
QuickTime Component Creation Guide
QuickTime > QuickTime Component Creation

2007-01-08

Apple Inc.
© 2005, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Macintosh, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Component Creation Guide 7

Organization of This Document 7
See Also 8

Chapter 1 About QuickTime Media Handler Components 9

Media Handler Components 9
Derived Media Handler Components 10

Chapter 2 Creating a Derived Media Handler Component 13

A Sample Derived Media Handler Component 13
Implementing the Required Component Functions 13
Initializing a Derived Media Handler Component 15
Drawing the Media Sample 16

Request Processing 17

Chapter 3 Derived Media Handler Support 19

Data Structure 19
Component Manager Flag 21
Functions 21

Managing the Component 22
General Data Management 22
Graphics Data Management 23
Sound Data Management 23
Base Media Handler Utility Function 24
Management of Progressive Downloads 24

Constants 24
Function Flags 24
Component Types and Characteristics 25
Selectors 25
Media Video Parameters 26

Chapter 4 Preview Components 27

Obtaining Preview Data 27
Storing Preview Data in Files 28
The Preview Resource 28
Using the Preview Data 29

3
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

Chapter 5 Creating Preview Components 31

Overview 31
Implementing Required Component Functions 31
Displaying Image Data as a Preview 33

Chapter 6 Functions For Displaying Previews 35

Introduction 35
Handling Events 35
Creating Previews 35
The Preview Resource 35
Data Types 36
Constants 36

Document Revision History 39

4
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 2 Creating a Derived Media Handler Component 13

Listing 2-1 Implementing the required media handler component functions 13
Listing 2-2 Initializing a derived media handler 16
Listing 2-3 Drawing the media sample 16

Chapter 4 Preview Components 27

Listing 4-1 The preview resource 29

Chapter 5 Creating Preview Components 31

Listing 5-1 Implementing the required Component Manager functions 31
Listing 5-2 Converting data into a form that can be displayed as a preview 33

5
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

6
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

LISTINGS

This book tells you how to build new components to extend the capabilities of QuickTime. The component
types covered by this book include:

 ■ Media handler components, which allow the Movie Toolbox to manipulate the data in a media. These
media handlers isolate the Movie Toolbox (and the applications programmer) from the details of how
and where a media is stored. They are also called derived media handlers because they are derived from
a base media handler, provided by Apple. The base media handler component handles most of the
duties that are common to all media handlers, freeing the component developer to focus on the task of
reading and writing a particular media type.

 ■ Preview components, which create or display a preview of a QuickTime movie file. The preview is typically
displayed as part of an Open File dialog; it is normally an image, but it may contain text, sound, or other
data. The preview may be contained in the movie file or it may be created on the fly by the preview
component whenever it is needed.

Note: This book replaces two previously separate Apple documents: “Media Handlers: Creating Media
Handler Components” and “Preview Components.”

In general, only developers who are creating a new media handler or preview component need to read this
book.

Organization of This Document

This book contains the following chapters:

 ■ About QuickTime Media Handler Components (page 9) describes what media handler components
are and how they are used.

 ■ Creating a Derived Media Handler Component (page 13) describes the process of creating a derived
media handler component.

 ■ Derived Media Handler Support (page 19) defines the functions you must support if you are creating a
derived media handler, the functions that you may optionally support, and utility functions available to
your component from the base media handler.

 ■ Creating Preview Components (page 31) describes how to create your own preview component. A
listing of a sample component is included.

 ■ Functions For Displaying Previews (page 35) describes the functions for displaying previews, handling
events in previews, and creating previews that are provided by preview components.

Organization of This Document 7
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Component
Creation Guide

See Also

For general information about media handler components, see QuickTime Media Types and Media Handlers
Guide. This book introduces the idea of QuickTime media handler components and provides details of the
video, sound, text, timecode, and tween media handlers.

For general information about preview components, see QuickTime Movie Internals Guide. This book also
covers some of the technology present inside QuickTime movies, including time management, modifier
tracks, access keys, and movie posters.

Information about creating more types of QuickTime components (other than those covered in this book) is
included in books about those components. See the following:

 ■ Information about creating data handler components is in QuickTime Transport and Delivery Guide.

 ■ Information about creating movie data exchange components is in QuickTime Import and Export Guide.

 ■ Information about creating image transcoder components is inQuickTimeCompressionandDecompression
Guide.

 ■ Information about creating video effect components is in QuickTime Video Effects and Transitions Guide.

 ■ Information about creating tween components is in QuickTime Media Types and Media Handlers Guide.

 ■ Information about creating video digitizer components is in QuickTime Movie Creation Guide.

 ■ Information about creating video output components is in QuickTime Transport and Delivery Guide.

The following additional Apple books cover related aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

8 See Also
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Component Creation Guide

This chapter provides background information about media handler components in general and explains
the difference between media handler components and derived media handler components. After reading
this chapter you should understand why media handler components exist and whether you need to create
a derived media handler component.

Media Handler Components

Media handler components allow the Movie Toolbox to play a movie’s data. The Movie Toolbox, by itself,
cannot read or write movie data. Rather, media handlers perform input and output services on behalf of the
Movie Toolbox. The Movie Toolbox gains access to the appropriate media handler for a particular movie
track by examining the track’s media. That data structure identifies the media handler that created and
maintains the media.

Each media handler is primarily responsible for understanding the format and content of the media type it
supports. The media handler is intimately familiar with the sample structure used in its media, the compression
techniques used to store the media’s sample data, and the performance characteristics of the device that
stores the media.

During movie playback, the media handler draws its media’s data on the screen and plays the media’s sounds.
The media handler may use the services of other managers such as the Image Compression Manager for
compressed image data and the Sound Manager for sound data. When an application creates a movie, media
handlers store the movie’s data. The actual reading and writing of media data are performed by another
component, the data handler.

Applications never directly use the services of media handlers. The Movie Toolbox controls all movie data
storage and retrieval on behalf of QuickTime applications.

Figure 1-1 shows the logical relationships between applications, the Movie Toolbox, media handlers, and
data handlers.

Media Handler Components 9
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About QuickTime Media Handler Components

Control flow

Data flow

Movie Toolbox

Base media
handler

Video media
handler

Derived media handler

Data handler (HFS)

Application

Apple had three primary goals for isolating the Movie Toolbox and QuickTime applications from the details
of media data access. First, the isolation allows programmers who develop the Movie Toolbox and QuickTime
applications to focus on the specifics of the problems they are addressing, freed from concerns about data
access. Second, this architecture allows QuickTime to be easily extended to accommodate new storage
devices and technologies. Third, by documenting the media handler interface, developers can create their
own, special-purpose media handlers that work with QuickTime.

Derived Media Handler Components

Much of what a media handler component must do is common to all media handlers. Managing a connection
with the appropriate data handler, retrieving movie data from media samples, and storing movie data into
new samples account for a substantial part of every media handler’s responsibilities. To make it easier for
developers to create media handler components, Apple provides a base media handler component that
performs most of the common duties of a media handler.

Apple’s base media handler component eliminates much of the work you would have to do to create your
own media handler component. The base media handler interacts with both the Movie Toolbox and the
appropriate data handler, so that your media handler only has to deal with service requests, and you can
ignore many of the housekeeping functions. It understands the format of Apple’s media samples and sample
descriptions, so that your media handler only has to worry about the actual media data. Finally, it provides
basic services that your media handler can use to accommodate unusual display environments.

When you build your media handler component on top of the base media handler, your media handler is
known as a derivedmedia handler component. This terminology is borrowed from object-oriented development
and refers to the fact that your media handler is based on, or derived from, the services provided by Apple’s

10 Derived Media Handler Components
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About QuickTime Media Handler Components

base media handler. All media handlers written by developers are derived media handlers, because they all
use the services of the base media handler. Figure 1-2 shows the relationship between the base media
handler, derived media handlers, the Movie Toolbox, and data handler components.

Control flow

Data flow

Base Media Handler

Application

Derived media handler

Movie Toolbox

Data Handler

Note: Early versions of QuickTime required some developers to create complete stand-alone media handlers
for performance reasons; derived media handlers were limited to low-bandwidth media. This is no longer
true. To create a new media handler for QuickTime, you always write a derived media handler.

Derived Media Handler Components 11
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About QuickTime Media Handler Components

12 Derived Media Handler Components
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About QuickTime Media Handler Components

This chapter describes the process of creating a derived media handler component. It provides an example
of creating a derived media handler component and defines its component and request flags. The functional
interface that your derived media handler component must support is described in Derived Media Handler
Support (page 19).

Before reading this section, you should be familiar with how to create components.

Apple has defined the MediaHandlerType component type value ('mhlr') for media handler components.
All components of this type have the same type value.

Apple has also defined a functional interface for derived media handler components. For information about
the functions that your component must support, see Derived Media Handler Support (page 19).

A Sample Derived Media Handler Component

This section supplies a sample program that implements a derived media handler component for PICT images.

Implementing the Required Component Functions

Listing 2-1 supplies the component dispatchers for the media handler component for PICT images together
with the required functions.

Listing 2-1 Implementing the required media handler component functions

typedef struct {
 ComponentInstance self;
 ComponentInstance parent;
 ComponentInstance delegateComponent;
 Fixed width;
 Fixed height;
 MatrixRecord matrix;
 Media media;
 Track track;
} PictGlobalsRecord, *PictGlobals;

pascal ComponentResult PictMediaDispatch (ComponentParameters *params,
 Handle storage)
{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;

 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = PictOpen; break;

A Sample Derived Media Handler Component 13
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

 case kComponentCloseSelect:
 componentProc = PictClose; break;
 case kComponentCanDoSelect:
 componentProc = PictCanDo; break;
 case kComponentVersionSelect:
 componentProc = PictVersion; break;
 case kComponentTargetSelect:
 componentProc = PictVersion; break;
 case kMediaInitializeSelect:
 componentProc = PictInitialize; break;
 case kMediaIdleSelect:
 componentProc = PictIdle; break;
 case kMediaSetDimensionsSelect:
 componentProc = PictSetDimensions; break;
 case kMediaSetMatrixSelect:
 componentProc = PictSetMatrix; break;
 }
 if (componentProc)
 err = CallComponentFunctionWithStorage (storage, params,
 componentProc);
 else
 err = DelegateComponentCall (params, ((PictGlobals)
 storage)->delegateComponent);
 return err;
}

pascal ComponentResult PictCanDo (PictGlobals globals,
 short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kComponentTargetSelect:
 case kMediaInitializeSelect:
 case kMediaIdleSelect:
 case kMediaSetDimensionsSelect:
 case kMediaSetMatrixSelect:
 return true;
 default:
 return ComponentFunctionImplemented
 (globals->delegateComponent, ftnNumber);
 }
}

pascal ComponentResult PictVersion (PictGlobals globals)
{
 return 0x00020001;
}

pascal ComponentResult PictOpen(PictGlobals globals,
 ComponentInstance self)
{
 OSErr err;

 /* allocate storage */
 globals = (PictGlobals)NewPtrClear(sizeof(PictGlobalsRecord));

14 A Sample Derived Media Handler Component
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

 if (err = MemError()) return err;
 SetComponentInstanceStorage(self, (Handle)globals);
 globals->self = self;
 globals->parent = self;

 /* find a base media handler to serve as a delegate */
 globals->delegateComponent =
 OpenDefaultComponent (MediaHandlerType,
 BaseMediaType);
 if (globals->delegateComponent)
 PictTarget(globals, self); /* set up the calling chain */
 else {
 DisposePtr((Ptr)globals);
 err = cantOpenHandler;
 }
 return err;
}

pascal ComponentResult PictClose (PictGlobals globals,
 ComponentInstance self)
{
 if (globals) {
 if (globals->delegateComponent)
 CloseComponent(globals->delegateComponent);
 DisposePtr((Ptr)globals);
 }
 return noErr;
}

pascal ComponentResult PictTarget(PictGlobals store,
 ComponentInstance parentComponent)
{
 /* remember who is at the top of your calling chain */
 store->parent = parentComponent;

 /* and inform your delegate component of the change */
 ComponentSetTarget(store->delegateComponent, parentComponent);

 return noErr;
}

Initializing a Derived Media Handler Component

The derived media handler component is initialized by the Movie Toolbox’s calling of the MediaInitialize
function. You should then report the derived media handler capabilities to the base media handler before
the Movie Toolbox starts working with your media by calling the MediaSetHandlerCapabilities function
from your MediaInitialize function.

Listing 2-2 is the initialization function for a derived media handler. The PictInitialize function stores
the initial height, width, track movie matrix, media, and track of the derived media handler component. From
PictInitialize, the MediaSetHandlerCapabilities function is called to inform the base media handler
of its existence and features.

A Sample Derived Media Handler Component 15
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

Listing 2-2 Initializing a derived media handler

pascal ComponentResult PictInitialize (PictGlobals store,
 GetMovieCompleteParams *gmc)
{
 /* remember some useful parameters */
 store->width = gmc->width;
 store->height = gmc->height;
 store->matrix = gmc->trackMovieMatrix;
 store->media = gmc->theMedia;
 store->track = gmc->theTrack;

 /* tell the base media handler about your derived
 media handler */
 MediaSetHandlerCapabilities(store->delegateComponent,
 handlerHasSpatial, handlerHasSpatial);

 return noErr;
}

Drawing the Media Sample

The Movie Toolbox provides processing time to your derived media handler to display samples by calling
the MediaIdle function. Your media handler may use this time to play its media sample. The code in
Listing 2-3 allows the derived media handler component to draw the current media sample (in this case, a
PICT image).

Listing 2-3 Drawing the media sample

pascal ComponentResult PictIdle (PictGlobals store,
 TimeValue atMediaTime,
 long flagsIn, long *flagsOut,
 const TimeValue *tr)
{
 OSErr err;
 Rect r;
 Handle sample = NewHandle (0);
 if (err = MemError()) goto bail;

 /* get the current sample */
 err = GetMediaSample (store->media, sample, 0, nil,
 atMediaTime, nil, 0, 0, 0, 0, 0, 0);
 if (err) goto bail;

 /* draw it using the current matrix */
 SetRect (&r, 0, 0, FixRound (store->width),
 FixRound (store->height));
 TransformRect (&store->matrix, &r, nil);
 EraseRect (&r);
 DrawPicture ((PicHandle)sample, &r);

bail:
 DisposeHandle (sample);
 flagsOut |= mDidDraw; / let Movie Toolbox know you drew
 something */
 return err;

16 A Sample Derived Media Handler Component
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

}

pascal ComponentResult PictSetDimensions (PictGlobals store,
 Fixed width,
 Fixed height)
{
 /* remember the new track */
 store->width = width;
 store->height = height;
 return noErr;
}

pascal ComponentResult PictSetMatrix (PictGlobals store,
 MatrixRecord *trackMovieMatrix)
{
 /* remember the new display matrix */
 store->matrix = *trackMovieMatrix;
 return noErr;
}

Request Processing

Because your derived media handler is based on the base media handler component, you avoid many of the
details involved in creating a media handler. However, your derived media handler must observe a few rules
when processing service requests. These rules are as follows:

 ■ When you receive an open request from the Component Manager, in addition to the other processing
you perform on your own behalf, you must also open a connection to the base media handler component.
You should save the component instance that is returned by the Component Manager so that your
media handler can use the services of the base media handler.

 ■ The base media handler has a component type of MediaHandlerType (which is set to 'mhlr') and a
component subtype of BaseMediaType (which is set to 'gnrc'). You can use these values with the
Component Manager’s OpenDefaultComponent function to open a connection to the base media
handler.

 ■ At this time, you must also tell the base media handler that your handler is derived from it. Use the
Component Manager’s OpenComponent function to create a component instance of your media handler
as a descendant of the base media handler. After calling that function, you should send the
kComponentSetTargetSelect request to the base media handler, so that it knows your media handler
is derived from it. Use the Component Manager’s ComponentSetTarget function to send a target
request.

 ■ When you receive a close request from the Component Manager, be sure to close your handler’s
connection to the base media handler component. Use the Component Manager’s CloseComponent
function.

 ■ Your derived media handler must support the target request, so that your component can be used by
other media handlers.

 ■ Be sure to pass all unsupported service requests to the base media handler component. Use the
Component Manager’s DelegateComponentCall function to pass these requests to the base media
handler.

Request Processing 17
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

 ■ If your media handler component competes for potentially scarce system resources, your component
should release those resources when you aren’t using them. For example, if you are creating a media
handler that uses sound, you might use sound channels. Because there are a limited number of sound
channels available, your component should free its channels whenever your media is not playing or has
been stopped. You can reallocate the channels when you start playing or your component’s
MediaPreroll function is called.

18 Request Processing
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Derived Media Handler Component

This chapter describes the functions and constants that your derived media handler may support and the
data structure that your component may use to interact with the base media handler.

Data Structure

The GetMovieCompleteParams data type defines the layout of the complete movie parameter structure
used by the MediaInitialize function:

typedef struct {
 short version; /* version; always 1 */
 Movie theMovie; /* movie identifier */
 Track theTrack; /* track identifier */
 Media theMedia; /* media identifier */
 TimeScale movieScale; /* movie's time scale */
 TimeScale mediaScale; /* media's time scale */
 TimeValue movieDuration; /* movie's duration */
 TimeValue trackDuration; /* track's duration */
 TimeValue mediaDuration; /* media's duration */
 Fixed effectiveRate; /* media's effective rate */
 TimeBase timeBase; /* media's time base */
 short volume; /* media's volume */
 Fixed width; /* width of display area */
 Fixed height; /* height of display area */
 MatrixRecord trackMovieMatrix; /* transformation matrix */
 CGrafPtr moviePort; /* movie's graphics port */
 GDHandle movieGD; /* movie's graphics device */
 PixMapHandle trackMatte; /* track's matte */
 QTAtomContainer inputMap; /* media's input map */
} GetMovieCompleteParams;

DescriptionField

Specifies the version of this structure. This field is always set to 1.version

Identifies the movie that contains the current media's track. This movie identifier is
supplied by the Movie Toolbox. Your component may use this identifier to obtain
information about the movie that is using your media.

theMovie

Identifies the track that contains the current media. This track identifier is supplied
by the Movie Toolbox. Your component may use this identifier to obtain information
about the track that contains your media. For example, you might call the Movie
Toolbox's GetTrackNextInterestingTime function in order to examine the
track's edit list.

theTrack

Data Structure 19
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

DescriptionField

Identifies the current media. This media identifier is supplied by the Movie Toolbox.
Your derived media handler can use this identifier to read samples or sample
descriptions from the current media, using the Movie Toolbox's GetMediaSample
and GetMediaSampleDescription functions.

theMedia

Specifies the time scale of the movie that contains the current media's track. If the
Movie Toolbox changes the movie's time scale, the toolbox calls your derived media
handler's MediaSetMovieTimeScale function.

movieScale

Specifies the time scale of the current media. If the Movie Toolbox changes your
media's time scale, the toolbox calls your derived media handler's
MediaSetMediaTimeScale function.

mediaScale

Contains the movie's duration. This value is expressed in the movie's time scale.movieDuration

Contains the track's duration. This value is expressed in the movie's time scale.trackDuration

Contains the media's duration. This value is expressed in the media's time scale.mediaDuration

Contains the media's effective rate. This rate ties the media's time scale to the
passage of absolute time, and does not necessarily correspond to the movie's rate.
This value takes into account any master time bases that may be serving the media's
time base. The value of this field indicates the number of time units (in the media's
time scale) that pass each second. This rate is represented as a 32-bit, fixed-point
number. The high-order 16 bits contain the integer portion, and the low-order 16
bits contain the fractional portion. The rate is negative when time is moving
backward for the media. Whenever the Movie Toolbox changes your media's effective
rate, it calls your derived media handler's MediaSetRate function.

effectiveRate

Identifies the media's time base.timeBase

Contains the media's current volume setting. This value is represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer portion; the low-order
8 bits contain the fractional part. Volume values range from -1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the volume setting. If the
Movie Toolbox changes your media's volume, it calls your derived media handler's
MediaGSetVolume function.

volume

Indicates the width, in pixels, of the track rectangle. This field, along with the height
field, specifies a rectangle that surrounds the image that is displayed when the
current media is played. This value corresponds to the x coordinate of the lower-right
corner of the rectangle and is expressed as a fixed-point number. If the Movie
Toolbox modifies this rectangle, the toolbox calls your derived media handler's
MediaSetDimensions function. Note that your media need not present only a
rectangular image. The Movie Toolbox can use a clipping region to cause your
media's image to be displayed in a region of arbitrary shape, and it can use a matte
to control the image's transparency. The toolbox calls your derived media handler's
MediaSetClip function whenever it changes your media's clipping region. The
trackMatte field in this structure specifies a matte region.

width

20 Data Structure
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

DescriptionField

Indicates the height, in pixels, of the track rectangle. This value corresponds to the
y coordinate of the lower-right corner of the rectangle and is expressed as a
fixed-point number.

height

Specifies the matrix that transforms your media's pixels into the movie's coordinate
system. The Movie Toolbox obtains this matrix by concatenating the track matrix
and the movie matrix. You should use this matrix whenever you are displaying
graphical data from your media. Whenever the Movie Toolbox modifies this matrix,
it calls your derived media handler's MediaSetMatrix function.

trackMovieMatrix

Indicates the movie's graphics port. Whenever the Movie Toolbox changes the
movie's graphics world, it calls your derived media handler's MediaSetGWorld
function.

moviePort

Specifies the movie's graphics device. Whenever the Movie Toolbox changes the
movie's graphics world, it calls your derived media handler's MediaSetGWorld
function.

movieGD

Identifies the matte region assigned to the track that uses your media. This field
contains a handle to a pixel map that contains a blend matte. Your component is
not responsible for disposing of this matte. If there is no matte, this field is set to
nil.

trackMatte

A reference to the media's input map. The media input map should not be modified
or disposed.

inputMap

Component Manager Flag

The Component Manager allows you to specify information about your component’s capabilities in the
componentFlags field of the component description record. Within this field, the
mediaHandlerFlagBaseClient flag indicates that your component is derived from another component.
Setting this flag to 1 tells the Component Manager that your component is a client of the base media handler.

Functions

This section lists the functions that may be supported by derived media handler components.

Component Manager Flag 21
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

Note: Many of the functions described in this section are optional; your derived media handler may not
need to support them. The description of each function discusses the issues you should consider when
deciding whether or not to support a specific function.

Managing the Component

Derived media handlers provide three functions that allow the Movie Toolbox to manage its relationship
with the media handler. The Movie Toolbox calls your MediaInitialize to give you an opportunity to
prepare to provide access to your media. The Movie Toolbox grants processing time to your handler by
calling your MediaIdle function. Your MediaGGetStatus function allows the Movie Toolbox to retrieve
status information after calling MediaIdle.

General Data Management

While the base media handler isolates your component from the details of media data access, your derived
media handler still needs to keep track of certain information in order to support movie playback and creation.
This section discusses functions that help your media handler manage its information.

Your media handler may store proprietary information in its media. The Movie Toolbox calls two media
handler functions in order to give you an opportunity to retrieve or store this information. The
MediaPutMediaInfo function allows you to store your special information in your media. The
MediaGetMediaInfo function delivers that data to your media handler.

The Movie Toolbox tells your media handler when its track has been enabled or disabled by calling your
MediaSetActive function. The Movie Toolbox prepares your handler for playback by calling your
MediaPreroll function. Whenever your media’s playback rate changes, the Movie Toolbox calls your
MediaSetRate function. Whenever the track that uses your media is edited, the Movie Toolbox calls your
MediaTrackEdited function.

If the Movie Toolbox has called its SetMediaSampleDescription function on a sample description, it uses
the MediaSampleDescriptionChanged function to notify your media handler of the change.

The Movie Toolbox allows tracks to be identified by various characteristics. For instance, it is possible to
request that all tracks containing audio information be searched. To determine whether a track has a given
characteristic, the Movie Toolbox queries the media handler for each track. The Movie Toolbox calls the
MediaHasCharacteristic function with the specified characteristic.

The Movie Toolbox uses two functions to inform you about changes to your media’s time environment. The
MediaSetMediaTimeScale function allows the Movie Toolbox to change your media’s time scale. The
MediaSetMovieTimeScale function allows the Movie Toolbox to tell you when the movie’s time scale has
changed.

Other useful functions include

 ■ MediaGSetActiveSegment

 ■ MediaInvalidateRegion

 ■ MediaGetNextStepTime

 ■ MediaTrackReferencesChanged

22 Functions
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

 ■ MediaTrackPropertyAtomChanged

 ■ MediaSetTrackInputMapReference

 ■ MediaGetSampleDataPointer

 ■ MediaReleaseSampleDataPointer

 ■ MediaCompare

 ■ MediaSetVideoParam

 ■ MediaGetVideoParam

 ■ MediaSetNonPrimarySourceData

 ■ MediaGetOffscreenBufferSize

 ■ MediaSetHints

 ■ MediaGetName

Graphics Data Management

If your media handler draws media data on the screen, you need to manage your media’s graphics
environment. The Movie Toolbox uses a number of functions to inform you about changes to the graphics
environment. The Movie Toolbox only calls these functions if you have set the handlerHasSpatial flag to
1 in the flags parameter of the MediaSetHandlerCapabilities function.

The Movie Toolbox calls your handler’s MediaSetGWorld function whenever your media’s graphics port or
graphics device has changed. The MediaSetDimensions function allows the Movie Toolbox to inform your
handler about changes to its spatial dimensions. Whenever either the movie or track matrix changes, the
Movie Toolbox calls your MediaSetMatrix function. Similarly, if your media’s clipping region changes, the
Movie Toolbox calls your MediaSetClip function.

When it is building up a movie’s image from its component tracks, the Movie Toolbox must be able to
determine which tracks are transparent. The Movie Toolbox calls your MediaGetTrackOpaque function to
retrieve this information about your media.

The Movie Toolbox calls your MediaGetNextBoundsChange function so that it can learn when your media
will next change its display shape. When the Movie Toolbox wants to find out the shape of the region into
which you draw your media, it calls your MediaGetSrcRgn function.

Other useful functions include

 ■ MediaGetDrawingRgn

 ■ MediaGetGraphicsMode

 ■ MediaSetGraphicsMode

Sound Data Management

The Movie Toolbox uses your MediaGSetVolume function to tell your media handler when its sound volume
has changed. It uses MediaSetSoundLocalizationData to support 3D sound capabilities in a media
handler that plays sound.

Functions 23
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

Base Media Handler Utility Function

Apple’s base media handler component provides a utility function, MediaSetHandlerCapabilities, which
allows you to tell the base handler what your derived handler can do.

Management of Progressive Downloads

The function MediaMakeMediaTimeTable is called by the base media handler to create a media time table
whenever an application or other software calls the Toolbox’s QTMovieNeedsTimeTable,
GetMaxLoadedTimeInMovie, MakeTrackTimeTable, or MakeMediaTimeTable function. When an
application or other software calls one of these functions, it allocates an unlocked relocatable memory block
for the time table to be returned and passes a handle to it in the offsets parameter. Your derived media
handler must resize the block to accommodate the time table it returns.

The time table your derived media handler returns is a two-dimensional array of long integers that is organized
so that each row in the table contains values for one data reference. The first column in the table contains
values for the time in the media specified by the startTime parameter, and each subsequent column
contains values for the point in the media that is later by the value specified by the timeIncrement parameter.
Each long integer value in the table specifies the offset, in bytes, from the beginning of the data reference
for that point in the media.

Constants

The constants listed in this section support the functions listed in Functions (page 21).

Function Flags

/* flags in flags parameter of MediaSetHandlerCapabilities function */
enum {
 handlerHasSpatial = 1<<0, /* draws */
 handlerCanClip = 1<<1, /* clips */
 handlerCanMatte = 1<<2, /* reserved */
 handlerCanTransferMode = 1<<3, /* does transfer modes */
 handlerNeedsBuffer = 1<<4, /* use offscreen buffer */
 handlerNoIdle = 1<<5, /* never draws */
 handlerNoScheduler = 1<<6, /* schedules self */
 handlerWantsTime = 1<<7, /* needs more time */
 handlerCGrafPortOnly = 1<<8 /* color only */
};

/* values for inFlags parameter of MediaIdle function */
enum {
 mMustDraw = 1<<3, /* must draw now */
 mAtEnd = 1<<4, /* current time
 corresponds to end of movie */
 mPreflightDraw = 1<<5 /* must not draw */
};

/* values for outFlags parameter of MediaIdle function */

24 Constants
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

enum {
 mDidDraw = 1<<0, /* did draw */
 mNeedsToDraw = 1<<2 /* needs to draw */
};

Component Types and Characteristics

/* component type and subtype values */
#define MediaHandlerType 'mhlr' /* derived media handler */
#define BaseMediaType 'gnrc' /* base media handler */

/* constants used in the characteristic parameter of the
 MediaHasCharacteristic function */
#define VisualMediaCharacteristic 'eyes' /* visual media characteristic */
#define AudioMediaCharacteristic 'ears' /* audio media characteristic */

Selectors

/* selectors for derived media handler components */
enum {
 kMediaInitializeSelect = 0x501, /* MediaInitialize */
 /* MediaSetHandlerCapabilities */
 kMediaSetHandlerCapabilitiesSelect = 0x502,
 kMediaIdleSelect = 0x503, /* MediaIdle */
 kMediaGetMediaInfoSelect = 0x504, /* MediaGetMediaInfo */
 kMediaPutMediaInfoSelect = 0x505, /* MediaPutMediaInfo */
 kMediaSetActiveSelect = 0x506, /* MediaSetActive */
 kMediaSetRateSelect = 0x507, /* MediaSetRate */
 kMediaGGetStatusSelect = 0x508, /* MediaGGetStatus */
 kMediaTrackEditedSelect = 0x509, /* MediaTrackEdited */
 kMediaSetMediaTimeScaleSelect = 0x50A, /* MediaSetMediaTimeScale */
 kMediaSetMovieTimeScaleSelect = 0x50B, /* MediaSetMovieTimeScale */
 kMediaSetGWorldSelect = 0x50C, /* MediaSetGWorld */
 kMediaSetDimensionsSelect = 0x50D, /* MediaSetDimensions */
 kMediaSetClipSelect = 0x50E, /* MediaSetClip */
 kMediaSetMatrixSelect = 0x50F, /* MediaSetMatrix */
 kMediaGetTrackOpaqueSelect = 0x510, /* MediaGetTrackOpaque */
 kMediaSetGraphicsModeSelect = 0x511, /* MediaSetGraphicsMode */
 kMediaGetGraphicsModeSelect = 0x512, /* MediaGetGraphicsMode */
 kMediaGSetVolumeSelect = 0x513, /* MediaGSetVolume */
 kMediaSetSoundBalanceSelect = 0x514, /* MediaSetSoundBalance */
 kMediaGetSoundBalanceSelect = 0x515, /* MediaGetSoundBalance */
 kMediaGetNextBoundsChangeSelect = 0x516, /* MediaGetNextBoundsChange */
 kMediaGetSrcRgnSelect = 0x517, /* MediaGetSrcRgn */
 kMediaPrerollSelect = 0x518, /* MediaPreroll */
 /* MediaSampleDescriptionChanged */
 kMediaSampleDescriptionChangedSelect = 0x519,
 kMediaHasCharacteristicSelect = 0x51A /* MediaHasCharacteristic */
};

Constants 25
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

Media Video Parameters

The whichparam parameter to the MediaSetVideoParam and MediaGetVideoParam functions specifies
which video parameter you want to adjust. QuickTime defines these constants that you can use to configure
the whichparam parameter.

enum {
 kMediaVideoParamBrightness = 1,
 kMediaVideoParamContrast = 2,
 kMediaVideoParamHue = 3,
 kMediaVideoParamSharpness = 4,
 kMediaVideoParamSaturation = 5,
 kMediaVideoParamBlackLevel = 6,
 kMediaVideoParamWhiteLevel = 7
};

DefinitionTerm

The brightness value controls the overall brightness of the digitized video
image. Brightness values range from 0 to 65,535, where 0 is the darkest possible
setting and 65,535 is the lightest possible setting.

kMediaVideoParam-
Brightness

The contrast value ranges from 0 to 65,535, where 0 represents no change to
the basic image and larger values increase the contrast of the video image
(that is, increase the slope of the transform).

kMediaVideoParam-
Contrast

Hue is similar to the tint control on a television. It is specified in degrees with
complementary colors set 180 degrees apart (red is 0 degrees, green is +120
degrees, and blue is -120 degrees). QuickTime supports hue values that range
from 0 (-180 degrees shift in hue) to 65,535 (+179 degrees shift in hue), where
32,767 represents a 0 degrees shift in hue.

kMediaVideoParamHue

The sharpness value ranges from 0 to 65,535, where 0 represents no sharpness
filtering and 65,535 represents full sharpness filtering. Higher values result in
a visual impression of increased picture sharpness

kMediaVideoParam-
Sharpness

The saturation value controls color intensity. For example, at high saturation
levels, red appears to be red; at low saturation, red appears pink. Valid saturation
values range from 0 to 65,535, where 0 is the minimum saturation value and
65,535 specifies maximum saturation.

kMediaVideoParam-
Saturation

Black level refers to the degree of blackness in an image.The highest setting
produces an all-black image; on the other hand, the lowest setting yields little,
if any, black even with black objects in the scene. Black level values range from
0 to 65,535, where 0 represents the maximum black value and 65,535 represents
the minimum black value.

kMediaVideoParam-
BlackLevel

White level refers to the degree of whiteness in an image. White level values
range from 0 to 65,535, where 0 represents the minimum white value and
65,535 represents the maximum white value

kMediaVideoParam-
WhiteLevel

26 Constants
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Derived Media Handler Support

This chapter describes what preview components are and what they do.

Preview components provide two basic services: they draw and create previews. This section describes how
preview components obtain preview data, what kind of information is stored with the file, and what they do
with the preview data.

Obtaining Preview Data

Preview components obtain data from

 ■ a small data cache

 ■ a reference they create to another resource in the file

 ■ the file for which they are invoked

The preview component can create a small data cache containing the preview. Although creation of the
preview cache may be time-consuming, the cache can then be stored in the file and used to display the
preview for the file rapidly on subsequent occasions. The picture file preview component, which creates a
thumbnail picture for the file and stores it in the file’s resource fork, is one way of getting information from
a data cache.

The preview component can create a reference to another resource in the file. For example, some file types
already contain a picture preview in them. The preview component can then create a pointer to that existing
data, rather than making another copy of it. The movie preview component works in this way when the
preview for the movie is actually the movie’s preview, rather than only its poster picture.

If the preview component can display the preview for the file quickly enough in every case, there is no need
for a cache. Such a preview component reinterprets the data in the file each time it is invoked, rather than
creating a preview cache once. This method of getting the information allows the file to remain untouched,
requires no disk space, and does not demand that the user or the application make any special effort to
create the preview. Unfortunately, in most cases, it is not possible to interpret the data quickly enough to
use this approach. Preview components that handle this type of preview should set the
pnotComponentNeedsNoCache flag in their component flags field.

enum {
 pnotComponentNeedsNoCache = 2
};

If a preview component relies on other system software services, it must make sure they are present. For
example, if your preview component uses the Movie Toolbox, it is responsible for calling the Movie Toolbox’s
EnterMovies and ExitMovies functions.

Obtaining Preview Data 27
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Preview Components

When previewing is complete, the component receives a normal Component Manager close request. If you
add any controls to the window, you should dispose of them while you are calling the Component Manager’s
CloseComponent function.

A preview component should never write back to the file directly. The caller of the preview component is
responsible for actually modifying the file. You should open all access paths to the file with read permission
only.

Figure 4-1 illustrates the relationships of a preview component, the Image Compression Manager, and an
application.

Control flow

Data flow

Image Compression Manager

Preview Component

Application

Storing Preview Data in Files

A preview may or may not contain sound or text data or other types of information. In addition to the visual
preview, QuickTime provides the preview resource, described on The Preview Resource (page 28), which
also allows you to store

 ■ a brief description of the file

 ■ a list of keywords

 ■ an associated language code to allow use of a single file in more than one region

 ■ a modification date to help applications determine when the data has been changed

The Preview Resource

QuickTime uses the preview resource (defined by the pnotResource data type) with a resource ID of 0 to
store the visual preview information. The structure of the preview resource is shown in Listing 4-1.

Warning: If you parse this resource directly, please do extensive error checking in your code so as not
to hinder future expansion of the data structure. In particular, if you encounter unknown version bits,
exercise caution. Unexpected results may occur.

28 Storing Preview Data in Files
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Preview Components

Listing 4-1 The preview resource

typedef struct pnotResource {
 unsigned long modDate; /* modification date */
 short version; /* version number of preview resource */
 OSType resType; /* type of resource used as preview cache */
 short resID; /* resource identification number
 of resource used as preview cache */
 short numResItems; /* number of additional file
 descriptions */
 pnotResItem resItem[]; /* array of file descriptions */
} pnotResource;

DescriptionField

Contains the modification time (in standard Macintosh seconds since midnight, January
1, 1904) of the file for which the preview was created. This parameter allows you to find
out if the preview is out of date with the contents of the file.

modDate

Contains the version number of the preview resource. The low bit of the version is a flag
for preview components that only reference their data. If the bit is set, it indicates that the
resource identified in the preview resource is not owned by the preview component, but
is part of the file. It is not removed when the preview is updated or removed (using the
Image Compression Manager's MakeFilePreview or AddFilePreview function), as it
would be if the version number were 0.

version

Contains the type of a resource used as a preview cache for the given file. The type of the
resource determines the subtype of the preview component that should be used to display
the preview.

resType

Contains the identification number of a resource used as a preview cache for the specified
file.

resID

Specifies the number of additional file descriptions stored with this preview.numResItems

Contains the preview resource item structure (defined by the pnotResItem data type).resItem

Using the Preview Data

Preview components may

 ■ create a preview

 ■ draw a preview

 ■ create and draw a preview

Some preview components only create a preview and rely on another component to display it. For example,
by default, the movie preview component creates a picture preview for the file. This is displayed by the
picture preview component.

Using the Preview Data 29
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Preview Components

Most preview components simply draw the preview. These are the simplest type of display components.
They do not require any other event processing (including the scheduling of idle time) to play a movie. The
picture preview component is an example of this type of component.

Preview components that do not require a cache should have a subtype that matches the type of file for
which they can display previews.

A preview component for sound would require event processing, since it would need time to play the sound.
If your preview component requires event processing, you must have the pnotComponentWantsEvents
flag set in its component flags field.

enum {
 pnotComponentWantsEvents = 1,
};

30 Using the Preview Data
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Preview Components

This chapter describes how to create your own preview component. A listing of a sample component is
included.

Overview

Preview components that create previews have a type of 'pmak' and a subtype that matches the type of
the file for which they create previews.

Preview components that display previews have a type of 'pnot' and a subtype that matches the type of
the resource that they display.

You can use the following constants to refer to the request codes for each of the functions that your preview
component must support.

enum {
 kPreviewShowDataSelector = 1, /* PreviewShowData */
 kPreviewMakePreviewSelector = 2, /* PreviewMakePreview */
 kPreviewMakePreviewReferenceSelector = 3, /* PreviewMakePreviewReference */
 kPreviewEventSelector = 4 /* PreviewEvent */
};

This section presents a sample program that displays a preview component for the display of PICS animation
files. First it implements the required Component Manager functions. Then it converts the PICT image data
into a format for display as a preview.

Implementing Required Component Functions

Listing 5-1 supplies the component dispatchers for the preview component together with the can do, version,
open, and close functions.

Listing 5-1 Implementing the required Component Manager functions

typedef struct {
 ComponentInstance self;
} PICSPreviewRecord, **PICSPreviewGlobals;

/* entry point for all Component Manager requests */
pascal ComponentResult PICSPreviewDispatch
 (ComponentParameters *params, Handle store)
{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;

Overview 31
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating Preview Components

 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = PICSPreviewOpen; break;
 case kComponentCloseSelect:
 componentProc = PICSPreviewClose; break;
 case kComponentCanDoSelect:
 componentProc = PICSPreviewCanDo; break;
 case kComponentVersionSelect:
 componentProc = PICSPreviewVersion; break;
 case kPreviewShowDataSelector:
 componentProc = PICSPreviewShowData; break;
 }

 if (componentProc)
 err = CallComponentFunctionWithStorage (store, params,
 componentProc);
 return err;
}

pascal ComponentResult PICSPreviewCanDo
 (PICSPreviewGlobals store, short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kPreviewShowDataSelector:
 return true;
 default:
 return false;
 }
}

pascal ComponentResult PICSPreviewVersion
 (PICSPreviewGlobals store)
{
 return 0x00010001;
}

pascal ComponentResult PICSPreviewOpen (PICSPreviewGlobals store,
 ComponentInstance self)
{
 store = (PICSPreviewGlobals)NewHandle
 (sizeof (PICSPreviewRecord));
 if (!store) return MemError();
 SetComponentInstanceStorage (self, (Handle)store);
 (**store).self = self;

 return noErr;
}

pascal ComponentResult PICSPreviewClose
 (PICSPreviewGlobals store,
 ComponentInstance self)
{
 if (store) DisposeHandle ((Handle)store);

32 Implementing Required Component Functions
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating Preview Components

 return noErr;
}

Displaying Image Data as a Preview

To display a file’s image preview, your PreviewShowData function is called. Listing 5-2 includes the
PICSPreviewShowData function, which previews a PICS file. The function loads the first PICT image from
the PICS file and uses the PICT file preview component to display it.

Listing 5-2 Converting data into a form that can be displayed as a preview

pascal ComponentResult PICSPreviewShowData(
 PICSPreviewGlobals store, OSType dataType, Handle data,
 const Rect *inHere)
{
 OSErr err = noErr;
 short resRef = 0, saveRes = CurResFile();
 FSSpec theFile;
 Boolean whoCares;
 Handle thePict = nil;
 ComponentInstance ci;

 /* because your component has the pnotComponentNeedsNoCache
 flag set, it should only be called to display files */
 if (dataType != rAliasType)
 return paramErr;

 /* open up the file to preview */
 if (err = ResolveAlias (nil, (AliasHandle)data, &theFile,
 &whoCares)) goto bail;
 resRef = FSpOpenResFile (&theFile, fsRdPerm);
 if (err = ResError()) goto bail;

 /* get the first 'PICT' */
 UseResFile (resRef);
 thePict = Get1IndResource ('PICT', 1);
 if (!thePict) goto bail;

 /* use the PICT preview component to display the preview */
 if (ci = OpenDefaultComponent (ShowFilePreviewComponentType, 'PICT'))
 {
 PreviewShowData (ci, 'PICT', thePict, inHere);
 CloseComponent (ci);
 }

bail:
 if (resRef) CloseResFile (resRef);
 if (thePict) DisposeHandle (thePict);
 UseResFile (saveRes);
 return err;
}

Displaying Image Data as a Preview 33
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating Preview Components

34 Displaying Image Data as a Preview
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating Preview Components

Introduction

This chapter describes the functions for displaying previews, handling events in previews, and creating
previews that are provided by preview components. These functions are described from the perspective of
the Image Compression Manager, which is most likely to call preview components. If you are developing a
preview component, your component must behave as described here.

Handling Events

The PreviewEvent function is provided so that your preview component can do standard event filtering.

Creating Previews

Two functions are available for use in creating previews. The PreviewMakePreview function creates previews
by allocating a handle to data to be added to the file. On the other hand, the
PreviewMakePreviewReference function makes previews by returning the type and identification number
of a resource within the file to be used as the preview for the file.

The Preview Resource

This section describes the preview resource, which is used to store a visual preview, and the preview resource
item structure, which is an array that allows you to store additional preview information.

The preview display code assumes that the data fork of the file is formatted using QuickTime atoms. See
QuickTime Movie Basics for information on atom-based storage.

Adding a preview results in at least two atoms being added to the data file. The first atom has a pnot tag.
Its basic structure is the same as the pnotResource structure.

struct PreviewResourceRecord {
 unsigned long modDate;
 short version;
 OSType resType;
 short resID;
};

Introduction 35
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Functions For Displaying Previews

DefinitionTerm

Contains the modification time (in the standard Macintosh format of seconds since midnight,
January 1, 1904) of the file for which the preview was created. This parameter allows you to
find out if the preview is out of date with the contents of the file.

modDate

Contains the version number of the preview resource. The low bit of the version is a flag for
preview components that only reference their data. If the bit is set, it indicates that the resource
identified in the preview resource is not owned by the preview component, but is part of the
file. It is not removed when the preview is updated or removed (using the Image Compression
Manager's MakeFilePreview or AddFilePreview function), as it would if the version number
were 0.

version

Identifies the type of the preview component used to display the preview data and the type of
the atom containing the preview data.

resType

Contains the index (1-based) of the atom to be used. For example, a resType of PICT and a
resID of 2 tells QuickTime to use the second PICT atom in the file for the preview data.

resID

Data Types

This section defines the component instance used by preview components, and lists the data structures for
preview resources and the preview resource item structure. See The Preview Resource (page 28) above,
which includes the new PreviewResourceRecord data structure.

typedef ComponentInstance pnotComponent;
typedef struct pnotResource {
 unsigned long modDate; /* modification date */
 short version; /* version number of preview resource */
 OSType resType; /* type of resource used as preview cache */
 short resID; /* resource identification number
 of resource used as preview cache */
 short numResItems; /* number of additional file descriptions */
 pnotResItem resItem[]; /* array of file descriptions */
} pnotResource;

typedef struct pnotResItem {
 unsigned long modDate; /* last modification date of item */
 OSType useType; /* what type of data */
 OSType resType; /* resource type containing item */
 short resID; /* resource ID containing this item */
 short rgnCode; /* region code */
 long reserved; /* set to 0 */
} pnotResItem; *pnotResItemPtr;

Constants

This section defines the constants that are used to communicate with preview components. These are
primarily flags that describe the preview components capabilities and requirements.

36 Data Types
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Functions For Displaying Previews

enum {
 pnotComponentWantsEvents = 1, /* component requires events */
 pnotComponentNeedsNoCache = 2 /* component does not require cache */
};
enum {
 kPreviewShowDataSelector = 1, /* PreviewShowData */
 kPreviewMakePreviewSelector = 2, /* PreviewMakePreview */
 kPreviewMakePreviewReferenceSelector = 3, /* PreviewMakePreviewReference */
 kPreviewEventSelector = 4 /* PreviewEvent */
};
#define ShowFilePreviewComponentType 'pnot' /* creates previews */
#define CreateFilePreviewComponentType 'pmak' /* displays previews */

Constants 37
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Functions For Displaying Previews

38 Constants
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Functions For Displaying Previews

This table describes the changes to QuickTime Component Creation Guide.

NotesDate

Revised artwork2007-01-08

Replaces "Media Handlers: Creating Media Handler Components" and "Preview
Components."

2006-01-10

New document that explains how to create a QuickTime media handler.2002-09-17

39
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2007-01-08 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Component Creation Guide
	Contents
	Listings
	Introduction
	About QuickTime Media Handler Components
	Media Handler Components
	Derived Media Handler Components

	Creating a Derived Media Handler Component
	A Sample Derived Media Handler Component
	Implementing the Required Component Functions
	Initializing a Derived Media Handler Component
	Drawing the Media Sample

	Request Processing

	Derived Media Handler Support
	Data Structure
	Component Manager Flag
	Functions
	Managing the Component
	General Data Management
	Graphics Data Management
	Sound Data Management
	Base Media Handler Utility Function
	Management of Progressive Downloads

	Constants
	Function Flags
	Component Types and Characteristics
	Selectors
	Media Video Parameters

	Preview Components
	Obtaining Preview Data
	Storing Preview Data in Files
	The Preview Resource
	Using the Preview Data

	Creating Preview Components
	Overview
	Implementing Required Component Functions
	Displaying Image Data as a Preview

	Functions For Displaying Previews
	Introduction
	Handling Events
	Creating Previews
	The Preview Resource
	Data Types
	Constants

	Revision History

