
QuickTime Media Types and Media Handlers
Guide
QuickTime > Media Types & Media Handlers

2006-01-10

Apple Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh,
QuickDraw, and QuickTime are trademarks of
Apple Inc., registered in the United States and
other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Media Types and Media Handlers Guide 9

Organization of This Document 9
See Also 10

Chapter 1 About Media Handlers 11

Selecting Media Handlers 11
Media Selection Functions 11
Media Property Functions 11

Chapter 2 Video and Sound Media Handlers 13

Video Media Handler Functions 13
The Image Description Structure 13
Sound Media Handler Functions 14
The Sound Description Structure 14

Chapter 3 Text Media Handlers 15

Text Operations 15
Text Media Handler Functions 16

Chapter 4 Timecode Media Handlers 19

Timecode Tracks 19
Timecode Samples 20
Timecode Media Handler Functions 23

Chapter 5 Tweens and Tween Operations 25

Tween Types 25
Single Tweens and Tween Sequences 26
Interpolation Tweens 26

Chapter 6 Tween Media Handlers 29

Using the Tween Media Handler 29
Creating a Tween Track 30
Tween Media Handler Constants 34

3
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 7 Using Tween Components 35

Creating a Single Tween Container 35
Using Path Tween Components 36
Using a List Tween Component 36
Utility Routines 38

AddTweenAtom 38
AddDataAtom 39
AddSequenceTweenAtom 40
AddSequenceElement 41
CreateSampleAtomListTweenData 41

Using a Polygon Tween Component 43
Specifying an Offset for a Tween Operation 45
Specifying a Duration for a Tween 45
Creating a Tween Sequence 45
Naming Tweens 47
CreateSampleVectorData Utility 47
CreateSamplePathTweenContainer Utility 49
Using a kTweenTypePathToMatrixTranslation Tween Component 50
Using a kTweenTypePathToFixedPoint Tween Component 51
Using a kTweenTypePathToMatrixRotation Tween Component 53
Using a kTweenTypePathToMatrixTranslationAndRotation Tween Component 53
Using a kTweenTypePathXtoY Tween Component 54
Using a kTweenTypePathYtoX Tween Component 55

Chapter 8 Tween Components and Native Tween Types 57

Tween QT Atom Container 57
General Tween Atoms 57
Path Tween Atoms 59
List Tween Atoms 60
Interpolation Tween Atoms 60
Sequence Tween Atoms 61

Tween Container Syntax 62
kTweenTypeFixed 62
kTweenTypeFixedPoint 63
kTweenTypeGraphicsModeWithRGBColor 63
kTweenTypeLong 63
kTweenTypeMatrix 63
kTweenTypePoint 63
kTweenTypeQTFloatDouble 63
kTweenTypeQTFloatSingle 64
kTweenTypeRGBColor 64
kTweenTypeShort 64

Other Tween Components 64
List Tweener Components 64

4
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Multimatrix Tweener Component 65
Path Tweener Components 66
Polygon Tweener Component 66
Spin Tweener Component 67

Constants 68
Tween Component Constant 68
Tween Type and Tween Component Subtype Constants 68
Tween Atom Constants 69
Tween Flag 69

Data Types 69
Tween Sequence Entry Record 70
Component Instance 70
Tween Record 70
Value Setting Function 71

Chapter 9 Creating a Tween Component 73

Initializing the Tween Component 73
Generating Tween Media Values 73
Resetting a Tween Component 74
Creating an Interpolation Tween 74

Document Revision History 77

5
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

6
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 6 Tween Media Handlers 29

Figure 6-1 Data routed from a tween track to a receiving track based on its input map 30
Figure 6-2 Using tween media to modify the sound track's volume 32
Listing 6-1 Creating a tween track and tween media 31
Listing 6-2 Creating a tween sample 31
Listing 6-3 Adding the tween sample to the media and the media to the track 33
Listing 6-4 Creating a link between the tween track and the sound track 33
Listing 6-5 Binding a tween entry to its receiving track 34

Chapter 7 Using Tween Components 35

Listing 7-1 Creating a single kTweenTypeLong tween container 35
Listing 7-2 Creating a kTweenTypeAtomList tween container 36
Listing 7-3 Utility routine AddTweenAtom 38
Listing 7-4 Utility routine AddDataAtom 40
Listing 7-5 Utility routine AddSequenceTweenAtom 40
Listing 7-6 Utility routine AddSequenceElement 41
Listing 7-7 Utility routine CreateSampleAtomListTweenData 41
Listing 7-8 Creating a polygon tween container 43
Listing 7-9 Creating a tween sequence 45
Listing 7-10 Utility routine CreateSampleVectorData 47
Listing 7-11 Utility routine CreateSamplePathTweenContainer 49
Listing 7-12 Creating a kTweenTypePathToMatrixTranslation tween container 50
Listing 7-13 Creating a kTweenTypePathToMatrixTranslation tween 51
Listing 7-14 Creating a kTweenTypePathToFixedPoint tween container 52
Listing 7-15 Creating a kTweenTypePathToFixedPoint tween container 52
Listing 7-16 Creating a kTweenTypePathToMatrixRotation tween container 53
Listing 7-17 Creating a kTweenTypePathToMatrixTranslationAndRotation tween container 54
Listing 7-18 Creating kTweenTypePathXtoY tweens container 54
Listing 7-19 Creating kTweenTypePathYtoX tweens container 55

Chapter 9 Creating a Tween Component 73

Listing 9-1 Function that initializes a tween component 73
Listing 9-2 Function that generates tween media values 73
Listing 9-3 Function that resets a tween component 74
Listing 9-4 Creating an interpolation tween container 74

7
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

8
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES AND LISTINGS

This book introduces the idea of QuickTime media handler components and provides details of the video,
sound, text, timecode, and tween media handlers.

Note: This book replaces five previously separate Apple documents: “Media Handlers: Introduction, Video
and Sound,” “Text Media Handler, “Time Code Media Handler, “Tween Components and Tween Media,” and
“Tween Media Handler.”

The last half of this book describes the media handler components that perform tween operations, sometimes
called tweeners. It also describes tween operations performed by QuickTime for tween types that are native
to QuickTime.

A tween operation lets you algorithmically generate an output value for any point in a time interval. The
input for a tween is a small number of values, often as few as one or two, from which a range of values can
be derived. You can use output from a tween either to modify tracks in a QuickTime movie or to perform
actions unrelated to movies.

For a general overview of media handler technology in QuickTime, read About Media Handlers (page 11).
The rest of this book is of interest primarily to developers who need to develop new media handlers for
QuickTime. You need to read the last five chapters of this book if you are a developer planning to work with
or create QuickTime tween components.

Organization of This Document

This book is divided into nine chapters:

 ■ About Media Handlers (page 11) describes media handlers, components that are responsible for
interpreting and manipulating a media’s sample data.

 ■ Video and Sound Media Handlers (page 13) describes the media handlers that interpret and manipulate
video data.

 ■ Text Media Handlers (page 15) describes media handlers that you can use to add plain or styled text
samples to a movie, indicate scrolling and highlighting properties for the text, search for text, and
highlight specified text runs.

 ■ Timecode Media Handlers (page 19) describe media handlers that let QuickTime movies store timing
information derived from a movie’s original source material, such as SMPTE timecodes.

 ■ Tweens and Tween Operations (page 25) introduces tweens and their uses, and provides an overview
of the tween operations that are possible.

 ■ Using Tween Components (page 35) describes how to create tween containers that the tween media
handler uses.

Organization of This Document 9
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Media Types and
Media Handlers Guide

 ■ Creating a Tween Component (page 73) explains how to create a tween component for a new data
type, a new interpolation algorithm, or both.

 ■ Tween Components and Native Tween Types (page 57) describes the native tween types handled by
QuickTime; the tween components included in QuickTime; and the constants, data types, and routines
associated with tween components.

 ■ Tween Media Handlers (page 29) describes media handlers that are used to send tween values from a
tween track to a receiving track, such as a video track or a sound track.

See Also

For a discussion of QuickTime movie time management, see QuickTime Movie Internals Guide.

The following Apple books cover aspects of QuickTime programming related to media handlers:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

 ■ QuickTime Compression and Decompression Guide introduces you to the QuickTime Image Compression
Manager and its associated components, which provide image-compression and image-decompression
services to applications and to other QuickTime components.

 ■ QuickTime Video Effects and Transitions Guide tells you how to program QuickTime video effects and
transitions between movie tracks and graphic images.

 ■ QuickTime Component Creation Guide tells you how to build new components to extend the capabilities
of QuickTime, including media handlers and preview components.

 ■ QuickTime API Reference provides encyclopedic details of all the functions, callbacks, data types and
structures, atom types, and constants in the QuickTime API.

10 See Also
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Media Types and Media Handlers Guide

The Movie Toolbox does not contain direct support for manipulating specific media types. This work is
performed by media handler components. Media handlers are components that are responsible for interpreting
and manipulating a media’s sample data.

Each media type has its own media handler, which deals with the specific characterisics of that media type.
Apple provides media handlers for video, sound, text, sprites, timecodes, tweens, and QuickTime music.
Because media handlers are implemented as components, new media handlers can be created to support
new media types, or to add new features to the handling of existing media.

Applications do not normally interact with media handlers directly; applications make calls to the Movie
Toolbox, which calls media handlers as needed.

Selecting Media Handlers

Media handler components are responsible for interpreting and manipulating a media’s sample data. Each
type of media has its own media handler, which deals with the specific characteristics of the media data. The
Movie Toolbox provides a set of functions that allow you to gather information about a media handler and
assign a particular media handler to a media. This section discusses those functions.

Each media handler has an associated data handler for each data reference. The data handler is responsible
for fetching, storing, and caching the data that the media handler uses. The Movie Toolbox provides functions
that allow you to get information about data handlers and to assign a particular data handler to a media.

Media Selection Functions

Media handler selection uses the following functions:

 ■ TheGetMediaHandler andGetMediaHandlerDescription functions allow you to retrieve information
about a media handler.

 ■ You can use the SetMediaHandler function to assign a media handler to a media.

 ■ TheGetMediaDataHandler andGetMediaDataHandlerDescription functions enable you to retrieve
information about a data handler. Use the SetMediaDataHandler function to assign a data handler
to a media.

Media Property Functions

QuickTime provides two functions, GetMediaPropertyAtom and SetMediaPropertyAtom, for setting and
retrieving the property atom container of a media handler. This allows you to get and set the properties of
a track associated with the specified media handler.

Selecting Media Handlers 11
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Media Handlers

12 Selecting Media Handlers
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Media Handlers

Video media handlers are responsible for interpreting and manipulating video data. These media handlers
allow you to call them directly to work with some graphics settings. This section lists the functions supported
by video media handlers.

Video media handlers maintain a graphics mode and color value that affect the display of video data. You
can use the SetVideoMediaGraphicsMode and GetVideoMediaGraphicsMode functions to work with
these characteristics.

Sample descriptions for video media are stored in image description structures.

Sound media handlers are responsible for interpreting and manipulating sound data. These media handlers
allow you to call them directly to work with some audio settings.

Sound media handlers maintain balance information for their audio data. You can use the
SetSoundMediaBalance and GetSoundMediaBalance functions to work with a handler’s balance setting.

Sample descriptions for sound media are stored in sound description structures.

Video Media Handler Functions

The following functions can be used specifically with video media handler components:

 ■ SetVideoMediaGraphicsMode

 ■ GetVideoMediaGraphicsMode

The Image Description Structure

Sample descriptions for video media are stored in image description structures. An image description structure
contains information that defines the characteristics of a compressed image or sequence. Data in the image
description structure indicates the type of compression that was used, the size of the image when displayed,
the resolution at which the image was captured, and so on. One image description structure may be associated
with one or more compressed frames.

The ImageDescription data type defines the layout of an image description structure. In addition, an
image description structure may contain additional data in extensions and custom color tables. The Image
Compression Manager provides functions that allow you to get and set the data in image description structure
extensions and custom color tables.

Video Media Handler Functions 13
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Video and Sound Media Handlers

Sound Media Handler Functions

Two functions can be used with sound media handler components:

 ■ SetSoundMediaBalance

 ■ GetSoundMediaBalance

The Sound Description Structure

A sound description structure contains information that defines the characteristics of one or more sound
samples. Data in the sound description structure indicates the type of compression that was used, the sample
size, the rate at which samples were obtained, and so on. Sound media handlers use the information in the
sound description structure when they process sound samples.

The SoundDescription data type defines the layout of a sound description structure.

14 Sound Media Handler Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Video and Sound Media Handlers

Applications do not normally interact with media handlers directly; applications make calls to the Movie
Toolbox, which calls media handlers as needed. The material in this chapter will be primarily of interest to
developers whose applications will allow the creation or editing of text tracks in QuickTime movies.

Text Operations

You can use text media handlers to

 ■ add plain or styled text samples to a movie

 ■ indicate scrolling and highlighting properties for the text

 ■ search for text

 ■ highlight specified text

A particular text sample has a default font, size, typeface, and color as well as a location (text box) within the
track bounds to be drawn. The data format allows you to include style run information for the text. You can
set flags to clip the display to the text box, inhibit automatic scaling of text as the track bounds are scaled,
scroll the text, and specify if text is to be displayed at all.

The Movie Toolbox provides functions to help you add text samples to a track. You can use the
TextMediaAddTextSample function to add text to a media. The TextMediaAddTESample function allows
you to specify a TextEdit handle (which may have multiple style runs) to be added to a media. The
TextMediaAddHiliteSample function allows you to indicate highlighting for text that has just been added
with the TextMediaAddTextSample or TextMediaAddTESample function.

The format of the text data that is added to the media is a 16-bit length word followed by the text. The length
word specifies the number of bytes in the text. Optionally, one or more atoms of additional data may follow.
An atom is structured as a 32-bit length word followed by a 32-bit type followed by some data. The length
word includes the size of the data as well as the length and type fields (in other words, the size of the data
plus 8).

Text atom types include the style atom ('styl'), the shrunken text box atom ('tbox'), the highlighting
atom ('hlit'), the scroll delay atom ('dlay'), and the highlight color atom ('hclr').

The format of the style atom is the same as TextEdit’s StScrpRec data type. A StScrpRec data type is a
short integer specifying the number of style runs followed by that number of ScrpSTElement data types,
each specifying a different style run.

The shrunken text box atom is added when you set the dfShrinkTextBoxToFit display flag (in the
TextMediaAddTextSample or TextMediaAddTESample function). Its format is simply the rectangle of the
shrunken box (16 bytes total, including length and type).

Text Operations 15
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Text Media Handlers

The highlighting atom is added if the hiliteStart and hiliteEnd parameters are set appropriately in
theTextMediaAddTextSampleorTextMediaAddTESample function. WhenTextMediaAddHiliteSample
is called, an empty text sample (the first 2 bytes are 0) with a highlighting atom is added to the media. The
format is two long integers indicating the start and end of the highlighting (16 bytes total).

The scroll delay atom specifies the scroll delay for a sample. It is a long value that specifies the delay time. It
consists of 12 bytes, including the length and type fields.

The highlight color atom specifies the highlight color for a sample. Its format is an RGBColor data type (that
is, 2 bytes red, 2 bytes green, and 2 bytes blue). It consists of 14 bytes, including the length and type fields.

Text Media Handler Functions

The following functions can be used with text media handler components. They support such tasks as adding
plain or styled text samples to a movie, setting scrolling and highlighting, and text searching.

 ■ TextMediaSetTextSampleData

 ■ TextMediaAddTextSample

 ■ TextMediaAddTESample

 ■ TextMediaAddHiliteSample

 ■ TextMediaFindNextText

 ■ TextMediaHiliteTextSample

 ■ TextMediaSetTextProc

The TextMediaAddTextSample, TextMediaAddTESample, and TextMediaAddHiliteSample functions
convert text into the text media format and add it to the media. To use these functions, you need to:

 ■ create a text track and media

 ■ call the BeginMediaEdits function

 ■ call the TextMediaAddTextSample, TextMediaAddTESample, or TextMediaAddHiliteSample
function, as appropriate

 ■ call the EndMediaEdits function

 ■ call the InsertMediaIntoTrack function

Movie import and export components help to get common data types (such as 'PICT' or 'snd ') into and
out of movies easily. The text import component allows you to get text into a movie using the following
principles:

 ■ If you try to paste text, the text is inserted at the current position. The text import component tries to
find an existing text track that fits the text.

 ■ If no text tracks exist and there is an insertion operation, the newly created text track has the same
position and size as the movie box.

 ■ If there is an addition operation (using the Shift key), the new track is added below the movie at a height
that fits the text.

16 Text Media Handler Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Text Media Handlers

 ■ If a text track exists but the text does not fit, a new text track with sufficient height to accommodate the
text is created in the same location as the existing one.

 ■ If you hold down the Option key when you paste, the text is added in parallel at some default duration.

 ■ If you hold down both the Option and Shift keys, the duration of the text is determined by the length
of the current selection.

 ■ If style information is on the Clipboard, it is used; otherwise, the text appears in the default 12-point
application font, centered, in white on a black background.

If you want more control over how the text is added (for example, if you want to set some display flags or a
new track position), your application must:

 ■ intercept the text paste

 ■ instantiate its own text import component using the component type 'eat ' and component subtype
'TEXT'

 ■ use functions including MovieImportSetSampleDuration, MovieImportSetSampleDescription,
MovieImportSetDimensions, and MovieImportSetAuxilliaryData (with 'styl' and a
StScrpHandle data type)

 ■ call the MovieImportHandle function with the text data

 ■ adjust the location of the track, if desired (since the text import component may place it below the movie
box)

The Movie Toolbox provides functions that allow you to search for and highlight text. You can use the
TextMediaFindNextText function to search for text in a text track, and the TextMediaHiliteTextSample
function to highlight specified text in a text track.

You can use the TextMediaSetTextProc function to specify a customized function whenever a new text
sample is added to a movie.

You can use the MyTextProc callback to pass a handle to a specified sample containing formatted text,
along with the movie in which the text is being displayed, a pointer to a flag variable, and your reference
constant. You specify the desired operations on the text and return an indication of whether you want to
display the text in the displayFlag parameter.

Text Media Handler Functions 17
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Text Media Handlers

18 Text Media Handler Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Text Media Handlers

Timecode media handlers allow QuickTime movies to store timing information derived from the movie’s
original source material, such as SMPTE timecodes, as distinct from the time base data which is a part of any
QuickTime movie.

Every QuickTime movie contains QuickTime-specific timing information, such as frame duration. This
information affects how QuickTime interprets and plays the movie. The timecode media handler allows
QuickTime movies to store additional timing information that is not created by or for QuickTime. This additional
timing information would typically be derived from the original source material; for example, as a SMPTE
timecode. In essence, you can think of the timecode media handler as providing a link between the “digital”
QuickTime-specific timing information and the original “analog” timing information from the source material.

Timecode Tracks

A movie’s timecode is stored in a timecode track. Timecode tracks contain

 ■ source identification information (this identifies the source; for example, a given videotape)

 ■ timecode format information (this specifies the characteristics of the timecode and how to interpret the
timecode information)

 ■ frame numbers (these allow QuickTime to map from a given movie time, in terms of QuickTime time
values, to its corresponding timecode value)

Apple Computer has defined the information that is stored in the track in a manner that is independent of
any specific timecode standard. The format of this information is sufficiently flexible to accommodate all
known timecode standards, including SMPTE timecoding. The timecode format information provides QuickTime
the parameters for understanding the timecode and converting QuickTime time values into timecode time
values (and vice versa).

One key timecode attribute relates to the technique used to synchronize timecode values with video frames.
Most video source material is recorded at whole-number frame rates. For example, both PAL and SECAM
video contain exactly 25 frames per second. However, some video source material is not recorded at
whole-number frame rates. In particular, NTSC color video contains 29.97 frames per second (though it is
typically referred to as 30 frames-per-second video). However, NTSC timecode values correspond to the full
30 frames-per-second rate; this is a holdover from NTSC black-and-white video. For such video sources, you
need a mechanism that corrects the error that will develop over time between timecode values and actual
video frames.

A common method for maintaining synchronization between timecode values and video data is called
dropframe. Contrary to its name, the dropframe technique actually skips timecode values at a predetermined
rate in order to keep the timecode and video data synchronized. It does not actually drop video frames. In
NTSC color video, which uses the dropframe technique, the timecode values skip two frame values every
minute, except for minute values that are evenly divisible by ten. So NTSC timecode values, which are

Timecode Tracks 19
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

expressed as HH:MM:SS:FF (hours, minutes, seconds, frames) skip from 00:00:59:29 to 00:01:00:02 (skipping
00:01:00:00 and 00:01:00:01). There is a flag in the timecode definition structure that indicates whether the
timecode uses the dropframe technique.

You can make QuickTime display the timecode when a movie is played. Use the TCSetTimeCodeFlags
function to turn the timecode display on and off. Note that the timecode track must be enabled for this
display to work.

You store the timecode’s source identification information in a user data item. Create a user data item with
a type value of TCSourceRefNameType. Store the source information as a text string. This information might
contain the name of the videotape from which the movie was created, for example.

The timecode media handler provides functions that allow you to manipulate the source identification
information. The following sample code demonstrates one way to set the source tape name in a timecode
media’s sample description.

void setTimeCodeSourceName (Media timeCodeMedia,
 TimeCodeDescriptionHandle tcdH,
 Str255 tapeName, ScriptCode tapeNameScript)
{
 UserData srcRef;
 if (NewUserData(&srcRef) == noErr) {
 Handle nameHandle;
 if (PtrToHand(&tapeName[1], &nameHandle, tapeName[0]) == noErr) {
 if (AddUserDataText (srcRef, nameHandle,'name', 1,
 tapeNameScript) == noErr) {
 TCSetSourceRef (GetMediaHandler (timeCodeMedia),
 tcdH,
 srcRef);
 }
 DisposeHandle(nameHandle);
 }
 DisposeUserData(srcRef);
 }
}

You can create a timecode track and media in the same manner that you create any other track. Call the
NewMovieTrack function to create the timecode track, and use the NewTrackMedia function to create the
track’s media. Be sure to specify a media type value of TimeCodeMediaType when you call the
NewTrackMedia function.

You can define the relationship between a timecode track and one or more movie tracks using the toolbox’s
new track reference functions. You then proceed to add samples to the track, as appropriate.

Timecode Samples

Each sample in the timecode track provides timecode information for a span of movie time. The sample
includes duration information. As a result, you typically add each timecode sample after you have created
the corresponding content track or tracks.

The timecode media sample description contains the control information that allows QuickTime to interpret
the samples. This includes the timecode format information. The actual sample data contains a frame number
that identifies one or more content frames that use this timecode. Stored as a long, this value identifies the

20 Timecode Samples
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

first frame in the group of frames that use this timecode. In the case of a movie made from source material
that contains no edits, you would only need one sample. When the source material contains edits, you
typically need one sample for each edit, so that QuickTime can resynchronize the timecode information with
the movie. Those samples contain the frame numbers of the frames that begin each new group of frames.

The timecode description structure defines the format and content of a timecode media sample description,
as follows:

typedef struct TimeCodeDescription {
 long descSize; /* size of the structure */
 long dataFormat; /* sample type */
 long resvd1; /* reserved--set to 0 */
 short resvd2; /* reserved--set to 0 */
 short dataRefIndex; /* data reference index */
 long flags; /* reserved--set to 0 */
 TimeCodeDef timeCodeDef; /* timecode format information */
 long srcRef[1]; /* source information */
} TimeCodeDescription, *TimeCodeDescriptionPtr, **TimeCodeDescriptionHandle;

DefinitionTerm

Specifies the size of the sample description, in bytes.descSize

Indicates the sample description type (TimeCodeMediaType).dataFormat

Reserved for use by Apple. Set this field to 0.resvd1

Reserved for use by Apple. Set this field to 0.resvd2

Contains an index value indicating which of the media's data references contains the
sample data for this sample description.

dataRefIndex

Reserved for use by Apple. Set this field to 0.flags

Contains a timecode definition structure that defines timecode format information.timeCodeDef

Contains the timecode's source information. This is formatted as a user data item that is
stored in the sample description. The media handler provides functions that allow you
to get and set this data.

srcRef

The timecode definition structure contains the timecode format information. This structure is defined as
follows:

typedef struct TimeCodeDef {
 long flags; /* timecode control flags */
 TimeScale fTimeScale; /* timecode's time scale */
 TimeValue frameDuration; /* how long each frame lasts */
 unsigned char numFrames; /* number of frames per second */
} TimeCodeDef;

DefinitionTerm

Contains flags that provide some timecode format information.flags

Timecode Samples 21
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

DefinitionTerm

Contains the time scale for interpreting the frameDuration field. This field indicates
the number of time units per second.

fTimeScale

Specifies how long each frame lasts, in the units defined by the fTimeScale field.frameDuration

Indicates the number of frames stored per second. In the case of timecodes that are
interpreted as counters, this field indicates the number of frames stored per timer "tick".

numFrames

The following flags are defined in the flags parameter:

DefinitionTerm

Indicates that the timecode "drops" frames occasionally in order to stay in synchronization.
Some timecodes run at other than a whole number of frames per second. For example,
NTSC video runs at 29.97 frames per second. In order to resynchronize between the
timecode rate and a 30 frames-per-second playback rate, the timecode drops a frame at
a predictable time (in much the same way that leap years keep the calendar synchronized).
Set this flag to 1 if the timecode uses the dropframe technique.

tcDropFrame

Indicates that the timecode values wrap at 24 hours. Set this flag to 1 if the timecode
hour value wraps (that is, returns to 0) at 24 hours.

tc24HourMax

Indicates that the timecode supports negative time values. Set this flag to 1 if the timecode
allows negative values.

tcNegTimesOK

Indicates that the timecode should be interpreted as a simple counter, rather than as a
time value. This allows the timecode to contain either time information or counter (such
as a tape counter) information. Set this flag to 1 if the timecode contains counter
information.

tcCounter

The best way to understand how to format and interpret the timecode definition structure is to consider an
example. If you were creating a movie from an NTSC video source recorded at 29.97 frames per second, using
SMPTE timecodes, you would format the timecode definition structure as follows:

 TimeCodeDef.flags = tcDropFrame | tc24HourMax;
 TimeCodeDef.fTimeScale = 2997; /* units */
 TimeCodeDef.frameDuration = 100; /* relates units to frames */
 TimeCodeDef.numFrames = 30; /* whole frames per second */

The movie’s natural frame rate of 29.97 frames per second is obtained by dividing the fTimeScale value
by the frameDuration (2997 / 100). Note that the flags field indicates that the timecode uses the dropframe
technique to resync the movie’s natural frame rate of 29.97 frames per second with its playback rate of 30
frames per second.

Given a timecode definition, you can freely convert from frame numbers to time values and from time values
to frame numbers. For a time value of 00:00:12:15 (HH:MM:SS:FF), you would obtain a frame number of 375
((12*30) + 15). The timecode media handler provides a number of functions that allow you to perform these
conversions.

22 Timecode Samples
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

When you use the timecode media handler to work with time values, the media handler uses timecode
records to store the time values. The timecode record allows you to interpret the time information as either
a time value (HH:MM:SS:FF) or a counter value. The timecode record is defined as follows:

typedef union TimeCodeRecord {
 TimeCodeTime t; /* value interpreted as time */
 TimeCodeCounter c; /* value interpreted as counter */
} TimeCodeRecord;

typedef struct TimeCodeTime {
 unsigned char hours; /* time: hours */
 unsigned char minutes; /* time: minutes */
 unsigned char seconds; /* time: seconds */
 unsigned char frames; /* time: frames */
} TimeCodeTime;

typedef struct TimeCodeCounter {
 long counter; /* counter value */
} TimeCodeCounter;

When you are working with timecodes that allow negative time values, the minutes field of the
TimeCodeTime structure (TimeCodeRecord.t.minutes) indicates whether the time value is positive or
negative. If the tctNegFlag bit of the minutes field is set to 1, the time value is negative.

Timecode Media Handler Functions

The following functions are specific to the timecode media handler:

 ■ TCGetCurrentTimeCode

 ■ TCGetTimeCodeAtTime

 ■ TCTimeCodeToFrameNumber

 ■ TCFrameNumberToTimeCode

 ■ TCTimeCodeToString

 ■ TCSetSourceRef

 ■ TCGetSourceRef

 ■ TCSetTimeCodeFlags

 ■ TCGetTimeCodeFlags

 ■ TCSetDisplayOptions

 ■ TCGetDisplayOptions

Timecode Media Handler Functions 23
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

24 Timecode Media Handler Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Timecode Media Handlers

Every tween operation is based on a collection of one or more values from which a range of output values
can be algorithmically derived. Each tween is assigned a time duration, and an output value can be generated
for any time value within the duration. In the simplest kind of tween operation, a pair of values is provided
as input and values between the two values are generated as output.

For example, if the tween data is a pair of integers, 0 and 5, the duration of the tween operation is 100, and
the algorithm used to generate output values is linear interpolation (in which generated values, when graphed,
fall on a straight line between the input values), the output returned for a time value of 0 is 0, the output for
25 is 1.25, the output for 50 is 2.5, and the output for 100 is 5.

QuickTime supports a variety of tween types. Each tween type is distinguished from other types by these
characteristics:

 ■ Input values or structures of a particular type.

 ■ A particular number of input values or structures (most often one or two).

 ■ Output values or structures of a particular type.

 ■ A particular algorithm used to derive the output values.

Tween operations for each tween type are performed by a tween component that is specific to that type or,
for a number of tween types that are native to QuickTime, by QuickTime itself. Movies and applications that
use tweens do not need to specify the tween component to use; QuickTime identifies a tween type by its
tween type identifier and automatically routes its data to the correct tween component or to QuickTime. If
you need to perform tween operations that QuickTime does not support, you can develop a new tween
component, as described in Creating a Tween Component (page 73).

When a movie contains a tween track, the tween media handler invokes the necessary component (or built-in
QuickTime code) for tween operations and delivers the results to another media handler. The receiving media
handler can then use the values it receives to modify its playback. For example, the data in a tween track can
be used to alter the volume of a sound track.

Tweens can also be used outside of movies by applications or other software that can use the values they
generate.

Tween Types

Each of the tween types supported by QuickTime belongs to one of these categories:

 ■ Numeric tween types, which have pairs of numeric values, such as long integers, as input. For these
types, linear interpolation is used to generate output values.

Tween Types 25
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Tweens and Tween Operations

 ■ The polygon tween type, which takes three four-sided polygons as input. One polygon (such as the
bounds for a sprite or track) is transformed, and the two others specify the start and end of the range
of polygons into which the tween operation maps it. You can use the output (a MatrixRecord data
structure) to map the source polygon into any intermediate polygon. The intermediate polygon is
interpolated from the start and end polygons for each particular time in the tween duration.

 ■ Path tween types have as input a QuickTime vector data stream for a path. (For information about
QuickTime vectors, see Tween Components and Native Tween Types (page 57)). Four of the path tween
types also have as input a percentage of path’s length; for these types, either a point on the path or a
MatrixRecord data structure is returned. Two other path tween types treat the path as a function: one
returns the y value of the point on the path with a given x value, and the other returns the x value of
the point on the path with a given y value.

 ■ The list tween type has as input a QT atom container that contains leaf atoms of a specified atom type.
For this tween type, the duration of the tween operation is divided by the number of leaf atoms of the
specified type. For time points within the first time division, the data for the first leaf atom is returned;
for the second time division, the data for the second leaf atom is returned; and so on. The resulting
tween operation proceeds in discrete steps (one step for each leaf atom), instead of the relatively
continuous tweening produced by other tween types.

Single Tweens and Tween Sequences

A tween operation can include one or more tweens. A tween operation that includes just one tween is called
a single tween. For a single tween, results for any time points in the tween duration are derived from that
tween. A tween sequence contains more than one tween of the same type. To specify when each tween is
used, you specify an ending percentage for each tween. For example, if you have a tween sequence containing
three tweens and want to use the first tween for the first quarter of the tween duration, the second tween
for the second quarter of the tween duration, and the third tween for the remainder of the tween duration,
you set the end percentage for the first tween to .25, for the second to .5, and for the third to 1.0. The first
tween in the sequence always begins at the beginning, and each subsequent tween begins after the end
percentage of the tween before it.

Interpolation Tweens

Interpolation tweens are tweens that modify other tweens. The output of an interpolation tween must be
a time value, and the time values generated are used in place of the input time values of the tween being
modified. For example, you can use a path tween whose data specifies a curve to modify a tween that uses
linear interpolation for its algorithm. The starting and ending values for the modified tween remain the same,
but the rate at which output values change over time is determined by the shape of the curve.

Once you create an interpolation tween, you can use it to modify any number of other tweens. You can do
this by specifying maximum and/or minimum output values of the interpolation tween to match the time
values for the tween to be modified. For example, if there is a curve whose shape describes the natural decay
rate for several different sounds, you can can define a single interpolation tween for that curve and apply it,
with appropriate maximum and minimum values, to all of the sounds.

26 Single Tweens and Tween Sequences
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Tweens and Tween Operations

An interpolation tween can modify another interpolation tween; the only requirement is that the output of
each interpolation tween must be a time value. The ability to define series of interpolations makes it possible
to create libraries of standard modifications that can be used together to generate more complex
transformations.

Interpolation Tweens 27
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Tweens and Tween Operations

28 Interpolation Tweens
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Tweens and Tween Operations

A tween track is a special track in a movie that is used exclusively as a modifier track. The data it contains,
known as tween data, is used to generate values that modify the playback of other tracks, usually by
interpolating values. The tween media handler sends these values to other media handlers; it never presents
data. For an introduction to modifier tracks, see QuickTime Movie Internals Guide.

Typical tween components can just interpolate numeric values or can perform complex tweening, such as
finding intermediate data between one matrix or polygon and another. These processes are described in
Tween Components and Native Tween Types (page 57).

Using the Tween Media Handler

This section describes how to create a tween track and how to connect a tween track to the input map of
the track(s) it will modify. Detailed code examples are provided.

You can use the tween media handler to send tween values from a tween track to a receiving track, such as
a video track or a sound track. To send tween values, you must create a tween track. The Movie Toolbox
routes the data from the tween track to the receiving track based upon the receiving track’s input map, as
shown in Figure 6-1.

Using the Tween Media Handler 29
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

Figure 6-1 Data routed from a tween track to a receiving track based on its input map

Creating a Tween Track

To create a tween track, you must:

1. Create a tween track and its media.

2. Create one or more tween media samples.

3. Add the media samples to the tween media.

4. Add the tween media to the track.

30 Creating a Tween Track
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

5. Create a link from the tween track to the track to which the tween media handler should send tween
values.

6. Bind the tween entry to the desired attributes in the receiving track.

The sample code shown in this section creates a tween sample that interpolates a short integer from 255 to
0. The tween media is attached to the sound track of a QuickTime movie to modify the sound track’s volume.
Thus it creates a volume fadeout using the tween track. The data type for the tween component is
kTweenTypeShort.

The sample code shown in Listing 6-1 creates a new track (t) to be used as the tween track and new tween
media (type TweenMediaType).

Listing 6-1 Creating a tween track and tween media

Track t;
Media md;
SampleDescriptionHandle desc;
// ...
// set up the movie, m
// ...
// allocate a sample description handle
desc = (SampleDescriptionHandle)NewHandleClear (
 sizeof (SampleDescription));
// create the tween track, t
t = NewMovieTrack (m, 0, 0, kNoVolume);
// create the tween media, md
md = NewTrackMedia (t, TweenMediaType, 600, nil, 0);
(**desc).descSize = sizeof(SampleDescription);

Next, your application must create a tween media sample. The tween media sample is a QT atom container
structure that contains one or more kTweenEntry atoms. Each kTweenEntry atom defines a separate tween
operation. A single tween sample can describe several parallel tween operations.

The sample code shown in Listing 6-2 creates a new QT atom container and inserts a kTweenEntry atom
into the container. Then, it creates two leaf atoms, both children of the kTweenEntry atom. The first leaf
atom (atom type kTweenType) contains the type of the tween data, in this case kTweenTypeShort. The
second leaf atom (atom type kTweenData) contains the two data values for the tween operation, 512 and
0.

Remember that all data in QT atoms must be big-endian. The sample code shown in this section contains
the endian conversion routines required for cross-platform compatibility.

Listing 6-2 Creating a tween sample

QTAtomContainer container = nil;
short tweenDataShort[2];
QTAtomType tweenType;
tweenDataShort[0] = EndianS16_NtoB(255);
tweenDataShort[1] = EndianS16_NtoB(0);
// create a new atom container to hold the sample
QTNewAtomContainer (&container);
// create the parent tween entry atom
QTInsertChild (container, kParentAtomIsContainer, kTweenEntry, 1, 0, 0,
 nil, &tweenAtom);
// add two child atoms to the tween entry atom

Creating a Tween Track 31
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

// * the type atom, kTweenType
tweenType = EndianU32_NtoB(kTweenTypeShort);
QTInsertChild (container, tweenAtom, kTweenType, 1, 0,
 sizeof(tweenType), &tweenType, nil);
// * the data atom, kTweenData
QTInsertChild (container, tweenAtom, kTweenData, 1, 0, sizeof(short) * 2,
 tweenDataShort, nil);

You do not have to start the tween at the beginning of the sample, nor do you have to stop at the end of
the sample. You can specify the start of the tween and its duration by adding additional child atoms to the
tween entry.

Figure 6-2 illustrates how you can use tween media to modify a sound track’s volume. The first part of the
illustration shows an example of tweening the sound volume from 0 to 255, with the tween offset at 0 and
the tween duration at 100. In the second part, with the tween offset at 25 and the duration at 50, the tween
has no effect until time 25, after which it causes the volume to fade in over the next 50 time units. The volume
is left at 255. The third part shows the tween offset at 25 and the tween duration at 100. Since the offset plus
the duration of this tween is greater than the duration of the tween media sample, the sound track never
reaches full volume.

Figure 6-2 Using tween media to modify the sound track's volume

You can add a kTweenStartOffset atom to start the tween operation at 500 units into the sample with
the following lines of code:

TimeValue time = EndianU32_NtoB(500);
QTInsertChild (container, tweenAtom, kTweenStartOffset, 1, 0,
 sizeof(TimeValue), &time, nil);

You can specify a duration for the tween operation independent of the sample’s duration by adding a
kTweenDuration atom to the tween entry, as follows:

TimeValue duration = EndianU32_NtoB(1000);
QTInsertChild (container, tweenAtom, kTweenDuration, 1, 0,
 sizeof(TimeValue), &duration, nil);

32 Creating a Tween Track
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

Once the tween samples have been created, you can add them to the tween media and then add the tween
media to the track, as shown in Listing 6-3.

Listing 6-3 Adding the tween sample to the media and the media to the track

// add the sample to the tween media
BeginMediaEdits (md);
AddMediaSample (md, container, 0,
 GetHandleSize(container), kSampleDuration, desc, 1, 0, nil);
EndMediaEdits(md);
// dispose of the sample description handle and the atom container
DisposeHandle ((Handle)desc);
QTDisposeAtomContainer(container);
// add the media to the track
InsertMediaIntoTrack(t, 0, 0, kSampleDuration, kFix1);

Once you have added the tween media to its track, you need to call the AddTrackReference function to
create a link between the tween track to the receiving track. AddTrackReference returns the index of the
reference it creates.

The sample code shown in Listing 6-4 retrieves the sound track from a movie and calls AddTrackReference
to create a link between the tween track (t) and the sound track. The reference index is returned in the
parameter referenceIndex.

Listing 6-4 Creating a link between the tween track and the sound track

Track soundTrack;
long referenceIndex;
// retrieve the sound track from the movie
soundTrack = GetMovieIndTrackType (theMovie, 1,
 AudioMediaCharacteristic,
 movieTrackCharacteristic | movieTrackEnabledOnly);
// create a link between the tween track and the sound track --
// on return, referenceIndex contains the index of the link
err = AddTrackReference (soundTrack, t, kTrackModifierReference,
 &referenceIndex);

Once you have linked the tween track to its receiving track, you must update the input map of the receiving
track’s media to indicate how the receiving track should interpret the data it receives from the tween track.

To do this, you create a QT atom container and insert an atom of type kTrackModifierInput whose ID is
the index returned by the AddTrackReference function. Then, you insert two atoms as children of the
kTrackModifierInput atom:

 ■ A leaf atom of type kTrackModifierType that contains the attribute of the receiving track to be
modified. For example, if the tween entry modifies the matrix of the track, the leaf atom would contain
the type kTrackModifierTypeMatrix.

 ■ A leaf atom of type kInputMapSubInputID that contains the ID of the tween entry atom. This binds
the tween entry to the receiving track.

Once you have created the appropriate atoms in the input map, you call SetMediaInputMap to assign the
input map to the receiving track’s media.

The code shown in Listing 6-5 creates an input map for the sound track of a movie. In this code, the tween
media is linked to a sound track; the interpolated tween values are used to modify the sound track’s volume.

Creating a Tween Track 33
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

Listing 6-5 Binding a tween entry to its receiving track

QTAtomContainer inputMap = nil;
// create an atom container to hold the input map
if (QTNewAtomContainer (&inputMap) == noErr)
{
 QTAtom inputAtom;
 OSType inputType;
 long tweenID = 1;
 // create a kTrackModifierInput atom
 // whose ID is referenceIndex
 QTInsertChild(inputMap, kParentAtomIsContainer,
 kTrackModifierInput, referenceIndex, 0, 0, nil,
 &inputAtom);
 // add a child atom of type kTrackModifierTypeVolume
 inputType = EndianU32_NtoB(kTrackModifierTypeVolume);
 QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,
 sizeof(inputType), &inputType, nil);
 // add a child atom for the ID of the tween to
 // modify the volume
 QTInsertChild (inputMap, inputAtom, kInputMapSubInputID, 1,
 0, sizeof(tweenID), &tweenID, nil);
 // assign the input map to the sound media
 SetMediaInputMap(GetTrackMedia(soundTrack), inputMap);
 // dispose of the input map
 QTDisposeAtomContainer(inputMap);
}

Tween Media Handler Constants

This section defines a QT atom type used for mapping a tween to the receiving track of a movie.

The following input type is defined for tween-related atoms:

enum {
 kInputMapSubInputID = 'subi',
};

The kInputMapSubInputID type is the QT atom type for mapping a tween to a receiving track in a movie:

DefinitionTerm

A leaf atom that contains the ID of a tween entry. You create a
kInputMapSubInputID atom in a receiving track's input map to define the
relationship between the tween entry and the receiving track.You create a
kInputMapSubInputID atom as a child of a kTrackModifierInput atom.

kInputMapSubInputID

34 Tween Media Handler Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Tween Media Handlers

This chapter describes how to create tween containers that the tween media handler uses. Several utility
routines are also discussed.

The tween media handler uses tween components to perform tween operations (other than simple ones
built into QuickTime). The components use containers to define their tween operations, and the containers
are constructed from QT atoms. The tween media handler is discussed in Tween Media Handlers (page 29).

Creating a Single Tween Container

To create a single tween container, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween. A kTweenEntry atom contains
the atoms that define the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom that contains the data for the tween into the kTweenEntry atom.

Listing 7-1 shows how to create a single kTweenTypeLong tween container that a component could use to
interpolate two long integers.

Listing 7-1 Creating a single kTweenTypeLong tween container

QTAtomContainer container = nil;
long tweenDataLong[2];
QTAtomType tweenType;
QTAtom tweenAtom;
tweenDataLong[0] = EndianU32_NtoB(512);
tweenDataLong[1] = EndianU32_NtoB(0);
// create a new atom container
QTNewAtomContainer (&container);
// create the parent tween entry atom
tweenType = kTweenTypeLong;
QTInsertChild (container, kParentAtomIsContainer, kTweenEntry, 1, 0, 0,
 nil, &tweenAtom);
// add two child atoms to the tween entry atom --
// * the type atom, kTweenType
QTInsertChild (container, tweenAtom, kTweenType, 1, 0,
 sizeof(tweenType), &tweenType, nil);
// * the data atom, kTweenData
QTInsertChild (container, tweenAtom, kTweenData, 1, 0,
 sizeof(long) * 2, tweenDataLong, nil);

Creating a Single Tween Container 35
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Using Path Tween Components

The following sections describe how to use a variety of path tween components. All path tween operations
have as input a QuickTime vector data stream for a path. Path tweeners interpret their time input in one of
these ways:

 ■ As a percentage of path’s length. For these types, either a point on the path or a MatrixRecord data
structure is returned.

 ■ As a function. One operation returns the y value of the point on the path with a given x value, and the
other returns the x value of the point on the path with a given y value.

If the kTweenReturnDelta flag (in an optional kTweenFlags atom in the kTweenEntry atom) is set, a
path tween returns the change in value from the last time it was invoked. If the flag is not set, or if the
component has not previously been invoked, the component returns the normal result for the tween.

Using a List Tween Component

To use a list tween component (of type kTweenTypeAtomList), do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom. Unlike the previous example, this kTweenData
atom is not a leaf atom.

5. Insert a kListElementType atom that specifies the atom type of the list entries into the kTweenData
atom. The list entries must be leaf atoms.

6. Insert leaf atoms of the type specified by the kListElementType atom into the kTweenData atom.

The duration of the tween operation is divided by the number of leaf atoms of the specified type. For time
points within the first time division (from the start of the duration up to an including the time (total time /
number of atoms)), the data for the first leaf atom is returned; for the second time division, the data for the
second leaf atom is returned; and so on.

Listing 7-2 shows how to create a list tween.

Listing 7-2 Creating a kTweenTypeAtomList tween container

QTAtomContainer container = nil;
long tweenDataLong[2];
QTAtomType tweenType;
QTAtom tweenAtom;
tweenDataLong[0] = EndianU32_NtoB(512);
tweenDataLong[1] = EndianU32_NtoB(0);
// create a new atom container to hold the sample

36 Using Path Tween Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

QTNewAtomContainer (&container);
// create the parent tween entry atom
tweenType = EndianU32_NtoB(kTweenTypeLong);
QTInsertChild (container, kParentAtomIsContainer, kTweenEntry, 1, 0, 0,
 nil, &tweenAtom);
// add two child atoms to the tween entry atom --
// * the type atom, kTweenType
QTInsertChild (container, tweenAtom, kTweenType, 1, 0,
 sizeof(tweenType), &tweenType, nil);
// * the data atom, kTweenData
QTInsertChild (container, tweenAtom, kTweenData, 1, 0,
 sizeof(short) * 2, tweenDataLong, nil);

OSErr err = noErr;
QTTweener tween;
QTAtomContainer container = nil, listContainer = nil;
OSType tweenerType;
TimeValue offset, duration, tweenTime;
Handle result;
QTAtom tweenAtom;
tweenerType = EndianU32_NtoB(kTweenTypeAtomList);
offset = 0;
duration = 3;
err = QTNewAtomContainer(&container);
if (err) goto bail;
err = AddTweenAtom(container, kParentAtomIsContainer, 1, tweenerType,
 offset, duration, 0, 0, nil, &tweenAtom);
if (err) goto bail;
listContainer = CreateSampleAtomListTweenData(1);
if (listContainer == nil) { err = memFullErr; goto bail; }
err = AddDataAtom(container, tweenAtom, 1, 0, nil,
 listContainer, 0, nil);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
result = NewHandle(0);
if (err = MemError()) goto bail;
 // exercise the AtomListTweener
 for (tweenTime = 1; tweenTime <= duration; tweenTime += 1) {
 long pictureID;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 // the pictureID from the atomDataList corresponding to tweenTime
 pictureID = *(long *)*result;
 }

 err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (listContainer) QTDisposeAtomContainer(listContainer);
 if (result) DisposeHandle(result);
 return err;
}

Using a List Tween Component 37
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Utility Routines

The examples in the next sections use several utility routines to modularize their code. These routines are
the following:

 ■ AddTweenAtom adds an atom of type kTweenEntry plus its standard child atoms (other than the
kTweenDataAtom) to a container.

 ■ AddDataAtom adds a data atom with an ID of dataAtomID as a child atom of tweenAtom.

 ■ AddSequenceTweenAtom adds a kTweenEntry atom for a sequenced tween.

 ■ AddSequenceElement adds a leaf atom of type kTweenSequenceElement to a container.

AddTweenAtom

Listing 7-3 shows AddTweenAtom, a routine that adds an atom of type kTweenEntry plus its standard child
atoms (other than thekTweenDataAtom) to a container. Only thetweenAtomID andtweenerTypeparameters
are required; you may pass 0 for the other parameters to avoid using them.

The minOutput and maxOutput atom parameters are necessary only if the tweener is being used as an
interpolator. Passing a tweenAtomID value of 0 means that the routine can assign any unique ID.

If you use AddTweenAtom to add a nonsequenced tween entry to a container, the kTweenEntry atom it
creates is the atom you pass to QTNewTween and the sequenceAtom you pass in may be
kParentAtomIsContainerTween Components and Tween Media. In this case the tweenAtomID value
should be 1.

If you use AddTweenAtom to add a sequenced tween entry to a container, the newSequenceAtom returned
by AddSequenceTweenAtom is its sequenceAtom parameter and will also be the atom you pass to
QTNewTween. Note that in most cases a sequenced tween contains only one tween entry but may contain
multiple data atoms.

All tween atoms within same sequenceAtom must have same tween type. It is unlikely that you would want
to change the duration or offset values within the same sequenceAtom.

Listing 7-3 Utility routine AddTweenAtom

OSErr AddTweenAtom(QTAtomContainer container, QTAtom sequenceAtom,
 QTAtomID tweenAtomID, OSType tweenerType, TimeValue offset,
 TimeValue duration, Fixed minOutput, Fixed maxOutput, StringPtr name,
 QTAtom *newTweenAtom)
{
 OSErr err = noErr;
 QTAtom tweenAtom = 0;
 if (! container) { err = paramErr; goto bail; }
 err = QTInsertChild(container, sequenceAtom, kTweenEntry,
 tweenAtomID, 0, 0, nil, &tweenAtom);
 if (err) goto bail;
 err = QTInsertChild(container, tweenAtom, kTweenType, 1, 1,
 sizeof(tweenerType), &tweenerType, nil);
 if (err) goto bail;
 if (offset) {

38 Utility Routines
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 err = QTInsertChild(container, tweenAtom, kTweenStartOffset, 1,
 1, sizeof(offset), &offset, nil);
 if (err) goto bail;
 }
 if (duration) {
 err = QTInsertChild(container, tweenAtom, kTweenDuration, 1, 1,
 sizeof(duration), &duration, nil);
 if (err) goto bail;
 }
 // default minOutput is zero, so this is OK
 if (minOutput) {
 err = QTInsertChild(container, tweenAtom, kTweenOutputMin, 1, 1,
 sizeof(minOutput), &minOutput, nil);
 if (err) goto bail;
 }

 if (maxOutput) {
 err = QTInsertChild(container, tweenAtom, kTweenOutputMax, 1, 1,
 sizeof(maxOutput), &maxOutput, nil);
 if (err) goto bail;
 }
 if (name) {
 err = QTInsertChild(container, tweenAtom, kNameAtom, 1, 1,
 name[0] + 1, name, nil);
 if (err) goto bail;
 }
bail:
 if (newTweenAtom)
 *newTweenAtom = tweenAtom;
 return err;
}

AddDataAtom

Listing 7-4 shows AddDataAtom, a routine that adds a data atom with an ID of dataAtomID as a child atom
of tweenAtom. If dataSize is nonzero, then leaf data is copied from dataPtr to dataAtom. Otherwise (if
dataContainer in not nilTween Components and Tween Media), child atoms are copied from
dataContainer. If you wish to add the actual data by using another routine, you may pass 0 in dataSize
and nil in both dataPtr and dataContainer.

You can associate a tweener to be used as an interpolator for each dataAtom value. The
interpolationTweenID parameter specifies the ID of a kTweenEntry atom that is a child of the
newSequenceAtom returned by AddSequenceTweenAtom. If you specify an interpolation tweener, then the
atTime parameter of the DoTween routine is first fed as an input to the interpolation tweener. The
tweenResult of the interpolation tweener becomes the atTime parameter of the succeeding tweener.
Note that the kTweenData atom and the kTweenInterpolationID atom have the same ID; this is how
QuickTime groups them together.

For best performance, the output range of an interpolation tweener should be from 0 to the duration of the
regular tweener. However, you may specify the minimum and maximum values that the interpolation tweener
returns; this lets the tweener be shared. The minimum and maximum values are used to scale tweenResult,
and are added as child atoms of a kTweenEntry in AddTweenAtom.

Utility Routines 39
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Listing 7-4 Utility routine AddDataAtom

OSErr AddDataAtom(QTAtomContainer container, QTAtom tweenAtom,
 QTAtomID dataAtomID, long dataSize, Ptr dataPtr,
 QTAtomContainer dataContainer, QTAtomID interpolationTweenID,
 QTAtom *newDataAtom)
{
 OSErr err = noErr;
 QTAtom dataAtom = 0;
 if ((! container) || (dataAtomID == 0) || (dataSize &&
 (dataContainer || !dataPtr))) { err = paramErr; goto bail; }
 err = QTInsertChild(container, tweenAtom, kTweenData, dataAtomID, 0,
 dataSize, dataPtr, &dataAtom);
 if (err) goto bail;
 if (dataSize) {
 err = QTSetAtomData(container, dataAtom, dataSize, dataPtr);
 if (err) goto bail;
 }
 else if (dataContainer) {
 err = QTInsertChildren(container, dataAtom, dataContainer);
 if (err) goto bail;
 }
 if (interpolationTweenID) {
 err = QTInsertChild(container, tweenAtom, kTweenInterpolationID,
 dataAtomID, 0, sizeof(interpolationTweenID),
 &interpolationTweenID, nil);
 if (err) goto bail;
 }
bail:
 if (newDataAtom)
 *newDataAtom = dataAtom;
 return err;
}

AddSequenceTweenAtom

Listing 7-5 shows AddSequenceTweenAtom, a routine that adds a kTweenEntry atom for a sequenced
tween. The newSequenceAtom returned may be passed into the AddTweenAtom and AddSequenceElement
routines as their sequenceAtom parameter.

To create a nonsequenced tween, use AddTweenAtom instead.

Listing 7-5 Utility routine AddSequenceTweenAtom

OSErr AddSequenceTweenAtom(QTAtomContainer container, QTAtom parentAtom,
 QTAtomID sequenceAtomID, QTAtom *newSequenceAtom)
{
 if ((! container) || (sequenceAtomID == 0)) { return paramErr; }
 return QTInsertChild(container, parentAtom, kTweenEntry,
 sequenceAtomID, 0, 0, nil, newSequenceAtom);
}

40 Utility Routines
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

AddSequenceElement

Listing 7-6 shows AddSequenceElement, a routine that adds a leaf atom of type kTweenSequenceElement
to a container. The sequenceAtom that you pass in is the newSequenceAtom parameter returned by
AddSequenceTweenAtom. Each time you call AddSequenceElement, a sequence tween element is added
to the end of the list of elements. The tween toolbox organizes the list in index order, with IDs ignored.

Each element has a duration that is some percentage of the tween’s duration. The element’s duration is its
endPercent value minus the previous element’s endPercent value. For example, if you wanted three
elements to last 0.25, 0.25, and 0.5 of the tween’s duration, then the elements' endPercent values should
be set to 0.25, 0.5, and 1. The elements tell the tween toolbox which tweenAtom and dataAtom to switch
to.

The tweenAtomID is the ID of a kTweenEntry atom within the sequenceAtom. The dataAtomID is the ID
of a kTweenData atom. The kTweenData atom is a child atom of the specified tweenAtom. Usually you only
need to create one tweenAtom with multiple data atoms. Some tweener types (such as 3D tweeners) use
child atoms of the tweenEntry atom for initialization, so in these cases you usually create a tweenAtom
with one dataAtom per sequence entry.

Listing 7-6 Utility routine AddSequenceElement

OSErr AddSequenceElement(QTAtomContainer container, QTAtom sequenceAtom,
 Fixed endPercent, QTAtomID tweenAtomID, QTAtomID dataAtomID,
 QTAtom *newSequenceElementAtom)
{
 TweenSequenceEntryRecord entry;
 if ((! container) || (endPercent > (1L<<16)) || (tweenAtomID == 0)
 || (dataAtomID == 0)){ return paramErr; }
 entry.endPercent = endPercent;
 entry.tweenAtomID = tweenAtomID;
 entry.dataAtomID = dataAtomID;
 // adds at end of list by index, with any unique atom id
 return QTInsertChild(container, sequenceAtom, kTweenSequenceElement,
 0, 0, sizeof(entry), &entry, newSequenceElementAtom);
}

CreateSampleAtomListTweenData

Listing 7-7 shows the CreateSampleAtomListTweenData routine.

Listing 7-7 Utility routine CreateSampleAtomListTweenData

QTAtomContainer CreateSampleAtomListTweenData(long whichOne)
{
 OSErr err = noErr;
 QTAtomContainer atomListContainer;
 QTAtomType tweenAtomType;
 UInt32 elementDataType;
 UInt16 resourceID;

 err = QTNewAtomContainer(&atomListContainer);
 if (err) goto bail;

Utility Routines 41
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 // kListElementDataType atom specifies the data type of the elements
 elementDataType = kTweenTypeShort;
 err = QTInsertChild(atomListContainer, kParentAtomIsContainer,
 kListElementDataType, 1, 1,
 sizeof(tweenAtomType),
 &tweenAtomType, nil);
 // kListElementType atom tells which type of atoms to look for
 tweenAtomType = 'pcid';
 err = QTInsertChild(atomListContainer, kParentAtomIsContainer,
 kListElementType, 1, 1, sizeof(tweenAtomType),
 &tweenAtomType, nil);
 switch (whichOne) {
 case 1:
 resourceID = 1000;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 1, 1,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;

 resourceID = 1001;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 2, 2,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;
 resourceID = 1002;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 3, 3,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;
 break;

 case 2:
 resourceID = 1003;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 1, 1,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;

 resourceID = 1004;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 2, 2,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;
 resourceID = 1005;
 err = QTInsertChild(atomListContainer,
 kParentAtomIsContainer, 'pcid', 3, 3,
 sizeof(resourceID), &resourceID, nil);
 if (err) goto bail;
 break;
 }

bail:
 if (err && atomListContainer)
 { QTDisposeAtomContainer(atomListContainer);
 atomListContainer = nil; }
 return atomListContainer;
}

42 Utility Routines
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Using a Polygon Tween Component

A polygon tweener maps a four-sided polygon, such as the boundary of a sprite or track, into another. It can
be used to create perspective effects, in which the shape of the destination polygon changes over time. The
range of polygons into which the source polygon is mapped is defined by two additional four-sided polygons,
which are interpolated to specify a destination polygon for any time point in the tween duration.

To use a polygon tween component (of type kTweenTypePolygonTween Components and Tween Media),
do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

The data is an array of 27 fixed-point values (Fixed[27]Tween Components and Tween Media) that specifies
the three four-sided polygons. Each polygon is specified by 9 consecutive array elements. The first element
is each set of 9 contains the number of points used to specify the polygon; this value is coerced to a long
integer, and it must always be 4 after coercion. The following 8 values in each set of nine are four x, y pairs
that specify the corners of the polygon.

The first set of 9 elements specifies the dimensions of a sprite or track to be mapped. For example, if the
object is a sprite, the four points are (0,0), (spriteWidth, 0), (spriteWidth, spriteHeight), (0, spriteHeight). The
next set of 9 elements specifies the initial polygon into which the sprite or track is mapped. The next set of
9 elements specifies the final polygon into which the sprite or track is mapped.

The output is a MatrixRecord data structure that you use to map the sprite or track into a four-sided
polygon.

Listing 7-8 shows how to create a polygon tween.

Listing 7-8 Creating a polygon tween container

OSErr CreateSamplePolygonTweenContainer(QTAtomContainer container,
 TimeValue duration, QTAtom *newTweenAtom)
{
 OSErr err = noErr;
 TimeValue offset;
 Handle thePolygonData = nil;
 QTAtom tweenAtom;

 err = QTRemoveChildren(container, kParentAtomIsContainer);
 if (err) goto bail;
 offset = 0;
 err = AddTweenAtom(container, kParentAtomIsContainer, 1,
 kTweenTypePolygon, offset, duration, 0, 0,
 nil, &tweenAtom);
 if (err) goto bail;

 thePolygonData = CreateSamplePolygonData();
 if (thePolygonData == nil) { err = memFullErr; goto bail; }

Using a Polygon Tween Component 43
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 HLock(thePolygonData);

 err = AddDataAtom(container, tweenAtom, 1,
 GetHandleSize(thePolygonData),
 *thePolygonData, nil, 0, nil);
 if (err) goto bail;
bail:
 if (thePolygonData) DisposeHandle(thePolygonData);
 if (newTweenAtom) *newTweenAtom = tweenAtom;
 return err;
}

Handle CreateSamplePolygonData(void)
{
 OSErr err = noErr;
 Handle polygonData;
 Fixed *poly;
 polygonData = NewHandle(27 * sizeof(Fixed));
 if (polygonData == nil) { err = memFullErr; goto bail; }

 poly = (Fixed *)*polygonData;

 poly[0] = EndianU32_NtoB(4); // source dimensions
 poly[1] = EndianU32_NtoB(Long2Fix(0));
 poly[2] = EndianU32_NtoB(Long2Fix(0));
 poly[3] = EndianU32_NtoB(Long2Fix(100));
 poly[4] = EndianU32_NtoB(Long2Fix(0));
 poly[5] = EndianU32_NtoB(Long2Fix(100));
 poly[6] = EndianU32_NtoB(Long2Fix(100));
 poly[7] = EndianU32_NtoB(Long2Fix(0));
 poly[8] = EndianU32_NtoB(Long2Fix(100));
 poly[9] = EndianU32_NtoB(4); // tween from polygon
 poly[10] = EndianU32_NtoB(Long2Fix(100));
 poly[11] = EndianU32_NtoB(Long2Fix(100));
 poly[12] = EndianU32_NtoB(Long2Fix(200));
 poly[13] = EndianU32_NtoB(Long2Fix(100));
 poly[14] = EndianU32_NtoB(Long2Fix(200));
 poly[15] = EndianU32_NtoB(Long2Fix(200));
 poly[16] = EndianU32_NtoB(Long2Fix(100));
 poly[17] = EndianU32_NtoB(Long2Fix(200));
 poly[18] = EndianU32_NtoB(4); // tween to polygon
 poly[19] = EndianU32_NtoB(Long2Fix(140));
 poly[20] = EndianU32_NtoB(Long2Fix(100));
 poly[21] = EndianU32_NtoB(Long2Fix(160));
 poly[22] = EndianU32_NtoB(Long2Fix(100));
 poly[23] = EndianU32_NtoB(Long2Fix(200));
 poly[24] = EndianU32_NtoB(Long2Fix(200));
 poly[25] = EndianU32_NtoB(Long2Fix(100));
 poly[26] = EndianU32_NtoB(Long2Fix(200));
bail:
 return polygonData;
}

44 Using a Polygon Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Specifying an Offset for a Tween Operation

You can start a tween operation after a tween media sample begins by including an optional
kTweenStartOffset atom in the kTweenEntry atom for the tween. This atom specifies a time interval,
beginning at the start of the tween media sample, after which the tween operation begins. If this atom is
not included, the tween operation begins at the start of the tween media sample.

Specifying a Duration for a Tween

You can specify the duration of a tween operation by including an optional kTweenDuration atom in the
kTweenEntry atom for the tween. When a QuickTime movie includes a tween track, the time units for the
duration are those of the tween track’s time scale. If a tween component is used outside of a movie, the
application using the tween data determines how the duration value and values returned by the component
are interpreted.

Creating a Tween Sequence

Single Tweens and Tween Sequences (page 26) discussed tween sequences, in which different tween
operations of the same type may be applied sequentially. The type kTweenSequenceElement specifies an
entry in a tween sequence. Its parent is the tween QT atom container (which you specify with the constant
kParentAtomIsContainerTween Components and Tween Media).

The ID of a kTweenSequenceElement atom must be unique among the kTweenSequenceElement atoms
in the same QT atom container. The index of a kTweenSequenceElement atom specifies its order in the
sequence; the first entry in the sequence has the index 1, the second 2, and so on.

This atom is a leaf atom. The data type of its data is TweenSequenceEntryRecord, a data structure that
contains the following fields:

 ■ endPercent, a value of type Fixed that specifies the point in the duration of the tween media sample
at which the sequence entry ends. This is expressed as a fraction; for example, if the value is 0.75, the
sequence entry ends after three-quarters of the total duration of the tween media sample has elapsed.
The sequence entry begins after the end of the previous sequence entry or, for the first entry in the
sequence, at the beginning of the tween media sample.

 ■ tweenAtomID, a value of type QTAtomID that specifies the kTweenEntry atom containing the tween
for the sequence element. The kTweenEntry atom and the kTweenSequenceElement atom must both
be child atoms of the same tween QT atom container.

 ■ dataAtomID, a value of type QTAtomID that specifies the kTweenData atom containing the data for
the tween. This atom must be a child atom of the atom specified by the tweenAtomID field.

Listing 7-9 shows how to create a tween sequence.

Listing 7-9 Creating a tween sequence

OSErr CreateSampleSequencedTweenContainer(QTAtomContainer container,
 TimeValue duration, QTAtom *newTweenAtom)

Specifying an Offset for a Tween Operation 45
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

{
 OSErr err = noErr;
 QTAtomContainer dataContainer = nil;
 OSType tweenerType;
 QTAtom sequenceAtom, tweenAtom;
 TimeValue offset;
 Handle result;
 QTAtomID tweenAtomID, dataAtomID;
 Fixed endPercent;

 err = QTRemoveChildren(container, kParentAtomIsContainer);
 if (err) goto bail;
 tweenerType = kTweenTypeAtomList;
 offset = 0;
 err = AddSequenceTweenAtom(container, kParentAtomIsContainer,
 1, &sequenceAtom);
 if (err) goto bail;

 offset = 0;

 err = AddTweenAtom(container, sequenceAtom, 1, tweenerType, offset,
 duration, 0, 0, nil, &tweenAtom);
 if (err) goto bail;

 // add first data atom (id 1) to tween atom
 dataAtomID = 1;
 dataContainer = CreateSampleAtomListTweenData(dataAtomID);
 if (! dataContainer) { err = memFullErr; goto bail; }
 err = AddDataAtom(container, tweenAtom, dataAtomID, 0, nil,
 dataContainer, 0, nil);
 if (err) goto bail;

 QTDisposeAtomContainer(dataContainer);

 // add second data atom (id 2) to tween atom
 dataAtomID = 2;
 dataContainer = CreateSampleAtomListTweenData(dataAtomID);
 if (! dataContainer) { err = memFullErr; goto bail; }
 err = AddDataAtom(container, tweenAtom, dataAtomID, 0, nil,
 dataContainer, 0, nil);
 if (err) goto bail;

 QTDisposeAtomContainer(dataContainer);
 // now create a sequence with four elements; the first three are data
 // atom 1, the last is data atom 2
 endPercent = FixDiv(Long2Fix(25), Long2Fix(100));
 tweenAtomID = 1;
 dataAtomID = 1;
 err = AddSequenceElement(container, sequenceAtom, endPercent,
 tweenAtomID, dataAtomID, nil);
 if (err) goto bail;
 endPercent = FixDiv(Long2Fix(50), Long2Fix(100));
 tweenAtomID = 1;
 dataAtomID = 1;
 err = AddSequenceElement(container, sequenceAtom, endPercent,
 tweenAtomID, dataAtomID, nil);
 if (err) goto bail;
 endPercent = FixDiv(Long2Fix(75), Long2Fix(100));

46 Creating a Tween Sequence
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 tweenAtomID = 1;
 dataAtomID = 1;
 err = AddSequenceElement(container, sequenceAtom, endPercent,
 tweenAtomID, dataAtomID, nil);
 if (err) goto bail;
 endPercent = FixDiv(Long2Fix(100), Long2Fix(100));
 tweenAtomID = 1;
 dataAtomID = 2;
 err = AddSequenceElement(container, sequenceAtom, endPercent,
 tweenAtomID, dataAtomID, nil);
 if (err) goto bail;
bail:
 if (err) {
 if (container)
 QTRemoveChildren(container, kParentAtomIsContainer);
 *newTweenAtom = nil;
 }
 else
 *newTweenAtom = sequenceAtom;
}

Naming Tweens

You can use the kNameAtom atom to store a string value containing a name (or any other information) in a
tween container. This atom is not required and is not routinely accessed by QuickTime. It is available for use
by your authoring tools or other software.

CreateSampleVectorData Utility

Listing 7-10 shows the CreateSampleVectorData routine.

Listing 7-10 Utility routine CreateSampleVectorData

Handle CreateSampleVectorData(long whichOne)
{
 OSErr err;
 Handle pathData = nil, vectorData = nil;
 ComponentInstance ci = nil;
 gxPoint aPoint;

 err = OpenADefaultComponent(decompressorComponentType,
 kVectorCodecType, &ci);
 if (err) goto bail;
 err = CurveNewPath(ci, &pathData);
 if (err) goto bail;
 if (pathData == nil)
 { err = memFullErr; goto bail; }
 switch (whichOne) {
 case 1:
 aPoint.x = Long2Fix(0);
 aPoint.y = Long2Fix(100);

Naming Tweens 47
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 0, false);
 if (err) goto bail;

 aPoint.x = Long2Fix(100);
 aPoint.y = Long2Fix(0);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 1, false);
 if (err) goto bail;
 aPoint.x = Long2Fix(200);
 aPoint.y = Long2Fix(100);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 2, false);
 if (err) goto bail;
 aPoint.x = Long2Fix(100);
 aPoint.y = Long2Fix(200);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 3, false);
 if (err) goto bail;
 break;
 case 2:
 aPoint.x = 0;
 aPoint.y = 100;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 0, false);
 if (err) goto bail;

 aPoint.x = 100;
 aPoint.y = 0;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 1, false);
 if (err) goto bail;
 aPoint.x = 200;
 aPoint.y = 100;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 2, false);
 if (err) goto bail;
 aPoint.x = 100;
 aPoint.y = 200;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 3, false);
 if (err) goto bail;
 break;
 case 3:
 aPoint.x = 0;
 aPoint.y = 0;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 0, true);
 if (err) goto bail;

 aPoint.x = 200;
 aPoint.y = 50;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 1, true);
 if (err) goto bail;
 aPoint.x = 400;
 aPoint.y = 400;
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,

48 CreateSampleVectorData Utility
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 0, 2, true);
 if (err) goto bail;
 break;
 case 4:
 aPoint.x = Long2Fix(0);
 aPoint.y = Long2Fix(0);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 0, true);
 if (err) goto bail;

 aPoint.x = Long2Fix(200);
 aPoint.y = Long2Fix(50);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 1, true);
 if (err) goto bail;
 aPoint.x = Long2Fix(400);
 aPoint.y = Long2Fix(400);
 err = CurveInsertPointIntoPath(ci, &aPoint, pathData,
 0, 2, true);
 if (err) goto bail;
 break;
 }
 err = CurveCreateVectorStream(ci, &vectorData);
 if (err) goto bail;
 err = CurveAddPathAtomToVectorStream(ci, pathData, vectorData);
 if (err) goto bail;

 err = CurveAddZeroAtomToVectorStream(ci, vectorData);
 if (err) goto bail;
bail:
 if (pathData) DisposeHandle(pathData);
 if (ci) CloseComponent(ci);
 if (err != noErr) {
 if (vectorData) {
 DisposeHandle(vectorData);
 vectorData = nil;
 }
 }
 return vectorData;
}

CreateSamplePathTweenContainer Utility

Listing 7-11 shows how to use the CreateSamplePathTweenContainer utility routine.

Listing 7-11 Utility routine CreateSamplePathTweenContainer

OSErr CreateSamplePathTweenContainer(QTAtomContainer container,
 OSType tweenerType, long whichSamplePath, Boolean returnDelta,
 TimeValue duration, Fixed initialRotation, QTAtom *newTweenAtom)
{
 OSErr err = noErr;
 TimeValue offset;
 Handle thePathData = nil;
 QTAtom tweenAtom;

CreateSamplePathTweenContainer Utility 49
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 err = QTRemoveChildren(container, kParentAtomIsContainer);
 if (err) goto bail;
 offset = 0;
 err = AddTweenAtom(container, kParentAtomIsContainer, 1,
 tweenerType, offset, duration, 0, 0, nil,
 &tweenAtom);
 if (err) goto bail;

 thePathData = CreateSampleVectorData(whichSamplePath);
 if (thePathData == nil) { err = memFullErr; goto bail; }

 HLock(thePathData);

 err = AddDataAtom(container, tweenAtom, 1,
 GetHandleSize(thePathData), *thePathData,
 nil, 0, nil);
 if (err) goto bail;
 if (returnDelta) {
 err = AddPathTweenFlags(container, tweenAtom,
 kTweenReturnDelta);
 }
 if (initialRotation)
 QTInsertChild(container, tweenAtom, kInitialRotationAtom,
 1, 1, sizeof(initialRotation), &initialRotation, nil);
bail:
 if (thePathData) DisposeHandle(thePathData);
 if (newTweenAtom) *newTweenAtom = tweenAtom;
 return err;

Using a kTweenTypePathToMatrixTranslation Tween Component

To use a kTweenTypePathToMatrixTranslation tween component, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

5. Perform the tweening operation, using QTDoTween.

Listing 7-12 shows how to create a kTweenTypePathToMatrixTranslation tween.

Listing 7-12 Creating a kTweenTypePathToMatrixTranslation tween container

OSErr err = noErr;
TimeValue tweenTime, duration;
Handle result = nil;
QTAtomContainer container = nil;
QTTweener tween = nil;
QTAtom tweenAtom;

50 Using a kTweenTypePathToMatrixTranslation Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

duration = 8;
result = NewHandle(0);
if (err = MemError()) goto bail;
err = QTNewAtomContainer(&container);
if (err) goto bail;
err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToMatrixTranslation, 1,
 false, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 MatrixRecord absoluteMatrix;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absoluteMatrix = *(MatrixRecord *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Listing 7-13 shows how to create a kTweenTypePathToMatrixTranslation tween in which the the
kTweenReturnDelta flag is set.

Listing 7-13 Creating a kTweenTypePathToMatrixTranslation tween

err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToMatrixTranslation, 1,
 true, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 MatrixRecord deltaMatrix;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 deltaMatrix = *(MatrixRecord *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Using a kTweenTypePathToFixedPoint Tween Component

To use a kTweenTypePathToFixedPoint tween component, do the following:

1. Create a QT atom container.

Using a kTweenTypePathToFixedPoint Tween Component 51
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

5. Perform the tweening operation, using QTDoTween.

Listing 7-14 shows how to create a kTweenTypePathToFixedPoint tween.

Listing 7-14 Creating a kTweenTypePathToFixedPoint tween container

err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToFixedPoint, 2, false,
 duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 gxPoint absolutePoint;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absolutePoint = *(gxPoint *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Listing 7-15 shows how to create a kTweenTypePathToFixedPoint tween in which thekTweenReturnDelta
flag is set.

Listing 7-15 Creating a kTweenTypePathToFixedPoint tween container

err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToFixedPoint, 2, true,
 duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 gxPoint deltaPoint;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 deltaPoint = *(gxPoint *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

52 Using a kTweenTypePathToFixedPoint Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

Using a kTweenTypePathToMatrixRotation Tween Component

To use a kTweenTypePathToMatrixRotation tween component, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

5. Perform the tweening operation, using QTDoTween.

Listing 7-16 shows how to create a kTweenTypePathToMatrixRotation tween.

Listing 7-16 Creating a kTweenTypePathToMatrixRotation tween container

// kTweenTypePathToMatrixRotation
err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToMatrixRotation, 1, false,
 duration, X2Fix(0.5), &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 MatrixRecord absoluteMatrix;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absoluteMatrix = *(MatrixRecord *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Using a kTweenTypePathToMatrixTranslationAndRotation Tween
Component

To use a kTweenTypePathToMatrixTranslationAndRotation tween component, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

Using a kTweenTypePathToMatrixRotation Tween Component 53
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

5. Perform the tweening operation, using QTDoTween.

Listing 7-17 shows how to create a kTweenTypePathToMatrixTranslationAndRotation tween.

Listing 7-17 Creating a kTweenTypePathToMatrixTranslationAndRotation tween container

err = CreateSamplePathTweenContainer(container,
 kTweenTypePathToMatrixTranslationAndRotation,
 1, false, duration, X2Fix(0.5), &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 MatrixRecord absoluteMatrix;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absoluteMatrix = *(MatrixRecord *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Using a kTweenTypePathXtoY Tween Component

To use kTweenTypePathXtoY tween components, either absolute or delta, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

5. Perform the tweening operation, using QTDoTween.

Listing 7-18 shows how to create both kinds of kTweenTypePathXtoY tweens.

Listing 7-18 Creating kTweenTypePathXtoY tweens container

// kTweenTypePathXtoY - normal
err = CreateSamplePathTweenContainer(container, kTweenTypePathXtoY, 3,
 false, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 Fixed absoluteYvalue;

54 Using a kTweenTypePathXtoY Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absoluteYvalue = *(Fixed *)*result;
}

err = QTDisposeTween(tween);

// kTweenTypePathXtoY - delta
err = CreateSamplePathTweenContainer(container, kTweenTypePathXtoY, 3,
 true, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 Fixed deltaYalue;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 deltaYalue = *(Fixed *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

Using a kTweenTypePathYtoX Tween Component

To use kTweenTypePathYtoX tween components, either absolute or delta, do the following:

1. Create a QT atom container.

2. Insert a kTweenEntry atom into the QT atom container for the tween.

3. Insert a kTweenType atom that specifies the tween type into the kTweenEntry atom.

4. Insert a kTweenData atom into the kTweenEntry atom.

5. Perform the tweening operation, using QTDoTween.

Listing 7-19 shows how to create both kinds of kTweenTypePathYtoX tweens.

Listing 7-19 Creating kTweenTypePathYtoX tweens container

// kTweenTypePathYtoX - normal
err = CreateSamplePathTweenContainer(container, kTweenTypePathYtoX, 4,
 false, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {

Using a kTweenTypePathYtoX Tween Component 55
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

 Fixed absoluteXvalue;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 absoluteXvalue = *(Fixed *)*result;
}

err = QTDisposeTween(tween);
// kTweenTypePathYtoX - delta
err = CreateSamplePathTweenContainer(container, kTweenTypePathYtoX, 4,
 true, duration, 0, &tweenAtom);
if (err) goto bail;
err = QTNewTween(&tween, container, tweenAtom, duration);
if (err) goto bail;
for (tweenTime = 0; tweenTime <= duration; tweenTime++) {
 Fixed deltaXvalue;

 err = QTDoTween(tween, tweenTime, result, nil, nil, nil);
 if (err) goto bail;

 deltaXvalue = *(Fixed *)*result;
}

err = QTDisposeTween(tween);
bail:
 if (container) QTDisposeAtomContainer(container);
 if (result) DisposeHandle(result);

56 Using a kTweenTypePathYtoX Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Using Tween Components

This chapter describes the native tween types handled by QuickTime; the tween components included in
QuickTime; and the constants, data types, and routines associated with tween components.

Each component processes one or more input values contained in the tween media and returns output
values.

Tween QT Atom Container

The characteristics of a tween are specified by the atoms in a tween QT atom container. A tween QT atom
container can contain the atom types described in this section.

General Tween Atoms

The kTweenEntry atom specifies a tween that can be either a single tween, a tween in a tween sequence,
or an interpolation tween. Its parent is the tween QT atom container (which you specify with the constant
kParentAtomIsContainer).

The index of a kTweenEntry atom specifies when it was added to the QT atom container; the first added
has the index 1, the second 2, and so on. The ID of a kTweenEntry atom can be any ID that is unique among
the kTweenEntry atoms contained in the same QuickTime atom container.

This atom is a parent atom. It must contain the following child atoms:

 ■ A kTweenType atom that specifies the tween type.

 ■ One or more kTweenData atoms that contain the data for the tween. Each kTweenData atom can
contain different data to be processed by the tween component, and a tween component can process
data from only one kTweenData atom a time. For example, an application can use a list tween to animate
sprites. The kTweenEntry atom for the tween could contain three sets of animation data, one for moving
the sprite from left to right, one for moving the sprite from right to left, and one for moving the sprite
from top to bottom. In this case, the kTweenEntry atom for the tween would contain three kTweenData
atoms, one for each data set. The application specifies the desired data set by specifying the ID of the
kTweenData atom to use.

A kTweenEntry atom can contain any of the following optional child atoms:

 ■ A kTweenStartOffset atom that specifies a time interval, beginning at the start of the tween media
sample, after which the tween operation begins. If this atom is not included, the tween operation begins
at the start of the tween media sample.

 ■ A kTweenDuration atom that specifies the duration of the tween operation. If this atom is not included,
the duration of the tween operation is the duration of the media sample that contains it.

Tween QT Atom Container 57
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

If this atom specifies a path tween, it can contain the following optional child atom:

 ■ A kTweenFlags atom containing flags that control the tween operation. If this atom is not included, no
flags are set.

If a kTweenEntry atom specifies an interpolation tween, it must contain the following child atom(s):

 ■ A kTweenInterpolationID atom for each kTweenData atom to be interpolated. The ID of each
kTweenInterpolationID atom must match the ID of the kTweenData atom to be interpolated. The
data for a kTweenInterpolationID atom specifies a kTweenEntry atom that contains the interpolation
tween to use for the kTweenData atom.

If this atom specifies an interpolation tween, it can contain either of the following optional child atoms:

 ■ A kTweenOutputMin atom that specifies the minimum output value of the interpolation tween. The
value of this atom is used only if there is also a kTweenOutputMax atom with the same parent. If this
atom is not included and there is a kTweenOutputMax atom with the same parent, the tween component
uses 0 as the minimum value when scaling output values of the interpolation tween.

 ■ A kTweenOutputMax atom that specifies the maxiumum output value of the interpolation tween. If this
atom is not included, the tween component does not scale the output values of the interpolation tween.

 ■ A kTweenStartOffset atom. For a tween in a tween track of a QuickTime movie, this atom specifies
a time offset from the start of the tween media sample to the start of the tween. The time units are the
units used for the tween track. Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenStartOffset atom. The ID of this atom is always 1.
The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is TimeValue.

This atom is optional. If it is not included, the tween operation begins at the start of the tween media sample.

The kTweenDuration atom specifies the duration of a tween operation. When a QuickTime movie includes
a tween track, the time units for the duration are those of the tween track. If a tween component is used
outside of a movie, the application using the tween data determines how the duration value and values
returned by the component are interpreted. Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenDuration atom. The ID of this atom is always 1. The
index of this atom is always 1.

This atom is a leaf atom. The data type of its data is TimeValue.

This atom is optional. If it is not included, the duration of the tween is the duration of the media sample that
contains it.

The kTweenData atom contains data for a tween. Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain any number of kTweenData atoms. Each kTweenData atom can contain
different data to be processed by the tween component, and a tween component can process data from
only one kTweenData atom a time. For example, an application can use a list tween to animate sprites. The
kTweenEntry atom for the tween could contain three sets of animation data, one for moving the sprite
from left to right, one for moving the sprite from right to left, and one for moving the sprite from top to

58 Tween QT Atom Container
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

bottom. In this case, the kTweenEntry atom for the tween would contain three kTweenData atoms, one
for each data set. The application would specify the desired data set by specifying the ID of the kTweenData
atom to use.

The index of a kTweenData atom specifies when it was added to the kTweenEntry atom; the first added
has the index 1, the second 2, and so on. The ID of a kTweenData atom can be any ID that is unique among
the kTweenData atoms contained in the same kTweenEntry atom.

At least one kTweenData atom is required in a kTweenEntry atom.

For single tweens, a kTweenData atom is a leaf atom. It can contain data of any type.

For polygon tweens, a kTweenData atom is a leaf atom. The data type of its data is Fixed[27], which
specifies three polygons as described in Using Path Tween Components (page 36).

For path tweens, a kTweenData atom is a leaf atom. The data type of its data is Handle, which contains a
QuickTime vector as described in Using Path Tween Components (page 36).

In interpolation tweens, a kTweenData atom is a leaf atom. It can contain data of any type. An interpolation
tween can be any tween other than a list tween that returns a time value, as described in Interpolation
Tweens (page 26).

In list tweens, a kTweenData atom is a parent atom that must contain the following child atoms:

 ■ A kListElementType atom that specifies the atom type of the elements iof the tween.

 ■ One or more leaf atoms of the type specified by the kListElementType atom. The data for each atom
is the result of a list tween operation, as described in Using a List Tween Component (page 36).

The kNameAtom atom specifies the name of a tween. Its parent atom is a kTweenEntry atom. The name,
which is optional, is not used by tween components, but it can be used by applications or other software.

A kTweenEntry atom can contain only one kNameAtom atom. The ID of this atom is always 1. The index of
this atom is always 1.

This atom is a leaf atom. Its data type is StringPtr.

This atom is optional. If it is not included, the tween does not have name.

The kTweenType atom specifies the tween type (the data type of the data for the tween operation). Its parent
atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenType atom. The ID of this atom is always 1. The index
of this atom is always 1.

This atom is a leaf atom. The data type of its data is OSType.

This atom is required.

Path Tween Atoms

The kTweenFlags atom contains flags that control the tween operation. Its parent atom is a kTweenEntry
atom. One flag that controls path tweens is defined: the kTweenReturnDelta flag. It applies only to path
tweens (tweens of type kTweenTypePathToFixedPoint, kTweenTypePathToMatrixTranslation,

Tween QT Atom Container 59
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

kTweenTypePathToMatrixTranslationAndRotation,kTweenTypePathXtoY, orkTweenTypePathYtoX).
If the flag is set, the tween component returns the change in value from the last time it was invoked. If the
flag is not set, or if the tween component has not previously been invoked, the tween component returns
the normal result for the tween.

A kTweenEntry atom can contain only one kTweenFlags atom. The ID of this atom is always 1. The index
of this atom is always 1.

This atom is a leaf atom. The data type of its data is Long.

This atom is optional. If it is not included, no flags are set.

The kInitialRotationAtom atom specifies an initial angle of rotation for a path tween of type
kTweenTypePathToMatrixRotation, kTweenTypePathToMatrixTranslation, or
kTweenTypePathToMatrixTranslationAndRotation. Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kInitialRotationAtom atom. The ID of this atom is always
1. The index of this atom is always 1.

This atom is a leaf atom. Its data type is Fixed.

This atom is optional. If it is not included, no initial rotation of the tween is performed.

List Tween Atoms

The kListElementType atom specifies the atom type of the elements in a list tween. Its parent atom is a
kTweenData atom.

A kTweenEntry atom can contain only one kListElementType atom. The ID of this atom is always 1. The
index of this atom is always 1.

This atom is a leaf atom. Its data type is QTAtomType.

This atom is required in the kTweenData atom for a list tween.

Interpolation Tween Atoms

The kTweenOutputMax atom specifies the maximum output value of an interpolation tween. Its parent atom
is a kTweenEntry atom.

If a kTweenOutputMax atom is included for an interpolation tween, output values for the tween are scaled
to be within the minimum and maximum values. The minimum value is either the value of the
kTweenOutputMin atom or, if there is no kTweenOutputMin atom, 0. For example, if an interpolation tween
has values between 0 and 4, and it has kTweenOutputMin and kTweenOutputMax atoms with values 1 and
2, respectively, a value of 0 (the minimum value before scaling) is scaled to 1 (the minimum specified by the
kTweenOutputMin atom), a value of 4 (the maximum value before scaling) is scaled to 2 (the maximum
specified by the kTweenOutputMax atom), and a value of 3 (three-quarters of the way between the maximum
and minimum values before scaling) is scaled to 1.75 (three-quarters of the way between the values of the
kTweenOutputMin and kTweenOutputMax atoms).

A kTweenEntry atom can contain only on e kTweenOutputMax atom. The ID of this atom is always 1. The
index of this atom is always 1.

60 Tween QT Atom Container
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

This atom is a leaf atom. The data type of its data is Fixed.

This atom is optional. If it is not included, QuickTime does not scale interpolation tween values.

The kTweenOutputMin atom specifies the minimum output value of an interpolation tween. Its parent atom
is a kTweenEntry atom.

If both kTweenOutputMin and kTweenOutputMax atoms are included for an interpolation tween, output
values for the tween are scaled to be within the minimum and maximum values. For example, if an
interpolation tween has values between 0 and 4, and it has kTweenOutputMin and kTweenOutputMax
atoms with values 1 and 2, respectively, a value of 0 (the minimum value before scaling) is scaled to 1 (the
minimum specified by the kTweenOutputMin atom), a value of 4 (the maximum value before scaling) is
scaled to 2 (the maximum specified by the kTweenOutputMax atom), and a value of 3 (three-quarters of the
way between the maximum and minimum values before scaling) is scaled to 1.75 (three-quarters of the way
between the values of the kTweenOutputMin and kTweenOutputMax atoms).

If a kTweenOutputMin atom is included but a kTweenOutputMax atom is not, QuickTime does not scale
interpolation tween values.

A kTweenEntry atom can contain only on e kTweenOutputMin atom. The ID of this atom is always 1. The
index of this atom is always 1.

This atom is a leaf atom. The data type of its data is Fixed.

This atom is optional. If it is not included but a kTweenOutputMax atom is, the tween component uses 0 as
the minimum value for scaling values of an interpolation tween.

The kTweenInterpolationID atom specifies an interpolation tween to use for a specified kTweenData
atom. Its parent atom is a kTweenEntry atom. There can be any number of kTweenInterpolationID
atoms for a tween, one for each kTweenData atom to be interpolated.

The index of a kTweenInterpolationID atom specifies when it was added to the kTweenEntry atom; the
first added has the index 1, the second 2, and so on. The ID of a kTweenInterpolationID atom must (1)
match the atom ID of the kTweenData atom to be interpolated, and (2) be unique among the
kTweenInterpolationID atoms contained in the same kTweenEntry atom.

This atom is a leaf atom. The data type of its data is QTAtomID.

This atom is required for an interpolation tween.

Sequence Tween Atoms

The kTweenSequenceElement atom specifies an entry in a tween sequence. Its parent is the tween QT atom
container (which you specify with the constant kParentAtomIsContainerTween Components and Tween
Media).

The ID of a kTweenSequenceElement atom must be unique among the kTweenSequenceElement atoms
in the same QT atom container. The index of a kTweenSequenceElement atom specifies its order in the
sequence; the first entry in the sequence has the index 1, the second 2, and so on.

This atom is a leaf atom. The data type of its data is TweenSequenceEntryRecord, a data structure that
contains the following fields:

Tween QT Atom Container 61
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

 ■ endPercent, a value of type Fixed that specifies the point in the duration of the tween media sample
at which the sequence entry ends. This is expressed as a percentage; for example, if the value is 75.0,
the sequence entry ends after three-quarters of the total duration of the tween media sample have
elapsed. The sequence entry begins after the end of the previous sequence entry or, for the first entry
in the sequence, at the beginning of the tween media sample.

 ■ tweenAtomID, a value of type QTAtomID that specifies the kTweenEntry atom containing the tween
for the sequence element. The kTweenEntry atom and the kTweenSequenceElement atom must both
be a child atoms of the same tween QT atom container.

 ■ dataAtomID, a value of type QTAtomID that specifies the kTweenData atom containing the data for
the tween. This atom must be a child atom of the atom specified by the tweenAtomID field.

Tween Container Syntax

Tween containers conform to the following syntax:

[(TweenContainerFormat)] = [(SingleTweenFormat)] | [(SequencedTweenFormat)]

[(SingleTweenFormat)] = [(TweenEntryAtoms)] <kTweenEntry>, (anyUniqueIDs),
 (1..numInterpolators)

[(TweenEntryAtoms)] [(SequencedTweenFormat)] = kTweenSequenceElement,
 (anyUniqueIDs), (1..numSequenceElements)

[TweenSequenceEntryRecord] = {endPercent, tweenAtomID, dataAtomID} kTweenEntry,
 (anyUniqueIDs), (1..numSequenceElements + numInterpolators)

[(TweenEntryAtoms)] [(TweenEntryAtoms)] = kTweenType, 1, 1

[OSType] = the type of tween <kTweenStartOffset>, 1, 1

[TimeValue] = starting offset <kTweenDuration>, 1, 1

[TimeValue] = duration <kTweenOutputMinValue>, 1, 1

[Fixed] = minimum output value <kTweenOutputMaxValue>, 1, 1

[Fixed] = maximum output value <kTweenFlags>, 1, 1

[long] = flags kTweenData, (anyUniqueIDs), (1..numDataAtoms)
 // contents dependent on kTweenType, could be leaf data or nested atoms
 <kTweenInterpolationID>, (a kTweenData ID), (1.. numInterpolationIDAtoms)

[QTAtomID] = the id of a kTweenEntry (child of [(TweenContainerFormat)]
 describing the tween to be used to interpolate time values).

kTweenTypeFixed

Input data: Two 32-bit fixed-point values.

Output data: A 32-bit fixed-point value.

62 Tween Container Syntax
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

kTweenTypeFixedPoint

Input data: Two structures of type FixedPoint that describe QuickDraw points.

Output data: A structure of type FixedPoint that describes a QuickDraw point.

How interpolation is performed: Each of the two coordinate values used to specify a fixed point is interpolated
separately from the other.

kTweenTypeGraphicsModeWithRGBColor

Input data: Two ModifierTrackGraphicsModeRecord data structures.

Output data: A ModifierTrackGraphicsModeRecord data structure.

How interpolation is performed: Only the RGBColor fields of the ModifierTrackGraphicsModeRecord
data structures are interpolated. The graphic mode used is the first graphic mode that is specified in the
modifier track.

kTweenTypeLong

Input data: Two signed 32-bit integers.

Output data: A signed 32-bit integer.

kTweenTypeMatrix

Input data: Two QuickTime 3X3 matrices (data structures of type MatrixRecord).

Output data: A QuickTime 3X3 matrix (a data structure of type MatrixRecord).

How interpolation is performed: Each of the individual matrix elements is interpolated separately from the
other.

kTweenTypePoint

Input data: Two QuickDraw points (data structures of type Point.

Output data: A QuickDraw point (a data structure of type Point).

How interpolation is performed: Each of the two coordinate values used to specify a QuickDraw point (h and
v) is interpolated separately from the other.

kTweenTypeQTFloatDouble

Input data: Two double-precision (64-bit) IEEE floating-point numbers of type double.

Tween Container Syntax 63
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

Output data: A double-precision (64-bit) IEEE floating-point number of type double.

kTweenTypeQTFloatSingle

Input data: Two single-precision floating-point numbers of type float.

Output data: A single-precision floating-point number of type float.

kTweenTypeRGBColor

Input data: Two RGB colors (data structures of type RGBColor).

Output data: An RGB color (a data structure of type RGBColor).

How interpolation is performed: Each of the three values used to specify an RGB color (red, green, blue) is
interpolated separately from the others.

kTweenTypeShort

Input data: Two signed 16-bit integers.

Output data: A signed 16-bit integer.

Other Tween Components

QuickTime includes a number of other components for processing tweens. These components are described
in the following sections. Each component processes one or more input values contained in the tween media
and returns output values. The description of each tween component lists the data types of the component’s
input and output data and the number of input values that the component processes.

List Tweener Components

A component of type kTweenTypeAtomList is the component that processes list tweens. For an introduction
to list tweens, see Using a List Tween Component (page 36).

Input data: A QT atom list. This is a kTweenData atom that contains

 ■ a kListElementType atom that specifies the atom type of the elements and the output

 ■ one or more leaf atoms, ordered by their index values, of the type specified by the kListElementType
atom

 ■ atoms of other types, which are optional and ignored by the component; these optional atoms can be
used by an application, such as atoms that specify a name for each element.

64 Other Tween Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

Output data: The data for one of the list element atoms. How this atom is determined is described in Using
a List Tween Component (page 36).

How interpolation is performed: The duration of the tween is divided by the number of elements in the list.
At the time point for which a result is to be returned, the component determines the list element for which
to return data. If (0 <= time value <= (1 * (tween duration / number of list elements)), the component returns
the data for the first list element; if ((1 * (tween duration / number of list elements < time value <= (2 * (tween
duration / number of list elements)), the component returns the data for the second list element, and so on.
For example, if the tween duration is 100 and there are 10 elements in the list, the component returns the
value of the first element for a time from 0 to 10, the value of the second element is returned for a time
greater than 10 and less than or equal to 20, and so on. The total time for the tween is divided equally among
the list elements.

The kTweenTypeAtomList container description is the following:

[(QTAtomListTweenEntryAtoms)] =
 kListElementType, 1, 1
 // a QTAtomType specifying the type of atoms that make up the list
 kListElementDataType, 1, 1
 // a UInt32 that contains one of the allowed kTweenType flags.
 // kTweenTypeShort through kTweenTypeFixedPoint are allowed]
 kTweenData, 1, 1
 kTweenType, 1, 1
 // QTAtomType for elements in list, for example 'pcid'
 'pcid', anyUniqueID, 1
 [data for first element]
 'pcid', anyUniqueID, 2
 // data for second element
 ...
 'pcid', anyUniqueID, n
 // data for nth element

<kTweenStartOffset>, 1, 1
[TimeValue] = starting offset

<kTweenDuration>, 1, 1
[TimeValue] = duration

<kTweenOutputMinValue>, 1, 1
[Fixed] = minimum output value

<kTweenOutputMaxValue>, 1, 1
[Fixed] = maximum output value

<kTweenSequenceElement>, (anyUniqueIDs), (1..numElementsInSequence)
[TweenSequenceEntryRecord]

<kTweenInterpolationID>, (a kTweenData ID), (1.. numInterpolationIDAtoms)
[QTAtomID] = the id of a kTweenEntry (child of [(TweenContainerFormat)]
 describing the tween to be used to interpolate time values).

Multimatrix Tweener Component

The multimatrix tweener, of type kTweenTypeMultiMatrix, returns a MatrixRecord that is a concatenation
of several matrix tweeners. This record can be applied to a sprite or track.

Other Tween Components 65
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

An example of using the multimatrix tweener would be to make a sprite follow a path using the path tweener
and at the same time apply a distortion effect using the polygon tweener.

Input data: A list of kTweenEntry atoms.

Output data: a matrix record

How interpolation is performed: The data for the tweener consists of a list of kTweenEntry atoms, each
containing [(QTAtomListEntryAtomsTween Components and Tween Media)] for any type of tweener that
returns a matrix. The order of matrix concatenation is important; the matrices are applied in the order
determined by index of the kTweenEntry child atoms of the multimatrix tweener’s data atom.

Path Tweener Components

A path tweener component returns a point along a path depending on the current time value. The point is
either returned as a FixedPoint value or a MatrixRecord with x and y offsets corresponding to the point.
There are six component subtypes:

 ■ Subtype kTweenTypePathToFixedPoint returns a tweenResult of type FixedPoint.

 ■ Subtype kTweenTypePathToMatrixTranslation returns a tweenResult of type MatrixRecord
and performs translation tweening.

 ■ Subtype kTweenTypePathToMatrixRotation returns a tweenResult of type MatrixRecord and
performs rotation tweening.

 ■ Subtype kTweenTypePathToMatrixTranslationAndRotation returns a tweenResult of type
MatrixRecord and performs both translation and rotation tweening.

 ■ Subtype kTweenTypePathXtoY returns a tweenResult of type FixedPoint that specifies the
y-coordinate value for a given x-coordinate value.

 ■ Subtype kTweenTypePathYtoX returns a tweenResult of type FixedPoint that specifies the
x-coordinate value for a given y-coordinate value.

An example of using a path tweener would be to store a path that you want a sprite to follow. The
MatrixRecord returned could be used to determine the offset of the sprite.

The path tweener’s path format is the one used by the QuickTime vector codec. A transcoder exists that
converts a QuickDraw GX shape into this format.

This component uses only the first contour of the first path in the vector data when determining the output.
It ignores any additional atoms and paths in the vector data.

Note: If the kTweenReturnDelta flag (in an optional kTweenFlags atom) is set, the component returns
the change in value from the last time it was invoked. If the flag is not set, or if the component has not
previously been invoked, the component returns the normal result for the tween.

Polygon Tweener Component

A component of type kTweenTypePolygon tweens one polygon into another. All input polygons must be
convex and not self-intersecting.

66 Other Tween Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

Input data:An array of 27 fixed-point values (Fixed[27]TweenComponents and Tween Media) that specifies
three four-sided polygons. Each polygon is specified by 9 consecutive array elements. The first element in
each set of 9 contains the number of points used to specify the polygon; this value is coerced to a long
integer, and it must always be 4 after coercion. The following 8 values in each set of nine are four x, y pairs
that specify the corners of the polygon.

The first set of 9 elements specifies the dimensions of a sprite or track to be mapped. For example, if the
object is a sprite, the four points are (0,0), (spriteWidth, 0), (spriteWidth, spriteHeight), (0, spriteHeight). The
next set of 9 elements specifies the initial polygon into which the sprite or track is mapped. The next set of
9 elements specifies the ending polygon into which the sprite or track is mapped.

Output data: A MatrixRecord structure that can be used to map the sprite or track into a four-sided polygon.
During the duration of the tween, the shape of this polygon is transformed linearly from that of the initial
polygon specified in the input data to that of the ending polygon specified in the input data.

Spin Tweener Component

A component of type kTweenTypeSpin returns a MatrixRecord that can be applied to a sprite or a track.
The matrix returned causes a rotation based on a given number of rotations over the duration of the tween.
The data for the tweener consists of an array of two Fixed numbers. The first Fixed number is the
intialRotation value, specified as a fraction of one rotation. A number between 0 and 1 is expected; for
instance, a value of 0.25 represents a rotation of 90 degrees. The second Fixed number is the number of
rotations that should occur over the durationof the tween. For instance, to spin a sprite four and a half times
this number should be 4.5.

Note: The rotation is performed about an object’s origin, which is usually 0.0. For a sprite, its origin is defined
by its registration point; hence a spinning sprite will spin about its registration point.

The spin tweener container description is the following:

[SpinTweenEntryAtoms)] =
 kTweenType, 1, 1
 [kTweenTypeSpin]
 kTweenData, 1, 1
 Fixed[2]
<kTweenStartOffset>, 1, 1
[TimeValue] = starting offset

<kTweenDuration>, 1, 1
[TimeValue] = duration

<kTweenSequenceElement>, (anyUniqueIDs), (1..numElementsInSequence)
[TweenSequenceEntryRecord]

<kTweenInterpolationID>, (a kTweenData ID), (1.. numInterpolationIDAtoms)
[QTAtomID] = the id of a kTweenEntry (child of [(TweenContainerFormat)]
 describing the tween to be used to interpolate time values).

Other Tween Components 67
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

Constants

This section defines the constants used with tween components. Included are a variety of tween atom types,
as well as the flags used to control tween components.

Tween Component Constant

The TweenComponentType constant specifies that the component is a tween component.

enum {
 TweenComponentType = 'twen'
};

Tween Type and Tween Component Subtype Constants

The following constants specify tween types. If a tween type is identified by a four-character code, the
four-character code is also the component subtype of the tween component that is invoked for the tween.
If a tween type is identified by a numeric constant, such as kTweenTypeShort, tweens of that type are
processed by QuickTime rather than by a tween component.

enum {
 kTweenTypeShort = 1,
 kTweenTypeLong = 2,
 kTweenTypeFixed = 3,
 kTweenTypePoint = 4,
 kTweenTypeQDRect = 5,
 kTweenTypeQDRegion = 6,
 kTweenTypeMatrix = 7,
 kTweenTypeRGBColor = 8,
 kTweenTypeGraphicsModeWithRGBColor = 9,
 kTweenTypeQTFloatSingle = 10,
 kTweenTypeQTFloatDouble = 11,
 kTweenTypeFixedPoint = 12,
 kTweenType3dScale = FOUR_CHAR_CODE('3sca'),
 kTweenType3dTranslate = FOUR_CHAR_CODE('3tra'),
 kTweenType3dRotate = FOUR_CHAR_CODE('3rot'),
 kTweenType3dRotateAboutPoint = FOUR_CHAR_CODE('3rap'),
 kTweenType3dRotateAboutAxis = FOUR_CHAR_CODE('3rax'),
 kTweenType3dRotateAboutVector = FOUR_CHAR_CODE('3rvc'),
 kTweenType3dQuaternion = FOUR_CHAR_CODE('3qua'),
 kTweenType3dMatrix = FOUR_CHAR_CODE('3mat'),
 kTweenType3dCameraData = FOUR_CHAR_CODE('3cam'),
 kTweenType3dSoundLocalizationData = FOUR_CHAR_CODE('3slc'),
 kTweenTypePathToMatrixTranslation = FOUR_CHAR_CODE('gxmt'),
 kTweenTypePathToMatrixTranslationAndRotation =FOUR_CHAR_CODE('gxmr'),
 kTweenTypePathToFixedPoint = FOUR_CHAR_CODE('gxfp'),
 kTweenTypePathXtoY = FOUR_CHAR_CODE('gxxy'),
 kTweenTypePathYtoX = FOUR_CHAR_CODE('gxyx'),
 kTweenTypeAtomList = FOUR_CHAR_CODE('atom'),
 kTweenTypePolygon = FOUR_CHAR_CODE('poly')
 kTweenTypePathToMatrixRotation = FOUR_CHAR_CODE('gxpr'),
 kTweenTypeMultiMatrix = FOUR_CHAR_CODE('mulm'),

68 Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

 kTweenTypeSpin = FOUR_CHAR_CODE('spin'),
 kTweenType3dMatrixNonLinear = FOUR_CHAR_CODE('3nlr'),
 kTweenType3dVRObject = FOUR_CHAR_CODE('3vro')
 };

Tween Atom Constants

The following constants are defined for tween-related atoms. These atom types are described in Tween QT
Atom Container (page 57).

enum {
 kTweenEntry = FOUR_CHAR_CODE('twen'),
 kTweenData = FOUR_CHAR_CODE('data'),
 kTweenType = FOUR_CHAR_CODE('twnt'),
 kTweenStartOffset = FOUR_CHAR_CODE('twst'),
 kTweenDuration = FOUR_CHAR_CODE('twdu'),
 kTweenFlags = FOUR_CHAR_CODE('flag'),
 kTweenOutputMin = FOUR_CHAR_CODE('omin'),
 kTweenOutputMax = FOUR_CHAR_CODE('omax'),
 kTweenSequenceElement = FOUR_CHAR_CODE('seqe'),
 kTween3dInitialCondition = FOUR_CHAR_CODE('icnd'),
 kTweenInterpolationID = FOUR_CHAR_CODE('intr'),
 kTweenRegionData = FOUR_CHAR_CODE('qdrg'),
 kTweenPictureData = FOUR_CHAR_CODE('PICT'),
 kListElementType = FOUR_CHAR_CODE('type'),
 kNameAtom = FOUR_CHAR_CODE('name'),
 kInitialRotationAtom = FOUR_CHAR_CODE('inro')
};

Tween Flag

The following flag modifies the characteristics of a tween.

enum {
 kTweenReturnDelta= 1L << 0
};

The kTweenReturnDelta flag applies only to path tweens (tweens of type kTweenTypePathToFixedPoint,
kTweenTypePathToMatrixTranslation, kTweenTypePathToMatrixTranslationAndRotation,
kTweenTypePathXtoY, or kTweenTypePathYtoX). If the flag is set, the tween component returns the
change in value from the last time it was invoked. If the flag is not set, or if the tween component has not
previously been invoked, the tween component returns the normal result for the tween.

Data Types

The following sections describe the component instance definition, tween record, and the value setting
prototype function used by tween components.

Data Types 69
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

Tween Sequence Entry Record

A tween sequence entry record specifies when a tween in a tween sequence ends. Each tween in a tween
sequence begins after the previous tween ends or, for the first tween in the sequence, at the beginning of
the tween duration.

Because there can be more than one data set for a tween, the data structure includes a field for the data
atom ID as well as the tween atom ID.

struct TweenSequenceEntryRecord {
 Fixed endPercent;
 QTAtomID tweenAtomID;
 QTAtomID dataAtomID;
};
typedef struct TweenSequenceEntryRecord TweenSequenceEntryRecord;

DefinitionTerm

a value of type Fixed that specifies the point in the duration of the tween media sample
at which the sequence entry ends.

endPercent

a value of type QTAtomID that specifies the kTweenEntry atom containing the tween for
the sequence element.

tweenAtomID

a value of type QTAtomID that specifies the kTweenData atom containing the data for
the tween.

dataAtomID

Component Instance

The component instance for a tween component, TweenerComponent, identifies an application’s use of a
component.

typedef ComponentInstance TweenerComponent;

Tween Record

QuickTime maintains a tween record structure that is provided to your tween component’s TweenDoTween
method. The TweenRecord structure is defined as follows.

typedef struct TweenRecord TweenRecord;

struct TweenRecord {
 long version;
 QTAtomContainer container;
 QTAtom tweenAtom;
 QTAtom dataAtom;
 Fixed percent;
 TweenerDataUPP dataProc;
 void * private1;
 void * private2;
};

70 Data Types
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

DefinitionTerm

The version number of this structure. This field is initialized to 0.version

The atom container that contains the tween data.container

The atom for this tween entry's data in the container.tweenAtom

The percentage by which to change the data.percent

The procedure the tween component calls to send the tweened value to the receiving track.dataProc

Reserved.private1

Reserved.private2

Value Setting Function

The function that you call to send the interpolated value to the receiving track is defined as a universal
procedure in systems that support the Macintosh Code Fragment Manager (CFM) or is defined as a data
procedure for non-CFM systems:

typedef UniversalProcPtr TweenerDataUPP; /* CFM */

typedef TweenerDataProcPtr TweenerDataUPP; /* non-CFM */

The TweenerDataUPP function pointer specifies the function the tween component calls with the value
generated by the tween operation. A tween component calls this function from its implementation of the
TweenerDoTween function.

typedef pascal ComponentResult (*TweenerDataProcPtr)(
 TweenRecord *tr,
 void *tweenData,
 long tweenDataSize,
 long dataDescriptionSeed,
 Handle dataDescription,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 ProcPtr transferProc,
 void *refCon);

DefinitionTerm

Contains a pointer to the tween record for the tween operation.tr

Contains a pointer to the generated tween value.tweenData

Specifies the size, in bytes, of the tween value.tweenDataSize

Specifies the starting value for the calculation. Every time the content of the
dataDescription handle changes, this value should be incremented.

dataDescriptionSeed

Data Types 71
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

DefinitionTerm

Specifies a handle containing a description of the tween value passed. For basic
types such as integers, the calling tween component should set this parameter
to nil. For more complex types such as compressed image data, the calling
tween component should set this handle to contain a description of the tween
value, such as an image description.

dataDescription

Contains a pointer to a completion procedure for asynchronous operations. The
calling tween component should set the value of this parameter to nil.

asyncCompletionProc

Contains a pointer to a procedure to transfer the data. The calling tween
component should set the value of this parameter to nil.

transferProc

Contains a pointer to a reference constant. The calling tween component should
set the value of this parameter to nil.

refCon

You call this function by invoking the function specified in the tween record’s dataProc field. The following
errors are returned:

DescriptionValueConstant

No error0noErr

Invalid parameter specified-50paramErr

72 Data Types
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Tween Components and Native Tween Types

This chapter explains how to create a tween component for a new data type, a new interpolation algorithm,
or both. Before reading this section, you should be familiar with how to create components.

The following example illustrates a tween component that interpolates values for short integers. Because
QuickTime handles this tween type (kTweenTypeShortTween Components and Tween Media) for you, you
do not need to implement a component to handle interpolation of short integers yourself.

Initializing the Tween Component

Your tween component must process kTweenerInitializeSelect requests from the Component Manager.
Listing 9-1 shows a function, TweenerInitialize, for processing this request. In this example, the function
simply returns. In a more complex example, the function might allocate storage to be used when generating
a tween media value.

Listing 9-1 Function that initializes a tween component

pascal ComponentResult TweenerInitialize (
 TweenerComponent tc,
 QTAtomContainer container,
 QTAtom tweenAtom,
 QTAtom dataAtom)
{
 return noErr;
}

Generating Tween Media Values

Your tween component must process kTweenerDoTweenSelect requests from the Component Manager.
Listing 9-2 shows a function, TweenDoTween, for processing this request. It takes short-integer values and
performs the necessary interpolation.

Listing 9-2 Function that generates tween media values

pascal ComponentResult TweenDoTween (
 TweenerComponent tc,
 TweenRecord *tr)
{
 short *data;
 short tFrom, tTo, tValue;
 QTGetAtomDataPtr(tr->container, tr->dataAtom, nil, (Ptr *)&data);
 tFrom = data[0];
 tTo = data[1];

Initializing the Tween Component 73
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Creating a Tween Component

 tValue = tFrom + FixMul(tTo - tFrom, tr->percent);
 (tr->dataProc)((struct TweenRecord *)tr, &tValue,
 sizeof(tValue), 1, nil, nil, nil, nil);
 return noErr;
}

Resetting a Tween Component

Your tween component must process kTweenerResetSelect requests from the Component Manager.
Listing 9-3 shows the TweenReset function, which resets the component. In this example, because
TweenerInitialize does not allocate any storage, TweenerReset simply returns. In a more complex
example, TweenerReset releases any storage allocated by TweenerInitialize and any storage allocated
during the tween operation.

Listing 9-3 Function that resets a tween component

pascal ComponentResult TweenerReset (TweenerComponent tc)
{
 return noErr;
}

Creating an Interpolation Tween

This section discusses tween operations that modify other tween operations by feeding them artificial time
values in place of real time. Listing 9-4 shows how to create an interpolation tween.

Listing 9-4 Creating an interpolation tween container

OSErr CreateSampleInterpolatedTweenContainer(QTAtomContainer container,
 TimeValue duration, QTAtom *newTweenAtom)
{
 OSErr err = noErr;
 Handle pathData = nil;

 err = QTRemoveChildren(container, kParentAtomIsContainer);
 if (err)goto bail;

 err = CreateSampleLongTweenContainer(container, 0, duration,
 duration, newTweenAtom);
 if (err) goto bail;
 pathData = CreateSampleVectorData(3);
 if (! pathData) { err = memFullErr; goto bail; }
 err = AddXtoYInterpolatorTweenerForDataSet(container, *newTweenAtom,
 *newTweenAtom, 1, pathData);
 if (err) goto bail;
bail:
 if (pathData)DisposeHandle(pathData);
 return err;
}

OSErr AddXtoYInterpolatorTweenerForDataSet(QTAtomContainer container,

74 Resetting a Tween Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Creating a Tween Component

 QTAtom sequenceTweenAtom, QTAtom tweenAtom, QTAtomID dataSetID,
 Handle vectorCodecData)
{
 OSErr err = noErr;
 QTAtomID interpolationTweenID;
 QTAtom dataSetAtom, interpolatorTweenAtom, durationAtom,
 interpolatorIDAtom;
 TimeValue duration;
 ComponentInstance ci = nil;
 UInt8 saveState;
 gxPaths *thePathData;
 long dataSize, numPoints;
 gxPoint firstPoint, lastPoint;
 Boolean ptIsOnPath;
 Fixed minOutput, maxOutput;

 if ((! container) || (! dataSetID) || (! vectorCodecData))
 { err = paramErr; goto bail; }
 saveState = HGetState(vectorCodecData);
 dataSetAtom = QTFindChildByID(container, tweenAtom, kTweenData,
 dataSetID, nil);
 if (! dataSetAtom) { err = cannotFindAtomErr; goto bail; }

 // determine duration of tweenEntry so we can use the same duration
 // for the interpolator tween
 durationAtom = QTFindChildByIndex(container, tweenAtom,
 kTweenDuration, 1, nil);
 if (! durationAtom) { err = cannotFindAtomErr; goto bail; }

 err = QTCopyAtomDataToPtr(container, durationAtom, false,
 sizeof(duration), &duration, nil);
 if (err) goto bail;

 // determine the minOutput and maxOutput values based for the given
 // vector codec data
 err = OpenADefaultComponent(decompressorComponentType,
 kVectorCodecType, &ci);
 if (err) goto bail;

 HLock(vectorCodecData);

 err = CurveGetAtomDataFromVectorStream (ci, vectorCodecData,
 kCurvePathAtom, &dataSize, (Ptr *)&thePathData);
 if (err) goto bail;
 err = CurveCountPointsInPath(ci, thePathData, 0,
 (unsigned long *)&numPoints);
 if (err) goto bail;
 err = CurveGetPathPoint(ci, thePathData, 0, 0, &firstPoint,
 &ptIsOnPath);
 if (err) goto bail;
 err = CurveGetPathPoint(ci, thePathData, 0, numPoints - 1,
 &lastPoint, &ptIsOnPath);
 if (err) goto bail;
 minOutput = firstPoint.x;
 maxOutput = lastPoint.x;

 // add interolator tween atom with any unique id
 err = AddTweenAtom(container, sequenceTweenAtom, 0,

Creating an Interpolation Tween 75
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Creating a Tween Component

 kTweenTypePathXtoY, 0, duration, minOutput,
 maxOutput, nil, &interpolatorTweenAtom);
 if (err) goto bail;
 // so what was that unique id?
 err = QTGetAtomTypeAndID(container, interpolatorTweenAtom, nil,
 &interpolationTweenID);
 if (err) goto bail;
 err = AddDataAtom(container, interpolatorTweenAtom, 1,
 GetHandleSize(vectorCodecData),
 *vectorCodecData, nil, 0, nil);
 if (err) goto bail;

 // finally, we need to reference this new interpolator tween
 interpolatorIDAtom = QTFindChildByID(container, tweenAtom,
 kTweenInterpolationID, dataSetID, nil);
 if (! interpolatorIDAtom) {
 err = QTInsertChild(container, tweenAtom, kTweenInterpolationID,
 dataSetID, 0, 0, nil, &interpolatorIDAtom);
 if (err) goto bail;
 }
 err = QTSetAtomData(container, interpolatorIDAtom,
 sizeof(interpolationTweenID), &interpolationTweenID);
 if (err) goto bail;
bail:
 if (vectorCodecData)
 HSetState(vectorCodecData, saveState);
 return err;
}

To scale the output of an interpolation tween, you add the optional kTweenOutputMaxValue atom and
kTweenOutputMinValue atom.

76 Creating an Interpolation Tween
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Creating a Tween Component

This table describes the changes to QuickTime Media Types and Media Handlers Guide.

NotesDate

New document that describes media handlers for video, sound, text, time codes,
and tweens.

2006-01-10

Replaces "Media Handlers: Introduction, Video and Sound," "Text Media
Handlers," "Time Code Media Handlers," "Tween Components and Tween Media"
and "Tween Media Handler."

New document that introduces the QuickTime components for processing video
and sound media.

2002-09-17

77
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

78
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Media Types and Media Handlers Guide
	Contents
	Figures and Listings
	Introduction
	About Media Handlers
	Selecting Media Handlers
	Media Selection Functions
	Media Property Functions

	Video and Sound Media Handlers
	Video Media Handler Functions
	The Image Description Structure
	Sound Media Handler Functions
	The Sound Description Structure

	Text Media Handlers
	Text Operations
	Text Media Handler Functions

	Timecode Media Handlers
	Timecode Tracks
	Timecode Samples
	Timecode Media Handler Functions

	Tweens and Tween Operations
	Tween Types
	Single Tweens and Tween Sequences
	Interpolation Tweens

	Tween Media Handlers
	Using the Tween Media Handler
	Creating a Tween Track
	Tween Media Handler Constants

	Using Tween Components
	Creating a Single Tween Container
	Using Path Tween Components
	Using a List Tween Component
	Utility Routines
	AddTweenAtom
	AddDataAtom
	AddSequenceTweenAtom
	AddSequenceElement
	CreateSampleAtomListTweenData

	Using a Polygon Tween Component
	Specifying an Offset for a Tween Operation
	Specifying a Duration for a Tween
	Creating a Tween Sequence
	Naming Tweens
	CreateSampleVectorData Utility
	CreateSamplePathTweenContainer Utility
	Using a kTweenTypePathToMatrixTranslation Tween Component
	Using a kTweenTypePathToFixedPoint Tween Component
	Using a kTweenTypePathToMatrixRotation Tween Component
	Using a kTweenTypePathToMatrixTranslationAndRotation Tween Component
	Using a kTweenTypePathXtoY Tween Component
	Using a kTweenTypePathYtoX Tween Component

	Tween Components and Native Tween Types
	Tween QT Atom Container
	General Tween Atoms
	Path Tween Atoms
	List Tween Atoms
	Interpolation Tween Atoms
	Sequence Tween Atoms

	Tween Container Syntax
	kTweenTypeFixed
	kTweenTypeFixedPoint
	kTweenTypeGraphicsModeWithRGBColor
	kTweenTypeLong
	kTweenTypeMatrix
	kTweenTypePoint
	kTweenTypeQTFloatDouble
	kTweenTypeQTFloatSingle
	kTweenTypeRGBColor
	kTweenTypeShort

	Other Tween Components
	List Tweener Components
	Multimatrix Tweener Component
	Path Tweener Components
	Polygon Tweener Component
	Spin Tweener Component

	Constants
	Tween Component Constant
	Tween Type and Tween Component Subtype Constants
	Tween Atom Constants
	Tween Flag

	Data Types
	Tween Sequence Entry Record
	Component Instance
	Tween Record
	Value Setting Function

	Creating a Tween Component
	Initializing the Tween Component
	Generating Tween Media Values
	Resetting a Tween Component
	Creating an Interpolation Tween

	Revision History

