
QuickTime Import and Export Guide
QuickTime > Import & Export

2006-01-10

Apple Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, ColorSync, Mac, Mac OS,
Macintosh, New York, QuickDraw, QuickTime,
and SoundTrack are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Import and Export Guide 9

Organization of This Document 10
See Also 10

Chapter 1 About Graphics Importer and Exporter Components 13

Graphics Importers 13
Alpha Channels 13
Multiple Images 13

Graphics Exporters 14
Using QuickTime to Export a Picture as an Image File 14

Chapter 2 Graphics Importer Components 19

Displaying Still Images 19
Image Formats with Multiple Images in a Single File 19
Supporting 64-bit File Sizes and Offsets 20
Retrieving Default Settings 20
Getting ColorSyncProfiles 20
Getting/Setting the Destination Rectangle 21

QuickTime Image File Format 21
Atom Types in QuickTime Image Files 22

Obtaining Graphics Import Components 24
Determining the Properties of the Image File 24
Drawing and Converting Image Files 25

Writing Graphics Import Components 25
Registering Graphics Import Components 27

Getting Image Characteristics 27
Setting Drawing Parameters 28
Drawing Images 28
Saving Image Files 28
Getting MIME Types 29
Specifying the Data Source 29
Retrieving Image Data 29
Graphics Importer Flags for Gamma Correction 30
Image Description Atoms in QuickTime Image Files 30
ColorSync Atoms in QuickTime Image Files 30
Graphics Importer Component Type 30
MIME Type List 31

3
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 3 Graphics Exporter Components 33

Exporting Graphics 33
Using Graphics Exporter Components 33

Selecting a Graphics Exporter Component 34
Specifying the Source 35
Specifying the Destination 35
Specifying Export Settings 35
DontRecompress Flag 36
Interlace Styles 36
MetaData 36
Compression Methods 36
Compression Quality 36
Target Data Size 36
Resolution 37
Depth 37
ColorSyncProfile 37
Settings Dialogs 37
User Interface 37
File Type and Creator 38

How Graphics Exporters Work 38
How the Base Exporter Chooses a Mode 39

Writing Graphics Export Components 39

Chapter 4 Graphics Exporter Component Functions By Task 41

Constants 41
Data Types 41
Functions 41

Exporting 41
Internal Routines 42
Finding Out About Image Formats 42
Obtaining Graphics Exporter Settings 42
Accessing Graphics Exporter Settings 42
Getting and Setting Progress Procs 43
Specifying Sources for Input Images 43
Restricting the Range of an Input Image's Source 44
Reading Input Data 44
Accessing the Input Image 44
Destinations for Output Images 45
Writing Output Data 45

Chapter 5 Movie Data Exchange Components 47

Saving and Restoring Settings 48
Movie Exporter Presets 49

4
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Implementing Movie Data Exchange Components 49
Standard Compression Components and Settings 49
Exporting Text 49
Time Stamps 51
Text Descriptors 51
MIME Type List 52

Text Display Data Structure 53
Importing Text 54
Importing In Place 55
Audio CD Import Component 55
DV Video Import and Export Components 55

DV Movie Import Component 55
DV Movie Export Component 56

Exporting DV Data from an Application 56
Exporting Data from Sources Other Than Movies 56
Determining What Kind of Tracks a Component Supports 57

Instantiating the Data Export Component 57
Using a Movie Data Export Component to Export Audio 58

Configuring the Data Export Component 58
Exporting the Data 59

Using a Movie Data Export Component to Export Video 60
Instantiating the Video Export Component 60
Configuring the Video Export Component 61
Using the Component 61
Determining the Data Sources Supported by an Export Component 63

Chapter 6 Creating a Movie Data Exchange Component 65

Importing Movie Data 66
Exporting Movie Data 66
Summary of Constants 66
Result Codes 67
A Sample Movie Import Component 67
Implementing the Required Import Component Functions 68

Importing a Scrapbook File 70
A Sample Movie Export Component 72

Implementing the Required Export Component Functions 72
Exporting Data to a PICS File 74

Save-and-Restore Component Routines 75
Settings Container Format and Guidelines 76
Registering Movie Data Export Components 77

The Registration Mechanism 77
Export Registration Mechanism 78
Implementing Movie Data Export Components 78

5
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 7 Using Movie Data Exchange Components 81

Importing and Exporting Movie Data 81
Configuring a Movie Data Exchange Component 81
Configuring Movie Data Import Components 82
Configuring Movie Data Export Components 82
Finding a Specific Movie Data Exchange Component 83
Specifying a Part of a File to Import 84
Getting a List of Supported MIME Types 84
Determining Whether Movie Data Export Is Possible 84

Document Revision History 87

6
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 About Graphics Importer and Exporter Components 13

Listing 1-1 Finding the available export file types 16

Chapter 2 Graphics Importer Components 19

Figure 2-1 Matrix scaling and translation 21
Figure 2-2 An 'idsc' atom followed by an 'idat' atom 22
Figure 2-3 Delegating calls to the base importer 26
Figure 2-4 A MIME type list 31
Table 2-1 A QuickTime Image file containing JPEG compressed data 22
Table 2-2 Drawing parameters you may configure 25
Listing 2-1 The basic function used to draw an image file 19

Chapter 3 Graphics Exporter Components 33

Figure 3-1 Delegating calls to the base graphics exporter 38
Listing 3-1 The basic functions used to export a GWorld to an image file 34
Listing 3-2 Building a list of graphics exporter components 34

Chapter 5 Movie Data Exchange Components 47

Figure 5-1 The Movie Toolbox, movie data import components, and your application 47
Figure 5-2 The Movie Toolbox, movie data export components, and your application 48
Figure 5-3 Text export settings dialog box 50
Figure 5-4 A MIME type list 53
Figure 5-5 Text import settings dialog box 54
Listing 5-1 Instantiating a data export component 57
Listing 5-2 Exporting audio data to an AIFF file 58
Listing 5-3 Configuring the audio export component 58
Listing 5-4 Exporting from procedures to a data reference 59
Listing 5-5 Obtaining output track information 59
Listing 5-6 Providing output track information to the export component 60
Listing 5-7 Instantiating a movie data export component 60
Listing 5-8 Configuring the movie data export component 61
Listing 5-9 Setting dimensions and compression format 61
Listing 5-10 Providing video frames for export 62

Chapter 6 Creating a Movie Data Exchange Component 65

Listing 6-1 Implementing the required import functions 68

7
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Listing 6-2 Importing a Scrapbook file 70
Listing 6-3 Implementing the required export functions 73
Listing 6-4 Exporting a frame of movie data to a PICS file 74
Listing 6-5 Calling MovieExportToDataRef from MovieExportToFile 78
Listing 6-6 Calling MovieExportFromProceduresToDataRef from MovieExportToDataRef 79

8
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This book describes QuickTime’s technology for importing and exporting graphics and other data into and
out of movies.

QuickTime imports and exports data between movies and still images using graphic importer and exporter
components and movie data exchange components:

 ■ Graphic importer and exporter components open, display, and save graphic images stored using various
file formats and compression algorithms. Apple-provided components read many common compressed
image types. Support for cross-platform and web-derived images is provided, including the ability to
query for capability by MIME type and by examination (a component can be asked to examine a file of
unknown type, to see if it can decompress the file).

 ■ Movie data exchange components allow you to import data from non-movie sources into QuickTime
movies, and to export data to non-movie formats. For example, you can import a CD audio track into a
QuickTime movie, or save a QuickTime movie’s sound track as an AIFF file, using data exchange
components. Applications programmers can use the services of data exchange components indirectly,
through high-level calls to the Movie Toolbox. Movie data exchange components can also be controlled
directly from applications.

Image importers and exporters manage the import and export of graphic images, such as JPEG, TIFF,
Photoshop, and PNG. Movie data exchange components support the import and export of other multimedia
formats, such as AIFF, WAVE, AVI, MPEG-1, MIDI, MPEG-4, 3GPP, MP3, MPEG-2, H.263, H.264, and OpenDML.
QuickTime can open any format file for which it has an importer and create any for which it has an exporter.

Note: This book replaces three previously separate Apple documents: “Movie Import/Export (Data Exchange
Components),” “Graphics Importers,” and “Graphics Exporters.”

Applications make direct calls to graphic importer components, so this document will be of interest to most
QuickTime developers who work with still images or the web. To obtain the services of a graphics importer
component, applications normally use the GetGraphicsImporterForFile or
GetGraphicsImporterForDataRef functions of the Image Compression Manager.

If your application needs to import or export data between movies and other data types, you should read
the sections "Movie Data Exchange Components" (page 47), and "Using Movie Data Exchange
Components" (page 81). If you plan to control data exchange components directly from within your
application, or if you are creating a new movie data exchange component, you will need to read all of the
material in this document.

If you need to create a new graphics importer component, refer to this document to implement a component
that supports the required interface functions.

9
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Import and Export
Guide

Organization of This Document

This document is divided into seven chapters:

 ■ "About Graphics Importer and Exporter Components" (page 13) describes what QuickTime graphic
importer and exporter components do and shows how to use them from within an application.

 ■ "Graphics Importer Components" (page 19) tells you how applications can use graphics importer
components.

 ■ "Graphics Exporter Components" (page 33) describes the general features of graphics exporter
components.

 ■ "Graphics Exporter Component Functions By Task" (page 41) describes the graphics exporter functions
grouped by task and category.

 ■ "Movie Data Exchange Components" (page 47) describes what movie data exchange components are
and shows how they work.

 ■ "Creating a Movie Data Exchange Component" (page 65) describes how to create a movie data exchange
component. Sample import and export components are provided as a programming aid.

 ■ "Using Movie Data Exchange Components" (page 81) describes how to use movie exchange components
from within your application.

See Also

Sample code is available at:

http://developer.apple.com/samplecode/ImproveYourImage/index.html

The sample code demonstrates the usage of QuickTime graphics importers and exporters, and includes
twelve separate examples, each of which can be chosen from the Examples menu. These show how to use
graphics importers to

 ■ Simply draw a still image.

 ■ Import, draw, scale and rotate a still image.

 ■ Demonstrate compositing with alpha graphics modes and images containing alpha channels.

 ■ Retrieve metadata from image files.

 ■ Display multiple layers stored in a Photoshop file.

 ■ Import an image from a URL data reference.

 ■ Add a filter to an imported image, draw it with the filter, and export a new image with the filter applied.

The following Apple books cover related aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

10 Organization of This Document
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Import and Export Guide

http://developer.apple.com/samplecode/ImproveYourImage/index.html

 ■ QuickTime Movie Creation Guide describes some of the different ways your application can create a new
QuickTime movie.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

 ■ QuickTime Media Types and Media Handlers Guide introduces the idea of QuickTime media handler
components and provides details of the video, sound, text, timecode, and tween media handlers.

 ■ QuickTime Compression and Decompression Guide introduces you to the QuickTime Image Compression
Manager and its associated components, which provide image-compression and image-decompression
services to applications and to other QuickTime components.

See Also 11
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Import and Export Guide

12 See Also
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Import and Export Guide

This chapter describes what graphic importer and exporter components do and shows how to use them
from within an application. A code sample is included.

Graphics Importers

Graphics importer components provide a standard method for applications to open and display still images
contained within graphics documents. Graphics importer components allow you to work with any type of
supported image data, regardless of the file format or compression used in the file.

You can use the graphics importer component functions to obtain a graphics importer component instance
that can read graphics data from a particular file or area of memory. For example,
GetGraphicsImporterForFile will attempt to locate and open a graphics importer component that can
be used to draw the specified file. The component can then be used to find some characteristics of the image
such as its dimensions by using GraphicsImportGetNaturalBounds and can be drawn by simply calling
GraphicsImportDraw.

Alpha Channels

Some QuickTime supported file formats, such as TIFF, PNG, and Photoshop, support alpha channels; some,
such as JPEG and TGA, do not. However, even if a file format supports alpha channels, not every file will
contain one.

You can use graphics importers to find out whether a file has an alpha channel by calling
GraphicsImportGetImageDescription and looking at the depth field in the image description. By
convention, a depth of 24 means RGB without alpha, whereas 32 means ARGB.

QuickTime will not synthesize an opaque alpha channel for an image that does not have one; if the depth is
24, the first byte of each pixel will probably be 0. Developers working with alpha channels should only depend
on these values if the depth is 32.

All depths of PNG files can have transparency. For example, a 4-bit indexed-color PNG file can have an
opaqueness value associated with each color index. QuickTime translates these files to 32-bit ARGB in order
to preserve the transparency information.

Multiple Images

Graphics importers also support image formats containing multiple images in a single file. For example, TIFF
files can support multiple images, Photoshop files can contain multiple layers, and FlashPix files can contain
multiple resolutions. You can use GraphicsImportGetImageCount to find out how many images are in a
file, and GraphicsImportSetImageIndex to select a particular image.

Graphics Importers 13
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter
Components

Graphics Exporters

Graphics exporter components provide a standard interface for exporting graphics to image files in a variety
of formats. QuickTime selects a graphic exporter component based on the desired output format, such as
GIF or PNG.

The image input for an export operation can come from a QuickDraw picture, a GWorld or PixMap, a QuickTime
graphics importer component instance, or a segment of compressed data described by a QuickTime image
description. In the last case, the compressed data may be accessed via a pointer, handle, file or other data
reference. The ouput image for an export operation can be stored in a handle, file, or other data reference.
Different file formats support a wide range of configurable features, such as depth, resolution, and compression
quality.

To use a graphics exporter, you must first open a graphics exporter component instance, specify the source
of the input image, its destination, set whatever parameters you want, and then actually do the export.

For example, if you want to write a GWorld out to a PNG image file you would would use
OpenADefaultComponent to open an instance of the kQTFileTypePNG graphics exporter component,
GraphicsExportSetInputGWorld to associate the input GWorld with the export operation,
GraphicsExportSetOutputFile to associate the output FSSpec with the export operation and
GraphicsExportDoExport to perform the export.

Once you’re finished with component instances you can simply close them using CloseComponent.

Using QuickTime to Export a Picture as an Image File

Graphics importer components provide a simple, flexible and extensible way for you to draw pictures that
are stored in a wide variety of image file formats. They also turn out to be the easiest way to export pictures
to several file formats.

Typically, you create a graphics importer instance with the GetGraphicsImporterForFile call or one of
its relatives. Afterwards, you can call GraphicsImportExportImageFile to export that image to a new
file:

GetGraphicsImporterForFile(
 &theExistingFile,
 &gi);

GraphicsImportExportImageFile(
 gi,
 kQTFileTypeJPEG, // or one of several other file types
 0, // ie, the default creator for this type
 &theNewFile,
 theScriptCode);

The file type determines the data format for the exported file. For example, if you pass kQTFileTypeJPEG,
a JPEG file will be created.

If the picture you want to export isn’t already in a file, it doesn’t make sense to call
GetGraphicsImporterForFile. Instead, you can create an instance of the “picture file” graphics importer
yourself and give it a handle that contains a “source picture file.”

14 Graphics Exporters
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter Components

OpenADefaultComponent(
 GraphicsImporterComponentType,
 kQTFileTypePicture,
 &gi);

GraphicsImportSetDataHandle(
 gi,
 thePictureFileHandle);

GraphicsImportExportImageFile(
 gi,
 kQTFileTypeJPEG,
 0,
 &theNewFile,
 theScriptCode);

Picture files are just like picture handles, except that they have an extra 512-byte header at the front. (Any
data in this header is usually ignored, but it must be there for historical reasons.) The graphics importer for
picture files expects and skips this 512-byte header, so you must insert it.

PicHandle thePicture = /* create a picture */;
Handle thePictureFileHandle;

thePictureFileHandle = NewHandleClear(512);
HandAndHand((Handle)thePicture,thePictureFileHandle);

The following function exports a picture to a file. The new file is described by its type, creator, specification
and script code. If you don’t know what script code to use, it’s usually safe to use smSystemScript.

#include <OSUtils.h>
#include <ImageCompression.h>
#include <QuickTimeComponents.h>

OSErr ExportPicHandleToFile(
 PicHandle thePicture,
 OSType filetype,
 OSType filecreator,
 FSSpec *filespec,
 ScriptCode filescriptcode)
{
 Handle h;
 OSErr err;
 GraphicsImportComponent gi = 0;

 // Convert the picture handle into a PICT file (still in a handle)
 // by adding a 512-byte header to the start.
 h = NewHandleClear(512);
 err = MemError();
 if(err) goto bail;
 err = HandAndHand((Handle)thePicture,h);

 err = OpenADefaultComponent(
 GraphicsImporterComponentType,
 kQTFileTypePicture,
 &gi);
 if(err) goto bail;

 err = GraphicsImportSetDataHandle(gi, h);

Using QuickTime to Export a Picture as an Image File 15
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter Components

 if(err) goto bail;

 err = GraphicsImportExportImageFile(
 gi,
 filetype,
 filecreator,
 filespec,
 filescriptcode);
 if(err) goto bail;

bail:
 if(gi) CloseComponent(gi);
 if(h) DisposeHandle(h);
 return err;
}

Your application can find out more information about available export formats by calling the
GraphicsImportGetExportImageTypeList function. This function returns an atom container (which
your application must dispose of) containing several kGraphicsExportGroup atoms. Each of these represents
one export format, and has child atoms which indicate the file type (kGraphicsExportFileType),
human-readable format name (kGraphicsExportDescription), file extension
(kGraphicsExportExtension) and optionally MIME type (kGraphicsExportMIMEType).

The code fragment in Listing 1-1 shows how you can find out the available export file types. Error-handling
code has been removed.

Listing 1-1 Finding the available export file types

QTAtomContainer theExportInfo = nil;
short theNumberOfExportTypes, i;

GraphicsImportGetExportImageTypeList(
 gi,
 &theExportInfo);

theNumberOfExportTypes = QTCountChildrenOfType(
 theExportInfo,
 kParentAtomIsContainer,
 kGraphicsExportGroup); // 'expo'

for(i = 1; i <= theNumberOfExportTypes; i++) {
 QTAtom groupAtom, fileTypeAtom;
 OSType fileType;

 groupAtom = QTFindChildByIndex(
 theExportInfo,
 kParentAtomIsContainer,
 kGraphicsExportGroup,
 i,
 nil);

 fileTypeAtom = QTFindChildByIndex(
 theExportInfo,
 groupAtom,
 kGraphicsExportFileType, // 'ftyp'
 1,
 nil);

16 Using QuickTime to Export a Picture as an Image File
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter Components

 QTCopyAtomDataToPtr(
 theExportInfo,
 fileTypeAtom,
 false,
 sizeof(fileType),
 &fileType,
 nil);

 fileType = EndianU32_BtoN(fileType); // data in QT atoms
 // is always big-endian
}
QTDisposeAtomContainer(theExportInfo);

Using QuickTime to Export a Picture as an Image File 17
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter Components

18 Using QuickTime to Export a Picture as an Image File
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Graphics Importer and Exporter Components

This chapter describes the functions you can use to obtain the services of graphics importer components
and use them to draw and manipulate image files.

Displaying Still Images

Graphics importer components provide a standard method for applications to open and display still images
contained within graphics documents. Graphics importer components allow you to work with any type of
image data, regardless of the file format or compression used in the document.

You specify the document that contains the image, and the destination rectangle the image should be drawn
into, and QuickTime handles the rest. More complex interactions are also supported.

To draw an image file, use the function shown in Listing 2-1.

Listing 2-1 The basic function used to draw an image file

void drawFile(const FSSpec *fss, const Rect *boundsRect)
 {
 GraphicsImportComponent gi;
 GetGraphicsImporterForFile(fss, &gi);
 GraphicsImportSetBoundsRect(gi, boundsRect);
 GraphicsImportDraw(gi);
 CloseComponent(gi);
 }

The same code can be used to display any image, regardless of the file format.

Image Formats with Multiple Images in a Single File

QuickTime includes support for image formats which can have multiple images in a single file. You can use
GraphicsImportGetImageCount to find out how many images are in a file, and
GraphicsImportSetImageIndex to select a particular image. Of the image formats supported by QuickTime,
TIFF files can support multiple images, Photoshop files can contain multiple layers and FlashPix files can
contain multiple resolutions.

Note that individual images in a file may have different characteristics (width and height, depth, and so on).

Use the following functions to deal with image counts, getting and setting image indexes:

 ■ GraphicsImportGetImageCount

 ■ GraphicsImportSetImageIndex

 ■ GraphicsImportGetImageIndex

Displaying Still Images 19
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Supporting 64-bit File Sizes and Offsets

QuickTime supports 64-bit file sizes and offsets. Four new functions have been added to the graphics importer
API. Each is a 64-bit analog of an original 32-bit function. The base graphics importer’s implementation of
some 32-bit functions have been modified to call the 64-bit version. (They may return fileOffsetTooBigErr
in the event that a 64-bit value cannot be converted to a 32-bit value.) Applications and format-specific
importers can call either version of each function.

Use the following functions to deal with 64-bit file sizes and offsets:

 ■ GraphicsImportGetDataOffsetAndSize64

 ■ GraphicsImportReadData64

 ■ GraphicsImportSetDataReferenceOffsetAndLimit64

 ■ GraphicsImportGetDataReferenceOffsetAndLimit64

Retrieving Default Settings

Some file formats, most notably FlashPix, can store a default matrix, clipping region, graphics mode and
source rect in the image file. In order to display the image correctly, these settings should be used.

Use the following functions to deal with retrieving default settings:

 ■ GraphicsImportGetDefaultMatrix

 ■ GraphicsImportGetDefaultClip

 ■ GraphicsImportGetDefaultGraphicsMode

 ■ GraphicsImportGetDefaultSourceRect

Default settings from FlashPix files are not used automatically.

Getting ColorSyncProfiles

QuickTime includes support for extracting embedded ColorSync profiles from some image formats. Of the
image formats supported by QuickTime, these are GIF, JPEG, PNG, QuickDraw Picture, QuickTime Image, and
TIFF. Image files containing ColorSync profiles describe their own colorspaces in a self-contained manner.

Since it was introduced in QuickTime, the PNG graphics importer has performed built-in gamma correction.
QuickTime includes a flag that can you can set using the GraphicsImportSetFlags function to turn this
off. This is useful for applications that want to use some other mechanism for colorspace correction, such as
ColorSync.

Use the following functions to deal with getting ColorSync profiles, and getting and setting import flags:

 ■ GraphicsImportGetColorSyncProfile

 ■ GraphicsImportSetFlags

 ■ GraphicsImportGetFlags

20 Displaying Still Images
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Getting/Setting the Destination Rectangle

QuickTime includes two calls that let applications access a graphics importer’s destination rectangle.

Use the following functions to deal with accessing a destination rectangle:

 ■ GraphicsImportSetDestRect

 ■ GraphicsImportGetDestRect

Figure 2-1 shows an example with the following four rectangles: natural bounds, source rectangle, bounds
rectangle, and a destination rectangle. You can access the destination rectangle in QuickTime with these
calls.

In Figure 2-1, the matrix scales by 200% vertically and translates 200 pixels to the right.

Figure 2-1 Matrix scaling and translation

(0,0)

(100,100)

(200,0)

(270,100)

(300,200)

Natural bounds rectangle Bounds rectangle

Destination
rectangle

Transformation
Matrix

1 0 0

0 2 0

200 0 1

Source
rectangle

(70,50)

(30,20)

(230,40)

QuickTime Image File Format

QuickTime Image files are intended to provide the most useful container for QuickTime compressed still
images. The format uses the same atom-based structure as a QuickTime movie.

Most still image file formats define both how images should be stored and compressed. However, two of
the file formats supported by QuickTime are container formats, which describe storage mechanisms
independent of compression. These formats are QuickDraw Picture (PICT) files and QuickTime Image (QTIF)
files.

QuickTime Image File Format 21
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

QuickTime has permitted compressed image data to be included in QuickDraw pictures since QuickTime was
first introduced. However, the technical challenges of parsing, interpreting and spooling picture files can
make them a discouraging choice for applications which are primarily interested in accessing the compressed
data inside.

The QuickTime Image file format provides a much simpler container for QuickTime compressed still images.
The format uses the same atom-based structure as a QuickTime movie. Because the QuickTime Image file is
a single fork format, it works well in cross-platform applications. On Mac OS systems, QuickTime Image files
are identified by the file type 'qtif'. On other platforms, Apple recommends that you use the filename
extension .QTIF to identify QuickTime Image files.

Atom Types in QuickTime Image Files

There are two defined atom types: 'idsc', which contains an image description, and 'idat', which contains
the image data. They are illustrated in Figure 2-2. For a JPEG image, the image description atom contains a
QuickTime image description describing the JPEG image’s size, resolution, depth, and so on, and the image
data atom contains the actual JPEG compressed data, as shown in Table 2-1.

In QuickTime, there is an optional atom type, 'iicc', which can store a ColorSync profile.

Figure 2-2 An 'idsc' atom followed by an 'idat' atom

Image description atom

Atom size

Image description

Image data atom

Image data

Atom size

Type = 'idsc'

Type = 'idat'

Bytes

4

4

Variable

4

4

Variable

Table 2-1 A QuickTime Image file containing JPEG compressed data

DescriptionData

Atom size, 94 bytes0000005E

Atom type, 'idsc'69647363

Image description size, 86 bytes00000056

Compressor identifier, 'jpeg'6A706567

22 QuickTime Image File Format
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

DescriptionData

Reserved, set to zero00000000

Reserved, set to zero0000

Reserved, set to zero0000

Major and minor version of this data, zero if not applicable00000000

Vendor who compressed this data,'appl'6170706C

Temporal quality, zero (no temporal compression)00000000

Spatial quality, codecNormalQuality00000200

Image width, 3200140

Image height, 24000F0

Horizontal resolution, 72 dpi00480000

Vertical resolution, 72 dpi00480000

Data size, 15447 bytes (use zero if unknown)00003C57

Frame count, 10001

Compressor name, "Photo - JPEG" (32 byte Pascal string)0C 50 68 6F 74 6F 20 2D 20 4A 50 45 47 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00

Image bit depth, 240018

Color look-up table ID, -1 (none)FFFF

Atom size, 15455 bytes00003C5F

Atom type, 'idat'69646174

JPEG compressed dataFF D8 FF E0 00 10 4A 46 49 46 00 01 01 01 00
48 ...

A QuickTime image file can also contain other atoms.

The exact order and size of atoms is not guaranteed to match the example in Table 2-1. Applications reading
QuickTime image files should always use the atom size to traverse the file and ignore atoms of unrecognized
types.

Like QuickTime movie files, QuickTime Image files are big-endian. However, image data is stored in the same
byte order as usually specified by the particular compression format.

QuickTime Image File Format 23
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Obtaining Graphics Import Components

You can use the GetGraphicsImporterForFile function to open a suitable graphics import component
for a file. If you have a data reference instead of a file, you can use GetGraphicsImporterForDataRef
instead.

When the Image Compression Manager’s GetGraphicsImporterForFile function searches for a graphics
import component, it tries, in order:

 ■ matching the Mac OS file type

 ■ matching the file name suffix

 ■ matching the MIME type and MIME suggested file name suffix

 ■ asking individual graphics importer components if the file’s contents match their format. It only does
this for those graphics importers which support the GraphicsImporterValidate call.

The last stage can be time-consuming, since it involves opening many components in turn. If you want to
skip it, callGetGraphicsImporterForFileWithFlags (orGetGraphicsImporterForDataRefWithFlags
) and pass the kDontUseValidateToFindGraphicsImporter flag.

If you include kQTFileTypeQuickTimeImage ('qtif') in the list of types passed to
StandardGetFilePreview, all files that can be opened with graphics importers are included in the file list.
The slow validate approach is not used in this case.

When you are done with the graphics importer instance, you call CloseComponent.

If you expect to draw the same image more than once, you can improve performance by keeping the graphics
importer component open, rather than creating and disposing of it each time.

Once you have a graphics import component for your file or data reference, you can query it to determine
the properties of the file, configure drawing parameters, and draw or export the file. The next two sections
explain how to do this.

Determining the Properties of the Image File

If you want to know the dimensions of the image, call the importer’s GraphicsImportGetNaturalBounds
function. If you want to know other information that is represented in the image description, such as its
depth or color table, call GraphicsImportGetImageDescription. If you want to extract meta-data from
the image file (such as textual comments, like copyright information), call GraphicsImportGetMetaData.
If you want to know information about the file format, such as the MIME types and MIME suggested file name
suffixes, call GraphicsImportGetMIMETypeList.

Some image file formats can contain transparent regions, and hence may leave some pixels in their rectangular
range unmodified even when drawing with a copying transfer mode and an identity matrix. If you would
like to know whether a graphics importer’s format supports such transparent regions, call
GraphicsImportDoesDrawAllPixels. If a graphics importer doesn’t support the
GraphicsImportDoesDrawAllPixels call, you can assume it will draw all pixels.

24 Obtaining Graphics Import Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Drawing and Converting Image Files

Before drawing, you may wish to set various parameters. Among those you can configure are the

 ■ source rectangle

 ■ transformation matrix

 ■ clipping region

 ■ graphics transfer mode

 ■ drawing quality

 ■ destination graphics port and device

These parameters are explained in detail in Table 2-2.

Table 2-2 Drawing parameters you may configure

DescriptionParameters

Used to select a rectangular portion of the compressed image.source rectangle

Used to shift, scale, rotate, and apply perspective to the source portion
of the image. (Set this with SetMatrix, SetBoundsRect, or
SetDestRect.)

transformation matrix

Used to restrict the area to be drawn in the destination space.clipping region

Used to define how source pixels modify destination pixels.graphics transfer mode

Used to specify quality vs. time tradeoffs; For example, if you're drawing
a JPEG image to an 8-bit color screen, the drawing quality determines
whether a slower or faster dither will be used.

drawing quality

Defines the graphics environment for drawing.destination graphics port and
device

Once you have set the drawing parameters, you can call Draw to draw the image.

You can also call GraphicsImportGetAsPicture to get the image in the form of a QuickDraw picture
handle, GraphicsImportSaveAsPicture to save it in a PICT file, or
GraphicsImportSaveAsQuickTimeImage to save it in a QuickTime Image file. To export it to other image
file formats, you can use GraphicsImportExportImageFile, or
GraphicsImportDoExportImageFileDialog to present a standard Export As.. dialog box.

When you are done with a graphics import component, you call CloseComponent.

Writing Graphics Import Components

This section describes how graphics import components work and briefly discusses how to write a component.
If you’re interesting in writing a component, you should read this section.

Writing Graphics Import Components 25
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Format-specific graphics import components, such as the importers for JPEG, PNG, TIFF etc., are simple
components. When a format-specific graphics importer is opened, it opens and targets an instance of the
base importer. Subsequently, it delegates most of its calls to the base importer instance, as shown in Figure 2-3.

Figure 2-3 Delegating calls to the base importer

GetDataOffsetAndSize

Validate

GetMetaData

DoesDrawAllPixels

GetMIMETypeList

GetNaturalBounds

Draw

Format-Specific
Graphics

Import
Component

Base Graphics Import Component

Data
Handler

Image
Compression

Manager

GetImageDescription

Other calls...
ReadData

GetDataOffsetAndSize

The base importer communicates with data handler components to access image file data, and with the
Image Compression Manager to arrange for image rendering. The only service a format-specific importer
must provide is the GraphicsImportGetImageDescription call, which examines an image file and
constructs an image description for it. The base importer uses this image description to respond to other
calls such as GraphicsImportGetNaturalBounds and GraphicsImportDraw. (In the case of
GraphicsImportDraw, the image description is passed to the Image Compression Manager, so the cType
field must identify a codec that will be able to draw the image. If a graphics importer needs to pass extra
information that the codec will need at PreDecompress time, it can pass it in an image description extension.)

Sometimes, the data to be passed to the image decompressor is only a portion of the file. In these cases, the
format-specific importer should implement the GraphicsImportGetDataOffsetAndSize function to
indicate the byte range to send to the image decompressor. It is often useful for this call to first call the
generic importer’s implementation to find out the size of the input data stream.

In QuickTime, there is a 64-bit analog of this function, called GraphicsImportGetDataOffsetAndSize64.
In order to provide compatibility with old graphics importers, the generic importer’s implementation of this
function calls the 32-bit version. Format-specific importers may implement both the 32-bit and 64-bit versions
if it makes sense for their file formats.

26 Writing Graphics Import Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Graphics import components may override other calls, such as GraphicsImportGetMetaData, which
extracts supplemental information from an image file, and GraphicsImportGetMIMETypeList, which
provides information about the format.

Another optional call is GraphicsImportValidate, which attempts to ascertain quickly whether a file
matches the importer’s format. This is especially useful for formats which start with identifying codes or
“magic numbers” (such as PNG and TIFF) in situations where image files do not have correct file types or
suffixes. In situations like this, the Image Compression Manager may ask many graphics importers in turn to
validate until it finds one that accepts the file, so it is important that GraphicsImportValidate calls not
be too slow. Format-specific importers that implement the GraphicsImportValidate call should have the
canMovieImportValidateFile bit set in their component flags.

Graphics importers supporting image formats which can have transparent regions should implement the
GraphicsImportDoesDrawAllPixels call so as to warn applications that they may need to erase the
destination area before drawing.

Registering Graphics Import Components

Graphics import components have component type 'grip'. The interpretation of the subtype depends on
the movieImportSubTypeIsFileExtension component flag. If this flag is clear, the subtype is a Macintosh
file type. If this flag is set, the subtype is a file name suffix; it should be in uppercase and followed by space
characters to pad it out to four characters. For instance, the file name suffix .png would be represented by
the subtype 'PNG '.

It is often useful to register graphics import components multiple times, so that both the file type and file
name suffix may be matched. An efficient way to do this is to register the second and subsequent components
as component aliases to the first.

Graphics import components that use the base importer’s Draw method should set the
graphicsImporterUsesImageDecompressor flag in their component flags.

Getting Image Characteristics

These functions are called by applications to obtain information about images:

 ■ GraphicsImportGetNaturalBounds

 ■ GraphicsImportGetImageDescription

 ■ GraphicsImportGetDataOffsetAndSize

 ■ GraphicsImportValidate

 ■ GraphicsImportGetMetaData

 ■ GraphicsImportDoesDrawAllPixels

Format-specific graphics importers always implement GraphicsImportGetImageDescription and may
optionally implement the remaining functions listed above.

Getting Image Characteristics 27
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

Setting Drawing Parameters

The functions listed below allow you to specify various parameters for drawing operations, such as clipping,
scaling, graphics mode, and decompression quality. All of these functions are based on corresponding routines
in the Image Compression Manager for working with image decompression sequences:

 ■ GraphicsImportSetBoundsRect

 ■ GraphicsImportGetBoundsRect

 ■ GraphicsImportSetMatrix

 ■ GraphicsImportGetMatrix

 ■ GraphicsImportSetClip

 ■ GraphicsImportGetClip

 ■ GraphicsImportSetGraphicsMode

 ■ GraphicsImportGetGraphicsMode

 ■ GraphicsImportSetQuality

 ■ GraphicsImportGetQuality

 ■ GraphicsImportSetSourceRect

 ■ GraphicsImportGetSourceRect

 ■ GraphicsImportSetProgressProc

 ■ GraphicsImportGetProgressProc

Drawing Images

These functions are used to draw images:

 ■ GraphicsImportSetGWorld

 ■ GraphicsImportGetGWorld

 ■ GraphicsImportDraw

Saving Image Files

Graphics import components can save data in several formats, including QuickDraw pictures and QuickTime
Image files. This capability is only needed by applications that perform file format translation. Applications
that only wish to draw the image can use the GraphicsImportDraw function.

 ■ GraphicsImportSaveAsPicture

 ■ GraphicsImportSaveAsQuickTimeImageFile

28 Setting Drawing Parameters
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

 ■ GraphicsImportGetAsPicture

 ■ GraphicsImportExportImageFile

 ■ GraphicsImportGetExportImageTypeList

 ■ GraphicsImportDoExportImageFileDialog

 ■ GraphicsImportGetExportSettingsAsAtomContainer

 ■ GraphicsImportSetExportSettingsFromAtomContainer

Getting MIME Types

Your graphics import component can support MIME types that correspond to graphics formats it supports.
To make a list of these MIME types available to applications or other software, it must implement this function:

 ■ GraphicsImportGetMIMETypeList

Specifying the Data Source

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use the graphics importer component functions described in this section, rather than directly
calling a data handler. These functions allow the data source to be a file, a handle, or a QuickTime data
reference.

You do not need to call the functions in this section if you use one of the GetGraphicsImporter functions.
The GetGraphicsImporter functions automatically set the graphics importer component’s data source.
You only need to use these functions if you open the graphics importer component directly.

 ■ GraphicsImportSetDataFile

 ■ GraphicsImportGetDataFile

 ■ GraphicsImportSetDataHandle

 ■ GraphicsImportGetDataHandle

 ■ GraphicsImportSetDataReference

 ■ GraphicsImportGetDataReference

 ■ GraphicsImportSetDataReferenceOffsetAndLimit

 ■ GraphicsImportGetDataReferenceOffsetAndLimit

Retrieving Image Data

This function is used by format-specific graphics import components to read data from the data source; it is
implemented by the base graphics importer:

Getting MIME Types 29
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

 ■ GraphicsImportReadData

Graphics Importer Flags for Gamma Correction

You can set the kGraphicsImporterDontDoGammaCorrection flag when you want to tell the Graphics
Importer not to perform gamma correction

enum {
 kGraphicsImporterDontDoGammaCorrection = 1L
};

DefinitionTerm

Specifies not to perform a gamma correction.kGraphicsImporterDontDoGammaCorrection

Image Description Atoms in QuickTime Image Files

These atoms may appear in QuickTime image files:

enum {
 quickTimeImageFileImageDescriptionAtom = FOUR_CHAR_CODE('idsc'),
 quickTimeImageFileImageDataAtom = FOUR_CHAR_CODE('idat'),
 quickTimeImageFileMetaDataAtom = FOUR_CHAR_CODE('meta'),
};

ColorSync Atoms in QuickTime Image Files

QuickTime includes a ColorSync atom type, which can be used to store ColorSync profile information:

enum {
 quickTimeImageFileColorSyncProfileAtom = FOUR_CHAR_CODE('iicc')
};

Graphics Importer Component Type

Graphics importer components have this component type:

enum {
 GraphicsImporterComponentType = 'grip'
};

30 Graphics Importer Flags for Gamma Correction
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

MIME Type List

The GraphicsImportGetMIMETypeList function returns a list of the MIME types supported by a graphics
importer component. This list is contained in the QT atom container described in this section.

At the top level of the atom container are three atoms for each supported MIME type. The atoms whose IDs
are 1 describe the first supported MIME type, the atoms whose IDs are 2 describe the second supported MIME
type, and so on. Note that the IDs have to be consecutive.

 ■ An atom of type kMimeInfoMimeTypeTag contains a string that identifies the MIME type, such as
image/jpeg or image/x-jpeg.

 ■ The atom of type kMimeInfoFileExtensionTag contains a string that specifies likely file extensions
for files of this MIME type, such as jpg, jpe, and jpeg. If there is more than one extension, the extensions
are separated by commas.

 ■ The atom of type kMimeInfoDescriptionTag contains a string describing the MIME type for end users,
such as JPEG Image. These are neither Pascal nor C strings; they are just ASCII characters.

Figure 2-4 illustrates a MIME type list.

Figure 2-4 A MIME type list

'desc'

"JPEG Image"

2

MIME type
list

'ext '

"jpg,jpe,jpeg"

2

'mime'

"image/x-jpeg"

2

'desc'

"JPEG Image"

1

'ext '

"jpg,jpe,jpeg"

1

'mime'

"image/jpeg"

1

MIME Type List 31
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

32 MIME Type List
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Graphics Importer Components

This chapter describes the general features of graphics exporter components.

Applications make direct calls to graphic exporter components, so this chapter will be of interest to most
QuickTime developers who work with still images or the web. Much of the conceptual information found in
"Graphics Importer Components" (page 19) also applies to exporters. You should be familiar with that chapter
before reading this chapter.

Applications programmers should also be familiar with the Component Manager before working with graphics
exporter components.

If you would like to create a new graphics exporter component, refer to this chapter to implement a component
that supports the required interface functions.

Exporting Graphics

Graphics exporter components provide a standard interface for exporting graphics to image files in a variety
of formats. QuickTime selects a graphic exporter component based on the desired output format, such as
GIF or PNG. Different image formats support a wide range of configurable features, such as depth, resolution
and compression quality.

QuickTime supports the following export image formats: BMP, JFIF, JPEG, GIF, MacPaint, Photoshop, PNG,
QuickDraw PICT, QuickTime Image, Silicon Graphics, Targa, and TIFF. Note that this list is not inclusive;
QuickTime supports additional export image formats with each software release.

A graphic image can be exported to a handle, a file, or a data reference.

Third-party developers may also write their own graphics exporters for other image file formats.

Using Graphics Exporter Components

This section describes how to use graphics exporter components. Code samples are included.

To export an image to a file or a data reference using a graphics exporter, you must open a graphics exporter
component instance, specify the source of the input image and the destination for the output image file, set
the parameters you want, and call GraphicsExportDoExport.

You select a particular graphics exporter component based on the desired output format, such as GIF or PNG.
If you know which file format you want to write, you can use a call such as OpenADefaultComponent to
open the appropriate exporter.

Exporting Graphics 33
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

The input image can come from a QuickDraw Picture, a GWorld or PixMap, a QuickTime graphics importer
component instance, or a segment of compressed data described by a QuickTime image description. In the
last case, the compressed data may be accessed via a pointer, handle, file or other data reference.

The output image for an export operation can be specified as a handle, a file, or a data reference.

When you are done with the graphics exporter component instance, call CloseComponent.

The example code in Listing 3-1 shows the basic functions you use to export a GWorld to an image file.
Error-checking code has been removed.

Listing 3-1 The basic functions used to export a GWorld to an image file

void writeGWorldToImageFile(GWorldPtr gw, const FSSpec *fileSpec)
{
 GraphicsExportComponent ge = 0;

 OpenADefaultComponent(GraphicsExporterComponentType,
 kQTFileTypePNG, &ge);
 GraphicsExportSetInputGWorld(ge, gw);
 GraphicsExportSetOutputFile(ge, fileSpec);
 GraphicsExportDoExport(ge, nil);
 CloseComponent(ge);
}

Selecting a Graphics Exporter Component

Graphics exporter components have component type 'grex' and, by convention, component subtype
matching the Mac OS file type for the image file format. For example, the graphics exporter for PNG files has
component subtype 'PNGf'.

If you know which file format you want to write, you can use a call such as OpenADefaultComponent to
open the appropriate exporter.

If you want to display a list of graphics exporter components and let the user select one, you can build a list
by using FindNextComponent to search for graphics exporter components and calling GetComponentInfo
on each to find out its name, as shown in Listing 3-2.

Take care not to offer the base exporter as an option. An easy way to do this is to restrict your search to those
graphics exporter components that do not have the graphicsExporterIsBaseExporter component flag
set.

Listing 3-2 Building a list of graphics exporter components

void findGraphicsExporterComponents()
{
 ComponentDescription cd;
 Component c = 0;

 cd.componentType = GraphicsExporterComponentType;
 cd.componentSubType = 0;
 cd.componentManufacturer = 0;
 cd.componentFlags = 0;
 cd.componentFlagsMask = graphicsExporterIsBaseExporter;

34 Using Graphics Exporter Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

 while((c = FindNextComponent(c, &cd)) != 0) {
 // add component c to the list.
 }
}

Specifying the Source

The input image for an export operation can come from a QuickDraw Picture, GWorld or PixMap, or a
QuickTime graphics importer instance. To specify such a source, call the respective function:

GraphicsExportSetInputPicture
GraphicsExportSetInputGWorld
GraphicsExportSetInputPixMap
GraphicsExportSetInputGraphicsImporter

Alternatively, the input image may be a segment of compressed data described by an image description. To
specify such a source, call one of these functions:

GraphicsExportSetInputDataReference
GraphicsExportSetInputFile
GraphicsExportSetInputHandle
GraphicsExportSetInputPtr

In this case, the compressed data may comprise only a segment of the whole data reference. You may limit
access to a segment by calling the GraphicsExportSetInputOffsetAndLimit.

Specifying the Destination

The output image for an export operation can be written to a handle, file, or other data reference. To specify
the destination, call the respective function:

GraphicsExportSetOutputDataReference
GraphicsExportSetOutputFile
GraphicsExportSetOutputHandle

By default, the graphics exporter’s suggested file type and creator will be used for any newly created file. To
override the suggested file type or creator, call GraphicsExportSetOutputFileTypeAndCreator.

Specifying Export Settings

A variety of GraphicsExportSet... and GraphicsExportGet... functions are available to set and get various
settings. Not every graphics exporter supports all of these.

As usual, if you call an unimplemented component function, it will return badComponentSelector. You
can find out whether a particular component function is implemented by a component with the
CallComponentCanDo function.

Using Graphics Exporter Components 35
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

DontRecompress Flag

Repeated compression of an image with a lossy format (such as JPEG) can cause image degradation.

The DontRecompress flag is used to request that the original compressed data not be decompressed and
recompressed, but be copied (possibly with modifications) through to the output file. This is not always
possible; circumstances may still force a graphics exporter to recompress.

In QuickTime, the JPEG, PICT and QuickTime Image graphics exporters support the DontRecompress flag.

Interlace Styles

Some image formats support interlacing, in which image data is rearranged in some manner. A common use
for this is in the PNG and GIF formats, which rearrange data so that low-resolution images can be displayed
from incomplete data streams.

In QuickTime, the PNG graphics exporter supports the InterlaceStyle settings kQTPNGInterlaceNone
and kQTPNGInterlaceAdam7.

MetaData

Some image file formats can contain supplemental data, such as textual copyright information.

In QuickTime, none of the supplied graphics exporters support setting MetaData.

Compression Methods

Some image file formats support more than one compression algorithm. In QuickTime, the TIFF graphics
exporter supports the CompressionMethod settings kQTTIFFCompression_None and
kQTTIFFCompression_PackBits.

Compression Quality

Lossy image compression involves a quality-versus-size tradeoff: the higher the image quality, the greater
the compressed data size.

In QuickTime, the JPEG, PICT and QuickTime Image graphics exporters support the CompressionQuality
setting. The PICT and QuickTime image graphics exporters pass it on as a parameter to a compressor.

Target Data Size

An alternative way to view the quality-versus-size tradeoff is to specify a desired maximum data size and ask
for a quality that does not exceed that size.

36 Using Graphics Exporter Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

In QuickTime, the JPEG graphics exporter supports the TargetDataSize setting, which is implemented by
compressing the image repeatedly, lowering the quality until the target size (or a maximum attempt limit)
is reached.

Resolution

Some image file formats can store the image resolution.

In QuickTime, the BMP, JPEG, Photoshop, PNG, QuickTime Image, and TIFF graphics exporters support the
resolution setting. If you do not set a resolution explicitly, the original image’s resolution is used.

Depth

Some image file formats support more than one pixel depth.

In QuickTime, the BMP, JPEG, Photoshop, PNG, PICT, QuickTime Image, Targa and TIFF graphics exporters
support the depth setting.

Note that the usual QuickDraw conventions for bit depths apply:

 ■ 24 means “Millions of Colors”

 ■ 32 means “Millions+,” meaning millions of colors plus an alpha channel

 ■ 40 means 8-bit grayscale.

ColorSyncProfile

Some image file formats support embedded ColorSync profiles. This allows image files to describe their native
colorspace in a self-contained manner. In QuickTime, the JPEG, PNG, PICT, QuickTime Image and TIFF graphics
exporters support embedded ColorSync profiles.

Settings Dialogs

You can access all of a graphics exporter’s settings at once with the
GraphicsExportSetSettingsFromAtomContainer and
GraphicsExportGetSettingsAsAtomContainer functions. These functions can also be used to access
other settings besides those in the list above.

User Interface

Some graphics exporters can display a dialog to let the user configure format-specific settings. To display
such a dialog, call the GraphicsExportRequestSettings function.

In QuickTime, the BMP, JPEG, Photoshop, PNG, PICT, QuickTime Image and TIFF graphics exporters support
settings dialogs.

Using Graphics Exporter Components 37
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

You can get a user-readable description of a graphics exporter’s current settings by calling the
GraphicsExportGetSettingsAsText function.

File Type and Creator

To find out the suggested file name extension for a graphics exporter’s format, call
GraphicsExportGetDefaultFileNameExtension.

To find out the suggested Mac OS file type and creator, call
GraphicsExportGetDefaultFileTypeAndCreator. To find out the MIME type, call
GraphicsExportGetMIMETypeList.

How Graphics Exporters Work

QuickTime provides a base graphics export component which provides abstractions that greatly simplify the
work of format-specific graphics exporter components, while offering applications a rich interface.

Format-specific graphics exporters, such as the exporters for JPEG, PNG and TIFF, are relatively simple
components. When a format-specific exporter is opened, it opens and targets an instance of the base graphics
exporter. Subsequently, it delegates most of its calls to the base exporter instance, as shown in Figure 3-1.

Figure 3-1 Delegating calls to the base graphics exporter

Application

Delegated Implemented

Format-Specific
Graphics Exporter

Base Graphics Exporter

Data
Handler

Data
Handler

Image
Compression

Manager

38 How Graphics Exporters Work
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

The base exporter communicates with data handler components to write image file data. If necessary, it calls
the Image Compression Manager to perform compression operations.

There are three modes that format-specific exporters can operate in:

 ■ Transcode. Data is transferred from one image file to another without decompressing and recompressing.
(The data may be modified along the way, if appropriate.)

 ■ Using a Compressor. The graphics exporter provides an atom container identifying which compressor
to use, and any settings to be passed to that compressor.

 ■ Standalone Export. The graphics exporter component does all the work itself, without using an image
compressor.

How the Base Exporter Chooses a Mode

When an application calls GraphicsExportDoExport, the base exporter asks the following question:

 ■ Can QuickTime transcode?

It calls the format-specific exporter’s GraphicsExportCanTranscode function. If the answer is yes, it calls
the exporter’s GraphicsExportDoTranscode function.

Otherwise,

 ■ Can QuickTime use a compressor?

It calls the format-specific exporter’s GraphicsExportCanUseCompressor function.

If the answer is yes, it calls the Image Compression Manager to compress using the compressor and parameters
specified in the atom container. This is done in the base exporter’s GraphicsExportDoUseCompressor
function. Usually the format-specific exporter does not need to override this function and should simply
delegate it. If the format-specific exporter’s format is a container format (such as a PICT or QuickTime Image),
it can override and delegate this in order to encapsulate the compressed data in the container format.

Otherwise,

 ■ QuickTime must perform a standalone export.

If neither transcoding nor compressing is appropriate, it calls the format-specific exporter’s
GraphicsExportDoStandaloneExport function.

Writing Graphics Export Components

If you’re interesting in writing a component, you should check out the sample code at

http://developer.apple.com/samplecode/ElectricImageComponent/ElectricImageComponent.html

The sample code demonstrates how to build five QuickTime Components: a graphics importer, graphics
exporter, movie importer, movie exporter and image decompressor.

Writing Graphics Export Components 39
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

These components all work together to allow QuickTime to use the Electric Image format image files. Sample
Electric Image files are included.

40 Writing Graphics Export Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Graphics Exporter Components

This chapter describes the constants, data types, and functions in the Graphics Exporter Component.

Constants

The following constants are used to specify graphics exporter characteristics:

enum {
 GraphicsExporterComponentType = FOUR_CHAR_CODE('grex'),
 kBaseGraphicsExporterSubType = FOUR_CHAR_CODE('base')
};

enum {
 graphicsExporterIsBaseExporter = 1L << 0,
 graphicsExporterCanTranscode = 1L << 1,
 graphicsExporterUsesImageCompressor = 1L << 2
};

Data Types

The graphics exporter component type and subtype are defined as follows:

typedef ComponentInstance GraphicsExportComponent;

Functions

The graphics export functions listed in the following sections are grouped by task.

Exporting

This function is used to perform export operations.

 ■ GraphicsExportDoExport

Constants 41
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By
Task

Internal Routines

These functions are used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call them.

 ■ GraphicsExportCanTranscode

 ■ GraphicsExportDoTranscode

 ■ GraphicsExportCanUseCompressor

 ■ GraphicsExportDoUseCompressor

 ■ GraphicsExportDoStandaloneExport

Finding Out About Image Formats

These functions return information about the image format supported by a graphics exporter. Format-specific
exporters must implement all three of these calls.

 ■ GraphicsExportGetDefaultFileTypeAndCreator

 ■ GraphicsExportGetDefaultFileNameExtension

 ■ GraphicsExportGetMIMETypeList

Obtaining Graphics Exporter Settings

These functions are used for obtaining graphics exporter settings and displaying a settings dialog box.

 ■ GraphicsExportRequestSettings

 ■ GraphicsExportSetSettingsFromAtomContainer

 ■ GraphicsExportGetSettingsAsAtomContainer

 ■ GraphicsExportGetSettingsAsText

Accessing Graphics Exporter Settings

Graphics exporters may implement some or none of these functions. To determine whether a particular
setting is available, use CallComponentCanDo.

 ■ GraphicsExportSetDontRecompress

 ■ GraphicsExportGetDontRecompress

 ■ GraphicsExportSetInterlaceStyle

 ■ GraphicsExportGetInterlaceStyle

 ■ GraphicsExportSetMetaData

 ■ GraphicsExportGetMetaData

42 Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By Task

 ■ GraphicsExportSetTargetDataSize

 ■ GraphicsExportGetTargetDataSize

 ■ GraphicsExportSetCompressionMethod

 ■ GraphicsExportGetCompressionMethod

 ■ GraphicsExportSetCompressionQuality

 ■ GraphicsExportGetCompressionQuality

 ■ GraphicsExportSetResolution

 ■ GraphicsExportGetResolution

 ■ GraphicsExportSetDepth

 ■ GraphicsExportGetDepth

 ■ GraphicsExportSetColorSyncProfile

 ■ GraphicsExportGetColorSyncProfile

Getting and Setting Progress Procs

These functions are always implemented by the base graphics exporter.

 ■ GraphicsExportSetProgressProc

 ■ GraphicsExportGetProgressProc

Specifying Sources for Input Images

These functions specify the source for input images. You must specify a source before you can call
GraphicsExportDoExport.

The source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a GWorld or a
PixMap. Or it can be a piece of compressed data described by an image description. Compressed data can
be in a file, handle, pointer, or other data reference.

The application must make sure that the source is not disposed of before the graphics exporter instance is
closed or given a new source.

All of these functions are implemented by the base graphics exporter. Format-specific importers should
delegate all of them.

 ■ GraphicsExportSetInputDataReference

 ■ GraphicsExportGetInputDataReference

 ■ GraphicsExportSetInputFile

 ■ GraphicsExportGetInputFile

 ■ GraphicsExportSetInputHandle

 ■ GraphicsExportGetInputHandle

Functions 43
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By Task

 ■ GraphicsExportSetInputPtr

 ■ GraphicsExportGetInputPtr

 ■ GraphicsExportSetInputGraphicsImporter

 ■ GraphicsExportGetInputGraphicsImporter

 ■ GraphicsExportSetInputPicture

 ■ GraphicsExportGetInputPicture

 ■ GraphicsExportSetInputGWorld

 ■ GraphicsExportGetInputGWorld

 ■ GraphicsExportSetInputPixmap

 ■ GraphicsExportGetInputPixmap

Restricting the Range of an Input Image's Source

These functions are only applicable when the input is a data reference, file, handle or pointer.

 ■ GraphicsExportSetInputOffsetAndLimit

 ■ GraphicsExportGetInputOffsetAndLimit

Reading Input Data

These functions are used by format-specific graphics exporters when transcoding. Applications will not
normally need to call these functions.

 ■ GraphicsExportMayExporterReadInputData

 ■ GraphicsExportGetInputDataSize

 ■ GraphicsExportReadInputData

Accessing the Input Image

These functions are used by format-specific graphics exporters. When doing a standalone export, an exporter
will typically call GraphicsExportGetInputImageDescription or
GraphicsExportGetInputImageDimensions andGraphicsExportGetInputImageDepth to determine
the image’s bounds and depth, and then allocate an offscreen GWorld and call
GraphicsExportDrawInputImage to draw portions of the image into the GWorld.

 ■ GraphicsExportGetInputImageDescription

 ■ GraphicsExportGetInputImageDimensions

 ■ GraphicsExportGetInputImageDepth

 ■ GraphicsExportDrawInputImage

44 Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By Task

Destinations for Output Images

These functions are used to specify destinations for output images.

 ■ GraphicsExportSetOutputDataReference

 ■ GraphicsExportGetOutputDataReference

 ■ GraphicsExportSetOutputFile

 ■ GraphicsExportGetOutputFile

 ■ GraphicsExportSetOutputHandle

 ■ GraphicsExportGetOutputHandle

 ■ GraphicsExportSetOutputOffsetAndMaxSize

 ■ GraphicsExportGetOutputOffsetAndMaxSize

 ■ GraphicsExportSetOutputFileTypeAndCreator

 ■ GraphicsExportGetOutputFileTypeAndCreator

Writing Output Data

These functions are used by format-specific graphics exporters to write output data.

 ■ GraphicsExportWriteOutputData

 ■ GraphicsExportSetOutputMark

 ■ GraphicsExportGetOutputMark

 ■ GraphicsExportReadOutputData

Functions 45
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By Task

46 Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Graphics Exporter Component Functions By Task

This chapter provides background information about movie data exchange components. After reading this
chapter, you should understand why these components exist and whether you need to create or use one.

Movie data exchange components allow applications to place various types of data into a QuickTime movie
or extract data from a movie in a specified format. Movie data import components translate foreign (that is,
nonmovie) data formats into QuickTime movie data format. For example, a movie data import component
might convert images from a paint application into frames in a QuickTime movie.

Conversely, movie data export components convert movie data into other formats, so that the data can be
used by other applications. As an example, a movie data export component might allow an application to
extract the sound track from a QuickTime movie in AIFF format. The extracted sound track may then be
manipulated by applications that are not QuickTime-aware.

Applications use the services of movie data exchange components by calling the Movie Toolbox. Figure 5-1
shows the relationship between the Movie Toolbox and movie data import components while Figure 5-2
shows how movie data export components fit into the picture.

If you are writing a media handler that works with a new type of data, you will probably need to use one or
more data exchange components to facilitate the importing and exporting of data to QuickTime movies.

Figure 5-1 The Movie Toolbox, movie data import components, and your application

Data

Control flow

Data flow

Movie Toolbox

Movie data
import component

Application

47
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Figure 5-2 The Movie Toolbox, movie data export components, and your application

Data

Control flow

Data flow

Movie Toolbox

Movie data
export component

Application

Saving and Restoring Settings

QuickTime has always provided many support mechanisms for importing media from other formats into
QuickTime movies, as well as exporting from QuickTime movies to other media formats. Importing and
exporting are handled by movie data exchange components.

You write import and export components to allow a user to perform importing and exporting, respectively.
Your component provides a routine that presents a dialog box for the user to change options. For an import
component, you need to implement MovieImportDoUserDialog; for an export component, you must
implement MovieExportDoUserDialog. For example, the text import component presents a dialog box
with options for setting the font, size, and style of the text media it will add to the movie. The WAVE audio
export component presents the standard sound compression dialog box, so that sample rate and sample
size can be specified for the generated WAVE file.

QuickTime lets you retrieve the current settings from the still-open import or export component. In addition,
you can restore a component’s current settings to previously-retrieved settings. The restoration does not
involve any user interface. This may be advantageous for application developers who want to provide
preferences for the last settings used or want to perform batch importing or exporting, using
previously-established settings.

QuickTime makes it possible for your application to retrieve and store the settings of import and export
components without having to present the user with a user interface, such as a settings dialog box, to
accomplish the task.

48 Saving and Restoring Settings
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Two scenarios illustrate how saved settings can be useful. In the first scenario, an application presents an
importer or exporter component’s configuration dialog the first time that component is used and then saves
the settings so they can be restored without the user having to go fill out the configuration dialog again. In
another scenario, an application might use settings to implement preset configurations that the user often
wants.

QuickTime enables movie export components to associate resources that hold one or more named presets
for that exporter. The dialog accessible through ConvertMovieToFile automatically builds a menu of all
presets for the currently selected exporter allowing a user to export without having to go through the
exporter’s custom dialog.

It is also possible to include component resources that serve as named presets to be used with the export
component. These resources include the same kind of settings just described. See "Movie Exporter
Presets" (page 49).

For information about using the save-and-restore component settings mechanism, refer to the section
"Implementing Movie Data Exchange Components" (page 49).

Movie Exporter Presets

The ConvertMovieToFile function retrieves preset information and includes an additional popup menu
showing presets for the currently selected exporter. Current preset component resources include 'stg#'
and 'sttg'.

Implementing Movie Data Exchange Components

The following section discusses how you can implement component routines to save and restore component
settings available in QuickTime.

Standard Compression Components and Settings

QuickTime includes two settings-related component calls to both the video and sound Standard Compression
components: SCGetSettingsAsAtomContainer and SCGetSettingsAsAtomContainer These may also
be useful for implementing movie data exchange components. The SCGetSettingsAsAtomContainer
routine returns a QT atom container with the current configuration of the particular compression component.
SCSetSettingsFromAtomContainer resets the compression component’s current configuration. Applications
that want to save settings for standard compression components should use these calls.

Exporting Text

The text export and import components provide features that make it easier to work with the data in a text
track in a QuickTime movie. Text descriptors are formatting commands that you can embed within a text
file. Time stamps describe a text sample’s starting time and duration.

Movie Exporter Presets 49
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

The text export and import components make it easier to edit and format text using an external tool, such
as a text editor or word processor. When you export text from a text track, you can optionally export text
descriptors and time stamps for the text. You can open the text file in a word processor and make changes
to the text, style, color, and time stamps. You can then import the edited text to a text track where all the
timing, style, color and time stamp information will be present.

When you export text, you control whether text descriptors and time stamps are to be exported by selecting
the appropriate options in the text export settings dialog box, shown in Figure 5-3. To display this dialog
box programmatically, you call the MovieExportDoUserDialog function.

Based on the options you specify in the text export settings dialog box, the text export component is assigned
one of three text export option constants: kMovieExportTextOnly, kMovieExportAbsoluteTime, or
kMovieExportRelativeTime.

Figure 5-3 Text export settings dialog box

If you choose “Show Text Only,” the text component is assigned the export option constant
kMovieExportTextOnly. In this case, the text component exports only text samples, without text descriptors
or time stamps. This option is useful when you want to export only the text from a movie and you do not
intend to import the text back into a movie.

If you select “Show Text, Descriptors, and Time,” the text component is assigned one of two export option
constants, depending on the format you specify for time stamps:

 ■ If you specify time stamps to be relative to the start of the movie, the text component is assigned the
export option constant kMovieExportAbsoluteTime. In this case, time stamps are calculated relative
to the start of the movie. For example, in exported text with absolute time stamps, the time stamp
[00:00:04.000] indicates that a text sample begins 4 seconds after the start of the movie.

 ■ If you specify time stamps to be relative to the sample, the text component is assigned the export option
constant kMovieExportRelativeTime. In this case, the time stamp for each sample is calculated
relative to the end of the previous sample. For example, in exported text with relative time stamps, the
time stamp [00:00:04.000] indicates that a text sample begins 4 seconds after the beginning of the
previous sample. In other words, the previous sample lasts 4 seconds.

In both cases, text export component exports text, along with both text descriptors and time stamps. For
more information about time stamps, see "Time Stamps" (page 51).

50 Exporting Text
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

The text export component provides two functions you can use to access the component’s text export option
programmatically. To retrieve the current value of the text export option, you call TextExportGetSettings.
To set the value of the text export option, you call TextExportSetSettings.

The Text Export Settings dialog box also allows you to specify the time scale the text component uses to
specify the fractional part of a time stamp. The value should be between 1 and 10000, inclusive. The text
export component provides two functions you can use to access the component’s time scale programmatically.
To retrieve the time scale, call TextExportGetTimeFraction. To set the time scale, call
TextExportSetTimeFraction.

Time Stamps

When you export text and text descriptors from a text track, the text component also exports a time stamp
for each sample. The time stamp indicates the starting and ending time of the sample, either relative to the
start of the movie (kMovieExportAbsoluteTime) or to the end of the previous sample
(kMovieExportRelativeTime). On import, the time stamps maintain the timing positions of the text
samples relative to other media in the movie.

The format of a time stamp is

[HH:MM:SS.xxx]

where HH represents the number of hours, MM represents the number of minutes, SS represents the number
of seconds, and xxx represents the mantissa (the fractional part of a second). The mantissa is expressed in
the time scale of the text track. For example, if the time scale of the text track is 600, the time stamp
[00:00:07.300] is interpreted as 7.5 seconds. If the time scale of the text track is 10, the time stamp [00:00:07.5]
is also interpreted as 7.5 seconds. The maximum time scale for a text track is 10000.

When a text export component exports a text sample, it first exports the time stamp, followed by a return
character. Then, it exports the sample’s text and text descriptors. If a text sample does not contain any text,
the text component exports the time stamp and return character, but no text.

Text Descriptors

A text descriptor is a formatting command that describes the text that follows it. Exporting text with text
descriptors allows you to edit text from a text track, including its formatting, in an external program, such
as a text editor or word processor. When you import the edited text, the formatting you specified with the
text descriptors is preserved. This provides an easy way to localize movies for different languages, correct
spelling, change styles, or modify text behavior.

A text descriptor has the format { descriptor }. For example, the text descriptor {bold} sets the text style in
the current text sample and all subsequent text samples. Some text descriptors, such as {bold}, have no
parameters. Other text descriptors have one or more parameters. For text descriptors with parameters, the
descriptor is followed by a colon and its parameters, separated by commas. You can specify text descriptors
using either uppercase or lowercase characters, with or without spaces separating the parameters:

{descriptor: parameter1, ..., parameterN }

Time Stamps 51
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

For example, the text descriptor {font:New York} sets the text font in the current text sample and all
subsequent text samples to the New York font. The New York font is applied to all text until a second {font:}
text descriptor is issued.

A text stream that contains text descriptors and time stamps should always begin with the text descriptor
{QTtext}, followed by any number of text descriptors in any order. If the text import component detects a
typographical error inside a descriptor while importing a text file, it may generate partial results or an error
message stating that the text file cannot be converted.

When text with text descriptors is imported into a track, the information represented by the descriptors is
stored in a text display data structure (type TextDisplayData). Text descriptors whose possible values are
on and off are used to set flags in the displayFlags field of the text display data structure. Each sample
in the text track has a corresponding text display data structure that contains the text attributes of the sample.
For more information, see "Text Display Data Structure" (page 53).

MIME Type List

The MovieImportGetMIMETypeList function returns a list of the MIME types supported by a movie import
component. This list is contained in the QT atom container described in this section. For more information
about QT atom containers, see the QuickTime Atom documentation.

At the top level of the atom container are three atoms for each supported MIME type. The atoms whose IDs
are 1 describe the first supported MIME type, the atoms whose IDs are 2 describe the second supported MIME
type, and so on.

An atom of type kMimeInfoMimeTypeTag contains a string that identifies the MIME type, such as image/jpeg
or image/x-jpeg.

The atom of type kMimeInfoFileExtensionTag contains a string that specifies likely file extensions for
files of this MIME type, such as jpg, jpe, and jpeg. If there is more than one extension, the extensions are
separated by commas.

The atom of type kMimeInfoDescriptionTag contains a string describing the MIME type for end users,
such as “JPEG Image.”

These atom types contain neither a Pascal nor a C string. The atom types are simply ASCII characters; an
atom’s size is the number of characters. For best performance, include a public component resource of type
'mime' and ID 1 with your exporter.

Figure 5-4 illustrates a MIME type list.

52 MIME Type List
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Figure 5-4 A MIME type list

'desc'

"JPEG Image"

2

MIME type
list

'ext '

"jpg,jpe,jpeg"

2

'mime'

"image/x-jpeg"

2

'desc'

"JPEG Image"

1

'ext '

"jpg,jpe,jpeg"

1

'mime'

"image/jpeg"

1

Text Display Data Structure

The TextDisplay data structure contains formatting information for a text sample. When the text export
component exports a text sample, it uses the information in this structure to generate the appropriate text
descriptors for the sample. Likewise, when the text import component imports a text sample, it sets the
appropriate fields in the text display data structure based on the sample’s text descriptors.

struct TextDisplayData {
 long displayFlags;
 long textJustification;
 RGBColor bgColor;
 Rect textBox;
 short beginHilite;
 short endHilite;
 RGBColor hiliteColor;
 Boolean doHiliteColor;
 SInt8 filler;
 TimeValue scrollDelayDur;
 Point dropShadowOffset;
 short dropShadowTransparency;
};
typedef struct TextDisplayData TextDisplayData;

DefinitionTerm

Contains flags that represent the values of the following text descriptors:
doNotDisplay, doNotAutoScale, clipToTextBox,useMovieBackColor,
shrinkTextBox, scrollIn, scrollOut, horizontalScroll,
reverseScroll, continuousScroll, flowHorizontal, dropShadow,
anti-alias, keyedText, inverseHilite, continuousKaraoke, and
textColorHilite.

displayFlags

Specifies the alignment of the text in the text box. Possible values are
teFlushDefault, teCenter, teFlushRight, and teFlushLeft.

textJustification

Specifies the background color of the rectangle specified by the textBox field.
The background color is specified as an RGB color value.

bgColor

Specifies the rectangle of the text box.textBox

MIME Type List 53
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

DefinitionTerm

Specifies the one-based index of the first character in the sample to highlight.beginHilite

Specifies the one-based index of the last character in the sample to highlight.endHilite

Specifies whether to use the color specified by the hiliteColor field for
highlighting. If the value of this field is true, the highlight color is used for
highlighting. If the value of this field is false, reverse video is used for
highlighting.

doHiliteColor

Reserved.filler

Specifies a scroll delay. The scroll delay is specified as the number of units of
delay in the text track's time scale. For example, if the time scale is 600, a scroll
delay of 600 causes the sample text to be delayed one second. In order for this
field to take effect, scrolling must be enabled.

scrollDelayDur

Specifies an offset for the drop shadow. For example, if the point specified is (3,4),
the drop shadow is offset 3 pixels to the right and 4 pixels down. In order for this
field to take effect, drop shadowing must be enabled.

dropShadowOffset

Specifies the intensity of the drop shadow as a value between 0 and 255. In order
for this field to take effect, drop shadowing must be enabled.

dropShadow-
Transparency

Importing Text

When you import text, you can override the text descriptors in the text file by specifying options in the Text
Import Settings dialog box, shown in Figure 5-5.

Figure 5-5 Text import settings dialog box

54 Importing Text
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

On import, the settings specified in the dialog box are applied to all imported samples. To display this dialog
box programmatically, you can call the MovieImportDoUserDialog function.

Importing In Place

Some movie data import components can create a movie from a file without having to write to a separate
disk file. Examples include MPEG, AIFF, DV, and AVI import components; data in files of these types can be
played directly by the appropriate media handler components without any data conversion. In such cases it
is inappropriate for the user to have to specify a destination file, because there is no need for such a file.

If your import component can operate in this manner, set the canMovieImportInPlace flag to 1 in your
component flags when you register your component. The standard file dialog box uses this flag to determine
how to import files. The OpenMovieFile and NewMovieFromFile functions use this flag to open some
kinds of files as movies.

Audio CD Import Component

QuickTime includes an audio CD import component. This movie import component allows users to open
audio CD tracks from the QuickTime standard file preview dialog box, then convert and save the audio as a
movie.

When you open an audio track on an Apple CD-ROM drive (or equivalent), the Open button changes to a
Convert button. When you click Convert, the audio CD import options dialog box appears. Use this dialog
box to configure the sound settings. You can specify the sample rate, sample size, and channel settings. You
can also select the portion of the track that you want to convert.

DV Video Import and Export Components

QuickTime includes movie data exchange components for DV video.

DV Movie Import Component

The DV movie import component converts a file containing DV video data into a QuickTime movie. The input
file must be a Mac OS file of type 'dvc!' or a Windows file with the .dv file extension. The output file contains
a QuickTime movie with two tracks:

 ■ A video track whose samples are of type kDVNTSCCodecType for NTSC video data or kDVCPALCodecType
for PAL video data.

 ■ A sound track whose samples are of type kDVAudioFormat.

The data is converted in place, as described in "Importing In Place" (page 55), and the import operation
typically takes less than a second. Because both tracks in the QuickTime file refer to the same data, flattening
the file creates a file that is twice the size of the original DV data.

Importing In Place 55
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

You can perform the same operations on the resulting QuickTime movie (including playback, editing, and
stepping) that you can for other QuickTime movies. Because video and audio are interleaved in the underlying
data, applications for editing movies should make it possible to create a separate file that contains only the
audio data for the movie.

This can be done by calling the ConvertMovieToFile function and specifying kQTFileTypeAIFF as the
destination file format.

DV Movie Export Component

The DV movie export component converts a file containing a QuickTime movie to a file containing DV data
for the movie.

The input file must contain a video track; the DV movie export component cannot convert a movie that
contains only audio.

If the video track in the QuickTime movie is already in DV format, the DV movie export component does not
recompress the video. This makes it possible to edit DV video in QuickTime and then export it without any
loss of video quality due to recompression.

Exporting DV Data from an Application

An application can export DV data without creating a QuickTime movie file by using a callback procedure to
supply media data, as described in "Exporting Data from Sources Other Than Movies" (page 56).

Exporting Data from Sources Other Than Movies

A movie data export component can be written to export data from sources other than QuickTime movies.
To do this, the software that exports data must implement callback functions that provide services to the
movie data export component. The callback functions and other functions that support this feature are
described in this section.

The export component’s MovieExportFromProceduresToDataRef routine performs data exporting. When
executed, that routine makes callbacks to retrieve characteristics, called properties, and media data from
each data source. Characteristics for a video data source might include the width, height, and image
compression settings to be used; the media data would be the image description and image data
corresponding to a particular movie time. A sound data source would have sound-related characteristics and
sound sample data.

Follow these basic steps to export data:

 ■ Find an exporter for the format that implements MovieExportFromProceduresToDataRef.

 ■ Open that export component.

 ■ For each data source, call the export component’s MovieExportAddDataSource to provide the property
and data callbacks that the exporter should call during export.

 ■ Call MovieExportFromProceduresToDataRef to perform the export.

56 Exporting DV Data from an Application
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Determining What Kind of Tracks a Component Supports

The following code sample can be used to determine which track types a given movie export component
supports.

Instantiating the Data Export Component

The first step in using a movie data export component to create an AIFF file is instantiating an AIFF data
export component. An example of this is shown in Listing 5-1.

Listing 5-1 Instantiating a data export component

QTAtomContainer container = nil;
ComponentDescription cd;
long count, i;
cd.componentType = MovieExportType;
cd.componentSubType = 0;
cd.componentManufacturer = 0;
cd.componentFlags = 0;
cd.componentFlagsMask = 0;
GetComponentPublicResourceList(kQTMovieExportTrackInfoResourceType, 1, 0, &cd,
 nil, nil, &container);
count = QTCountChildrenOfType(container, kParentAtomIsContainer,
OSTypeConst('comp'));
for (i=1; i<=count; i++) {
 QTAtom compAtom, trkResourceAtom;
 Component c;
 compAtom = QTFindChildByIndex(container, kParentAtomIsContainer,
 OSTypeConst('comp'), i, (long*)&c);
 trkResourceAtom = QTFindChildByID(container, compAtom,
 kQTMovieExportTrackInfoResourceType, 1, nil);
 if (trkResourceAtom) {
 QTMovieExportSourceRecord **trkResource = (QTMovieExportSourceRecord**)
 NewHandle(0);
 long j;
 Boolean wantsSound = false, wantsVideo = false, wantsText = false,
 wantsMIDI = false;
 QTCopyAtomDataToHandle(container, trkResourceAtom, (Handle)trkResource);
 for (j=0; j<(**trkResource).count; j++) {
 OSType mType = (**trkResource).sourceArray[j].mediaType;
 long flags = (**trkResource).sourceArray[j].flags;
 wantsSound = wantsSound ||
 ((mType == SoundMediaType) && (flags &
 kQTMovieExportSourceInfoIsMediaType));
 wantsVideo = wantsVideo ||
 (((mType == VideoMediaType) && (flags &
 kQTMovieExportSourceInfoIsMediaType)) ||
 ((mType == VisualMediaCharacteristic) && (flags &
 kQTMovieExportSourceInfoIsMediaCharacteristic)));
 wantsText = wantsText ||
 ((mType == TextMediaType) && (flags &
 kQTMovieExportSourceInfoIsMediaType));
 wantsMIDI = wantsMIDI ||
 ((mType == MusicMediaType) && (flags &

Determining What Kind of Tracks a Component Supports 57
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

 kQTMovieExportSourceInfoIsMediaType));
 }
 if (wantsSound || wantsVideo) {
 ComponentDescription cd;
 char cc[5];
 GetComponentInfo(c, &cd, nil, nil, nil);
 cc[0] = 4;
 *(long *)&cc[1] = cd.componentSubType;
 DebugStr((StringPtr)cc);
 }
 DisposeHandle((Handle)trkResource);
 }
}
QTDisposeAtomContainer(container);

Using a Movie Data Export Component to Export Audio

Listing 1-2 illustrates how to use a movie data export component to export audio data to an AIFF file.

Listing 5-2 Exporting audio data to an AIFF file

ComponentDescription cd;
MovieExportComponent ci;
cd.componentType = MovieExportType;
cd.componentSubType = 'AIFF';
cd.componentManufacturer = SoundMediaType;
cd.componentFlags = canMovieExportFromProcedures;
cd.componentFlagsMask = canMovieExportFromProcedures;
ci = OpenComponent(FindNextComponent(nil, &cd));

Note that the componentManufacturer field holds the

SoundMediaType if the movie contains sampled sound or 'musi' if it contains MIDI music. If you pass a
zero in this field, QuickTime will use the first exporter that can create the desired type of output. This will not
always produce the desired result, as a component that creates AIFF output from MIDI requires different
input that a component that creates AIFF output from sampled sound.

Note that you use the canMovieExportFromProcedures flag to limit the search to exporters that support
the MovieExportFromProceduresToDataRef component call This is important since not all exporters
implement this routine.

Configuring the Data Export Component

Once an AIFF movie data export component has been instantiated, it must be configured to open a single
output audio stream. Listing 5-3 is an example of creating an output audio stream by calling
MovieExportAddDataSource. In this example, MovieExportAddDataSource also provides the callback
functions for supplying media data.

Listing 5-3 Configuring the audio export component

#define kMySampleRate 22050
#define kSoundBufferSize 1024

58 Using a Movie Data Export Component to Export Audio
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

typedef struct
{
 Ptr soundData;
 SoundDescriptionHandle soundDescription;
 long trackID;
}
MyReferenceRecord;
MyReferenceRecord myRef;
SoundDescriptionPtr sdp;
myRef.soundData = NewPtr(kSoundBufferSize);
myRef.soundDescription = NewHandleClear(sizeof(SoundDescription));
sdp = *myRef.soundDescription;
sdp->descSize = sizeof(SoundDescription);
sdp->dataFormat = k8BitOffsetBinaryFormat;
sdp->numChannels = 1;
sdp->sampleSize = 8;
sdp->sampleRate = kMySampleRate << 16;
MovieExportAddDataSource(ci, SoundMediaType, kMySampleRate,
 &myRef.trackID, getSoundTrackPropertyProc,
 getSoundTrackDataProc, &myRef);

On the Macintosh, the getSoundTrackPropertyProc and getSoundTrackDataProc routines should be universal
procedure pointers (UPPs).

Exporting the Data

The export operation takes place when all of the required output tracks have been created. Typical code is
shown in Listing 5-4.

Listing 5-4 Exporting from procedures to a data reference

StandardFileReply reply;
Handle dataRef;
// get output file from user
QTNewAlias(&reply.sfFile, (AliasHandle *)&dataRef, true);
// make up a data reference
MovieExportFromProceduresToDataRef(ci, dataRef, rAliasType);

MovieExportFromProceduresToDataRef calls the two functions specified inMovieExportAddDataSource
to obtain data to generate the output file. The first function returns information about the output track’s
properties, including the sample rate and supported media. If no value is returned for a particular property,
the exporter specifies a default value based on the source data format. In the example in Listing 5-5, the
output sample rate is set at 32000 Hz, with all other properties left unspecified.

Listing 5-5 Obtaining output track information

pascal OSErr getSoundTrackDataProc(void *refcon, long trackID,
 OSType propertyType, void *propertyValue)
{
 OSErr err = noErr;
 switch (propertyType)
 {
 case scSoundSampleRateType:
 *(Fixed *)propertyValue = 32000L << 16;
 break;

Using a Movie Data Export Component to Export Audio 59
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

 default:
 err = paramErr;
 break;
 }
 return err;
}

The second function provides data to be exported.

Listing 5-6 shows a block of sound data (silence) returned for each export request. The export operation ends
when this function returns eofErr.

Listing 5-6 Providing output track information to the export component

pascal OSErr getSoundTrack(void *refCon,
 MovieExportGetDataParams *params)
{
 MyReferenceRecord *myRef = (MyReferenceRecord *)refCon;
 if (params->requestedTime > kMySampleRate * 10)
 return eofErr; // end of data after 10 seconds
 params->dataPtr = myRef->soundData;
 params->dataSize = kSoundBufferSize;
 params->actualTime = params->requestedTime;
 params->sampleCount = kSoundBufferSize;
 params->durationPerSample = 1;
 params->descType = SoundMediaType;
 params->descSeed = 1;
 params->desc = (SampleDescriptionHandle)myRef->soundDescription;
 return noErr;
}

Using a Movie Data Export Component to Export Video

Using a movie data export component to create a QuickTime movie file is similar in many respects to creating
an AIFF file, as shown in the previous example. Media data is handled differently in each case, however.

Instantiating the Video Export Component

Listing 5-7 illustrates the first step, instantiating the movie data export component for video data.

Listing 5-7 Instantiating a movie data export component

ComponentDescription cd;
MovieExportComponent ci;
cd.componentType = MovieExportType;
cd.componentSubType = 'MooV';
cd.componentManufacturer = 'appl';
cd.componentFlags = canMovieExportFromProcedures;
cd.componentFlagsMask = canMovieExportFromProcedures;
ci = OpenComponent(FindNextComponent(nil, &cd));

60 Using a Movie Data Export Component to Export Video
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Configuring the Video Export Component

Listing 5-8 illustrates the next step: configuring the data export component to create a single output video
track. The call to MovieExportAddDataSource provides the callback functions for supplying media data.

Listing 5-8 Configuring the movie data export component

#define kMySampleRate 2997 // 29.97 fps
#define kMyFrameDuration 100 // one frame at 29.97 fps
typedef struct
{
 GWorldPtr gw; // temporary GWorld we use during export
 ImageDescriptionHandle imageDescription;
 long trackID;
}
MyReferenceRecord;
MyReferenceRecord myRef;
myRef.gw = nil;
myRef.imageDescription = nil;
MovieExportAddDataSource(ci, VideoMediaType, kMySampleRate,
 &myRef.trackID, getVideoPropertyProc,
 getVideoDataProc, &myRef);

Using the Component

The foregoing process should be repeated for as many video and sound sources as will be exported. However,
it’s important to realize that not all exporters supporting export from procedures can export an arbitrary
number of sources. For the case where an exporter supports fewer sources than the application needs to
export, the application must precomposite the video sources or mix the sound sources before providing
them to the exporter. The export code was shown previously in Listing 1-4.

The getVideoPropertyProc function returns information about the output track’s properties (for example,
the compression format). If the function doesn’t return a value for a particular property, the exporter will
choose a default value based (usually) on the source data format. In Listing 5-9, dimensions are set to 160x120
and the compression format is set to JPEG. All other properties are unspecified.

Listing 5-9 Setting dimensions and compression format

pascal OSErr getVideoPropertyProc(void *refcon, long trackID,
 OSType propertyType, void *propertyValue)
{
 OSErr err = noErr;
 switch (propertyType) {
 case meWidth:
 *(Fixed *)propertyValue = 160L << 16;
 break;
 case meHeight:
 *(Fixed *)propertyValue = 120L << 16;
 break;
 case scSpatialSettingsType:
 {
 SCSpatialSettings *ss = propertyValue;
 ss->codecType = kJPEGCodecType;
 ss->codec = 0;

Using a Movie Data Export Component to Export Video 61
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

 ss->depth = 0;
 ss->spatialQuality = codecNormalQuality;
 }
 break;
 default:
 err = paramErr;
 break;
 }
 return err;
}

The videoGetDataProc function provides video frames to the export operation. In the example in Listing
5-10, the same blank frame is returned for each request. The export operation ends when this function returns
eofErr. Any data allocated by videoGetDataProc must be disposed of after the export operation is
complete.

Listing 5-10 Providing video frames for export

pascal OSErr getVideoDataProc(void *refCon,
 MovieExportGetDataParams *params)
{
 OSErr err = noErr;
 MyReferenceRecord *myRef = (MyReferenceRecord *)refCon;
 TimeRecord tr;
 if (params->requestedTime > kMySampleRate * 10)
 return eofErr;// end of data after 10 seconds
 if (!myRef->gw) {
 Rect r;
 CGrafPtr savePort;
 GDHandle saveGD;
 SetRect(&r, 0, 0, 320, 240);
 NewGWorld(&myRef->gw, 32, &r, nil, nil, 0);
 LockPixels(myRef ->gw->portPixMap);
 MakeImageDescriptionForPixMap(myRef->gw->portPixMap,
 &myRef->imageDescription);
 GetGWorld(&savePort, &saveGD);
 SetGWorld(myRef->gw, nil);
 EraseRect(&r);
 SetGWorld(savePort, saveGD);
 }
 params->dataPtr = GetPixBaseAddr(myRef->gw->portPixMap);
 params->dataSize = (**myRef->imageDescription).dataSize;
 params->actualTime = params->requestedTime;
 params->descType = VideoMediaType;
 params->descSeed = 1;
 params->desc = (SampleDescriptionHandle)
 myRef->imageDescription;
 params->durationPerSample = kMyFrameDuration;
 params->sampleFlags = 0;
}

62 Using a Movie Data Export Component to Export Video
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

Determining the Data Sources Supported by an Export Component

The number and kind of data sources supported varies from one exporter to another. In the foregoing
examples, AIFF only supports sound data sources while the QuickTime movie exporter accepts both sound
and video data sources. Furthermore, an exporter may require at least one data source of some type. In
others, it may accept 0 to some maximum number of data sources of a particular type.

Because the kinds and number of data sources supported varies from exporter to exporter, and may change
with new versions of a particular exporter, there needs to be a way for a client of an exporter to determine
this information. In QuickTime, a procedure-supporting exporter has a public component resource that
provides this information.

Using a Movie Data Export Component to Export Video 63
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

64 Using a Movie Data Export Component to Export Video
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Movie Data Exchange Components

This chapter discusses the details of creating a movie data exchange component. The chapter also includes
source code for two simple movie data exchange components.

You should consider creating a movie data import component if you have data that you would like to place
in a QuickTime movie and there are not currently facilities for placing that type of data into a movie. Similarly,
if you want to work with data from a QuickTime movie without using QuickTime, you might consider creating
a movie data export component that can convert the data into a format your program can understand.

Before reading this chapter, you should be familiar with how to create components. After reading this chapter,
you should understand the special requirements of these components. Note that a single component may
support only import or export functions, not both.

Apple has defined component type values for movie data exchange components. You can use the following
constants to specify this component type:

Apple has defined a functional interface for movie data exchange components. You can use the following
constants to refer to the request codes for each of the functions that your component must support:

#define MovieImportType 'eat ' /* movie data import */
#define MovieExportType 'spit' /* movie data export */

enum {
 /* movie data import components */
 kMovieImportHandleSelect = 1, /* import from handle */
 kMovieImportFileSelect = 2, /* import from file */
 kMovieImportSetSampleDurationSelect = 3, /* set sample duration */
 kMovieImportSetSampleDescriptionSelect = 4, /* set sample description */
 kMovieImportSetMediaFileSelect = 5, /* set media file */
 kMovieImportSetDimensionsSelect = 6, /* set track dimensions */
 kMovieImportSetChunkSizeSelect = 7, /* set chunk size */
 kMovieImportSetProgressProcSelect = 8, /* set progress function */
 kMovieImportSetAuxiliaryDataSelect = 9, /* set additional data */
 kMovieImportSetFromScrapSelect = 10, /* data from scrap */
 kMovieImportDoUserDialogSelect = 11, /* invoke user dialog box */
 kMovieImportSetDurationSelect = 12 /* set paste duration */

 /* movie data export components */
 kMovieExportToHandleSelect = 128, /* export to handle */
 kMovieExportToFileSelect = 129, /* export to file */
 kMovieExportDoUserDialogSelect = 130, /* invoke user dialog box */
 kMovieExportGetAuxiliaryDataSelect = 131, /* get additional data */
 kMovieExportSetProgressProcSelect ' = 132 /* set progress function */
};

65
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

Importing Movie Data

Movie data import components may provide one or two functions that allow the Movie Toolbox to request
a data conversion operation. The MovieImportHandle function instructs your component to retrieve the
data that is to be imported from a specified handle. The MovieImportFile function instructs you to retrieve
the data from a file. You should set the appropriate flags in your component’s componentFlags field to
indicate which of these functions your component supports. Note that your component may support both
functions.

Before the Movie Toolbox calls one of these functions, a requesting application may call one or more of your
component’s configuration functions (see "Configuring Movie Data Import Components" (page 82) for more
information about these functions). However, your component should work properly even if none of these
configuration functions is called.

Exporting Movie Data

Movie data export components may provide one or two functions that allow the Movie Toolbox to request
a data conversion operation. The MovieExportToHandle function instructs your component to place the
converted data into a specified handle. The MovieExportToFile function instructs you to put the data into
a file. You should set the appropriate flags in your component’s componentFlags field to indicate which of
these functions your component supports. Note that your component may support both functions.

Before the Movie Toolbox calls one of these functions, a requesting application may call one or more of your
component’s configuration functions (see "Configuring Movie Data Export Components" (page 82) for more
information about these functions). However, your component should work properly even if none of these
configuration functions is called.

Summary of Constants

/* component type values */
#define MovieImportType 'eat ' /* movie data import */
#define MovieExportType 'spit' /* movie data export */

/* componentFlags values for movie import and movie export components */
enum {
 canMovieImportHandles = 1, /* can import from handles */
 canMovieImportFiles = 2, /* can import from files */
 hasMovieImportUserInterface = 4, /* import has user interface
*/
 canMovieExportHandles = 8, /* can export to handles */
 canMovieExportFiles = 16, /* can export to files */
 hasMovieExportUserInterface = 32, /* export has user interface
*/
 dontAutoFileMovieImport = 64 /* do not automatically
 import movie files */
};

/* flags for MovieImportHandle and MovieImportFile */

66 Importing Movie Data
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

enum {
 movieImportCreateTrack = 1, /* create a new track */
 movieImportInParallel = 2, /* paste imported data */
 movieImportMustUseTrack = 4 /* use specified track */
};

enum {
 movieImportResultUsedMultipleTracks = 8, /* component used
 several tracks */
};

enum {
 /* movie data import components */
 kMovieImportHandleSelect = 1, /* import from handle */
 kMovieImportFileSelect = 2, /* import from file */
 kMovieImportSetSampleDurationSelect = 3, /* set sample duration */
 kMovieImportSetSampleDescriptionSelect = 4, /* set sample description */
 kMovieImportSetMediaFileSelect = 5, /* set media file */
 kMovieImportSetDimensionsSelect = 6, /* set track dimensions */
 kMovieImportSetChunkSizeSelect = 7, /* set chunk size */
 kMovieImportSetProgressProcSelect = 8, /* set progress func */
 kMovieImportSetAuxiliaryDataSelect = 9, /* set additional data */
 kMovieImportSetFromScrapSelect = 10, /* data from scrap */
 kMovieImportDoUserDialogSelect = 11, /* invoke user dialog */
 kMovieImportSetDurationSelect = 12 /* set paste duration */

 /* movie data export components */
 kMovieExportToHandleSelect = 128, /* export to handle */
 kMovieExportToFileSelect = 129, /* export to file */
 kMovieExportDoUserDialogSelect = 130, /* invoke user dialog */
 kMovieExportGetAuxiliaryDataSelect = 131, /* get additional data */
 kMovieExportSetProgressProcSelect = 132 /* set progress function */
};

Result Codes

DescriptionValueConstant

Specified track cannot receive imported data-2009invalidTrack

Cannot work with specified handle type-2057unsupportedAuxiliaryImportData

Function not supported0x80008002badComponentSelector

A Sample Movie Import Component

This section describes how to create a movie import component. First, you implement the required functions.
Then, you instruct your component to obtain the movie data from a handle or a file. This section supplies a
sample program that implements a movie data exchange component that imports a Scrapbook file containing
QuickDraw PICT images.

Result Codes 67
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

Your movie data import component may provide a user dialog box. You may use this dialog box in any way
that is appropriate for your component; for example, to obtain certain parameter information governing the
import operation, such as the image-compression method.

In addition, the requesting application may use one or more of the configuration functions to establish
parameters for the import operation.

You should not rely on any outside configuration information. Your component should work properly knowing
only the source data and the target movie. The Movie Toolbox supplies this information to your component
when it calls your MovieImportHandle function or MovieImportFile function.

Your movie data import component may implement either one or both of these functions, which allow the
Movie Toolbox to request that data be converted into a format for use in a QuickTime movie.

If the data is to be imported from a handle, the MovieImportHandle function is used.

If data is to be imported from a file, the MovieImportFile function is used.

Set the appropriate flags in your component’s componentFlags field to indicate which of these functions
your component supports. Note that your component may support both functions.

Implementing the Required Import Component Functions

Listing 6-1 supplies a sample program that implements a movie data exchange component that imports a
Scrapbook file containing QuickDraw PICT images. The sample program also provides the dispatchers for
the movie import component together with the required functions.

Listing 6-1 Implementing the required import functions

#define kMediaTimeScale 600

typedef struct {
 ComponentInstance self
 TimeValue frameDuration;
} ImportScrapbookGlobalsRecord, **ImportScrapbookGlobals;

/* entry point for all Component Manager requests */
pascal ComponentResult ImportScrapbookDispatcher (ComponentParameters *params,
 Handle storage)
{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;
 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = ImportScrapbookOpen; break;

 case kComponentCloseSelect:
 componentProc = ImportScrapbookClose; break;

 case kComponentCanDoSelect:
 componentProc = ImportScrapbookCanDo; break;

 case kComponentVersionSelect:
 componentProc = ImportScrapbookVersion; break;

68 Implementing the Required Import Component Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 case kMovieImportFileSelect:
 componentProc = ImportScrapbookFile; break;

 case kMovieImportSetSampleDurationSelect:
 componentProc = ImportScrapbookSetSampleDuration; break;
 }

 if (componentProc)
 err = CallComponentFunctionWithStorage (storage,
 params,
 componentProc);
 return err;
}

pascal ComponentResult ImportScrapbookCanDo
 (ImportScrapbookGlobals storage, short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kMovieImportFileSelect:
 case kMovieImportSetSampleDurationSelect:
 return true;
 default:
 return false;
 }
}

pascal ComponentResult ImportScrapbookVersion
 (ImportScrapbookGlobals storage)
{
 return 0x00010001;
}

pascal ComponentResult ImportScrapbookOpen
 (ImportScrapbookGlobals storage,
 ComponentInstance self)
{
 storage = (ImportScrapbookGlobals) NewHandleClear
 (sizeof (ImportScrapbookGlobalsRecord));
 if (!storage) return MemError();
 (**storage).self = self;
 SetComponentInstanceStorage (self, (Handle)storage);
 return noErr;
}

pascal ComponentResult ImportScrapbookClose
 (ImportScrapbookGlobals storage,
 ComponentInstance self)
{
 if (storage) DisposeHandle((Handle)storage);
 return noErr;
}

Implementing the Required Import Component Functions 69
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

Importing a Scrapbook File

Before the import operation begins, the client may set the duration of samples to be added by the movie
data import component by calling the MovieImportSetDuration function.

The MovieImportFile function performs the import operation. The tasks involved in importing the data
include

 ■ opening the source file

 ■ retrieving the first sample in order to determine the track dimension

 ■ creating a new track and media

 ■ determining the frame duration

 ■ setting up a sample description structure

 ■ cycling through all the frames in the Scrapbook and adding them to the new media

 ■ adding the new media to the track

 ■ closing the source file

Listing 6-2 supplies an example in which a Scrapbook file is imported.

Listing 6-2 Importing a Scrapbook file

/* If this function is called, it provides a hint from the caller as to the
desired sample (frame) duration in the new media */

pascal ComponentResult ImportScrapbookSetSampleDuration
 (ImportScrapbookGlobals storage,
 TimeValue duration,
 TimeScale scale)
{
 TimeRecord tr;
 tr.value.lo = duration;
 tr.value.hi = 0;
 tr.scale = 0;
 tr.base = nil;
 ConvertTimeScale (&tr, kMediaTimeScale);
 /* your new media will have a time scale of 600 */
 (**storage).frameDuration = tr.value.lo;

 return noErr;
}
pascal ComponentResult ImportScrapbookFile
 (ImportScrapbookGlobals storage,
 FSSpec *theFile, Movie theMovie,
 Track targetTrack, Track *usedTrack,
 TimeValue atTime,
 TimeValue *addedTime,
 long inFlags, long *outFlags)
{
 OSErr err;
 short resRef = 0, saveRes = CurResFile();
 PicHandle thePict;
 Rect trackRect;

70 Implementing the Required Import Component Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 short pageIndex = 0;
 Track newTrack = 0;
 Media newMedia;
 Boolean endMediaEdits = false;
 TimeValue frameDuration;
 SampleDescriptionHandle sampleDesc = 0;

 *outFlags = 0;
 if (inFlags & movieImportMustUseTrack)
 return invalidTrack;

 /* open source file */
 resRef = FSpOpenResFile (theFile, fsRdPerm);
 if (err = ResError()) goto bail;
 UseResFile(resRef);

 /* get the first PICT to determine the track size */
 thePict = (PicHandle)Get1IndResource ('PICT', 1);
 if (!thePict) {
 err = ResError();
 goto bail;
 }
 trackRect = (**thePict).picFrame;
 OffsetRect(&trackRect, -trackRect.left, -trackRect.top);

 /* create a track and PICT media */
 newTrack = NewMovieTrack (theMovie, trackRect.right << 16,
 trackRect.bottom << 16, kNoVolume);
 if (err = GetMoviesError()) goto bail;
 newMedia = NewTrackMedia (newTrack, 'PICT', kMediaTimeScale, nil, 0);
 if (err = GetMoviesError()) goto bail;
 if (err = BeginMediaEdits (newMedia)) goto bail;
 endMediaEdits = true;

 /* determine the frame duration (check the hint you may
 have been called with) */
 frameDuration = (**storage).frameDuration;
 if (!frameDuration) frameDuration = kMediaTimeScale/5;
 /* default is 1/5th second */

 /* set up a simple sample description */
 sampleDesc = (SampleDescriptionHandle) NewHandleClear
 (sizeof (SampleDescription));
 (**sampleDesc).descSize = sizeof(SampleDescription);
 (**sampleDesc).dataFormat = 'PICT';

 /* cycle through all source frames and add them to the media */
 do {
 Handle thePict;
 short resID = pageToMapIndex (++pageIndex,
 *GetResource ('SMAP', 0));

 if (resID == 0) break;
 thePict = Get1Resource ('PICT', resID);
 if (thePict == nil) continue; /* some pages may not
 contain a 'PICT' */

 err = AddMediaSample(newMedia, thePict, 0,

Implementing the Required Import Component Functions 71
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 GetHandleSize (thePict),
 frameDuration, sampleDesc, 1, 0, nil);

 ReleaseResource (thePict);
 DisposeHandle (thePict);
 } while (!err);
 if (err) goto bail;

 /* add the new media to the track */
 err = InsertMediaIntoTrack (newTrack, 0, 0,
 GetMediaDuration (newMedia), kFix1);

bail:
 if (resRef) CloseResFile (resRef);
 if (endMediaEdits) EndMediaEdits (newMedia);
 if (err && newTrack) {
 DisposeMovieTrack (newTrack);
 newTrack = 0;
 }
 UseResFile (saveRes);
 if (sampleDesc) DisposeHandle ((Handle)sampleDesc);
 *usedTrack = newTrack;

 return err;
}

/* map from a Scrapbook page number to a resource ID */
short pageToMapIndex (short page, Ptr map)
{
 short mapIndex;
 for (mapIndex = 0; mapIndex < 256; mapIndex++)
 if (*map++ == page)
 return mapIndex | 0x8000;
 return 0;
}

A Sample Movie Export Component

As with movie data import components, the movie data export component should not rely on any
configuration information beyond that which is supplied by the Movie Toolbox when it calls the
MovieExportToHandle or MovieExportToFile function, respectively.

This section provides an implementation of a movie data exchange component that exports a movie or
movie’s track to a PICS animation file.

Implementing the Required Export Component Functions

Listing 6-3 provides the component dispatchers for the movie export component together with the required
functions.

72 A Sample Movie Export Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

Listing 6-3 Implementing the required export functions

typedef struct {
 ComponentInstance self;
} ExportPICSGlobalsRecord, *ExportPICSGlobals;

/* entry point for all Component Manager requests */
pascal ComponentResult ExportPICSDispatcher
 (ComponentParameters *params,
 Handle storage)
{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;

 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = ExportPICSOpen; break;
 case kComponentCloseSelect:
 componentProc = ExportPICSClose; break;
 case kComponentCanDoSelect:
 componentProc = ExportPICSCanDo; break;
 case kComponentVersionSelect:
 componentProc = ExportPICSVersion; break;
 case kMovieExportToFileSelect:
 componentProc = ExportPICSToFile; break;
 }
 if (componentProc)
 err = CallComponentFunctionWithStorage (storage, params,
 componentProc);
 return err;
}

pascal ComponentResult ExportPICSCanDo (ExportPICSGlobals store,
 short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kMovieExportToFileSelect:
 return true;
 break;
 default:
 return false;
 break;
 }
}

pascal ComponentResult ExportPICSVersion (ExportPICSGlobals store)
{
 return 0x00010001;
}

pascal ComponentResult ExportPICSOpen (ExportPICSGlobals store,
 ComponentInstance self)
{
 OSErr err;

A Sample Movie Export Component 73
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 store = (ExportPICSGlobals) NewPtrClear
 (sizeof(ExportPICSGlobalsRecord));
 if (err = MemError()) goto bail;
 store->self = self;
 SetComponentInstanceStorage(self, (Handle)store);

bail:
 return err;
}

pascal ComponentResult ExportPICSClose (ExportPICSGlobals store,
 ComponentInstance self)
{
 if (store) DisposPtr((Ptr)store);
 return noErr;
}

Exporting Data to a PICS File

To export data to a PICS file, your component must allow the Movie Toolbox to call the MovieExportToFile
function in order to export movie data into a file read the data from the track or movie perform appropriate
conversions on that data place the data into the specified file (the file’s type corresponds to the component
subtype of your movie data export component)

Listing 6-4 provides an implementation of these tasks in a movie export component. The

ExportPICSToFile function performs the export operation by opening the resource fork of the PICS file and
cycling through the movie time segment, adding a frame to the PICS file.

Listing 6-4 Exporting a frame of movie data to a PICS file

pascal ComponentResult ExportPICSToFile (ExportPICSGlobals store,
 const FSSpec *theFile,
 Movie m,
 Track onlyThisTrack,
 TimeValue startTime,
 TimeValue duration)
{
 OSErr err = noErr;
 short resRef = 0;
 short saveResRef = CurResFile();
 short resID = 128;
 PicHandle thePict = nil;

 /* open the resource fork of the PICS file
 (the caller is responsible for creating the file) */
 resRef = FSpOpenResFile (theFile, fsRdWrPerm);
 if (err = ResError()) goto bail;

 UseResFile(resRef);

 /* cycle through the movie time segment you were given */
 while (startTime < duration) {
 Byte c = 0;

74 A Sample Movie Export Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 if (onlyThisTrack)
 thePict = GetTrackPict (onlyThisTrack, startTime);
 else
 thePict = GetMoviePict(m, startTime);
 if (!thePict) continue;

 /* add a frame to the PICS file */
 AddResource ((Handle)thePict, 'PICT', resID++, &c);
 err = ResError();
 WriteResource ((Handle)thePict);
 DetachResource ((Handle)thePict);
 KillPicture (thePict);
 thePict = nil;
 if (err) break;

 /* find the time of the next frame */
 do {
 TimeValue nextTime;
 if (onlyThisTrack)
 GetTrackNextInterestingTime (onlyThisTrack,
 nextTimeMediaSample, startTime,
 kFix1, &nextTime, nil);
 else {
 OSType mediaType = VisualMediaCharacteristic;

 GetMovieNextInterestingTime (m, nextTimeMediaSample,
 1, &mediaType,
 startTime, kFix1,
 &nextTime, nil);
 }

 if (GetMoviesError ()) goto bail;
 if (nextTime != startTime) {
 startTime = nextTime;
 break;
 }
 } while (++startTime < duration);
 }

bail:
 if (thePict) KillPicture (thePict);
 if (resRef) CloseResFile (resRef);
 UseResFile (saveResRef);
 return err;
}

Save-and-Restore Component Routines

If you are writing movie data exchange components, and would like your components' settings to be saved
and restored, you need to implement two additional component routines in order to allow your components
to have their settings saved and restored. A component’s settings are stored in a QuickTime QT atom container.
The data stored in the QT atom container is private to the particular component but should be stored so that
it is possible to read the data on all platforms supported by QuickTime, thus allowing the same settings to
be used anywhere.

Save-and-Restore Component Routines 75
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

For each type of movie data exchange component, there is one routine to return a QT atom container holding
the settings and another routine to configure the component from previously-saved settings. For more
information about QT atom containers, see QuickTime Movie Basics.

Import component developers need to implement the MovieImportGetSettingsAsAtomContainer and
MovieImportSetSettingsFromAtomContainer routines. For
MovieImportGetSettingsAsAtomContainer, the component should allocate a new QT atom container,
stuff current settings into it, and return it to the caller. For MovieImportSetSettingsFromAtomContainer,
the component should accept a QT atom container, extract the settings in which it is interested, and change
its internal state.

Export component developers need to implement the MovieExportGetSettingsAsAtomContainer and
MovieExportSetSettingsFromAtomContainer routines. Like import components, the component’s
MovieExportGetSettingsAsAtomContainer routine allocates and returns a QT atom container holding
the component’s settings. For MovieExportSetSettingsFromAtomContainer, the component accepts
a QT atom container, extracts the settings, and updates its internal state.

Settings Container Format and Guidelines

The particular atoms stored within the component’s settings QT atom container are private to that component
type. However, there are some guidelines that need to be followed. These include:

In all SetSettingsFromAtomContainer routines, the QT atom container belongs to the caller. The
component should not dispose of the passed QT atom container.

The settings QT atom container should contain one or more top-level atoms. These top-level atoms can
contain either leaf data or other atoms. Each atom has both a type (QTAtomType) and an ID. Choosing an
atom type that is mnemonic is helpful in indicating how it is used. For example, QuickTime stores video
compression settings in atoms of type 'vide'. Sound compression settings are stored in 'soun' atoms.
The text components use 'text' for their atom types.

Several of QuickTime’s export components use the standard compression component to allow the user to
configure compression settings for exported files. When one of these components is asked to return its
settings atom container, the export component first requests that the standard compression component
return its settings using the SCGetSettingsAsAtomContainer function described above. To the QT atom
container it receives, the export component adds any of its own settings. When the export component’s
SetSettingsFromAtomContainer is called, the exporter calls

SCSetSettingsFromAtomContainerwith the passed atom container. The standard compression component
extracts only those settings it expects, ignoring all other, and configures itself. The exporter then looks for
its own settings in the same atom container and configures itself.

This is possible because the standard compression and data exchange components both use QT atom
containers to hold their settings. Because many third-party developers do the same, there must be a
mechanism so that QuickTime’s own top-level atom types and those of third parties don’t collide. To achieve
this, Apple Computer reserves all top-level atom types consisting exclusively of lowercase letters with or
without numerals. For example, 'vide' is reserved by Apple, but 'Vide' is not. There is no restriction on
the atom types for atoms stored within these top-level atoms.

Apple recommends that you store all of your component settings under a single top-level atom. However,
there is no requirement to do so.

76 Settings Container Format and Guidelines
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

The data within an atom should be stored in a canonical form on all platforms. It should be always in big-endian
format or always in little-endian format. Different types of atoms can be stored in different endian orders
but for a single type of atom, it should always use the same order. This allows the settings to be created in
the Mac OS and read in Windows or vice-versa.

In either MovieImportSetSettingsFromAtomContainer or
MovieExportSetSettingsFromAtomContainer, you should not necessarily expect all atoms to be included
in the atom container you receive. This allows another developer, for example, to create a settings atom
container, add atoms and data for only those parts of the settings that should be changed, and then pass
this incomplete atom container to the component. The component then only changes those particular
settings, leaving other settings alone. QuickTime’s own components use this approach.

If nil is passed for the settings to the component routines, return paramErr.

If your component does not have configurable settings, you do not need to implement the settings-related
routines.

Registering Movie Data Export Components

QuickTime allows more than one export ('spit') component to be registered for the same type of file and
the same export source (the movie or the particular track type). This is accomplished in a way that preserves
compatibility with third-party components that may have already been written using the former rules.

The Registration Mechanism

QuickTime provides a movie export component routine that returns the same information that would have
been previously stored in the componentManufacturer field of the registered 'spit' components. An
export-specific component flag indicates that the export component implements the new protocol. By
implementing the routine, the export component’s componentManufacturer field can be used to
differentiate components.

The routine is MovieExportGetSourceMediaType. This routine returns an OSType value through its
mediaType parameter, which is interpreted in exactly the same way that the componentManufacturer
was previously interpreted. If the export component requires a particular type of track to exist in a movie, it
returns that media handler type (e.g., VideoMediaType, SoundMediaType, etc.) through the mediaType
argument. If the export component works for an entire movie, it returns 0 through this parameter.

EXTERN_API(ComponentResult)
MovieExportGetSourceMediaType (MovieExportComponent ci, OSType * mediaType);

The following component flag indicates that this routine is implemented:

movieExportMustGetSourceMediaType = 1L << 19,

If you implement the MovieExportGetSourceMediaType routine, you must register the component with
this flag. Otherwise, the Movie Toolbox will not know to call the routine and will assume the older semantics
for the componentManufacturer field.

Using this mechanism does not replace the need for implementing Validate in your export components.
The mechanism is only used to find candidate components.

Registering Movie Data Export Components 77
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

Export Registration Mechanism

Both the Movie and the DVC export components use the export registration mechanism. The components
are registered as shown below.

componentType 'spit'
componentSubType 'MooV'
componentManufacturer 'appl'
componentFlags canMovieExportFiles + canMovieExportFromProcedures +
 hasMovieExportUserInterface + canMovieExportValidateMovie
 + movieExportMustGetSourceMediaType

componentType 'spit'
componentSubType 'dvc!'
componentManufacturer 'appl'
componentFlags canMovieExportFiles + canMovieExportFromProcedures
 + hasMovieExportUserInterface + canMovieExportValidateMovie
 + movieExportMustGetSourceMediaType

Because the DVC component uses the QuickTime Movie export component, it searches for the 'MooV' exporter,
using the following ComponentDescription values:

cd.componentType = 'spit';
cd.componentSubType = MovieFileType;
cd.componentManufacturer = 'appl';
cd.componentFlags = canMovieExportFromProcedures
 + movieExportMustGetSourceMediaType;
cd.componentFlagsMask = cd.componentFlags;

If you are working with export components (either writing them, or trying to enumerate or otherwise match
up components with source media types) you need to understand this registration mechanism.

Implementing Movie Data Export Components

You can implement a movie data export component by calling theMovieExportFromProceduresToDataRef
function.

Because many existing applications expect to be able to perform an export operation from a movie or track,
export components should support MovieExportToFile, MovieExportFromProceduresToDataRef and
MovieExportToDataRef.

Listing 6-5 shows how to implement MovieExportToFile so that it simply calls MovieExportToDataRef.

Listing 6-5 Calling MovieExportToDataRef from MovieExportToFile

pascal ComponentResult MovieExportToFile(Globals store, const FSSpec *theFile,
 Movie m, Track onlyThisTrack, TimeValue startTime, TimeValue duration) {
ComponentResult err;
 AliasHandle alias;
 err = QTNewAlias (theFile, &alias, true);
 err = MovieExportToDataRef(store->self, (Handle)alias, rAliasType, m,
onlyThisTrack, startTime,

78 Export Registration Mechanism
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

 duration);
 DisposeHandle((Handle)alias); }

Listing 6-6 shows how to use the utility routines provided by the QuickTime movie data export component
to implement MovieExportToDataRef by calling MovieExportFromProceduresToDataRef. Your
implementation may differ, depending on the types of data to be exported. For example, the number and
type of data sources created may change. This example creates a single sound data source, and is appropriate
for any movie data export component that exports audio only.

Listing 6-6 Calling MovieExportFromProceduresToDataRef from MovieExportToDataRef

pascal ComponentResult MovieExportToDataRef(Globals store, Handle dataRef,
 OSType dataRefType, Movie m, Track onlyThisTrack, TimeValue startTime,
 TimeValue duration) {
 ComponentResult err;
 ComponentDescription cd;
 ComponentInstance ci;
 TimeScale scale;
 MovieExportGetPropertyUPP getPropertyProc = nil;
 MovieExportGetDataUPP getDataProc = nil;
 void *refCon;
 long trackID;
 cd.componentType = MovieExportType;
 cd.componentSubType = 'MooV';
 cd.componentManufacturer = 0;
 cd.componentFlags = canMovieExportFromProcedures;
 cd.componentFlagsMask = canMovieExportFromProcedures;
 err = OpenAComponent(FindNextComponent(nil, &cd), &ci);
 err = MovieExportNewGetDataAndPropertiesProcs(ci, SoundMediaType,
 &scale, m, onlyThisTrack, startTime, duration, &getPropertyProc,
 &getDataProc, &refCon);
 err = MovieExportAddDataSource(store->self, SoundMediaType, scale,
 &trackID, getPropertyProc, getDataProc, refCon);
 err = MovieExportFromProceduresToDataRef(store->self, dataRef, dataRefType);
}

The code in Listing 6-6 retrieves default property and data procedures, instead of providing them, by using
the QuickTime Movie export component. It also must dispose of these procedures. They take care of
interpreting the tracks and returning media properties and data.

Implementing Movie Data Export Components 79
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

80 Implementing Movie Data Export Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating a Movie Data Exchange Component

This chapter describes how to use movie exchange components from within your application. The chapter
focuses on three particular features: the ability to specify part of a file to import, getting a list of supported
MIME types, and determining whether movie data export is possible.

Importing and Exporting Movie Data

Your application starts a data import or export operation by calling the Movie Toolbox. There are several
Movie Toolbox functions that allow you to specify a data import or data export component. For example,
the PasteHandleIntoMovie and ConvertFileToMovieFile functions allow you to specify a movie data
import component. The PutMovieIntoTypedHandle and ConvertMovieToFile functions allow you to
specify a movie data export component. All of these functions select a component for you if you do not
specify one yourself.

When you import data into a QuickTime movie, you can specify that the data be placed into a specific existing
track in the movie, into a new track that is created by the movie data import component, or into one or more
existing tracks (in this case, the component may create additional tracks, if necessary).

When you export data from a QuickTime movie, you can request data from a specific track or from the entire
movie. In addition, you can specify a segment of the track or movie to be exported.

Configuring a Movie Data Exchange Component

You do not need to configure a movie data exchange component before you use it to convert data into or
out of a QuickTime movie. These components are implemented in such a way that they can operate successfully
using their own default configuration information. In fact, some data exchange components do not allow
you to configure them. However, most data exchange components do support some or all of the configuration
functions that are defined for components of this type.

If you are going to configure a data exchange component, you must do so before you start the data exchange
operation. You must call the component directly in order to set the configuration; the Movie Toolbox does
not do this for you. Use the functions described in "Configuring Movie Data Import Components" (page 82)
and "Configuring Movie Data Export Components" (page 82) as appropriate. Note that all of these functions
are optional; that is, it is up to the developer of the component to decide whether or not to support a given
configuration function. If the component does not support a function you have called, the component returns
an error code of badComponentSelector.

Importing and Exporting Movie Data 81
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

Configuring Movie Data Import Components

Your component may provide one or more configuration functions. These functions allow applications to
configure your component before the Movie Toolbox calls your component to start the import process. Note
that applications may call these functions directly.

All of these functions are optional. If your component receives a request that it does not support, you should
return the badComponentSelector error code. In addition, your component should work properly even if
none of these functions is called.

These functions address a variety of configuration issues. The MovieImportSetSampleDuration function
allows an application to set your component’s sample duration. Use the MovieImportSetDuration function
to control the duration of the imported data. Applications can use the MovieImportSetDimensions function
to specify the spatial dimensions of a new track. Use the MovieImportSetSampleDescription function
to supply a sample description structure to your movie data import component.

The MovieImportSetMediaFile function allows applications to direct your component’s output to a
specific media file. Applications can provide additional data to your component by calling the
MovieImportSetAuxiliaryData function. The MovieImportSetChunkSize function allows applications
to control the chunk size in the new media. Applications can inform you that the source data came from the
scrap by calling your MovieImportSetFromScrap function.

Applications can specify a progress function for use by your component by calling the
MovieImportSetProgressProcfunction.

Applications can instruct your component to display its user dialog box by calling the
MovieImportDoUserDialog function.

Configuring Movie Data Export Components

Your component may provide one or more configuration functions. These functions allow applications to
configure your component before the Movie Toolbox calls your component to start the export process. Note
that applications may call these functions directly.

All of these functions are optional. If your component receives a request that it does not support, you should
return the badComponentSelector error code. In addition, your component should work properly even if
none of these functions is called.

These functions address a variety of configuration issues. Applications can retrieve additional data from your
component by calling the MovieExportGetAuxiliaryData function.

Applications can specify a progress function for use by your component by calling the
MovieExportSetProgressProc function.

Applications can instruct your component to display its user dialog box by calling the
MovieExportDoUserDialog function.

82 Configuring Movie Data Import Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

Finding a Specific Movie Data Exchange Component

If you are going to specify a particular data exchange component to the Movie Toolbox, you must first open
a connection to that component. Use the Component Manager’sOpenDefaultComponentorOpenComponent
function to open a connection to a movie data exchange component. Before you can open that connection,
however, you must find an appropriate movie data exchange component.

To find an appropriate data exchange component, you may need to use the Component Manager’s
FindNextComponent function. You specify the characteristics of the component you are seeking in a
component description record; in particular, in the componentType, componentSubtype,
componentManufacturer, and componentFlags fields.

Movie data import components have a component type value of 'eat ', which is defined by the
MovieImportType constant. Movie data export components have a type value of 'spit', which is defined
by the MovieExportType constant.

Movie data exchange components use their component subtype and manufacturer values to indicate the
type of data that they support. The subtype value indicates the type of data that these components can
import or export. For example, movie data import components that convert text into QuickTime movie data
have a component subtype value of 'TEXT'. A single data exchange component may support only one data
type.

The manufacturer field indicates the QuickTime media type that is supported by the component. For example,
movie data export components that can read data from a sound media have a manufacturer value of 'soun'
(this value is defined by the SoundMediaType constant). If a data exchange component can work with more
than one media type, it specifies a manufacturer value of 0.

In addition, these components use the componentFlags field to indicate more specific information about
their capabilities. The following flags are currently defined:

enum {
 canMovieImportHandles = 1, /* can import from handles */
 canMovieImportFiles = 2, /* can import from files */
 hasMovieImportUserInterface = 4, /* import has user interface */
 canMovieExportHandles = 8, /* can export to handles */
 canMovieExportFiles = 16, /* can export to files */
 hasMovieExportUserInterface = 32, /* export has user interface */
 dontAutoFileMovieImport = 64 /* turn off automatic file conversion
 */
};

Movie data import components use the first three flags to specify their capabilities. If a component can
convert data from a handle, its canMovieImportHandles flag is set to 1. If it can work with files, its
canMovieImportFiles flag is set to 1. Note that both of these flags may be set to 1 if a single component
can work with both files and handles. If a component provides a dialog box that allows the user to specify
configuration information, the hasMovieImportUserInterface flag is set to 1. If a component does not
support the automatic conversion of standard files to movies in an import component, set the
dontAutoFileMovieImport flag to 1 (the default setting is 0).

Movie data export components use the other three flags in the same way.

Finding a Specific Movie Data Exchange Component 83
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

Specifying a Part of a File to Import

When using certain movie import components, applications can import data from a part of a file rather than
the entire file by calling MovieImportSetOffsetAndLimit or MovieImportSetOffsetAndLimit64. The
latter function accomodates 64-bit offsets instead of just 32-bit offsets. These functions let an application
specify a byte offset into the file at which the import operation begins and another offset, known as the limit,
that indicates the last data in the file that can be imported. This function is especially useful when one file
format is embedded in another; it allows an application to skip header data for the enclosing file and begin
importing data at the start of the desired format.

Not all movie import components support the MovieImportSetOffsetAndLimit or
MovieImportSetOffsetAndLimit64 function. Those that do include the movie import components
provided with QuickTime for the kQTFileTypeAIFF, kQTFileTypeWave, and kQTFileTypeMuLaw file
types. Those that do not return the result code badComponentSelector in response to a
MovieImportSetOffsetAndLimitorMovieImportSetOffsetAndLimit64 call. If your export component
implementsMovieImportSetOffsetAndLimit64, it should implementMovieImportSetOffsetAndLimit
too, since older clients may not use the new 64-bit offset version of the call.

Getting a List of Supported MIME Types

Applications can get a list of MIME types supported by a movie import component by calling the
MovieImportGetMIMETypeList function.

In QuickTime, import components should additionally include a public component resource holding the
same data that MovieImportGetMIMETypeList would return. This public resource’s public type and ID
should be 'mime' and 1, respectively; these values are held in the import component’s public resource list.
The following shows an example of such a list:

resource 'thnr' (kMyImportComponentResID)
{
 'mime', 1, 0,
 'mime', kMyImportMIMETypeListResID, 0
}

By including this public resource, QuickTime and applications don’t need to open the import component
and call MovieImportGetMIMETypeList to determine the MIME types the importer supports. In the absence
of this resource, QuickTime and applications will use MovieImportGetMIMETypeList.

Determining Whether Movie Data Export Is Possible

Although a movie export component can export one or more media types, it may not be able to export all
the kinds of data stored in those media. Applications can find out whether a movie export component can
export all the data for a particular movie or track by calling the MovieExportValidate function.

Not all export components implement the MovieExportValidate call. In the following code snippet, you
make the Validate call, and even if the component routine is not implemented it is still true:

Boolean canExport = true;

84 Specifying a Part of a File to Import
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

 MovieExportValidate(ci, &canExport);
 if(canExport) {
 . . .
 }

Determining Whether Movie Data Export Is Possible 85
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

86 Determining Whether Movie Data Export Is Possible
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Movie Data Exchange Components

This table describes the changes to QuickTime Import and Export Guide.

NotesDate

New document that describes QuickTime's technology for importing and
exporting graphics and other data into and out of movies.

2006-01-10

Replaces "Movie Import/Export (Data Exchange Components)," "Graphics
Importers," and "Graphics Exporters."

New document that describes the components that transport data between
non-movie formats and QuickTime movies.

2002-09-17

87
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

88
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Import and Export Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	About Graphics Importer and Exporter Components
	Graphics Importers
	Alpha Channels
	Multiple Images

	Graphics Exporters
	Using QuickTime to Export a Picture as an Image File

	Graphics Importer Components
	Displaying Still Images
	Image Formats with Multiple Images in a Single File
	Supporting 64-bit File Sizes and Offsets
	Retrieving Default Settings
	Getting ColorSyncProfiles
	Getting/Setting the Destination Rectangle

	QuickTime Image File Format
	Atom Types in QuickTime Image Files

	Obtaining Graphics Import Components
	Determining the Properties of the Image File
	Drawing and Converting Image Files

	Writing Graphics Import Components
	Registering Graphics Import Components

	Getting Image Characteristics
	Setting Drawing Parameters
	Drawing Images
	Saving Image Files
	Getting MIME Types
	Specifying the Data Source
	Retrieving Image Data
	Graphics Importer Flags for Gamma Correction
	Image Description Atoms in QuickTime Image Files
	ColorSync Atoms in QuickTime Image Files
	Graphics Importer Component Type
	MIME Type List

	Graphics Exporter Components
	Exporting Graphics
	Using Graphics Exporter Components
	Selecting a Graphics Exporter Component
	Specifying the Source
	Specifying the Destination
	Specifying Export Settings
	DontRecompress Flag
	Interlace Styles
	MetaData
	Compression Methods
	Compression Quality
	Target Data Size
	Resolution
	Depth
	ColorSyncProfile
	Settings Dialogs
	User Interface
	File Type and Creator

	How Graphics Exporters Work
	How the Base Exporter Chooses a Mode

	Writing Graphics Export Components

	Graphics Exporter Component Functions By Task
	Constants
	Data Types
	Functions
	Exporting
	Internal Routines
	Finding Out About Image Formats
	Obtaining Graphics Exporter Settings
	Accessing Graphics Exporter Settings
	Getting and Setting Progress Procs
	Specifying Sources for Input Images
	Restricting the Range of an Input Image's Source
	Reading Input Data
	Accessing the Input Image
	Destinations for Output Images
	Writing Output Data

	Movie Data Exchange Components
	Saving and Restoring Settings
	Movie Exporter Presets
	Implementing Movie Data Exchange Components
	Standard Compression Components and Settings
	Exporting Text
	Time Stamps
	Text Descriptors
	MIME Type List
	Text Display Data Structure

	Importing Text
	Importing In Place
	Audio CD Import Component
	DV Video Import and Export Components
	DV Movie Import Component
	DV Movie Export Component

	Exporting DV Data from an Application
	Exporting Data from Sources Other Than Movies
	Determining What Kind of Tracks a Component Supports
	Instantiating the Data Export Component

	Using a Movie Data Export Component to Export Audio
	Configuring the Data Export Component
	Exporting the Data

	Using a Movie Data Export Component to Export Video
	Instantiating the Video Export Component
	Configuring the Video Export Component
	Using the Component
	Determining the Data Sources Supported by an Export Component

	Creating a Movie Data Exchange Component
	Importing Movie Data
	Exporting Movie Data
	Summary of Constants
	Result Codes
	A Sample Movie Import Component
	Implementing the Required Import Component Functions
	Importing a Scrapbook File

	A Sample Movie Export Component
	Implementing the Required Export Component Functions
	Exporting Data to a PICS File

	Save-and-Restore Component Routines
	Settings Container Format and Guidelines
	Registering Movie Data Export Components
	The Registration Mechanism

	Export Registration Mechanism
	Implementing Movie Data Export Components

	Using Movie Data Exchange Components
	Importing and Exporting Movie Data
	Configuring a Movie Data Exchange Component
	Configuring Movie Data Import Components
	Configuring Movie Data Export Components
	Finding a Specific Movie Data Exchange Component
	Specifying a Part of a File to Import
	Getting a List of Supported MIME Types
	Determining Whether Movie Data Export Is Possible

	Revision History

