
QuickTime Music Architecture Guide
QuickTime > Audio

2006-01-10



Apple Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, Macintosh,
and QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers and QuickStart are trademarks of
Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction to QuickTime Music Architecture Guide 9

Organization of This Document 9
See Also 9

Chapter 1 The QuickTime Music Architecture 11

QTMA Components 11
Note Allocator Component 12
Tune Player Component 13
Music Components Included in QuickTime 13
Instrument Components and Atomic Instruments 14
The Generic Music Component 16
MIDI Components 16

QuickTime Music Events 16
Note Event 18
Extended Note Event 19
Rest Event 20
Marker Event 20
Controller Event 21
Extended Controller Event 22
General Event 23
Knob Event 24

The General MIDI Synthesizer Component 25
The MIDI Synthesizer Component 25
The Base Instrument Component 26

Chapter 2 Using the QuickTime Music Architecture 27

Converting MIDI Data to a QuickTime Music Track 27
Importing a Standard MIDI File As a Movie 27
Playing Notes With the Note Allocator 28

Note-Related Data Structures 28
Playing Piano Sounds With the Note Allocator 29

Music Component Functions: Synthesizer 30
Knob Flags 30
Knob Value Constants 31
Music Packet Status 32
MIDI Packet 32
Atomic Instrument Information Flags 33
Flags for Setting Atomic Instruments 33

Music Component Functions: Instruments and Parts 34

3
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.



Instrument Info Flags 34
Instrument Component Functions 34
Synthesizer Connection Type Flags 34
Synthesizer Connections for MIDI Devices 35
Instrument Match Flags 36
General MIDI Instrument Information Structure 36
Note Request Constants 37
Note Request Information Structure 37
Pick Instrument Flags 38

Note Allocator Functions: Miscellaneous Interface Tools 38
Note Allocator Type 38
Tune Queue Depth 39

Tune Player Functions 39
Tune Player Type 39
Tune Queue Flags 39
MIDI Component Constants 40
MIDI System Exclusive Constants 40
MIDI File Import Flags 40
Part Mixing Flags 41
Atom Types for Atomic Instruments 41
Instrument Knob Flags 42
Loop Type Constants 42
Music Component Type 42
Synthesizer Type Constants 42
Synthesizer Description Flags 43
Synthesizer Knob ID Constants 44
Controller Numbers 52
Controller Range 54
Drum Kit Numbers 54
Tone Fit Flags 54

Data Structures 55
Instrument Knob Structure 55
Knob Description Structure 55
Instrument About Information 56
Instrument Information Structure 56
Instrument Information List 57
Non-General MIDI Instrument Information Structure 57
Non-General MIDI Instrument Information List 58
Complete Instrument Information List 58
QuickTime MIDI Port 59
QuickTime MIDI Port List 59
Note Request Structure 60
Tune Status 60
Instrument Knob List 61
Atomic Instrument Sample Description Structure 61
Synthesizer Description Structure 62

4
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



Tone Description Structure 64
Result Codes 65

Document Revision History 67

5
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



6
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



Figures, Tables, and Listings

Chapter 1 The QuickTime Music Architecture 11

Figure 1-1 How QuickTime music architecture components work together 12
Figure 1-2 An atomic instrument atom container 15
Figure 1-3 A music fragment 17
Figure 1-4 Duration of notes and rests 17
Figure 1-5 A note event 18
Figure 1-6 An extended note event 19
Figure 1-7 A rest event 20
Figure 1-8 A marker event of subtype end 20
Figure 1-9 Controller event 21
Figure 1-10 Extended controller event 22
Figure 1-11 A note request general event 23
Figure 1-12 Knob event 25
Table 1-1 Event types 16

Chapter 2 Using the QuickTime Music Architecture 27

Figure 2-1 Instrument number ranges 65
Listing 2-1 Note-related data structures 28
Listing 2-2 Playing notes with the note allocator component 29

7
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.



8
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS



The QuickTime Music Architecture (QTMA) allows QuickTime movies, applications, and other software to play
individual musical notes, sequences of notes, and a broad range of sounds from a variety of instruments and
synthesizers. With QTMA, you can also import Standard MIDI files and convert them into a QuickTime movie
for easy playback.

Note:  This document was previously titled “QuickTime Music Architecture.”

You can use the General MIDI component for playing music on a MIDI device attached to a serial port.

Before reading this document, you should already be familiar with QuickTime and QuickTime components.

Important:  Developers are encouraged to use the CoreAudio SDK for audio and MIDI application
development.

You need to read this document if you are writing an application that creates QuickTime movies and you
want to incorporate music tracks as part of the movie, either by importing MIDI files or by programmatically
generating musical sequences. If you want to create a music component or add an instrument to the existing
library of instruments, you also need to read this document. If you are creating new instruments, you should
be familiar with QT atoms and atom containers.

Organization of This Document

This document is presented in two chapters:

 ■ The QuickTime Music Architecture (page 11) describes the features and capabilities of the QuickTime
music architecture.

 ■ Using the QuickTime Music Architecture (page 27) describes the functions that allow applications to
control all aspects of playing music tracks and generating musical sounds in QuickTime movies.

See Also

The following Apple books cover other aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

Organization of This Document 9
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Music Architecture
Guide



 ■ QuickTime Movie Creation Guide describes some of the different ways your application can create a new
QuickTime movie.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

 ■ QuickTime API Reference provides encyclopedic details of all the functions, callbacks, data types and
structures, atom types, and constants in the QuickTime API.

10 See Also
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Music Architecture Guide



This chapter describes the QuickTime music architecture (QTMA), which allows QuickTime movies, applications,
and other software to play individual musical notes, sequences of notes, and a broad range of sounds from
a variety of instruments and synthesizers. With QTMA, you can also import Standard MIDI files (SMF) and
convert them into QuickTime movies for easy playback.

The QuickTime music architecture is implemented as Component Manager components, which is the standard
mechanism that QuickTime uses to provide extensibility.

QTMA components exist both in QuickTime for Mac OS X and for Windows.

Different QTMA components are used by a QuickTime movie, depending on if you are playing music or
sounds through the computer’s built-in audio device, or if you are controlling, for example, a MIDI synthesizer.
During playback of a QuickTime movie, the music media handler component isolates your application and
the Movie Toolbox from the details of how to actually play a music track. The task of processing the data in
a music track is taken care of for you by the media handler through Movie Toolbox calls.

The following sections provide overviews of these components and their capabilities.

QTMA Components

The QuickTime music architecture includes the following components:

 ■ the note allocator, which plays individual musical notes

 ■ the tune player, which plays sequences of musical notes

 ■ the music media handler, which processes data in music tracks of QuickTime movies

 ■ the General MIDI synthesizer, which plays music on a General MIDI device connected to the computer

 ■ the MIDI synthesizer component, which controls a MIDI synthesizer connected to the computer using a
single MIDI channel

 ■ other music components that provide interfaces to specific synthesizers

These components are described in more detail in the following sections. Figure 1-1 illustrates the relationships
among the various QTMA components.

QTMA Components 11
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Figure 1-1 How QuickTime music architecture components work together

Note Allocator Component

You use the note allocator component to play individual notes. Your application can specify which musical
instrument sound to use and exactly which music synthesizer to play the notes on. The note allocator
component can also display an Instrument Picker, which allows the user to choose instruments. The note
allocator, unlike the tune player, provides no timing-related features to manage a sequence of notes. Its
features are similar to a music component, although more generalized. Typically, an application opens a
connection to the note allocator, which in turn sends messages to the music component. An application or
movie music track can incorporate any number of musical timbres or parts.

12 QTMA Components
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



To play a single note, your application must open a connection to the note allocator component and call
NANewNoteChannel with a note request, typically to request a standard instrument within the General MIDI
library of instruments. A note channel is similar in some ways to a Sound Manager sound channel in that it
needs to be created and disposed of, and can receive various commands. The note allocator provides an
application-level interface for requesting note channels with particular attributes. The client specifies the
desired polyphony and the desired tone. The note allocator returns a note channel that best satisfies the
request.

With an open note channel, an application can call NAPlayNotewhile specifying the note’s pitch and velocity.
The note is played and continues to play until a second call to NAPlayNote is made specifying the same
pitch but with a velocity of zero. The velocity of zero causes the note to stop. The note allocator functions
let you play individual notes, apply a controller change, apply a knob change, select an instrument based on
a required tone, and modify or change the instrument type on an existing note channel.

There are calls for registering and unregistering a music component. As part of registration, the MIDI
connections, if applicable, are specified. There is also a call for querying the note allocator for registered
music components, so that an application can offer a selection of the existing devices to the user.

Tune Player Component

The tune player component can accept entire sequences of musical notes and play them start to finish,
asynchronously, with no further need for application intervention. It can also play portions of a sequence.
An additional sequence or sequence section may be queued-up while one is currently being played. Queuing
sequences provides a seamless way to transition between sections.

The tune player negotiates with the note allocator to determine which music component to use and allocates
the necessary note channels. The tune player handles all aspects of timing, as defined by the sequence of
music events. For more information about music events and the event sequence that is required to produce
music in a QuickTime movie track, see the section QuickTime Music Events (page 16).

The tune player also provides services to set the volume and to stop and restart an active sequence.

If your application simply wants to play background music, it may be easier to use the QuickTime Movie
Toolbox, rather than call the tune player directly.

Music Components Included in QuickTime

Individual music components act as device drivers for each type of synthesizer attached to a particular
computer. These music components are included in QuickTime:

 ■ the General MIDI synthesizer component, for playing music on a General MIDI device attached to a serial
port.

 ■ the MIDI synthesizer component, which allows QuickTime to control a synthesizer that is connected to
a single MIDI channel.

Developers can add other music components for specific hardware and software synthesizers.

QTMA Components 13
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Applications do not usually call music components directly. Instead, the note allocator or tune player handles
music component interactions. Music components are mainly of interest to application developers who want
to access the low-level functionality of synthesizers and for developers of synthesizers (internal cards, MIDI
devices, or software algorithms) who want to make the capabilities of their synthesizers available to QuickTime.

In order for an application to call a music component directly, you must first allocate a note channel and
then use NAGetNoteChannelInfo and NAGetRegisteredMusicDevice to get the specific music
component and part number.

You can use music component functions to

 ■ obtain specific information about a synthesizer

 ■ find an instrument that best fits a requested type of sound

 ■ play a note with a specified pitch and volume

 ■ change knob values to alter instrument sounds

Other functions are for handling instruments and synthesizer parts. You can use these functions to initialize
a part to a specified instrument and to get lists of available instrument and drum kit names. You can also get
detailed information about each instrument from the synthesizer and get information about and set knobs
and controllers.

Instrument Components and Atomic Instruments

When initialized, the note allocator searches for components of type 'inst'. These components may report
a list of atomic instruments. They are called atomic instruments because you create them with QT atoms.
These sounds can be embedded in a QuickTime movie, passed via a call to QuickTime, or dropped into the
Macintosh System Folder.

QuickTime provides a public format for atomic instruments. Using the QuickTime calls for manipulating
atoms, you construct in memory a hierarchical tree of atoms with the data that describes the instrument (see
Figure 1-2). The tree of atoms lives inside an atom container. There is one and only one root atom per
container. Each atom has a four-character (32-bit) type, and a 32-bit ID. Each atom may be either an internal
node or a leaf atom with data.

14 QTMA Components
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Figure 1-2 An atomic instrument atom container

kaiToneDesc

ID:1

Tone Description

Tone description for this
instrument

Atomic Instrument
Contains tagged data in a
QuickTime atom container

kaiNoteRequestInto

ID:1

NoteRequestInfo

Note request info

kaiKnobList

ID:1

InstKnobList

List of sound parameters

kaiKeyRangeInfo

Contains information
associated with a range of
keyboard pitches. One or
more of these will be present.

ID:1..n

kaiSampleDesc

ID:1

InstSampleDescRec

Description of the audio
samples, including sample
rate, loop points, and lowest
& highest key to play on

kaiKnobList

ID:1

InstKnobList

List of sound parameters

kaiSampleInfo

Contains information related
to the sample data and the
samples. One or more of
these will be present. The
ID number is used in a key
range's instrument sample
description.

ID:1..m

kaiSampleData

ID:1

Audio data in the format
specified by the associated
key range info's sample
description

kaiInstrumentRef

Optionally contains a refer-
ence to another instrument
upon which this one is based.
If there is an instrument
reference present, there
should be no samples
present.

ID:1

kaiToneDesc

ID:1

Tone Description

Tone description of instru-
ment upon which this one is
based. The knobs in this
instrument are applied to the
samples in the referenced
instrument.

kITextAtom

Optionally contains a list of
text atoms with localized
names for the instrument

ID:1

kITextStringAtom

ID:x

Text (no length byte)

The atom ID x is the region
code plus one for this string.
There can be any number of
strings with unique IDs.

kaiInstInfo

Contains various authorship
information which is dis-
played when the user clicks
"About..." in the instrument
picker

ID:1

kaiPict

ID:1

Picture

Optional picture to appear in
the "About..." dialog

kaiWriter

ID:1

Text (no length byte)

Optional name of the author

kaiCopyright

ID:1

Text (no length byte)

Optional copyright information

kaiOtherStr

ID:1

Text (no length byte)

Optional other information

QTMA Components 15
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



The Generic Music Component

To use a new hardware or software synthesizer with the QuickTime music architecture, you need a music
component that serves as a device driver for that synthesizer and that can play notes on the synthesizer. You
can simplify the creation of a music component by using the services of the generic music component.

To create a music component, you create several resources, for which you get much of the data by calling
functions of the generic music component, and implement functions that the generic music component calls
when necessary. When a music component is a client of the generic music component, it handles only a few
component calls from applications and more relatively simple calls from the generic music component.

MIDI Components

A MIDI component provides a standard interface between the note allocator component and a particular
MIDI transport system. The MIDI component supports both input and output of MIDI streams.

Hardware and software developers can provide additional MIDI components. For example, the developer of
a multiport serial card can provide a MIDI component that supports direct MIDI input and output using the
card. Other MIDI components can support MIDI transport systems for operating systems other than the Mac
OS.

QuickTime Music Events

This section describes the data structure of QuickTime music events. The events described here are used to
initialize and modify sound-producing music devices and define the notes and rests to be played. Several
different event types are defined.

Music events specify the instruments and notes of a musical composition. A group of music events is called
a sequence. A sequence of events may define a range of instruments and their characteristics and the notes
and rests that, when interpreted, produce the musical composition.

The event sequence required to produce music is usually contained in a QuickTime movie track, which uses
a media handler to provide access to the tune player, or an application, which passes them directly to the
tune player. QuickTime interprets and plays the music from the sequence data.

The events described in this section initialize and modify sound-producing music devices and define the
notes and rests to be played.

Events are constructed as a group of long words. The uppermost 4 bits (nibble) of an event’s long word
defines its type, as shown in Table 1-1.

Table 1-1 Event types

Event typeNumber of long wordsFirst nibble

Rest1000x

Note1001x

16 QuickTime Music Events
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Event typeNumber of long wordsFirst nibble

Controller1010x

Marker1011x

(reserved)21000

Extended note21001

Extended controller21010

Knob21011

(reserved)21100

(reserved)21101

(reserved)21110

Generalany1111

Durations of notes and rests are specified in units of the tune player’s time scale (default 1/600 second). For
example, consider the musical fragment shown in Figure 1-3.

Figure 1-3 A music fragment

Assuming 120 beats per minute, and a tune player’s scale of 600, each quarter note’s duration is 300. Figure 1-4
shows a graphical representation of note and rest data.

Figure 1-4 Duration of notes and rests

QuickTime Music Events 17
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



The general event specifies the types of instruments or sounds used for the subsequent note events. The
note event causes a specific instrument, previously defined by a general event, to play a note at a particular
pitch and velocity for a specified duration of time.

Additional event types allow sequences to apply controller effects to instruments, define rests, and modify
instrument knob values. The entire sequence is closed with a marker event.

In most cases, the standard note and controller events (two long words) are sufficient for an application’s
requirements. The extended note event provides wider pitch range and fractional pitch values. The extended
controller event expands the number of instruments and controller values over that allowed by a controller
event.

The following sections describe the event types in detail.

Note Event

The standard note event (Figure 1-5) supports most music requirements. The note event allows up to 32
parts, numbered 0 to 31, and support pitches from 2 octaves below middle C to 3 octaves above.

Figure 1-5 A note event

ContentField

First nibble value = 001Xnote event type

Unique part identifierPart number

Numeric value of 0-63, mapped to 32-95Pitch

0-127, 0 = no audible response (but used to indicate a NOTE OFF)Velocity

Specifies how long to play the note in units defined by the media time scale or tune
player time scale

Duration

The part number bit field contains the unique part identifier initially used during the TuneSetHeader call.

The pitch bit field allows a range of 0-63, which is mapped to the values 32-95 representing the traditional
equal tempered scale. For example, the value 28 (mapped to 60) is middle C.

The velocity bit field allows a range of 0-127. A velocity value of 0 produces silence.

The duration bit field defines the number of units of time during which the part will play the note. The units
of time are defined by the media time scale or tune player time scale.

Use this macro call to stuff the note event’s long word:

qtma_StuffNoteEvent(x, instrument, pitch, volume, duration)

18 QuickTime Music Events
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Use these macro calls to extract fields from the note event’s long word:

qtma_Instrument(x)
qtma_NotePitch(x)
qtma_NoteVelocity(x)
qtma_NoteVolume(x)
qtma_NoteDuration(x)

Extended Note Event

The extended note event (Figure 1-6) provides a wider range of pitch values, microtonal values to define any
pitch, and extended note duration. The extended note event requires two long words; the standard note
event requires only one.

Figure 1-6 An extended note event

ContentField

First nibble value = 1001Extended note event type

Unique part identifierPart number

0-127 standard pitch, 60 = middle C 0x01.00 ... 0x7F.00 allowing 256
microtonal divisions between each notes in the traditional equal tempered
scale

Pitch

0-127 where 0 = no audible response (but used to indicate a NOTE OFF)Velocity

Specifies how long to play the note in units defined by media time scale or
tune player time scale

Duration

First nibble of last word = 10XXEvent tail

The part number bit field contains the unique part identifier initially used during the TuneSetHeader call.

If the pitch bit field is less than 128, it is interpreted as an integer pitch where 60 is middle C. If the pitch is
128 or greater, it is treated as a fixed pitch.

Microtonal pitch values are produced when the 15 bits of the pitch field are split. The upper 7 bits define the
standard equal tempered note and the lower 8 bits define 256 microtonal divisions between the standard
notes.

Use this macro call to stuff the extended note event’s long words:

qtma_StuffXNoteEvent(w1, w2, instrument, pitch, volume, duration)

QuickTime Music Events 19
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Use these macro calls to extract fields from the extended note event’s long words:

qtma_XInstrument(m, l)
qtma_XNotePitch(m, l)
qtma_XNoteVelocity(m, 1)
qtma_XNoteVolume(m, l)
qtma_XNoteDuration(m, l)

Rest Event

The rest event (Figure 1-7) specifies the period of time, defined by either the media time scale or the tune
player time scale, until the next event in the sequence is played.

Figure 1-7 A rest event

ContentField

First nibble value = 000XRest event type

Specifies the number of units of time until the next note event is played in units defined
by media time scale or tune player time scale

Duration

Use this macro call to stuff the rest event’s long word:

qtma_StuffRestEvent(x, duration)

Use this macro call to extract the rest event’s duration value:

qtma_RestDuration(x)

Rest events are not used to cause silence in a sequence, but to define the start of subsequent events.

Marker Event

The marker event has three subtypes. The end marker event (Figure 1-8) marks the end of a series of events.
The beat marker event marks the beat and the tempo marker event indicates the tempo.

Figure 1-8 A marker event of subtype end

20 QuickTime Music Events
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



ContentField

First nibble value = 011XMarker event type

8-bit unsigned subtypeSubtype

16-bit signed valueValue

The marker subtype bit field contains zero for an end marker (kMarkerEventEnd), 1 for a beat marker
(kMarkerEventBeat), or 2 for a tempo marker (kMarkerEventTempo).

The value bit field varies according to the subtype:

 ■ For an end marker event, a value of 0 means stop; any other value is reserved.

 ■ For a beat marker event, a value of 0 is a single beat (a quarter note); any other value indicates the
number of fractions of a beat in 1/65536 beat.

 ■ For a tempo marker event, the value is the same as a beat marker, but indicates that a tempo event
should be computed (based on where the next beat or tempo marker is) and emitted upon export.

Use this macro call to stuff the marker event’s long word:

qtma_StuffMarkerEvent(x, markerType, markerValue)

Use these macro calls to extract fields from the marker events long word:

qtma_MarkerSubtype(x)
qtma_MarkerValue(x)

Controller Event

The controller event (Figure 1-9) changes the value of a controller on a specified part.

Figure 1-9 Controller event

ContentField

First nibble value =010Xcontroller event type

Unique part identifierPart

Controller to be applied to instrumentController

8.8 bit fixed-point signed controller specific valueValue

For a list of currently supported controller types see Controller Numbers (page 52).

QuickTime Music Events 21
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



The part field contains the unique part identifier initially used during the TuneSetHeader call.

The controller bit field is a value that describes the type of controller used by the part.

The value bit field is specific to the selected controller.

Use this macro call to stuff the controller event’s long word:

qtma_StuffControlEvent(x, instrument, control, value)

Use these macro calls to extract fields from the controller event’s long word:

qtma_Instrument(x)
qtma_ControlController(x)
qtma_ControlValue(x)

Extended Controller Event

The extended controller event (Figure 1-10) allows parts and controllers beyond the range of the standard
controller event.

Figure 1-10 Extended controller event

ContentField

First nibble value = 1010Extended controller type

Instrument index for controllerPart

Controller for instrumentController

Signed controller specific valueValue

First nibble of last word = 10XXEvent tail

The part field contains the unique part identifier initially used during the TuneSetHeader call.

The controller bit field contains a value that describes the type of controller to be used by the part.

The value bit field is specific to the selected controller.

Use this macro call to stuff the extended controller event’s long words:

_StuffXControlEvent(w1, w2, instrument, control, value)

Use these macro calls to extract fields from the extended controller event’s long words:

22 QuickTime Music Events
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



qtma_XInstrument(m, l)
qtma_XControlController(m, l)
qtma_XControlValue(m, l)

General Event

For events longer than two words, you use the general event with a subtype. Figure 1-11 illustrates the
contents of a general event.

Figure 1-11 A note request general event

ContentField

First nibble value = 1111General event type

Unique part identifierPart number

Head is number of words in eventEvent length

Depends on subtypeData words

8-bit unsigned subtypeSubtype

tail must be identical to headEvent length

First nibble of last word = 11XXEvent tail

The part number bit field contains a unique identifier that is later used to match note, knob, and controller
events to a specific part. For example, to play a note the application uses the part number to specify which
instrument will play the note. The general event allows part numbers of up to 12 bits. The standard note and
controller events allow part numbers of up to 5 bits; the extended note and extended controller events allow
12-bit part numbers.

The event length bit fields contained in the first and last words of the message are identical and are used as
a message format check and to move back and forth through the message. The lengths include the head
and tail; the smallest length is 2.

The data words field is a variable length field containing information unique to the subtype of the general
event. The subtype bit field indicates the subtype of general event. There are nine subtypes:

 ■ A note request general event (kGeneralEventNoteRequest) has a subtype of 1. It encapsulates the
note request data structure used to define the instrument or part. It is used in the tune header.

QuickTime Music Events 23
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



 ■ A part key general event (KGeneralEventPartKey) has a subtype of 4. It sets a pitch offset for the
entire part so that every subsequent note played on that part will be altered in pitch by the specified
amount.

 ■ A tune difference general event (kGeneralEventTuneDifference) has a subtype of 5. It contains a
standard sequence, with end marker, for the tune difference of a sequence piece. Using a tune difference
event is similar to using key frames with compressed video sequences.

 ■ An atomic instrument general event (kGeneralEventAtomicInstrument) has a subtype of 6. It
encapsulates an atomic instrument. It is used in the tune header. It may be used in place of the
kGeneralEventNoteRequest.

 ■ A knob general event (kGeneralEventKnob) has a subtype of 7. It contains knob ID/knob value pairs.
The smallest event is four long words.

 ■ A MIDI channel general event (kGeneralEventMIDIChannel) has a subtype of 8. It is used in a tune
header. One long word identifies the MIDI channel it originally came from.

 ■ A part change general event (kGeneralEventPartChange) has a subtype of 9. It is used in a tune
sequence where one long word identifies the tune part that can now take over the part’s note channel.

 ■ A no-op general event (kGeneralEventNoOp) has a subtype of 10. It does nothing in QuickTime.

 ■ A notes-used general event (kGeneralEventUsedNotes) has a subtype of 11. It is four long words
specifying which MIDI notes are actually used. It is used in the tune header.

Use these macro calls to stuff the general event’s head and tail long words, but not the structures described
above:

qtma_StuffGeneralEvent(w1, w2, instrument, subType, length)

Macros are used to extract field values from the event’s head and tail long words.

qtma_XInstrument(m, l)
qtma_GeneralSubtype(m, l)
qtma_GeneralLength(m, l)

Knob Event

The knob event (Figure 1-12) is used to modify a particular knob or knobs within a specified part.

24 QuickTime Music Events
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



Figure 1-12 Knob event

ContentField

First nibble value = 1111 (general event), subtype 7Knob event type

Length of the event will be 2(#knobs+1)Length

Unique part identifierPart

Knob ID within specified partKnob ID

Knob valueKnob value

First nibble of last word = 11XX, subtype 7Event tail

The part field contains the unique part identifier initially used during the TuneSetHeader call.

The knob number bit field identifies the knob to be changed.

The 32-bit value composed of the lower 16-bit and upper 16-bit field values is used to alter the specified
knob.

The General MIDI Synthesizer Component

The General MIDI synthesizer component controls General MIDI devices. These devices support 24 voices of
polyphony, and each of their MIDI channels can access any number of voices.

The MIDI Synthesizer Component

The MIDI synthesizer component allows QuickTime to control a synthesizer connected to a single MIDI
channel. It works with any synthesizer that can be controlled through MIDI.

The General MIDI Synthesizer Component 25
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



The MIDI synthesizer component does not get information about the synthesizer instruments. Instead, it
simply lists available instruments as “Instrument 1,” “Instrument 2,” and so on up to “Instrument 128.”

The Base Instrument Component

When you provide additional sounds for the QuickTime music synthesizer, you can simplify the creation of
the necessary instrument resources by using the base instrument component. To create an instrument
component, you create a component alias whose target is the base instrument component. The component
alias’s data resources specify the capabilities of an instrument, while the code resource of the base instrument
component handles all of the component requests sent to the instrument component.

26 The Base Instrument Component
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

The QuickTime Music Architecture



The QuickTime Music Architecture provides functions that allow applications to control all aspects of playing
music tracks and generating musical sounds in QuickTime movies.

This chapter discusses a few of the more common operations your application can perform with the QTMA.

Converting MIDI Data to a QuickTime Music Track

QuickTime Pro allows you to open a standard MIDI file and convert it into a QuickTime music track. After the
file is converted, the application prompts you to save the converted file as a QuickTime movie. Once saved,
a movie controller is displayed and you can play the music.

Importing a Standard MIDI File As a Movie

Most music content exists in Standard MIDI Files (SMF), which have a standard format. All sequencing and
composition programs let you save or export files in this format. QuickTime provides facilities for reading an
SMF and converting it into a QuickTime movie. During any kind of conversion, the SMF is assumed to be
scored for a General MIDI device, and MIDI channel 10 is assumed to be a drum track.

The conversion to a QuickTime movie can happen in one of several ways. Because it is implemented in a
QuickTime 'eat ' component, the conversion happens automatically in most cases. Any application that
uses the StandardGetFile routine to open a movie can also open 'Midi' files transparently, and can
transparently paste Clipboard contents of type 'Midi' into a movie shown with the standard movie controller.

To explicitly convert a file or handle into a movie, your application can use the Movie Toolbox routines
ConvertFileToMovieFile and PasteHandleIntoMovie, respectively.

When authoring MIDI files to be converted to QuickTime music movies, two MIDI system-exclusive messages
can be used for more precise control of the MIDI import process. Note that QuickTime data is divided into
media samples. Within video tracks, each video frame is considered one sample; in music tracks, each sample
can contain several seconds worth of musical information.

 ■ F0 11 00 01 xx yy zz F7 sets the maximum size of each media sample to the 21-bit number xxyyzz.
(MIDI data bytes have the high bit clear, so they have only seven bits of number.) This message can occur
anywhere in an SMF.

 ■ F0 11 00 02 F7 marks an immediate sample break; it ends the current sample and starts a new one. All
messages after a sample break message are placed in a new media sample.

Converting MIDI Data to a QuickTime Music Track 27
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



Applications can define their own system-exclusive messages of the form F0 11 7F ww xx yy zz ...
application-defined data ... F7, where ww xx yy zz is the application’s unique signature with the high bits
cleared. This is guaranteed not to interfere with Apple’s or any other manufacturer’s use of system-exclusive
codes.

Playing Notes With the Note Allocator

Playing a few notes with the note allocator component is simple and straightforward. To play notes that
have a piano sound, for example, you need to open up the note allocator component, allocate a note channel
with a request for piano, and play. When you’ve finished playing notes, you dispose of the note channel and
close the note allocator component. The code to accomplish this is shown in Listing 2-2. Before working
through the code, you need to look at some important related data structures.

Note-Related Data Structures

A note channel is analogous to a sound channel in that you allocate it, issue commands to it to produce
sound, and close it when you’re done. To specify details about the note channel, you use a data structure
called a NoteRequest (see Listing 2-1).

Listing 2-1 Note-related data structures

struct NoteRequest {
    NoteRequestInfo  info;
    ToneDescription  tone;
};
struct NoteRequestInfo {
    UInt8    flags;
    UInt8    reserved;
    short    polyphony;
    Fixed    typicalPolyphony;
};
struct ToneDescription {
    OSType     synthesizerType;
    Str31    synthesizerName;
    Str31    instrumentName;
    long     instrumentNumber;
    long     gmNumber;
};

The next two fields specify the probable polyphony that the note channel will be used for. Polyphony means,
literally, many sounds. A polyphony of 5 means that five notes can be playing simultaneously. The polyphony
field enables QTMA to make sure that the allocated note channel can play all the notes you need. The typical
polyphony field is a fixed-point number that should be set to the average number of voices the note channel
will play; it may be whole or fractional. Some music components use this field to adjust the mixing level for
a good volume. If in doubt, set the typical polyphony field to 0X00010000.

The ToneDescription structure is used throughout QTMA to specify a musical instrument sound in a
device-independent fashion. This structure’s synthesizerType and synthesizerName fields can request
a particular synthesizer to play notes on. Usually, they’re set to 0, meaning “choose the best General MIDI
synthesizer.” The gmNumber field indicates the General MIDI (GM) instrument or drum kit sound, which may

28 Playing Notes With the Note Allocator
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



be any of 135 such sounds supported by many synthesizer manufacturers. (All these sounds are available on
a General MIDI Sound Module.) The GM instruments are numbered 1 through 128, and the seven drum kits
are numbered 16385 and higher. For synthesizers that accept sounds outside the GM library, you can use
the instrumentName and instrumentNumber fields to specify some other sound.

Playing Piano Sounds With the Note Allocator

The routine in Listing 2-2 plays notes in a piano sound with the note allocator component.

Listing 2-2 Playing notes with the note allocator component

void PlaySomeNotes(void)
{
    NoteAllocator   na;
    NoteChannel     nc;
    NoteRequest     nr;
    ComponentResult  thisError;
    long        t, i;
    na = 0;
    nc = 0;
    // Open up the note allocator.
    na = OpenDefaultComponent(kNoteAllocatorType, 0);
    if (!na)
        goto goHome;
    // Fill out a NoteRequest using NAStuffToneDescription to help, and
    // allocate a NoteChannel.
    nr.info.flags = 0;
    nr.info.reserved = 0;
    nr.info.polyphony = 2;   // simultaneous tones
    nr.info.typicalPolyphony = 0x00010000; // usually just one note
    thisError = NAStuffToneDescription(na, 1, &nr.tone); // 1 is piano
    thisError = NANewNoteChannel(na, &nr, &nc);
    if (thisError || !nc)
        goto goHome;
    // If we've gotten this far, OK to play some musical notes.
    NAPlayNote(na, nc, 60, 80);     // middle C at velocity 80
    Delay(40, &t);         // delay 2/3 of a second
    NAPlayNote(na, nc, 60, 0);   // middle C at velocity 0: end note
    Delay(40, &t);         // delay 2/3 of a second
    // Obligatory do-loop of rising tones
    for (i = 60; i <= 84; i++) {
        NAPlayNote(na, nc, i, 80);    // pitch i at velocity 80
        NAPlayNote(na, nc, i+7, 80);    // pitch i+7 (musical fifth) at
                                         // velocity 80 
        Delay(10, &t);                   // delay 1/6 of a second
        NAPlayNote(na, nc, i, 0); // pitch i at velocity 0: end note
        NAPlayNote(na, nc, i+7, 0);  // pitch i+7 at velocity 0:
                                        // end note 
    }
goHome:
    if (nc)
        NADisposeNoteChannel(na, nc);
    if (na)
        CloseComponent(na);

Playing Notes With the Note Allocator 29
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



}

You start by calling OpenDefaultComponent to open a connection to the note allocator. If this routine
returns 0, the component wasn’t opened, most likely because QTMA wasn’t present. Next, you fill in the
NoteRequestInfo andToneDescription structures, calling the note allocator’sNAStuffToneDescription
routine and passing it the GM instrument number for piano. This routine fills in the gmNumber field and also
fills in the other ToneDescription fields with sensible values, such as the instrument’s name in text form
in the instrumentName field. (The routine can be useful for converting a GM instrument number to its text
equivalent.)

After allocating the note channel with NANewNoteChannel, you call NAPlayNote to play each note. Notice
the last two parameters to NAPlayNote:

ComponentResult NAPlayNote(NoteAllocator na, NoteChannel nc,
    long pitch, long velocity);

The value of the pitch parameter is an integer from 1 to 127, where 60 is middle C, 61 is C sharp, and 59 is
C flat, or B. Similarly, 69 is concert A and is played at a nominal audio frequency of 440 Hz.

The velocity parameter’s value is also an integer from 1 to 127, or 0. A velocity of 1 corresponds to just
barely touching the musical keyboard, and 127 indicates that the key was struck as hard as possible. Different
velocities produce tones of different volumes from the synthesizer. A velocity of 0 means the key was released;
the note stops or fades out, as appropriate to the kind of sound being played.

You stop the notes at this point after delaying an appropriate amount of time with a call to the Delay routine.
Finally, you dispose of the note channel and close the note allocator component.

Music Component Functions: Synthesizer

The functions in this section obtain specific information about a synthesizer and obtain a best instrument fit
for a requested tone from the available instruments within the synthesizer; play a note with a specified pitch,
volume, and duration; get and set a particular synthesizer knob; obtain synthesizer knob information; and
get and set external MIDI procedure name entry points.

Knob Flags

Knob flags specify characteristics of a knob. They are used in the flags field of a knob description structure.
Some flags describe the type of values a knob takes and others describe the user interface. Knob flags are
mutually exclusive, so only one should be set (all knob flag constants begin with kKnobType).

enum {
    kKnobReadOnly               = 16,
    kKnobInterruptUnsafe        = 32,
    kKnobKeyrangeOverride       = 64,
    kKnobGroupStart             = 128,
    kKnobFixedPoint8            = 1024,
    kKnobFixedPoint16           = 2048,
    kKnobTypeNumber             = 0 << 12,
    kKnobTypeGroupName          = 1 << 12,
    kKnobTypeBoolean            = 2 << 12,
    kKnobTypeNote               = 3 << 12,

30 Music Component Functions: Synthesizer
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    kKnobTypePan                = 4 << 12,
    kKnobTypeInstrument         = 5 << 12,
    kKnobTypeSetting            = 6 << 12,
    kKnobTypeMilliseconds       = 7 << 12,
    kKnobTypePercentage         = 8 << 12,
    kKnobTypeHertz              = 9 << 12,
    kKnobTypeButton             = 10 << 12
};

DefinitionTerm

The knob value cannot be changed by the user or with a set knob call.kKnobReadOnly

Alter this knob only from foreground task time.kKnobInterruptUnsafe

The knob can be overridden within a single key range (software synthesizer
only).

kKnobKeyrangeOverride

The knob is first in some logical group of knobs.kKnobGroupStart

Interpret knob numbers as fixed-point 8-bit.kKnobFixedPoint8

Interpret knob numbers as fixed-point 16-bit.kKnobFixedPoint16

The knob value is a numerical value.kKnobTypeNumber

The name of the knob is really a group name for display purposes.kKnobTypeGroupName

The knob is an on/off knob. If the range of the knob (as specified by the low
value and high value in the knob description structure) is greater than one,
the knob is a multi-checkbox field.

kKnobTypeBoolean

The knob value range is equivalent to MIDI keys.kKnobTypeNote

The knob value is the pan setting and is within a range (as specified by the
low value and high value in the knob description structure) that goes from
left to right.

kKnobTypePan

The knob value is a reference to another instrument number.kKnobTypeInstrument

The knob value is one of n different discrete settings; for example, items on
a pop-up menu.

kKnobTypeSetting

The knob value is in milliseconds.kKnobTypeMilliseconds

The knob value is a percentage of the range.kKnobTypePercentage

The knob value represents frequency.kKnobTypeHertz

The knob is a momentary trigger push button.kKnobTypeButton

Knob Value Constants

These constants specify unknown or default knob values and are used in various get knob and set knob calls.

Music Component Functions: Synthesizer 31
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



enum {
    kUnknownKnobValue       = 0x7FFFFFFF,
    kDefaultKnobValue       = 0x7FFFFFFE
};

DefinitionTerm

Couldn't find the specified knob value.kUnknownKnobValue

Set this knob to its default value.kDefaultKnobValue

Music Packet Status

These constants are used in the reserved field of the MIDI packet structure.

enum {
    kMusicPacketPortLost        = 1,
    kMusicPacketPortFound       = 2,
    kMusicPacketTimeGap         = 3
};

DefinitionTerm

The application has lost the default input port.kMusicPacketPortLost

The application has retrieved the input port from the previous owner.kMusicPacketPortFound

The last byte of the packet specifies how long (in milliseconds) to keep the
MIDI line silent after sending the packet.

kMusicPacketTimeGap

MIDI Packet

The MIDI packet structure describes the data passed by note allocation calls. It is defined by the
MusicMIDIPacket data type.

struct MusicMIDIPacket {
    unsigned short          length;
    unsigned long           reserved;           
    UInt8                   data[249];
};
typedef struct MusicMIDIPacket MusicMIDIPacket;

DefinitionTerm

The length of the data in the packet.length

This field contains zero or one of the music packet status constants.reserved

The MIDI data.data[249 ]

32 Music Component Functions: Synthesizer
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



This is the count of data bytes only, unlike MIDI Manager or OMS packets. For information about the music
packet status, see Music Packet Status (page 32).

Atomic Instrument Information Flags

These constants specify what pieces of information about an atomic instrument the caller is interested in
and are passed to the MusicGetPartAtomicInstrument function.

enum {
    kGetAtomicInstNoExpandedSamples = 1 << 0,
    kGetAtomicInstNoOriginalSamples = 1 << 1,
    kGetAtomicInstNoSamples         = kGetAtomicInstNoExpandedSamples |
                                      kGetAtomicInstNoOriginalSamples,
    kGetAtomicInstNoKnobList        = 1 << 2,
    kGetAtomicInstNoInstrumentInfo  = 1 << 3,
    kGetAtomicInstOriginalKnobList  = 1 << 4,
    kGetAtomicInstAllKnobs          = 1 << 5
};

DefinitionTerm

Eliminate the expanded samples.kGetAtomicInstNoExpandedSamples

Eliminate the original samples.kGetAtomicInstNoOriginalSamples

Eliminate both the original and expanded samples.kGetAtomicInstNoSamples

Eliminate the knob list.kGetAtomicInstNoKnobList

Eliminate the About box information.kGetAtomicInstNoInstrumentInfo

Include the original knob list.kGetAtomicInstOriginalKnobList

Include the current knob list.kGetAtomicInstAllKnobs

Flags for Setting Atomic Instruments

These flags specify details of initializing a part with an atomic instrument and are passed to the
MusicSetPartAtomicInstrument function.

enum {
    kSetAtomicInstKeepOriginalInstrument    = 1 << 0,
    kSetAtomicInstShareAcrossParts          = 1 << 1,
    kSetAtomicInstCallerTosses              = 1 << 2,
    kSetAtomicInstDontPreprocess            = 1 << 7
};

DefinitionTerm

Keep original sample after expansion.kSetAtomicInstKeep-
OriginalInstrument

Music Component Functions: Synthesizer 33
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Remove the instrument when the application quits.kSetAtomicInstShareAcrossParts

The caller isn't keeping a copy of the atomic instrument for later
calls to NASetAtomicInstrument.

kSetAtomicInstCallerTosses

Don't expand the sample. You would only set this bit if you
know the instrument is digitally clean or you got it from a
MusicGetPartAtomicInstrument call.

kSetAtomicInstDontPreprocess

Music Component Functions: Instruments and Parts

The functions described in this section initialize a part with an instrument, store instruments, list available
instruments, manipulate parts, and get information about parts.

Instrument Info Flags

Use these flags in the MusicGetInstrumentInfo function to indicate which instruments and instrument
names you are interested in.

enum {
    kGetInstrumentInfoNoBuiltIn         = 1 << 0,
    kGetInstrumentInfoMidiUserInst      = 1 << 1,
    kGetInstrumentInfoNoIText           = 1 << 2
};

DefinitionTerm

Don't return built-in instruments.kGetInstrumentInfoNoBuiltIn

Do return user instruments for a MIDI device.kGetInstrumentInfoMidiUserInst

Don't return international text strings.kGetInstrumentInfoNoIText

Instrument Component Functions

This section describes functions that are implemented by instrument components.

Synthesizer Connection Type Flags

These flags provide information about a MIDI device’s connection and are used in the synthesizer connections
structure.

enum {
    kSynthesizerConnectionMono      = 1,

34 Music Component Functions: Instruments and Parts
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    kSynthesizerConnectionMMgr      = 2,
    kSynthesizerConnectionOMS       = 4,
    kSynthesizerConnectionQT        = 8,
    kSynthesizerConnectionFMS       = 16
};

DefinitionTerm

If set, and the synthesizer can be both monophonic and polyphonic,
the synthesizer is instructed to take up its channels sequentially from
the system channel in monophonic mode.

kSynthesizerConnectionMono

This connection is imported from the MIDI Manager.kSynthesizerConnectionMMgr

This connection is imported from the Open Music System (OMS).kSynthesizerConnectionOMS

This connection is a QuickTime-only port.kSynthesizerConnectionQT

This connection is imported from the FreeMIDI system.kSynthesizerConnectionFMS

Synthesizer Connections for MIDI Devices

The synthesizer connection structure describes how a MIDI device is connected to the computer. It is defined
by the SynthesizerConnections data type.

struct SynthesizerConnections {
    OSType                      clientID;
    OSType                      inputPortID;
    OSType                      outputPortID;
    long                        midiChannel;
    long                        flags;
    long                        unique;
    long                        reserved1;
    long                        reserved2;
};
typedef struct SynthesizerConnections SynthesizerConnections;

DefinitionTerm

The client ID provided by the MIDI Manager or 'OMS ' for an OMS port.clientID

The ID provided by the MIDI Manager or OMS for the port used to send to the MIDI
synthesizer.

inputPortID

The ID provided by the MIDI Manager or OMS for the port that receives from a keyboard
or other control device.

outputPortID

The system MIDI channel or, for a hardware device, the slot number.midiChannel

Information about the type of connection.flags

A unique ID you can use instead of an index to identify the synthesizer to the note
allocator.

unique

Music Component Functions: Instruments and Parts 35
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Reserved. Set to 0.reserved1

Reserved. Set to 0.reserved2

For flags values, see Synthesizer Connection Type Flags (page 34).

Instrument Match Flags

These flags are returned in the instMatch field of the General MIDI instrument information structure to
specify how QuickTime music architecture matched an instrument request to an instrument.

enum {
    kInstrumentExactMatch               = 0x00020000,
    kInstrumentRecommendedSubstitute    = 0x00010000,
    kInstrumentQualityField             = 0xFF000000,
    kRoland8BitQuality          = 0x05000000
};
typedef InstrumentAboutInfo *InstrumentAboutInfoPtr;
typedef InstrumentAboutInfoPtr *InstrumentAboutInfoHandle;

DefinitionTerm

The instrument exactly matches the request.kInstrumentExactMatch

The instrument is the approved substitute.kInstrumentRecommended-
Substitute

The high-order 8 bits of this field specify the quality of the selected
instrument. Higher values specify higher quality.

kInstrumentQualityField

For built-in instruments, the value of the high-order 8 bits is always
kInstrumentRoland8BitQuality, which corresponds to the
quality of an 8-bit Roland instrument.

kRoland8BitQuality

General MIDI Instrument Information Structure

The General MIDI instrument information structure provides information about a General MIDI instrument
within an instrument component. It is defined by the GMInstrumentInfo data type.

struct GMInstrumentInfo {
    long                        cmpInstID;
    long                        gmInstNum;
    long                        instMatch;
};
typedef struct GMInstrumentInfo GMInstrumentInfo;
typedef GMInstrumentInfo *GMInstrumentInfoPtr;
typedef GMInstrumentInfoPtr *GMInstrumentInfoHandle;

36 Music Component Functions: Instruments and Parts
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

The number of the instrument within the instrument component.cmpInstID

The General MIDI, or standard, instrument number.gmInstNum

A flag indicating how the instrument matches the requested instrument.instMatch

For instMatch values, see Instrument Match Flags (page 36).

Note Request Constants

These flags specify what to do if the exact instrument requested is not found. They are used in the flags
field of the note request information structure.

enum {
    kNoteRequestNoGM            = 1,
    kNoteRequestNoSynthType     = 2
};

DefinitionTerm

Don't use a General MIDI synthesizer.kNoteRequestNoGM

Don't use another synthesizer of the same type but with a different name.kNoteRequestNoSynthType

Note Request Information Structure

The note request information structure contains information for allocating a note channel that’s in addition
to that included in a tone description structure. It is defined by the NoteRequestInfo data type.

struct NoteRequestInfo {
    UInt8                       flags;
    UInt8                       reserved;
    short                       polyphony;
    Fixed                       typicalPolyphony;
};
typedef struct NoteRequestInfo NoteRequestInfo;

DefinitionTerm

Specifies what to do if the exact instrument requested in a tone description structure
is not found.

flags

Reserved. Set to 0.reserved

Maximum number of voices.polyphony

Hint for level mixing.typicalPolyphony

Music Component Functions: Instruments and Parts 37
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



For flags values, see Note Request Constants (page 37).

Pick Instrument Flags

The pick instrument flags provide information to the NAPickInstrument and NAPickEditInstrument
functions on which instruments to present for the user to choose from.

enum {
    kPickDontMix                = 1,
    kPickSameSynth              = 2,
    kPickUserInsts              = 4,
    kPickEditAllowPick          = 16
};

DefinitionTerm

Show either all drum kits or all instruments depending on the current instrument.
For example, if it's a drum kit, show only drum kits.

kPickDontMix

Show only instruments from the current synthesizer.kPickSameSynth

Show modifiable instruments in addition to ROM instruments.kPickUserInsts

Present the instrument picker dialog box. Used only with the
NAPickEditInstrument function.

kPickEditAllowPick

Note Allocator Functions: Miscellaneous Interface Tools

The functions in this section provide a user interface for instrument selection and presenting copyright
information.

Note Allocator Type

Use these constants to specify the QuickTime note allocator component.

enum {
    kNoteAllocatorType              = 'nota'
    kNoteAllocatorComponentType     = 'not2'
};

DefinitionTerm

The QTMA note allocator type.kNoteAllocatorType

The QTMA note allocator component type.kNoteAllocatorComponentType

38 Note Allocator Functions: Miscellaneous Interface Tools
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



Tune Queue Depth

This constant represents the maximum number of segments that can be queued with the TuneQueue function.

enum {
    kTuneQueueDepth     = 8
};

DefinitionTerm

Deepest you can queue tune segments.kTuneQueueDepth

Tune Player Functions

This section describes the functions the tune player provides for setting, queueing, and manipulating music
sequences. It also describes tune player utility functions.

Tune Player Type

Use this constant to specify the QuickTime tune player component.

enum {
    kTunePlayerType         = 'tune'
};

DefinitionTerm

The QuickTime music architecture tune player component type.kTunePlayerType

Tune Queue Flags

Use these flags in the TuneQueue function to give details about how to handle the queued tune.

enum {
    kTuneStartNow               = 1,
    kTuneDontClipNotes          = 2,
    kTuneExcludeEdgeNotes       = 4,
    kTuneQuickStart             = 8,
    kTuneLoopUntil              = 16,
    kTuneStartNewMaster         = 16384
};

DefinitionTerm

Play even if another tune is playing.kTuneStartNow

Allow notes to finish their durations outside sample.kTuneDontClipNotes

Tune Player Functions 39
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Don't play notes that start at end of tune.kTuneExcludeEdgeNotes

Leave all the controllers where they are and ignore start time.kTuneQuickStart

Loop a queued tune if there is nothing else in the queue.kTuneLoopUntil

Start a new master reference timer.kTuneStartNewMaster

MIDI Component Constants

Use these constants to specify MIDI components.

enum {
    kQTMIDIComponentType= FOUR_CHAR_CODE('midi'),
    kOMSComponentSubType= FOUR_CHAR_CODE('OMS '),
    kFMSComponentSubType= FOUR_CHAR_CODE('FMS '),
    kMIDIManagerComponentSubType = FOUR_CHAR_CODE('mmgr')
};

DefinitionTerm

The component type for MIDI components.kQTMIDIComponentType

The component subtype for a Open Music System MIDI component.kOMSComponentSubType

The component subtype for a FreeMIDI component.kFMSComponentSubType

The component subtype for a MIDI Manager component.kMIDIManagerComponentSubType

MIDI System Exclusive Constants

System exclusive constants can be used to control where sample breaks occur when importing a MIDI file.
For more information, see the section Importing a Standard MIDI File As a Movie (page 27).

enum {
    kAppleSysexID   = 0x11,
    kAppleSysexCmdSampleSize= 0x0001,
    kAppleSysexCmdSampleBreak= 0x0002,
    kAppleSysexCmdAtomicInstrument = 0x0010,
    kAppleSysexCmdDeveloper= 0x7F00 
};

MIDI File Import Flags

These flags control the importation of MIDI files.

enum {
    kMIDIImportSilenceBefore = 1 << 0,

40 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    kMIDIImportSilenceAfter = 1 << 1,
    kMIDIImport20Playable = 1 << 2,
    kMIDIImportWantLyrics = 1 << 3
};

DefinitionTerm

Specifies to add one second of silence before the first note.kMIDIImportSilenceBefore

Specifies to add one second of silence after the last note.kMIDIImportSilenceAfter

Specifies to import only MIDI data that can be used with QuickTime. The
imported data does not include program changes and has at most 32
parts.

kMIDIImport20Playable

Specifies to import karaoke lyrics as a text track.kMIDIImportWantLyrics

Part Mixing Flags

Part mixing flags control how a part is mixed with other parts.

enum {
    kTuneMixMute= 1,
    kTuneMixSolo= 2
};

DefinitionTerm

Disables the part so that it is not heard.kTuneMixMute

Specifies to include only soloed parts in the mix if any parts are soloed.kTuneMixSolo

Atom Types for Atomic Instruments

These constants specify the types of atoms used to build atomic instruments. Atomic instruments are described
in Instrument Components and Atomic Instruments (page 14).

enum {
    kaiToneDescType                 = 'tone',
    kaiNoteRequestInfoType          = 'ntrq',
    kaiKnobListType                 = 'knbl',
    kaiKeyRangeInfoType             = 'sinf',
    kaiSampleDescType               = 'sdsc',
    kaiSampleDataType               = 'sdat',
    kaiInstRefType                  = 'iref',
    kaiInstInfoType                 = 'iinf',
    kaiPictType                     = 'pict',
    kaiWriterType                   =

Tune Player Functions 41
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



Instrument Knob Flags

These flags are used in the knobFlags field of an instrument knob list structure to indicate what to do if a
requested knob is not in the list.

enum {
    kInstKnobMissingUnknown         = 0,
    kInstKnobMissingDefault         = 1 << 0
};

DefinitionTerm

If the requested knob is not in the list, do not set its value.kInstKnobMissingUnknown

If the requested knob is not in the list, use its default value.kInstKnobMissingDefault

Loop Type Constants

You can use these constants in the loopType field of an atomic instrument sample description structure to
indicate the type of loop you want.

enum {
    kMusicLoopTypeNormal            = 0,
    kMusicLoopTypePalindrome        = 1
};

DefinitionTerm

Use a regular loop.kMusicLoopTypeNormal

Use a back-and-forth loop.kMusicLoopTypePalindrome

Music Component Type

Use this constant to specify a QuickTime music component.

enum {
    kMusicComponentType     = 'musi'
};

DefinitionTerm

The type of any QTML music component.kMusicComponentType

Synthesizer Type Constants

You can use these constants in a tone description structure to specify the type of synthesizer you want to
produce the tone.

42 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



enum {
    kSoftSynthComponentSubType    = 'ss ',
    kGMSynthComponentSubType      = 'gm '
};

DefinitionTerm

Use the QuickTime music synthesizer. This is the built-in synthesizer.kSoftSynthComponentSubType

Use the General MIDI synthesizer.kGMSynthComponentSubType

Synthesizer Description Flags

These flags describe various characteristics of a synthesizer. They are used in the flags field of the synthesizer
description structure.

enum {
    kSynthesizerDynamicVoice        = 1,
    kSynthesizerUsesMIDIPort        = 2,
    kSynthesizerMicrotone           = 4,
    kSynthesizerHasSamples          = 8,
    kSynthesizerMixedDrums          = 6,
    kSynthesizerSoftware            = 32,
    kSynthesizerHardware            = 64,
    kSynthesizerDynamicChannel      = 128,
    kSynthesizerHogsSystemChannel   = 256,
    kSynthesizerSlowSetPart         = 1024,
    kSynthesizerOffline             = 4096,
    kSynthesizerGM                  = 16384
};

DefinitionTerm

Voices can be assigned to parts on the fly with this synthesizer
(otherwise, polyphony is very important).

kSynthesizerDynamicVoice

This synthesizer must be patched through a MIDI system, such as
the MIDI Manager or OMS.

kSynthesizerUsesMIDIPort

This synthesizer can play microtonal scales.kSynthesizerMicrotone

This synthesizer has some use for sampled audio data.kSynthesizerHasSamples

Any part of this synthesizer can play drum parts.kSynthesizerMixedDrums

This synthesizer is implemented in main CPU software and uses
CPU cycles.

kSynthesizerSoftware

This synthesizer is a hardware device, not a software synthesizer
or MIDI device.

kSynthesizerHardware

This synthesizer can move any part to any channel or disable each
part. For devices only.

kSynthesizerDynamicChannel

Tune Player Functions 43
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Even if the kSynthesizerDynamicChannel bit is set, this
synthesizer always responds on its system channel. For MIDI devices
only.

kSynthesizerHogsSystemChannel

This synthesizer does not respond rapidly to the various set part
and set part instrument calls.

kSynthesizerSlowSetPart

This synthesizer can enter an offline synthesis mode.kSynthesizerOffline

This synthesizer is a General MIDI device.kSynthesizerGM

Synthesizer Knob ID Constants

These constants specify knob IDs for the QuickTime music synthesizer. These constants are all of the form
kQTMSKnob ID. For example, kQTMSKnobVolumeLFODelayID is the ID constant for the VolumeLFODelay
knob.

enum {
    kQTMSKnobEnv1AttackTimeID           = 0x02000027,
    kQTMSKnobEnv1DecayTimeID            = 0x02000028,
    kQTMSKnobEnv1ExpOptionsID           = 0x0200002D,
    kQTMSKnobEnv1ReleaseTimeID          = 0x0200002C,
    kQTMSKnobEnv1SustainInfiniteID      = 0x0200002B,
    kQTMSKnobEnv1SustainLevelID         = 0x02000029,
    kQTMSKnobEnv1SustainTimeID          = 0x0200002A,
    kQTMSKnobEnv2AttackTimeID           = 0x0200002E,
    kQTMSKnobEnv2DecayTimeID            = 0x0200002F,
    kQTMSKnobEnv2ExpOptionsID           = 0x02000034,
    kQTMSKnobEnv2ReleaseTimeID          = 0x02000033,
    kQTMSKnobEnv2SustainInfiniteID      = 0x02000032,
    kQTMSKnobEnv2SustainLevelID         = 0x02000030,
    kQTMSKnobEnv2SustainTimeID          = 0x02000031,
    kQTMSKnobExclusionGroupID           = 0x0200001C,
    kQTMSKnobFilterFrequencyEnvelopeDepthID
                                        = 0x0200003B, 
    kQTMSKnobFilterFrequencyEnvelopeID  = 0x0200003A,
    kQTMSKnobFilterKeyFollowID          = 0x02000037,
    kQTMSKnobFilterQEnvelopeDepthID     = 0x0200003D,
                                        /* reverb threshhold */ 
    kQTMSKnobFilterQEnvelopeID          = 0x0200003C,
    kQTMSKnobFilterQID                  = 0x02000039,
    kQTMSKnobFilterTransposeID          = 0x02000038,
    kQTMSKnobLastIDPlus1                = 0x0200003F
    kQTMSKnobPitchEnvelopeDepthID       = 0x02000036, /* filter */
    kQTMSKnobPitchEnvelopeID            = 0x02000035,
    kQTMSKnobPitchLFODelayID            = 0x02000013,
    kQTMSKnobPitchLFODepthFromWheelID   = 0x02000025,
                                        /* volume nnv again */ 
    kQTMSKnobPitchLFODepthID            = 0x02000017,
    kQTMSKnobPitchLFOOffsetID           = 0x0200001B,
    kQTMSKnobPitchLFOPeriodID           = 0x02000015,
    kQTMSKnobPitchLFOQuantizeID         = 0x02000018,
                                        /* stereo related knobs */ 

44 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    kQTMSKnobPitchLFORampTimeID         = 0x02000014,
    kQTMSKnobPitchLFOShapeID            = 0x02000016,
    kQTMSKnobPitchSensitivityID         = 0x02000023,
    kQTMSKnobPitchTransposeID           = 0x02000012,
                                        /* sample can override */ 
    kQTMSKnobReverbThresholdID          = 0x0200003E,
    kQTMSKnobStartID                    = 0x02000000,
    kQTMSKnobStereoDefaultPanID         = 0x02000019,
    kQTMSKnobStereoPositionKeyScalingID = 0x0200001A,
    kQTMSKnobSustainInfiniteID          = 0x0200001E,
    kQTMSKnobSustainTimeID              = 0x0200001D,
    kQTMSKnobVelocityHighID             = 0x02000021,
    kQTMSKnobVelocityLowID              = 0x02000020,
    kQTMSKnobVelocitySensitivityID      = 0x02000022,
    kQTMSKnobVolumeAttackTimeID         = 0x02000001,
                                        /* sample can override */ 
    kQTMSKnobVolumeDecayTimeID          = 0x02000002,
                                        /* sample can override */ 
    kQTMSKnobVolumeExpOptionsID         = 0x02000026, /* env1 */
    kQTMSKnobVolumeLFODelayID           = 0x02000007,
    kQTMSKnobVolumeLFODepthFromWheelID  = 0x02000024,
    kQTMSKnobVolumeLFODepthID           = 0x0200000B,
    kQTMSKnobVolumeLFOPeriodID          = 0x02000009,
    kQTMSKnobVolumeLFORampTimeID        = 0x02000008,
    kQTMSKnobVolumeLFOShapeID           = 0x0200000A,
    kQTMSKnobVolumeLFOStereoID          = 0x0200001F,
    kQTMSKnobVolumeOverallID            = 0x0200000C,
    kQTMSKnobVolumeReleaseKeyScalingID  = 0x02000005,
    kQTMSKnobVolumeReleaseTimeID        = 0x02000006,
                                        /* sample can override */ 
    kQTMSKnobVolumeSustainLevelID       = 0x02000003,
                                        /* sample can override */ 
    kQTMSKnobVolumeVelocity127ID        = 0x0200000D,
    kQTMSKnobVolumeVelocity16ID         = 0x02000011,
                                        /* pitch related knobs */ 
    kQTMSKnobVolumeVelocity32ID         = 0x02000010,
    kQTMSKnobVolumeVelocity64ID         = 0x0200000F,
    kQTMSKnobVolumeVelocity96ID         = 0x0200000E
};

DefinitionTerm

Specifies the attack time of the first general-purpose envelope. This is the
number of milliseconds between the start of a note and the maximum value
of the attack.

kQTMSKnobEnv1Attack-
TimeID

Specifies the decay time of the first general-purpose envelope. This is the
number of milliseconds between the time the attack is completed and the
time the envelope level is reduced to the sustain level.

kQTMSKnobEnv1Decay-
TimeID

Tune Player Functions 45
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies whether segments of the envelope are treated as exponential curves.
Bits 0, 1, 2, and 3 of the knob value specify the interpretation of the attack,
decay, sustain, and release segments of the envelope, respectively. If any of
these bits is 0, the level of the corresponding segment changes linearly from
its initial to final value during the time interval specified by the corresponding
envelope time knob. If any of these bits is nonzero, the level of the
corresponding segment changes exponentially during the time interval
specified by the corresponding envelope time knob. During an exponential
decrease, the level changes from maximum amplitude (no attenuation) to
approximately 1/65536th of maximum amplitude (96 dB of attenuation) during
the time interval specified by the corresponding envelope time knob, and
afterward the level immediately becomes 0.

kQTMSKnobEnv1Exp-
OptionsID

Specifies the release time of the first general-purpose envelope.kQTMSKnobEnv1Release-
TimeID

Specifies infinite sustain for the first general-purpose envelope. If the value of
this knob is true, the knob overrides the kQTMSKnobEnv1SustainTimeID
knob and causes the sustain to last, at undiminished level. Instruments like an
organ have infinite sustain.

kQTMSKnobEnv1Sustain-
InfiniteID

Specifies the sustain level of the first general-purpose envelope. This is the
percentage of full volume that the sample is initially played at after the decay
time has elapsed.

kQTMSKnobEnv1Sustain-
LevelID

Specifies the sustain time of the first general-purpose envelope. This is the
number of milliseconds it takes for the sample to soften to 90% of its sustain
level. This softening occurs in an exponential fashion, so it never actually
reaches complete silence. This is used for instruments like a piano, which
gradually soften over time even while the key is held down.

kQTMSKnobEnv1Sustain-
TimeID

Specifies the attack time of the second general-purpose envelope. This is the
number of milliseconds between the start of a note and the maximum value
of the attack. Percussive sounds usually have zero attack time; gentler sounds
may have short attack times. Long attack times are usually used for special
effects.

kQTMSKnobEnv2Attack-
TimeID

Specifies the decay time of the second general-purpose envelope. This is the
number of milliseconds between the time the attack is completed and the
time the sample is reduced in volume to the sustain level.

kQTMSKnobEnv2Decay-
TimeID

46 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies whether segments of the envelope are treated as exponential curves.
Bits 0, 1, 2, and 3 of the knob value specify the interpretation of the attack,
decay, sustain, and release segments of the envelope, respectively. If any of
these bits is 0, the level of the corresponding segment changes linearly from
its initial to final value during the time interval specified by the corresponding
envelope time knob. If any of these bits is nonzero, the level of the
corresponding segment changes exponentially during the time interval
specified by the corresponding envelope time knob. During an exponential
decrease the level changes from maximum amplitude (no attenuation) to
approximately 1/65536th of maximum amplitude (96 dB of attenuation) during
the time interval specified by the corresponding envelope time knob, and
afterward the level immediately becomes 0.

kQTMSKnobEnv2Exp-
OptionsID

Specifies the release time of the second general-purpose envelope. This is the
number of milliseconds it takes for the sound to soften down to silence after
the key is released.

kQTMSKnobEnv2Release-
TimeID

Specifies infinite sustain for the second general-purpose envelope. If the value
of this knob is true, the knob overrides the kQTMSKnobEnv2SustainTimeID
knob and causes the sustain to last, at undiminished volume, until the end of
the sample. Instruments like an organ have infinite sustain.

kQTMSKnobEnv2Sustain-
InfiniteID

Specifies the sustain level of the first general-purpose envelope. This is the
percentage of full volume that the sample is initially played at after the decay
time has elapsed.

kQTMSKnobEnv2Sustain-
LevelID

Specifies the sustain time of the second general-purpose envelope. This is the
number of milliseconds it takes for the sample to soften to 90% of its sustain
level. This softening occurs in an exponential fashion, so it never actually
reaches complete silence. This is used for instruments like a piano, which
gradually soften over time even while the key is held down.

kQTMSKnobEnv2Sustain-
TimeID

Specifies an exclusion group. Within an instrument, no two notes with the
same exclusion group number, excepting exclusion group, will ever sound
simultaneously.This knob is generally used only as an override knob within a
key range. (Note that the key range is not an entire instrument.) It is useful for
simulating certain mechanical instruments in which the same mechanism
produces different sounds. For example, in a drum kit, the open high hat and
the closed high hat are played on the same piece of metal. If you assign both
sounds to the same exclusion group, playing a closed high hat sound
immediately silences any currently playing open high hat sounds.

kQTMSKnobExclusion-
GroupID

Controls the depth of the envelope for the filter frequency. This is an 8.8 signed
fixed-point value that specifies the number of semitones the frequency is
altered when its envelope (specified by the kQTMSKnobFilter-
FrequencyEnvelopeID knob) is at maximum amplitude. If the value of the
kQTMSKnobFilterFrequencyEnvelopeID knob is 0, which specifies not to
use an envelope to affect filter frequency, the kQTMSKnobFilter-
FrequencyEnvelopeDepthID knob is ignored.

kQTMSKnobFilter-
FrequencyEnvelope-
DepthID

Tune Player Functions 47
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies which of the two general-purpose envelopes to use to affect the filter
frequency, or not to use an envelope to affect filter frequency. If the value of
this knob is 0, no envelope is used. If the value of this knob is 1 or 2, the
corresponding general-purpose envelope is used.

kQTMSKnobFilter-
FrequencyEnvelopeID

Specifies how closely the frequency of the filter follows the note being played.
The emphasis note is determined by the following formula, expressed in MIDI
notes: EmphasisNote = (PlayedNote - 60) * (kQTMSKnobFilter-
KeyFollowID / 100) - 60 - kQTMSKnobFilterTransposeID.

kQTMSKnobFilter-
KeyFollowID

Controls the depth of the envelope for the emphasis ("Q") of the filter. This is
an 8.8 signed fixed-point value that specifies the emphasis is altered when its
envelope (specified by the kQTMSKnobFilterQEnvelopeID knob) is at
maximum amplitude. If the value of the kQTMSKnobFilterQEnvelopeID
knob is 0, which specifies not to use an envelope to affect filter frequency, the
kQTMSKnobFilterQEnvelopeDepthID knob is ignored.

kQTMSKnobFilter-
QEnvelopeDepthID

Specifies which of the two general-purpose envelopes to use to affect the
emphasis ("Q") of the filter, or not to use an envelope to affect the emphasis.
If the value of this knob is 0, no envelope is used. If the value of this knob is 1
or 2, the corresponding general-purpose envelope is used.

kQTMSKnobFilter-
QEnvelopeID

Specifies the emphasis ("Q") of the filter. The value must be in the range 0 to
65536, inclusive, where 0 specifies no emphasis and disables the filter, and
65536 specifies relatively steep emphasis, but not so steep that it approaches
feedback.

kQTMSKnobFilterQID

Specifies a transposition, in semitones, of the frequency of the filter. The
emphasis note is determined by the following formula: EmphasisNote =
(PlayedNote - 60) * (kQTMSKnobFilterKeyFollowID / 100) - 60 -
kQTMSKnobFilterTransposeID.

kQTMSKnobFilter-
TransposeID

Specifies the depth of the pitch envelope. This is an 8.8 signed fixed-point
value that specifies the number of semitones the pitch is altered when the
envelope for the pitch (specified by the kQTMSKnobPitchEnvelopeID knob)
is at maximum amplitude. If the value of the kQTMSKnobPitchEnvelopeID
knob is 0, which specifies not to use an envelope to affect pitch, the
kQTMSKnobPitchEnvelopeDepthID knob is ignored.

kQTMSKnobPitch-
EnvelopeDepthID

Specifies which of the two general-purpose envelopes to use to affect pitch,
or not to use an envelope to affect pitch. If the value of this knob is 0, no
envelope is used. If the value of this knob is 1 or 2, the corresponding
general-purpose envelope is used to affect pitch.

kQTMSKnobPitch-
EnvelopeID

Specifies the delay for the pitch LFO. This is the number of milliseconds before
the LFO takes effect.

kQTMSKnobPitch-
LFODelayID

48 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies the extent to which a synthesizer's modulation wheel (or the MIDI
messages it generates) controls the depth of the pitch LFO. The value of this
knob is multiplied by the modulation wheel value (a value between 0 to 1),
and the result is added to the volume LFO depth specified by the
kQTMSKnobPitchLFODepthID knob. Modulation wheel controllers and the
MIDI messages they generate are most often used to create vibrato and tremolo
effects.

kQTMSKnobPitch-
LFODepthFromWheelID

Specifies the depth of the pitch LFO. This is the number of semitones by which
the pitch is altered by the LFO. A value of 0 does not change the pitch. A value
of 12 changes the pitch from an octave lower to an octave higher, with one
exception: if the square up waveform is used for the LFO, the normal pitch is
the minimum pitch.

kQTMSKnobPitch-
LFODepthID

Specifies the LFO offset. This is a constant value; the units are 8.8 semitones.
It is added to the pitch, and is affected by the LFO delay and LFO ramp-up
times. It is similar to transposition but subject to the LFO delay and LFO
ramp-up times.

kQTMSKnobPitch-
LFOOffsetID

Specifies the period for the pitch LFO. This is the wavelength of the LFO in
milliseconds. (The LFO rate in Hz is 1000 / kQTMSKnobPitchLFOPeriodID).

kQTMSKnobPitch-
LFOPeriodID

Specifies the LFO ramp-up time. This is the number of milliseconds after the
LFO delay that it takes for the LFO to reach full effect.

kQTMSKnobPitch-
LFORampTimeID

Specifies the waveform used for the LFO. The available waveforms are sine,
triangle, sawtooth up, sawtooth down, square up, square up-and-down, and
random. The sine and triangle shapes both produce a smooth rise and fall of
the pitch. The sawtooth up produces a gradual increase in pitch followed by
a sudden fall. The sawtooth down shape produces a sudden increase in pitch,
followed by a gradual reduction. The square up and square up-and-down
shapes apply a sudden pulsing to the pitch; the square up only makes the
pitch higher, while the up-and-down variant makes the sound higher and
lower. The random shape applies random changes to the pitch, once per LFO
period

kQTMSKnobPitch-
LFOShapeID

Specifies the pitch key scaling. This determines how much the pitch of the
struck note affects the pitch of the played note. Typically, this is 100%, meaning
that a change in 1 semitone of the struck note produces a change in 1 semitone
of the played note. Setting this knob to zero causes every note to play at the
same pitch. Setting it to 50% allows for all notes within the quarter-tone scale
(24 notes per octave) to be played.

kQTMSKnobPitch-
SensitivityID

Specifies a transposition for pitches. The value is the number of semitones to
transpose; a positive value raises the pitch anda negative value lowers it. The
value can be a real number; the fractional part of the value alters the pitch by
an additional fraction of a semitone. For example, to raise the pitch of every
note played on the instrument by an octave, set the transpose knob to 12.0.

kQTMSKnobPitch-
TransposeID

Specifies the default pan position for stereo sound. If no pan controller is
applied, this determines where in the stereo field notes for this instrument are
played

kQTMSKnobStereo-
DefaultPanID

Tune Player Functions 49
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies the key scaling for stereo sound. Amount to modify the stereo
placement of notes based upon pitch. At the highest setting, high pitched
notes are placed completely in the right speaker, while low pitched notes are
placed entirely in the left speaker.

kQTMSKnobStereo-
PositionKeyScalingID

Specifies infinite sustain for the volume envelope. If the value of this knob is
true, the knob overrides the kQTMSKnobSustainTimeID knob and causes
the sustain to last, at undiminished volume, until the end of the sample.
Instruments like an organ have infinite sustain.

kQTMSKnobSustain-
InfiniteID

Specifies the sustain time of the volume envelope. This is the number of
milliseconds it takes for the note to soften to 90% of its sustain level. This
softening occurs in an exponential fashion, so it never actually reaches complete
silence. This is used for instruments like a piano, which gradually soften over
time even while the key is held down.

kQTMSKnobSustain-
TimeID

Specifies the maximum velocity value that produces sound for a particular
note. If the velocity value is greater, the note does not sound. This can be used
to assign different samples to be played for selected velocity ranges.

kQTMSKnobVelocity-
HighID

Specifies the minimum velocity value that produces sound for a particular
note. If the velocity value is less, the note does not sound. This can be used to
assign different samples to be played for selected velocity ranges.

kQTMSKnobVelocity-
LowID

Specifies velocity sensitivity, which determines how much the key velocity
affects the volume of the note. This value is a percentage. At 100%, a velocity
of 1 is nearly silent, and a velocity of 127 is full volume. At 50%, the volume
range is from one fourth to three fourths. At 0%, any velocity of key strike
produces a half volume note. If the value of this knob is negative, then the
note plays more softly as the key is struck harder.

kQTMSKnobVelocity-
SensitivityID

Specifies the attack time for the volume envelope. This is the number of
milliseconds between the start of a note and maximum volume. Percussive
sounds usually have zero attack time; gentler sounds may have short attack
times. Long attack times are usually used for special effects.

kQTMSKnobVolume-
AttackTimeID

Specifies the decay time for the volume envelope. This is the number of
milliseconds between the time the attack is completed and the time the volume
is reduced to the sustain level.

kQTMSKnobVolume-
DecayTimeID

Specifies whether segments of the volume envelope are treated as exponential
curves. Bits 0, 1, 2, and 3 of the knob value specify the interpretation of the
attack, decay, sustain, and release segments of the volume envelope,
respectively. If any of these bits is 0, the volume level of the corresponding
segment changes linearly from its initial to final value during the time interval
specified by the corresponding envelope time knob. If any of these bits is
nonzero, the volume level of the corresponding segment changes exponentially
during the time interval specified by the corresponding envelope time knob.
During an exponential decrease the volume level changes from full volume
(no attenuation) to approximately 1/65536th of full volume (96 dB of
attenuation) during the time interval specified the corresponding envelope
time knob, and afterward the volume level immediately becomes 0.

kQTMSKnobVolume-
ExpOptionsID

50 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies the delay for the volume LFO. This is the number of milliseconds
before the LFO takes effect.

kQTMSKnobVolume-
LFODelayID

Specifies the extent to which a synthesizer's modulation wheel (or the MIDI
messages it generates) controls the depth of the volume LFO. The value of
this knob is multiplied by the modulation wheel value (a value between 0 to
1), and the result is added to the volume LFO depth specified by the
kQTMSKnobVolumeLFODepthID knob. Modulation wheel controllers and the
MIDI messages they generate are most often used to create vibrato and tremolo
effects.

kQTMSKnobVolume-
LFODepthFromWheelID

Specifies the depth of the volume LFO. This is the amount, expressed as a
percentage, by which the volume is altered by the LFO. A value of 0 does not
change the volume. A value of 100 changes the volume from complete silence
to twice the volume specified by the envelope, with one exception: if the
square up waveform is used for the LFO, the normal envelope volume is the
minimum volume.

kQTMSKnobVolume-
LFODepthID

Specifies the period for the volume LFO. This is the wavelength of the LFO in
milliseconds. (The LFO rate in Hz is 1000 / kQTMSKnobPitchLFOPeriodID).

kQTMSKnobVolume-
LFOPeriodID

Specifies the ramp-up time for the volume LFO. This is the number of
milliseconds after the LFO delay has elapsed that it takes for the LFO to reach
full effect.

kQTMSKnobVolume-
LFORampTimeID

Specifies the waveform used for the LFO. The available waveforms are sine,
triangle, sawtooth up, sawtooth down, square up, square up-and-down, and
random. The sine and triangle shapes both produce a smooth rise and fall of
the volume. The sawtooth up produces a gradual increase in volume followed
by a sudden fall. The sawtooth down shape produces a sudden increase in
volume, followed by a gradual reduction (often heard as a "ting" sound). The
square up and square up-and-down shapes apply a sudden pulsing to the
volume; the square up only makes the sound louder, while the up-and-down
variant makes the sound louder and softer. The random shape applies random
changes to the volume, once per LFO period.

kQTMSKnobVolume-
LFOShapeID

If the synthesizer is producing stereo output and the value of this knob is 1,
the LFO is applied in phase to one of the stereo channels and 180 degrees out
of phase to the other. This often causes a "vibration" effect within the stereo
field.

kQTMSKnobVolume-
LFOStereoID

Specifies the overall volume of the instrument, in decibels. Increasing the value
by 6 doubles the maximum amplitude of the signal, increasing the value by
12 quadruples it, and so on.

kQTMSKnobVolume-
OverallID

Specifies the release-time key scaling. Modifies the release time based on the
key pitch.

kQTMSKnobVolume-
ReleaseKeyScalingID

Specifies the release time of the volume envelope. This is the number of
milliseconds it takes for the sound to soften down to silence after the key is
released.

kQTMSKnobVolume-
ReleaseTimeID

Tune Player Functions 51
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Specifies the sustain level of the volume envelope. This is the percentage of
full volume that a note is initially played at after the decay time has elapsed.

kQTMSKnobVolume-
SustainLevelID

Controller Numbers

The controller numbers used by QuickTime are mostly identical to the standard MIDI controller numbers.
These are signed 8.8 values. The full range, therefore, is -128.00 to 127+127/128 (or 0x8000 to 0x7FFF).

All controls default to zero except for volume and pan.

Pitch bend is specified in fractional semitones, which eliminates the restrictions of a pitch bend range. You
can bend as far as you want, any time you want.

The last 16 controllers (113-128) are global controllers. Global controllers respond when the part number is
given as 0, indicating the entire synthesizer.

enum {
    kControllerModulationWheel          = 1,
    kControllerBreath                   = 2,
    kControllerFoot                     = 4,
    kControllerPortamentoTime           = 5,
    kControllerVolume                   = 7,
    kControllerBalance                  = 8,
    kControllerPan                      = 10,
    kControllerExpression               = 11,
    kControllerLever1                   = 16,
    kControllerLever2                   = 17,
    kControllerLever3                   = 18,
    kControllerLever4                   = 19,
    kControllerLever5                   = 80,
    kControllerLever6                   = 81,
    kControllerLever7                   = 82,
    kControllerLever8                   = 83,
    kControllerPitchBend                = 32,
    kControllerAfterTouch               = 33,
    kControllerSustain                  = 64,
    kControllerSostenuto                = 66,
    kControllerSoftPedal                = 67,
    kControllerReverb                   = 91,
    kControllerTremolo                  = 92,
    kControllerChorus                   = 93,
    kControllerCeleste                  = 94,
    kControllerPhaser                   = 95,
    kControllerEditPart                 = 113,
    kControllerMasterTune               = 114
};

DefinitionTerm

This controller controls the modulation wheel. A modulation wheel
adds a periodic change to the volume or pitch of a sounding tone,
depending on the modulation depth knobs.

kControllerModulationWheel

52 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

This controller controls breath.kControllerBreath

This controller controls the foot pedal.kControllerFoot

This controller adjusts the slur between notes. Set the time to 0
to turn off portamento; there is no separate control to turn
portamento on and off.

kControllerPortamentoTime

This controller controls volume.kControllerVolume

This controller controls balance between channels.kControllerBalance

This controller controls balance on the QuickTime music synthesizer
and some others. Values are 256-512, corresponding to left to
right.

kControllerPan

This controller provides a second volume control.kControllerExpression

These are all general-purpose controllers.kControllerLever1 through
kControllerLever8

This controller bends the pitch. Pitch bend is specified in positive
and negative semitones, with 7 bits per fraction.

kControllerPitchBend

This controller controls channel pressure.kController-
AfterTouchkController-
AfterTouch

This controller controls the sustain effect. The value is a Boolean:
positive for on, 0 or negative for off.

kControllerSustain

This controller controls sostenuto.kControllerSostenuto

This controller controls the soft pedal.kControllerSoftPedal

This controller controls reverb.kControllerReverb

This controller controls tremolo.kControllerTremolo

This controller controls the amount of signal to feed to the chorus
special effect unit.

kControllerChorus

This controller controls the amount of signal to feed to the celeste
special effect unit.

kControllerCeleste

This controller controls the amount of signal to feed to the phaser
special effect unit.

kControllerPhaser

This controller sets the part number for which editing is occurring.
For synthesizers that can edit only one part.

kControllerEditPart

This controller offsets the entire synthesizer in pitch.kControllerMasterTune

Tune Player Functions 53
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



Controller Range

These constants specify the maximum and minimum values for controllers.

enum {
    kControllerMaximum      = 0x7FFF,
    kControllerMinimum      = 0x8000
};

DefinitionTerm

The maximum value a controller can be set to.kControllerMaximum

The minimum value a controller can be set to.kControllerMinimum

Drum Kit Numbers

These constants specify the first and last drum kit numbers available to General MIDI drum kits.

enum {
    kFirstDrumkit   = 16384,                
    kLastDrumkit    = (kFirstDrumkit + 128)
};

DefinitionTerm

The first number in the range of drum kit numbers, which corresponds to "no drum kit."
The standard drum kit is kFirstDrumKit+1=16385.

kFirstDrumkit

The last number in the range of drum kit numbers.kLastDrumkit

Tone Fit Flags

These flags are returned by the MusicFindTone function to indicate how well an instrument matches the
tone description.

enum {
    kInstrumentMatchSynthesizerType     = 1,
    kInstrumentMatchSynthesizerName     = 2,
    kInstrumentMatchName                = 4,
    kInstrumentMatchNumber              = 8,
    kInstrumentMatchGMNumber            = 16
};

DefinitionTerm

The requested synthesizer type was found.kInstrumentMatchSynthesizerType

The particular instance of the synthesizer requested was found.kInstrumentMatchSynthesizerName

54 Tune Player Functions
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

The instrument name in the tone description matched an
appropriate instrument on the synthesizer.

kInstrumentMatchName

The instrument number in the tone description matched an
appropriate instrument on the synthesizer.

kInstrumentMatchNumber

The General MIDI equivalent was used to find an appropriate
instrument on the synthesizer.

kInstrumentMatchGMNumber

Data Structures

This section describes the data structures provided by QuickTime music architecture.

Instrument Knob Structure

An instrument knob structure contains information about an instrument knob. It is defined by the
InstKnobRec data type.

struct InstKnobRec {
    long                        number;
    long                        value;
};
typedef struct InstKnobRec InstKnobRec;

DefinitionTerm

A knob ID or index. A nonzero value in the high byte indicates that it is an ID. The knob index
ranges from 1 to the number of knobs; the ID is an arbitrary number.

number

The value the knob is set to.value

Knob Description Structure

A knob description structure contains sound parameter values for a single knob. It is defined by the
KnobDescription data type.

struct KnobDescription {
    Str63                       name;
    long                        lowValue;
    long                        highValue;
    long                        defaultValue;
    long                        flags;
    long                        knobID;
};
typedef struct KnobDescription KnobDescription;

Data Structures 55
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

The name of the knob.name

The lowest number you can set the knob to.lowValue

The highest number you can set the knob to.highValue

A value to use for the default.defaultValue

Various information about the knob.flags

A knob ID or index. A nonzero value in the high byte indicates that it is an ID. The knob
index ranges from 1 to the number of knobs; the ID is an arbitrary number. Use the knob
ID to refer to the knob in preference to the knob index, which may change.

knobID

For flags values, see Knob Flags (page 30).

Instrument About Information

The instrument About information structure contains the information that appears in the instrument’s About
box and is returned by the MusicGetInstrumentAboutInfo function. It is defined by the
InstrumentAboutInfo data type.

struct InstrumentAboutInfo {
    PicHandle                   p;
    Str255                      author;
    Str255                      copyright;
    Str255                      other;
};
typedef struct InstrumentAboutInfo InstrumentAboutInfo;

DefinitionTerm

A handle to a graphic for the About box.p

The author's name.author

The copyright information.copyright

Any other textual information.other

Instrument Information Structure

The instrument information structure provides identifiers for instruments and is part of the instrument
information list. It is defined by the InstrumentInfoRecord data type.

struct InstrumentInfoRecord {
    long                        instrumentNumber;
    long                        flags;
    long                        toneNameIndex;

56 Data Structures
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    long                        itxtNameAtomID;
};
typedef struct InstrumentInfoRecord InstrumentInfoRecord;

DefinitionTerm

The instrument number. If the number is 0, the name is an instrument category.
See Figure 2-1 for the ranges of instrument numbers. If the value of the instrument
number is greater than 65536, its value is transient, and the instrument should be
identified by name rather than by number except when the value is immediately
passed to the MusicSetPartInstrumentNumber function.

instrumentNumber

Unused. Must be 0flags

The instrument's position in the toneNames index stored in the instrument
information list this structure is a part of. The index is a one-based index.

toneNameIndex

The instrument's position in the itxtNames index stored in the instrument
information list this structure is a part of.

itxtNameAtomID

Instrument Information List

An instrument information list contains the list of instruments available on a synthesizer. It is defined by the
InstrumentInfoList data type.

struct InstrumentInfoList {
    long                        recordCount;
    Handle                      toneNames;
    QTAtomContainer             itxtNames;
    InstrumentInfoRecord        info[1];
};
typedef struct InstrumentInfoList InstrumentInfoList;
typedef InstrumentInfoList *InstrumentInfoListPtr;
typedef InstrumentInfoListPtr *InstrumentInfoListHandle;

DefinitionTerm

The number of structures in the list.recordCount

A string list of the instrument names as specified in their tone descriptions.toneNames

A list of international text names, taken from the name atoms.itxtNames

An array of instrument information structures.info[1]

Non-General MIDI Instrument Information Structure

The non-General MIDI information structure provides information about non-General MIDI instruments within
an instrument component. It is defined by the nonGMInstrumentInfoRecord data type.

struct nonGMInstrumentInfoRecord {

Data Structures 57
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    long                        cmpInstID;
    long                        flags;
    long                        toneNameIndex;
    long                        itxtNameAtomID;
};
typedef struct nonGMInstrumentInfoRecord nonGMInstrumentInfoRecord;

DefinitionTerm

The number of the instrument within the instrument component. If the ID is 0, the
name is a category name.

cmpInstID

Not used.flags

The instrument's position in the toneNames index stored in the instrument information
list this structure is a part of. The index is a one-based index.

toneNameIndex

The instrument's position in the itxtNames index stored in the instrument information
list this structure is a part of.

itxtNameAtomID

Non-General MIDI Instrument Information List

A non-General MIDI instrument information list contains the list of non-General MIDI instruments supported
by an instrument component. It is defined by the nonGMInstrumentInfo data type.

struct nonGMInstrumentInfo {
    long                        recordCount;
    Handle                      toneNames;
    QTAtomContainer             itxtNames;
    nonGMInstrumentInfoRecord   instInfo[1];
};
typedef struct nonGMInstrumentInfo nonGMInstrumentInfo;
typedef nonGMInstrumentInfo *nonGMInstrumentInfoPtr;
typedef nonGMInstrumentInfoPtr *nonGMInstrumentInfoHandle;

DefinitionTerm

Number of structures in the list.recordCount

A short string list of the instrument names as specified in their tone descriptions.toneNames

A list of international text names, taken from the name atoms.itxtNames

An array of non-General MIDI instrument information structures.instInfo[1]

Complete Instrument Information List

The complete instrument information list contains a list of all atomic instruments supported by an instrument
component. It is defined by the InstCompInfo data type.

struct InstCompInfo {
    long                        infoSize;

58 Data Structures
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    long                        GMinstrumentCount;
    GMInstrumentInfoHandle      GMinstrumentInfo;
    long                        GMdrumCount;
    GMInstrumentInfoHandle      GMdrumInfo;
    long                        nonGMinstrumentCount;
    nonGMInstrumentInfoHandle   nonGMinstrumentInfo;
    long                        nonGMdrumCount;
    nonGMInstrumentInfoHandle   nonGMdrumInfo;
};
typedef struct InstCompInfo InstCompInfo;
typedef InstCompInfo *InstCompInfoPtr;
typedef InstCompInfoPtr *InstCompInfoHandle;

DefinitionTerm

The size of this structure in bytes.infoSize

The number of General MIDI instruments.GMinstrumentCount

A handle to a list of General MIDI instrument information structures.GMinstrumentInfo

The number of General MIDI drum kits.GMdrumCount

A handle to a list of General MIDI instrument information structures.GMdrumInfo

The number of non-General MIDI instruments.nonGMinstrumentCount

A handle to the list of non-General MIDI instruments.nonGMinstrumentInfo

The number of non-General MIDI drum kits.nonGMdrumCount

A handle to the list of non-General MIDI drum kits.nonGMdrumInfo

QuickTime MIDI Port

This structure provides information about a MIDI port.

struct QTMIDIPort {
    SynthesizerConnections      portConnections;
    Str63                       portName;
};
typedef struct QTMIDIPort QTMIDIPort;

DefinitionTerm

A synthesizer connections structure.portConnections

The name of the output port.portName

QuickTime MIDI Port List

This structure contains a list of QuickTime MIDI port structures.

Data Structures 59
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



struct QTMIDIPortList {
    short               portCount;
    QTMIDIPort          port[1];
};
typedef struct QTMIDIPortList QTMIDIPortList;

DefinitionTerm

The number of MIDI ports in the list.portCount

An array of QuickTime MIDI port structures.port

Note Request Structure

A note request structure combines a tone description structure and a note request information structure to
provide all the information available for allocating a note channel. It is defined by the NoteRequest data
type.

struct NoteRequest {
    NoteRequestInfo             info;
    ToneDescription             tone;
};
typedef struct NoteRequest NoteRequest;

DefinitionTerm

A note request information structure.info

A tone description structure.tone

Tune Status

The tune status structure provides information on the currently playing tune.

struct TuneStatus {
    unsigned long           tune;
    unsigned long           tunePtr;
    TimeValue               time;
    short                   queueCount;
    short                   queueSpots;
    TimeValue               queueTime;
    long                    reserved[3];
};
typedef struct TuneStatus TuneStatus;

DefinitionTerm

The currently playing tune.tune

Current position within the playing tune.tunePtr

60 Data Structures
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

Current tune time.time

Number of tunes queued up.queueCount

Number of tunes that can be added to the queue.queueSpots

Total amount of playing time represented by tunes in the queue. This value can be very
inaccurate.

queueTime

Reserved. Set to 0.reserved[3]

Instrument Knob List

An instrument knob list contains a list of sound parameters. It is defined by the InstKnobList data type.

struct InstKnobList {
    long                        knobCount;
    long                        knobFlags;
    InstKnobRec                 knob[1];
};
typedef struct InstKnobList InstKnobList;

DefinitionTerm

The number of instrument knob structures in the list.knobCount

Instructions on what to do if a requested knob is not in the list.knobFlags

An array of instrument knob structures.knob[1]

For knobFlags values, see Instrument Knob Flags (page 42).

Atomic Instrument Sample Description Structure

A sample description structure contains a description of an audio sample, including sample rate, loop points,
and lowest and highest key to play on. It is defined by the InstSampleDescRec data type.

struct InstSampleDescRec {
    OSType                      dataFormat;
    short                       numChannels;
    short                       sampleSize;
    UnsignedFixed               sampleRate;
    short                       sampleDataID;
    long                        offset;
    long                        numSamples;
    long                        loopType;
    long                        loopStart;
    long                        loopEnd;
    long                        pitchNormal;

Data Structures 61
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    long                        pitchLow;
    long                        pitchHigh;
};
typedef struct InstSampleDescRec InstSampleDescRec;

DefinitionTerm

The data format type. This is either 'twos' for signed data or 'raw ' for unsigned data.dataFormat

The number of channels of data present in the sample.numChannels

The size of the sample: 8-bit or 16-bit.sampleSize

The rate at which to play the sample in unsigned fixed-point 16.16.sampleRate

The ID number of a sample data atom that contains the sample audio data.sampleDataID

Set to 0.offset

The number of data samples in the sound.numSamples

The type of loop.loopType

Indicates the beginning of the portion of the sample that is looped if the sound is
sustained. The position is given in the number of data samples from the start of the
sound.

loopStart

Indicates the end of the portion of the sample that is looped if the sound is sustained.
The position is given in the number of data samples from the start of the sound.

loopEnd

The number of the MIDI note produced if the sample is played at the rate specified in
sampleRate.

pitchNormal

The lowest pitch at which to play the sample. Use for instruments, such as pianos, that
have different samples to use for different pitch ranges.

pitchLow

The highest pitch at which to play the sample. Use for instruments, such as pianos, that
have different samples to use for different pitch ranges.

pitchHigh

For loopType values, see Loop Type Constants (page 42).

Synthesizer Description Structure

A synthesizer description structure contains information about a synthesizer. It is defined by the
SynthesizerDescription data type.

struct SynthesizerDescription {
    OSType                      synthesizerType;
    Str31                       name;
    unsigned long               flags;
    unsigned long               voiceCount;
    unsigned long               partCount;
    unsigned long               instrumentCount;
    unsigned long               modifiableInstrumentCount;

62 Data Structures
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



    unsigned long               channelMask;
    unsigned long               drumPartCount;  
    unsigned long               drumCount;          
    unsigned long               modifiableDrumCount;
    unsigned long               drumChannelMask;
    unsigned long               outputCount;    
    unsigned long               latency;
    unsigned long               controllers[4];
    unsigned long               gmInstruments[4];
    unsigned long               gmDrums[4];
};
typedef struct SynthesizerDescription SynthesizerDescription;

DefinitionTerm

The synthesizer type. This is the same as the music component subtype.synthesizerType

Text name of the synthesizer type.name

Various information about how the synthesizer works.flags

Maximum polyphony.voiceCount

Maximum multi-timbrality (and MIDI channels).partCount

The number of built-in ROM instruments. This does not include General
MIDI instruments.

instrumentCount

The number of slots available for saving user-modified instruments.modifiableInstrument-
Count

Which channels a MIDI device always uses for instruments. Set to FFFF
for all channels.

channelMask

The maximum multi-timbrality of drum parts. For synthesizers where drum
kits are separated from instruments.

drumPartCount

The number of built-in ROM drum kits. This does not include General MIDI
drum kits. For synthesizers where drum kits are separated from instruments

drumCount

The number of slots available for saving user-modified drum kits. For MIDI
synthesizers where drum kits are separated from instruments

modifiableDrumCount

Which channels a MIDI device always uses for drum kits. Set to FFFF for
all channels

drumChannelMask

The number of audio outputs. This is usually two.outputCount

Response time in microseconds.latency

An array of 128 bits identifying the available controllers. Bits are numbered
from 1 to 128, starting with the most significant bit of the long word, and
continuing to the least significant of the last bit.

controllers[4]

An array of 128 bits giving the available General MIDI instruments.gmInstruments[4]

Data Structures 63
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DefinitionTerm

An array of 128 bits giving the available General MIDI drum kits.gmDrums[4]

For flags values, see Synthesizer Description Flags (page 43). For controller numbers, see Controller
Numbers (page 52).

Tone Description Structure

A tone description structure provides the information needed to produce a specific musical sound. The tune
header has a tone description for each instrument used. Tone descriptions are also used in the tone description
atoms of atomic instruments. The tone description structure is defined by the ToneDescription data type.

struct ToneDescription {
    BigEndianOSType             synthesizerType;
    Str31                       synthesizerName;
    Str31                       instrumentName;
    BigEndianLong               instrumentNumber;
    BigEndianLong               gmNumber;
};
typedef struct ToneDescription ToneDescription;

DefinitionTerm

The synthesizer type. A value of 0 specifies that any type of synthesizer is acceptable.synthesizerType

The name of the synthesizer component instance. A value of 0 specifies that the
name can be ignored.

synthesizerName

The name of the instrument to use.instrumentName

The instrument number of the instrument to use. This value, which must be in the
range 1-262143, can specify General MIDI and GS instruments as well as other
instruments (see Figure 2-1). The instrument specified by this field is used if it is
available; if not, the instrument specified by the gmNumber field is used. If neither
of the instruments specified by the instrumentNumber or gmNumber fields is
available, the instrument specified by the instrumentName field is used. Finally, if
none of these fields specifies an instrument that is available, no tone is played.

instrumentNumber

The instrument number of a General MIDI or GS instrument to use if the instrument
specified by the instrumentNumber field is not available. This value, which must
be in the range 1-16383, can specify only General MIDI and GS instruments (see
Table 1-11). The instrument specified by the instrumentNumber field is used if it
is available; if not, the instrument specified by the gmNumber field is used. If neither
of the instruments specified by the instrumentNumber or gmNumber fields is
available, the instrument specified by the instrumentName field is used. Finally, if
none of these fields specifies an instrument that is available, no tone is played.

gmNumber

For synthesizerType values, see Synthesizer Type Constants (page 42).

GS instruments conform to extensions defined by Roland Corporation to the General MIDI specifications.

64 Data Structures
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



Figure 2-1 Instrument number ranges

DefinitionInstrument

An instrument number in this range specifies a standard General MIDI instrument that
should sound the same on all synthesizers that support General MIDI.

GM instrument

An instrument number in this range specifies a standard General MIDI drum kit instrument
that should sound the same on all synthesizers that support General MIDI.

GM drum kit

An instrument number in this range specifies a standard GS instrument that should
sound the same on all synthesizers that support the Roland GS extensions to General
MIDI.

GS instrument

An instrument number in this range specifies an instrument of a synthesizer that not a
standard General MIDI or GS instrument.

ROM instrument

Instruments number in this range are transient and are assigned when necessary for
additional instruments, such as instruments in a newly installed GS library or custom
instruments for a game. Applications should refer to these additional instruments by
name rather by number.

User instrument

An instrument index value returned by the MusicFindTone function that can be passed
immediately in a call to MusicSetPartInstrumentNumber. Values in this range are
not persistent and should never be stored or used in any other way.

Internal index

Result Codes

This section lists all the result codes returned by QuickTime music architecture functions.

DescriptionValueConstant

Call to a routine that is not supported by a particular music
component.

-2071notImplementedMusicOSErr

Attempt to use a synthesizer before it has been initialized,
given a MIDI port to use, or told which slot card to use. For
example, the MusicSetMIDIProc function has not been
called.

-2072cantSendToSynthesizerOSErr

Result Codes 65
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



DescriptionValueConstant

Attempt to allocate more voices than a synthesizer supports.-2074illegalVoiceAllocationOSErr

Usually indicates use of a part number parameter outside the
range 1...partcount.

-2075illegalPartOSErr

Attempt to use a MIDI channel outside the range 1...16.-2076illegalChannelOSErr

Attempt to use a knob index or knob ID that is not valid.-2077illegalKnobOSErr

Attempt to set a knob outside its allowable range, as specified
in its knob description structure.

-2078illegalKnobValueOSErr

Attempt to use an instrument or sound that is not available or
there is some other problem with the instrument, such as a
bad instrument number.

-2079illegalInstrumentOSErr

Attempt to get or set a controller that is outside the allowable
controller number range or is not recognized by this particular
music component.

-2080illegalControllerOSErr

Attempt to use MIDI Manager for a synthesizer when the MIDI
Manager is not installed.

-2081midiManagerAbsentOSErr

Various hardware problems with a synthesizer.-2082synthesizerNot-
RespondingOSErr

Software problem with a synthesizer.-2083synthesizerOSErr

Attempt to use a note channel that is not initialized or is
otherwise errant.

-2084illegalNoteChannelOSErr

It was not possible to allocate a note channel.-2085noteChannelNot-
AllocatedOSErr

Attempt to queue up more tune segments (with TuneQueue)
than allowed.

-2086tunePlayerFullOSErr

TuneSetHeader or TuneQueue encountered illegal tune
sequence data.

-2087tuneParseOSErr

66 Result Codes
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using the QuickTime Music Architecture



This table describes the changes to QuickTime Music Architecture Guide.

NotesDate

Removed obsolete material and changed title from "QuickTime Music
Architecture."

2006-01-10

New document that explains how to enable synthesizing and playing of sounds
and musical sequences.

2002-09-17

67
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



68
2006-01-10   |   © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	QuickTime Music Architecture Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	The QuickTime Music Architecture
	QTMA Components
	Note Allocator Component
	Tune Player Component
	Music Components Included in QuickTime
	Instrument Components and Atomic Instruments
	The Generic Music Component
	MIDI Components

	QuickTime Music Events
	Note Event
	Extended Note Event
	Rest Event
	Marker Event
	Controller Event
	Extended Controller Event
	General Event
	Knob Event

	The General MIDI Synthesizer Component
	The MIDI Synthesizer Component
	The Base Instrument Component

	Using the QuickTime Music Architecture
	Converting MIDI Data to a QuickTime Music Track
	Importing a Standard MIDI File As a Movie
	Playing Notes With the Note Allocator
	Note-Related Data Structures
	Playing Piano Sounds With the Note Allocator

	Music Component Functions: Synthesizer
	Knob Flags
	Knob Value Constants
	Music Packet Status
	MIDI Packet
	Atomic Instrument Information Flags
	Flags for Setting Atomic Instruments

	Music Component Functions: Instruments and Parts
	Instrument Info Flags
	Instrument Component Functions
	Synthesizer Connection Type Flags
	Synthesizer Connections for MIDI Devices
	Instrument Match Flags
	General MIDI Instrument Information Structure
	Note Request Constants
	Note Request Information Structure
	Pick Instrument Flags

	Note Allocator Functions: Miscellaneous Interface Tools
	Note Allocator Type
	Tune Queue Depth

	Tune Player Functions
	Tune Player Type
	Tune Queue Flags
	MIDI Component Constants
	MIDI System Exclusive Constants
	MIDI File Import Flags
	Part Mixing Flags
	Atom Types for Atomic Instruments
	Instrument Knob Flags
	Loop Type Constants
	Music Component Type
	Synthesizer Type Constants
	Synthesizer Description Flags
	Synthesizer Knob ID Constants
	Controller Numbers
	Controller Range
	Drum Kit Numbers
	Tone Fit Flags

	Data Structures
	Instrument Knob Structure
	Knob Description Structure
	Instrument About Information
	Instrument Information Structure
	Instrument Information List
	Non-General MIDI Instrument Information Structure
	Non-General MIDI Instrument Information List
	Complete Instrument Information List
	QuickTime MIDI Port
	QuickTime MIDI Port List
	Note Request Structure
	Tune Status
	Instrument Knob List
	Atomic Instrument Sample Description Structure
	Synthesizer Description Structure
	Tone Description Structure

	Result Codes

	Revision History


