QuickTime Movie Internals Guide

QuickTime > Movie Internals

¢

2006-01-10

.

[

Apple Inc.

© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh,
QuickDraw, and QuickTime are trademarks of
Apple Inc,, registered in the United States and
other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Movie Internals Guide 9

Organization of This Document 9
See Also 10

Chapter 1 Movie Time and Space 11

Working With Movie Spatial Characteristics 11
Matrix Functions 12
The Fixed-Point and Fixed-Rectangle Structures 12
Creating a Track Matte 13
Working With Movie Time 15
About Movie Time 15
Time Coordinate Systems 15
Time Bases 17
Working With Track Time 17
Working With Media Time 18
Time Base Functions 18
Creating and Disposing of Time Bases 19
Working With Time Base Values 19
Time Structures 20
The TimeRecord Structure 20
Large Time Values 21
Time Base Callback Functions 21
Time and Space Function Summary 22
Managing Movie Space 22
Working With Matrices 23
Managing Movie Time 24
Managing Track Time 24
Managing Media Time 24
Finding Interesting Times 24
Time Base Management 25

Chapter 2 Clock Components Overview 27

Clock Components and Movie Time Bases 27
Interrupts and Callbacks 28

Chapter 3 Movie Clocks, Sound Clocks, and Video Output 29

Overview 29
Setting and Changing the Master Clock 29

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

The ChooseMovieClock Function 29
Associated Components: The Video Output Component Clock 30
Associated Components: Sound Output Component 30
Using the Sound Output Component Associated With the Video Output Component 30
Switching Back to the Default Sound Output Component 31
Choosing the Clock 32
Component Capability Flags for Clocks 32

Chapter 4 Clock Component Functions 35

Getting the Current Time 36

Using the Callback Functions 36

Managing the Time 36

Movie Toolbox Clock Support Functions 36
Data Types 37

Component Types for Clocks 38

Chapter 5 Modifier Tracks 39

Track References 39

Functions That Manipulate Track References 40
Creating Modifier Tracks 40

Kinds of Modifier Tracks 40

Limitations of Spatial Modifier Tracks 41

Media Handler Support 41
Creating Movies With Modifier Tracks 41
Manipulating Media Input Maps 42
Working With Alternate Tracks 43

Chapter 6 Movie Toolbox Access Keys 45

System and Application Access Keys 45

Access Key Types 45

Using Access Keys 45
Registering an Access Key 46
Getting Access Keys 46
Unregistering an Access Key 46

Chapter 7 Movie Posters and Movie Previews 47

Controlling Movie Playback of Previews 47
Controlling Movie Time 48

Chapter 8 Previewing Files 49

Standard File Functions 49

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Customizing Your Interface 50
Previewing Files Using Standard File Reply Structures 51
Functions for Creating File Previews 54

Generating Pictures From Movies 54

Document Revision History 55

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Chapter 1 Movie Time and Space 11
Figure 1-1 Time scales 16
Figure 1-2 A time coordinate system and a time base 17
Table 1-1 Common movie time scales 15
Listing 1-1 Creating a track matte 13
Chapter 2 Clock Components Overview 27
Figure 2-1 Clock component environment 27
Chapter 5 Modifier Tracks 39
Table 5-1 Input types supported by Apple-supplied media handlers 41
Listing 5-1 Linking a modifier track to the track it modifies 42

Listing 5-2 Updating the input map 42

Chapter 6 Movie Toolbox Access Keys 45
Listing 6-1 Registering an application access key 46
Listing 6-2 Registering a system access key 46
Listing 6-3 Getting access keys 46
Listing 6-4 Unregistering an access key 46
Chapter 8 Previewing Files 49
Figure 8-1 SFGetFilePreview or SFPGetFilePreview dialog box without preview 49
Figure 8-2 SFGetFilePreview or SFPGetFilePreview dialog box with preview 50
Figure 8-3 Standard preview dialog box for SFGetFilePreview and SFPGetFilePreview 51
Figure 8-4 StandardGetFilePreview or CustomGetFilePreview dialog box without preview
52
Figure 8-5 StandardGetFilePreview or CustomGetFilePreview dialog box with preview 52
Figure 8-6 Dialog box showing automatic file-to-movie conversion option 53
Figure 8-7 Dialog box for saving a movie converted from a file 53

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Internals
Guide

This book covers some of the technology present inside QuickTime movies, including time management,
modifier tracks, access keys, posters, and movie and file previews.

Note: This book replaces five previously separate Apple documents: “Movie Toolbox: Time and Spatial
Characteristics,” “Clock Components,” “Movie Toolbox: Previews,” “Movie Toolbox: Access Keys,” and “Modifier
Tracks, Track References, and Alternate Tracks.”

You should read this book if you are going to work with QuickTime movies.

Organization of This Document

This book consists of the following chapters:

Movie Time and Space (page 11) describes the functions of the movie toolbox that your application will
use to manipulate the timebase and spatial characteristics of movies, tracks, and media.

Clock Components Overview (page 27) describes the general features and uses of clock components,
and provides diagrams showing the relationship between clock components, applications, and the Movie
Toolbox.

Movie Clocks, Sound Clocks, and Video Output (page 29) describes how to set a movie’s master clock,
how a movie's default clock is chosen, the use of the sound clock, and how to use SetMovieMasterClock
with video output components.

Clock Component Functions (page 35) describes the functions which clock components must support,
the callback functions that a clock component may optionally support, and functions which QuickTime
uses to alert a clock component of changes in the environment. Applications programmers may be
interested in the current time function and the callback functions. The other functions are of interest to
developers who wish to create new components.

Modifier Tracks (page 39) explains track references and modifier tracks, which create dynamic relationships
between tracks in a QuickTime movie. You need to read this chapter if your application programmatically
creates movies that contain modifier tracks, effects, filters, transitions, or alternate tracks.

Movie Toolbox Access Keys (page 45) describes QuickTime’s mechanism that lets an application that
supplies data to register a password for the data with QuickTime and let a user enter the password to
gain access to the data.

Movie Posters and Movie Previews (page 47) describes the functions your application can use to work
with posters and previews. A poster is a still frame from a movie, while a preview is a short excerpt.

Previewing Files (page 49) describes how to create and display file previews shown as part of the Open
File dialog. A file preview is typically a thumbnail image taken from the movie that is displayed in an
Open File dialog. Some sample code is included. Read this if you would like to include preview thumbnails
of movies.

Organization of This Document 9
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Internals Guide

See Also

The following Apple books cover related aspects of QuickTime programming:

= QuickTime Overview gives you the starting information you need to do QuickTime programming.

= QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

= QuickTime Movie Creation Guide describes some of the different ways your application can create a new
QuickTime movie.

= QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

= QuickTime API Reference provides encyclopedic details of all the functions, callbacks, data types and
structures, atom types, and constants in the QuickTime API.

10 See Also
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

This chapter describes the functions of the movie toolbox that your application will use to manipulate the
timebase and spatial characteristics of movies, tracks, and media.

Working With Movie Spatial Characteristics

The Movie Toolbox provides a number of functions that allow your application to determine and change the
spatial characteristics of movies and tracks. Before using any of them, you should be familiar with the way
in which the Movie Toolbox displays movies. Here are some tips for using these functions:

You can use the SetMovieGWorld and GetMovieGWorld functions to work with a movie’s graphics
world.

Your application can work with a movie’s matrix by calling the GetMovieMatrixand SetMovieMatrix
functions, and it can work with a track’s matrix with the GetTrackMatrix and SetTrackMatrix
functions. Then you can perform operations on matrices with the Movie Toolbox’s matrix functions
described in Matrix Functions (page 12).

Certain functions affect the displayed movie and its tracks in the final display coordinate system. The
SetMovieGWorldand GetMovieGWor1d functions let you work with a movie’s display destination. The
GetMovieBox and SetMovieBox functions allow you to work with a movie’s boundary rectangle and
its associated transformations. Alternatively, you can use the GetMovieMatrix and SetMovieMatrix
functions to work directly with a movie's transformation matrix. The GetMovieDisplayBoundsRgn
function determines a movie’s boundary region at the current movie time. On the other hand, the
GetMovieSegmentDisplayBoundsRgn function determines a movie's boundary region over a specified
time segment. You can use the GetMovieDisplayClipRgnand SetMovieDisplayClipRgn functions
to work with a movie’s display clipping region.

The GetTrackDisplayBoundsRgn and GetTrackSegmentDisplayBoundsRgn functions determine
a track’s final boundary region. You can use the GetTracklayer and SetTracklayer functions to
control the drawing order of tracks within a movie.

A number of functions affect a movie’s display boundaries before any display transformations. These
functions operate in the movie’s display coordinate system. You can use the GetMovieClipRgn and
SetMovieClipRgn functions to work with a movie's clipping region; that is, the clipping region that is
applied before the movie display transformation. Use the GetMovieBoundsRgn function to determine
a movie's boundary region at the current movie time.

Use the GetTrackMovieBoundsRgn function to work with a track’s boundary region after matrix
transformations have placed the track into the movie’s display system. The SetTrackMatrix and
GetTrackMatrix functions let you define a track’s matrix transformations.

The Movie Toolbox provides several functions that affect a track’s display boundaries; these functions
operate in the track’s display coordinate system before any other display transformations are applied.
The GetTrackDimensions and SetTrackDimensions functions allow you to establish a track’s
coordinate system and to establish a track’s source rectangle.

Working With Movie Spatial Characteristics n
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

12

CHAPTER 1

Movie Time and Space

= You can use the GetTrackBoundsRgn function to determine a track’s boundary region. The
GetTrackClipRgnand SetTrackC1ipRgn functions let you work with a track’s clipping region. You
can use the GetTrackMatte and SetTrackMatte functions to establish a track’s matte. The
DisposeMatte function allows you to dispose of a matte once you are finished with it.

Note: A track’s source rectangle defines the coordinate system of the track. You specify the dimensions of
the rectangle by providing the coordinates of the lower-right corner of the rectangle. The Movie Toolbox
sets the upper-left corner to (0,0) in the track’s coordinate system.

Matrix Functions

The Movie Toolbox provides a number of functions that allow you to work with transformation matrices. This
section describes those functions. For descriptions of fixed-point and fixed-rectangle structures, see The
Fixed-Point and Fixed-Rectangle Structures (page 12).

Note: The functions described in this section do not appear in the interface file Movies.hMovie Toolbox;
rather, they appear in the ImageCompression.h interface file.

The Fixed-Point and Fixed-Rectangle Structures

The Movie Toolbox matrix functions provide two mechanisms for specifying points and rectangles. Some of
the functions work with standard QuickDraw points and rectangles, which use integer values to identify
coordinates. Others, such as the TransformFixedRect function, work with points and rectangles whose
coordinates are expressed as fixed-point numbers. By using fixed-point numbers in these points and rectangles,
the Movie Toolbox can support a greater degree of precision when defining graphic objects.

The FixedPoint data type defines a fixed point. The FixedRect data type defines a fixed rectangle. Note
that both of these structures define the x coordinate before the y coordinate. This is different from the
standard QuickDraw structures.

struct FixedPoint
{
Fixed x; /* point's x coordinate as fixed-point number */
Fixed y; /* point's y coordinate as fixed-point number */
b
typedef struct FixedPoint FixedPoint;

Field | Description

X Defines the point's x coordinate as a fixed-point number.

y Defines the point's y coordinate as a fixed-point number.

struct FixedRect
{

Fixed left; /* x coordinate of upper-left corner */
Fixed top; /* y coordinate of upper-left corner */
Fixed right; /* x coordinate of lower-right corner */

Working With Movie Spatial Characteristics
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Fixed bottom; /* y coordinate of lower-right corner */
Vs
typedef struct FixedRect FixedRect;

Field Description

left Defines the x coordinate of the upper-left corner of the rectangle as a fixed-point number.

top Defines the y coordinate of the upper-left corner of the rectangle as a fixed-point number.

right | Defines the x coordinate of the lower-right corner of the rectangle as a fixed-point number.

bottom | Defines the y coordinate of the lower-right corner of the rectangle as a fixed-point number.

Creating a Track Matte

Listing 1-1 provides an example of how to create a track matte. The CreateTrackMatte function adds an
uninitialized, 8-bit-deep, grayscale matte to a track. The UpdateTrackMatte function draws a gray ramp
rectangle around the edge of the matte and fills the center of the matte with black. (A ramp rectangle shades
gradually from light to dark in smooth increments.)

Listing 1-1 Creating a track matte

void CreateTrackMatte (Track theTrack)
{
QDErr err;
GWorldPtr aGW;
Rect trackBox;
Fixed trackHeight;
Fixed trackWidth;
CTabHandle grayCTab;
GetTrackDimensions (theTrack, &trackWidth, &trackHeight);
SetRect (&trackBox, 0, 0, FixRound (trackWidth),
FixRound (trackHeight));

grayCTab = GetCTable(40); /* 8 bit + 32 =8 bit gray */
err = NewGWorld (&aGW, 8, &trackBox, grayCTab,
(GDHandle) nil, 0);
DisposeCTable (grayCTab);
if (lerr && (aGW != nil))
{
SetTrackMatte (theTrack, aGW->portPixMap);
DisposeGWorld (aGW);
}
}
void UpdateTrackMatte (Track theTrack)
{
OSErr err;
PixMapHandle trackMatte;
PixMapHandle savePortPix;
Movie theMovie;
GWorldPtr tempGW;
CGrafPtr savePort;

Working With Movie Spatial Characteristics 13
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

GDHandle saveGDevice;
Rect matteBox;
short i

theMovie = GetTrackMovie (theTrack);
trackMatte = GetTrackMatte (theTrack);
if (trackMatte == nil)
{
/* track doesn't have a matte, so give it one */
CreateTrackMatte (theTrack);
trackMatte = GetTrackMatte (theTrack);
if (trackMatte == nil)
return;
}

GetGWorld (&savePort, &saveGDevice);
matteBox = (**trackMatte).bounds;
err = NewGWorld(&tempGW,
(**trackMatte).pixelSize, &matteBox,
(**trackMatte).pmTable, (GDHandle) nil, 0);
if (err || (tempGW == nil)) return;

SetGWorld (tempGW, nil);
savePortPix = tempGW->portPixMap;
LockPixels (trackMatte);
SetPortPix (trackMatte);

/* draw a gray ramp rectangle around the edge of the matte */
for (i = 0; 1 < 35; i++)
{
RGBColor aColor;
long templong;
templong = 65536 - ((65536 / 35) * (long)i);
aColor.red = aColor.green = aColor.blue = templong;
RGBForeColor(&aColor);
FrameRect (&matteBox);
InsetRect (&matteBox, 1, 1);
}

/* fill the center of the matte with black */
ForeColor (blackColor);
PaintRect (&matteBox);

SetPortPix (savePortPix);

SetGWorld (savePort, saveGDevice);
DisposeGWorld (tempGW);

UnTockPixels (trackMatte);
SetTrackMatte (theTrack, trackMatte);
DisposeMatte (trackMatte);

14 Working With Movie Spatial Characteristics
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Working With Movie Time

Every QuickTime movie has its own time base. A movie’s time base allows all the tracks that make up the
movie to be synchronized when the movie is played. The Movie Toolbox provides a number of functions
that allow your application to determine and establish the time parameters of a movie:

= You can use the GetMovieTimeBase function to retrieve the time base for a movie.

= You can work with a movie’s current time by calling the GetMovieTime, SetMovieTime, and
SetMovieTimeValue functions.

= You can work with a movie’s time scale by calling the GetMovieTimeScale and SetMovieTimeScale
functions.

= The Movie Toolbox can calculate the total duration of a movie. You can use the GetMovieDuration
function to retrieve a movie’s duration.

= Your application can call the GetMovieRate and SetMovieRate to work with a movie's playback rate.

The next sections discuss those functions. Later sections in this chapter discuss the Movie Toolbox functions
that allow you to work with the time parameters of tracks and media structures. For information about more
functions that work with time, see Time Base Functions (page 18).

About Movie Time

At the most basic level, the Movie Toolbox allows you to process time based data. As such, the Movie Toolbox
must provide a description of the time basis of that data as well as a definition of the context for evaluating
that time basis. In QuickTime, a movie's time basis is referred to as its time base. Geometrically, you can think
of the time base as a vector that defines the direction and velocity of time for a movie. The context for a time
base is called its time coordinate system. Essentially, the time coordinate system defines the axis on which
the time base vector is plotted. The smallest single unit of time marked on that axis is defined by the time
scale as the units per absolute second.

Time Coordinate Systems

A movie’s time coordinate system provides the context for evaluating the passage of time in the movie. If
you think of the time coordinate system as defining an axis for measuring time, it is only natural that this
axis would be marked with a scale that defines a basic unit of measurement. In QuickTime, that measurement
system is called a time scale.

A QuickTime time scale defines the number of time units that pass each second in a given time coordinate
system. A time coordinate system that has a time scale of 1 measures time in seconds. Similarly, a time

coordinate system that has a time scale of 60 measures sixtieths of a second. In general, each time unitin a
time coordinate system is equal to (1/time scale) seconds. Some common time scales are listed in Table 1-1.

Table 1-1 Common movie time scales

Time scale | Absolute time measured

1 Seconds

Working With Movie Time 15
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Time scale | Absolute time measured

60 Sixtieths of a second (Macintosh ticks)

1000 Milliseconds

2225454 | Sound sampled at 22 kHz

Figure 1-1 shows a duration of two seconds in absolute time and equivalent durations in the common time
scales listed in Table 1-1.

Figure 1-1 Time scales

I I I fbsaute ime fecond)

f o 1 2

I I I Silens ol 4 second

o &0 120

: ;
: i
PN econds i
: i
: g 1000 2000 :
: i
H]
: &8 kHz sound i
: — — i
o sl T 44500, 7
e

A particular point in time in a time coordinate system is represented using a time value. A time value is
expressed in terms of the time scale of its time coordinate system. Without an appropriate time scale, a time
value is meaningless. For example, in a time coordinate system with a time scale of 60, a time value of 180
translates to 3 seconds. Because all time coordinate systems tie back to absolute time (that is, time as we
measure it in seconds), the Movie Toolbox can translate time values from one time coordinate system into
another.

Time coordinate systems have a finite maximum duration that defines the maximum time value for a time
coordinate system (the minimum time value is always 0). Note that as a QuickTime movie is edited, the
duration changes.

As the value of the time scale increases (as the time unit for a coordinate system gets smaller in terms of
absolute time), the maximum absolute time that can be represented in a time coordinate system decreases.
For example, if a time value were represented as an unsigned 16-bit integer, its maximum value would be
65,535. In a time coordinate system with a time scale of 1, the maximum time value would represent 65,535
seconds. However, in a time coordinate system with a time scale of 5, the maximum time value would
correspond to 13,107 seconds. Hence, a time coordinate system’s duration is limited by its time scale.
QuickTime uses 32-bit and 64-bit quantities to represent time values, so you only need to worry about
attaining a maximum absolute time in situations where a time coordinate system’s duration is very long or
its time scale is very large.

Working With Movie Time
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Time Bases

A movie’s time base defines its current time value and the rate at which time passes for the movie. The rate
specifies the speed and direction in which time travels in a movie. Negative rate values cause you to move
backward through a movie’s data; positive values move forward. The time base also contains a reference to
the clock that provides timing for the time base. QuickTime clocks are implemented as components that are
managed by the Component Manager.

Time bases exist independently of any specific time coordinate system. However, time values extracted from
a time base are meaningless without a time scale. Therefore, whenever you obtain a time value from a time
base, you must specify the time scale of the time value result. The Movie Toolbox translates the time base’s
time value into a value that is sensible in the specified time scale.

Note: A time base differs from a time coordinate system, which provides the foundation for a time base. (A
time coordinate system is the field of play that defines the coordinate axis for a time base.) A time base
operates in the context of a time coordinate system. It has a rate, which implies a direction as well as a speed
through the movie.

Figure 1-2 represents a time coordinate system and a time base geometrically. The time coordinate system
is represented by a coordinate axis. In this example, the time coordinate system has a time scale of 2; that
is, there are two time units in each second. The duration of this time coordinate system is 2 seconds, which
is equivalent to 4 time units. An object’s time base is depicted by the large arrow under the axis that represents
the time coordinate system. This time base has a current time value of 3 and a rate of 1. The starting time is
a time value, expressed in the units of the time coordinate system.

Figure 1-2 A time coordinate system and a time base
Bbaclire fim e [esconde)
1] 1 2
! | | |
| | Mounz e coordinade wrelem
1] 1 2 3 4
1 1
M zurie i e unit e — M oo S boyee

Working With Track Time

The Movie Toolbox provides several functions that allow your application to determine and establish a track’s
time parameters. A track uses the time base of the movie that contains the track; therefore there are no
functions that work with a track’s time base or time scale. However, you can determine a track’s duration
and its offset from the start of a movie.

Working With Movie Time 17
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

18

CHAPTER 1

Movie Time and Space

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie's time scale defines
the basic time unit for each of the movie’s tracks. Each track begins at the beginning of the movie, but the
track’s data might not begin until some time value other than 0. This intervening time is represented by
blank space. In an audio track the blank space translates to silence; in a video track the blank space generates
no visual image. This blank space is the track offset. Each track has its own duration. This duration need not
correspond to the duration of the movie. A movie duration always equals the maximum track duration. These
functions help you work with track time:

= You can use the GetTrackDuration function to determine a track’s duration.

m The SetTrackOffset and GetTrackOffset functions enable you to work with a track’s offset from
the start of the movie that contains it.

m TheTrackTimeToMediaTime function lets you translate a track’s time to the corresponding time value
of a media in the track.

Working With Media Time

The Movie Toolbox provides functions that allow your application to work with the time parameters of a
media:

= You can use the GetMediaDuration function to determine a media’s duration.

m The GetMediaTimeScale and SetMediaTimeScale let you determine or establish a media’s time
scale.

Time Base Functions

The Movie Toolbox provides a number of functions that allow you to work with time bases. A QuickTime
time base defines the time coordinate system of a movie. However, you can also use QuickTime time bases
to provide general timing services. This section describes the functions that allow your application to work
with time bases.

This section has been divided into the following topics:

m Creating and Disposing of Time Bases (page 19) describes how to create and dispose of time bases and
how to assign a time base to a movie

= Working With Time Base Values (page 19) discusses functions that allow your application to work with
the contents of a time base

m Time Structures (page 20) describes a number of functions that allow you to convert times between
time bases and to perform simple arithmetic on time values

m Time Base Callback Functions (page 21) describes the functions your application may use to condition
a time base to invoke functions your application provides

Working With Movie Time
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Note: Time base functions do not change the value of the Movie Toolbox sticky error value.

Creating and Disposing of Time Bases

The following Movie Toolbox functions help your application create and dispose of time bases:

The NewT imeBase function lets you create a new time base. You can use the DisposeTimeBase function
to dispose of a time base once you are finished with it.

Time bases rely on either a clock component or another time base for their time source. You can use the
SetTimeBaseMasterTimeBase function to cause one time base to be based on another time base.
The GetTimeBaseMasterTimeBase allows you to determine the master time base of a given time base.

You can assign a clock component to a time base; that clock then acts as the master clock for the time
base. You can use the SetTimeBaseMasterClock function to assign a clock component to a time base.
The GetTimeBaseMasterClock function enables you to determine the clock component that is assigned
to a time base. You can change the offset between a time base and its time source by calling the
SetTimeBaseZero function.

You can set the time source of a movie by calling the SetMovieMasterTimeBase and
SetMovieMasterClock functions.

Note: Although most time base functions can be used at interrupt time, several of the Movie Toolbox
functions cannot. For information about specific functions see the QuickTime API Reference.

Working With Time Base Values

Every time base contains a rate, a start time, a stop time, a current time, and some status information. The
Movie Toolbox provides a number of functions that allow your application to work with the contents of a
time base. You can use these functions:

The GetTimeBaseTime function lets you retrieve the current time value of a time base. You can set the
current time value by calling the SetTimeBaseTime function; this function requires you to provide a
time structure. Alternatively, you can set the current time based on a time value by calling the
SetTimeBaseValue function.

You can determine the rate of a time base by calling the GetTimeBaseRate function. You can set the
rate of a time base by calling the SetTimeBaseRate function. You can determine the effective rate of
a specified time base (relative to the master time base to which it is subordinate) by calling the
GetTimeBaseEffectiveRate function.

You can retrieve the start time of a time base by calling the GetTimeBaseStartTime function. You can
set the start time of a time base by calling the SetTimeBaseStartTime function. Similarly, you can use
the GetTimeBaseStopTime and SetTimeBaseStopTime functions to work with the stop time of a
time base.

The Movie Toolbox also provides functions that allow you to work with the status information of a time base:

The GetTimeBaseStatus function allows you to read the current status of a time base.

Working With Movie Time 19
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

= The GetTimeBaseFlags function helps you obtain the control flags of a time base. You can set these
flags by calling the SetTimeBaseFlags function.

Time Structures

The Movie Toolbox provides a number of functions that allow you to work with time structures:

= You can use the ConvertTime function to convert a time you obtain from one time base into a time
that is relative to another time base. Similarly, you can use the ConvertTimeScale function to convert
a time from one time scale to another.

= You can add two times by calling the AddT1ime function; you can subtract two times with the
SubtractTime function.

All of these functions work with time structures. You can use time structures to represent either time values
or durations. Time values specify a point in time, relative to a given time base. Durations specify a span of
time, relative to a given time scale. Durations are represented by time structures that have the time base set
to 0 (that is, the base field in the time structure is set to nil).

The TimeRecord Structure

Many time management functions require that you place a time specification in a data structure called a
TimeRecord.

struct TimeRecord
{

CompTimeValue value; /* time value (duration or absolute) */
TimeScale scale; /* units per second */
TimeBase base; /* reference to the time base */

b
typedef struct TimeRecord TimeRecord;

Field | Description

value | Contains the time value. The time value defines either a duration or an absolute time by specifying
the corresponding number of units of time. For durations, this is the number of time units in the
period. For an absolute time, this is the number of time units since the beginning of the time
coordinate system. The unit for this value is defined by the scale field. The time value is expressed
asa CompTimeValue data type, which is a 64-bit integer quantity. This 64-bit quantity consists of
two 32-bit integers, and it is defined by the Int64 data type.

scale | Contains the time scale. This field specifies the number of units of time that pass each second. If
you specify a value of 0, the time base uses its natural time scale.

base | Contains a reference to the time base. You obtain a time base by calling the Movie Toolbox's
GetMovieTimeBase or NewTimeBase functions. If the time structure defines a duration, set this
field to ni 1. Otherwise, this field must refer to a valid time base.

20 Time Structures
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

Large Time Values

You can specify the time value in a time structure as a 64-bit integer value as follows:

typedef Int64 CompTimeValue;

The Movie Toolbox uses this format so that extremely large time values can be represented. The Int64 data
type defines the format of these signed 64-bit integers.

struct Int64d
{
long hi; /* high-order 32 bits-value field in time structure */
long lo; /* low-order 32 bits-value field in time structure */
b
typedef struct Int6d Inté4;

Field | Description

hi Contains the high-order 32 bits of the value. The high-order bit represents the sign of the 64-bit
integer.

To Contains the low-order 32 bits of the value.

Time Base Callback Functions

If your application uses QuickTime time bases, it may define callback functions that are associated with a
specific time base. Your application can then use these callback functions to perform activities that are
triggered by temporal events, such as a certain time being reached or a specified rate being achieved. The
time base functions of the Movie Toolbox interact with clock components to schedule the invocation of these
callback functions; clock components are responsible for invoking the callback function at its scheduled time.
Your application can use the functions described in this section to establish your own callback function and
to schedule callback events.

You can define three types of callback events. These types are distinguished by the nature of the temporal
event that triggers the Movie Toolbox to call your function. The three types are

= events that are triggered at a specified time
= events that are triggered when the rate reaches a specified value

= events that are triggered when the time value of a time base changes by an amount different from the
time base’s rate.

Use these functions to work with time base callbacks:

= You specify a callback event’s type when you define the callback event, using the NewCa11Back function.

= You specify whether your event can occur at interrupt time when you define the callback event, using
the NewCal1Back function. Your function is called closer to the triggering event at interrupt time, but
it is subject to all the restrictions of interrupt functions (for example, your callback function cannot cause
memory to be moved). If your function is not called at interrupt time, you are free of these restrictions;
but your function may be called later, because the invocation is delayed to avoid interrupt time.

Time Base Callback Functions 21
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

= The NewCal1Back function allocates the memory to support a callback event. When you are done with
the callback event, you dispose of it by calling the DisposeCallBack function.

= You schedule a callback event by calling the Cal1MeWhen function. Call CancelCal1Back function to
unschedule a callback event.

= You can retrieve the time base of a callback event by calling the GetCal1BackTimeBase function.

= You can obtain the type of a callback event by calling the GetCal1BackType function.

Time and Space Function Summary

22

Here is a summary of the Movie Toolbox functions you can use to manage movie time and spatial
characteristics.

Managing Movie Space

The Movie Toolbox contains a number of functions that your application can use to determine or change
the spatial display characteristics of movies and tracks. These functions affect the movie's graphics world, its
matrix, the final display coordinate system, and the display boundaries. They include

m SetTrackGWorld

m SetMovieGWorld

m GetMovieGWorld

m SetMovieBox

m (GetMovieBox

m GetMovieDisplayBoundsRgn

m GetMovieSegmentDisplayBoundsRgn
m SetMovieDisplayClipRgn

m GetMovieDisplayClipRgn

m GetTrackSegmentDisplayBoundsRgn
m SetTracklayer

m GetTracklLayer

m SetMovieMatrix

m (GetMovieMatrix

m GetMovieBoundsRgn

m GetTrackMovieBoundsRgn

m GetMovieClipRgn

m SetTrackMatrix

m GetTrackMatrix

Time and Space Function Summary
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

m GetTrackBoundsRgn

m SetTrackDimensions
m GetTrackDimensions
m SetTrackClipRgn

m GetTrackClipRgn

m SetTrackMatte

m GetTrackMatte

m DisposeMatte

m SetMovieColorTable

m GetMovieColorTable

Working With Matrices

Several Movie Toolbox functions allow you to manipulate transformation matrices.

m SetldentityMatrix
m GetMatrixType

m CopyMatrix

m FqualMatrix

m TranslateMatrix

m ScaleMatrix

= RotateMatrix

m SkewMatrix

m (ConcatMatrix

m InverseMatrix

m TransformPoints

m TransformFixedPoints
m TransformRect

m TransformFixedRect
m TransformRgn

m RectMatrix

m MapMatrix

Time and Space Function Summary
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

24

CHAPTER 1

Movie Time and Space

Managing Movie Time

Several functions are used to work with a movie’s time parameters. Included are functions for retrieving the
time base, working with the current movie time, working with the time scale, calculating the movie’s duration,
and getting and setting the playback rate.

m GetMovieDuration

m SetMovieTimeValue
m SetMovieTime

m GetMovieTime

m SetMovieRate

m GetMovieRate

m SetMovieTimeScale
m GetMovieTimeScale

m GetMovieTimeBase

Managing Track Time

Several functions work with a track’s time parameters. All tracks share the movie’s time base, but each track
contains its own offset and duration. A function is also provided to translate track time into a value appropriate
to the track’s media.

m GetTrackDuration
m SetTrackOffset
m GetTrackOffset

m TrackTimeToMediaTime

Managing Media Time

Three functions work with a media’s time parameters. Each media has its own time scale and duration.

m GetMediaDuration
m SetMediaTimeScale

m GetMediaTimeScale

Finding Interesting Times

You can call Movie Toolbox functions to search a movie, track or media for a particular sample, such as a
keyframe. The functions return the time and duration of the next sample that meets the search criteria.

Time and Space Function Summary
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Movie Time and Space

m GetMovieNextInterestingTime
m GetTrackNextInterestingTime

m GetMediaNextInterestingTime

Time Base Management

Various Movie Toolbox functions work with time bases. A QuickTime time base defines the time coordinate

system for a movie. It can also be used to provide general timing services.

m Creating and Disposing of Time Bases (page 19)
CNewTimeBase
DisposeTimeBase
JetMovieMasterClock
JetMovieMasterTimeBase
3etTimeBaseMasterClock
CGetTimeBaseMasterClock
JetTimeBaseMasterTimeBase
[GetTimeBaseMasterTimeBase

[JetTimeBaselZero

= Working With Time Base Values (page 19)
JetTimeBaseTime
JetTimeBaseValue
JetTimeBaseRate
GetTimeBaseRate
[GetTimeBaseEffectiveRate
3JetTimeBaseStartTime
GetTimeBaseStartTime
[JetTimeBaseStopTime
GetTimeBaseStopTime
[—SetTimeBaseFlags
GetTimeBaseFlags
CGetTimeBaseStatus

m Time Structures (page 20)
—AddTime
—JubtractTime

Time and Space Function Summary
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

25

CHAPTER 1

Movie Time and Space

GonvertTime

GonvertTimeScale

m Time Base Callback Functions (page 21)
NewCallBack
GallMeWhen
GancelCallBack
DisposeCallBack
GetCallBackTimeBase
GetCallBackType

Most of these functions are discussed in the preceding sections of this chapter.

26 Time and Space Function Summary
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Clock Components Overview

Clock components provide two basic services: they generate time information and schedule time-based
callback events. QuickTime uses clock components to drive movie time bases. Applications can change the
clock used for a movie's time base. Applications may also use clock components to schedule
application-defined callback events.

Clock Components and Movie Time Bases

A clock component provides realtime clock information derived from an external source, typically a hardware
source.

Figure 2-1 shows the relationships between an application, the movie controller component, the Movie
Toolbox, and a clock component.

Figure 2-1 Clock component environment

Anapplication

4

i wie
contmller
COMpo e

.

hiosie
Toolbomx

Gk ':'}
component ‘:::l

Il

Gantrol flow [
Detafow o

Clock Components and Movie Time Bases 27
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Clock Components Overview

Clock components are used by the Movie Toolbox for time bases. A time base defines a movie's current time
value and the rate at which time passes for the movie. The rate specifies the speed and direction in which
time travels in a movie. A time base also contains a reference to a clock which provides timing for the time
base. The clock component used to drive a movie’s time base is known as the movie master clock.

QuickTime chooses a default master clock, known as the default clock, depending on the movie media types.
If you play a movie containing a sound track, QuickTime uses the sound clock by default. If the movie lacks
a sound track, QuickTime uses the system clock as the default master clock.

You can obtain the clock component associated with a given media by calling MediaGetClock. You can
also change the master clock associated with a movie’s time base. For details, see Movie Clocks, Sound Clocks,
and Video Output (page 29).

Interrupts and Callbacks

28

Your application can call any clock component function at interrupt time, except for the C1ockNewCal1Back
and ClockDisposeCallBack functions. In addition, your application should not call the Component
Manager’s open or close component functions, such as OpenComponent, OpenAComponent,
OpenADefaultComponent, or CloseComponent, at interrupt time.

Clock components may also support time-based callback events. The Movie Toolbox’s time base functions

allow applications and other programs to schedule functions to be called in specified circumstances. Since
time bases derive their time information from clock components, ultimate responsibility for servicing these
callback functions also falls to clock components.

The Movie Toolbox provides a set of support functions that clock component authors can use to manage
callback events. These functions are described in Clock Component Functions (page 35).

A clock component is not required to support callback functions. Clock component authors can delegate
this responsibility to another clock component. Component Capability Flags for Clocks (page 32) describes
how a clock component can tell the Component Manager that the clock component does not support callback
functions.

Interrupts and Callbacks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Movie Clocks, Sound Clocks, and Video Output

This chapter describes how to set a movie's master clock, how a movie's default clock is chosen, the use of
the sound clock, how to use SetMovieMasterClock with video output components, and the component
capability flags defined for clock components.

Overview

Clock components are used by the Movie Toolbox for time bases. A movie master clock is what drives a
movie’s time base.

A time base defines a movie's current time value and the rate at which time passes for the movie. The rate
specifies the speed and direction in which time travels in a movie. A time base also contains a reference to
a clock which provides timing for the time base.

When an application opens a movie containing a sound track, QuickTime uses the sound clock as the movie
master clock. The sound clock is a clock component provided directly by the selected audio output device,
or (if the audio output device doesn’t provide one) a clock that simply watches the samples go by on their

way out to the hardware and derives a clock from that.

In other words, if you play a movie containing audio and video media, the video will play at whatever rate
the audio hardware is playing. If the movie lacks a sound track, QuickTime will use the system clock as the
movie master clock.

The clock QuickTime chooses via this process is called the default clock.
You can obtain the clock component associated with a given media by calling MediaGetClock.

The component capability flags describe the capabilities of the clock component: specifically whether the
clock keeps a constant rate (as opposed to drifting) and whether the component supports callback functions.

Setting and Changing the Master Clock

This section describes how to set and change the master clock associated with a movie time base.

You can obtain the clock component associated with a given media by calling MediaGetClock.

The ChooseMovieClock Function

ChooseMovieClock assigns a default clock to a movie. If you have changed a movie’s master clock with
SetMovieMasterClock, or would like to reset a movie's clock, use the ChooseMovieClock function.

Overview 29
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

30

CHAPTER 3
Movie Clocks, Sound Clocks, and Video Output

Associated Components: The Video Output Component Clock

A Video Output Clock is the clock component associated with a specific video output component. This clock
allows the time base used by a QuickTime movie to be driven by a specific output hardware device’s clock,
in order to synchronize video and sound when the output device is in use.

An application can ask for the clock component associated with the video output component and use this
clock as a movie’s master clock.

When using a Video Output Component, you can get an Instance of the Clock Component associated with
the Video Output Component by calling QTVideoOutputGetClock.

Once you have this Clock Instance, it can be associated with a Movie by calling SetMovieMasterClock.
Because a change to the display mode could affect a clock component, your application should call
QTVideoOutputGetClock only between calls to the QTVideoOutputBegin and QTVideoOutputEnd
functions.

When you want to reset the movie master clock back to the default clock, use ChooseMovieClock.

If you were previously using SetMovieMasterClock to reset a movies clock to the default clock, you should
change to the new ChooseMovieClock method:

ChooseMovieClock(myMovie, 0);

Associated Components: Sound Output Component

A Sound Output Component is a software module that identifies, controls, and plays audio on a specific
hardware device. Video output components, in addition to having a clock component, can have a Sound
Output Component associated with them.

Developers can change the Sound Output Component used by a Media Handler by calling
MediaSetSoundOutputComponent. This allows choosing between using the audio device associated with
a video output device, another sound output device installed on the system, or the default sound output
device.

Note: Calling MediaSetSoundOutputComponent can change the movie master clock.

Using the Sound Output Component Associated With the Video
Output Component

To find the Sound Output Components associated with a Video Output Component use
QTVideoOutputGetIndSoundQutput. Once the component is retrieved, call
MediaSetSoundOutputComponent to set the sound output component for a media handler.

Component theSoundOut = 0;

ComponentInstance theVOutClock = NULL;
UnsignedFixed theSupportedAudioRate, myWantedAudioRate = eAudioRate48khz;

// Does this Video Output Component have a

Setting and Changing the Master Clock
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
Movie Clocks, Sound Clocks, and Video Output

// Sound Output Component associated with it?
if (ComponentFunctionImplemented(thelnstance,
kQTVideoOutputGetIndSoundOutputSelect)) {
// Get the first sound output component associated
// with the video output component
err = QTVideoOutputGetIndSoundQutput(inVOComponentInstance,
1, &theSoundOut);
if (err || 0 == theSoundOut) goto bail;

// Not all sound output components support all sample

// rates, use GetSoundOutputInfo with the siSampleRateAvailable

// selector and figure it out

theSupportedAudioRate = MyChooseAudioRate(myWantedAudioRate,
theSoundOut) ;

// Set the sample rate for the audio output
err = SoundComponentSetInfo((ComponentInstance)theSoundOut,

NULL, siSampleRate, (void *)theSupportedAudioRate);
if (err) goto bail;

// For each audio tracks media set the sound output component
for (i = 0;7 < theNumberAudioTracks; i++) {
err = MediaSetSoundOutputComponent(inAudioMediaHandlers[i],
theSoundOut);
if (err) goto bail;

}

// Use the Video OQutput Clock as the Master Clock
// Set up the video output clock after sound or it
// gets set back to the default clock
if (ComponentFunctionImplemented(inVOComponentInstance,
kQTVideoOutputGetClockSelect)) {
err = QTVideoOutputGetClock(inVOComponentInstance, &theVOutClock);
if (err || NULL == theVOutClock) goto bail;

SetMovieMasterClock(inMovie, (Component)theVOutClock, NULL);

Switching Back to the Default Sound Output Component

To switch back to the Default Sound Output Component, use MediaSetSoundOutputComponent and pass
in NULL for the Component parameter.

// Set the Sound Output back to the Default Sound Output

for (i = 0;i < theNumberAudioTracks; i++) {
err = MediaSetSoundOutputComponent(theAudioMediaHandler[i], NULL);
if (err) goto bail;

}

// Switch back to the default clock
ChooseMovieClock(myMovie, 0);

Setting and Changing the Master Clock 31
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
Movie Clocks, Sound Clocks, and Video Output

Choosing the Clock

As mentioned in the section Associated Components: Sound Output Component (page 30), choosing a
Sound Output Component will reset the master clock. Therefore, once you choose the Sound Output
Component, you should then set up the movie's master clock. You can either use the Video Output Clock (a
logical choice when using a Video Output Component), or you could chose the default clock to provide audio
and video sync for a movie.

When using the Video Output Clock, be sure to set the movie’s clock back to the default clock before calling
QTVideoOutputEnd.

If you want to use the Video Output Clock, call SetMovieMasterClock and pass in the Video Output Clock
Instance.

// Use the Video Output Clock as the Master Clock
// Set up the video output clock after sound or it
// gets set back to the default clock
if (ComponentFunctionImplemented(theVOComponentinstance,
kQTVideoOutputGetClockSelect)) {
err = QTVideoOutputGetClock(gVOComponentInstance, &theVOutClock);
if (err || NULL == theVOutClock) goto bail;

SetMovieMasterClock(myMovie, (Component)theVOutClock, NULL);
}

When choosing or switching to the Default Clock, use ChooseMovieClock.

// Use the default clock
ChooseMovieClock(myMovie, 0);

Remember, not all sound devices have clocks, and not all video output components have clock components
associated with them, so be sure to check.

SetMovieMasterClock and ChooseMovieClock will cancel each other out; the last API called is the one
that sets the clock.

MediaSetSoundOutputComponent can change the movie master clock.

Component Capability Flags for Clocks

32

The Component Manager allows a clock component to specify information about its capabilities in the
componentF1ags field of the component description structure. Apple has defined two component flags for
clock components. These flags specify information about the capabilities of the clock component. The
component author sets these flags in the componentF1ags field of the component’s ComponentDescription
structure. The following constants can be used to manipulate these flags. Clock component authors should
set them appropriately for their clock.

enum {
kClockRatelslLinear = 1, /* clock keeps constant rate */
kClockImplementsCallBacks = 2 /* clock supports callback events */
b

Component Capability Flags for Clocks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
Movie Clocks, Sound Clocks, and Video Output

kClockRatelIsLinear indicates that your clock maintains a constant rate. Most clocks that you deal with
in the everyday world fall into this category. An example of a clock with an irregular rate is a clock that is
dependent on the position of the Macintosh computer’s mouse; the clock’s rate might change depending
upon where the user moves the mouse. Set this flag to 1 if your clock has a constant rate.

kClockImplementsCallBacks indicates that your clock supports callback events. Set this flag to 1 if your
clock supports callback events.

You should set the componentFlags field appropriately in the component description structure that is
associated with your clock component.

Component Capability Flags for Clocks 33
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
Movie Clocks, Sound Clocks, and Video Output

34 Component Capability Flags for Clocks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Clock Component Functions

This section describes the functions that are provided by clock components. These functions are described
from the perspective of the Movie Toolbox, the entity that is most likely to call clock components. If you are
developing a clock component, your component must behave as described here.

This section has been divided into the following topics:

m Getting the Current Time (page 36) describes the function that allows QuickTime to obtain the current
time from a clock component. This function can also be used by applications.

= Using the Callback Functions (page 36) discusses the functions that allow clock components to help
applications define and schedule time base callback functions.

= Managing the Time (page 36) describes functions that help clock components manage their time
correctly.

If you are developing an application that uses clock components, you should read the next section, Getting
the Current Time (page 36).

If you are developing a clock component, you need to be familiar with all the functions described in this
section.

You can use the following constants to refer to the request codes for each of the functions that your clock
component must support:

Note: Your application can call any clock component function at interrupt time, except for the
ClockNewCallBack and ClockDisposeCallBack functions. In addition, your application should not call
the Component Manager’s OpenComponent and CloseComponent functions at interrupt time.

/* constants to refer to request codes for supported functions */
enum {

kClockGetTimeSelect = 0x1, /* ClockGetTime */
kClockNewCallBackSelect = 0x2,/* ClockNewCallBack */
kClockDisposeCallBackSelect = 0x3,/* ClockDisposeCallBack */
kClockCalIMeWhenSelect = 0x4,/* ClockCallMeWhen */
kClockCancelCallBackSelect = 0x5,/* ClockCancelCallBack */
kClockRateChangedSelect = 0x6,/* ClockRateChanged */
kClockTimeChangedSelect = 0x7,/* ClockTimeChanged */
kClockSetTimeBaseSelect = 0x8,/* ClockSetTimeBase */
kClockStartStopChangedSelect = 0x9,/* ClockStartStopChanged */
kClockGetRateSelect = 0OxA /* ClockGetRate */

35
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Clock Component Functions

Getting the Current Time

Clock components provide a single function, C1ockGetTime, that allows the Movie Toolbox to obtain the
current time.

Using the Callback Functions

Applications that use QuickTime time bases may define callback functions that are associated with a specific
time base. Applications can then use these callback functions to perform activities that are triggered by
temporal events, such as a certain time being reached or a specified rate being achieved. The time base
functions of the Movie Toolbox interact with clock components to schedule the invocation of these callback
functions; your clock component is responsible for calling the callback function at its scheduled time.

The functions described in this section are called by the Movie Toolbox to support applications that define
time base callback functions. Note that your clock component can delegate its callback events to another
component by calling the Component Manager's DelegateComponent function.

The C1ockNewCal1Back function allows your clock component to allocate the memory to support a new
callback event. When an application discards a callback event, the Movie Toolbox calls your clock component’s
ClockDisposeCallBack function.

The Movie Toolbox calls your clock component’s ClockCal1MeWhen function when an application wants to
schedule a callback event. When the callback function is to be invoked to service the event, the Movie Toolbox
calls your component’s C1ockCancelCallBack function so that you can remove the callback event from
the list of scheduled events.

Managing the Time

Clock components provide several functions that allow the Movie Toolbox to alert your component to changes
in its environment. Three of these functions, ClockTimeChanged, ClockRateChanged, and
ClockStartStopChanged, are associated with application callback functions and help your component
determine whether to invoke the callback function. The fourth, the C1ockSetTimeBase function, tells your
clock component about the time base it is supporting.

Movie Toolbox Clock Support Functions

36

The Movie Toolbox provides a number of support functions for clock components. All of these functions help
your component manage its associated callback functions. Your clock component may call any of these
functions at interrupt time. These functions should only be called by clock components:

= Usethe AddCal1BackToTimeBase function to add a callback event to the list of scheduled callback
events maintained by the Movie Toolbox. You should use the RemoveCal1BackFromTimeBase function
to remove a callback event from the list.

Getting the Current Time
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Clock Component Functions

= When your clock component determines that it is time to invoke a callback function, you should use the
ExecuteCallBack function to cause the Movie Toolbox to call the function.

= If your clock component needs to scan all its associated callback events, you can use the
GetFirstCallBack and GetNextCallBack functions.

Data Types

The clock component data structure is a private data structure. Programs that use your clock component
never change the contents of this data structure directly. Your clock component provides functions that
allow programs to use this data structure.

The callback header structure specifies the callback function for an operation. Your application can obtain
callback function identifiers by calling its clock component’s C1ockNewCa1l1Back function.

The QTCal1BackHeader data type defines the callback header structure.

struct QTCallBackHeader {
long callBackFlags; /* flags used by clock component to communicate
scheduling data about callback to QuickTime */

long reservedl; /* reserved for use by Apple */
char qtPrivatel40]; /* reserved for use by Apple */
b
Field Description

callBackFlags | Contains flags that your component can use to communicate scheduling information
about the callback event to the Movie Toolbox. This scheduling information tells the
Movie Toolbox what time base events your clock component needs to know about in
order to support the callback event.

reservedl Reserved for use by Apple.

gtPrivate Reserved for use by Apple.

The following flags are defined for the cal1BackF1ags field (all other flags must be set to 0):

enum {
gtcbNeedsRateChanges = 1, /* clock needs to know about rate
qtcbNeedsTimeChanges 2 /* clock needs to know about time
qtcbNeedsStartStopChanges = 4 /* clock needs to know about
time base changes */

b

Flag Description

gtcbNeedsRateChanges | Indicates that your clock component needs to know about rate changes. If
you set this flag to 1, QuickTime calls your ClockRateChanged function
whenever the rate of the callback event's time base changes.

Data Types 37
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Clock Component Functions

Flag

Description

qtcbNeedsTimeChanges

Indicates that your clock component needs to know about time changes. If
you set this flag to 1, the Movie Toolbox calls your ClockTimeChanged function
whenever a program changes the time value of the time base, or when the
time value changes by an amount that is different from the time base's rate.

gtcbNeedsStart-
StopChanges

Indicates that your clock component needs to know about the time base's
start and stop changes. If you set this flag to 1, the Movie Toolbox calls your
ClockStartStopChanged function whenever a program changes the start
or stop time of the time base.

Component Types for Clocks

38

Apple has defined a type value and a number of subtype values for clock components. All clock components
have a component type value of ' c1ok'. The component subtype value indicates the type of clock. You can
use the following constants to specify these type and subtype values.

Jfdefine clockComponentType "clok' /* clock component type */
fdefine systemTickClock "tick' /* system tick clock */
jfidefine systemSecondClock 'seco' /* system seconds clock */
fidefine systemMillisecondClock ‘mill’ /* system millisecond clock */
ffdefine systemMicrosecondClock "micr' /* system microsecond clock */

Component Types for Clocks

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Modifier Tracks

Track references and modifier tracks create dynamic relationships between tracks in a QuickTime movie.
Track references describe the relationship between tracks; for example, one track’s output can be connected
to an input of another track, or two tracks may be related as alternate versions, to be used in different
languages. Track references are used to create modifier tracks, alternate tracks, and chapter lists, and to relate
timecode tracks to segments of other tracks.

A modifier track does not present its data as a video or audio track normally does; instead it uses its data to
modify the presentation of other tracks. For example, the output of a video track can used as the source of
image data for a sprite track or effect track, or the output of a tween track can be used as the source of the
volume setting of an audio track. This chapter discusses several special modifier track types, including:

= Alternate tracks. These are typically different versions of a track to be used in different circumstances,
such as multiple text or sound tracks in different languages, or different bit-rate video tracks for optimal
display on faster or slower computers.

= Chapter lists, sets of named entry points into a movie that can be jumped to either programmatically
or through the user interface.

= Timecode tracks. They contain timecode information, typically gathered from a source external to
QuickTime (such as SMPTE timecodes). They relate this timecode data to segments of other QuickTime
tracks, such as video, audio, and text tracks.

This chapter assumes that you are familiar with QuickTime tracks in general and the QuickTime functions
used to determine and change the display characteristics of movies and tracks.

Track References

Track references are a feature of QuickTime that allows you to relate a movie's tracks to one another. The
QuickTime track-reference mechanismsupports many-to-many relationships. That is, any movie track may
contain one or more track references, and any track may be related to one or more other tracks in the movie.

Track references can be useful in a variety of ways. For example, track references can be used to relate
timecode tracks to other movie tracks. Another use of track references is to associate one or more text tracks
that contain subtitles with the appropriate audio track or tracks.

Track references are also used to create alternate tracks, as discussed in Working With Alternate Tracks (page
43).

Every movie track contains a list of its track references. Each track reference identifies another, related track.
That related track is identified by its track identifier. The track reference itself contains information that allows
you to classify the references by type. This type information is stored in an 0SType data type. You are free
to specify any type value you want. Note, however, that Apple has reserved all lowercase type values.

Track References 39
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
Modifier Tracks

You may create as many track references as you want, and you may create more than one reference of a
given type. Each track reference of a given type is assigned an index value. The index values start at 1 for
each different reference type. QuickTime maintains these index values so that they always start at 1 and
count by 1.

Functions That Manipulate Track References

The following functions help you work with track references:

m The AddTrackReference function allows you to relate one track to another.
m TheDeleteTrackReference function removes that relationship.

m The SetTrackReference and GetTrackReference functions allow you to modify an existing track
reference so that it identifies a different track.

m The GetNextTrackReferenceType and GetTrackReferenceCount functions allow you to scan all
of a track’s track references.

Creating Modifier Tracks

40

Modifier tracks are used to modify other tracks. Redirecting the output of a modifier track to the input of
another track lets you create a wide variety of effects, such as panning audio or presenting video data as a
sprite.

Any QuickTime track can be made into a modifier track. For example, you can use the output of a video track
as a sprite’s image source, or the output of two video tracks as inputs to a transition effect in an effect track.

To create a modifier track, you need to use track references and input maps. A track reference lets you specify
which track receives a modifier track’s output. An input map specifies the part or parts of the receiving track
to be modified by the output of the modifier track. For example, the output of a tween track might modify
a sound track’s volume, balance, or both.

Kinds of Modifier Tracks

A modifier track does not present any data; instead, it sends data to another track that uses that information
to modify how it presents its own data. Any track can be either a sender or a presenter, but not both. For
example, instead of simply playing video, a video track can send its image data to a sprite track. The sprite
track then uses that video data to replace the image of one of its sprites. When the movie is played, the video
track appears as a sprite.

Another use of modifier tracks is to store a series of sound volume levels, which is what occurs when you
work with a tween track. These sound levels can be sent to a sound track as it plays, to dynamically adjust
the volume. A similar use of modifier tracks is to store location and size information. This data can be sent
to a video track to cause it to move and resize as it plays.

Because a modifier track can send its data to more than one track, you can easily synchronize actions between
multiple tracks. For example, a single modifier track containing matrices as its samples can make two separate
video tracks follow the same path.

Creating Modifier Tracks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
Modifier Tracks

Limitations of Spatial Modifier Tracks

A modifier track may cause a track to move outside of its original boundary regions. This may present problems,
since applications do not expect the dimensions or location of a QuickTime movie to change over time.

To ensure that a movie maintains a constant location and size, QuickTime limits the area in which a spatially
modified track can be displayed. A movie’s “natural” shape is defined by the region returned by
GetMovieBoundsRgn. QuickTime clips all spatially modified tracks against the region returned by
GetMovieBoundsRgn. This means that a track can move outside of its initial boundary regions, but it cannot
move beyond the combined initial boundary regions of all tracks in the movie. Areas uncovered by a moving
track are handled in the same way as areas uncovered by tracks with empty edits.

If a track has to move through a larger area than that defined by the movie’s boundary region, the movie's
boundary region can be enlarged to any desired size by creating a spatial track (such as a video track) of the
desired size but with no data. As long as the track is enabled, it contributes to the boundary regions of the
movie.

Media Handler Support

The video, base, and tween media handlers can send the data they receive to other tracks. The text media
handler can also send data, but none of the track media handlers can currently receive it. The sound, music,
and 3D media handlers do not support sending their data to other tracks.

Not all media handlers support all input types. Media handlers can decide which input types to support.
Table 5-1 lists the input types supported by each Apple-supplied media handler.

Table 5-1 Input types supported by Apple-supplied media handlers

Input type Video | Text | Sound | MPEG | Music | Sprite | Timecode | 3D
Matrix X X X X X X
Graphics mode | X X X X X X
Clip X X X X X X
Volume X X X

Balance X X X

Sprite image X X
3D sound X X

Creating Movies With Modifier Tracks

To create a movie with modifier tracks, first you create a movie with all the desired tracks, then you create
the modifier track. To link the modifier track to the track that it modifies, use the AddTrackReference
function shown in Listing 5-1.

Creating Movies With Modifier Tracks 1
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
Modifier Tracks

Listing 5-1 Linking a modifier track to the track it modifies

long addedIndex;

AddTrackReference (aVideoTrack,
aModifierTrack,
kTrackModifierReference,
&addedIndex);

The reference doesn’'t completely describe the modifier track’s relationship to the track it modifies. Instead,
the reference simply tells the modifier track to send its data to the specified track. The receiving track doesn’t
know what it should do with that data. A single track may also be receiving data from more than one modifier
track. You have to update the media input map of the receiving track to specify how the data is to be
interpreted.

Manipulating Media Input Maps

42

Each track has particular attributes such as size, position, and volume associated with it. The media input
map of that track describes where the variable parameters are stored so that modifier tracks know where to
send their data. When a track is copied, its input map is also copied. CopyTrackSettings also transfers the
media input map.

QuickTime provides two functions you can use to maintain media input maps:

m GetMedialnputMap
m SetMedialnputMap

To describe how each modifier input should be used, each track’s media has an input map. The media’s input
map describes how the data being sent to each input of a track should be interpreted by the receiving track.
After creating the reference, it is necessary to update the receiving track’s media input map. When
AddTrackReference is called, it returns the index of the reference added. That index is the index of the
input that needs to be described in the media input map. If the modifier track created above contains regions
to change the shape of the video track, the code shown in Listing 5-2 updates the input map appropriately.

Listing 5-2 Updating the input map

QTAtomContainer inputMap;
QTAtom inputAtom;
0SType inputType;
Media aVideoMedia = GetTrackMedia(aVideoTrack);
GetMedialnputMap (aVideoMedia, &inputMap);
QTInsertChild(
inputMap, kParentAtomIsContainer,
kTrackModifierInput,
addedIndex,
0,
0,
nil,
&inputAtom);
inputType = kTrackModifierTypeClip;
QTInsertChild (
inputMap,
inputAtom,
kTrackModifierType,

Manipulating Media Input Maps
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
Modifier Tracks

1,

0,

sizeof(inputType),

&inputType,

nil);
SetMedialnputMap(aVideoMedia, inputMap);
QTDisposeAtomContainer(inputMap);

The media input map allows you to store additional information for each input. In the preceding example,
only the type of the input is specified. In other types of references, you may need to specify additional data.

When a modifier track is sending an empty track edit, or is disabled or deleted, all receiving tracks are notified
that the track input is inactive. When an input becomes inactive, it is reset to its default value. For example,
if a track is receiving data from a clip modifier track and that input becomes inactive, the shape of the track
reverts to the shape it would have if there were no clip modifier track.

Working With Alternate Tracks

QuickTime lets you define alternate tracks in a movie. You can use alternate tracks to support multiple
languages or to present different levels of visual quality in the movie. You collect alternate tracks into groups.
Alternate track groups are collections of tracks that represent some conceptual data but are appropriate for
use in different play environments. For example, you might have some 4-bit data in one track and some 8-bit
data in another. Working with alternate tracks allows you to set up alternatives from which QuickTime can
choose.

QuickTime selects one track from each alternate group when it plays the movie. For example, you could
create a movie that has three separate audio tracks: one in English, one in French, and one in Spanish. You
would collect these audio tracks into an alternate group. When the user plays the movie, QuickTime selects
the track from this group that corresponds to the current language setting for the movie.

Similarly, you can use alternate tracks to store data of different quality. When the user plays the movie,
QuickTime selects the track that best suits the capabilities of the user’s computer on which the movie is being
played. In this manner, you can create a single movie that can accommodate the playback characteristics of
a number of different computer configurations.

QuickTime allows you to store quality information for media structures that are assigned to either sound or
video tracks. For all tracks, QuickTime uses bits 6 and 7 of the quality setting. These bits encode a relative
quality value. These values range from 0 to 3. You can use higher quality values to indicate larger sample
sizes. For example, consider a movie that has two sound tracks that are alternates for each other: one contains
8-bit sound and the other contains 16-bit sound. You could assign a quality value of mediaQualityNormal
to the 8-bit media and a value of mediaQualityBetter to the 16-bit media. QuickTime would play the
16-bit media only if the user’s configuration could handle 16-bit sound. Otherwise, QuickTime would use the
8-bit media. The sound media handler determines the sample size for each sound media for QuickTime by
examining the media’s sound description structure.

In addition, QuickTime also uses bits 0 through 5 (the low-order bits) of the quality setting. You use these
bits to indicate the pixel depths at which the media should be played. Each bit corresponds to a single depth
value, ranging from 1-bit pixels to 32-bit pixels. You may use these bits to control the playback of both video
and sound tracks.

As an example, consider a movie that contains three video tracks with the following characteristics:

Working With Alternate Tracks 43
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

44

CHAPTER 5
Modifier Tracks

Track | Characterics

A 1-bit video data, no compression

B Compressed using the Apple Video Compressor

C Compressed using the Joint Photographic Experts Group (JPEG) compressor

You could assign the following quality values to these track’s media structures:

Track | Quality value

A MediaQualityDraft + 1-bit depth + 2-bit depth (quality value is 0x0003: 0x0000 + 0x0003)

B MediaQualityNormal + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit depth (quality value is
0x007C: 0x0040 + 0x003C)

C MediaQualityBetter + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit depth (quality value is
0x00BC: 0x0080 + 0x003C)

QuickTime would always use Track A when playing the movie on 1-bit and 2-bit displays. At the other pixel
depths, the video media handler determines which track to use by examining the availability and performance
of the specified decompressors. If the JPEG decompressor can play back at full frame rate, QuickTime would
use Track C. Otherwise, QuickTime uses Track B. The video media handler determines the compressor that
is appropriate for each media by examining the media’s image description structure.

You set a movie’s language by calling the SetMovielanguage function.

To establish alternate groups of tracks, you can use the SetTrackAlternate and GetTrackAlternate
functions.

You can work with the language and quality characteristics of media by calling the GetMedialanguage,
SetMedialanguage, GetMediaQuality, and SetMediaQuality functions.

By default, QuickTime automatically selects the appropriate tracks to play according to a movie’s quality and
language settings, as well as the capabilities of the user’s computer. Whenever your application calls
theSetMovieGWorld, SetMovieBox, UpdateMovie, or SetMovieMatrix function, QuickTime checks each
alternate group for an appropriate track. However, you can control this selection process. Use the
SetAutoTrackAlternatesEnabled function to enable or disable automatic track selection. The
SelectMovieAlternates function instructs QuickTime to select appropriate tracks immediately. If no tracks
in an alternate track group are enabled, then QuickTime does not activate any track from that group during
automatic track selection.

Working With Alternate Tracks
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Movie Toolbox Access Keys

Access keys make it possible to protect data. They allow an application that supplies data to register a
password for the data with QuickTime and allows a user to enter the password to gain access to the data.
For example, a codec can protect data it compresses with a password, so that it is available only to someone
with the password. Similarly, the creator of a movie can require a password to view the movie.

In order to gain access to protected data, the user enters the access key in the QuickTime Settings control
panel.

System and Application Access Keys

There are two kinds of access keys:

= System access keys; data protected by a system access key can be unlocked by any QuickTime caller
on the computer.

= Application access keys; data protected by an application access key can be unlocked only by QuickTime
clients for that application.

System access keys are useful for data that needs to be used by more than one application. When a system
access key is registered for data, applications do not have to perform any additional registration to unlock
the data. In contrast, application access keys are normally registered by the application in which the data is
available, and each application registers the application access keys it uses. For example, a CD-ROM vendor
can register the same application access key for all the data on the CD-ROM, which makes the data available
to the application on the CD-ROM (such as a game) and inaccessible to all other applications. This prevents
browsing of the data by users.

Access Key Types

Access keys are grouped by type. For example, there could be an access key type defined specifically for the
Cinepak codec. Grouping access keys lets a QuickTime caller request only those keys that apply to it. This
speeds operations involving large numbers of keys which might otherwise interfere with the performance
of real-time operations. The functions for using access keys all require an access type.

Using Access Keys

This section illustrates how to use access keys.

System and Application Access Keys 45
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

46

CHAPTER 6

Movie Toolbox Access Keys

Registering an Access Key

Listing 6-1 illustrates how to register an application access key.

Listing 6-1 Registering an application access key

OSErr myErr = 0;

Str255 keyType = doomCDKeyType;

long flags = AccessKeySystemFlag;

handle keyHdT;

keyHd1 = NewHandle (sizeof("keykeykey")-1);

/* put key in handle */

myErr = QTRegisterAccessKey (keyType, flags, keyHdl);

Listing 6-2 illustrates how to register a system access key.

Listing 6-2 Registering a system access key

OSErr myErr = 0;

Str255 keyType = doomCDKeyType;

long flags = 0;

handle keyHdT;

keyHd1 = NewHandle (sizeof("keykeykey")-1);

/* put key in handle */

myErr = QTRegisterAccessKey (keyType, flags, keyHdl);

Getting Access Keys

Listing 6-3 illustrates how to get application access keys of a particular type.

Listing 6-3 Getting access keys

OSErr myErr = 0;

Str255 keyType = doomCDKeyType;

long flags = 0;

handle keyHdT;

/* handle initialization here */

myErr = QTGetAccessKeys (keyType, flags, keyHdl);

Unregistering an Access Key

Listing 6-4 illustrates how to unregister a system access key.

Listing 6-4 Unregistering an access key

OSErr myErr = 0;

Str255 keyType = doomCDKeyType;

long flags = AccessKeySystemFlag;

handle keyHdT;

keyHd1 = NewHandle (sizeof("keykeykey")-1);

/* put key in handle */

myErr = QTUnRegisterAccessKey (keyType, flags, keyHdl);

Using Access Keys
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Movie Posters and Movie Previews

A QuickTime movie may contain a preview and a poster:

= A movie preview is a very short version of a movie, typically less than five seconds in duration. It is
intended to give the user an idea of a movie's contents.

= A movie poster is a still frame representing the movie.

The following Movie Toolbox functions allow your application to work with movie previews and movie
posters:

m Usethe PlayMoviePreview function to display a movie's preview. The P1ayMoviePreview function
sets the movie into preview mode, plays the movie preview, sets the movie back to normal playback
mode, and returns to your application.

= Alternatively, your application can control the playback of a movie's preview. Use the
SetMoviePreviewMode function to place a movie into preview mode. You can then use the StartMovie
and StopMovie functions, described below, to control movie playback. Your application can find out if
a movie is in preview mode by calling the GetMoviePreviewMode function.

= Your application can specify the starting time and duration of the movie preview with the
SetMoviePreviewTime and GetMoviePreviewTime functions.

= Usethe ShowMoviePoster function to display a movie's poster. You can work with the poster’s boundary
rectangle using the SetPosterBox and GetPosterBox functions. Your application can work with the
starting time of the poster with the SetMoviePosterTime and GetMoviePosterTime functions.
Posters always have no duration.

= Tracks may be specified for use in the movie, its preview, its poster, or any combination of the three. So,
for example, when the Movie Toolbox plays the movie preview it uses only those tracks that are assigned
to the preview. Your application controls the use of a movie's tracks with the SetTrackUsage function.
You can find out how a track is used by calling the GetTrackUsage function.

Controlling Movie Playback of Previews

This section describes a number of high-level functions provided by the Movie Toolbox that allow your
application to play movies. For information about how to control a movie's playback rate, see Controlling
Movie Time (page 48).

You can use the StartMovie and StopMovie functions to start and stop movies.

The Movie Toolbox provides functions that can be used to control your position within a movie. You can use
two functions, GoToBeginning0fMovie and GoToEndOfMovie, to set the position at either the beginning
or the end of a movie. These functions are described in this section. Functions that work with time bases,
such as SetMovieTimeValue and GetMovieTimeScale, can be used to control the current position
anywhere within a movie.

Controlling Movie Playback of Previews 47
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Movie Posters and Movie Previews

Controlling Movie Time

Every QuickTime movie has its own time base. A movie’s time base allows all the tracks that make up the
movie to be synchronized when the movie is played. The Movie Toolbox provides a number of functions
that allow your application to determine and establish the time parameters of a movie:

= You can use the GetMovieTimeBase function to retrieve the time base for a movie.

= You can work with a movie’s current time by calling the GetMovieTime, SetMovieTime, and
SetMovieTimeValue functions.

= You can work with a movie’s time scale by calling the GetMovieTimeScale and SetMovieTimeScale
functions.

= The Movie Toolbox can calculate the total duration of a movie. You can use the GetMovieDuration
function to retrieve a movie’s duration.

= Your application can call the GetMovieRate and SetMovieRate to work with a movie's playback rate.

48 Controlling Movie Time
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Previewing Files

QuickTime includes extensions to the Standard File Package that allow you to create and display file previews,
information that gives the user an idea of a file’s contents without opening the file. Typically, a file's preview
is a small PICT image (called a thumbnail), but previews may also contain other types of information that is
appropriate to the type of file being considered. For example, a text file’s preview might tell the user when
the file was created and what it discusses. You can use the Image Compression Manager to create thumbnail
images.

Standard File Functions

QuickTime provides standard file functions that your application can use to display a file’s preview during
the Open dialog box. These functions allow your application to support previews automatically.

Note: Before using these new standard file functions, make sure that the Image Compression Manager is
installed.

The Movie Toolbox provides two standard file functions that allow you to display file previews in an Open
dialog box using standard file reply structures: SFGetFilePreviewand SFPGetFilePreview. The
SFGetFilePreview function corresponds to the existing SFGetFile function; the SFPGetFilePreview
function corresponds to the existing SFPGetFi1e function.

The SFGetFilePreview function uses the dialog box shown in Figure 8-1. The SFPGetFilePreview
function can also use this dialog box, if you do not supply your own.

Figure 8-1 SFGetFilePreview or SFPGetFilePreview dialog box without preview
|ﬁ Ilnl:umprz:::dl
I Uackup the Lad L= fulckTime™. .
O hike

[4 Callisto Ralhalla
O Deco Houed
O Ory Eleaning

O Ganymede ~ BEd --em—eemee—es
0O Banymede Large Dpen

01 Jdaguar

D set

[shvux Frapiaws

Standard File Functions 49
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Previewing Files

You use these new functions in place of the existing standard file functions to indicate whether or not you
want to allow the user to display previews during the Open dialog box. The user displays a file's preview by
selecting a file in the dialog box and clicking Show Preview. When the user does so, the functions display
the preview for the file, as shown in Figure 8-2.

Figure 8-2 SFGetFilePreview or SFPGetFilePreview dialog box with preview

|lf:ﬂ UnChmipredsed I
Pravisin CoAdskup bar o
O bike [|

O calllstn Malhalla ¥
i

0O Deco Howse
0O Ory Cleaning ¥
0O Eanymede I

0 Gangmede Large I

O Jaguar ¥
[Gromie) |D Jet gl

E] Shmu Froviow

The preview area of the dialog box is displayed whenever previewing is enabled.

Customizing Your Interface

50

If your application requires it, you can customize the user interface for identifying files. The SFGetFilePreview
function does not allow you to use a custom dialog box by creating your own dialog template resource.
However, the SFPGetFilePreview function does let you access a custom dialog box of any resource type
with the d1g1D parameter.

Figure 8-3 shows the standard dialog box used by SFPGetFilePreviewand SFGetFilePreview. Your
dialog box and dialog filter function must support at least these dialog items.

Customizing Your Interface
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Previewing Files

Note: Alter the dialog boxes only if necessary. Apple does not guarantee future compatibility if you use a
customized dialog box.

Figure 8-3 Standard preview dialog box for SFGetFilePreview and SFPGetFilePreview

Previed 2]73

Items to the left of item 13 are visible only when previewing. If you want to define items that are visible only
during a file preview, place them to the left of item 13 in your custom dialog box.

If your application defines a custom dialog box, be sure to include the following items in your dialog box
definition:

enum

{

/* dialog items to include in dialog box definition for use
with SFPGetFilePreview function

*/
sfpltemPreviewAreaUser =11, /* user preview area */
sfpltemPreviewStaticText =12, /* static text preview */
sfpltemPreviewDividerUser = 13, /* user divider preview */
sfpltemCreatePreviewButton = 14, /* create preview button */
sfpltemShowPreviewButton = 15 /* show preview button */

Previewing Files Using Standard File Reply Structures

The Movie Toolbox provides two standard file functions, standardGetFilePreviewand

CustomGetFilePreview, that allow you to display file previews in an Open dialog box using standard file
reply structures (of type StandardFileReply). The StandardGetFilePreview function corresponds to
the existing StandardGetFile function;the CustomGetFilePreviewfunction corresponds to the existing
CustomGetFile function. Both of these new functions take the same parameters as their existing counterparts.

The StandardGetFilePreview function uses the dialog box shown in Figure 8-4. The
CustomGetFilePreview function can also use this dialog bo, if you do not supply your own.

Previewing Files Using Standard File Reply Structures 51
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

52

CHAPTER 8

Previewing Files

Figure 8-4 StandardGetFilePreview or CustomGetFilePreview dialog box without preview
[29 Wncemprassed | = TR ...,
I Isrkap et g1 E lact
Ll =

O calmstn Ualhalla T

O keco House -
O mry Cleaning T

D bamumede
O sanymeda Large | —

O Show Previews

You use these new functions in place of the existing standard file functions whenever you want to allow the
user to display previews during the Open dialog box. The user causes a file’s preview to be displayed by
selecting a file in the dialog box and clicking Show Preview. When the user does so, the functions display
the preview for the file, as shown in Figure 8-5.

Figure 8-5 StandardGetFilePreview or CustomGetFilePreview dialog box with preview

[f9 Uncompressed + |

Freview
“Ihpkup ther Tl

0O bike

O callsto Palhalla
O Deco House

0O Ory Cleaning

0 Gangmeds

0O Ganymede Lorge

0 doguar

=] shoar Fravlaws

The preview portion of the dialog box is displayed only when the dialog box is showing a file’s preview.

The SFGetFilePreview, SFPGetFilePreview,StandardGetFilePreview,and CustomGetFilePreview
functions allow the user to automatically convert files to movies if your application requests movies. If there
is a file that can be converted into a movie file using a movie import component, then the file is shown in
the Standard File dialog box in addition to any movies. When the user selects the file, the Open button
changes to a Convert button. Figure 8-6 provides an example of this dialog box.

Previewing Files Using Standard File Reply Structures
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Previewing Files

Figure 8-6 Dialog box showing automatic file-to-movie conversion option
Swaiker
Froviau 1 Dimgital Fil
mgiial Fim £ipad
= akcipiie
b |3 dmmestar
O Earthspin S
O Elwls (RIFF)
O For douy

O 1n anyztereat

0O 13 anystereo?[Fasil

(4 Show Previpus

Choosing Convert displays a dialog box that allows the user to choose where the converted file should be
saved. Figure 8-7 shows this dialog box.

Figure 8-7 Dialog box for saving a movie converted from a file
e —

PN H

05 phue 1meEdE
2 dastrog

g Elxmay

ih e e

Ol T L R I TE 3
i3 paoLatiE

13 reeeedniei!

same canmerted flle as: [_ Concal |

[Ensts YRIFF) Houle | __sae]

When conversion is complete, the converted file is returned to the calling application as the movie that the
user chose. If you want to disable automatic file conversion in your application, you must write a file filter
function and pass it to the file preview display function you are using. Your file filter function must call the
File Manager's FSpGetFilelnfo function on each file that is passed to it to determine its actual file type. If
the File System parameter block pointer passed to your file filter function indicates that the file type is ' MooV ',
and the actual type returned by FSpGetFileInfois not 'MooV', then the file filter function will convert
this file. If you do not wish a file to be displayed as a candidate for conversion, your file filter function should
return a value of true when it is called for that file.

A file filter function filters the files that are displayed to the user in a dialog box. You specify this function in
the fileFilter parameter of the SFGetFilePreview, StandardGetFilePreview, and
CustomGetFilePreview routines. If this parameteris not nil, SFGetFilePreview calls the function for
each file to determine whether to display the file to the user. The SFGetFilePreview function supplies you
with the information it receives from the File Manager’s GetFilelInfo routine.

Previewing Files Using Standard File Reply Structures 53
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Previewing Files

Functions for Creating File Previews

54

The Movie Toolbox provides two functions that allow you to create file previews. File previews contain
information that gives the user an idea of a file’s contents without opening the file. Typically, a file’s preview
is a small PICT image (called a thumbnail), but previews may also contain other types of information that is
appropriate to the type of file being considered. For example, a text file’s preview might tell the user when
the file was created and what it discusses.

Note: The MakeFilePreviewand AddFilePreview functions documented in this section are not listed
in the Movies.h interface file; rather, they appear in the ImageCompression.h interface file.

You can use the MakeFiTlePreview function to create a preview for a file. The AddFilePreview function
allows you to add a preview that you have created to a file.

Generating Pictures From Movies

The Movie Toolbox provides a set of functions that allow your application to create QuickDraw pictures from
movies, tracks, and posters. This section discusses those functions.

You can use the GetMoviePict function to create a picture from a movie or its preview; you can use the
GetTrackPict function to create a picture from a track. The GetMoviePosterPict function lets you create
a picture that contains a movie’s poster. If a movie or track has no spatial representation, the returned picture
is empty (that is, the upper-left and lower-right coordinates are equal).

When memory is low, the GetMoviePict function now reports out of memory errors instead of returning
empty pictures.

Functions for Creating File Previews
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to QuickTime Movie Internals Guide.

Date Notes

2006-01-10 New document that describes the technology inside QuickTime movies, including
time management, modifier tracks, access keys, posters, and movie and file
previews.

Replaces "Movie Toolbox: Time and Spatial Characteristics," "Clock Components,
"Movie Toolbox: Access Keys," "Movie Toolbox: Previews," and "Modifier Tracks,
Track References, and Alternate Tracks."

2002-09-17 New document that explains how to manipulate the temporal and spatial
characteristics of movies, tracks, and media.

55
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

56

REVISION HISTORY

Document Revision History

2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

	QuickTime Movie Internals Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Movie Time and Space
	Working With Movie Spatial Characteristics
	Matrix Functions
	The Fixed-Point and Fixed-Rectangle Structures
	Creating a Track Matte

	Working With Movie Time
	About Movie Time
	Time Coordinate Systems
	Time Bases
	Working With Track Time
	Working With Media Time
	Time Base Functions
	Creating and Disposing of Time Bases
	Working With Time Base Values

	Time Structures
	The TimeRecord Structure
	Large Time Values

	Time Base Callback Functions
	Time and Space Function Summary
	Managing Movie Space
	Working With Matrices
	Managing Movie Time
	Managing Track Time
	Managing Media Time
	Finding Interesting Times
	Time Base Management

	Clock Components Overview
	Clock Components and Movie Time Bases
	Interrupts and Callbacks

	Movie Clocks, Sound Clocks, and Video Output
	Overview
	Setting and Changing the Master Clock
	The ChooseMovieClock Function
	Associated Components: The Video Output Component Clock
	Associated Components: Sound Output Component
	Using the Sound Output Component Associated With the Video Output Component
	Switching Back to the Default Sound Output Component
	Choosing the Clock

	Component Capability Flags for Clocks

	Clock Component Functions
	Getting the Current Time
	Using the Callback Functions
	Managing the Time
	Movie Toolbox Clock Support Functions
	Data Types
	Component Types for Clocks

	Modifier Tracks
	Track References
	Functions That Manipulate Track References

	Creating Modifier Tracks
	Kinds of Modifier Tracks
	Limitations of Spatial Modifier Tracks
	Media Handler Support

	Creating Movies With Modifier Tracks
	Manipulating Media Input Maps
	Working With Alternate Tracks

	Movie Toolbox Access Keys
	System and Application Access Keys
	Access Key Types
	Using Access Keys
	Registering an Access Key
	Getting Access Keys
	Unregistering an Access Key

	Movie Posters and Movie Previews
	Controlling Movie Playback of Previews
	Controlling Movie Time

	Previewing Files
	Standard File Functions
	Customizing Your Interface
	Previewing Files Using Standard File Reply Structures
	Functions for Creating File Previews
	Generating Pictures From Movies

	Revision History

