QuickTime Movie Basics

QuickTime > Movie Basics

¢

2006-01-10

.

[

Apple Inc.

© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh,
QuickDraw, and QuickTime are trademarks of
Apple Inc,, registered in the United States and
other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction

Introduction to QuickTime Movie Basics 9

Chapter 1

Organization of This Document 9
See Also 10

Editing Movies 11

Chapter 2

Handling Media Sample References 11
Manipulating Media Input Maps 12
Undo for Movies 12
Functions That Modify Movie Properties 12
Working With Display Characteristics 13
Working With Sound Volume 14
Locating a Movie's Tracks and Media Structures 14
Determining Movie Creation and Modification Time 15
Editing Tracks 15
Undo for Tracks 16
Selection and Scrap Functions 16
Low-Level Movie-Editing Functions 16
Summary of Editing Functions 17

Saving Movies 19

Chapter 3

Movie File Functions 19
Movie Files 20

Overview of Application-Defined Functions 23

Chapter 4

Progress Functions 23

Cover Functions 23

Error-Notification Functions 24
Movie Callout Functions 24

File Filter Functions 24

Custom Dialog Functions 24
Modal-Dialog Filter Functions 25
Standard File Activation Functions 25
Callback Event Functions 25

Text Functions 25

Working With Application-Defined Functions 27

Sample Cover Functions 27

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 5 Creating Tracks and Media Structures 29

Working With Track References 29
About Track References 29
Track Reference Functions 30

Timecode Media Handler 30

Chapter Lists 30

Working With Data References 31

Alternate Tracks 32

Editing Tracks 32

Chapter 6 Working With Media Samples 35

Adding Samples to Media Structures 35
Finding Interesting Times 36
Working With Movie User Data 37

Chapter 7 Understanding QuickTime Atoms 39

Atom Structures and IDs 39
Creating and Disposing of Atom Containers 41
Creating New Atoms 42
Copying Existing Atoms 43
Retrieving Atoms From an Atom Container 45
Modifying Atoms 47
Removing Atoms From an Atom Container 47
Creating and Modifying QT Atom Containers 48
Retrieving Atoms and Atom Data 49
Constants for QT Atom Functions 49

QT Atom 49

QT Atom Type and ID 49

QT Atom Container 50

Chapter 8 Timecode Media Handler Functions 51

About Timecodes 51
Creating a Timecode Track 52

Chapter 9 Locating Tracks, Saving Movies, and Modifying Movie Properties 57

Saving Movies 57

Time Base Callback Functions 58
Creating and Disposing of Time Bases 59
Working with Movie Time 59

Working With Movie User Data 60

The Time Structure 60

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

The Fixed-Point and Fixed-Rectangle Structures 61

Media Handler Support 62

Data Handler Components 62

Support for Progressive Downloads 63

Displaying a Progressively Downloaded Movie 63
Low-Level Routines 64

Handling Media Sample References 64

Manipulating Media Input Maps 64

Chapter 10 Matrix Functions 65

The Transformation Matrix 65

Chapter 11 Movie Toolbox Constants, Data Types, and Functions 69

Movie Exporting Flags 69
Movie Importing Flags 69
Flattening Flags 70
Interesting Times Flags 70
Full Screen Flags 71
Text Sample Display Flags 71
Data Types 72
Modifier Input Types 72
Data References 74
Movie Identifiers 74
Constants 75
Result Codes 78

Document Revision History 81

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Chapter 2 Saving Movies 19
Figure 2-1 A sample movie Save As dialog box 22
Chapter 4 Working With Application-Defined Functions 27
Listing 4-1 Two sample movie cover functions 27
Chapter 7 Understanding QuickTime Atoms 39
Figure 7-1 QT atom container with parent and child atoms 39
Figure 7-2 QT atom container example 40
Figure 7-3 QT atom container after inserting an atom 42
Figure 7-4 QT atom container after inserting a second atom 43
Figure 7-5 Two QT atom containers, Aand B 44
Figure 7-6 QT atom container after child atoms have been inserted 44
Listing 7-1 Creating a new atom container 41
Listing 7-2 Disposing of an atom container 41
Listing 7-3 Creating a new QT atom container and calling QTInsertChild to add an atom 42
Listing 7-4 Inserting a child atom 43
Listing 7-5 Inserting a container into another container 45

Listing 7-6 Finding a child atom by index 45
Listing 7-7 Finding a child atom by ID 46
Listing 7-8 Modifying an atom's data 47

Listing 7-9 Removing atoms from a container 47

Chapter 9 Locating Tracks, Saving Movies, and Modifying Movie Properties 57
Table 9-1 Input types supported by Apple-supplied media handlers 62
Listing 9-1 Displaying a progressively downloaded movie 63

Chapter 10 Matrix Functions 65

Figure 10-1 A point transformed by a 3-by-3 matrix 65
Figure 10-2 The identity matrix 66

Figure 10-3 A matrix that describes a translation operation 66

Figure 10-4 A matrix that describes a scaling operation 66

Figure 10-5 A matrix that describes a rotation operation 67

Figure 10-6 A matrix that describes a scaling and translation operation 67

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Basics

This book introduces you to some of the basic concepts you need to understand when working with QuickTime
movies.

Note: This book replaces four previously separate Apple documents: “Movie Toolbox: Editing,” “Movie
Toolbox: Application-Defined Functions,” “Movie Toolbox: Data Types,” and “Movie Toolbox: Saving Movies.”

You need to read this book if you are going to work with QuickTime movies.

Organization of This Document

This book consists of the following chapters:

Editing Movies (page 11) describes the functions of the movie toolbox that your application will use to
edit movies and tracks.

Saving Movies (page 19) tells you how to save movies into movie files.

Overview of Application-Defined Functions (page 23) describes the application-defined functions used
with the QuickTime Movie Toolbox.

Working With Application-Defined Functions (page 27) shows how to implement functions that are
invoked during specific operations. A sample cover function is provided.

Creating Tracks and Media Structures (page 29) describes the functions your application can use to
create and dispose of tracks and media structures.

Working With Media Samples (page 35) describes the functions your application can use to get
information about a movie's sample data.

Understanding QuickTime Atoms (page 39) discusses QuickTime atoms, a basic structure for storing
information in QuickTime, and also describes the functions used to create, dispose of, read from, and
store to QuickTime Atom Containers.

Timecode Media Handler Functions (page 51) discusses the functions and structures that allow you to
use the timecode media handler, and tells you how to create a timecode track.

Locating Tracks, Saving Movies, and Modifying Movie Properties (page 57) discusses functions you can
use to locate a movie's tracks and media structures, save movies, capture and restore the edit state of a
movie, and modify movie properties.

Matrix Functions (page 65) describes the functions that allow you to work with transformation matrices.

Movie Toolbox Constants, Data Types, and Functions (page 69) describes some of the constants, data
types, and functions in the Movie Toolbox that you can use in your application development.

Organization of This Document 9
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Basics

See Also

The following Apple books cover related aspects of QuickTime programming:

= QuickTime Overview gives you the starting information you need to do QuickTime programming.

= QuickTime Movie Creation Guide describes some of the different ways your application can create a new
QuickTime movie.

= QuickTime Movie Internals Guide covers some of the technology present inside QuickTime movies, including
time management, modifier tracks, access keys, posters, and movie and file previews.

= QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

= QuickTime API Reference provides encyclopedic details of all the functions, callbacks, data types and
structures, atom types, and constants in the QuickTime API.

10 See Also
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Editing Movies

This chapter describes the functions of the movie toolbox that your application will use to edit movies and
tracks. You will need to read this chapter if your application provides editing functions beyond those that
are built into the movie controller.

The Movie Toolbox provides a set of high-level functions that allow you to edit movies. This chapter describes
these high-level editing functions. These functions work with a movie’s current selection. The current selection
is defined by a starting time and a duration.

The Movie Toolbox also provides functions that allow you to edit movie segments. Those functions are
described in Low-Level Movie-Editing Functions (page 16).

The movies created by these functions contain references to the data in the source movie. Because the new
movies contain references and not data, they are small and easily moved to and from the scrap. If you delete
the movie that contains the data, the data references in the new movies are no longer valid and the new
movies cannot be played. Therefore, before you delete the original movie, you should call the F1attenMovie
function for each of the new movies. This function copies the data into each of the new movies, eliminating
the data references.

Note that the Movie Toolbox does not always copy empty tracks from the source movie to the movies that
are created by these functions. Specifically, the Movie Toolbox preserves the empty tracks until you paste or
add the selection into the destination movie. At that time, the Movie Toolbox removes the empty tracks from
the selection. In addition, if a track in the source movie has trailing empty space, the Movie Toolbox removes
that empty space from the track when it is copied into the new movie. Therefore, if you want to add a segment
beyond the end of a movie, you insert the space when you insert the new segment using the
InsertMovieSegment function.

The Movie Toolbox allows you to paste different data types into a movie. For example, QuickDraw pictures
and standard sound data can be pasted directly into a movie. If you are using the movie controller component,
you do not need to use these functions to paste different data types into a movie. If you are calling the Movie
Toolbox directly to do editing, you should use the functions described in this section.

Handling Media Sample References

You could always use GetMediaSampleReference to access samplesin a movie one at a time. But QuickTime
also has GetMediaSampleReferences (note that this is the plural form of the GetMediaSampleReference
function), which you can use to obtain information about groups of samples. In addition you can use
AddMediaSampleReferences to work with groups of samples that have already been added to a movie.

Handling Media Sample References n
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

Manipulating Media Input Maps

The Movie Toolbox contains two functions for maintaining media input maps: GetMediaInputMap and
SetMedialnputMap.

Each track has particular attributes such as size, position, and volume associated with it. The media input
map of that track describes where the variable parameters are stored so that modifier tracks know where to
send their data. When a track is copied, its input map is also copied. CopyTrackSettings also transfers the
media input map.

Undo for Movies

The Movie Toolbox provides functions that allow you to capture and restore the edit state of a movie. An
edit state contains information that completely defines a movie's content at the time you create the edit
state. It is, in essence, a checkpoint in the edit session. You can manage a movie’s edit states in order to
implement an undo capability for editing movies. For example, you can capture a movie's edit state before
performing an editing operation, such as a cut, and later restore the old state. You can have several movie
edit states obtained at different times during an editing session, and restore to any one of them at any time.
In this manner, you can provide a multilevel undo capability. This section describes the Movie Toolbox
functions that work with edit states.

Note that a movie’s edit state does not save everything about a movie. Most important, the edit state does
not contain information about the movie’s spatial characteristics. For example, the edit state does not store
the current boundary rectangle or clipping region. Consequently, edit states are best suited to supporting
undo operations involving movie content, including track creation and removal. You can use other Movie
Toolbox functions to support undo operations for movie characteristics. See Functions That Modify Movie
Properties (page 12) to learn more about these functions.

You can use the NewMovieEditState function to capture a movie's edit state. Use the UseMovieEditState
to restore the movie to its condition according to a previous edit state. Your application must dispose of an
edit state by calling the DisposeMovieEditState function. You must dispose of a movie's edit states before
you dispose of the movie.

Functions That Modify Movie Properties

12

The Movie Toolbox provides a number of functions that allow applications to edit existing movies or to create
the contents of new movies. This section describes those functions. It has been divided into the following
topics:

= Working With Display Characteristics (page 13) describes a number of functions that allow you to work

with the display characteristics of movies

= Working With Sound Volume (page 14) discusses the functions that your application can use to work
with the sound volume of a movie or a track

m Locating a Movie’s Tracks and Media Structures (page 14) describes the functions that allow your
application to find tracks that are associated with a movie

Manipulating Media Input Maps
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

= Determining Movie Creation and Modification Time (page 15) discusses the functions that you can use
to determine when a movie was created or last changed

Working With Display Characteristics

The Movie Toolbox provides a number of functions that allow your application to determine and change the
display characteristics of movies and tracks. These functions are discussed in the following sections. Before
using any of these functions, you should be familiar with the way in which the Movie Toolbox displays movies.

You can use the SetMovieGWorld and GetMovieGWor1d functions to work with a movie’s graphics world.

Your application can work with a movie’s matrix by calling the GetMovieMatrix and SetMovieMatrix
functions, and it can work with a track’s matrix with the GetTrackMatrixand SetTrackMatrix functions.
Then you can perform operations on matrices with the Movie Toolbox’s matrix functions.

The following functions affect the displayed movie and its tracks in the final display coordinate system. The
SetMovieGWorld and GetMovieGWor1d functions let you work with a movie's display destination. The
GetMovieBox and SetMovieBox functions allow you to work with a movie’s boundary rectangle and its
associated transformations. Alternatively, you can use the GetMovieMatrixand SetMovieMatrix functions
to work directly with a movie’s transformation matrix. The GetMovieDisplayBoundsRgn function determines
a movie’s boundary region at the current movie time. On the other hand, the
GetMovieSegmentDisplayBoundsRgn function determines a movie’s boundary region over a specified
time segment. You can use the GetMovieDisplayClipRgn and SetMovieDisplayC1ipRgn functions to
work with a movie’s display clipping region.

The GetTrackDisplayBoundsRgn and GetTrackSegmentDisplayBoundsRgn functions determine a
track’s final boundary region. You can use the GetTracklLayer and SetTrackLayer functions to control
the drawing order of tracks within a movie.

A number of functions affect a movie's display boundaries before any display transformations. These functions
operate in the movie’s display coordinate system. You can use the GetMovieC1lipRgnand SetMovieClipRgn
functions to work with a movie’s clipping region; that is, the clipping region that is applied before the movie
display transformation. Use the GetMovieBoundsRgn function to determine a movie's boundary region at
the current movie time.

Use the GetTrackMovieBoundsRgn function to work with a track’s boundary region after matrix
transformations have placed the track into the movie’s display system. The SetTrackMatrix and
GetTrackMatrix functions let you define a track’s matrix transformations.

The Movie Toolbox provides several functions that affect a track’s display boundaries. These functions operate
in the track’s display coordinate system before any other display transformations are applied. The
GetTrackDimensions and SetTrackDimensions functions allow you to establish a track’s coordinate
system and to establish a track’s source rectangle.

Functions That Modify Movie Properties 13
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

14

CHAPTER 1
Editing Movies

Note: A track’s source rectangle defines the coordinate system of the track. You specify the dimensions of
the rectangle by providing the coordinates of the lower-right corner of the rectangle. The Movie Toolbox
sets the upper-left corner to (0,0) in the track’s coordinate system.

You can use the GetTrackBoundsRgn function to determine a track’s boundary region. The
GetTrackClipRgnand SetTrackC1ipRgn functions let you work with a track’s clipping region. You can
use the GetTrackMatte and SetTrackMatte functions to establish a track’s matte. The DisposeMatte
function allows you to dispose of a matte once you are finished with it.

Working With Sound Volume

The Movie Toolbox allows you to set the sound volume of movies and tracks. Track volumes allow tracks
within a movie to have different volumes. A track’s volume is scaled by the movie's volume to produce the
track’s final volume. Furthermore, the movie’s volume is scaled by the sound volume that is returned by the
Sound Manager’s GetSoundVo1 routine. Thus, the user can control the overall volume from the Sound control
panel.

Volume values range from -1.0 to 1.0. Higher values translate to louder volume. Negative values indicate
muted volume. That is, the Movie Toolbox does not play any sound for movies or tracks with negative volume
settings, but the original volume level is retained as the absolute value of the volume setting. Therefore, if
you want to toggle the current state of the volume, you can invert the sign of the current volume setting,
as shown here:

SetMovieVolume (theMovie, GetMovieVolume(theMovie));
You can use the GetMovieVolume and SetMovieVolume functions to work with a movie's volume.

The GetTrackVolume and SetTrackVolume functions allow you to work with a track’s volume.

Locating a Movie's Tracks and Media Structures

The Movie Toolbox provides a set of functions that help your application locate a movie's tracks and media
structures. This section describes these functions.

The Movie Toolbox identifies a movie’s tracks in two ways. First, every track in a movie has a unique ID value.
This ID value is unique throughout the life of a movie, even after it has been saved. That is, no two tracks of
a movie ever have the same ID, and no ID value is ever reused. Second, a movie’s current tracks may be
identified by their index value. Index values always range from 1 to the number of tracks in the movie. Track
indexes provide a convenient way to access each track of a movie.

There are several functions that allow you to find a movie's tracks. You can use the GetMovieTrackCount
function to determine the number of tracks in a movie. Use the GetMovieTrack function to obtain the track
identifier for a specific track, given its ID. The GetMovieIndTrack function lets you obtain a track’s identifier,
given its track index.

You can obtain a track’s ID value given its track identifier by calling the GetTrackID function.

You can determine the movie that contains a track by calling the GetTrackMovie function.

Functions That Modify Movie Properties
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

The GetTrackMedia function enables you to find a track’s media. Conversely, you can find the track that
uses a media by calling the GetMediaTrack function.

Determining Movie Creation and Modification Time

The Movie Toolbox maintains two timestamps in every movie, track, and media. One timestamp, the creation
date, indicates the date and time when the item was created. The other, the modification date, contains the
date and time when the item was last changed and saved. The timestamp value is in the same format as
Macintosh file system creation and modification times; that is, the timestamp indicates the number of seconds
since midnight, January 1, 1904.

The Movie Toolbox provides a number of functions that allow your application to retrieve the creation and
modification date information from movies, tracks, and media structures.

You can usethe GetMovieCreationTimeand GetMovieModificationTimefunctionstoworkwith movie
creation and modification dates.

You canusethe GetTrackCreationTimeand GetTrackModificationTime functions to retrieve a track’s
creation and modification dates.

Your application can call the GetMediaCreationTime and GetMediaModificationTime functions to get
a media’s creation and modification dates.

Editing Tracks

The Movie Toolbox provides a number of functions that allow your application to perform editing operations
on tracks. These functions work with track segments (pieces of a track that are defined by a starting time
and duration) and therefore give you a great deal of control over the editing process. These functions are
similar to the low-level editing functions for movies that were described earlier in this chapter. However,
these functions may copy movie data, if required by the operation.

When you edit a track you may change the duration of the movie that contains that track.
The CopyTrackSettings function lets you copy certain important settings from one track to another.

You can use the InsertTrackSegment function to copy a segment from one track to another, by reference
or by moving data, or to copy a segment within a track. The InsertTrackEmptySegment function allows
you to insert an empty segment into a track.

You can use the InsertMedialntoTrack function to insert a media into a track.
Your application can delete a segment from a track by calling the DeleteTrackSegment function.

You can change a segment’s duration by calling the ScaleTrackSegment function. This function stretches
or shrinks the segment to accommodate a specified duration.

You can use the GetTrackEditRate function to determine the rate of the track edit of a specified track at
an indicated time.

Editing Tracks 15
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

Undo for Tracks

The Movie Toolbox provides functions that allow you to capture and restore the edit state of a track. As with
the functions that manipulate a movie’s edit state, you can manage a track’s edit states in order to implement
an undo capability for track editing. For example, you can capture a track’s edit state before performing an
editing operation, such as a cut, and later restore the old state. You can have several track edit states obtained
at different times during an editing session, and you can restore to any one of them at any time. In this
manner, you can provide a multilevel undo capability. This section describes the Movie Toolbox functions
that work with track edit states.

Note that a track’s edit state does not save everything about the track. Most important, the edit state does
not contain information about track spatial characteristics. For example, the edit state does not store the
current clipping region. Consequently, edit states are best suited to supporting undo operations involving
track content. You can use other Movie Toolbox functions to support undo operations for track characteristics.
See Functions That Modify Movie Properties (page 12) to learn more about these functions.

You can use the NewTrackEditState function to capture a track’s edit state. Use the UseTrackEditState
function to restore the track to its condition according to a previous edit state. Your application can dispose
of an edit state by calling the DisposeTrackEditState function.

Selection and Scrap Functions

To get and change a movie’s current selection, your application can call the GetMovieSelection and
SetMovieSelection functions.

Your application can work with a movie’s current selection by calling the CutMovieSelection,
CopyMovieSelection, PasteMovieSelection, ClearMovieSelection,and AddMovieSelection
functions.

The PutMovieOnScrap and NewMovieFromScrap functions enable your application to work with movies
that are on the scrap.

The IsScrapMovie function examines the system scrap to determine whether it can translate any of the
data into a movie. The PasteHandleIntoMovie takes the contents of a specified handle, together with its
type, and pastes it into a movie. PutMovieIntoTypedHandle takes a movie (or a single track from within
a movie) and converts it into a handle.

Low-Level Movie-Editing Functions

16

The Movie Toolbox provides a number of functions that allow your application to perform low-level editing
operations on movies. These functions work with movie segments (pieces of a movie that are defined by a
starting time and duration) and therefore give you a great deal of control over the editing process. These
functions never copy the movie data; rather, they work with references to the movie’s data. Editing

Movies (page 11) discusses the Movie Toolbox functions that allow you to edit movies by working with the
current selection.

You can use the CopyMovieSettings function to copy certain important settings from one movie to another.

Undo for Tracks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

You can use the InsertMovieSegment function to copy a segment from one movie to another. Use the
InsertMovieEmptySegment function to insert an empty segment into a movie.

Your application can delete a segment from a movie by calling the DeleteMovieSegment function.

You can change a segment’s duration by calling the ScaleMovieSegment function. This function stretches
or shrinks the segment to accommodate a specified duration.

Summary of Editing Functions

This section lists the functions described earlier in this chapter.

= Editing Movies
—futMovieOnScrap
HewMovieFromScrap
dsScrapMovie
JetMovieSelection
GetMovieSelection
CQutMovieSelection
GopyMovieSelection
[RasteMovieSelection
AddMovieSelection
CGlearMovieSelection
RasteHandlelntoMovie
[RutMovielntoTypedHandle
RasteHandlelntoMovie

= Undo for Movies
NewMovieEditState
WseMovieEditState
CDisposeMovieEditState

= Low Level Movie Editing Functions
nsertMovieSegment
dnsertEmptyMovieSegment
[DeleteMovieSegment
—3caleMovieSegment
GopyMovieSettings

Summary of Editing Functions 17
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
Editing Movies

= Editing Tracks
nsertTrackSegment
nsertEmptyTrackSegment
dnsertMedialntoTrack
[DeleteTrackSegment
JcaleTrackSegment
GopyTrackSettings
GetTrackEditRate
AddEmptyTrackToMovie

= Undo for Tracks
CNewTrackEditState
WseTrackEditState
DisposeTrackEditState

= Locating a Movie's Tracks and Media Structures
GetMovieTrackCount
GetMovielndTrack
GetMovieTrack
CGetTrackID
GetTrackMovie
CGetTrackMedia
GetMediaTrack
GetMovielndTrackType

You can find details of these functions in the QuickTime API Reference.

18 Summary of Editing Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Saving Movies

This chapter briefly describes saving movies into movie files. Saving a movie into a new movie file and saving
movie contents to an existing movie file are both discussed.

Your application can gain access to existing movies with either the NewMovieFromFile function or the
NewMovieFromDataFork function. Once you have loaded the movie, your application uses the functions
that are described in this section to save any changes you have made to the movie.

Movie File Functions

The Movie Toolbox provides a set of functions that allow your application to create, access, and convert
movie files, which files contain data for QuickTime movies. You can also use the Movie Toolbox to load movies
into memory, in preparation for working with the movie. These functions differ based on where the movie
is stored.

The following functions are used when saving a movie to a file.

m HasMovieChanged

m (ClearMovieChanged

m AddMovieResource

m UpdateMovieResource
m RemoveMovieResource
m PutMovielntoHandle

m FlattenMovie

m FlattenMovieData

m NewMovieFromDataFork

m PutMovielntoDataFork

Before your application can play a movie, you must first open the file that contains the movie. Your application
can use the OpenMovieFile function to open a movie file. Once you are done with the file, your application
releases the file by calling the C1oseMovieFi1e function. Your application can create and open a new movie
file by calling the CreateMovieFile function. Your application can delete a movie file by calling the
DeleteMovieFile function.

You can use the NewMov i e function to create a new empty movie. If your application is loading a movie from
an existing file, use either the NewMovieFromFile function or the NewMovieFromDataFork function. The
NewMovieFromFile function works with the file reference number you obtain from the OpenMovieFile

function. The NewMovieFromDataFork function works with movies stored in your document file's data fork.
Your application can then use the functions described in Saving Movies (page 19) to load and store movies.

Movie File Functions 19
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Saving Movies

You can use the ConvertFileToMovieFile function to specify an input file and convert it to a movie file.
The ConvertMovieToFi1e takes a specified movie (or a single track within that movie) and converts it into
an output file.

You can use the AddMovieResource function to add a new movie resource to a movie file. Your application
can also use this function to save a movie that it created. You can use the UpdateMovieResource function
to replace an existing movie resource in a movie file. You can remove a movie resource by calling the
RemoveMovieResource function.

The movie resources that your application creates with the AddMovieResource and UpdateMovieResource
functions may contain references to movie data. These references identify the data that constitute the movie.
However, the movie data can be stored outside of the movie file. If you want to create a movie file that
contains all of its movie data, use the FlattenMovie or FlattenMovieData function. These functions can
also be used to store the movie data in the movie file’s data fork, or to interleave the media data to optimize
performance.

The PutMovieIntoHand1e function places a QuickTime movie into a handle. You can then convert the
movie into specialized data formats.

The HasMovieChanged and ClearMovieChanged functions allow your application to work with the movie
changed flag that is maintained by the Movie Toolbox. You can use this flag to determine whether a movie
has been changed.

The movie changed flag indicates whether you have changed the movie. Such actions as editing the movie,
adding samples to a media, or changing a data reference cause the flag to indicate that the movie has
changed. There are several operations that the movie changed flag does not reflect, including changing the
volume, rate, or time settings for the movie. These settings change frequently when a movie is played. Your
application must monitor these settings itself.

The Movie Toolbox also supplies functions for storing and retrieving movies that are stored in the data fork
of a file. These functions provide robust data reference resolution and improve low memory performance.
The NewMovieFromDataFork function enables you to retrieve a movie that is stored anywhere in the data
fork of a file. You can use the PutMovieIntoDataFork function to store an atom version of a specified
movie in the data fork of a file.

Once you are finished working with a movie, you should release the resources used by the movie by calling
the DisposeMovie function.

Movie Files

20

The Movie Toolbox allows you to save movies in movie files. Movie files have a file type of 'MooV'Movie
Toolbox. Typically, the movie itself is stored in the resource fork of the movie file. The movie can also be
stored in data fork, for use on systems that do not support resource forks. The movie's data may reside in
the data fork of the movie file, or in other files.

When you create a new movie, you must create a file to contain the movie data. Use the CreateMovieFile
function to create a new movie file. This function returns a file system reference number that you must use
to identify the file to other Movie Toolbox functions. You can add your movie to the file by calling the
AddMovieResource function. When you are done with the file, you close it by calling the CloseMovieFile
function. Your movie is now safely stored in the movie file.

Movie Files
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Saving Movies

If you are working with an existing movie, you must read that movie from a movie file or choose a movie
from the scrap. You first open the movie file by calling the OpenMovieFi1e function. You then load the
movie from that file by calling the NewMovieFromFile function. Alternatively, you can use the
NewMovieFromHandle function. After you have edited the movie, you must store it in your file if you want
to save your changes. If you want to replace the old movie, use the UpdateMovieResource function. If you
want to keep the old movie, create a new movie by calling the AddMovieResource function. A movie file
may contain more than one movie resource. You should then close the movie file by calling the
CloseMovieFile function.

The Movie Toolbox maintains a changed flag for each movie your application loads. You can use this flag to
determine when to save your movie. The Movie Toolbox sets this flag to t rue whenever you make a change
to a movie that should be saved. You can read this flag by calling the HasMovieChanged function. You can
set the flag to false by calling the C1earMovieChanged function.

The Movie Toolbox provides two functions for deleting movies: DeleteMovieFile and
RemoveMovieResource.Use DeleteMovieFile to delete a movie file. Use RemoveMovieResource to
delete a movie from a movie file. Don't use the corresponding standard Macintosh Toolbox routines
(FSpDelete and RmveResourceMovie Toolbox). The Movie Toolbox maintains movie references between
files correctly whereas these routines do not.

The Movie Toolbox allows you to create movie files that contain all of their movie data, rather than containing
references to data in other files. This is often desirable when creating a version of a movie that will be moved
to another computer. You can use the FlattenMovie or FlattenMovieData functions to resolve all of the
data references and create a self-contained movie.

The Movie Toolbox also accommodates operating systems that do not recognize files that contain more than
one fork. You can create a movie file that contains the movie and all of its data in the data fork of the movie
file. You can then use that file on operating systems that do not recognize resource forks. You can use the
FlattenMovieorFlattenMovieData functionsto put the movie in the data fork at the same time it creates
a self-contained movie file. This would be the usual approach when creating a movie on a Macintosh computer
that you want to store on a Unix web server. You can also create a single-fork movie file by calling the
CreateMovieFiTle function with the flag createMovieFileDontCreateResFileMovie Toolbox. This
would be the usual approach when creating movies using QuickTime for Windows.

Your application may allow the user to decide how to save the movie. In this case, you can use a Save As
dialog box similar to the one shown in Figure 2-1. In this dialog box, the user can elect to create a movie file
that contains all of the data for a movie by clicking the “Make movie self-contained” radio button.

Movie Files 21
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Saving Movies

Figure 2-1 A sample movie Save As dialog box
11 Baw @ Hompes = uralkar
i ey Hole
TR ETTE
i RERCE i Deskbon
BRI [Desktap]
i1 e
Mew Tlle naime: Saue

[Fampie Moule | [Cancerl |

[} fare normally [allowdng dependencies)
Extimated 1k stn: 1K

(& Make movle self -contalned
Extirmurbed £l rirs : 363K

22 Movie Files
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Overview of Application-Defined Functions

This section describes the functions your application can provide when interacting with the Movie Toolbox,
including some functions that your application must provide to make use of certain services. These functions
allow you to monitor, customize, and extend the behavior of the Movie Toolbox by executing functions you
create at various points in the operation of the Movie Toolbox.

Progress Functions

Some Movie Toolbox functions can take a long time to execute. For example, creating a movie file that
contains all of its data may be quite an involved process for a movie that has many large media structures.
During these operations, your application should give the user some indication of the progress of the task.
The Movie Toolbox allows you to monitor its progress on long operations with a progress function.

The Movie Toolbox calls your progress function at regular intervals during long operations. The Movie Toolbox
determines whether to call your function based on the duration of the operation; your function will not be
called unnecessarily. When it calls your function, the Movie Toolbox provides information about the operation
that is underway and its relative completion. You can use this information to display an informational dialog
box to the user.

You assign a progress function to a movie by calling the SetMovieProgressProc function. You should
assign your progress function when you open the movie; the Movie Toolbox will call your function when it
is appropriate to do so. One progress function may support more than one movie. When the Movie Toolbox
calls your function, it provides you with the movie identifier so that you can discriminate between various
movies.

Cover Functions

The Movie Toolbox allows your application to perform custom processing whenever one of your movies
covers a screen region or reveals a region that was previously covered. You perform this processing using
cover functions.

There are two types of cover functions: those that are called when your movie covers a screen region, and
those that are called when your movie uncovers a screen region, revealing a region that was previously
covered. You can use a cover function to detect when a movie changes size.

Cover functions that are called when your movie covers a screen region are responsible for erasing the region;
you may choose to save the hidden region in an offscreen buffer. Cover functions that are called when your
movie reveals a hidden screen region must redisplay the hidden region.

The Movie Toolbox sets the graphics world before it calls your cover function. Your function must not change
the graphics world.

Progress Functions 23
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Overview of Application-Defined Functions

The Movie Toolbox provides default cover functions. When your movie uncovers a region, the default function
that is called erases the movie’s image by displaying the graphics port’s background color and pattern. You
can set the port’s characteristics by calling the SetMovieGWor1d function. When your movie covers a region,
the default function that is called does nothing.

Use the SetMovieCoverProcs function to set both types of cover functions.

Error-Notification Functions

The Movie Toolbox lets your application perform custom error notification. Your application must identify
its custom error-notification function to the Movie Toolbox. Error-notification functions are particularly helpful
when you are debugging your program.

The SetMoviesErrorProc function allows you to identify your application’s error-notification function in
the errProc parameter.

Movie Callout Functions

The PTayMoviePreview function plays a movie's preview. You provide a pointer to a movie callout function
in the callOutProc parameter.

The Movie Toolbox calls your movie callout function repeatedly while the movie preview is playing. You can
use this function to stop the preview. If you do not want to assign a function, set the callOutProc parameter
tonil.

File Filter Functions

A file filter function filters the files that are displayed to the user in a dialog box. You specify this function in
the fileFilter parameter of the SFGetFilePreview, StandardGetFilePreview, and
CustomGetFilePreview routines. If this parameteris not nil, SFGetFilePreview calls the function for
each file to determine whether to display the file to the user. The SFGetFilePreview function supplies you
with the information it receives from the File Manager’s GetFilelnfo routine.

Custom Dialog Functions

24

A dialog hook function handles user selections in a dialog box. A custom dialog function lets you support
the template in the custom dialog template that you specified with the CustomGetFilePreview routine. This
function corresponds to the File Manager’s CustomGetFile routine.

You specify your dialog function in the dlgHook parameter of CustomGetFilePreview. You can use this
parameter to support a custom dialog box function you have supplied by specifying a dialog template
resource in your resource file. You specify the dialog template’s resource ID with the d1g1D parameter. If
you are not supplying a custom dialog function, set this parameter to ni 1.

Error-Notification Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Overview of Application-Defined Functions

Modal-Dialog Filter Functions

The CustomGetFilePreview routine presents an Open dialog box to the user and allows the user to view
file previews. This function differs from StandardGetFilePreview in that you can provide a custom dialog
template and functions to support your template. This function corresponds to the existing CustomGetFile
routine.

You specify your modal-dialog filter function in the fi1terProc parameter. Your modal-dialog filter function
gives you greater control over the interface presented to the user.

Note: A modal-dialog filter function controls events closer to their source by filtering the events received
from the Event Manager. The Standard File Package itself contains an internal modal-dialog filter function
that maps keypresses and other user input onto the equivalent dialog box items. If you also want to process
events at this level, you can supply your own filter function.

Standard File Activation Functions

The CustomGetFilePreviewfunction presents an Open dialog box to the user and allows the user to view
file previews. This function differs from the StandardGetFilePreview function in that you can provide a
custom dialog template and functions to support your template. The CustomGetFilePreview function
corresponds to the File Manager’s CustomGetF1ile routine.

You specify your activation function in the activateProc parameter. An activation function controls the
highlighting of any items whose shape is known only by your application.

Callback Event Functions

The Cal1MelWhen function schedules a callback event. You specify the callback event in the cal1BackProc
parameter.

Text Functions

You can use the MyTextProc function described in this section to pass a handle to a specified sample containing
formatted text, along with the movie in which the text is being displayed, a pointer to a flag variable, and
your reference constant. You specify the desired operations on the text and return an indication of whether
you want to display the text in the displayF1ag parameter.

Modal-Dialog Filter Functions 25
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Overview of Application-Defined Functions

26 Text Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Working With Application-Defined Functions

The Movie Toolbox allows your application to define functions that are invoked during specific operations.
For example, you can create a progress function that monitors the Movie Toolbox’s progress on long
operations, and you can create a cover function that allows your application to perform custom display
processing.

Sample Cover Functions

Listing 4-1 shows two sample cover functions. Whenever a movie covers a portion of a window, the
MyCoverProc function removes the covered region from the window’s clipping region. When a movie
uncovers a screen region, the MyUncoverProc function invalidates the region and adds it to the window’s
clipping region. By invalidating the region, this function causes the application to receive an update event,
informing the application to redraw its window. The InitCoverProcs function initializes the window’s
clipping region and installs these cover functions.

Listing 4-1 Two sample movie cover functions

pascal OSErr MyCoverProc (Movie aMovie, RgnHandle changedRgn,
long refcon)
{
CGrafPtr mPort;
GDHandle mGD ;

GetMovieGWorld (aMovie, &mPort, &mGD);
DiffRgn (mPort->clipRgn, changedRgn, mPort->clipRgn);
return nokrr;
}
pascal OSErr MyUnCoverProc (Movie aMovie, RgnHandle changedRgn,
long refcon)
{
CGrafPtr mPort, curPort;
GDHandTe mGD, curGD;

GetMovieGWorld (aMovie, &mPort, &mGD);

GetGWorld (&curPort, &curGD);

SetGWorld (mPort, mGD);

InvalRgn (changedRgn);

UnionRgn (mPort->clipRgn, changedRgn, mPort->clipRgn);

SetGWorld (curPort, curGD);
return nokrr;
}

void InitCoverProcs (WindowPtr aWindow, Movie aMovie)
{
RgnHandle displayBounds;

Sample Cover Functions 27
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

28

CHAPTER 4
Working With Application-Defined Functions

GrafPtr curPort;

displayBounds = GetMovieDisplayBoundsRgn (aMovie);
if (displayBounds == nil) return;

GetPort (&curPort);

SetPort (aWindow);

ClipRect (&aWindow->portRect);

DiffRgn (aWindow->clipRgn, displayBounds, aWindow->cTipRgn);
DisposeRgn(displayBounds);

SetPort (curPort);

SetMovieCoverProcs (aMovie, &MyUnCoverProc, &MyCoverProc, 0);

Sample Cover Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

This book describes the functions your application can use to create and dispose of tracks and media structures.
These functions are used when creating movies or when editing movies at the track level.

m NewMovieTrack
m DisposeMovieTrack
m NewTrackMedia

m DisposelrackMedia

The Movie Toolbox provides several functions that allow your application to create new movie tracks and
media structures and to dispose of existing tracks and media structures. You use these functions when you
are creating a new movie or when you are editing an existing movie.

You can use the NewMovieTrack function to create a new track for a specified movie. Conversely, you can
use the DisposeMovieTrack function to dispose of an existing track.

Your application can create a new media for a track by calling the NewTrackMedia function. You can use
the DisposeTrackMedia function to dispose of an existing media.

Working With Track References

Track references allow you to relate tracks to one another. For example, this can help you identify the text
track that contains the subtitles for a movie’s audio track and relate that text track to a particular audio track.

About Track References

Although QuickTime has always allowed the creation of movies that contain more than one track, it has not
been able to specify relationships between those tracks. Track references are a new feature of QuickTime
that allow you to relate a movie’s tracks to one another. The QuickTime track-reference mechanism supports
many-to-many relationships. That is, any movie track may contain one or more track references, and any
track may be related to one or more other tracks in the movie.

Track references can be useful in a variety of ways. For example, track references can be used to relate
timecode tracks to other movie tracks. (See Timecode Media Handler (page 30) for more information about
timecode tracks.) You might consider using track references to identify relationships between video and
sound tracks: identifying the track that contains dialog and the track that contains background sounds, for
example. Another use of track references is to associate one or more text tracks that contain subtitles with
the appropriate audio track or tracks.

Track references are also used to create chapter lists, as described below.

Working With Track References 29
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

Every movie track contains a list of its track references. Each track reference identifies another, related track.
That related track is identified by its track identifier. The track reference itself contains information that allows
you to classify the references by type. This type information is stored in an 0SType data type. You are free
to specify any type value you want. Note, however, that Apple has reserved all lowercase type values.

You may create as many track references as you want, and you may create more than one reference of a
given type. Each track reference of a given type is assigned an index value. The index values start at 1 for

each different reference type. The toolbox maintains these index values so that they always start at 1 and
count by 1.

Track Reference Functions

This section describes the functions that manipulate track references. Track references define relations
between tracks. For example, a timecode track may be related to several other tracks, or a text track may
contain subtitles for a particular audio track.

m AddTrackReference

m DeleteTrackReference

m SetTrackReference

m GetTrackReference

m GetNextTrackReferenceType

m GetTrackReferenceCount

The AddTrackReference function allows you to relate one track to another. The DeleteTrackReference
function removes that relationship. The SetTrackReference and GetTrackReference functions allow
you to modify an existing track reference so that it identifies a different track. The

GetNextTrackReferenceTypeand GetTrackReferenceCount functions allow you to scan all of a track’s
track references.

Timecode Media Handler

Timecode tracks allow you to store external timecode information, such as SMPTE timecodes, in your QuickTime
movies. QuickTime now provides a new timecode media handler that interprets the data in these tracks.

Chapter Lists

30

A chapter list provides a set of named entry points into a movie, allowing the user to jump to a preselected
point in the movie from a convenient pop-up list.

The movie controller automatically recognizes a chapter list and will create a pop-up list from it. When the
user makes a selection from the pop-up, the controller will jump to the appropriate point in the movie.

Timecode Media Handler
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

Note: If the movie is sized so that the controller is too narrow to display the chapter names, the pop-up list
will not appear.

To create a chapter list, you must create a text track with one sample for each chapter. The display time for

each sample corresponds to the point in the movie that marks the beginning of that chapter. You must also
create a track reference of type 'chap' from an enabled track of the movie to the text track. Itis the 'chap'
track reference that makes the text track into a chapter list. The track containing the reference can be of any
type (audio, video, mpeg, etc.), but it must be enabled for the chapter list to be recognized.

Given an enabled track myVideoTrack, use AddTrackReference to create the chapter reference:

AddTrackReference(myVideoTrack, theTextTrack,
kTrackReferenceChapterList, &addedIndex);

kTrackReferenceChapterlist is defined in Movies. h. It has the value 'chap'.

The text track which constitutes the chapter list does not need to be enabled, and normally is not. If it is
enabled, the text track will be displayed as part of the movie, just like any other text track, in addition to
functioning as a chapter list.

If more than one enabled track includes a 'chap' track reference, QuickTime will use the first chapter list
that it finds.

Working With Data References

This section describes the functions used to work with data references. Media structures point to their actual
sample data using data references. For sound and video media, data references identify the files that contain
the data. Media handlers also use data references in order to manipulate media data.

m AddMediaDataRef
m SetMediaDataRef
m GetMediaDataRef
m (GetMediaDataRefCount

Media structures identify how and where to find their sample data by means of data references. For sound
and video media, data references identify files that contain media data; the media data is stored in the data
forks of these files. Media handlers use these data references in order to manipulate media data. A single
media may contain one or more data references.

Each data reference contains type information that identifies how the reference is specified. Most QuickTime
data references use alias information to locate the corresponding files. The type value for data references
that use aliases is 'alis".

The Movie Toolbox identifies a media’s data references with an index value. Index values always range from
1 to the number of references in the media. Data reference indexes provide a convenient way to access each
reference in a media.

The Movie Toolbox provides a set of functions that allow you to work with data references. This section
describes those functions.

Working With Data References 31
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

You can use the GetMediaDataRef function to retrieve information about a media’s data reference. You
can add a data reference to a media by calling the AddMediaDataRef function. The SetMediaRef function
lets you change which file a specified media associates with its data storage.

Your application can determine the number of data references in a media by calling the
GetMediaDataRefCount function.

Alternate Tracks

QuickTime contains functions your application can use to work with alternate tracks. Alternate tracks are
used to create a single movie that can, for example, play back with different language audio tracks in different
countries, or with different quality audio or video on different model computers.

m SetMovielanguage

m SelectMovieAlternates

m SetAutoTrackAlternatesEnabled
m SetTrackAlternate

m GetTrackAlternate

m SetMedialanguage

m (GetMedialanguage

m SetMediaQuality

m GetMediaQuality

For further information about alternate tracks, see QuickTime Movie Internals Guide.

Editing Tracks

32

The Movie Toolbox provides a number of functions that allow your application to perform editing operations
on tracks. These functions work with track segments (pieces of a track that are defined by a starting time
and duration) and therefore give you a great deal of control over the editing process. These functions are
similar to the low-level editing functions for movies that were described earlier in this chapter. However,
these functions may copy movie data, if required by the operation.

When you edit a track you may change the duration of the movie that contains that track.
The CopyTrackSettings function lets you copy certain important settings from one track to another.

You can use the InsertTrackSegment function to copy a segment from one track to another, by reference
or by moving data, or to copy a segment within a track. The InsertTrackEmptySegment function allows
you to insert an empty segment into a track.

You can use the InsertMedialntoTrack function to insert a media into a track.

Your application can delete a segment from a track by calling the DeleteTrackSegment function.

Alternate Tracks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

You can change a segment’s duration by calling the ScaleTrackSegment function. This function stretches
or shrinks the segment to accommodate a specified duration.

You can use the GetTrackEditRate function to determine the rate of the track edit of a specified track at
an indicated time.

Editing Tracks 33
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Creating Tracks and Media Structures

34 Editing Tracks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Working With Media Samples

This chapter describes the functions your application can use to determine information about a movie’s
sample data, such as the size in bytes of the data in a movie, track, or media, or the number of samples in a
media, or the media’s sample description.

m GetMovieDataSize

m GetTrackDataSize

m GetMediaDataSize

m GetMediaSampleCount

m GetMediaSampleDescriptionCount
m GetMediaSampleDescription

m SetMediaSampleDescription

m MediaTimeToSampleNum

m SampleNumToMediaTime

The Movie Toolbox provides a number of functions that allow applications to determine information about
a movie's sample data. This section discusses these functions. See Adding Samples to Media Structures (page
35) for information about functions that allow you to retrieve sample data from a media.

Your application can use the GetMovieDataSizeMovie, GetTrackDataSizeMovie, and GetMediaDataSize
functions to determine the size, in bytes, of the data stored in a media, movie, or track.

You can use the GetMediaSampleDescriptionCount and GetMediaSampleDescription functions to

retrieve a media’s sample descriptions. The SetMediaSampleDescription function enables you to change
the contents of a particular sample description associated with a media. The GetMediaSampleCount function
determines the number of samples in a media. The SampleNumToMediaTime andMediaTimeToSampleNum
functions allow you to convert from a time value to a sample number and vice versa. You can use the functions
described in Finding Interesting Times (page 36) to locate specific samples in a media.

Adding Samples to Media Structures

This section describes several functions your application can use to directly manipulate media samples. Note
that GetMediaSampleReferences and AddMediaSampleReferences are plural forms added to
GetMediaSampleReference and AddMediaSampleReference. They let you work with multiple samples
at once, which is generally more efficient.

m BeginMediakEdits
m EndMediakdits
m AddMediaSample

Adding Samples to Media Structures 35
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Working With Media Samples

m AddMediaSampleReference

m GetMediaSample

m GetMediaSampleReference

m GetMediaSampleReferences

m AddMediaSampleReferences

m SetMediaDefaultDataRefIndex
m SetMediaPreferredChunkSize
m GetMediaPreferredChunkSize

This section describes Movie Toolbox functions that directly manipulate media samples. These functions are
used only by applications that create movies or add data to existing movies.

You add samples to a media by calling the AddMediaSamp1e function. You can indicate that the sample to
be added is not a sync sample. Sync samples do not rely on preceding frames for content. Some compression
algorithms conserve space by eliminating duplication between consecutive frames in a sample. In image
data, sync samples are referred to as key frames.

You can obtain the data in a media sample by calling the GetMediaSamp1e function. If you are going to add
samples to a media, you must do so within a media-editing session. You start a media-editing session by
calling the BeginMediaEdits function. Once you have finished adding samples to the media, you end the
editing session by calling the EndMediaEdits function.

Once you have added samples to a media, you can work with references to those samples by calling the
AddMediaSampleReference and GetMediaSampleReference functions. You do not have to be in a
media-editing session to use these functions.

Finding Interesting Times

36

The Movie Toolbox provides a set of functions that help you locate samples in movies, tracks, and media
structures. These functions are based on the concept of “interesting times.” An interesting time refers to a
time value in a movie, track, or media that meets certain search criteria. You specify the search criteria to the
Movie Toolbox. The Movie Toolbox then scans the movie, track, or media, and locates time values that meet
those search criteria.

You can use these functions to search through image sequences. For example, you may want to locate each
frame in an image sequence. Or you may be more interested in key frames, especially if you are trying to
optimize display performance. In image data, sync samples are referred to as key frames. An easy way to
determine whether a movie has been edited is to look for track edits in the movie data. You may also be
interested in searching for samples in a movie's media. If you set the appropriate search criteria, the Movie
Toolbox locates the appropriate frames for you. You need the functions described in this section because
QuickTime doesn't have a fixed rate. Each frame can have its own duration.

The Movie Toolbox identifies an interesting time by specifying its starting time and duration. The starting

time indicates the time in the movie, track, or media where the search criteria are met. The duration indicates
the length of time during which the search criteria remain in effect. For example, if you are looking for samples
in a media, the start time would indicate the beginning of the sample, and the duration would indicate the

Finding Interesting Times
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Working With Media Samples

length of time to the next sample. In this case, you could find the next media sample by adding the duration
to the start time. These duration values are always positive; you determine the direction of the search by
setting the sign of the rate value you supply to the functions.

Note that movie interesting times are defined in the scope of the movie as a whole. As a result, one interesting
time ends when another interesting time starts in any track in the movie. For example, if you are looking for
key frames in a movie, the duration value from one interesting time tells you when the next key frame starts.
However, that second key frame may be in a different track in the movie. Therefore, the duration of the
interesting time does not necessarily correspond to the duration of the key frame.

You can use the GetMovieNextInterestingTime function to locate times of interest in a movie. The
GetTrackNextInterestingTime function lets you work with tracks. Use the
GetMediaNextInterestingTime function to locate samples in a media.

Working With Movie User Data

Each movie, track, and media can contain a user data list, which your application can use in any way you
want. A user data list contains all the user data for a movie, track, or media. Each user data list may contain
one or more user data items.

The functions your application can use to work with movie user data are listed below. Each movie, track and
media can contain a user data list, which can be used for any purpose you like.

m (GetMovieUserData

m GetTrackUserData

m (GetMediaUserData

m GetNextUserDataType
m CountUserDataType

m AddUserData

m GetUserData

m RemoveUserData

m AddUserDataText

m GetUserDataText

m RemoveUserDataText
m SetUserDataltem

m GetUserDataltem

m NewUserData

m DisposeUserData

m PutUserDatalntoHandle

m NewUserDataFromHandle

Working With Movie User Data 37
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Working With Media Samples

Each user data item carries a type identifier. This type is stored in a long integer. Apple has reserved all
lowercase user data type values. You are free to create user data type values using uppercase letters. Apple
recommends using type values that begin with the copyright symbol.

38 Working With Movie User Data
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Understanding QuickTime Atoms

This chapter discusses QuickTime atoms, a basic structure for storing information in QuickTime. It also describes
the functions used to create, dispose of, read from, and store to QuickTime atom containers. The QT atom is
an enhancement of the existing atom data structure. Most QuickTime data structures (movies, tracks, media)
are built of atoms. Newer QuickTime data structures (timecode tracks, sprites) are implemented using QT
atoms.

Atom Structures and IDs

A QT atom container is a basic memory structure for storing information in QuickTime. You can use a QT
atom container to construct arbitrarily complex hierarchical data structures. You can think of a newly-created
QT atom container as the root of a tree structure that contains no children. A QT atom container contains
QT atoms (Figure 7-1). Each QT atom contains either data or other atoms. If a QT atom contains other atoms,
it is a parent atom and the atoms it contains are its child atoms. If a QT atom contains data, it is called a leaf

atom.
Figure 7-1 QT atom container with parent and child atoms
QT atom
contaimer
Parant atom
Ao By pa | Alam typea
Atom ID | AtomID
= ,
s Alom data l
ﬂ {
Child atoms
Atom type Atom type
Atorn 1D Atom D
7 Alom data
ﬁ {
Atom Structures and IDs 39

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

Each QT atom has an offset that describes the atom'’s position within the QT atom container. In addition,
each QT atom has a type and an ID. The atom type describes the kind of information the atom represents.
The atom ID is used to differentiate child atoms of the same type with the same parent; an atom’s ID must
be unique for a given parent and type. In addition to the atom ID, each atom has a 1-based index that
describes its order relative to other child atoms of the same parent. You can uniquely identify a QT atom in
three ways:

m by its offset within its QT atom container
m by its parent atom, type, and index

m by its parent atom, type, and ID

You can store and retrieve atoms in a QT atom container by index, ID, or both. For example, to use a QT atom
container as a dynamic array or tree structure, you can store and retrieve atoms by index. To use a QT atom
container as a database, you can store and retrieve atoms by ID. You can also create, store, and retrieve atoms
using both ID and index to create an arbitrarily complex, extensible data structure.

/\ Warning: Since QT atoms are offsets into a data structure, they can be changed during editing operations
€5 on QT atom containers, such as inserting or deleting atoms. For a given atom, editing child atoms is
safe, but editing sibling or parent atoms invalidates that atom’s offset.

Note: For cross-platform purposes, all data in a QT atom is expected to be in big-endian format.

Figure 7-2 shows a QT atom container that has two child atoms. The first child atom (offset = 10) is a leaf
atom that has an atom type of 'abcd"', an ID of 1000, and an index of 1. The second child atom (offset = 20)
has an atom type of 'abcd', an ID of 900, and an index of 2. Because the two child atoms have the same
type, they must have different IDs. The second child atom is also a parent atom of three atoms.

Figure 7-2 QT atom container example
QT atom
GO irmar
Index= 1 Indexs 2
Offset= 10 | Offsete 20
‘abod' ‘abed
1000 900
g Dem { Indenm 1 indexs 1 Indexs 2
'DITEEII e Cifsetm 40 Offsete 50
"wiord e
| 100 160 1000
"Hello"
40 Atom Structures and IDs

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

The first child atom (offset = 30) has an atom type of 'abcd’, an ID of 100, and an index of 1. It does not
have any children, nor does it have data. The second child atom (offset = 40) has an atom type of 'word",
an ID of 100, and an index of 1. The atom has data, so it is a leaf atom. The second atom (offset = 40) has the
same ID as the first atom (offset = 30), but a different atom type. The third child atom (offset = 50) has an
atom type of 'abcd', an ID of 1000, and an index of 2. Its atom type and ID are the same as that of another
atom (offset = 20) with a different parent.

As a developer, you do not need to parse QT atoms yourself. Instead, you can use the QT atom functions to
create atom containers, add atoms to and remove atoms from atom containers, search for atoms in atom
containers, and retrieve data from atoms in atom containers.

Most QT atom functions take two parameters to specify a particular atom: the atom container that contains
the atom and the offset of the atom in the atom container data structure. You obtain an atom’s offset by
calling either QTFindChi1dByID or QTFindChildByIndex. An atom’s offset may be invalidated if the QT
atom container that contains it is modified.

When calling any QT atom function for which you specify a parent atom as a parameter, you can pass the
constant kParentAtomIsContainer as an atom offset to indicate that the specified parent atom is the
atom container itself. For example, you would call the QTFindChi1dByIndex function and pass
kParentAtomIsContainer constant for the parent atom parameter to indicate that the requested child
atom is a child of the atom container itself.

Creating and Disposing of Atom Containers

Before you can add atoms to an atom container, you must first create the container by calling
QTNewAtomContainer. The code sample shown in Listing 7-1 calls QTNewAtomContainer to create an
atom container.

Listing 7-1 Creating a new atom container

QTAtomContainer spriteData;

OSErr err

// create an atom container to hold a sprite's data
err=QTNewAtomContainer (&spriteData);

When you have finished using an atom container, you should dispose of it by calling the
QTDisposeAtomContainer function. The sample code shown in Listing 7-2 calls QTDisposeAtomContainer
to dispose of the spriteData atom container.

Listing 7-2 Disposing of an atom container

if (spriteData)
QTDisposeAtomContainer (spriteData);

Creating and Disposing of Atom Containers 1
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

Creating New Atoms

42

You can use the QTInsertChild function to create new atoms and insert them in a QT atom container. The
QTInsertChild function creates a new child atom for a parent atom. The caller specifies an atom type and
atom ID for the new atom. If you specify a value of 0 for the atom ID, QTInsertChi1d assigns a unique ID
to the atom.

QTInsertChild inserts the atom in the parent’s child list at the index specified by the index parameter;
any existing atoms at the same index or greater are moved toward the end of the child list. If you specify a
value of 0 for the index parameter, QT InsertChild inserts the atom at the end of the child list.

The code sample in Listing 7-3 creates a new QT atom container and calls QTInsertChild to add an atom.
The resulting QT atom container is shown in Figure 7-3. The offset value 10 is returned in the firstAtom
parameter.

Listing 7-3 Creating a new QT atom container and calling QTInsertChild to add an atom

QTAtom firstAtom;
QTAtomContainer container;

OSErr err
err = QTNewAtomContainer (&container);
if (lerr)

err = QTInsertChild (container, kParentAtomIsContainer, 'abcd',
1000, 1, 0, nil, &firstAtom);

Figure 7-3 QT atom container after inserting an atom

GT atom
contalnes

ndex=1
Cifsat=10

‘abed I
1000 I

The following code sample calls QTInsertChild to create a second child atom. Because a value of 1 is
specified for the index parameter, the second atom is inserted in front of the first atom in the child list; the
index of the first atom is changed to 2. The resulting QT atom container is shown in Figure 7-4.

QTAtom secondAtom;
FailOSErr (QTInsertChild (container, kParentAtomIsContainer, 'abcd',
2000, 1, 0, nil, &secondAtom));

Creating New Atoms
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

Figure 7-4 QT atom container after inserting a second atom
CIT atom
container
Index=1 Indax= 2
Offsate 10 Offtsal= 20
‘ahod ‘abod’
2000 1000

You can call the QTFindChi1dByID function to retrieve the changed offset of the first atom that was inserted,
as shown in the following example. In this example, the QTFindChi1dByID function returns an offset of 20.

firstAtom = QTFindChildByID (container, kParentAtomIsContainer, 'abcd',
1000, nil);

Listing 7-4 shows how the QTInsertChild function inserts a leaf atom into the atom container sprite.
The new leaf atom contains a sprite image index as its data.

Listing 7-4 Inserting a child atom

if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,
kSpritePropertyImagelndex, 1, nil)) == 0)
FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
kSpritePropertyImagelndex, 1, 1, sizeof(short),&imagelndex,
nil));

Copying Existing Atoms

QuickTime provides several functions for copying existing atoms within an atom container. The
QTInsertChildren function inserts a container of atoms as children of a parent atom in another atom
container. Figure 7-5 shows two example QT atom containers, A and B.

Copying Existing Atoms 43
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Understanding QuickTime Atoms

Figure 7-5 Two QT atom containers, A and B
O atom O atom
container A coMainer B
Indess 1 Irdex=1 Index= 2
O sat= 10 Offseta 10 Offsetm 20
‘abed" ‘defg’ il
1000 200 2000

Data

The following code sample calls QTFindChi1dByID to retrieve the offset of the atom in container A. Then,
the code sample calls the QTInsertChildren function to insert the atoms in container B as children of the

atom in container A. Figure 7-6 shows what container A looks like after the atoms from container B have
been inserted.

QTAtom targetAtom;

targetAtom = QTFindChildByID (containerA, kParentAtomIsContainer, 'abcd',
1000, nil);

FailOSErr (QTInsertChildren (containerA, targetAtom, containerB));

Figure 7-6 QT atom container after child atoms have been inserted
QT atom
comainer A
Index=1
Cffsete 10
abed
1000
Inchex= 1 Indexs 2
Offset= 20 Offset= 30
defy’ I hijk’
200 I 2000
Data
44 Copying Existing Atoms

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Understanding QuickTime Atoms

In Listing 7-5,the QTInsertChi1d function inserts a parent atom into the atom container theSamp1e. Then,
the code calls QTInsertChildren to insert the container theSprite into the container theSample. The
parent atom is newSpriteAtomMovie Data Types.

Listing 7-5 Inserting a container into another container

FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
kSpriteAtomType, spritelID, 0, 0, nil, &newSpriteAtom));
FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

QuickTime provides three other functions you can use to manipulate atoms in an atom container. The
QTRepTlaceAtom function replaces an atom and its children with a different atom and its children. You can
call the QTSwapAtoms function to swap the contents of two atoms in an atom container; after swapping,
the ID and index of each atom remains the same. The QTCopyAtom function copies an atom and its children
to a new atom container.

Retrieving Atoms From an Atom Container

QuickTime provides functions you can use to retrieve information about the types of a parent atom’s children,
to search for a specific atom, and to retrieve a leaf atom’s data.

You can use the QTCountChildren0fType and QTGetNextChildType functions to retrieve information
about the types of an atom’s children. The QTCountChildren0fType function returns the number of children
of a given atom type for a parent atom. The QTGetNextChildType function returns the next atom type in
the child list of a parent atom.

You can use the QTFindChildByIndex, QTFindChi1dByID,and QTNextChildAnyType functions to
retrieve an atom. You call the QTFindChi1dByIndex function to search for and retrieve a parent atom’s
child by its type and index within that type.

Listing 7-6 shows the sample code function SetSpriteData, which updates an atom container that describes
a sprite. For each property of the sprite that needs to be updated, SetSpriteData calls
QTFindChildByIndex to retrieve the appropriate atom from the atom container. If the atom is found,
SetSpriteData callsQTSetAtomData to replace the atom’s data with the new value of the property. If the
atom is not found, SetSpriteData calls QTInsertChild to add a new atom for the property.

Listing 7-6 Finding a child atom by index

OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
short *visible, short *layer, short *imagelndex)

{
0SErr err = nokrr;
QTAtom propertyAtom;

// if the sprite's visible property has a new value
if (visible)
{
// retrieve the atom for the visible property --
// if none exists, insert one
if ((propertyAtom = QTFindChildByIndex (sprite,
kParentAtomIsContainer, kSpritePropertyVisible, 1,

Retrieving Atoms From an Atom Container 45
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

46

CHAPTER 7
Understanding QuickTime Atoms

nil)) == 0)

FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
kSpritePropertyVisible, 1, 1, sizeof(short), visible,
nil))

// if an atom does exist, update its data
else
FailOSErr (QTSetAtomData (sprite, propertyAtom,
sizeof(short), visible));
}

//
// handle other sprite properties
//

}

You can call the QTFindCh1i1dByID function to search for and retrieve a parent atom’s child by its type and
ID. The sample code function AddSpriteToSamp1e, shown in Listing 7-7, adds a sprite, represented by an
atom container, to a key sample, represented by another atom container. AddSpriteToSample calls
QTFindChi1dByID to determine whether the atom container theSamp1e contains an atom of type
kSpriteAtomType with the ID spritelDMovie Data Types. If not, AddSpriteToSample calls
QTInsertChild toinsert an atom with that type and ID. A value of 0 is passed for the index parameter to
indicate that the atom should be inserted at the end of the child list. A value of 0 is passed for the dataSize
parameter to indicate that the atom does not have any data. Then, AddSpriteToSample calls
QTInsertChildren toinsert the atoms in the container theSprite as children of the new atom. Fai1If
and Fai10SErr are macros that exit the current function when an error occurs.

Listing 7-7 Finding a child atom by ID

OSErr AddSpriteToSample (QTAtomContainer theSample,
QTAtomContainer theSprite, short spritelD)
{
OSErr err = nokrr;
QTAtom newSpriteAtom;
Faillf (QTFindChildByID (theSample, kParentAtomIsContainer,
kSpriteAtomType, spritelD, nil), paramkErr);
FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
kSpriteAtomType, spritelID, 0, 0, nil, &newSpriteAtom));
FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));
}

Once you have retrieved a child atom, you can call QTNextChildAnyType function to retrieve subsequent
children of a parent atom. QTNextChi1dAnyType returns an offset to the next atom of any type in a parent
atom’s child list. This function is useful for iterating through a parent atom’s children quickly.

QuickTime also provides functions for retrieving an atom’s type, ID, and data. You can call
QTGetAtomTypeAndID function to retrieve an atom’s type and ID. You can access an atom’s data in one of
three ways.

= To copy an atom’s data to a handle, you can use the QTCopyAtomDataToHand1e function.
= To copy an atom’s data to a pointer, you can use the QTCopyAtomDataToPtr function.

m To access an atom’s data directly, you should lock the atom container in memory by calling
QTLockContainerMovie Data Types. Once the container is locked, you can call QTGetAtomDataPtr
to retrieve a pointer to an atom’s data. When you have finished accessing the atom’s data, you should
call the QTUnTockContainer function to unlock the container in memory.

Retrieving Atoms From an Atom Container
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

Modifying Atoms

QuickTime provides functions that you can call to modify attributes or data associated with an atom in an
atom container. To modify an atom’s ID, you call the function QTSetAtomIDMovie Data Types.

You use the QTSetAtomData function to update the data associated with a leaf atom in an atom container.
The QTSetAtomData function replaces a leaf atom’s data with new data. The code sample in Listing 7-8 calls
QTFindChildByIndex to determine whether an atom container contains a sprite’s visible property. If so,
the sample calls QTSetAtomData to replace the atom’s data with a new visible property.

Listing 7-8 Modifying an atom's data

QTAtom propertyAtom;
// if the atom isn't in the container, add it
if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,
kSpritePropertyVisible, 1, nil)) == 0)
FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
kSpritePropertyVisible, 1, 0, sizeof(short), visible, nil))
// if the atom is in the container, replace its data
else
FailOSErr (QTSetAtomData (sprite, propertyAtom, sizeof(short),
visible));

Removing Atoms From an Atom Container

To remove atoms from an atom container, you can use the QTRemoveAtomand QTRemoveChildren functions.
The QTRemoveAtom function removes an atom and its children, if any, from a container. The
QTRemoveChildren function removes an atom’s children from a container, but does not remove the atom
itself. You can also use QTRemoveChildren to remove all the atoms in an atom container. To do so, you
should pass the constant kParentAtomIsContainer for the atom parameter.

The code sample shown in Listing 7-9 adds override samples to a sprite track to animate the sprites in the
sprite track. The sample and spriteData variables are atom containers. The spriteData atom container
contains atoms that describe a single sprite. The samp1e atom container contains atoms that describes an
override sample.

Each iteration of the for loop calls QTRemoveChildren to remove all atoms from both the samp1e and the
spriteData containers. The sample code updates the index of the image to be used for the sprite and the
sprite’s location and calls SetSpriteData, which adds the appropriate atoms to the spriteData atom
container. Then, the sample code calls AddSpriteToSample to add the spriteData atom container to the
sample atom container. Finally, when all the sprites have been updated, the sample code calls
AddSpriteSampleToMedia to add the override sample to the sprite track.

Listing 7-9 Removing atoms from a container

QTAtomContainer sample, spriteData;

/..

// add the sprite key sample

//

// add override samples to make the sprites spin and move
for (i = 1; i <= kNumOverrideSamples; i++)

Modifying Atoms 47
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Understanding QuickTime Atoms

QTRemoveChildren (sample, kParentAtomIsContainer);
QTRemoveChildren (spriteData, kParentAtomIsContainer);

/...

// update the sprite:

// - update the imagelndex

// - update the Tocation

/...

// add atoms to spriteData atom container

SetSpriteData (spriteData, &location, nil, nil, &imagelndex);

// add the spriteData atom container to sample

err = AddSpriteToSample (sample, spriteData, 2);

/...

// update other sprites

/...

// add the sample to the media

err = AddSpriteSampleToMedia (newMedia, sample,
kSpriteMediaFrameDuration, false);

Creating and Modifying QT Atom Containers

The following functions can be used to create and modify QT atom containers:

m (QTNewAtomContainer
m QTInsertChild

m QTInsertChildren
m (QTReplaceAtom

m QTSwapAtoms

m (QTSetAtomID

m (QTSetAtomData

m QTCopyAtom

m (QTLockContainer

m QTGetAtomDataPtr
m QTUnlockContainer
m QTRemoveAtom

m QTRemoveChildren

m (QTDisposeAtomContainer

48 Creating and Modifying QT Atom Containers
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Understanding QuickTime Atoms

Retrieving Atoms and Atom Data

This following functions can be used to retrieve QT Atoms and atom data. Each QT atom contains either data
or other atoms.

m QTGetNextChildType

m QTCountChildrenOfType
m QTFindChildByIndex

m QTFindChildByID

m QTNextChildAnyType

m (QTCopyAtomDataToHandle
m QTCopyAtomDataToPtr

m QTGetAtomTypeAndID

Constants for QT Atom Functions

You can pass the kParentAtomIsContainer constant to QT atom functions that take an atom container
and a parent atom as parameters. When passed in place of the parent atom, this constant indicates that the
parent atom is the atom container itself.

enum {

kParentAtomIsContainer = 0
b

QT Atom

The QTAtom data type represents the offset of an atom within an atom container.

typedef long QTAtom;

QT Atom Type and ID

The QTAtomType data type represents the type of a QT atom. To be valid, a QT atom’s type must have a
nonzero value.

typedef Tong QTAtomType;

The QTAtomID data type represents the ID of a QT atom. To be valid, a QT atom’s ID must have a nonzero
value.

typedef long QTAtomID;

Retrieving Atoms and Atom Data 49
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
Understanding QuickTime Atoms

QT Atom Container

The QTAtomContainer data type is a handle to a QT atom container. Your application never modifies the
contents of a QT atom container directly. Instead, you use the functions provided by QuickTime for creating
and manipulating QT atom containers.

typedef Handle QTAtomContainer;

50 Constants for QT Atom Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Timecode Media Handler Functions

QuickTime includes support for timecode tracks. Timecode tracks allow you to store external timecode
information, such as SMPTE timecodes, in your QuickTime movies. QuickTime provides a timecode media
handler that interprets the data in these tracks. This chapter discusses the functions and structures that allow
you to use the timecode media handler.

About Timecodes

The timecode media handler allows QuickTime movies to store timing information that is derived from the
movie’s original source material. Every QuickTime movie contains QuickTime-specific timing information,
such as frame duration. This information affects how QuickTime interprets and plays the movie.

The timecode media handler allows QuickTime movies to store additional timing information that is not
created by or for QuickTime. This additional timing information would typically be derived from the original
source material; for example, as a SMPTE timecode. In essence, you can think of the timecode media handler
as providing a link between the digital QuickTime-specific timing information and the original analog timing
information from the source material.

A movie's timecode is stored in a timecode track. Timecode tracks contain

= source identification information (this identifies the source; for example, a given videotape)

= timecode format information (this specifies the characteristics of the timecode and how to interpret the
timecode information)

= frame numbers (these allow QuickTime to map from a given movie time, in terms of QuickTime time
values, to its corresponding timecode value)

Apple Computer has defined the information that is stored in the track in a manner that is independent of
any specific timecode standard. The format of this information is sufficiently flexible to accommodate all
known timecode standards, including SMPTE timecoding. The timecode format information provides QuickTime
the parameters for understanding the timecode and converting QuickTime time values into timecode time
values (and vice versa).

One key timecode attribute relates to the technique used to synchronize timecode values with video frames.
Most video source material is recorded at whole-number frame rates. For example, both PAL and SECAM
video contain exactly 25 frames per second. However, some video source material is not recorded at
whole-number frame rates. In particular, NTSC color video contains 29.97 frames per second (though it is
typically referred to as 30 frames-per-second video). However, NTSC timecode values correspond to the full
30 frames-per-second rate; this is a holdover from NTSC black-and-white video. For such video sources, you
need a mechanism that corrects the error that will develop over time between timecode values and actual
video frames.

About Timecodes 51
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Timecode Media Handler Functions

A common method for maintaining synchronization between timecode values and video data is called
dropframe. Contrary to its name, the dropframe technique actually skips timecode values at a predetermined
rate in order to keep the timecode and video data synchronized. It does not actually drop video frames. In
NTSC color video, which uses the dropframe technique, the timecode values skip two frame values every
minute, except for minute values that are evenly divisible by ten. So NTSC timecode values, which are
expressed as HH:MM:SS:FF (hours, minutes, seconds, frames) skip from 00:00:59:29 to 00:01:00:02 (skipping
00:01:00:00 and 00:01:00:01). There is a flag in the timecode definition structure that indicates whether the
timecode uses the dropframe technique.

You can make the toolbox display the timecode when a movie is played. Use the TCSetTimeCodeFlags
function to turn the timecode display on and off. Note that the timecode track must be enabled for this
display to work.

You store the timecode’s source identification information in a user data item. Create a user data item with
atypevalue of TCSourceRefNameType. Store the source information as a text string. This information might
contain the name of the videotape from which the movie was created, for example.

The timecode media handler provides functions that allow you to manipulate the source identification
information. The following sample code demonstrates one way to set the source tape name in a timecode
media’s sample description.

void setTimeCodeSourceName (Media timeCodeMedia,
TimeCodeDescriptionHandle tcdH,
Str2b55 tapeName, ScriptCode tapeNameScript)

UserData srcRef;
if (NewUserData(&srcRef) == noErr) f{
Handle nameHandle;
if (PtrToHand(&tapeName[1l], &nameHandle, tapeNamel[0]) == nokErr) f{
if (AddUserDataText (srcRef, nameHandle, 'name', 1,

tapeNameScript) == nokrr) {
TCSetSourceRef (GetMediaHandler (timeCodeMedia),

tcdH,

srcRef);

}
DisposeHandle(nameHandle);
}
DisposeUserData(srcRef);

Creating a Timecode Track

52

You can create a timecode track and media in the same manner that you create any other track. Call the
NewMovieTrack function to create the timecode track, and use the NewTrackMed1ia function to create the
track’s media. Be sure to specify a media type value of TimeCodeMediaType when you call the
NewTrackMedia function.

You can define the relationship between a timecode track and one or more movie tracks using the toolbox’s
new track reference functions. You then proceed to add samples to the track, as appropriate.

Creating a Timecode Track
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Timecode Media Handler Functions

Each sample in the timecode track provides timecode information for a span of movie time. The sample
includes duration information. As a result, you typically add each timecode sample after you have created
the corresponding content track or tracks.

The timecode media sample description contains the control information that allows QuickTime to interpret
the samples. This includes the timecode format information. The actual sample data contains a frame number
that identifies one or more content frames that use this timecode. Stored as a 10ng, this value identifies the
first frame in the group of frames that use this timecode. In the case of a movie made from source material
that contains no edits, you would only need one sample. When the source material contains edits, you
typically need one sample for each edit, so that QuickTime can resynchronize the timecode information with
the movie. Those samples contain the frame numbers of the frames that begin each new group of frames.

The timecode description structure defines the format and content of a timecode media sample description,
as follows:

typedef struct TimeCodeDescription {

long descSize; /* size of the structure */

long dataFormat; /* sample type */

long resvdl; /* reserved; set to 0 */

short resvd?; /* reserved; set to 0 */

short dataRefIndex; /* data reference index */

long flags; /* reserved; set to 0 */
TimeCodeDef timeCodeDef; /* timecode format information */
long srcRef[1]; /* source information */

} TimeCodeDescription, *TimeCodeDescriptionPtr, **TimeCodeDescriptionHandle;

Term Definition

descSize Specifies the size of the sample description, in bytes.

dataFormat Indicates the sample description type (TimeCodeMediaTypeMovie Data Types).

resvdl Reserved for use by Apple. Set this field to 0.

resvd2 Reserved for use by Apple. Set this field to 0.

dataRefIndex | Contains an index value indicating which of the media's data references contains the
sample data for this sample description.

flags Reserved for use by Apple. Set this field to 0.

timeCodeDef | Contains a timecode definition structure that defines timecode format information.

srcRef Contains the timecode's source information. This is formatted as a user data item that is
stored in the sample description. The media handler provides functions that allow you
to get and set this data.

The timecode definition structure contains the timecode format information. This structure is defined as
follows:

typedef struct TimeCodeDef {

long flags; /* timecode control flags */
TimeScale fTimeScale; /* timecode's time scale */
TimeValue frameDuration; /* how long each frame Tasts */
unsigned char numkFrames; /* number of frames per second */
Creating a Timecode Track 53

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Timecode Media Handler Functions

} TimeCodeDef;

Parameter | Definition

flags Contains flags that provide some timecode format information. The following flags are defined:
Flag Definition
tcDropFrame Indicates that the timecode drops frames occasionally in order to stay in synchronization.

Some timecodes run at other than a whole number of frames per second. For example,
NTSC video runs at 29.97 frames per second. In order to resynchronize between the
timecode rate and a 30 frames-per-second playback rate, the timecode drops a frame
at a predictable time (in much the same way that leap years keep the calendar
synchronized). Set this flag to 1 if the timecode uses the dropframe technique.

tc24HourMax Indicates that the timecode values wrap at 24 hours. Set this flag to 1 if the timecode
hour value wraps (that is, returns to 0) at 24 hours.

tcNegTimesOK | Indicates that the timecode supports negative time values. Set this flag to 1 if the
timecode allows negative values.

tcCounter Indicates that the timecode should be interpreted as a simple counter, rather than as
a time value. This allows the timecode to contain either time information or counter
(such as a tape counter) information. Set this flag to 1 if the timecode contains counter
information.

fTimeScale Contains the time scale for interpreting the frameDuration field. This field indicates
the number of time units per second.

frameDuration | Specifies how long each frame lasts, in the units defined by the fTimeScale field.

numFrames Indicates the number of frames stored per second. In the case of timecodes that are
interpreted as counters, this field indicates the number of frames stored per timer tick.

The best way to understand how to format and interpret the timecode definition structure is to consider an
example. If you were creating a movie from an NTSC video source recorded at 29.97 frames per second, using
SMPTE timecodes, you would format the timecode definition structure as follows:

TimeCodeDef.flags = tcDropFrame | tc24HourMax;

TimeCodeDef.fTimeScale = 2997; /* units */
TimeCodeDef.frameDuration = 100; /* relates units to frames */
TimeCodeDef.numFrames = 30; /* whole frames per second */

The movie’s natural frame rate of 29.97 frames per second is obtained by dividing the fTimeScale value
by the frameDuration (2997 / 100). Note that the f1ags field indicates that the timecode uses the dropframe
technique to resync the movie’s natural frame rate of 29.97 frames per second with its playback rate of 30
frames per second.

Given a timecode definition, you can freely convert from frame numbers to time values and from time values
to frame numbers. For a time value of 00:00:12:15 (HH:MM:SS:FF), you would obtain a frame number of 375
((12*30) + 15). The timecode media handler provides a number of functions that allow you to perform these
conversions.

Creating a Timecode Track
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Timecode Media Handler Functions

When you use the timecode media handler to work with time values, the media handler uses timecode

records to store the time values. The timecode record allows you to interpret the time information as either

a time value (HH:MM:SS:FF) or a counter value. The timecode record is defined as follows:

typedef union TimeCodeRecord {
TimeCodeTime t;
TimeCodeCounter C;

} TimeCodeRecord;

typedef struct TimeCodeTime ({

unsigned char hours;

unsigned char minutes;
unsigned char seconds;
unsigned char frames;

} TimeCodeTime;

typedef struct TimeCodeCounter ({
long counter;
} TimeCodeCounter;

When you are working with timecodes that allow negative time values, the minutes field of the

/*
/*

/*
/*
/*
/*

/*

value interpreted as time */
value interpreted as counter */

time: hours */

time: minutes */
time: seconds */
time: frames */

counter value */

TimeCodeTime structure (TimeCodeRecord.t.minutesMovie Data Types) indicates whether the time value

is positive or negative. If the tctNegFlag bit of the minutes field is set to 1, the time value is negative.

Creating a Timecode Track

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

55

CHAPTER 8

Timecode Media Handler Functions

56 Creating a Timecode Track
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying
Movie Properties

The Movie Toolbox provides a set of functions that help your application locate a movie's tracks and media
structures. This chapter describes these functions and how to use them. In addition, the chapter discusses
functions you can use to save movies, capture and restore the edit state of a movie, and modify movie
properties. A later section of the chapter discusses support for progressive downloads.

The Movie Toolbox identifies a movie’s tracks in two ways. First, every track in a movie has a unique ID value.
This ID value is unique throughout the life of a movie, even after it has been saved. That is, no two tracks of
a movie ever have the same ID, and no ID value is ever reused. Second, a movie’s current tracks may be
identified by their index value. Index values always range from 1 to the number of tracks in the movie. Track
indexes provide a convenient way to access each track of a movie.

There are several functions that allow you to find a movie’s tracks. You can use the GetMovieTrackCount
function to determine the number of tracks in a movie. Use the GetMovieTrack function to obtain the track
identifier for a specific track, given its ID. The GetMovieIndTrack function lets you obtain a track’s identifier,
given its track index.

You can obtain a track’s ID value given its track identifier by calling the GetTrackID function.
You can determine the movie that contains a track by calling the GetTrackMovie function.

The GetTrackMedia function enables you to find a track’s media. Conversely, you can find the track that
uses a media by calling the GetMediaTrack function.

Saving Movies

The Movie Toolbox provides a set of high-level functions for storing movies within files. These files have a
file type of "MooV ' and a resource type of 'moov'. Your application can gain access to existing movies with
either the NewMovieFromFile function or the NewMovieFromDataFork function. Once you have loaded
the movie, your application uses the functions that are described in this section to save any changes you
have made to the movie.

You can use the AddMovieResource function to add a new movie resource to a movie file. Your application
can use this function to save a movie that it created using the functions. You can use the
UpdateMovieResource function to replace an existing movie resource in a movie file. You can remove a
movie resource by calling the RemoveMovieResource function.

The movie resources that your application creates with the AddMovieResource and UpdateMovieResource
functions may contain references to movie data. These references identify the data that constitute the movie.
However, the movie data can be stored outside of the movie file. If you want to create a movie file that
contains all of its movie data, use the FlattenMovie or FlattenMovieData function. These functions can
also be used to store the movie data in the movie file’s data fork, or to interleave the media data to optimize
performance.

Saving Movies 57
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

The PutMovielIntoHand]e function places a QuickTime movie into a handle. You can then convert the
movie into specialized data formats.

The HasMovieChanged and ClearMovieChanged functions allow your application to work with the movie
changed flag that is maintained by the Movie Toolbox. You can use this flag to determine whether a movie
has been changed.

The movie changed flag indicates whether you have changed the movie. Such actions as editing the movie,
adding samples to a media, or changing a data reference cause the flag to indicate that the movie has
changed. There are several operations that the movie changed flag does not reflect, including changing the
volume, rate, or time settings for the movie. These settings change frequently when a movie is played. Your
application must monitor these settings itself.

The Movie Toolbox also supplies functions for storing and retrieving movies that are stored in the data fork
of a file. These functions provide robust data reference resolution and improve low memory performance.
The NewMovieFromDataFork function enables you to retrieve a movie that is stored anywhere in the data
fork of a file. You can use the PutMovieIntoDataFork function to store an atom version of a specified
movie in the data fork of a file.

Time Base Callback Functions

58

If your application uses QuickTime time bases, it may define callback functions that are associated with a
specific time base. Your application can then use these callback functions to perform activities that are
triggered by temporal events, such as a certain time being reached or a specified rate being achieved. The
time base functions of the Movie Toolbox interact with clock components to schedule the invocation of these
callback functions; clock components are responsible for invoking the callback function at its scheduled time.
Your application can use the functions described in this section to establish your own callback function and
to schedule callback events.

You can define three types of callback events. These types are distinguished by the nature of the temporal
event that triggers the Movie Toolbox to call your function. The three types are

m events that are triggered at a specified time
m events that are triggered when the rate reaches a specified value

m events that are triggered when the time value of a time base changes by an amount different from the
time base’s rate

You specify a callback event’s type when you define the callback event, using the NewCa11Back function.

You specify whether your event can occur at interrupt time when you define the callback event, using the
NewCal1Back function. Your function is called closer to the triggering event at interrupt time, but it is subject
to all the restrictions of interrupt functions (for example, your callback function cannot cause memory to be
moved). If your function is not called at interrupt time, you are free of these restrictions; however, your
function may be called later, because the invocation is delayed to avoid interrupt time.

The NewCal1Back function allocates the memory to support a callback event. When you are done with the
callback event, you dispose of it by calling the DisposeCal1Back function.

You schedule a callback event by calling the Cal1MeWhen function. Call Cancel1Cal1Back function to
unschedule a callback event.

Time Base Callback Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

You can retrieve the time base of a callback event by calling the GetCal1BackTimeBase function. You can
obtain the type of a callback event by calling the GetCal1BackType function.

Creating and Disposing of Time Bases

This section discusses the Movie Toolbox functions your application can use to create and dispose of time
bases.

The NewTimeBase function lets you create a new time base. You can use the DisposeTimeBase function
to dispose of a time base once you are finished with it.

Time bases rely on either a clock component or another time base for their time source. You can use the
SetTimeBaseMasterTimeBase function to cause one time base to be based on another time base. The
GetTimeBaseMasterTimeBase allows you to determine the master time base of a given time base.

You can assign a clock component to a time base; that clock then acts as the master clock for the time base.
You can use the SetTimeBaseMasterClock function to assign a clock component to a time base. The
GetTimeBaseMasterClock function enables you to determine the clock component that is assigned to a
time base. You can change the offset between a time base and its time source by calling the
SetTimeBaseZero function.

You can set the time source of a movie by calling the SetMovieMasterTimeBase and
SetMovieMasterClock functions.

Note: Although most time base functions can be used at interrupt time, several of the Movie Toolbox
functions cannot. Consult the documentation for each function in the QuickTime API Reference.

Working with Movie Time

Every QuickTime movie has its own time base. A movie’s time base allows all the tracks that make up the
movie to be synchronized when the movie is played. The Movie Toolbox provides a number of functions
that allow your application to determine and establish the time parameters of a movie. This section discusses
those functions. Later sections in this chapter discuss the Movie Toolbox functions that allow you to work
with the time parameters of tracks and media structures.

You can use the GetMovieTimeBase function to retrieve the time base for a movie.

You can work with a movie’s current time by calling the GetMovieTime, SetMovieTime, and
SetMovieTimeValue functions.

You can work with a movie’s time scale by calling the GetMovieTimeScale and SetMovieTimeScale
functions.

The Movie Toolbox can calculate the total duration of a movie. You can use the GetMovieDuration function
to retrieve a movie’s duration.

Your application can call the GetMovieRate and SetMovieRate to work with a movie’s playback rate.

Creating and Disposing of Time Bases 59
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

Working With Movie User Data

Each movie, track, and media can contain a user data list, which your application can use in any way you
want. A user data list contains all the user data for a movie, track, or media. Each user data list may contain
one or more user data items.

All QuickTime user data items share several attributes. First, each user data item carries a type identifier. This
type is similar to a Resource Manager resource type, and is stored in a long integer. Apple has reserved all
lowercase user data type values. You are free to create user data type values using uppercase letters. Apple
recommends using type values that begin with the copyright symbol to specify user data items that store
text data.

The Time Structure

60

The Movie Toolbox provides a number of functions that allow you to work with time specifications. Many of
these functions require that you place a time specification in a data structure called atime structure. The time
structure allows you to fully describe a time specification. The TimeRecord data type defines the format of
a time structure.

struct TimeRecord
{

CompTimeValue value; /* time value (duration or absolute) */
TimeScale scale; /* units per second */
TimeBase base; /* reference to the time base */

b
typedef struct TimeRecord TimeRecord;

Field | Description

value | Contains the time value. The time value defines either a duration or an absolute time by specifying
the corresponding number of units of time. For durations, this is the number of time units in the
period. For an absolute time, this is the number of time units since the beginning of the time

coordinate system. The unit for this value is defined by the scale field. The time value is expressed
asa CompTimeValue data type, which is a 64-bit integer quantity. This 64-bit quantity consists of
two 32-bit integers, and it is defined by the Int64 data type, which is described next in this section.

scale | Contains the time scale. This field specifies the number of units of time that pass each second. If
you specify a value of 0, the time base uses its natural time scale.

base | Contains a reference to the time base. You obtain a time base by calling the Movie Toolbox's
GetMovieTimeBase or NewTimeBase functions.

If the time structure defines a duration, set this field to ni 1. Otherwise, this field must refer to a valid time
base.

You specify the time value in a time structure in a 64-bit integer value as follows:

typedef Int64 CompTimeValue;

Working With Movie User Data
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

The Movie Toolbox uses this format so that extremely large time values can be represented. The Int64 data
type defines the format of these signed 64-bit integers.

struct Inté4d
{
long hi; /* high-order 32 bits-value field in time structure */
long lo; /* low-order 32 bits-value field in time structure */
b
typedef struct Int64 Int64d;

Field | Description

hi Contains the high-order 32 bits of the value. The high-order bit represents the sign of the 64-bit
integer.

To Contains the low-order 32 bits of the value.

The Fixed-Point and Fixed-Rectangle Structures

The Movie Toolbox matrix functions provide two mechanisms for specifying points and rectangles. Some of
the functions work with standard QuickDraw points and rectangles, which use integer values to identify
coordinates. Others, such as the TransformFixedRect function, work with points and rectangles whose
coordinates are expressed as fixed-point numbers. By using fixed-point numbers in these points and rectangles,
the Movie Toolbox can support a greater degree of precision when defining graphic objects.

The FixedPoint data type defines a fixed point. The FixedRect data type defines a fixed rectangle. Note
that both of these structures define the x coordinate before the y coordinate. This is different from the
standard QuickDraw structures.

struct FixedPoint
{
Fixed x; /* point's x coordinate as fixed-point number */
Fixed y; /* point's y coordinate as fixed-point number */
b
typedef struct FixedPoint FixedPoint;

Field | Description

X Defines the point's x coordinate as a fixed-point number.

y Defines the point's y coordinate as a fixed-point number.

struct FixedRect

{
Fixed left; /* x coordinate of upper-left corner */
Fixed top; /* y coordinate of upper-left corner */
Fixed right; /* x coordinate of lower-right corner */
Fixed bottom; /* y coordinate of lower-right corner */

b

typedef struct FixedRect FixedRect;

The Fixed-Point and Fixed-Rectangle Structures 61
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

Field Description

left Defines the x coordinate of the upper-left corner of the rectangle as a fixed-point number.
top Defines the y coordinate of the upper-left corner of the rectangle as a fixed-point number.
right | Defines the x coordinate of the lower-right corner of the rectangle as a fixed-point number.
bottom | Defines the y coordinate of the lower-right corner of the rectangle as a fixed-point number.

Media Handler Support

The video, base, and tween media handlers support sending their data to other tracks. Text data can also be
sent, but none of the media handlers currently receive it. The sound, music and 3D media handlers do not

support sending their data to other tracks.

Not all media handlers support all input types. Media handlers can decide which input types to support.
Table 9-1 lists the input types supported by each Apple-supplied media handler.

Table 9-1 Input types supported by Apple-supplied media handlers

Input type Video | Text | Sound | MPEG | Music | Sprite | Timecode | 3D
Matrix X X X X X X
Graphics mode | x X X X X X
Clip X X X X X X
Volume X X X

Balance X X X

Sprite image X X
3D sound X X

Data Handler Components

62

QuickTime introduced a memory-based data handler. This data handler component works with movie data

that is stored in memory (referenced by a handle) instead of in a file. This data handler has a component
subtype value of

HandleDataHandlerSubType ('hndl"')

Media Handler Support
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

To create a movie that uses the handle data handler, set the data reference type to
HandleDataHandlerSubType when you call the NewTrackMedia function. Note that the movie data in
memory is not automatically saved with the movie. If you want to save the data that is in memory, use the
FlattenMovieor InsertTrackSegment functions to copy the data from memory to a file. Note that there
is a special flag for F1attenMovie and data handlers.

The handle data handler does not use aliases as its data reference, and therefore does not use alias handles.
Rather, it uses 4-byte memory handles as its data reference. The data reference contains the actual handle
that stores the needed data. If you pass a handle value of ni1Movie Data Types, the data handler allocates
and manages the handle for you. If you pass a handle value other than ni1Movie Data Types, the data
handler uses your handle. It is then your responsibility to manage the handle and dispose of it when
appropriate. Note that a single handle may be shared by several data handler components. Whenever new
data is added, the data handler resizes the handle to accommodate new data.

Support for Progressive Downloads

The QuickTime Movie Toolbox includes support for progressive downloads, which allow part of a movie to
be displayed before all of its data has been received over a network or other slow link.

Applications that use the movie controller component provided by Apple automatically get support for
progressive downloads. Applications that do not use the standard movie controller can use the two high-level
functions for progressive downloads, QTMovieNeedsTimeTable and GetMaxLoadedTimeInMovie, to
determine whether a movie is being progressively downloaded and, if so, to see how much of it has already
been downloaded. Finally, the few applications that need even more control over progressive downloads,
such as control over individual tracks or media, can use one or both of the low-level functions for progressive
downloads, MakeTrackTimeTable and MakeMediaTimeTable.

Displaying a Progressively Downloaded Movie

Listing 9-1 illustrates how to use the QTMovieNeedsTimeTab1e function, to find out if a movie if being
progressively downloaded, and the GetMaxLoadedTimeInMovie function, to find out how much of the
movie has been downloaded.

Listing 9-1 Displaying a progressively downloaded movie

WindowPtr movieWindow;

Movie theMovie;
Boolean needsTimeTable;
TimeValue loadedTime = -1;

err = GetDisplayedMovie (&movieWindow, &theMovie);
err = QTMovieNeedsTimeTable (theMovie, &needsTimeTable);
if (needsTimeTable)
{
err = GetMaxLoadedTimeInMovie (theMovie, &loadedTime);
// Display the movie up to the current end

Support for Progressive Downloads 63
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Locating Tracks, Saving Movies, and Modifying Movie Properties

Low-Level Routines

Some applications may need more control over progressive downloads, such as control over individual tracks
or media, than is possible with the high-level functions for progressive downloads. These applications can
use one or both of the low-level functions for progressive downloads described in this section,
MakeTrackTimeTable and MakeMediaTimeTable.

Handling Media Sample References

You could always use GetMediaSampleReference to access samples in a movie one at a time. QuickTime
introduced GetMediaSampleReferences (note that this is the plural form of the
GetMediaSampleReference function), which you can use to obtain information about groups of samples.
QuickTime also introduced AddMediaSampleReferences, which you can use to work with groups of samples
that have already been added to a movie.

Manipulating Media Input Maps

64

The Movie Toolbox contains two functions for maintaining media input maps: GetMedialInputMap and
SetMedialnputMap.

Each track has particular attributes such as size, position, and volume associated with it. The media input
map of that track describes where the variable parameters are stored so that modifier tracks know where to
send their data. When a track is copied, its input map is also copied. CopyTrackSettings also transfers the
media input map.

Handling Media Sample References
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Matrix Functions

The Movie Toolbox provides a number of functions that allow you to work with transformation matrices. This
chapter describes those functions.

The Transformation Matrix

The Movie Toolbox makes extensive use of transformation matrices to define graphical operations that are
performed on movies when they are displayed. A transformation matrix defines how to map points from
one coordinate space into another coordinate space. By modifying the contents of a transformation matrix,
you can perform several standard graphical display operations, including translation, rotation, and scaling.
The Movie Toolbox provides a set of functions that make it easy for you to manipulate translation matrices.
This section provides an introduction to matrix operations in a graphical environment.

The matrix used to accomplish two-dimensional transformations is described mathematically by a 3-by-3
matrix. Figure 10-1 shows a sample 3-by-3 matrix. Note that QuickTime assumes that the values of the matrix
elements u and v are always 0.0, and the value of matrix element w is always 1.0.

Figure 10-1 A point transformed by a 3-by-3 matrix

a b u
.Eyil}{cdv=E'3-"I|
L, t, w

During display operations, the contents of a 3-by-3 matrix transform a point (x,y) into a point (x'y') by means
of the following equations:

X'=ax+cy + t(x)
y' = bx + dy + t(y)

For example, the matrix shown in Figure 10-2 performs no transformation. It is referred to as the identity
matrix.

The Transformation Matrix 65
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

66

CHAPTER 10

Matrix Functions

Figure 10-2 The identity matrix

Using the formulas discussed earlier, you can see that this matrix would generate a new point (x'y') that is
the same as the old point (x,y):

X'=1x+0y+0
y'=0x+1y+0
xX'=yandy'=y

To move an image by a specified displacement, you perform a translation operation. This operation modifies
the x and y coordinates of each point by a specified amount. The matrix shown in Figure 10-3 describes a
translation operation.

Figure 10-3 A matrix that describes a translation operation

You can stretch or shrink an image by performing a scaling operation. This operation modifies the x and y
coordinates by some factor. The magnitude of the x and y factors governs whether the new image is larger
or smaller than the original. In addition, by making the x factor negative, you can flip the image about the
x-axis; similarly, you can flip the image horizontally, about the y-axis, by making the y factor negative. The
matrix shown in Figure 10-4 describes a scaling operation.

Figure 10-4 A matrix that describes a scaling operation

o
)]

-
L

Finally, you can rotate an image by a specified angle by performing a rotation operation. You specify the
magnitude and direction of the rotation by specifying factors for both x and y. The matrix shown in Figure 10-5
rotates an image counterclockwise by an angle q.

The Transformation Matrix
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Matrix Functions

Figure 10-5 A matrix that describes a rotation operation

Co=(H) sin(A) O

—zin(A] cosiA) O
0 0 1

You can combine matrices that define different transformations into a single matrix. The resulting matrix
retains the attributes of both transformations. For example, you can both scale and translate an image by
defining a matrix similar to that shown in Figure 10-6.

Figure 10-6 A matrix that describes a scaling and translation operation

5,0 0 1 0 0 5, 0 O
0 s Of X [0 1 0of = [0 5 0
o0 1 ty ty 1 ty t, 1

You combine two matrices by concatenating them. Mathematically, the two matrices are combined by matrix
multiplication. Note that the order in which you concatenate matrices is important; matrix operations are
not commutative.

Transformation matrices used by the Movie Toolbox contain the following data types:

[0] [0] Fixed [1] [0] Fixed (2] [0] Fract
[0] [1] Fixed [1] [1] Fixed (2] [1] Fract
[0] [2] Fixed [1] [2] Fixed [2] [2] Fract

Each cell in this table represents the data type of the corresponding element of a 3-by-3 matrix. All of the
elements in the first two columns of a matrix are represented by F1ixed values. Values in the third column
are represented as Fract values. The Fract data type specifies a 32-bit, fixed-point value that contains 2
integer bits and 30 fractional bits. This data type is useful for accurately representing numbers in the range
from -2 to 2.

The Transformation Matrix 67
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Matrix Functions

68 The Transformation Matrix
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and
Functions

This chapter describes some of the constants, data types, and functions in the Movie Toolbox that you can
use in your application development. It also discusses media and data handler support in QuickTime.

Movie Exporting Flags

The f1ags parameter for the ConvertMovieToFi1e function specifies a set of movie conversion flags.
QuickTime provides this flag:

enum {
showUserSettingsDialog = 2,
movieToFileOnlyExport =
movieFileSpecValid =8

|
~

Term Definition

showUserSettings- If this flag is set, the Save As dialog box will be displayed to allow the user to

Dialog choose the type of file to export to, optional export settings, and the file name
to export to.

movieToFile- If this flag is set and the showUserSettingsDialog flag is set, the Save As
OnlyExport dialog box restricts the user to those file formats that are supported by movie
data export components. If this flag is not set, the user will also be able to save
the movie either as a self-contained movie or as a reference movie.

movieFileSpecValid If this flag is set and the showUserSettingsDialog flag is set, the name field

of the outputFile parameter is used as the default name of the exported file
in the Save As dialog box.

Movie Importing Flags

The f1ags parameter for the ConvertFileToMovieFileand PasteHandleIntoMovie functions specifiy
a set of movie conversion flags. QuickTime provides one additional flag:

enum {

showUserSettingsDialog = 2
b

Movie Exporting Flags 69
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Term Definition

showUserSettings- If this flag is set, the user settings dialog box for that import operation can be

Dialog displayed. For example, when importing a picture, this flag would display the
standard compression dialog box so that the user could select a compression
method.

Flattening Flags

The f1ags parameter for the F1attenMovieData function specifies a set of movie flattening flags. QuickTime

provided one new flag that you must set when specifying a data reference to flatten a movie to, instead of
a file:

enum {

flattenFSSpecPtrIsDataRefRecordPtr = 1L << 4
b

Term Definition

flattenFSSpecPtris- Set this flag to 1 if the FSSpec pointerisa DataReferencePtrMovie

DataRefRecordPtr Data Types. This capability enables you to flatten movies for devices
other than file systems.

Interesting Times Flags

70

The interestingTimeF1ags parameter for the interesting time functions
(GetMovieNextInterestingTime, GetTrackNexttInterestingTime, and

GetMediaNextInterestingTime) specifies a set of bit flags that specify search criteria. Normally, you use
one of the interesting time functions to step forward to the next frame.

These functions work well for most media types, including video and text. However, because QuickTime
stores an entire MPEG stream as a single sample, stepping to the next sample skips to the end of the sequence.
To solve this problem, QuickTime introduced a new flag for the interesting time calls: nextTimeStep. This
flag returns the time of the next frame, even if there are multiple frames per sample, for all media types

including video, text, and MPEG. Applications that implement single stepping capabilities should always use
this flag instead of nextTimeMediaSampTle.

enum {
nextTimeStep =1<K 4
b

Term Definition

nextTimeStep | Searches for the next frame in the movie's media. Set this flag to 1 to step to the next
frame.

Flattening Flags
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Full Screen Flags

The f1ags parameter for the BeginFul1Screen function specifies a set of bit flags that control certain
aspects of full-screen mode. QuickTime defines these constants that you can use in the f1ags parameter:

enum {
fullScreenHideCursor =1L <K 0,
fullScreenAllowEvents = 1L << 1,
fullScreenDontChangeMenuBar = 1L << 2,
fullScreenPreflightSize =1L << 3

Vs

Term Definition

fullScreenHideCursor | If this flag is set, BeginFul1Screen hides the cursor. This is useful if you are
going to play a QuickTime movie and do not want the cursor to be visible
over the movie.

fullScreenAlTowEvents | If this flag is set, your application intends to allow other applications to run
(by calling WaitNextEvent to grant them processing time). In this case,
BeginFullScreen does not change the monitor resolution, because other
applications might depend on the current resolution.

fullScreenDont- If this flag is set, BeginFul1Screen does not hide the menu bar. This is useful
ChangeMenuBar if you want to change the resolution of the monitor but still need to allow the
user to access the menu bar.

fullScreenPreflight- | Ifthisflagisset, BeginFullScreen doesn't change any monitor settings, but
Size returns the actual height and width that it would use if this bit were not set.
This allows applications to test for the availability of a monitor setting without
having to switch to it.

Text Sample Display Flags

Thedisplayflags parameterforthe TextMediaAddTESampleand TextMediaAddTextSample functions
control the behavior of the text media handler. QuickTime provides these flags:

enum {
dfContinuousScroll =1<K<9,
dfFlowHoriz =1 << 10,
dfContinuousKaraoke =1 << 11,
dfDropShadow =1 <K 12,
dfAntiAlias =1 << 13,
dfKeyedText =1 <K< 14,
dfInverseHilite =1 << 15,
dfTextColorHilite =1 <K 16

b

Full Screen Flags 71

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Term

Definition

dfContinuousScrol]l

If this flag is set, the text media handler lets new samples cause previous samples
to scroll out. You must alsosetdfScrol1InordfScrol10ffMovie Data Types,
or both, for this to take effect.

dfFlowHoriz

If this flag is set, the text media handler lets horizontally scrolled text flow within
the text box instead of extending to the right.

dfContinuousKaraoke

If this flag is set, the text media handler ignores the starting offset when
highlighting text. Instead, it highlights text from the beginning of the text
sample to the ending offset.

dfDropShadow

If this flag is set, the text media handler displays text with a drop shadow. If you
usethe TextMediaSetTextSampleData function, the position and translucency
of the drop shadow is under your application's control.

dfAntiAlias

If this flag is set, the text media handler displays text with anti-aliasing. Note
that although anti-aliased text looks smoother, anti-aliasing can slow down
performance.

dfKeyedText

If this flag is set, the text media handler renders text over the background
without drawing the background color. This technique is also known as masked
text.

dfInverseHilite

If this flag is set, the text media handler highlights text using inverse video
instead of the highlight color.

dfTextColorHilite

If this flag is set, the text media handler highlights text by changing the color
of the text.

Data Types

72

Most Movie Toolbox data structures are private data structures. Your application never modifies the contents
of these structures directly. Rather, the Movie Toolbox provides a number of functions that allow you to work

with these data structures.

Modifier Input Types

The media input map describes the meaning of each input to a track. Each track has particular attributes
associated with it, such as size, position, and volume. The media input map of that track describes the mapping
of track modifier inputs to track properties. When you want to modify the attributes of a track, you can insert
a track modifier input such as kTrackModifierTypeMatrix into the input map. The values stored in the
modifier input you inserted will affect the values that are currently stored with the track.

Custom media handlers can define additional input types as necessary. Apple Computer reserves all input
types consisting entirely of lowercase letters.

The following input types are currently defined:

Data Types

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

enum {

kTrackModifierTypeMatrix =

kTrackModifierTypeClip =

kTrackModifierTypeVolume =
kTrackModifierTypeBalance =
kTrackModifierTypelmage =
kTrackModifierObjectMatrix =

1
2
kTrackModifierTypeGraphicsMode =5,
3
4

kTrackModifierObjectGraphicsMode =

kTrackModifierCameraData =

6
7,
kTrackModifierType3d4x4Matrix = 8,
9
1

kTrackModifierSoundLocalization

b

Term Definition

kTrackModifier- Data sent to this input should be in the form of a QuickTime

TypeMatrix MatrixRecordMovie Data Types. The matrix is concatenated with the track
and movie matrices to determine the tracks final location and size. The matrix
modifier describes relative, not absolute, position and scaling.

kTrackModifier- Data sent to this input should be in the form of a QuickDraw region. The region

TypeClip is intersected with the track's source box.

kTrackModifierType-
GraphicsMode

Data sent to this input should be in the form of a ModifierTrack-
GraphicsModeRecord data type. The contents of the record are used as the
graphics mode setting for the track. The graphics mode is not combined with
the track's current graphics mode, but rather overrides it.

kTrackModifier-
TypeVolume

Data sent to this input should be in the form of a 16-bit fixed-point number.
This is the same format in which QuickTime sound volume levels are stored.
The volume level is used as a scaling factor on the sound track's level. It is
multiplied with the track and movie volumes to determine the track's overall
volume.

kTrackModifier-
TypeBalance

Data sent to this input should be in the form of a 8-bit fixed-point number.
This is the same format in which QuickTime balance values are stored. The
balance value is used as the balance setting for the track. Unlike the volume
modifier, it is not concatenated with the track's current balance level, but
overrides the current balance level.

kTrackModifier-
Typelmage

Data sent to this input should be compressed video data, typically from a video
track. This input type can be used with sprite tracks. For sprite tracks, the image
data is used to replace the image of a specified image index in the sprite track.
The index of the image to replace must be specified in the media input map
when the reference is created.

kTrackModifier-
ObjectMatrix

Data sent to this input should be in the form of a QuickTime
MatrixRecordMovie Data Types. The matrix is sent to a particular object
within the receiving track, as specified by the kTrackModifierObjectID
atom in the input map. The matrix acts as an override to the object's current
matrix. For example, the matrix could be sent to a sprite within a sprite track.
It would cause the sprite to move, not the entire sprite track as would
kTrackModifierMatrixMovie Data Types.

Data Types

73

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

74

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Term

Definition

kTrackModifierObject-
GraphicsMode

Data sent to this input should be in the form of a ModifierTrack-
GraphicsModeRecord data type. The contents of the record are used to vary
the opacity of an object within the track. For example, you would use data
sent to this input to vary the opacity of a sprite within a sprite track, rather
than modifying the opacity of the entire sprite track.

kTrackModifierSound-
Localization

Data sent to this input should be in the form of a sound localization data record
(SSpLocalizationDataMovie Data Types). This data overrides the sound
localization settings already in use by the track.

Data References

The Movie Toolbox fully supports a media that refers to data in more than one file. By allowing a single media
to refer to more than one file, the toolbox allows better playback performance and easier editing, primarily
by reducing the number of tracks in a movie. Use the SetMediaDefaultDataRefIndex function to control
which of a media’s files you access when you add new sample data.

To fully specify a data reference, it is necessary to provide the data reference itself, along with its type; the
data reference handle does not contain the type of the data reference. The DataReferenceRecord data
structure contains both of these pieces of information, making it possible to pass them to functions as a
single parameter. The FlattenMovieData function uses the information in the data reference structure to
flatten a movie to a data reference instead of to a file.

struct DataReferenceRecord {

0SType dataRefType;

Handle dataRef;
b

typedef struct DataReferenceRecord DataReferenceRecord;
typedef DataReferenceRecord *DataReferencePtr;

Field Definition

dataRefType | Specifies the type of data reference. For an alias data reference, you set the parameter to
rAliasType, indicating that the reference is an alias. For a handle data reference, set the
parameter to Hand1eDataHandlerSubTypeMovie Data Types.

dataRef Specifies the actual data reference. This parameter contains a handle to the information
that identifies the file to be used. The type of information stored in the handle depends
on the value of the dataRefType parameter. For example, if your application is loading
the movie from a file, this parameter would contain an alias to the movie file.

Movie Identifiers

You identify a data structure to the Movie Toolbox by means of a data type that is supplied by the Movie
Toolbox. The following data types are currently defined:

Data Types

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Type Definition

Media Specifies the media for an operation. Your application obtains a media identifier from
such Movie Toolbox functions as NewTrackMedia and GetTrackMedia.

Movie Specifies the movie for an operation. Your application obtains a movie identifier from
such functions as NewMovie, NewMovieFromFile, and NewMovieFromHandle.

MovieEditState | Specifies the movie edit state for an operation. Your application obtains a movie edit

state identifier when you create the edit state by calling the NewMovieEditState
function.

QTCallBack

Specifies the callback for an operation. You obtain a callback identifier from the
NewCal1Back function.

TimeBase Specifies the time base for an operation. Your application obtains a time base identifier
from the NewTimeBase or GetMovieTimeBase functions.

Track Specifies the track for an operation. Your application obtains a track identifier from
such Movie Toolbox functions as NewMovieTrack and GetMovieTrack.

TrackEditState | Specifies the track edit state for an operation. Your application obtains a track edit
state identifier when you create the edit state by calling the NewTrackEditState
function.

UserData Specifies the user data list for an operation. You obtain a user data list identifier by
calling the GetMovieUserData, GetTrackUserData, or GetMediaUserData
functions.

Constants

This section lists the constants that were added to QuickTime after an early release. Most of the constants
are used as flags for QuickTime functions; they allow the programmer to pass numeric data as a meaningful

name.

jtdefine kFix1l = (0x00010000); /* fixed point value equal to 1.0 */
fidefine gestaltQuickTime 'qtim’ /* Movie Toolbox availability */
ffdefine MovieFileType 'MooV' /* movie file type */

jfdefine VideoMediaType 'vide' /* video media type */

f#fdefine SoundMediaType 'soun' /* sound media type */

ffdefine MediaHandlerType 'mhir’ /* media handler type */

jtdefine DataHandlerType 'dhir’ /* data handler type */

ffdefine TextMediaType 'text' /* text media type */

ffdefine GenericMediaType 'gnrc' /* base media handler type */
J#fdefine DoTheRightThing = OL /* indicates default flag settings

for Movie Toolbox functions */

/* sound volume values in trackVolume parameter of NewMovieTrack function */
ffdefine kFullVolume = 0x100 /* full, natural volume

J#fdefine kNoVolume

(8.8 format) */
= 0 /* no volume */

/* constants for whichMediaTypes parameter of GetMovieNextInterestingTime

Constants

75

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

76

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

function */
ffdefine VisualMediaCharacteristic 'eyes' /* visual media */
#fdefine AudioMediaCharacteristic 'ears' /* audio media */

enum

{
/* media quality settings in quality parameter of SetMediaQuality function */

mediaQualityDraft = 0x0000, /* lowest quality Tevel */
mediaQualityNormal = 0x0040, /* acceptable quality level */
mediaQualityBetter = 0x0080, /* better quality level */
mediaQualityBest = 0x00C0 /* best quality level */

b

/*values for callBackFlags field of QuickTime callback header structure used
by clock components to communicate scheduling information about a
callback event to the Movie Toolbox */

enum

{
gtcbNeedsRateChanges =1, /* rate changes */
gtcbNeedsTimeChanges = 2, /* time changes */
gtcbNeedsStartStopChanges =4 /* time base changes at start &

stop times */
b

/* dialog items to include in dialog box definition for use with
SFPGetFilePreview function */

enum
{
sfpltemPreviewAreaUser =11, /* user preview area */
sfpltemPreviewStaticText =12, /* static text preview */
sfpltemPreviewDividerUser =13, /* user divider preview */
sfpltemCreatePreviewButton = 14, /* create preview button */
sfpIltemShowPreviewButton =15 /* show preview button */
b
enum
{
movielnDataForkResID = -1 /* magic resource ID */

b

/* flags for LoadIntoRAM functions */

enum
{
keepInRam = 1<K0, /* load and make so data
cannot be purged */
unkeepInRam = 1«1, /* mark data so it can be purged */
flushFromRam = 1<KK2, /* empty handles and purge data
from memory */
loadForwardTrackEdits = 1<<3, /* load only data around track edits;
play movie forward */
loadBackwardTrackEdits = 1<K4 /* load only data around edits;

play movie in reverse */
b

/* flag for PasteHandlelIntoMovie function */
enum
{

Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

pastelnParallel =1 /* changes function to take contents and type
of
handle and add to movie */
b

/* text description display flags used in TextMediaAddTextSample and
TextMediaAddTESample */

enum

{

dfDontDisplay 1<K0, /* don't display the text */

dfDontAutoScale = 1K1, /* don't scale text as track
bounds grows or shrinks */
dfClipToTextBox = 1<<2, /* clip update to the text box */
dfUseMovieBGColor = 143, /* set text background to movie's
background color */
dfShrinkTextBoxToFit = 1<<4, /* compute minimum box to fit the
sample */
dfScrollln = 1<<5, /* scroll text in until Tast of
text is in view */
dfScrol10ut = 1<K6 /* scroll text out until Tast of text is

gone (if dfScrollln is also set,
scroll in then out) */

dfHorizScroll = 1«7, /* scroll text horizontally; otherwise,
it's vertical */
dfReverseScrol]l = 1<<8 /* vertically scroll down and horizontally

scroll up; justification-dependent */
b

/* find flags for TextMediaFindNextText function */

findTextEdgeOK = 1<K0, /* 0K to find text at specified
sample time */
findTextCaseSensitive = 1«1, /* case-sensitive search */
findTextReverseSearch = 1<<2, /* search from sampleTime backward */
findTextWraparound = 1<<3, /* wrap search when beginning or end

of movie is reached */

/* return display flags for application-defined text function */
enum
{

txtProcDefaultDisplay =0, /* use the media's default settings */
txtProcDontDisplay =1, /* don't display the text */
txtProcDoDisplay =2 /* display the text */
b
enum
{
hintsScrubMode = 1<K0, /* toolbox can display key frames when
movie is repositioned */
hintsAllowInterlace = 16, /* use interlace option for compressor
components */
hintsUseSoundInterp = 17 /* turn on sound interpolation */

b
typedef unsigned Tong playHintsEnum;

Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

77

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Result Codes

78

The following table shows common error codes returned by Movie Toolbox functions.

Constant Value | Description

couldNotResolveDataRef -2000 | Cannot use this data reference

badimageDescription -2001 | Problem with this image description

badPublicMovieAtom -2002 | Movie file corrupted

cantFindHandler -2003 | Cannot locate this handler

cantOpenHandler -2004 | Cannot open this handler

badComponentType -2005 | Component cannot accommodate this data

noMediaHandler -2006 | Media has no media handler

noDataHandler -2007 | Media has no data handler

invalidMedia -2008 | This media is corrupted or invalid

invalidTrack -2009 | This track is corrupted or invalid

invalidMovie -2010 | This movie is corrupted or invalid

invalidSampleTable -2011 | This sample table is corrupted or invalid

invalidDataRef -2012 | This data reference is invalid

invalidHandler -2013 | This handler is invalid

invalidDuration -2014 | This duration value is invalid

invalidTime -2015 | This time value is invalid

cantPutPublicMovieAtom -2016 | Cannot write to this movie file

badEditList -2017 | The track’s edit list is corrupted

mediaTypesDontMatch -2018 | These media don't match

progressProcAborted -2019 | Your progress procedure returned an error

movieToolboxUninitialized -2020 | You haven't initialized the Movie Toolbox

wfFileNotFound -2021 | Cannot locate this file

cantCreateSingleForkFile -2022 | Error trying to create a single-fork file. This occurs when the file
already exists.

invalidEditState -2023 | This edit state is invalid

Result Codes

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Constant Value | Description

nonMatchingEditState -2024 | This edit state is not valid for this movie
staleEditState -2025 | Movie or track has been disposed
userDataltemNotFound -2026 | Cannot locate this user data item
maxSizeToGrowTooSmall -2027 | Maximum size must be larger
badTrackindex -2028 | This track index value is not valid
trackIDNotFound -2029 | Cannot locate a track with this ID value
trackNotInMovie -2030 | This track is not in this movie
timeNotInTrack -2031 | This time value is outside of this track
timeNotinMedia -2032 | This time value is outside of this media
badEditIndex -2033 | This edit index value is not valid
internalQuickTimeError -2034 | Internal error

cantEnableTrack -2035 | Cannot enable this track

invalidRect -2036 | Specified rectangle has invalid coordinates
invalidSampleNum -2037 | There is no sample with this sample number
invalidChunkNum -2038 | There is no chunk with this chunk number
invalidSampleDesclndex -2039 | Sample description index value invalid
invalidChunkCache -2040 | The chunk cache is corrupted
invalidSampleDescription -2041 | This sample description is invalid or corrupted
dataNotOpenForRead -2042 | Cannot read from this data source
dataNotOpenForWrite -2043 | Cannot write to this data source
dataAlreadyOpenForWrite -2044 | Data source is already open for write
dataAlreadyClosed -2045 | You have already closed this data source
endOfDataReached -2046 | End of data

dataNoDataRef -2047 | No data reference value found
noMovieFound -2048 | Toolbox cannot find a movie in the movie file
invalidDataRefContainer -2049 | Invalid data reference

badDataReflndex -2050 | Data reference index value is invalid

Result Codes

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

79

80

CHAPTER 11

Movie Toolbox Constants, Data Types, and Functions

Constant Value | Description

noDefaultDataRef -2051 | Could not find a default data reference
couldNotUseAnExistingSample | -2052 | Movie Toolbox could not use a sample
featureUnsupported -2053 | Movie Toolbox does not support this feature

Result Codes

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to QuickTime Movie Basics.

Date Notes

2006-01-10 New document that introduces basic concepts underlying QuickTime movies.
Replaces "Movie Toolbox: Editing," "Movie Toolbox: Application-Defined
Functions," "Movie Toolbox: Data Types," and "Movie Toolbox: Saving Movies."

2002-09-17 New document that explains how to enable the editing of movies.

81

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

82

REVISION HISTORY

Document Revision History

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

	QuickTime Movie Basics
	Contents
	Figures, Tables, and Listings
	Introduction
	Editing Movies
	Handling Media Sample References
	Manipulating Media Input Maps
	Undo for Movies
	Functions That Modify Movie Properties
	Working With Display Characteristics
	Working With Sound Volume
	Locating a Movie's Tracks and Media Structures
	Determining Movie Creation and Modification Time

	Editing Tracks
	Undo for Tracks
	Selection and Scrap Functions
	Low-Level Movie-Editing Functions
	Summary of Editing Functions

	Saving Movies
	Movie File Functions
	Movie Files

	Overview of Application-Defined Functions
	Progress Functions
	Cover Functions
	Error-Notification Functions
	Movie Callout Functions
	File Filter Functions
	Custom Dialog Functions
	Modal-Dialog Filter Functions
	Standard File Activation Functions
	Callback Event Functions
	Text Functions

	Working With Application-Defined Functions
	Sample Cover Functions

	Creating Tracks and Media Structures
	Working With Track References
	About Track References
	Track Reference Functions

	Timecode Media Handler
	Chapter Lists
	Working With Data References
	Alternate Tracks
	Editing Tracks

	Working With Media Samples
	Adding Samples to Media Structures
	Finding Interesting Times
	Working With Movie User Data

	Understanding QuickTime Atoms
	Atom Structures and IDs
	Creating and Disposing of Atom Containers
	Creating New Atoms
	Copying Existing Atoms
	Retrieving Atoms From an Atom Container
	Modifying Atoms
	Removing Atoms From an Atom Container
	Creating and Modifying QT Atom Containers
	Retrieving Atoms and Atom Data
	Constants for QT Atom Functions
	QT Atom
	QT Atom Type and ID
	QT Atom Container

	Timecode Media Handler Functions
	About Timecodes
	Creating a Timecode Track

	Locating Tracks, Saving Movies, and Modifying Movie Properties
	Saving Movies
	Time Base Callback Functions
	Creating and Disposing of Time Bases
	Working with Movie Time
	Working With Movie User Data
	The Time Structure
	The Fixed-Point and Fixed-Rectangle Structures
	Media Handler Support
	Data Handler Components
	Support for Progressive Downloads
	Displaying a Progressively Downloaded Movie
	Low-Level Routines

	Handling Media Sample References
	Manipulating Media Input Maps

	Matrix Functions
	The Transformation Matrix

	Movie Toolbox Constants, Data Types, and Functions
	Movie Exporting Flags
	Movie Importing Flags
	Flattening Flags
	Interesting Times Flags
	Full Screen Flags
	Text Sample Display Flags
	Data Types
	Modifier Input Types
	Data References
	Movie Identifiers

	Constants
	Result Codes

	Revision History

