
QuickTime Transport and Delivery Guide
QuickTime > Transport & Delivery

2006-01-10

Apple Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Transport and Delivery Guide 7

Organization of This Document 7
See Also 8

Chapter 1 About Data Handler Components 9

Movie Playback 9
Movie Capture 9
Processing data 9
Identifying Containers With Data References 10

Chapter 2 Using Data Handler Components 11

Selecting a Data Handler 11
Selecting by Component Type Value 11
Interrogating a Data Handler's Capabilities 12
Managing Data References 12
Working With Data References 13
Retrieving Movie Data 13

Completion Function 14
Reading Movie Data 14
Storing Movie Data 14
Writing Movie Data 15
Managing the Data Handler 15

Managing Data Handler Behavior 16
Determining Data Handler Capabilities 16

Chapter 3 Video Output Components 17

How Video Output Components Process Video Data 17
Display Modes 17

Transfer Codecs 18
Overview of Transfer Codecs 18
Creating a Transfer Codec for a Video Output Component 19

Chapter 4 Using Video Output Components 23

Selectors for Video Output Component Functions 23
Selecting a Video Output Component 23
Choosing a Display Mode 24
Contents of the Display Mode QT Atom Container 24

3
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Drawing to an Echo Port 26

Chapter 5 Functions Used To Control Video Output Components 27

Controlling the Display Mode 27
Registering the Name of Your Software 27
Controlling Video Output 27
Finding Associated Components 28
Saving and Restoring Component Configurations 28
Data Types 28

Display Mode QT Atom Container 29
Constants 30

Component Instance, Type, and Subtype 30
Video Output Component Flag 30
Display Mode Atom Types 30

Chapter 6 Creating Video Output Components 33

Connecting to the Base Video Output Component 33
Providing a Display Mode List 33
Starting Video Output 34
Ending Video Output 34
Implementing the QTVideoOutputSaveState Function 35
Implementing the QTVideoOutputRestoreState Function 35
Implementing the QTVideoOutputGetGWorldParameters Function 36
Controlling Other Hardware Features 36
Delegating Other Component Calls 37
Closing the Connection to the Base Video Output Component 37

Chapter 7 Creating Data Handler Components 39

General Information 39
Supported Functions 40

Document Revision History 43

4
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 4 Using Video Output Components 23

Listing 4-1 Displaying available video output components 24
Listing 4-2 Drawing to an echo port 26

Chapter 6 Creating Video Output Components 33

Listing 6-1 Connecting to the base video output component 33
Listing 6-2 Starting video output 34
Listing 6-3 Ending video output 34
Listing 6-4 Extending the QTVideoOutputSaveState function 35
Listing 6-5 Restoring custom settings 35

5
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

LISTINGS

This book describes the principal ways that QuickTime transports and delivers data to specific devices, by
using data handler components and by using video output components:

 ■ Data handler components read and write movie data to specific devices, such as HFS disk files or computer
memory. These are extremely low-level pieces of software, and are normally transparent to applications.
Applications use data handler components indirectly, by making calls to the movie toolbox or a sequence
grabber component. Applications can call some data handler component functions directly, however,
for more complete control of data retrieval and storage. Apple provides data handler components for
most device types. If you need to read or write data to a new or unsupported device type, you may need
to create a data handler component.

 ■ Video output components allow you to send QuickTime video to devices that are not recognized as
displays by your computer’s operating system. Video output components are used directly by applications
that allow the user to send movie output to external devices. Manufacturers of video output hardware
may need to create a video output component to use with their products. Applications use video output
components by selecting a component, configuring it, and associating it with a graphics world.

Note: This book replaces two previously separate Apple documents: “Data Handler Components” and “Video
Output Components.”

You need to read this book if you plan to create a data handler component, a video output component, or
a sequence grabber component. Sequence grabber components need to be able to select and use data
handler components.

Applications programmers who think they may need to call data handler components directly should read
the section Using Data Handler Components (page 11). The section About Data Handler Components (page
9) may also be of general interest to QuickTime developers.

Most developers should read the section Video Output Components (page 17) to understand what video
output components are, and when they should be used. Applications developers who will use video output
components should also read the section Using Video Output Components (page 23) and refer to the
Functions Used To Control Video Output Components (page 27) section as necessary.

Organization of This Document

This book is divided into the following chapters:

 ■ About Data Handler Components (page 9) describes what data handler components are, what they
do, and how they work. Diagrams are included which illustrate their different use during movie playback
and movie capture.

Organization of This Document 7
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Transport and
Delivery Guide

 ■ Using Data Handler Components (page 11) describes how to use a data handler component. Developers
writing sequence grabber components will use the interfaces described in this section. Developers
writing data handler components will need to support these interfaces.

 ■ Video Output Components (page 17) describes what video output components are, and what they do.

 ■ Using Video Output Components (page 23) explains how to use video output components in your
software.

 ■ Functions Used To Control Video Output Components (page 27) discusses the functions used to control
video output components.

 ■ Creating Video Output Components (page 33) describes the routines you must implement when creating
a video output component.

 ■ Creating Data Handler Components (page 39) describes the requirements for creating a data handler
component.

See Also

The following Apple books cover related aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

 ■ QuickTime Media Types and Media Handlers Guide introduces the idea of QuickTime media handler
components and provides details of the video, sound, text, timecode, and tween media handlers.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

 ■ QuickTime API Reference provides encyclopedic details of all the functions, callbacks, data types and
structures, atom types, and constants in the QuickTime API.

8 See Also
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Transport and Delivery Guide

A data handler component stores and retrieves time-based data on a storage device, such as a movie file,
on behalf of another QuickTime component, typically a media handler component or a sequence grabber
component. Different QuickTime components are used depending on whether you are retrieving or storing
data.

Movie Playback

During data retrieval, such as playback of a movie, a media handler component isolates your application and
the Movie Toolbox from the details of how to retrieve data from a particular storage medium. Therefore,
unless you are writing your own media handler, you do not have to directly use data handler components
in your application; the retrieval of your data will be taken care of for you by the media handler the Movie
Toolbox calls. However, you can call the data handler directly if you need to explicitly tell the data handler
something, such as to use less memory when caching QuickTime data. If you are reading from a non-Macintosh
storage medium, or multiple storage media, you might need to write your own data handler.

Movie Capture

During data storage, such as the capture of video and sound into a movie file, a a sequence grabber component
isolates your application from the details of how to capture the raw data from a particular device. Therefore,
during movie capture you do not have to directly use data handler components in your application. The
storage of your data will be taken care of for you by the sequence grabber component you call. If, however,
you are storing data onto a non-Macintosh or proprietary storage medium, or multiple storage media, you
might need to write your own data handler.

The sequence grabber component calls the appropriate channel component, such as a video, sound, or text
channel component, to retrieve the raw data from an input device, such as a microphone.

Processing data

Data handlers do not know anything about the content of the data they process. It is the responsibility of
the client (that is, a media handler component or a channel component) to process the data. In the case of
a movie’s video data during movie playback, for example, the media handler takes the data from a data
handler and uses the facilities of the Image Compression Manager to display the movie data on the computer
screen.

While data handlers do not work with the content of the data they process, they must be aware of all of the
details involved in storing and retrieving data from the storage medium they support. Apple provides several
data handlers and a selection mechanism for choosing an appropriate handler. For example, one supports

Movie Playback 9
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Data Handler Components

data access from HFS volumes and another supports the memory-based data handler, which allows QuickTime
to retrieve movies from memory handles. These two data handler components use very different mechanisms
to store and retrieve movie data.

You might need to write your own data handler when you are accessing a storage medium for which there
is no Apple-supplied data handler or when playing movies from a multimedia server, as you will need to use
a data handler that understands the network protocols and data formats necessary to communicate with
that server.

Identifying Containers With Data References

A container is the system element that contains the movie data and can be any element that can contain
data. For example, a container may be an in-memory data structure, a local disk file, or a file on a networked
multimedia server. As is the case throughout QuickTime, all data handlers identify their movie-data containers
with data references. Data references identify the location of the container and its type.

Different container types may require different types of references. For example, files are identified using
aliases, while memory-based movies are identified by handles. The data reference data type is flexible enough
to accommodate all these cases. The data handler component must specify the type of reference it requires
and verify that the references supplied by client applications are valid. Data handler components use the
component subtype value to specify the reference type they support.

Whenever an application opens a container, the Movie Toolbox determines the most appropriate data handler
component to use in order to access that container. The Movie Toolbox makes this determination by querying
the various data handlers installed on the user’s computer. If your application uses the Movie Toolbox, this
selection process is transparent to your program. If you develop your own data handler, your component
must support the selection functions.

10 Identifying Containers With Data References
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Data Handler Components

This section describes how applications use data handler components. You should read this section if you
are writing your own media handler or your own data handler.

Selecting a Data Handler

To help developers choose the best data handler for a specific situation while still making it easy for an
application to find a usable data handler, Apple has defined two separate and complementary mechanisms
for selecting data handler components. You can use the Component Manager’s selection mechanisms to
find a data handler that meets your needs, or you can interrogate a data handler to determine if it supports
a specific data reference. Both mechanisms rely on characteristics of the current data reference in order to
make the selection.

Before you can use a data handler component, your application must open a connection to that component.
The easiest way to open a connection to a data handler component is to call the Movie Toolbox’s
GetDataHandler function. You supply a data reference and the Movie Toolbox selects an appropriate data
handler component for you. This function is preferred for opening a data handler as it reliably chooses the
best data handler.

Alternatively, you may use the Component Manager to open your connection. Call the Component Manager’s
OpenDefaultComponent or OpenComponent function to do so, but be aware that these functions are often
unable to make the best choice when there are several different data handlers available for a file.

Selecting by Component Type Value

At the most basic level, your application can use the Component Manager’s built-in selection mechanisms
to find a data handler component for a data reference. You may use the Component Manager’s
FindNextComponent function in order to retrieve a list of all data handler components that meet your
needs. You specify your request by supplying the component’s characteristics in a component description
record: in particular, in the componentType, componentSubtype, componentManufacturer, and
componentFlags fields.

All data handler components have a component type value of 'dhlr', which is defined by the
dataHandlerType constant. Data handler components use the value of the component subtype field to
indicate the type of data reference they support. As a result of this convention, note that all data handlers
that share a component subtype value must be able to recognize and work with data references of the same
type. For example, file system data handlers always carry a component subtype value of 'alis', which
indicates that their data references are file system aliases (note that this is true for QuickTime on Macintosh
and under Windows, even though there is not, properly, a file system alias under Windows). Apple’s
memory-based data handler for Macintosh has a component subtype value of 'hndl'.

Selecting a Data Handler 11
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

Apple has not defined any special manufacturer field values or component flags values for data handler
components. You may use the manufacturer field to select data handlers supplied by a specific vendor. To
do so, you need to know the correct manufacturer field value for that vendor.

Interrogating a Data Handler's Capabilities

While you can use the Component Manager’s selection mechanisms to find a data handler component that
can recognize data references of a specific type, your application must interact with the data handler in order
to determine whether it can support a specific data reference. Apple has defined two functions,
DataHCanUseDataRef and DataHGetVolumeList, that allow you to query a data handler component in
order to find out whether it can work with a data reference. By using these two functions, your application
can choose a data handler that is best-suited to its specific needs.

Using the DataHCanUseDataRef function, you supply a data reference to the data handler component. The
component then reports what it can do with that data reference. The returned value indicates the level and,
to some extent, the quality of service the data handler can provide (for example, whether the component
can read data from or write data to the data reference and whether the component uses any special support
when working with that data reference).

Because calling the DataHCanUseDataRef function in several data handlers can be time consuming, Apple
has also defined a function that helps narrow the search. By using the DataHGetVolumeList function, your
application can obtain a list of all the file system volumes that a data handler can support. In response to
your request, the data handler returns the list and flags indicating the level and quality of service the data
handler can provide for containers on that volume.

For more information on these functions, see Determining Data Handler Capabilities (page 16).

Managing Data References

Once you have selected a data handler component, you must provide a data reference to the data handler.
Use the DataHSetDataRef function to supply a data reference to a data handler. Once you have assigned
a data reference to the data handler, your application may start reading or writing movie data from that data
reference. The DataHGetDataRef function allows your application to obtain a data handler’s current data
reference.

Data handlers also provide a function that allows your application to determine whether two data references
are equivalent (that is, refer to the same movie container). Your application provides a data reference to the
DataHCompareDataRef function. The data handler returns a Boolean value indicating whether that data
reference matches the data handler’s current data reference.

For more information on these functions, see Working With Data References (page 13).

12 Interrogating a Data Handler's Capabilities
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

Working With Data References

All data handler components use data references to identify and locate a movie’s container. Different types
of containers may require different types of data references. For example, a reference to a memory-based
movie may be a handle, while a reference to a file-based movie may be an alias.

Client programs can correlate data references with data handlers by matching the component’s subtype
value with the data reference type; the subtype value indicates the type of data reference the component
supports. All data handlers with the same subtype value must support the same data reference type. To
continue the previous example, Apple’s memory-based data handler for Macintosh uses handles (and has a
subtype value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype value is 'alis').

The DataHSetDataRef and DataHGetDataRef functions allow applications to assign your data handler’s
current data reference. The DataHCompareDataRef function asks your component to compare a data
reference against the current data reference and indicate whether the references are equivalent (that is, refer
to the same container). The DataHResolveDataRef permits your component to locate a data reference’s
container.

The DataHSetOSFileRef and DataHGetOSFileRef functions provide an alternative, system-specific mechanism
for assigning your data handler’s current data reference.

For more information on data references, see Managing Data References (page 12).

Retrieving Movie Data

Before your application can read data using a data handler component, you must open a read path to the
current data reference. Use the DataHOpenForRead function to request read access to the current data
reference. Once you have gained read access to the data reference, data handlers provide both high- and
low-level read functions.

The high-level function, DataHGetData, provides an easy-to-use, synchronous read interface. Being a
synchronous function, DataHGetData does not return control to your application until the data handler has
read and delivered the data you request.

If you need more control over the read operation, you can use the low-level function, DataHScheduleData,
to issue asynchronous read requests. When you call this function, you provide detailed information specifying
when you need the data from the request. The data handler returns control to your application immediately,
and then processes the request when appropriate. When the data handler completes the request, it calls
your data-handler completion function to report that the request has been satisfied, see Completion
Function (page 14) for more information on the data-handler completion function.

Besides simply scheduling read requests that must be satisfied during a movie’s playback, another use of
the DataHScheduleData function is to prepare a movie for playback (commonly referred to as prerolling
the movie). The DataHScheduleData function uses several special values to indicate a preroll operation.
Your application calls the DataHScheduleData function one or more times to schedule the preroll read
requests, and then uses the DataHFinishData function to tell the data handler to start delivering the
requested data.

For more information on these functions and about preroll operations, see Reading Movie Data (page 14).

Working With Data References 13
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

Completion Function

When client programs schedule asynchronous read or write operations (by calling your component’s
DataHScheduleData or DataHWrite functions), they furnish your component a data-handler completion
function. Your component must call this function when it completes the read or write operation, whether
the operation was a success or a failure.

Reading Movie Data

Data handler components provide two basic read facilities. The DataHGetData function is a fully synchronous
read operation, while the DataHScheduleData function is asynchronous. Applications provide scheduling
information when they call your component’s DataHScheduleData function. When your component
processes the queued request, it calls the application’s data-handler completion function. By calling your
component’s DataHFinishData function, applications can force your component to process queued read
requests. Applications may call your component’s DataHGetScheduleAheadTime function in order to
determine how far in advance your component prefers to get read requests.

Before any application can read data from a data reference, it must open read access to that reference by
calling your component’s DataHOpenForRead function. The DataHCloseForRead function closes that read
access path.

For more information on reading movie data, see Retrieving Movie Data (page 13).

Storing Movie Data

Before your application can write data using a data handler component, you must open a write path to the
current data reference. Use the DataHOpenForWrite function to request write access to the current data
reference. Once you have gained write access to the data reference, data handler components provide both
high- and low-level write functions.

Note: QuickTime for Windows version 2.1.1 or earlier does not support writing movie data.

The high-level function, DataHPutData, allows you to easily append data to the end of the container identified
by a data reference. Except when capturing movie data using the sequence grabber component, the Movie
Toolbox uses this call when writing data to movie files. However, this function does not allow your application
to write to any location other than the end of the container. In addition, this is a synchronous operation, so
control is not returned to your program until the write is complete. As a result, this function is not well-suited
to high-performance write operations, such as would be required to capture a movie.

If you need a more flexible write facility, or one with higher performance characteristics, you can use the
DataHWrite function. This function is intended to support high-speed writes, suitable for movie capture
operations. For example, Apple’s sequence grabber component uses this data handler function to capture
movies.

14 Reading Movie Data
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

When you call this function, you provide detailed information specifying the location in the container that
is to receive the data. The data handler returns control to your application immediately, and then processes
the request asynchronously. When the data handler completes the request, it calls your data-handler
completion function to report that the request has been satisfied, see Completion Function (page 14) for
more information on the data-handler completion function.

In addition to the DataHWrite function, data handler components provide several other “helper” functions
that allow you to create new movie containers and prepare them for a movie capture operation.

For more information on all of these functions, see Writing Movie Data (page 15).

Writing Movie Data

As with reading movie data, data handlers provide two distinct write facilities. The DataHPutData function
is a simple synchronous interface that allows applications to append data to the end of a container.

The DataHWrite function is a more capable, asynchronous write function that is suitable for movie capture
operations. As is the case with the DataHScheduleData function, your component calls the application’s
data-handler completion function when you are done with the write request.

There are several other helper functions that allow applications to prepare your data handler for a movie
capture operation. The DataHCreateFile function asks your component to create a new container. The
DataHSetFileSize and DataHGetFileSize functions work with a container’s size, in bytes. The
DataHGetFreeSpace function allows applications to determine when to make a container larger. The
DataHPreextend function asks your component to make a container larger. Applications may call your
component’s DataHGetPreferredBlockSize function in order to determine how best to interact with
your data handler.

Before writing data to a data reference, applications must call your component’s DataHOpenForWrite
function to open a write path to the container. The DataHCloseForWrite function closes that write path.

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM “jukebox,” may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs. See Determining Data Handler Capabilities (page 16) for
information about the functions that client programs use to interrogate your data handler. For more
information on writing movie data, see Storing Movie Data (page 14).

Managing the Data Handler

Data handler components provide a number of functions that your application can use to manage its
connection to the handler. The most important among these is DataHTask, which provides processor time
to the handler. Your application should call this function often so that the handler has enough time to do
its work.

Other functions in this category provide playback hints to the data handler and allow your application to
influence how the component handles its cached data.

For more information on these functions, see Managing Data Handler Behavior (page 16).

Writing Movie Data 15
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

Managing Data Handler Behavior

Applications may call your handler’s DataHPlaybackHints function in order to provide you with some
guidelines about how those applications play to use the current data reference.

The DataHFlushData and DataHFlushCache functions allow applications to influence how your component
manages its stored data.

Determining Data Handler Capabilities

In order for client programs to choose the best data handler component for a data reference, Apple has
defined some functions that allow applications to interrogate a data handler’s capabilities.

The DataHGetVolumeList function allows an application to obtain a list of the volumes your data handler
can support. The DataHCanUseDataRef function allows your data handler to examine a specific data
reference and indicate its ability to work with the associated container. The DataHGetDeviceIndex function
allows applications to determine whether different data references identify containers that reside on the
same device.

By way of illustration, the Movie Toolbox uses the DataHGetVolumeList and DataHCanUseDataRef
functions as follows. During startup, and whenever a new volume is mounted, the Movie Toolbox calls each
data handler’s DataHGetVolumeList function in order to obtain information about each handler’s general
capabilities. Specifically, the Movie Toolbox calls each component’s GetDataHandler, DataHGetVolumeList,
and CloseComponent functions.

Whenever an application opens a movie, the Movie Toolbox selects the best data handler for the movie’s
container. This may involve calling each appropriate data handler’s DataHCanUseDataRef function (in some
cases, a data handler may indicate that it does not need to examine a data reference before accessing it; see
the description of the DataHGetVolumeList function for more information). For each data handler that
can support the data reference (that is, has the correct component subtype value) and needs to be
interrogated, the Movie Toolbox calls the component’s GetDataHandler, DataHCanUseDataRef, and
CloseComponent functions. Based on the resulting information, the Movie Toolbox selects the best data
handler for the application.

16 Managing the Data Handler
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Data Handler Components

This section describes what video output components are, and what they do.

QuickTime video output, which most often comes from QuickTime movies, can be displayed in windows that
appear on a computer’s desktop. Because these windows are created and managed by the computer’s
operating system, software that presents QuickTime video can use the operating system’s video display
services to specify which display (when there is more than one video display) and window to use for video
output.

There are, however, many video output devices that are not recognized by operating systems. To display
QuickTime video on these devices, your software can use video output components. The components, which
are normally developed by the manufacturers of video output devices, provide a standard interface for video
output to a device.

How Video Output Components Process Video Data

A video output component receives QuickTime video data and delivers data to a video output device for
display. If the incoming data is in a format that the video output device can display directly, the video output
component can simply send the data to the video output device. If the incoming data cannot be displayed
directly, the video output component must use a transfer codec or decompressor component to convert the
data to a format that the video output device can display.

If a video output device cannot directly display 32-bit RGB data or data in one of the other supported
QuickTime pixel formats, the developers of the device are strongly encouraged to provide a transfer codec
that accepts data in one of the supported QuickTime pixel formats (preferably 32-bit RGB) and converts it to
data that can be displayed on the device. When this transfer codec is available, any QuickTime video can be
displayed on the video output device: the Image Compression Manager can convert any QuickTime images
to a supported QuickTime pixel format and then invoke the transfer codec to display the result.

If any special decompressors, such as a transfer codec, are needed for a video output device, the decompressors
are included in the definitions of the component’s display modes, as described in Display Modes (page 17).
How hardware developers can develop a transfer codec for their device is described in Creating a Transfer
Codec for a Video Output Component (page 19).

Some video output devices do not accept pixels as input. For example, there are devices that display JPEG
data directly. For these devices, a video output component can send the appropriate data directly, or it can
invoke a compressor component to convert data in a pixel format to the appropriate data.

Display Modes

A video output device has one or more display modes. The characteristics of each mode determine how
video is displayed. When any software displays video on a video output device, it must select which of the
device’s display modes to use.

How Video Output Components Process Video Data 17
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

The characteristics of a display mode include

 ■ the height of the displayed image, in pixels

 ■ the width of the displayed image, in pixels

 ■ the horizontal resolution of the display, in pixels per inch

 ■ the vertical resolution of the display, in pixels per inch

 ■ the refresh rate of the display, in Hertz

 ■ the pixel type of the display

 ■ a text description of the display mode

The characteristics can also include a list of decompressor components required for the mode that are
provided specifically for the video output device. If a video output device cannot directly display any of the
pixel formats supported by QuickTime, the vendor of the device must provide one or more special
decompressors to convert supported pixel formats to a format the device can display. If a video output device
can display one or more of the pixel formats supported by QuickTime, the Image Compression Manager can
use standard decompressors that are included with QuickTime, and the list of special decompressor
components can be empty.

These characteristics, returned by the QTVideoOutputGetDisplayModeList function, are stored in a QT
atom container. For a description of this QT atom container, see Display Mode QT Atom Container (page 29).

Transfer Codecs

If you are the manufacturer of a video output device, you need to provide a video output component for
your device as described in Creating Video Output Components (page 33). In addition, if your video output
device cannot display a pixel format defined by QuickTime, you should include a special decompressor,
known as a transfer codec, that converts one of the supported QuickTime pixel formats (preferably 32-bit
RGB) to data that the device can display. When this transfer codec is available, the QuickTime Image
Compression Manager automatically uses it together with its built-in decompressors. This, in turn, lets
applications or other software draw any QuickTime video directly to the video output component’s graphics
world.

This section gives an overview of developing this transfer codec. Bear in mind that a transfer codec is a
specialized image decompressor component, and should be based on the Base Image Decompressor.

Overview of Transfer Codecs

QuickTime 2.5 contained new support for developers of codecs to accelerate certain image decompression
operations. These features will most likely be used by developers of video hardware boards that provide
special acceleration features, such as arbitrary scaling or color space conversion.

Prior to QuickTime 2.5, if a codec could not decompress an image directly to the screen, the ICM would
prepare an offscreen buffer for the codec, then use the None codec to transfer the image from the offscreen
buffer to the screen. With QuickTime 2.5, if a codec cannot decompress directly to the screen it has the option
of specifying that it can decompress to one or more types of non-RGB pixel spaces, specified as an OSType
(e.g., 'yuvs'). The ICM then attempts to find a decompressor component of that type (a transfer codec) that

18 Transfer Codecs
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

can transfer the image to the screen. Since the ICM does not define non-RGB pixel types, the transfer codec
must support additional calls to set up the offscreen. If a transfer codec cannot be found that supports the
specified non-RGB pixel types, the ICM uses the None codec with an RGB offscreen buffer.

The real speed benefit comes from the fact that since the transfer codec defines the offscreen buffer, it can
place the buffer in on-board memory, or even point to an overlay plane so that the offscreen image really is
on the screen. In this case, the additional step of transferring the bits from offscreen memory on to the screen
is avoided.

Creating a Transfer Codec for a Video Output Component

For an image decompressor component to indicate that it can decompress to non-RGB pixel types, it should,
in the ImageCodecPreDecompress call, fill in the wantedDestinationPixelTypes field with a handle
to a zero-terminated list of pixel types that it can decompress to. The ICM immediately makes a copy of the
handle. Cinepak, for example, returns a 12-byte handle containing yuvs, yuvu, and $00000000. Since
ImageCodecPreDecompress can be called often, it is suggested that codecs allocate this handle when their
component is opened and simply fill in the wantedDestinationPixelTypes field with this handle during
ImageCodecPreDecompress. Components that use this method should be sure to dispose the handle at
close.

Apple’s Cinepak decompressor supports decompressing to 'yuvs' and 'yuvu' pixel types. Type 'yuvs'
is a YUV format with u and v components signed (center point at $00), while 'yuvu' has the u and v
component centered at $80.

As an example, suppose XYZ Co. had a video board that had a YUV overlay plane capable of doing arbitrary
scaling. The overlay plane takes data in the same format as Cinepak’s 'yuvs' format. In this case, XYZ would
make a component of type 'imdc' and subtype 'yuvs'.

The ImageCodecPreDecompress call would set the codecCanScale, codecHasVolatileBuffer, and
codecImageBufferIsOnScreenbits in thecapabilities.flags field. ThecodecImageBufferIsOnScreen
bit is necessary to inform the ICM that the codec is a direct screen transfer codec. A direct screen transfer
codec is one that sets up an offscreen buffer that is actually onscreen (such as an overlay plane). Not setting
this bit correctly can cause unpredictable results.

The real work of the codec takes place in the ImageCodecNewImageBufferMemory call. This is where the
codec is instructed to prepare the non-RGB pixel buffer. The codec must fill in the baseAddr and rowBytes
fields of the dstPixMap structure in the CodecDecompressParams. The ICM then passes these values to
the original codec (e.g., Cinepak) to decompress into.

The codec must also implement ImageCodecDisposeMemory to balance
ImageCodecNewImageBufferMemory.

Since Cinepak then decompresses into the card’s overlay plane, ImageCodecBandDecompress needs to do
nothing aside from calling ICMDecompressComplete.

pascal ComponentResult ImageCodecPreDecompress(Handle storage,
 CodecDecompressParams *p)
{
 CodecCapabilities *capabilities = p->capabilities; // only allow 16 bpp
 // source
 if ((**p->imageDescription).depth != 16)
 return codecConditionErr; /* we only support 16 bits per pixel dest */
 if (p->dstPixMap.pixelSize != 16)

Transfer Codecs 19
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

 return codecConditionErr;

 capabilities->wantedPixelSize = p->dstPixMap.pixelSize;
 capabilities->bandInc = capabilities->bandMin =
 (*p->imageDescription)->height;
 capabilities->extendWidth = 0;
 capabilities->extendHeight = 0;
 capabilities->flags = codecCanScale | codecImageBufferIsOnScreen |
 codecHasVolatileBuffer;
 return noErr;
}

pascal ComponentResult ImageCodecBandDecompress(Handle storage,
 CodecDecompressParams *p)
{
 ICMDecompressComplete(p->sequenceID, noErr, codecCompletionSource |
 codecCompletionDest, &p->completionProcRecord);
 return noErr;
}

pascal ComponentResult ImageCodecNewImageBufferMemory(Handle storage,
 CodecDecompressParams *p, long flags,
 ICMMemoryDisposedUPP memoryGoneProc, void *refCon)
{
 OSErr err = noErr;
 long offsetH, offsetV;
 Ptr baseAddr;
 long rowBytes;

 // call predecompress to check to make sure we can handle
 // this destination
 err = ImageCodecPreDecompress(storage, p);
 if (err) goto bail;

 // set video board registers with the scale
 XYZVideoSetScale(p->matrix);

 // calculate a base address to write to
 offsetH = (p->dstRect.left - p->dstPixMap.bounds.left);
 offsetV = (p->dstRect.top - p->dstPixMap.bounds.top);
 XYZVideoGetBaseAddress(p->dstPixMap, offsetH, offsetV,
 &baseAddr, &rowBytes);

 p->dstPixMap.baseAddr = baseAddr;
 p->dstPixMap.rowBytes = rowBytes;
 p->capabilities->flags = codecImageBufferIsOnScreen;

 bail:
 return err;
}

pascal ComponentResult ImageCodecDisposeMemory(Handle storage, Ptr data)
{
 return noErr;
}

20 Transfer Codecs
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

Some video hardware boards that use an overlay plane require that the image area on screen be flooded
with a particular RGB value or alpha-channel in order to have the overlay buffer show through at that location.
Codecs that require this support should set the screenFloodMethod and screenFloodValue fields of the
CodecDecompressParams record during ImageCodecPreDecompress. The ICM then manages the flooding
of the screen buffer. This method is more reliable than having the codec attempt to flood the screen itself,
and will ensure compatibility with future versions of QuickTime.

Transfer Codecs 21
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

22 Transfer Codecs
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Video Output Components

This section explains how to use video output components in your software.

Video output components are standard components that are managed by the Component Manager. Their
component type is QTVideoOutputComponentType.

Apple has defined a functional interface for video output components. For each function of a video output
component, there is a selector constant. These constants are listed in the next section.

Selectors for Video Output Component Functions

The following constants are the selectors for functions of a video output component.

enum {
 kQTVideoOutputGetDisplayModeListSelect = 0x0001,
 kQTVideoOutputGetCurrentClientNameSelect = 0x0002,
 kQTVideoOutputSetClientNameSelect = 0x0003,
 kQTVideoOutputGetClientNameSelect = 0x0004,
 kQTVideoOutputBeginSelect = 0x0005,
 kQTVideoOutputEndSelect = 0x0006,
 kQTVideoOutputSetDisplayModeSelect = 0x0007,
 kQTVideoOutputGetDisplayModeSelect = 0x0008,
 kQTVideoOutputCustomConfigureDisplaySelect = 0x0009,
 kQTVideoOutputSaveStateSelect = 0x000A,
 kQTVideoOutputRestoreStateSelect = 0x000B,
 kQTVideoOutputGetGWorldSelect = 0x000C,
 kQTVideoOutputGetGWorldParametersSelect = 0x000D,
 kQTVideoOutputGetIndSoundOutputSelect = 0x000E,
 kQTVideoOutputGetClockSelect = 0x000F,
 kQTVideoOutputSetEchoPortSelect = 0x0010
};

Selecting a Video Output Component

Listing 4-1 shows how to assemble a list of available video output components using the FindNextComponent
function. This list can then be presented to the user.

The base video output component is a special component that provides services to other video output
components. It is never connected to a display, and it has a component flag,
kQTVideoOutputDontDisplayToUser, that indicates that it should not be included in a list of available
video output components. The sample code shows how to check for this flag.

Selectors for Video Output Component Functions 23
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Using Video Output Components

Listing 4-1 Displaying available video output components

ComponentDescription cd;
Component c = 0;
cd.componentType = QTVideoOutputComponentType;
cd.componentSubType = 0;
cd.componentManufacturer = 0;
cd.componentFlags = 0;
cd.componentFlagsMask = kQTVideoOutputDontDisplayToUser;
while (c = FindNextComponent (c, &cd)) {
 Handle nameHandle = NewHandle (0);
 GetComponentInfo (c, &cd, nameHandle, nil, nil);
 // add name to list
 DisposeHandle (nameHandle);
}

Choosing a Display Mode

After a video output component is chosen, the next step is to choose one of the component’s available
display modes. Your software does this by getting the QT atom container that contains descriptions of the
available modes by calling the QTVideoOutputGetDisplayModeList function, traversing the atom
container’s contents using the QTFindChildByIndex function, examining the characteristics of each mode
and setting aside any modes that are not appropriate for your software, and then optionally presenting a
list of modes to the user to select from.

If your software does present a list of display modes to the user, it can obtain a string that describes each
mode from the mode’s kQTVOName atom with an ID of 1. The string doesn’t include a leading length byte
or a trailing null. Your software can determine the length of the string from the size of the atom.

When the mode has been chosen, your software calls the QTVideoOutputSetDisplayMode function to set
the display mode.

Of display mode’s characteristics, the most important is whether the mode can display the video data. This
is determined by the availability of a decompressor component that takes the video data as input and converts
it to the type of data, specified by the kQTVOPixelType atom, required by the video output device. If a
video output device can directly display one of the supported QuickTime pixel formats, the necessary
decompressor component is included in QuickTime. If special decompressor components are required for
the video output device, such as JPEG or other decompressors that deliver data directly to the video output
hardware without creating a new pixel format, these decompressor components are described in
kQTVODecompressors atoms.

Contents of the Display Mode QT Atom Container

To obtain descriptions of the display modes, your software must traverse QT atom containers. At the root of
the QT atom container returned by the QTVideoOutputGetDisplayModeList function are one or more
atoms of type kQTVODisplayModeItem, each containing a definition of a display mode. Your software can
traverse the display mode atoms by calling the QTFindChildByIndex function.

Within each kQTVODisplayModeItem atom are the following atoms:

24 Choosing a Display Mode
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Using Video Output Components

 ■ The atom of type kQTVODimensionswith ID 1 contains two 32-bit integers. The first specifies the width,
in pixels, of the display. The second specifies the height, in pixels, of the display.

 ■ The atom of type kQTVOResolution with ID 1 contains two 32-bit fixed-point values. The first specifies
the horizontal resolution of the display, in pixels per inch. The second specifies the vertical resolution of
the display, in pixels per inch.

By storing resolutions rather than an aspect ratio, QuickTime makes it easy for your software to compare
values with values in QuickTime ImageDescription records. Your software can calculate the aspect ratio
for the display mode by dividing the value for the horizontal resolution by the value for the vertical resolution.

 ■ The atom of type kQTVORefreshRate with ID 1 contains a single 32-bit fixed-point value. This value
specifies the refresh rate of the display in Hertz.

 ■ The atom of type kQTVOPixelType with ID 1 contains a single 32-bit OSType value. This value specifies
the type of pixel that is used by the display format:

 ■ Values of 1, 2, 4, 8, 16, 24 and 32 specify standard Mac OS RGB pixel formats with corresponding bit
depths.

 ■ Values of 33, 34, 36 and 40 specify standard Mac OS gray-scale pixel formats with depths of 1, 2, 4, and
8 bits per pixel.

 ■ Other pixel formats are specified by four-character codes. There are currently codes for RGB pixel formats
defined for Microsoft Windows and for several YUV formats. For information about pixel formats defined
for Microsoft Windows, see QuickTime Guide for Windows.

 ■ The atom of type kQTVOName with ID 1 contains a string that describes the display mode. Your software
can use this string when presenting a list of available display modes to the user. The string does not
include a leading length byte or a trailing null. Your software can determine the length of the string by
getting the size of the atom that contains it.

 ■ Atoms of type kQTVODecompressors specify any special decompressors that are required for the video
output device. If a video output device cannot directly display 32-bit RGB data or data in one of the other
supported QuickTime pixel formats, a special decompressor is required to convert images to data that
the video output device can display.

Because kQTVODecompressors atoms are not required to have consecutive IDs, your software must use the
QTFindChildByIndex function to iterate through the decompressors.

Within each kQTVODecompressors atom are one or more atoms:

 ■ The atom of type kQTVODecompressorType with ID 1 contains an OSType value that specifies the type
of compressed data that the decompressor can decompress. For example, a kQTVODecompressorType
atom that contains kMotionJPEGACodecType can decompress Motion JPEG Format A data.

 ■ An atom of type kQTVODecompressorComponent with ID 1 is optional. If present, it contains a
DecompressorComponent value that specifies a decompressor component that your software can use
to decompress the data specified by the corresponding kQTVODecompressorType atom.

 ■ An atom of type kQTVODecompressorContinuouswith ID 1 is optional. If present, it contains a Boolean
value that specifies whether the resulting video display will be continuous. If the value is true, data will
be displayed without any visual gaps between successive images. If the value is false, data will be
displayed, but there may be a visual gap (such as a black screen) between the display of images. If there
is no kQTVODecompressorContinuous atom, your software should not make any assumptions about
the performance of the decompressor.

Contents of the Display Mode QT Atom Container 25
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Using Video Output Components

Drawing to an Echo Port

Some video output devices can display video simultaneously on an external video display and in a window
on a computer’s desktop. To use this feature, your software draws to a graphics port for the window on the
computer’s desktop, known as the echo port, rather than the port that is normally used for the video output
device. The video then appears on both displays, although in some cases the video on the desktop is displayed
at a smaller size or lower frame rate.

To draw to both outputs at the same time, do the following:

 ■ Call the ComponentFunctionImplemented function to determine if the video output component
supports the QTVideoOutputSetEchoPort function.

 ■ Call the QTVideoOutputSetEchoPort function to specify a window on the desktop in which to display
video sent to the device.

 ■ Call the SetMovieGWorld function to specify the same window for the output of a movie.

This process is shown in Listing 4-2.

Listing 4-2 Drawing to an echo port

Movie aMovie;
ComponentInstance ci;
CGrafPtr thePort;
/* instantiation of the video output component here */
/* creation of the graphics port here */
if (ComponentFunctionImplemented(ci, kQTVideoOutputSetEchoPortSelect)) {
 result = QTVideoOutputSetEchoPort(ci, thePort);
 SetMovieGWorld (aMovie, thePort, nil);
 StartMovie (aMovie);
}

The video then appears on both displays. Note that you bypass the graphics world that is normally used for
the video output device; your software draws only to the echo port you specify with the
QTVideoOutputSetEchoPort function.

26 Drawing to an Echo Port
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Using Video Output Components

This section discusses the functions used to control video output components.

Controlling the Display Mode

Each video output device has a finite number of display modes. Each mode has several characteristics,
including width and height of the display, pixel depth, and video refresh rate. This section describes functions
for getting and setting the display mode.

To get a list of the display modes supported by a video output component, call the
QTVideoOutputGetDisplayModeList function. The list is a QT atom container, and list atoms contain the
characteristics of each mode. You use QT atom container functions, such as QTFindChildByIndex, to extract
the contents of the list.

To specify a display mode to use, call the QTVideoOutputSetDisplayMode function.

To find out the current display mode, call the QTVideoOutputGetDisplayMode function.

Registering the Name of Your Software

After your software has established a connection to a video output component, you can register its name
with the instance of that component by calling the QTVideoOutputSetClientName function. The name
can then be used by QTVideoOutputGetCurrentClientName to specify which software has exclusive
access to the video output device controlled by the component.

Although several applications or other software can connect to a video output component at the same time,
only one of them at a time can have access to the video output device controlled by the component. Use
QTVideoOutputBegin to gain exclusive access to the video output device and QTVideoOutputEnd to
relinquish exclusive access when your software has finished using the device.

To get the name of the application or other software that is registered with an instance of a video output
component, call QTVideoOutputGetClientName.

Controlling Video Output

Video output components provide functions for configuring the video display, for starting and stopping
video output, and for specifying the graphics world used for the display:

Controlling the Display Mode 27
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output
Components

 ■ To display a dialog box in which the user can specify video settings, call the
QTVideoOutputGetConfigureDisplay function.

 ■ To get a pointer to the graphics world used by the video output component, call the
QTVideoOutputGetGWorld function.

 ■ To obtain exclusive access to the video hardware controlled by a video output component, call the
QTVideoOutputBegin function.

 ■ To release access to the video hardware controlled by a video output component, call the
QTVideoOutputEnd function.

 ■ To get the name of the software, if any, that has exclusive access to the video hardware controlled by a
video output component, call the QTVideoOutputGetCurrentClientName function.

 ■ If a video output device can display video both on an external video display and in a window on a
computer’s desktop, you can use the QTVideoOutputSetEchoPort function to specify a window on
the desktop in which to display video sent to the device.

Finding Associated Components

Video output components provide functions for finding other components associated with them:

 ■ To find any sound output components associated with a video output component, call the
QTVideoOutputGetIndSoundOutput function.

 ■ To find a clock component associated with a video output component, call the QTVideoOutputGetClock
function.

Saving and Restoring Component Configurations

Video output components provide functions for saving the current configuration of a video output component
and later restoring the configuration:

 ■ To save the current configuration of a video output component, call the QTVideoOutputSaveState
function.

 ■ To restore a previously saved configuration of a video output component, call the
QTVideoOutputRestoreState function.

Data Types

This section describes the QT atom container used to specify the display modes that are supported by a video
display component.

28 Finding Associated Components
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output Components

Display Mode QT Atom Container

The QTVideoOutputGetDisplayModeList function returns a list of the display modes supported by a
video display component. This list is contained in the QT atom container described in this section.

At the root of the QT atom container returned by the QTVideoOutputGetDisplayModeList function are
one or more atoms of type kQTVODisplayModeItem, each containing a definition of a display mode. Your
software can traverse the display mode atoms by calling the QTFindChildByIndex function.

Within each kQTVODisplayModeItem atom are the following atoms:

 ■ The atom of type kQTVODimensionswith ID 1 contains two 32-bit integers. The first specifies the width,
in pixels, of the display. The second specifies the height, in pixels, of the display.

 ■ The atom of type kQTVOResolution with ID 1 contains two 32-bit fixed-point values. The first specifies
the horizontal resolution of the display, in pixels per inch. The second specifies the vertical resolution of
the display, in pixels per inch.

By storing resolutions rather than an aspect ratio, QuickTime makes it easy for your software to compare
values with values in QuickTime ImageDescription records. Your software can calculate the aspect ratio
for the display mode by dividing the value for the horizontal resolution by the value for the vertical resolution.

 ■ The atom of type kQTVORefreshRate with ID 1 contains a single 32-bit fixed-point value. This value
specifies the refresh rate of the display in Hertz.

 ■ The atom of type kQTVOPixelType with ID 1 contains a single 32-bit OSType value. This value specifies
the type of pixel that is used by the display format:

 ■ Values of 1, 2, 4, 8, 16, 24 and 32 specify standard Mac OS RGB pixel formats with corresponding bit
depths.

 ■ Values of 33, 34, 36 and 40 specify standard Mac OS gray-scale pixel formats with depths of 1, 2, 4, and
8 bits per pixel.

 ■ Other pixel formats are specified by four-character codes. There are currently codes for RGB pixel formats
defined for Microsoft Windows and for several YUV formats.

 ■ The atom of type kQTVOName with ID 1 contains a string that describes the display mode. Your software
can use this string when presenting a list of available display modes to the user. The string does not
include a leading length byte or a trailing null. Your software can determine the length of the string by
getting the size of the atom that contains it.

 ■ Atoms of type kQTVODecompressors specify any special decompressors that are required for the video
output device. If a video output device cannot directly display 32-bit RGB data or data in one of the other
supported QuickTime pixel formats, a special decompressor is required to convert images to data that
the video output device can display.

Because kQTVODecompressors atoms are not required to have consecutive IDs, your software must use the
QTFindChildByIndex function to iterate through the decompressors.

Within each kQTVODecompressors atom are one or more atoms:

 ■ The atom of type kQTVODecompressorType with ID 1 contains an OSType value that specifies the type
of compressed data that the decompressor can decompress. For example, a kQTVODecompressorType
atom that contains kMotionJPEGACodecType can decompress Motion JPEG Format A data.

Data Types 29
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output Components

 ■ An atom of type kQTVODecompressorComponent with ID 1 is optional. If present, it contains a
DecompressorComponent value that specifies a decompressor component that your software can use
to decompress the data specified by the corresponding kQTVODecompressorType atom.

 ■ An atom of type kQTVODecompressorContinuouswith ID 1 is optional. If present, it contains a Boolean
value that specifies whether the resulting video display will be continuous. If the value is true, data will
be displayed without any visual gaps between successive images. If the value is false, data will be
displayed, but there may be a visual gap (such as a black screen) between the display of images. If there
is no kQTVODecompressorContinuous atom, your software should not make any assumptions about
the performance of the decompressor.

Constants

This section provides details on component type, atom type, and function selector constants.

Component Instance, Type, and Subtype

typedef ComponentInstance QTVideoOutputComponent;
enum {
 QTVideoOutputComponentType = FOUR_CHAR_CODE('vout'),
 QTVideoOutputComponentBaseSubType = FOUR_CHAR_CODE('base')
};

Video Output Component Flag

The following flag indicates that a video output component is not connected to a display and should not be
included in a list of components that are available to the user.

enum {
 kQTVideoOutputDontDisplayToUser = 1L << 0
};

Display Mode Atom Types

The following atom type constants specify atom types:

enum {
 kQTVODisplayModeItem = FOUR_CHAR_CODE('qdmi'),
 kQTVODimensions = FOUR_CHAR_CODE('dimn'),
 /* atom contains two longs - pixel count - width, height */
 kQTVOResolution = FOUR_CHAR_CODE('resl'),
 /* atom contains two Fixed - hRes, vRes in dpi */
 kQTVORefreshRate = FOUR_CHAR_CODE('refr'),
 /* atom contains one Fixed - refresh rate in Hz */
 kQTVOPixelType = FOUR_CHAR_CODE('pixl'),
 /* atom contains one OSType - pixel format of mode */
 kQTVOName = FOUR_CHAR_CODE('name'),
 /* atom contains string (no length byte) --

30 Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output Components

 name of mode for display to user */
 kQTVODecompressors = FOUR_CHAR_CODE('deco'),
 /* atom contains other atoms indicating supported decompressors */
 /* kQTVODecompressors sub-atoms */
 kQTVODecompressorType = FOUR_CHAR_CODE('dety'),
 /* atom contains one OSType - decompressor type code */
 kQTVODecompressorContinuous = FOUR_CHAR_CODE('cont'),
 /* atom contains one Boolean --
 true if this type is displayed continuously */
 kQTVODecompressorComponent = FOUR_CHAR_CODE('cmpt')
 /* atom contains one component id of decompressor */
};

Constants 31
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output Components

32 Constants
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Functions Used To Control Video Output Components

This section describes the routines a hardware developer must implement when creating a video output
component.

The examples in this section show how your video output component can use the services of the base video
output component provided by Apple Computer. If your component uses these services, you do not have
to implement the entire API for a video output component. You simply implement the functions described
here, and the base video output component handles the rest. For most of the functions, you extend functions
already included in the base video output component, which is much faster than providing complete
implementations of these functions yourself. If the base video output component’s implementation of any
of these functions returns an error, the function in your video output component must immediately return
with the same error. If the base video output component’s implementation completes successfully, then
your video output component’s function provides the remainder of the implementation.

Before reading this section, you should be familiar with how to create components.

Connecting to the Base Video Output Component

To use the services of the base video output component, your video output component must open a
connection to the base video output component. It does this in its routine for processing open requests from
the Component Manager. How to connect to the base video output component is shown in Listing 6-1.

Listing 6-1 Connecting to the base video output component

QTVideoOutputComponent baseVideoOutput;
OSErr err;
err = OpenADefaultComponent (kVideoOutputComponentType,
 kVideoOutputComponentBaseSubType,
 &baseVideoOutput);
err = ComponentSetTarget (baseVideoOutput,
 self);
globals->baseVideoOutput = baseVideoOutput;

Providing a Display Mode List

Your video output component must implement its own QTVideoOutputGetDisplayModeList function.
This function is required for all video output components.

Connecting to the Base Video Output Component 33
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

Starting Video Output

Listing 6-2 shows how your video output component can start video output.

Listing 6-2 Starting video output

pascal ComponentResult MyQTVideoOutputBegin (Globals storage)
{
 ComponentResult err;
 long mode;
 // call the default implementation
 err = QTVideoOutputBegin (storage->baseVideoOutput);
 if (err) goto bail;
 // get the selected mode
 err = QTVideoOutputGetDisplayMode (storage->self, &mode);
 if (err) goto bail;
 // switch the hardware to the selected mode
 // remember that we now own the hardware
 storage->ownHardware = true;
bail:
 if ((err != noErr) && (storage->ownHardware == true))
 QTVideoOutputEnd (storage-> baseVideoOutput);
 return err;
}

The default implementation of the QTVideoOutputBegin function ensures that the hardware is not currently
in use by other software. It also ensures that a valid display mode has been set with either the
QTVideoOutputSetDisplayMode function or the QTVideoRestoreSettings function.

Ending Video Output

Listing 6-3 shows how your video output component can stop video output. The implementation of this
function is similar to the implementation of QTVideoOutputEnd, but here the default implementation must
be called after the hardware has been released.

Listing 6-3 Ending video output

pascal ComponentResult MyQTVideoOutputEnd (Globals storage)
{
 ComponentResult err;
 // check that Begin has been called
 if (storage->ownHardware == false) {
 err = paramErr;
 goto bail;
 }
 // release the hardware
 // call default implementation
 QTVideoOutputEnd (storage->baseVideoOutput);
 // remember that we no longer own the hardware
 store->ownHardware = false;
bail:
 return err;

34 Starting Video Output
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

}

In the implementation of QTVideoOutputEnd, your component should also display a default image on the
video output device to indicate that the device is no longer in use by other software.

Implementing the QTVideoOutputSaveState Function

If your video output component uses any custom settings, your component must implement its own
QTVideoOutputSaveState function to save them. If your video output component has no custom settings,
it can use the default QTVideoOutputSaveState implementation provided by the base video output
component. Listing 6-4 shows an implementation of the QTVideoOutputSaveState function that saves
custom settings. The function creates a QT atom container for storing the settings.

Listing 6-4 Extending the QTVideoOutputSaveState function

pascal ComponentResult MyQTVideoOutputSaveState (Globals storage,
 QTAtomContainer *settings)
{
 OSErr err;
 // call default implementation
 err = QTVideoOutputSaveState (storage->baseVideoOutput, settings);
 if (err) goto bail;

 // add custom parameter(s)
 err = QTInsertChild (*settings,kParentAtomIsContainer,
 'FOOB', 1, 0,
 sizeof (storage->customSetting),
 &storage->customSetting, nil);
 if (err) goto bail;
bail:
 return err;
}

Implementing the QTVideoOutputRestoreState Function

If your video output component saves custom settings with its own implementation of the
QTVideoOutputSaveState function, it must also implement a QTVideoOutputRestoreState function
to restore the settings. If your video output component has no custom settings, it can use the default
QTVideoOutputRestoreState implementation provided by the base video output component. Listing 6-5
shows an implementation of the QTVideoOutputRestoreState function that restores custom settings
from the QT atom container in which they are stored.

Listing 6-5 Restoring custom settings

pascal ComponentResult MyQTVideoOutputRestoreState (Globals storage,
 QTAtomContainer settings)
{
 OSErr err;
 QTAtom atom;
 // call default implementation

Implementing the QTVideoOutputSaveState Function 35
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

 err = QTVideoOutputRestoreState (storage->baseVideoOutput, settings);
 if (err) goto bail;
 // get custom parameter(s)
 atom = QTFindChildByID (settings, kParentAtomIsContainer, 'FOOB',
 1, nil);
 if (atom != 0) {
 long dataSize;
 Ptr dataptr;
 QTGetAtomDataPtr (settings, atom, &dataSize, &dataPtr);
 storage->customSetting = *(SettingsType *)dataPtr;
 }
 else {
 // reset custom settings to default values
 }
bail:
 return err;
}

Implementing the QTVideoOutputGetGWorldParameters Function

Your video output component must also implement the QTVideoOutputGetGWorldParameters. This
function is not called by applications or other clients of your component; it is called by the base video output
component as part of the implementation of the QTVideoOutputGetGWorld function.

pascal ComponentResult QTVideoOutputGetGWorldParameters (
 QTVideoOutputComponent vo,
 Ptr *baseAddr,
 long *rowBytes,
 CTabHandle *colorTable);

In the baseAddr parameter, your video output component must return the address at which to display
pixels. If your component does not display pixels, return 0 for this parameter.

In the rowBytes parameter, your video output component must return the width of each scan line in bytes.
If your component does not display pixels, return the width of the current display mode.

In the colorTable parameter, your video output component must return the color table to be used. If your
component does not use a color table, return nil.

Controlling Other Hardware Features

If the video output device includes features that can be controlled by any of the following functions, the
video output component must implement the functions for those features.

 ■ QTVideoOutputGetIndSoundOutput

 ■ QTVideoOutputGetIndImageDecompressor

 ■ QTVideoOutputGetClock

 ■ QTVideoOutputCustomConfigureDisplay

36 Implementing the QTVideoOutputGetGWorldParameters Function
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

 ■ QTVideoOutputSetEchoPort

Delegating Other Component Calls

Your video output component’s dispatcher must delegate all component selectors it doesn’t handle itself to
the base video output component. It can do this by calling the DelegateComponentCall function.

Closing the Connection to the Base Video Output Component

When your video output component closes, it must close its connection to the base video output component
by calling the CloseComponent function.

Delegating Other Component Calls 37
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

38 Closing the Connection to the Base Video Output Component
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Creating Video Output Components

This section describes the requirements for creating a data handler component. The functional interface that
your component must support is described in Using Data Handler Components (page 11).

You should consider developing your own data handler component only if you are planning to provide a
new type of movie container or a container that requires special data handling techniques. For example, if
you are planning to develop a networked multimedia server, you would most likely need to develop a new
data handler that could support the special protocols required by your server. By encapsulating that protocol
support in a data handler, QuickTime applications can access the movie data on your server without having
to implement any special support. In this way, your server becomes a seamless part of the user’s system.

Before reading this section, you should be familiar with how to create QuickTime components.

General Information

All data handler components have a component type value of 'dhlr', which is defined by the
dataHandlerType constant. Data handler components use the value of the component subtype field to
indicate the type of data reference they support. As a result of this convention, note that all data handlers
that share a component subtype value must be able to recognize and work with data references of the same
type. For example, file system data handlers always carry a component subtype value of 'alis', which
indicates that their data references are file system aliases (note that this is true for QuickTime on Macintosh
and under Windows, even though there is not, properly, a file system alias under Windows). Apple’s
memory-based data handler for Macintosh has a component subtype value of 'hndl'.

#define dataHandlerType 'dhlr'
#define rAliasType 'alis'

Apple has not defined any special manufacturer field values or component flags values for data handler
components. Developers may use the manufacturer field value to select your data handler from among all
the data handlers that support a given type of data reference.

Apple has defined a functional interface for data handler components. You can use the following constants
to refer to the request codes for each of the functions that your component must support:

enum {
 kDataHGetDataSelect = 2, /* DataHGetData */
 kDataHPutDataSelect = 3, /* DataHPutData */
 kDataHFlushDataSelect = 4, /* DataHFlushData */
 kDataHOpenForWriteSelect = 5, /* DataHOpenForWrite */
 kDataHCloseForWriteSelect = 6, /* DataHCloseForWrite */
 kDataHOpenForReadSelect = 8, /* DataHOpenForRead */
 kDataHCloseForReadSelect = 9, /* DataHCloseForRead */
 kDataHSetDatRefSelect = 10, /* DataHSetDataRef */
 kDataHGetDataRefSelect = 11, /* DataHGetDataRef */
 kDataHCompareDataRefSelect = 12, /* DataHCompareDataRef */
 kDataHTaskSelect = 13, /* DataHTask */

General Information 39
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Creating Data Handler Components

 kDataHScheduleDataSelect = 14, /* DataHScheduleData */
 kDataHFinishDataSelect = 15, /* DataHFinishData */
 kDataHFlushCacheSelect = 16, /* DataHFlushCache */
 kDataHResolveDataRefSelect = 17, /* DataHResolveDataRef */
 kDataHGetFileSizeSelect = 18, /* DataHGetFileSize */
 kDataHCanUseDataRefSelect = 19, /* DataHCanUseDataRef */
 kDataHGetVoumeListSelect = 20, /* DataHGetVolumeList */
 kDataHWriteSelect= = 21, /* DataHWrite */
 kDataHPreextendSelect = 22, /* DataHPreextend */
 kDataHSetFileSizeSelect = 23, /* DataHSetFileSize */
 kDataHGetFreeSpaceSelect = 24, /* DataHGetFreeSpace */
 kDataHCreateFileSelect = 25, /* DataHCreateFile */
 kDataHGetPreferredBlockSizeSelect = 26,
 /*DataHGetPreferredBlockSize */
 kDataHGetDeviceIndexSelect = 27, /* DataHGetDeviceIndex */
 /* 28 and 29 unused */
 kDataHGetScheduleAheadTimeSelect= 30,
 /* DataHGetScheduleAheadTime */
 kDataHSetOSFileRefSelect = 516, /* DataHSetOSFileRef */
 kDataHGetOSFileRefSelect = 517, /* DataHGetOSFileRef */
 kDataHPlaybackHintsSelect = 3+0x100/* DataHPlaybackHints */
};

Supported Functions

This section lists the functions that may be supported by data handler components.

 ■ Selecting a Data Handler (page 11)

 ❏ DataHGetVolumeList

 ❏ DataHCanUseDataRef

 ❏ DataHGetDeviceIndex

 ■ Working With Data References (page 13)

 ❏ DataHSetDataRef

 ❏ DataHGetDataRef

 ❏ DataHCompareDataRef

 ❏ DataHResolveDataRef

 ❏ DataHSetOSFileRef

 ❏ DataHGetOSFileRef

 ■ Reading Movie Data (page 14)

 ❏ DataHOpenForRead

 ❏ DataHCloseForRead

 ❏ DataHGetData

 ❏ DataHScheduleData

40 Supported Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Creating Data Handler Components

 ❏ DataHFinishData

 ❏ DataHGetScheduleAheadTime

 ■ Writing Movie Data (page 15)

 ❏ DataHOpenForWrite

 ❏ DataHCloseForWrite

 ❏ DataHPutData

 ❏ DataHWrite

 ❏ DataHSetFileSize

 ❏ DataHGetFileSize

 ❏ DataHCreateFile

 ❏ DataHGetPreferredBlockSize

 ❏ DataHGetFreeSpace

 ❏ DataHPreextend

 ■ Managing Data Handler Behavior (page 16)

 ❏ DataHTask

 ❏ DataHFlushCache

 ❏ DataHFlushData

 ❏ DataHPlaybackHints

 ■ Completion Function (page 14)

Supported Functions 41
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Creating Data Handler Components

42 Supported Functions
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Creating Data Handler Components

This table describes the changes to QuickTime Transport and Delivery Guide.

NotesDate

New document that describes components that transport data between
QuickTime movies and specific devices.

2006-01-10

Replaces "Data Handler Components" and "Video Output Components."

New document that explains how to create a QuickTime data handler or
sequence grabber component.

2002-09-17

43
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

44
2006-01-10 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Transport and Delivery Guide
	Contents
	Listings
	Introduction
	About Data Handler Components
	Movie Playback
	Movie Capture
	Processing data
	Identifying Containers With Data References

	Using Data Handler Components
	Selecting a Data Handler
	Selecting by Component Type Value
	Interrogating a Data Handler's Capabilities
	Managing Data References
	Working With Data References
	Retrieving Movie Data
	Completion Function

	Reading Movie Data
	Storing Movie Data
	Writing Movie Data
	Managing the Data Handler
	Managing Data Handler Behavior
	Determining Data Handler Capabilities

	Video Output Components
	How Video Output Components Process Video Data
	Display Modes

	Transfer Codecs
	Overview of Transfer Codecs
	Creating a Transfer Codec for a Video Output Component

	Using Video Output Components
	Selectors for Video Output Component Functions
	Selecting a Video Output Component
	Choosing a Display Mode
	Contents of the Display Mode QT Atom Container
	Drawing to an Echo Port

	Functions Used To Control Video Output Components
	Controlling the Display Mode
	Registering the Name of Your Software
	Controlling Video Output
	Finding Associated Components
	Saving and Restoring Component Configurations
	Data Types
	Display Mode QT Atom Container

	Constants
	Component Instance, Type, and Subtype
	Video Output Component Flag
	Display Mode Atom Types

	Creating Video Output Components
	Connecting to the Base Video Output Component
	Providing a Display Mode List
	Starting Video Output
	Ending Video Output
	Implementing the QTVideoOutputSaveState Function
	Implementing the QTVideoOutputRestoreState Function
	Implementing the QTVideoOutputGetGWorldParameters Function
	Controlling Other Hardware Features
	Delegating Other Component Calls
	Closing the Connection to the Base Video Output Component

	Creating Data Handler Components
	General Information
	Supported Functions

	Revision History

