is called from EffectSetup before the first frame of the effect
is rendered. This function’s main task is to validate the bit depth that the effect is being requested to support.

The bit depth that the effect is being asked to operate at is passed in the depth parameter to
BlitterPreflight. The function should return in the same parameter the bit depth at which it wants to
operate.

For example, the dimmer effect can operate on 16-bit or 32-bit sources. If either of these values is passed in,
it simply returns depth unaltered. If any other bit depth is requested, it sets depth to 16, the default bit
depth for this effect.

Your effect should validate the bit depth passed in a similar way. Apple recommends that your effect support
at least 16- and 32-bit depths.

When you set the depthparameter to a different value than it was on entry to BlitterPreflight, QuickTime
creates an offscreen buffer for the sources and destination of the effect. All data is passed through these
offscreen buffers, to ensure that your effect only sees data in a format it can handle.

Writing an Effect Component Using the Framework 73
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Setting the Destination

The BlitterSetDest function is called from EffectBegin and is passed the effect’s destination, in the
form of a PixMap. The BlitterSetDest function should calculate the base address and rowBytes values
for the destination and store these in the BlitGlobals data structure for future reference.

You need to make changes to this function only if your effect supports destinations in bit depths other than
16-bit and 32-bit.

The BlitterRenderFrame function

This function calls the functions that implement your effect algorithm. The function names to be called are
those generated by the blit macros.

The example code supports the three most common pixel formats in 16-bit and 32-bit. If your effect needs
to support other bit depths or pixel formats, you need to update the switch statement in this function so
that the appropriate drawing functions are called.

The EffectsFrameClose function

This function is called when the client software has finished using your component. At this time, your
component should dispose of any memory it allocated. In particular, you should call DisposeTweenRecord
for each tween record you allocated and then call DisposeTweenGlobals.

Reading the Effect Parameters

The parameters of the effect are read in the EffectsFrameEffectBegin function. Your effect should read
its parameter values in the section between the CHANGE and END CHANGE comments, reading either
non-tweened or (more frequently) tweened values. Example code for both these cases is given in Reading
Parameter Values (page 64).

Once you have read in the parameter values, you need to tween those parameters that contain tween records.
This code should be placed between the second pair of CHANGE and END CHANGE comments. Again, example
code to do this is supplied, see Tweening Parameter Values (page 66).

Implementing your Effect

The last stage in adapting the framework is to implement your effect algorithm. You need to provide one
implementation per bit depth that your effect explicitly supports, and each implementation must be placed
in a separate file. These files are named EffectFilter16.c, EffectFilter32.c, and so forth.

The dimmer effect code provides an example of the pixel manipulations that an effect will typically perform,
and shows how to use the blit macros to support multiple pixel formats at a given bit depth.

Clearly, the details of these routines are entirely dependent on the effect being implemented.

74 Writing an Effect Component Using the Framework
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Adding an 'atms' Resource to your Component

The 'atms' resource for your effect contains two sets of information. The first set contains the effect
information that is used to construct the standard parameters dialog box. This includes items such as the
name of your effect and optional copyright information.

The second set contains the parameter information, which is a description of each parameter that your effect
takes. If your effect does not take parameters, there is no information in this set.

The structure of an 'atms' resource is as follows:

resource 'atms' (kEffectatmsRes) {
 7,
 {
 // The resource body goes here
 };
};

The header for this resource contains two items: the resource ID, and the number of root level atoms the
resource contains.

The first line contains the ID of the 'atms' resource. In this example, the identifier that is used
(kEffectatmsRes) is also used in the call to GetComponentResource in Listing 4-1. This ensures that the
right 'atms' resource is read by QuickTime.

The second line contains the number of root atoms in the resource. Each 'atms' resource contains a number
of atoms. The number in the second line must contain a count of the number of first-level atoms in the
resource.

Warning: It is critical that you update this number if you add or delete atoms from your 'atms'
resource. If this number is larger than the number of atoms in your effect, your effect component can
cause QuickTime to crash. If this number is smaller than the number of atoms actually in the resource,
users will not be able to adjust the values of some parameters.

The body of the 'atms' resource consists of a number of atom declarations. Each declaration has a header
that contains

 ■ the atom name

 ■ the atom ID

 ■ the number of children in the declaration

Each header is followed by the atom’s data, which is one or more typed values, such as a string or a long,
or a set of child atoms.

Listing 4-11 shows an example atom that contains a single typed value as its data. Note that the value is a
type followed by the data itself. The number of children of the atom is declared as noChildren because the
atom contains a typed value.

Listing 4-11 An example 'atms' atom declaration

kParameterTitleName, kParameterTitleID, noChildren,

Adding an 'atms' Resource to your Component 75
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

{
 string { "Dimmer2 Effect Parameters" };
};

The Standard Information in an 'atms' Resource

The standard information stored in an 'atms' resource is made up of three required atoms and five optional
atoms.

The three required atoms are

DefinitionTerm

a string used as the title of the standard parameters dialog box. An
example of a kParameterTitleName atom declaration is shown in
Listing 4-11.

kParameterTitleName

an OSType containing the name of this effect component.kParameterWhatName

a long integer containing the maximum number of sources that the
effect can take.

kParameterSourceCountName

The five optional atoms are

DefinitionTerm

an OSType containing the unique identifier of another effect
component that should be used to replace this effect if this effect
cannot be used.

kParameterAlternateCodecName

a string containing the long version of the name of the effect.kParameterInfoLongName

a string containing a copyright statement for the effect.kParameterInfoCopyright

a string containing a brief description of what the effect does.kParameterInfoDescription

a string containing the title of the window that displays the
information contained in the optional atoms.

kParameterInfoWindowTitle

The Parameter Information in an 'atms' Resource

For each parameter of the effect, your 'atms' resource must contain a set of atoms in the 'atms' resource
that describes that parameter. This description includes the name of the parameter, the type and range of
values it can take, and hints on appropriate user interface element for setting this parameter.

A complete description of the information you need to provide for each parameter can be found in The
Parameter Description Format (page 78).

For a basic parameter, there are five atoms that you should supply:

76 Adding an 'atms' Resource to your Component
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

contains the type and ID of the parameter (an OSType and a long integer,
respectively), the atom flags for the parameter, and a string containing
the name of the parameter.

kParameterAtom-
TypeAndID

a long integer containing the type of the parameter, such as
kParameterTypeDataFixed.

kParameterDataType

a set of typed values describing the range of values the parameter can take.
The number and type of values you supply depend on the value of the
kParameterDataType atom.

kParameterDataRange

two long integer values containing the behavior type, such as
kParameterItemControl for a slider, and any flags, such as
kAtomNotInterpolated for a parameter that cannot be tweened.

kParameterDataBehavior

the default value of the parameter. Again, the type of this value will depend
on the type of the kParameterDataType atom. This atom must be a
correctly-formatted parameter atom that can be passed back to your
component by client software without modification.

kParameterData-
DefaultItem

An example of a basic parameter description is shown in Listing 4-12.

Listing 4-12 An example set of parameter description atoms

kParameterAtomTypeAndID, 101, noChildren,
{
 OSType { "sden" }; // atomType--the name of this parameter
 long { "1" }; // atomID--this is atom number 1
 kAtomNotInterpolated; // atomFlags--this parameter cannot be tweened
 string { "Scratch Density" }; // atomName--the name of the parameter
 // as it will appear in the standard parameters dialog box
};
kParameterDataType, 101, noChildren,
{
 kParameterTypeDataLong; // dataType--this parameter contains a
 // long value
};
kParameterDataRange, 101, noChildren,
{
 long { "0" }; // minimumValue
 long { "25" }; // maximumValue
 long { "1" }; // scaleFactor--no scaling is applied to this
 // parameter
 long { "0" }; // precision--0 indicates that this parameter is
 // not a floating-point value
};
kParameterDataBehavior, 101, noChildren,
{
 kParameterItemControl; // behaviorType--this parameters should be
 // represented by a slider
 long { "0" }; // behaviorFlags - no flags
};
kParameterDataDefaultItem, 101, noChildren,

Adding an 'atms' Resource to your Component 77
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

{
 long { "5" }; // the default value of the parameter
};

The Parameter Description Format

The parameter description data structure is a QTAtomContainer structure that, when filled out by the
ImageCodecGetParameterList call, contains a set of QTAtoms for each parameter of the effect. These
atoms define the base type of the parameter, the legal range of values that can be stored in it, and hints for
displaying a user interface to set values for the parameter.

The atoms in a parameter description are described in the following sections. The order in which the atoms
are stored in the QTAtomContainer structure is important. Applications should present parameters to the
user in the same order that they are contained in the parameter description.

Each of the atom types in a parameter description has a name; you will find constants for these in
ImageCodec.h. You should use these constants when retrieving atoms from the data structure. The data
stored in the atoms of the parameter description is structured, and the struct definitions are given in the
atom descriptions below.

Many of the atoms must be present to create a valid parameter description. Some are optional, as noted.

Parameter Atom Type and ID

This atom contains information about the type and ID of the parameter. The data is contained in the following
structure:

typedef struct
{
 QTAtomType atomType;
 QTAtomID atomID;
 long atomFlags;
 Str255 atomName;
} ParameterAtomTypeAndID;

DefinitionTerm

This field contains either a unique identifier for the parameter or the value kNoAtom. The
unique identifier is a four character OSType that you use to retrieve the parameter's value.
If this field contains kNoAtom, the "parameter" being described is actually a group description;
groups are described in "Special Description Types" [link s Creating New Video Effects].

atomType

This field contains the ID of this parameter.atomID

78 The Parameter Description Format
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

This field can contain one of the predefined values:kAtomNoFlags,kAtomNotInterpolated,
or kAtomInterpolateIsOptional. If it contains kAtomNotInterpolated, the user
interface allows users to enter only a single value for this parameter, and this value remains
constant while the effect is playing. If it contains kAtomNoFlags, the user interface allows
users to enter a set of values for the parameter. This set of values are stored in a tween atom,
and the value of the parameter is interpolated between these values during effect playback.
If it contains kAtomInterpolateIsOptional, the user interface defaults to allowing a
single value for the parameter. If the user interface supports an "advanced" mode of operation,
then a tween value can be entered for this parameter when the user interface is in this mode.
An example of an advanced mode is the standard parameters dialog box: if you hold down
the option key while selecting an effect, any parameters that have the
kAtomInterpolateIsOptional flag set will allow a tween value to be entered.

atomFlags

The name of this parameter. This string value is used as the name of the control displayed
in the standard parameter dialog box to enter a value for this parameter. This atom is required.

atomName

Special Description Types

If the parameter atom type and ID atom of a parameter description contains the constant kNoAtom, this
indicates that the value being described is not a parameter to the effect but is a group. Besides groups, two
further special cases are covered in the following sections: enumeration lists and source counts.

Groups

It is sometimes useful to treat a set of parameters as a group. For example, you might want to label a group
of parameters that jointly control something, align a group of controls, or enclose a set of parameters in a
box. The grouping mechanism allows you to specify a set of parameters and the attributes that are applied
to the group.

If the parameter data type and ID atom of a description contains child atoms, rather than data, it defines a
group. A group is a set of related atoms, where the relationship amongst them can be based on attributes
such as:

 ■ layout; for example, the group is a set of text labels that should be aligned.

 ■ spatial; for example, the items in the group should be placed side by side to optimize dialog box layout.

 ■ naming; the items in the group are related controls that should be displayed under a single heading in
the dialog box.

 ■ usage; a pair of long integers may together specify a coordinate. In this case, they can be grouped
together and the group’s parameter data usage atom set to kParameterUsagePoint.

Groups can be nested within one another as needed. Groups can optionally have a name, which allows your
application to place grouped parameters within a panel or tabbed group under that name.

Listing 4-13 shows an example of a group, which in this case contains a single parameter description.

Special Description Types 79
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Listing 4-13 An example group atom from an 'atms' resource definition.

kParameterAtomTypeAndID, 100, noChildren,
{
 OSType { "none" }; // Use 'none' as this is not a real parameter
 long { "0" };
 kAtomNoFlags;
 string { "" };
};
kParameterDataBehavior, 100, noChildren,
{
 kParameterItemGroupDivider; // Use a divider to separate this group
 kGroupNoFlags;
};
kParameterDataType, 100, 1*5, // 1 parameter * 5 atoms to describe each
 //parameter
{
};
kParameterAtomTypeAndID, 3, noChildren,
{
 OSType { "pMul" };
 long { "1" };
 kAtomNotInterpolated;
 string { "Pre-multiply color" };
};
kParameterDataType, 3, noChildren,
{
 kParameterTypeDataRGBValue;
};
kParameterDataRange, 3, noChildren,
{
 short { "0" };
 short { "0" };
 short { "0" };
 short { "65535" };
 short { "65535" };
 short { "65535" };
};
kParameterDataBehavior, 3, noChildren,
{
 kParameterItemColorPicker;
 long { "0" };
};
kParameterDataDefaultItem, 3, noChildren,
{
 short { "65535" };
 short { "65535" };
 short { "65535" };
};

Enumeration Lists

When an enumerated type is required for a parameter value, a new enumeration list is placed directly into
the root atom container. Enumeration lists are arrays of name-and-value pairings in the following format:

typedef struct

80 Special Description Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

{
 long value;
 Str255 name;
} EnumValuePair;

typedef struct
{
 long enumCount; // number of enumeration items to follow
 EnumValuePair values[1]; // values and names for them
} EnumListRecord;

The type of an enumeration list atom is kParameterEnumList ('enum'). Listing 4-14 shows an enumeration
list that contains three elements.

Listing 4-14 An example enumeration list from an 'atms' resource definition

kParameterEnumList, 1, noChildren,
{
 long { "3" }; // No of elements in the enum
 long {"1"}; string { "Straight Alpha" };
 long {"2"}; string { "Pre-multiply Alpha" };
 long {"3"}; string { "Reverse Alpha" };
};

Source Count

The source count atom (kParameterSourceCountName, 'srcs') contains a single long integer value that
defines the maximum number of sources that this effect can accept. The atom is always placed in the root
atom container of the parameter description.

The source count atom is required.

Parameter Data Type

This atom defines the type of the data for this parameter. It contains data in the following structure:

typedef struct
{
 OSType dataType;
}

DefinitionTerm

This field contains the type of the value that is stored in this parameter. This can be one of the
following values:

dataType

DefinitionTerm

editable text itemkParameterTypeDataText

integer valuekParameterTypeDataLong

Special Description Types 81
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

enumerated lookup valuekParameterTypeDataEnum

fixed point valuekParameterTypeDataFixed

IEEE 64 bit floating point valuekParameterTypeDataDouble

bit field (Boolean) valuekParameterTypeDataBitField

RGBColor datakParameterTypeDataRGBValue

reference to an imagekParameterTypeDataImage

This atom is required.

Parameter Alternate Data Type

This atom defines a preferred data type for the parameter. If the system your application is running on does
not support this preferred data type, the data type specified in the parameter data type atom will be used
instead.

Use the alternate data type atom if you would prefer to use a data type that is not supported on all platforms,
and use the parameter data type atom to specify a fall-back data type for systems that do not support your
preferred data type.

For example, if the parameter alternate data type is kParameterTypeDataColorValue, the parameter
holds a value of type CMColor on systems that have the ColorSync extension. On systems that do not have
ColorSync, whatever is specified in the parameter data type (such as an RGBValue) is used instead.

This atom’s data is stored in a ParameterAlternateDataType data structure, which in turn relies on the
ParameterAlternateDataEntry data structure.

typedef struct
{
 OSType dataType; // The type of the data
 QTAtomType alternateAtom; // The atom to use for alternate data
} ParameterAlternateDataEntry;
typedef struct
{
 long alternateCount;
 ParameterAlternateDataEntry alternates[];
} ParameterAlternateDataType;

DefinitionTerm

This field in the ParameterAlternateDataEntry structure can take one of the following
values:

dataType

82 Special Description Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

CM color datakParameterTypeDataColorValue

Cubic BezierskParameterTypeDataCubic

NurbskParameterTypeDataNURB

The parameter alternate data type atom is optional.

Parameter Data Range

The Parameter Data Range atom defines the legal range of values that the parameter can take. It also defines
a scaling constant that defines how the legal range of values can be translated into a range that is more
suitable for display in a user interface. For example, a value with a range of 0-255 might be scaled as 0-100
for user input.

The atom’s data is structured as a RangeRecord, defined below. The exact format of this data depends on
the data type of the parameter being described.

// 'text'
typedef struct
{
 long maxChars; // Maximum length of the string
 long maxLines; // Number of editing lines (typically 1)
} StringRangeRecord;
// 'long'
typedef struct
{
 long minValue; // Minimum value the long can be
 long maxValue; // Maximum value the long can be
 long scaleValue; // Scaling constant
 long precisionDigits; // number of digits of precision
 // when editing via typing
} LongRangeRecord;
// 'enum'
typedef struct
{
 long enumID; // The ID of the 'enum' atom in the
 // root container to search
} EnumRangeRecord;
// 'fixd'
typedef struct
{
 Fixed minValue; // Minimum value the Fixed can be
 Fixed maxValue; // Maximum value the Fixed can be
 Fixed scaleValue; // Scaling constant
 long precisionDigits; // number of digits of precision
 // when editing via typing
} FixedRangeRecord;
// 'doub'
typedef struct
{
 QTFloatDouble minValue; // Minimum value of parameter

Special Description Types 83
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

 QTFloatDouble maxValue; // Maximum value of parameter
 QTFloatDouble scaleValue; // Scaling constant
 long precisionDigits; // number of digits of precision
 // when editing via typing
} DoubleRangeRecord;
// 'bool'
typedef struct
{
 long maskValue; // value to mask on/off to set/clear the
 // boolean
} BooleanRangeRecord;

// 'rgb '
typedef struct
{
 RGBColor minColor; // Minimum value the RGBColor can be
 RGBColor maxColor; // Maximum value the RGBColor can be
} RGBRangeRecord;
// The RangeRecord data structure is the union of all of the above
typedef struct
{
 union
 {
 LongRangeRecord longRange;
 EnumRangeRecord enumRange;
 FixedRangeRecord fixedRange;
 DoubleRangeRecord doubleRange;
 StringRangeRecord stringRange;
 BooleanRangeRecord booleanRange;
 RGBRangeRecord rgbRange;
 } u;
} RangeRecord;

The minValue and maxValue fields of the DoubleRangeRecord data structure can take, in addition to an
actual QTFloatDouble value, the following predefined values:

 ■ kNoMinimumDouble; ignore the minimum value

 ■ kNoMaximumDouble; ignore the maximum value

 ■ kNoScaleDouble; don’t perform any scaling of value

The minValue and MaxValue fields of the LongRangeRecord data structure can take, in addition to an
actual long integer value, the following predefined values:

 ■ kNoMinimumLongFixed; ignore minimum value

 ■ kNoMaximumLongFixed; ignore maximum value

 ■ kNoScaleLongFixed; don’t perform any scaling of value

 ■ kNoPrecision; allow as many digits as format

The Parameter Data Range atom is required, except for group descriptions.

84 Special Description Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Parameter Data Behavior

The Parameter Data Behavior atom contains user interface hints that suggest to the client application how
a parameter should be displayed.

Note: These user interface hints can be ignored by your application if you have a specific interface style
you wish to implement. However, Apple recommends that you use the editing mechanisms suggested for
the parameter whenever possible. If your application does not use the suggested behavior, you will present
an inconsistent and potentially confusing interface to your users.

typedef struct
{
 QTAtomID groupID;
 long controlValue;
} ControlBehaviors;

typedef struct
{
 OSType behaviorType;
 long behaviorFlags;
 union
 {
 ControlBehaviorscontrols;
 } u;
} ParameterDataBehavior;

DefinitionTerm

This field contains a value that specifies a user interface for editing the parameter's value.
This field should contain one of the following pre-defined values:

behaviorType

DefinitionTerm

the parameter should be edited using an edit text field.kParameterItemEditText

the parameter should be edited using an edit text field that only accepts
numerical entries.

kParameterItemEditLong

the parameter should be edited using an edit text field that accepts
floating-point numerical entries.

kParameterItemEditFixed

the parameter should be edited using a pop-up menu. This data
behavior should only be used with parameters whose data type is
kParameterTypeDataEnum; the pop-up menu is populated from
the enumeration values.

kParameterItemPopUp

the parameter should be edited using a group of radio buttons. This
data behavior should only be used with parameters whose data type
is kParameterTypeDataEnum ; the radio buttons are created from
the enumeration values

kParameterItemRadioCluster

Special Description Types 85
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

the parameter should be edited using a checkbox This data behavior
should only be used with parameters whose data type is
kParameterTypeDataBitField.

kParameterItemCheckBox

the parameter should be edited using a standard control appropriate
to the data type of the parameter. For parameters that accept a scalar
value, such as a Fixed or a Long, the control used is a slider.

kParameterItemControl

a horizontal line is drawn in above the control that manipulates this
parameter's value.

kParameterItemLine

a rectangle is drawn around the control that manipulates this
parameter's value.

kParameterItemRectangle

the parameter should be edited using a color swatch and picker.kParameterItemColorPicker

start of a new group of items.kParameterItemGroupDivider

the parameter's name is displayed as a static text field.kParameterItemStaticText

the parameter should be edited as an image that accepts drag and
drop entry of new images.

kParameterItemDragImage

the parameter should be edited as a path display that allows the user
to drag out a new path.

kParameterItemDragPath

This field can take one or more of the following values:behaviorFlags

DefinitionFlag

no options for graphics.kGraphicsNoFlags

any lines or rectangles that are drawn have a grayscale appearance. If this option
is not set, lines and rectangles are drawn in black.

kGraphicsFlagsGray

no options for the group.kGroupNoFlags

the controls in the group are aligned.kGroupAlignText

the controls in the group are surrounded with a box.kGroupSurroundBox

display the controls in the group in a matrix, if such an arrangement is possible.kGroupMatrix

do not display the name of the group.kGroupNoName

The behaviorFlags values allow you to optionally show or hide a group depending on the value entered
into a parameter. This allows you to express simple conditionals within a standard parameters dialog box.
For example, you may want a pop-up menu with a set of fixed options, and an 'Others...' option; if the user
chooses 'others', a text edit field is enabled to allow users to enter their own value.

86 Special Description Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

To do this, you can use the kDisableWhenLessThan flag to specify that the group containing the text
control is disabled when the user chooses any value in the pop-up menu that is less than the last, 'Others...'
option.

The following flags are available to control selective disabling of groups. For each of these flags, the ID of
the group to be disabled is stored in the groupID field of the controls data structure. The value that is
used in the comparison operation is stored in the controlValue field of the controls data structure.

DefinitionFlag

When the value chosen for this parameter is not equal to controlValue,
disable the group groupID.

kDisableWhenNotEqual

When the value chosen for this parameter is equal to controlValue,
disable the group groupID.

kDisableWhenEqual

When the value chosen for this parameter is less than the controlValue,
disable the group groupID.

kDisableWhenLessThan

When the value chosen for this parameter is greater than the
controlValue, disable the group groupID.

kDisableWhenGreaterThan

Note: You can only disable groups, not individual parameters. However, you can create a group with no
visual attributes that contains a single parameter.

The parameter data behavior atom is required.

Parameter Data Usage

The parameter data usage atom defines the intended use of the data in the parameter. This information can
be used by your application to provide a more appropriate user interface for a parameter or group of
parameters. For example, if your application knows that a set of four long integer values actually represent
a rectangle, it can present a graphical display of the rectangle, rather than simply displaying four numeric
input fields.

The data in this atom is stored in the following data structure:

typedef struct
{
 OSType usageType;
} ParameterDataUsage;

DefinitionTerm

This field defines the actual use that a parameter or group of parameters. It can take one of
the following values:

usageType

Special Description Types 87
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

The parameters in the group contain a set of pixels.kParameterUsagePixels

The parameters in the group contain the top-left and bottom-right
coordinates of a rectangle.

kParameterUsageRectangle

The parameters in the group contain the coordinates of a point.kParameterUsagePoint

The parameters in the group contain the X,Y,Z coordinates of a 3D
point.

kParameterUsage3DPoint

The parameters in the group contain a 3x3 matrix of values.kParameterUsage3by3Matrix

The parameter contains degrees.kParameterUsageDegree

The parameter contains radians.kParameterUsageRadians

The parameter contains a percentage.kParameterUsagePercent

The parameter contains seconds.kParameterUsageSeconds

The parameter contains milliseconds.kParameterUsageMilliseconds

The parameter contains microseconds.kParameterUsageMicroseconds

The parameter data usage atom is optional.

Parameter Data Default Item

The parameter data default item atom contains the default value for the parameter. This value is stored in a
QuickTime atom and can be copied directly into the parameter or into an effect description; an application
does not need to understand the contents or format of the atom in order to do this.

The parameter data default item atom is required, except for group descriptions.

Tweening Parameters

An important property of effect parameters is that many can be tweened, and some must be tweened.
Tweening is QuickTime’s general purpose interpolation mechanism (see QuickTime Media Types and Media
Handlers Guide). This allows the value of the parameter to change as the effect executes.

For example, the slide effect built into QuickTime (see Slide (page 89)) has an angle parameter. This controls
the angle from which the second source will slide over the first during the execution of the effect. If this
parameter contains a single value, the second source will slide over the first in a straight line from the selected
angle. However, if the parameter contains two values, the angle will be interpolated between these values
during the execution of the effect. This allows you to specify a curved slide effect.

88 Tweening Parameters
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

In fact, any valid tween record can be specified as the parameter value, not just records containing pairs of
values. The QuickTime tweening mechanism supports tween records that contain more than two values and
that specify the interpolation algorithm used to produce intermediate values. However, the standard
parameters dialog box allows only a pair of values to be entered, and the appropriate default interpolator is
used. The standard parameter dialog box presents the user with a pair of values for parameters that must
be tweened. Parameters that are optionally tweened, such as the angle for the slide effect, are set to a single
value by default. In order to set an optionally-tweened parameter to a tweened value, the user must hold
down the Option key when selecting the effect in the dialog box.

An application can provide its own user interface for entering multiple tween values for a parameter and
choosing an appropriate tweener to perform interpolation, if required.

Note: Effect component authors do not need to write code to handle all the possible combinations of tween
record types, as the details of the tween record are handled by using the standard QuickTime tweening APIs.

For more details on specifying which parameter values can contain tween values, see Parameter Atom Type
and ID (page 78). For more details on supporting tweened parameters in your effect component, see Tweening
Parameter Values (page 66).

Refer to The Parameter Description Format (page 78) for a complete description of the possible parameter
descriptions you can place in your 'atms' resource.

Slide

kSlideTransitionType ('slid')

In a slide effect, source B slides onto the screen to cover source A. The angle from which source B enters the
frame is stored in a parameter, with 0 degrees being the top of the screen.

The slide effect takes a maximum of two sources and has two parameters.

Use the descriptions below to help you understand what the parameters do. To learn how to use parameter
atoms, see Adding Video Effects to a QuickTime Movie (page 11).

DescriptionQTAtom TypeCodeName

This parameter contains a tween. As the effect progresses,
QuickTime renders the frame of the effect indicated by
the tween's current value, as a percentage of the whole
effect. For example, if the tween goes from 0 to 100, the
effect renders completely; if the tween goes from 25 to
75, rendering begins 25% into the effect and terminates
75% through the effect.

kParameterType-
DataFixed Always a
tween

'pcnt'Percentage

The angle from which source B will enter the frame. This
value is expressed in degrees, with 0 degrees defined as
the top of the screen.

kParameterType-
DataFixed Can be a
tween

'angl'Slide angle

Slide 89
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Parameter Descriptions

Each effect component supplies a parameter description data structure that describes in detail the set of
parameters that the effect has.

This section describes the parameter description format in detail. You need this information if you are writing
an effect component. If you are writing an effect component, you should provide a parameter description
as part of an 'atms' resource (see Supplying Parameter Description Information (page 61) for more details).

You may also need this information if you are writing an application that presents its own user interface for
setting effect parameters. In this case, you will need to parse parameter descriptions to generate appropriate
controls to set parameter values. Most applications can simply use the QTCreateStandardParameterDialog
function, and do not need to parse effect parameter descriptions.

Any software that uses an effect can request its parameter description. Typically, the parameter description
is then passed to QTCreateStandardParameterDialog or especially,
ImageCodecCreateStandardParameterDialog. These functions use the parameter description to display
a user interface that allows users to choose the values of the parameters.

Your are free to use the information in an effect’s parameter description in other ways. For example, your
application can use the default value atoms to construct an effect description.

Parameter descriptions are stored in a QTAtomContainer structure, and an application retrieves an effect’s
description by calling ImageCodecGetParameterList. This function takes a component instance and
returns the parameter description for that component.

The code shown in Listing 4-15 opens the component specified in the variable subType. The code sets up
the component description, then finds and opens the requested component. It then calls the
ImageCodecGetParameterList function to fill out the parameter description for this effect.

Listing 4-15 Opening the image decompressor component

{
 // Set up a component description
 cd.componentType = 'imdc'; // Effects are image decompressor
 // components
 cd.componentSubType = subType; // This is the name of the effect
 //(e.g. 'smpt')
 cd.componentManufacturer = 0;
 cd.componentFlags = 0;
 cd.componentFlagsMask = 0;
 // Find the required component. If it can't be found, generate an
 // error
 if ((theComponent = FindNextComponent(theComponent, &cd))==0)
 {
 err = paramErr;
 goto bail;
 }
 // Open the component
 gCompInstance = OpenComponent(theComponent);
 // Get the parameter description for the effect
 ImageCodecGetParameterList(gCompInstance, ¶meterDescription);
}

90 Parameter Descriptions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

An application can parse the returned parameter description using the standard QuickTime APIs that query
QTAtomContainer data structures. This can be useful if you are writing an application that creates its own
interface for users to customize effects.

This section describes the general format of the data returned in a parameter description.

Component-Defined Functions

This section defines the effect-specific functions that you may supply in your effect components. This section
is only of interest to developers who are creating their own effects components; if you are writing an
application that uses QuickTime video effects, you can skip this section.

The functions defined in this section are those called by the Component Manager through your component’s
dispatch function (see What Effects Components Do (page 59)).

These functions include

 ■ MyEffectSetup (page 91)

 ■ MyEffectBegin (page 92)

 ■ MyEffectRenderFrame (page 92)

 ■ MyEffectCancel (page 93)

 ■ MyEffectGetCodecInfo (page 93)

 ■ MyEffectGetParameterListHandle (page 94)

 ■ MyEffectGetSpeed (page 94)

 ■ MyEffectValidateParameters (page 95)

Note: The interfaces to these functions are described assuming you are using Apple’s component dispatch
helper code and the sample effect framework as described in The Sample Effect Component (page 71). Apple
strongly recommends that you re-use these code samples where possible when implementing your own
effect components.

If you are using the sample effect component, you can use the default implementations of several of these
functions in most circumstances.

MyEffectSetup

The Component Manager calls this function when a sequence of frames is about to be rendered.

ComponentResult MyEffectSetup (
 EffectGlobals *glob,
 CodecDecompressParams *decompressParams);

Component-Defined Functions 91
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

A pointer to the effect's global data structure.glob

Information about the sequence that is about to be decompressed.decompressParams

This function is called immediately before a client application such as MoviePlayer calls your component to
render a sequence of frames.

Your component should examine the capabilities field of the decompressParams data structure to
ensure that it can meet the requirements for executing this sequence. In particular, it should check the bit
depth and pixel format requirements of the sequence. If the sequence requires a bit depth and pixel format
combination that your component does not support, this function should return the nearest supported
combination in the decompressParams -> capabilities field. In this case, QuickTime will redirect all
source and destination bitmaps through offscreen graphics worlds that have the bit depth and pixel format
characteristics that you specify.

MyEffectBegin

The Component Manager calls this function to request that your component prepare to render a single frame
of its effect.

ComponentResult MyEffectBegin (
 EffectGlobals *glob,
 CodecDecompressParams *decompressParams,
 EffectsFrameParamsPtr effect);

DefinitionTerm

A pointer to the effect's global data structure.glob

Information about the current sequence of frames.decompressParams

The parameters describing this frame.effect

This function is called immediately before your MyEffectRenderFrame function. Your MyEffectBegin
function should ensure that the information it holds about the current source and destination buffers and
the parameter values for the effect are valid. If any of these have changed since the last call to MyEffectBegin,
the new values should be read from the appropriate data structures.

This function is guaranteed to be called synchronously. In particular, this means you can allocate and move
memory, and can call functions that allocate or move memory.

MyEffectRenderFrame

The Component Manager calls this function to request that your component render a single frame of its
effect.

ComponentResult MyEffectRenderFrame (
 EffectGlobals *glob,

92 Component-Defined Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

 EffectsFrameParamsPtr effect);

DefinitionTerm

A pointer to the effect's global data structure.glob

The parameters describing this frame.effect

This function is called by a client application when your effect component needs to render a single frame of
your effect. This function contains the implementation of your effect.

Warning: This function is not guaranteed to be called synchronously. This means your function
implementation must not allocate or move memory, or call any function that allocates or moves memory,
in response to this call.

MyEffectCancel

The Component Manager calls this function to stop processing of the current effect.

ComponentResult MyEffectCancel (
 EffectGlobals *glob,
 EffectsFrameParamsPtr effect);

DefinitionTerm

A pointer to the effect's global data structure.glob

The parameters describing this frame.effect

This function is called by a client application (which may be QuickTime) to halt the rendering of the current
sequence of frames before the last frame has been rendered. If your component is running synchronously,
it should simply return noErr ; no further calls to your MyEffectRenderFrame function will be made for
this sequence.

If your component is running asynchronously, this function should dequeue all outstanding render frame
requests, then return noErr.

MyEffectGetCodecInfo

The Component Manager calls this function to request information about the component.

ComponentResult MyEffectGetCodecInfo (
 EffectGlobals *glob,
 CodecInfo *info);

DefinitionTerm

A pointer to the effect's global data structure.glob

Component-Defined Functions 93
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

DefinitionTerm

A pointer to the data structure that will contain the codec information.info

This function is called by a client application (which may be QuickTime) to request information about your
effect component. Your function should fill out the CodecInfo data structure passed to it. You can use the
GetComponentResource function to retrieve a 'cdci' resource that stores this information if you have
provided one in your component.

The function successfully filled out the info field.0noErr

Your function should return this value if the info parameter contains nil.-50paramErr

MyEffectGetParameterListHandle

The Component Manager calls this function to request a parameter description for this component.

ComponentResult MyEffectGetParameterListHandle (
 EffectGlobals *glob,
 Handle theHandle);

DefinitionTerm

A pointer to the effect's global data structure.glob

A pointer to a handle that will contain the parameter description of this effect.theHandle

This function is called by a client application (which may be QuickTime) to request a parameter description
for your effect. This function can use the GetComponentResource function to retrieve an'atms' resource
that stores this information if you have provided one in your component.

MyEffectGetSpeed

The Component Manager calls this function to request information about the rendering speed of this effect
component.

long MyEffectGetSpeed (
 EffectGlobals *glob,
 QTAtomContainer parameters,
 Fixed *pFPS)

DefinitionTerm

A pointer to the effect's global data structure.glob

The current parameter values for this effect.parameters

A pointer to a Fixed value that will contain the rendering speed of this effect on exit.pFPS

94 Component-Defined Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

This function is called by a client application (which may be QuickTime) to request information about the
rendering speed of your effect. This function should return a Fixed value in FPS, which represents the
rendering speed in frames-per-second of the effect.

If your effect can render in real time, it should return a value of effectIsRealtime. Otherwise, you should
return an estimate of the number of frames your effect can render per second. Because rendering speeds
are hardware-dependent, effect authors can choose to measure actual rendering speeds in this function.
Alternatively, effect authors can choose to return a single value for all hardware configurations, estimating
the value for a reference hardware platform.

Apple recommends that the values returned are rounded down to the nearest common frames-per-second
value, such as 15, 24 or 30.

MyEffectValidateParameters

If your effect implements this optional function, the Component Manager calls it whenever the user changes
a parameter value in the standard parameter dialog box, or attempts to dismiss the dialog.

ComponentResult MyEffectValidateParameters (
 EffectGlobals *glob QTAtomContainer parameters,
 QTParameterValidationOptions validationFlags,
 StringPtr errorString);

DefinitionTerm

A pointer to the effect's global data structure.glob

The current parameter values for this effect.parameters

Flags that indicate whether a parameter value has changed or the user is dismissing
the standard parameter dialog box.

validationFlags

A StringPtr that is contains an error string explaining to the user why the validation
has failed.

errorString

This optional function is called by a client application (which may be QuickTime) when your effect’s standard
parameter dialog box is being displayed. It can be called in two circumstances: if the user changes a parameter
value in the dialog box; or if the user dismisses the dialog box by clicking OK.

The purpose of this function is to allow your effect to validate its parameters. The current parameter values
are passed to the effect in parameters. If all of these values are valid, this function should return noErr.
Otherwise, you should return a paramErr and put an explanatory message in the errorString parameter.

Component-Defined Functions 95
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

96 Component-Defined Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating New Video Effects

Introduction

This chapter describes the constants, data types, and functions defined in QuickTime that support video
effects.

Constants

This section describes the constants defined in QuickTime to support video effects.

 ■ Effects List Atom Names (page 97)

 ■ Effect Action Selectors (page 98)

 ■ Get Options for QTGetEffectsList (page 99)

 ■ Standard Parameter Dialog Box Options (page 99)

 ■ ImageCodecValidateParameters Options (page 99)

 ■ Effect Speed Flag (page 100)

Effects List Atom Names

These constants specify the four character codes for the two atom types in the atom container returned by
calls to QTGetEffectsList.

enum {
 kEffectNameAtom = FOUR_CHAR_CODE('name'),
 kEffectTypeAtom = FOUR_CHAR_CODE('type')
}

DefinitionTerm

The code for the atom containing the name of an entry in the effects list.kEffectNameAtom

The code for the atom containing the type of an entry in the effects list.kEffectTypeAtom

Introduction 97
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

Effect Action Selectors

These constants specify the action selectors you can pass to the functions
QTStandardParameterDialogDoAction and ImageCodecStandardParameterDialogDoAction.

enum {
 pdActionConfirmDialog,
 pdActionSetAppleMenu,
 pdActionSetEditMenu,
 pdActionGetDialogValues,
 pdActionSetPreviewUserItem,
 pdActionSetPreviewPicture,
 pdActionSetColorPickerEventProc,
 pdActionSetDialogTitle
 pdActionGetSubPanelMenu,
 pdActionActivateSubPanel,
 pdActionConductStopAlert
}

DefinitionTerm

Retrieves the current parameter values from the standard parameters
dialog box. The parameter values are placed in the parameters
parameter that was passed to the function that created the dialog box.

pdActionConfirmDialog

Passes the menu handle for the current Apple menu to the standard
parameters dialog box.

pdActionSetAppleMenu

Passes the menu handle for your application's Edit menu to the standard
parameters dialog box.

pdActionSetEditMenu

Retrieves the current parameter values from the standard parameters
dialog box. This parameter values are placed in the params parameter
of the QTStandardParameterDialogDoAction or
ImageCodecStandardParameterDialogDoAction function.

pdActionGetDialogValues

Passes the number of the user item resource that should be replaced
by the effect preview movie clip.

pdActionSetPreviewUserItem

Sets the images that are used in the preview window of the standard
parameters dialog box.

pdActionSetPreviewPicture

Sets the function that will be used when the standard parameters dialog
box needs to display a color picker control.

pdActionSetColor-
PickerEventProc

Sets the title of the standard parameters dialog box.pdActionSetDialogTitle

Returns a menuHandle containing the pop-up menu used to switch
between multiple parameter panels. You can parse this data structure
to derive a list of the panels that are being used by the standard
parameters dialog box.

pdActionGetSubPanelMenu

Sets the currently active panel of the standard parameter dialog box.pdActionActivateSubPanel

Displays a Stop Alert containing a message.pdActionConductStopAlert

98 Constants
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

Get Options for QTGetEffectsList

These constants define the flags that can be passed in the getOptions parameter of the QTGetEffectsList
function.

enum {
 elOptionsIncludeNoneInList
}

DefinitionTerm

Includes the "none" effect in the list of effects returned by
QTGetEffectsList.

elOptionsIncludeNoneInList

Standard Parameter Dialog Box Options

These constants are used to control how parameter values are entered into a standard parameters dialog
box that is generated when you call the function ImageCodecCreateStandardParameterDialog.

enum {
 pdOptionsCollectOneValue,
 pdOptionsAllowOptionalInterpolations
}

Parameters that are flagged as kAtomInterpolateIsOptional in their parameter description can contain
single values or tweens. These constants are used to specify that the dialog box should allow entry of either
a single value or a pair of values for such parameters.

DefinitionTerm

This value indicates that only one value should be entered for
parameters that can optionally be tweened.

pdOptionsCollectOneValue

This value indicates that optionally-tweened parameters should be
displayed with a user interface that allows the entry of tweened
values.

pdOptionsAllowOptional-
Interpolations

ImageCodecValidateParameters Options

These are the values that can be passed in the validationFlags parameter of a call to
ImageCodecValidateParameters.

enum {
 kParameterValidationNoFlags,
 kParameterValidationFinalValidation
}

Constants 99
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

DefinitionTerm

This value indicates that a standard validation should take place.
ImageCodecValidateParameters is being called because the user has
changed the value of a parameter in the standard parameters dialog box.

kParameterValidation-
NoFlags

This value indicates that this validation is the final validation before the
standard parameters dialog box is dismissed. This is useful if you want to
perform a single validation of the parameters just after the user clicks the
OK button to dismiss the dialog box.

kParameterValidation-
FinalValidation

Effect Speed Flag

This is the value that an effect should return when QTGetEffectSpeed is called and the component can
run the effect in real time.

enum {
 effectIsRealtime
}

DefinitionTerm

The effect can process frames in real time.effectIsRealtime

Data Types

This section describes the data types that are relevant to calling and creating effects.

The section describes the data types defined in QuickTime to support video effects.

 ■ Parameter Dialog Box Preview Image Specifier (page 100)

 ■ Effect Source Descriptors (page 101)

 ■ Effect Frame Description (page 102)

 ■ The Decompression Parameters Structure (page 102)

Parameter Dialog Box Preview Image Specifier

This data structure contains a picture that will be used as one of the preview images in the preview window
of the standard parameters dialog box. The preview window shows previews of the effects the user chooses
in the dialog box. QuickTime provides a default images, but you can replace one or more of these by calling
QTStandardParameterDialogDoAction (or its low-level equivalent,
ImageCodecStandardParameterDialogDoAction) with apdActionSetPreviewPicture action selector.

100 Data Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

The sourceID numbers correspond to the sources an effect uses. For example, an effect that uses one source
will use the preview image with sourceID set to 1, while a two source effect will use preview pictures 1 and
2.

struct QTParamPreviewRecord {
 long sourceID;
 PicHandle sourcePicture;
};
typedef struct QTParamPreviewRecord QTParamPreviewRecord;
typedef QTParamPreviewRecord *QTParamPreviewPtr;

DefinitionTerm

The number of the preview image.sourceID

The preview image itself.sourcePicture

Effect Source Descriptors

These data structures describe the sources to an effect. The SourceData data structure contains a pointer
to raw image compression manager image data, if the effect is being executed outside of a QuickTime movie,
or to an effect that acts as the source, if the effect is being executed as part of an effect track in a QuickTime
movie. The EffectSourcePtr data structure holds information about the type of source, as well as pointers
to the track data of the effect and to the next source in the input chain.

typedef struct EffectSource EffectSource;
typedef EffectSource *EffectSourcePtr;

union SourceData {
 CDSequenceDataSourcePtr image;
 EffectSourcePtr effect;
};
typedef union SourceData SourceData;

DefinitionTerm

A pointer to the raw source image data.image

A pointer to the effect.effect

struct EffectSource {
 long effectType;
 Ptr data;
 SourceData source;
 EffectSourcePtr next;
};

DefinitionTerm

The type of the effect or the constant kEffectRawSource if the source is raw image
compression manager data.

effectType

Data Types 101
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

DefinitionTerm

A pointer to the track data for the effect.data

The source itself.source

A pointer to the next source in the input chain.next

Effect Frame Description

This data structure contains the parameters of a single frame of an effect. It is passed to the MyEffectBegin
and MyEffectRenderFrame functions to describe the frame to be rendered.

struct EffectsFrameParams {
 ICMFrameTimeRecord frameTime;
 long effectDuration;
 Boolean doAsync;
 unsigned char pad[3];
 EffectSourcePtr source;
 void * refCon;
};
typedef struct EffectsFrameParams EffectsFrameParams;
typedef EffectsFrameParams *EffectsFrameParamsPtr;

DefinitionTerm

Timing data for the current frame. This record includes information such as the total
number of frames being rendered in this sequence, and the current frame number.

frameTime

The duration of a single effect frame.effectDuration

This field contains true if the effect can process asynchronously.doAsync

A pointer to the input sources.source

A pointer to storage for this instantiation of the effect.refCon

The Decompression Parameters Structure

Several fields of the decompression parameters structure (CodecDecompressParams) are relevant to effects,
and in particular are used when you are writing your own effect component. This section describes only
those fields of this data structure that apply to effects.

struct CodecDecompressParams {
 ...
 CodecCapabilities *capabilities;
 ...
 ICMFrameTimePtr frameTime;
 ...
 UInt16 majorSourceChangeSeed;
 UInt16 minorSourceChangeSeed;

102 Data Types
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

 CDSequenceDataSourcePtr sourceData;
 ...
 OSType **wantedDestinationPixelTypes;
 ...
 Boolean needUpdateOnTimeChange;
 ...
 Boolean needUpdateOnSourceChange;
 ...
 long requestedBufferWidth;
 long requestedBufferHeight;
};
typedef struct CodecDecompressParams CodecDecompressParams;

DefinitionTerm

A pointer to a CodecCapabilities data structure containing the required
capabilities of the effect.

capabilities

The current frame time. The information in this parameter can be used to
calculate the current frame number, relative to the total duration of the effect.

frameTime

An integer value that is incremented each time a data source is added or
removed. This provides a fast way for an effect component to know when its
data sources have changed.

majorSource-
ChangeSeed

An integer value that is incremented each time a data source is added or
removed, or the data contained in any of the sources changes.This provides
a fast way for an effect component to know when a source changes.

minorSource-
ChangeSeed

A pointer to a CDSequenceDataSource structure that contains the head of
a linked list of all data sources. Because each data source contains a link to the
next data source, an effect component can access all data sources from this
field.

sourceData

A handle to a zero-terminated list of non-RGB pixel formats that the component
can decompress. Set this value to nil if your component does not support
non-RGB pixel spaces. If your effect component supports non-RGB pixel formats,
your component's MyEffectSetup function should place the list of them into
this field.The Image Compression Manager (ICM) copies this data structure, so
it is up to your component to dispose of it later. It is suggested that
components allocate this handle during the Open routine and dispose of it
during the Close routine.

wantedDestination-
PixelTypes

Setting this field to true indicates to the ICM that your component's
EffectBegin and EffectRenderFrame functions should be called whenever
the time of the movie changes. The default value of this field is true.

needUpdateOn-
TimeChange

Setting this field to true indicates to the ICM that your component's
EffectBegin and EffectRenderFrame functions should be called whenever
one or more of the sources to the effect changes. The default value of this field
is false.

needUpdateOnSource-
Change

Specifies the width of the image buffer to use, in pixels. For this value to be
used, the codecWantsSpecialScaling flag in the CodecCapabilities
record must be set.

requestedBufferWidth

Data Types 103
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

DefinitionTerm

Specifies the height of the image buffer to use, in pixels. For this value to be
used, the codecWantsSpecialScaling flag in the CodecCapabilities
record must be set.

requestedBuffer-
Height

Functions

This section lists the functions supported by effects components. Applications developers will typically call
the high-level functions directly.

 ■ High-Level Functions

 ❏ QTGetEffectsList

 ❏ QTCreateStandardParameterDialog

 ❏ QTIsStandardParameterDialogEvent

 ❏ QTDismissStandardParameterDialog

 ❏ QTStandardParameterDialogDoAction

 ❏ QTGetEffectSpeed

 ■ Low-level Functions

 ❏ ImageCodecGetParameterList

 ❏ ImageCodeCreateStandardParameterDialog

 ❏ ImageCodecIsStandardParameterDialogEvent

 ❏ ImageCodecStandardParameterDialogDoAction

 ❏ ImageCodecDismissStandardParameterDialog

 ■ Utility Functions

 ❏ MakeImageDescriptionForEffect

104 Functions
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Video Effects API

This table describes the changes to QuickTime Video Effects and Transitions Guide.

NotesDate

Updated illustrations.2007-05-03

Removed obsolete material and changed title from "Filters, Effects, and
Transitions."

2006-01-10

New document that describes QuickTime video effect components and explains
how to use them.

2002-09-17

105
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

106
2007-05-03 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Video Effects and Transitions Guide
	Contents
	Listings
	Introduction
	How To Add QuickTime Video Effects
	Effect Tracks
	Adding Video Effects to a QuickTime Movie
	Preparing an Effect for Direct Execution
	Executing the Decompression Sequence

	Creating an Effects Track
	Creating an Effect Description
	Structure of an Effect Description
	Adding the Sample to the Media
	Required Atoms of an Effects Description
	Example: Cross Fade
	Creating an Input Map
	Parameter Atoms of an Effects Description

	Working with Source Tracks
	Zero-Source Effects
	One-Source Effects (Filters)
	Two-Source Effects (Transitions)

	Sources Other Than Video Tracks
	Using Video Effects Outside a QuickTime Movie

	Constructing a Video Effects User Interface
	Displaying the Effects User Interface Using the High-Level API
	Getting a List of Effects
	Displaying the Standard Parameters Dialog Box

	Processing Standard Parameter Dialog Box Events
	Adding Video Effects Controls to an Existing Dialog Box
	Creating Your Application's Dialog Box
	Incorporating Controls From the Standard Parameters Dialog Box
	Adding a Preview to Your Dialog Box

	Built-in QuickTime Video Effects
	What Each Effect Does
	Push
	The SMPTE Video Effects
	SMPTE Wipe Effects
	SMPTE Iris Effects
	SMPTE Radial Effects
	SMPTE Matrix Effects
	Video Effects from Apple
	Alpha Compositor
	Blend Mode Enum

	Alpha Gain filter
	Blur Filter
	Chroma Key
	Cloud
	Color Style
	ColorSync filter
	Color Tint filter
	Edge Detection Filter
	Emboss Filter
	Explode
	Film Noise Filter
	The Film Fade Enum

	Fire
	General Convolution Filter
	Gradient Wipe
	HSL Balance Filter
	Implode
	Lens Flare
	RGB Balance Filter
	Ripple
	Sharpen Filter

	Creating New Video Effects
	What Effects Components Do
	The Effect Component Interface
	Supplying Parameter Description Information
	Implementing the EffectBegin and EffectRenderFrame Functions
	The EffectBegin function
	Checking Source and Destination References
	Reading Parameter Values
	Tweening Parameter Values
	The EffectRenderFrame Function

	Handling Multiple Formats
	Implementing a Bit-depth Specific Version of Your Algorithm
	Including the Bit-depth Implementations in Your Effect Code
	Calling the Effect Implementations from EffectRenderFrame

	The Sample Effect Component
	The Dimmer Effect
	The Standard Effect Framework
	Structure of the Framework
	Naming Conventions

	Writing an Effect Component Using the Framework
	Synchronous vs. Asynchronous Processing
	Defining the Number of Sources
	Adding to the Global Data Structures
	Preflighting the Blitter
	Setting the Destination
	The BlitterRenderFrame function
	The EffectsFrameClose function
	Reading the Effect Parameters
	Implementing your Effect

	Adding an 'atms' Resource to your Component
	The Standard Information in an 'atms' Resource
	The Parameter Information in an 'atms' Resource

	The Parameter Description Format
	Parameter Atom Type and ID

	Special Description Types
	Groups
	Enumeration Lists
	Source Count
	Parameter Data Type
	Parameter Alternate Data Type
	Parameter Data Range
	Parameter Data Behavior
	Parameter Data Usage
	Parameter Data Default Item

	Tweening Parameters
	Slide
	Parameter Descriptions
	Component-Defined Functions
	MyEffectSetup
	MyEffectBegin
	MyEffectRenderFrame
	MyEffectCancel
	MyEffectGetCodecInfo
	MyEffectGetParameterListHandle
	MyEffectGetSpeed
	MyEffectValidateParameters

	Video Effects API
	Introduction
	Constants
	Effects List Atom Names
	Effect Action Selectors
	Get Options for QTGetEffectsList
	Standard Parameter Dialog Box Options
	ImageCodecValidateParameters Options
	Effect Speed Flag

	Data Types
	Parameter Dialog Box Preview Image Specifier
	Effect Source Descriptors
	Effect Frame Description
	The Decompression Parameters Structure

	Functions

	Revision History

