
Movie Toolkit Reference
QuickTime > Movie Creation

2006-05-23



Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, Quartz, QuickDraw,
QuickTime, and SoundTrack are trademarks of
Apple Inc., registered in the United States and
other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Movie Toolkit Reference 11

Overview 11
Functions by Task 11

Associating Movies With Controllers 11
Audio Conversion and Extraction 11
Copying Existing Atoms 12
Creating and Disposing of Atom Containers 12
Creating and Manipulating Sprites 12
Creating New Atoms 12
Enhancing Movie Playback Performance 12
Error Functions 13
Finding and Adding Samples 13
Finding Interesting Times 13
High-Level Download Control 13
High-Level Effects Functions 13
High-Level Movie Editing Functions 14
Low-Level Download Control 14
Metering Sound Level and Frequency 14
Modifying Atoms 15
Movie Functions 15
Movie Posters and Movie Previews 15
Movies and Your Event Loop 15
Registering and Unregistering Access Keys 16
Removing Atoms From an Atom Container 16
Retrieving Access Keys 16
Retrieving Atoms and Atom Data 16
Saving Movies 17
Setting Sound Parameters 18
Tween Component Requirements 18
Using the Full Screen 18
Working With Alternate Tracks 18
Working With Data References 19
Working With Media Handler Properties 19
Working With Movie Restrictions 19
Working With Movie Spatial Characteristics 19
Working With Progress and Cover Functions 20
Working With Sprite Worlds 20
Working With User Data 20
Supporting Functions 21

Functions 26
AddMediaDataRef 26

3
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.



AddMovieExecuteWiredActionsProc 26
AddMovieResource 27
AddMovieToStorage 29
AddSoundDescriptionExtension 30
AddUserData 30
AddUserDataText 31
AttachMovieToCurrentThread 32
BeginFullScreen 33
CanQuickTimeOpenDataRef 35
CanQuickTimeOpenFile 37
ClearMovieChanged 38
CloseMovieFile 39
CloseMovieStorage 40
CopyMediaUserData 40
CopyMovieUserData 41
CopyTrackUserData 42
CopyUserData 42
CountUserDataType 43
CreateMovieFile 44
CreateMovieStorage 46
CreateShortcutMovieFile 47
DeleteMovieFile 48
DeleteMovieStorage 49
DetachMovieFromCurrentThread 49
DisposeActionsUPP 50
DisposeAllSprites 50
DisposeDoMCActionUPP 51
DisposeGetMovieUPP 51
DisposeMovieController 51
DisposeMovieDrawingCompleteUPP 54
DisposeMovieExecuteWiredActionsUPP 55
DisposeMoviePrePrerollCompleteUPP 55
DisposeMoviePreviewCallOutUPP 56
DisposeMovieProgressUPP 56
DisposeMovieRgnCoverUPP 57
DisposeMoviesErrorUPP 57
DisposeQTCallBackUPP 57
DisposeQTEffectListFilterUPP 58
DisposeQTNextTaskNeededSoonerCallbackUPP 58
DisposeQTSyncTaskUPP 59
DisposeSprite 59
DisposeSpriteWorld 60
DisposeTextMediaUPP 61
DisposeTrackTransferUPP 62
DisposeTweenerDataUPP 62
DisposeUserData 63

4
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



EndFullScreen 63
FlattenMovie 64
FlattenMovieData 66
FlattenMovieDataToDataRef 68
GetMaxLoadedTimeInMovie 69
GetMediaDataRef 70
GetMediaDataRefCount 71
GetMediaNextInterestingDecodeTime 72
GetMediaNextInterestingDisplayTime 73
GetMediaNextInterestingTime 74
GetMediaPlayHints 76
GetMediaPropertyAtom 76
GetMovieAnchorDataRef 77
GetMovieAudioBalance 78
GetMovieAudioFrequencyLevels 79
GetMovieAudioFrequencyMeteringBandFrequencies 79
GetMovieAudioFrequencyMeteringNumBands 80
GetMovieAudioGain 81
GetMovieAudioMute 81
GetMovieAudioVolumeLevels 82
GetMovieAudioVolumeMeteringEnabled 83
GetMovieColorTable 84
GetMovieCoverProcs 84
GetMovieDefaultDataRef 85
GetMovieLoadState 86
GetMovieNextInterestingTime 87
GetMovieProgressProc 89
GetMoviePropertyAtom 89
GetMovieSegmentDisplayBoundsRgn 90
GetMovieStatus 91
GetMovieThreadAttachState 91
GetMovieVisualBrightness 92
GetMovieVisualContrast 92
GetMovieVisualHue 93
GetMovieVisualSaturation 94
GetNextUserDataType 94
GetPosterBox 95
GetQuickTimePreference 96
GetSoundDescriptionExtension 97
GetSpriteProperty 98
GetTrackAudioGain 98
GetTrackAudioMute 99
GetTrackLoadSettings 100
GetTrackNextInterestingTime 101
GetTrackSegmentDisplayBoundsRgn 102
GetTrackStatus 103

5
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



GetUserData 103
GetUserDataItem 104
GetUserDataText 105
HasMovieChanged 106
InvalidateSprite 107
InvalidateSpriteWorld 107
MakeMediaTimeTable 108
MakeTrackTimeTable 109
MovieAudioExtractionBegin 111
MovieAudioExtractionEnd 111
MovieAudioExtractionFillBuffer 112
MovieAudioExtractionGetProperty 113
MovieAudioExtractionGetPropertyInfo 114
MovieAudioExtractionSetProperty 115
MovieExecuteWiredActions 116
MovieSearchText 116
NewActionsUPP 118
NewDoMCActionUPP 118
NewGetMovieUPP 119
NewMovieController 119
NewMovieDrawingCompleteUPP 120
NewMovieExecuteWiredActionsUPP 121
NewMovieForDataRefFromHandle 121
NewMovieFromDataFork 122
NewMovieFromDataFork64 123
NewMovieFromDataRef 124
NewMovieFromFile 126
NewMovieFromHandle 128
NewMovieFromScrap 129
NewMovieFromStorageOffset 130
NewMovieFromUserProc 131
NewMoviePrePrerollCompleteUPP 132
NewMoviePreviewCallOutUPP 133
NewMovieProgressUPP 134
NewMovieRgnCoverUPP 134
NewMoviesErrorUPP 135
NewQTCallBackUPP 135
NewQTEffectListFilterUPP 136
NewQTNextTaskNeededSoonerCallbackUPP 136
NewQTSyncTaskUPP 137
NewSprite 137
NewSpriteWorld 139
NewTextMediaUPP 141
NewTrackTransferUPP 141
NewTweenerDataUPP 142
NewUserData 142

6
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



NewUserDataFromHandle 143
OpenMovieFile 143
OpenMovieStorage 145
PutMovieOnScrap 146
PutUserDataIntoHandle 147
QTAddMovieError 147
QTCopyAtom 148
QTCopyAtomDataToHandle 149
QTCopyAtomDataToPtr 150
QTCountChildrenOfType 151
QTCreateStandardParameterDialog 151
QTCreateUUID 153
QTDismissStandardParameterDialog 153
QTDisposeAtomContainer 154
QTDisposeTween 155
QTDoTween 155
QTDoTweenPtr 156
QTEqualUUIDs 157
QTFindChildByID 157
QTFindChildByIndex 158
QTGetAccessKeys 159
QTGetAtomDataPtr 160
QTGetAtomParent 161
QTGetAtomTypeAndID 162
QTGetDataHandlerDirectoryDataReference 163
QTGetDataHandlerFullPathCFString 163
QTGetDataHandlerTargetNameCFString 164
QTGetDataReferenceDirectoryDataReference 165
QTGetDataReferenceFullPathCFString 165
QTGetDataReferenceTargetNameCFString 166
QTGetDataRefMaxFileOffset 167
QTGetEffectsList 168
QTGetEffectsListExtended 169
QTGetEffectSpeed 170
QTGetMovieRestrictions 171
QTGetNextChildType 172
QTGetSupportedRestrictions 172
QTInsertChild 173
QTInsertChildren 174
QTIsStandardParameterDialogEvent 175
QTLockContainer 176
QTMovieNeedsTimeTable 177
QTNewAlias 178
QTNewAtomContainer 178
QTNewDataReferenceFromCFURL 179
QTNewDataReferenceFromFSRef 180

7
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



QTNewDataReferenceFromFSRefCFString 181
QTNewDataReferenceFromFSSpec 182
QTNewDataReferenceFromFullPathCFString 183
QTNewDataReferenceFromURLCFString 184
QTNewDataReferenceWithDirectoryCFString 185
QTNewTween 186
QTNextChildAnyType 187
QTRegisterAccessKey 188
QTRemoveAtom 188
QTRemoveChildren 189
QTReplaceAtom 190
QTRestrictionsGetIndClass 190
QTRestrictionsGetInfo 191
QTRestrictionsGetItem 192
QTSetAtomData 192
QTSetAtomID 194
QTStandardParameterDialogDoAction 194
QTSwapAtoms 196
QTUnlockContainer 196
QTUnregisterAccessKey 197
RemoveMovieExecuteWiredActionsProc 198
RemoveMovieResource 198
RemoveSoundDescriptionExtension 199
RemoveUserData 199
RemoveUserDataText 200
SetMediaDataRef 201
SetMediaDataRefAttributes 202
SetMediaPlayHints 202
SetMediaPropertyAtom 203
SetMovieAnchorDataRef 205
SetMovieAudioBalance 205
SetMovieAudioFrequencyMeteringNumBands 206
SetMovieAudioGain 207
SetMovieAudioMute 207
SetMovieAudioVolumeMeteringEnabled 208
SetMovieColorTable 209
SetMovieCoverProcs 209
SetMovieDefaultDataRef 211
SetMovieLanguage 211
SetMoviePlayHints 212
SetMovieProgressProc 213
SetMoviePropertyAtom 214
SetMovieVisualBrightness 214
SetMovieVisualContrast 215
SetMovieVisualHue 216
SetMovieVisualSaturation 216

8
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



SetPosterBox 217
SetQuickTimePreference 218
SetSpriteProperty 218
SetSpriteWorldClip 220
SetSpriteWorldFlags 221
SetSpriteWorldGraphicsMode 221
SetSpriteWorldMatrix 222
SetTrackAudioGain 223
SetTrackAudioMute 223
SetTrackLoadSettings 224
SetUserDataItem 225
ShowMovieInformation 226
SpriteHitTest 227
SpriteWorldHitTest 228
SpriteWorldIdle 229
UpdateMovieInStorage 230
UpdateMovieResource 230

Callbacks 231
GetMovieProc 231
MovieExecuteWiredActionsProc 232
MovieRgnCoverProc 233
QTEffectListFilterProc 233
QTSyncTaskProc 234
TweenerDataProc 235

Data Types 236
FourCharCode 236
FSSpecPtr 236
GetMovieUPP 236
MovieExecuteWiredActionsUPP 236
MovieRgnCoverUPP 237
QTAtomType 237
QTAudioFrequencyLevels 237
QTAudioVolumeLevels 238
QTEffectListFilterUPP 238
QTEffectListOptions 238
QTErrorReplacementPtr 238
QTErrorReplacementRecord 239
QTRestrictionSet 239
QTRestrictionSetRecord 239
QTSyncTaskUPP 240
QTTweener 240
QTTweenerRecord 240
QTUUID 241
Sprite 241
SpriteRecord 242
SpriteWorld 242

9
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



SpriteWorldRecord 242
TweenerDataUPP 243

Constants 243
SetQuickTimePreference Values 243
CreateMovieFile Values 243
GetMediaDataRef Values 244
QTGetEffectSpeed Values 244
QTGetEffectsList Values 244
Full Screen Flags 244
Hint Flags 245
QTUnregisterAccessKey Values 246
Sprite Properties 246
SetMediaDataRefAttributes Values 247
CopyUserData Values 248
CanQuickTimeOpenFile Values 248
QTNewDataReferenceFromFullPathCFString Values 248
SpriteWorldIdle Values 249
MovieExecuteWiredActions Values 249
NewMovieFromFile Values 249
PutMovieOnScrap Values 249
SetTrackLoadSettings Values 249
MovieSearchText Values 250
Media Characteristics 250

Document Revision History 251

Index 253

10
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



Framework: Frameworks/QuickTime.framework

Declared in Files.h
IOHIDDescriptorParser.h
Movies.h

Overview

The QuickTime Movie Toolkit helps your application construct movies, including determining what types of
media to present, where movie data are located, when and how to present each data sample, and how to
layer, arrange, and composite multiple movie elements.

Functions by Task

Associating Movies With Controllers

DisposeMovieController  (page 51)
Disposes of a movie controller.

NewMovieController  (page 119)
Locates a movie controller component and assigns a movie to that controller.

Audio Conversion and Extraction

MovieAudioExtractionBegin  (page 111)
Begins a movie audio extraction session.

MovieAudioExtractionEnd  (page 111)
Ends a movie audio extraction session.

MovieAudioExtractionFillBuffer  (page 112)
Extracts audio from a movie.

MovieAudioExtractionGetProperty  (page 113)
Gets a property of a movie audio extraction session.

MovieAudioExtractionGetPropertyInfo  (page 114)
Gets information about a property of a movie audio extraction session.

MovieAudioExtractionSetProperty  (page 115)
Sets a property of a movie audio extraction session.

Overview 11
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Copying Existing Atoms

QTCopyAtom  (page 148)
Copies an atom and its children to a new atom container.

QTInsertChildren  (page 174)
Inserts a container of atoms as children of the specified parent atom.

QTReplaceAtom  (page 190)
Replaces the contents of an atom and its children with a different atom and its children.

QTSwapAtoms  (page 196)
Swaps the contents of two atoms in an atom container.

Creating and Disposing of Atom Containers

QTDisposeAtomContainer  (page 154)
Disposes of an atom container.

QTNewAtomContainer  (page 178)
Creates a new atom container.

Creating and Manipulating Sprites

DisposeSprite  (page 59)
Disposes of a sprite.

GetSpriteProperty  (page 98)
Retrieves the value of a specified sprite property.

InvalidateSprite  (page 107)
Invalidates the portion of a sprite's sprite world that is occupied by a sprite.

NewSprite  (page 137)
Creates a new sprite in a specified sprite world.

SetSpriteProperty  (page 218)
Sets the specified property of a sprite.

SpriteHitTest  (page 227)
Determines whether a location in a sprite's display coordinate system intersects the sprite.

Creating New Atoms

QTInsertChild  (page 173)
Creates a new child atom of the specified parent atom.

Enhancing Movie Playback Performance

GetTrackLoadSettings  (page 100)
Retrieves a track's preload information.

12 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



SetMediaPlayHints  (page 202)
Provides information to the Movie Toolbox that can influence playback of a single media.

SetMoviePlayHints  (page 212)
Provides information to the Movie Toolbox that can influence movie playback.

SetTrackLoadSettings  (page 224)
Specifies a portion of a track that is to be loaded into memory whenever it is played.

Error Functions

QTAddMovieError  (page 147)
Adds orthogonal errors to a movie's list of errors.

Finding and Adding Samples

GetMediaNextInterestingDecodeTime  (page 72)
Searches for decode times of interest in a media.

GetMediaNextInterestingDisplayTime  (page 73)
Searches for display times of interest in a media.

Finding Interesting Times

GetMediaNextInterestingTime  (page 74)
Searches for times of interest in a media.

GetMovieNextInterestingTime  (page 87)
Searches for times of interest in a movie's enabled tracks.

GetTrackNextInterestingTime  (page 101)
Searches for times of interest in a track.

High-Level Download Control

GetMaxLoadedTimeInMovie  (page 69)
When a movie is being progressively downloaded, returns the duration of the part of a movie that
has already been downloaded.

QTMovieNeedsTimeTable  (page 177)
Returns whether a movie is being progressively downloaded.

High-Level Effects Functions

QTCreateStandardParameterDialog  (page 151)
Creates a dialog box that allows the user to choose an effect from the list of effects passed to the
function.

QTDismissStandardParameterDialog  (page 153)
Closes a standard parameter dialog box that was created using QTCreateStandardParameterDialog.

Functions by Task 13
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTGetEffectsList  (page 168)
Returns a QT atom container holding a list of the currently installed effects components.

QTGetEffectsListExtended  (page 169)
Provides for more advanced filtering of effects to be placed into the effect list.

QTGetEffectSpeed  (page 170)
Returns the speed of the effect, expressed in frames per second.

QTIsStandardParameterDialogEvent  (page 175)
Determines if a Macintosh event is processed by a standard parameter dialog box created by
QTCreateStandardParameterDialog.

QTStandardParameterDialogDoAction  (page 194)
Lets you change some of the default behaviors of the standard parameter dialog box.

High-Level Movie Editing Functions

NewMovieFromScrap  (page 129)
Creates a movie from the contents of the scrap.

PutMovieOnScrap  (page 146)
Places a movie into the Macintosh scrap.

Low-Level Download Control

MakeMediaTimeTable  (page 108)
Returns a time table for the specified media.

MakeTrackTimeTable  (page 109)
Returns a time table for a specified track in a movie.

Metering Sound Level and Frequency

GetMovieAudioFrequencyLevels  (page 79)
Returns the current frequency meter levels of a movie mix.

GetMovieAudioFrequencyMeteringBandFrequencies  (page 79)
Returns the chosen middle frequency for each band in the configured frequency metering of a
particular movie mix.

GetMovieAudioFrequencyMeteringNumBands  (page 80)
Returns the number of frequency bands being metered for a movie's specified audio mix.

GetMovieAudioVolumeMeteringEnabled  (page 83)
Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

SetMovieAudioFrequencyMeteringNumBands  (page 206)
Configures frequency metering for a particular audio mix in a movie.

SetMovieAudioVolumeMeteringEnabled  (page 208)
Enables or disables volume metering of a particular audio mix of a movie.

14 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Modifying Atoms

QTSetAtomData  (page 192)
Changes the data of a leaf atom.

QTSetAtomID  (page 194)
Changes the ID of an atom.

Movie Functions

CloseMovieFile  (page 39)
Closes an open movie file.

CreateMovieFile  (page 44)
Creates a movie file, creates an empty movie which references the file, and opens the movie file with
write permission.

DeleteMovieFile  (page 48)
Deletes a movie file.

NewMovieForDataRefFromHandle  (page 121)
Creates a movie from a public movie handle, converting internal references to external references.

NewMovieFromDataRef  (page 124)
Creates a movie from any device with a corresponding data handler.

NewMovieFromFile  (page 126)
Creates a new movie in memory from a movie file or from any type of file for which QuickTime provides
an import component (AIFF, JPEG, MPEG-4, etc).

NewMovieFromHandle  (page 128)
Creates a movie in memory from a movie resource or a handle you obtained from PutMovieIntoHandle.

NewMovieFromUserProc  (page 131)
Creates a movie from data that you provide.

OpenMovieFile  (page 143)
Opens a specified movie file.

Movie Posters and Movie Previews

GetPosterBox  (page 95)
Obtains a poster's boundary rectangle.

SetPosterBox  (page 217)
Sets a poster's boundary rectangle.

Movies and Your Event Loop

DisposeQTNextTaskNeededSoonerCallbackUPP  (page 58)
Disposes of a QTNextTaskNeededSoonerCallbackUPP pointer.

GetMovieStatus  (page 91)
Searches for errors in all the enabled tracks of the movie and returns information about errors that
are encountered during the processing associated with the MoviesTask function.

Functions by Task 15
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetTrackStatus  (page 103)
Returns the value of the last error the media encountered while playing a specified track.

NewQTNextTaskNeededSoonerCallbackUPP  (page 136)
Allocates a Universal Procedure Pointer for the QTNextTaskNeededSoonerCallbackProc callback.

Registering and Unregistering Access Keys

QTRegisterAccessKey  (page 188)
Registers an access key.

QTUnregisterAccessKey  (page 197)
Removes a previously registered access key.

Removing Atoms From an Atom Container

QTRemoveAtom  (page 188)
Removes an atom and its children from the specified atom container.

QTRemoveChildren  (page 189)
Removes all the children of an atom from the specified atom container.

Retrieving Access Keys

QTGetAccessKeys  (page 159)
Returns all the application and system access keys of a specified access key type.

Retrieving Atoms and Atom Data

QTCopyAtomDataToHandle  (page 149)
Copies the specified leaf atom's data to a handle.

QTCopyAtomDataToPtr  (page 150)
Copies the specified leaf atom's data to a buffer.

QTCountChildrenOfType  (page 151)
Returns the number of atoms of a given type in the child list of the specified parent atom.

QTFindChildByID  (page 157)
Retrieves an atom by ID from the child list of the specified parent atom.

QTFindChildByIndex  (page 158)
Retrieves an atom by index from the child list of the specified parent atom.

QTGetAtomDataPtr  (page 160)
Retrieves a pointer to the atom data for a specified leaf atom.

QTGetAtomTypeAndID  (page 162)
Retrieves an atom's type and ID.

QTGetNextChildType  (page 172)
Returns the next atom type in the child list of the specified parent atom.

16 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTLockContainer  (page 176)
Locks an atom container in memory.

QTNextChildAnyType  (page 187)
Returns the next atom in the child list of the specified parent atom.

QTUnlockContainer  (page 196)
Unlocks an atom container in memory.

Saving Movies

AddMovieResource  (page 27)
Adds a movie resource to a specified resource file.

AddMovieToStorage  (page 29)
Adds a movie to a storage container that was created by CreateMovieStorage.

ClearMovieChanged  (page 38)
Sets the movie changed flag to indicate that the movie has not been changed.

CloseMovieStorage  (page 40)
Closes an open movie storage container.

CreateMovieStorage  (page 46)
Creates an empty storage location to hold a movie and opens a data handler to the stored movie
with write permission.

DeleteMovieStorage  (page 49)
Deletes a movie storage container.

FlattenMovie  (page 64)
Creates a new movie file containing a specified movie.

FlattenMovieData  (page 66)
Creates a new movie and a file that contains all the movie data.

FlattenMovieDataToDataRef  (page 68)
Performs a flattening operation to a movie at a storage location.

HasMovieChanged  (page 106)
Determines whether a movie has changed and needs to be saved.

NewMovieFromDataFork  (page 122)
Retrieves a movie that is stored anywhere in the data fork of a specified Macintosh file.

NewMovieFromStorageOffset  (page 130)
Creates a new movie based on the offset to data in a storage container.

RemoveMovieResource  (page 198)
Removes a movie resource from a specified movie file.

UpdateMovieInStorage  (page 230)
Updates a movie at a storage location.

UpdateMovieResource  (page 230)
Replaces the contents of a movie resource in a specified movie file.

Functions by Task 17
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Setting Sound Parameters

GetMovieAudioBalance  (page 78)
Returns the balance value for the audio mix of a movie currently playing.

GetMovieAudioGain  (page 81)
Returns the gain value for the audio mix of a movie currently playing.

GetTrackAudioGain  (page 98)
Returns the gain value for the audio mix of a track currently playing.

GetTrackAudioMute  (page 99)
Returns the mute value for the audio mix of a track currently playing.

SetMovieAudioBalance  (page 205)
Sets the balance level for the mixed audio output of a movie.

SetMovieAudioGain  (page 207)
Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the
movie's playback.

SetMovieAudioMute  (page 207)
Sets the mute value for the audio mix of a movie currently playing.

SetTrackAudioGain  (page 223)
Sets the audio gain level for the audio output of a track, altering the perceived volume of the track's
playback.

SetTrackAudioMute  (page 223)
Mutes or unmutes the audio output of a track.

Tween Component Requirements

QTDoTweenPtr  (page 156)
Runs a tween component and returns values in a pointer rather than a handle.

Using the Full Screen

BeginFullScreen  (page 33)
Begins full-screen mode for a specified graphics device.

EndFullScreen  (page 63)
Ends full-screen mode for a graphics device.

Working With Alternate Tracks

SetMovieLanguage  (page 211)
Specifies a movie's localized language or region code.

18 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Working With Data References

AddMediaDataRef  (page 26)
Adds a data reference to a media.

GetMediaDataRef  (page 70)
Returns a copy of a specified data reference.

GetMediaDataRefCount  (page 71)
Determines the number of data references in a media.

Working With Media Handler Properties

GetMediaPropertyAtom  (page 76)
Retrieves the property atom container of a media handler.

SetMediaPropertyAtom  (page 203)
Sets the property atom container of a media handler.

Working With Movie Restrictions

QTCreateUUID  (page 153)
Creates a 128-bit universal unique ID number.

QTEqualUUIDs  (page 157)
Compares two 128-bit ID numbers.

QTGetMovieRestrictions  (page 171)
Returns the restrictions, if any, for a given movie.

QTGetSupportedRestrictions  (page 172)
Reports the movie restrictions enforced by the currently running version of QuickTime.

QTRestrictionsGetIndClass  (page 190)
Reports the class of a movie restriction.

QTRestrictionsGetInfo  (page 191)
Reports information about the restrictions in a specified restriction set.

QTRestrictionsGetItem  (page 192)
Retrieves specific movie restrictions.

Working With Movie Spatial Characteristics

GetMovieColorTable  (page 84)
Retrieves a movie's color table.

GetMovieSegmentDisplayBoundsRgn  (page 90)
Determines a movie's display boundary region for a specified segment.

GetTrackSegmentDisplayBoundsRgn  (page 102)
Determines the region a track occupies in a movie's graphics world during a specified segment.

SetMovieColorTable  (page 209)
Associates a ColorTable structure with a movie.

Functions by Task 19
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Working With Progress and Cover Functions

GetMovieCoverProcs  (page 84)
Retrieves the cover functions that you set with the SetMovieCoverProcs function.

SetMovieCoverProcs  (page 209)
Sets the callbacks invoked when a movie is covered or uncovered.

SetMovieProgressProc  (page 213)
Attaches a progress function to a movie.

Working With Sprite Worlds

DisposeAllSprites  (page 50)
Disposes of all sprites associated with a sprite world.

DisposeSpriteWorld  (page 60)
Disposes of a sprite world.

InvalidateSpriteWorld  (page 107)
Invalidates a rectangular area of a sprite world.

NewSpriteWorld  (page 139)
Creates a new sprite world.

SetSpriteWorldClip  (page 220)
Sets a sprite world's clip shape to the specified region.

SetSpriteWorldMatrix  (page 222)
Sets a sprite world's matrix to the specified matrix.

SpriteWorldHitTest  (page 228)
Determines whether any sprites are at a specified location in a sprite world.

SpriteWorldIdle  (page 229)
Allows a sprite world to update its invalid areas.

Working With User Data

AddUserData  (page 30)
Adds an item to a user data list.

AddUserDataText  (page 31)
Places language-tagged text into an item in a user data list.

CopyMediaUserData  (page 40)
Copies a source media's user data into a destination media's user data.

CopyMovieUserData  (page 41)
Copies a source movie's user data into a destination movie's user data.

CopyTrackUserData  (page 42)
Copies a source track's user data into a destination track's user data.

CopyUserData  (page 42)
Copies metadata items from the source user data container to the destination user data container.

20 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



CountUserDataType  (page 43)
Determines the number of items of a given type in a user data list.

DisposeUserData  (page 63)
Disposes of a user data structure created by NewUserData.

GetNextUserDataType  (page 94)
Retrieves the next user data type in a specified user data list.

GetUserData  (page 103)
Returns a specified user data item.

GetUserDataItem  (page 104)
Returns a specified user data item.

GetUserDataText  (page 105)
Retrieves language-tagged text from an item in a user data list.

NewUserData  (page 142)
Creates a new user data structure.

NewUserDataFromHandle  (page 143)
Creates a new user data structure from a handle.

PutUserDataIntoHandle  (page 147)
Returns a handle to a user data structure.

RemoveUserData  (page 199)
Removes an item from a user data list.

RemoveUserDataText  (page 200)
Removes language-tagged text from an item in a user data list.

SetUserDataItem  (page 225)
Sets an item in a user data list.

Supporting Functions

AddMovieExecuteWiredActionsProc  (page 26)
Lets you add a callback to a movie to execute wired actions.

AddSoundDescriptionExtension  (page 30)
Adds an extension to a SoundDescription structure.

AttachMovieToCurrentThread  (page 32)
Attaches a movie to the current thread.

CanQuickTimeOpenDataRef  (page 35)
Determines whether referenced data can be opened using a graphics importer or opened in place
as a movie.

CanQuickTimeOpenFile  (page 37)
Determines whether a file can be opened using a graphics importer or opened in place as a movie.

CreateShortcutMovieFile  (page 47)
Creates a movie file that just contains a reference to another movie.

DetachMovieFromCurrentThread  (page 49)
Detaches a movie from the current thread.

DisposeActionsUPP  (page 50)
Disposes of an ActionsUPP pointer.

Functions by Task 21
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DisposeDoMCActionUPP  (page 51)
Disposes of a DoMCActionUPP pointer.

DisposeGetMovieUPP  (page 51)
Disposes of a GetMovieUPP pointer.

DisposeMovieDrawingCompleteUPP  (page 54)
Disposes of a MovieDrawingCompleteUPP pointer.

DisposeMovieExecuteWiredActionsUPP  (page 55)
Disposes of a MovieExecuteWiredActionsUPP pointer.

DisposeMoviePrePrerollCompleteUPP  (page 55)
Disposes of a MoviePrePrerollCompleteUPP pointer.

DisposeMoviePreviewCallOutUPP  (page 56)
Disposes of a MoviePreviewCallOutUPP pointer.

DisposeMovieProgressUPP  (page 56)
Disposes of a MovieProgressUPP pointer.

DisposeMovieRgnCoverUPP  (page 57)
Disposes of a MovieRgnCoverUPP pointer.

DisposeMoviesErrorUPP  (page 57)
Disposes of a MoviesErrorUPP pointer.

DisposeQTCallBackUPP  (page 57)
Disposes of a QTCallBackUPP pointer.

DisposeQTEffectListFilterUPP  (page 58)
Disposes of a QTEffectListFilterUPP pointer.

DisposeQTSyncTaskUPP  (page 59)
Disposes of a QTSyncTaskUPP pointer.

DisposeTextMediaUPP  (page 61)
Disposes of a TextMediaUPP pointer.

DisposeTrackTransferUPP  (page 62)
Disposes of a TrackTransferUPP pointer.

DisposeTweenerDataUPP  (page 62)
Disposes of a TweenerDataUPP pointer.

GetMediaPlayHints  (page 76)
Undocumented

GetMovieAnchorDataRef  (page 77)
Retrieves a movie's anchor data reference and type.

GetMovieAudioMute  (page 81)
Returns the mute value for the audio mix of a movie currently playing.

GetMovieAudioVolumeLevels  (page 82)
Returns the current volume meter levels of a movie.

GetMovieDefaultDataRef  (page 85)
Gets a movie's default data reference.

GetMovieLoadState  (page 86)
Returns a value that indicates the state of a movie's loading process.

GetMovieProgressProc  (page 89)
Gets the MovieProgressProc callback attached to a movie.

22 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMoviePropertyAtom  (page 89)
Gets a movie's property atom.

GetMovieThreadAttachState  (page 91)
Determines whether a given movie is attached to a thread.

GetMovieVisualBrightness  (page 92)
Returns the brightness adjustment for the movie.

GetMovieVisualContrast  (page 92)
Returns the contrast adjustment for the movie.

GetMovieVisualHue  (page 93)
Returns the hue adjustment for the movie.

GetMovieVisualSaturation  (page 94)
Returns the color saturation adjustment for the movie.

GetQuickTimePreference  (page 96)
Retrieves a particular preference from the QuickTime preferences.

GetSoundDescriptionExtension  (page 97)
Gets the current extension to a SoundDescription structure.

MovieExecuteWiredActions  (page 116)
Undocumented

MovieSearchText  (page 116)
Searches for text in a movie.

NewActionsUPP  (page 118)
Allocates a Universal Procedure Pointer for ActionsProc.

NewDoMCActionUPP  (page 118)
Allocates a Universal Procedure Pointer for the DoMCActionProc callback.

NewGetMovieUPP  (page 119)
Allocates a Universal Procedure Pointer for the GetMovieProc callback.

NewMovieDrawingCompleteUPP  (page 120)
Allocates a Universal Procedure Pointer for the MovieDrawingCompleteProc callback.

NewMovieExecuteWiredActionsUPP  (page 121)
Allocates a Universal Procedure Pointer for the MovieExecuteWiredActionsProc callback.

NewMovieFromDataFork64  (page 123)
Provides a 64-bit version of NewMovieFromDataFork.

NewMoviePrePrerollCompleteUPP  (page 132)
Allocates a Universal Procedure Pointer for the MoviePrePrerollCompleteProc callback.

NewMoviePreviewCallOutUPP  (page 133)
Allocates a Universal Procedure Pointer for the MoviePreviewCallOutProc callback.

NewMovieProgressUPP  (page 134)
Allocates a Universal Procedure Pointer for the MovieProgressProc callback.

NewMovieRgnCoverUPP  (page 134)
Allocates a Universal Procedure Pointer for the MovieRgnCoverProc callback.

NewMoviesErrorUPP  (page 135)
Allocates a Universal Procedure Pointer for the MoviesErrorProc callback.

NewQTCallBackUPP  (page 135)
Allocates a Universal Procedure Pointer for the QTCallBackProc callback.

Functions by Task 23
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewQTEffectListFilterUPP  (page 136)
Allocates a Universal Procedure Pointer for the QTEffectListFilterProc callback.

NewQTSyncTaskUPP  (page 137)
Allocates a Universal Procedure Pointer for the QTSyncTaskProc callback.

NewTextMediaUPP  (page 141)
Allocates a Universal Procedure Pointer for the TextMediaProc callback.

NewTrackTransferUPP  (page 141)
Allocates a Universal Procedure Pointer for the TrackTransferProc callback.

NewTweenerDataUPP  (page 142)
Allocates a Universal Procedure Pointer for the TweenerDataProc callback.

OpenMovieStorage  (page 145)
Opens a data handler for movie storage.

QTDisposeTween  (page 155)
Disposes of a tween component instance.

QTDoTween  (page 155)
Runs a tween component.

QTGetAtomParent  (page 161)
Gets the parent of a QT atom.

QTGetDataHandlerDirectoryDataReference  (page 163)
Returns a new data reference to the parent directory of the storage location associated with a data
handler instance.

QTGetDataHandlerFullPathCFString  (page 163)
Returns the full pathname of the storage location associated with a data handler.

QTGetDataHandlerTargetNameCFString  (page 164)
Returns the name of the storage location associated with a data handler.

QTGetDataReferenceDirectoryDataReference  (page 165)
Returns a new data reference for a parent directory.

QTGetDataReferenceFullPathCFString  (page 165)
Returns the full pathname of the target of the data reference as a CFString.

QTGetDataReferenceTargetNameCFString  (page 166)
Returns the name of the target of a data reference as a CFString.

QTGetDataRefMaxFileOffset  (page 167)
Undocumented

QTNewAlias  (page 178)
Creates a Mac OS alias to a file.

QTNewDataReferenceFromCFURL  (page 179)
Creates a URL data reference from a CFURL.

QTNewDataReferenceFromFSRef  (page 180)
Creates an alias data reference from a file specification.

QTNewDataReferenceFromFSRefCFString  (page 181)
Creates an alias data reference from a file reference pointing to a directory and a file name.

QTNewDataReferenceFromFSSpec  (page 182)
Creates an alias data reference from a file specification of type FSSpec.

24 Functions by Task
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTNewDataReferenceFromFullPathCFString  (page 183)
Creates an alias data reference from a CFString that represents the full pathname of a file.

QTNewDataReferenceFromURLCFString  (page 184)
Creates a URL data reference from a CFString that represents a URL string.

QTNewDataReferenceWithDirectoryCFString  (page 185)
Creates an alias data reference from another alias data reference pointing to the parent directory and
a CFString that contains the file name.

QTNewTween  (page 186)
Undocumented

RemoveMovieExecuteWiredActionsProc  (page 198)
Removes a MovieExecuteWiredActionsProc callback from a movie.

RemoveSoundDescriptionExtension  (page 199)
Removes an extension from a SoundDescription structure.

SetMediaDataRef  (page 201)
Changes the file that the specified media identifies as the location for its data storage.

SetMediaDataRefAttributes  (page 202)
Sets a data reference's attributes.

SetMovieAnchorDataRef  (page 205)
Sets a movie's anchor data reference and type.

SetMovieDefaultDataRef  (page 211)
Sets a movie's default data reference and type.

SetMoviePropertyAtom  (page 214)
Sets a movie's property atom.

SetMovieVisualBrightness  (page 214)
Sets the brightness adjustment for the movie.

SetMovieVisualContrast  (page 215)
Sets the contrast adjustment for the movie.

SetMovieVisualHue  (page 216)
Sets the hue adjustment for the movie.

SetMovieVisualSaturation  (page 216)
Sets the color saturation adjustment for the movie.

SetQuickTimePreference  (page 218)
Sets a particular preference in the QuickTime preferences.

SetSpriteWorldFlags  (page 221)
Sets flags that govern the behavior of a sprite world.

SetSpriteWorldGraphicsMode  (page 221)
Sets the graphics transfer mode for a sprite world.

ShowMovieInformation  (page 226)
Displays a movie's information.

Functions by Task 25
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Functions

AddMediaDataRef
Adds a data reference to a media.

OSErr AddMediaDataRef (
   Media theMedia,
   short *index,
   Handle dataRef,
   OSType dataRefType
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

index
A pointer to a short integer. The Movie Toolbox returns the index value that is assigned to the new
data reference. Your application can use this index to identify the reference to other Movie Toolbox
functions, such as GetMediaDataRef (page 70). If the Movie Toolbox cannot add the data reference
to the media, it sets the returned index value to 0.

dataRef
The data reference. This parameter contains a handle to the information that identifies the file that
contains this media's data. The type of information stored in that handle depends upon the value of
the dataRefType parameter.

dataRefType
The type of data reference. If the data reference is an alias, you must set this parameter to rAliasType.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

AddMovieExecuteWiredActionsProc
Lets you add a callback to a movie to execute wired actions.

26 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr AddMovieExecuteWiredActionsProc (
   Movie theMovie,
   MovieExecuteWiredActionsUPP proc,
   void *refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

proc
A callback function, as described in MovieExecuteWiredActionsProc.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AddMovieResource
Adds a movie resource to a specified resource file.

OSErr AddMovieResource (
   Movie theMovie,
   short resRefNum,
   short *resId,
   ConstStr255Param resName
);

Parameters
theMovie

The movie you wish to add to the movie file. Your application obtains this movie identifier from such
functions as NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

resRefNum
Identifies the movie file to which the resource is to be added. Your application obtains this value from
the OpenMovieFile (page 143) function.

Functions 27
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



resId
A pointer to a field that contains the resource ID number for the new resource. If the field referred to
by resId is set to 0, the Movie Toolbox assigns a unique resource ID number to the new resource. The
toolbox then returns the movie's resource ID number in the field referred to by the resId parameter.
AddMovieResource assigns resource ID numbers sequentially, starting at 128. If resId is set to NIL,
the Movie Toolbox assigns a unique resource ID number to the new resource and does not return
that resource's ID value. Set resId to movieInDataForkResID to add the new resource to the movie
file's data fork (see below). See these constants:

movieInDataForkResID

resName
Points to a character string that contains the name of the movie resource. If you set resName to NIL,
the toolbox creates an unnamed resource.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function adds the movie to the file, effectively saving any changes you have made to the movie. To use
this function with single-fork movie files, pass movieInDataForkResID as the resId parameter. After
updating the movie file, AddMovieResource clears the movie changed flag, indicating that the movie has
not been changed.

// AddMovieResource coding example
// See "Discovering QuickTime," page 243
void CreateMyCoolMovie (void)
{
    StandardFileReply   sfr;
    Movie               movie =NIL;
    FSSpec              fss;
    short               nFileRefNum =0;
    short               nResID =movieInDataForkResID;
    StandardPutFile("\pEnter movie file name:", "\puntitled.mov", &sfr);
    if (!sfr.sfGood)
        return;
    CreateMovieFile(&sfr.sfFile,
                    FOUR_CHAR_CODE('TVOD'),
                    smCurrentScript,
                    createMovieFileDeleteCurFile |
                     createMovieFileDontCreateResFile,
                    &nFileRefNum,
                    &movie);
    CreateMyVideoTrack(movie);      // See next section
    CreateMySoundTrack(movie);      // See next section
    AddMovieResource(movie, nFileRefNum, &nResID, NIL);
    if (nFileRefNum !=0)
        CloseMovieFile(nFileRefNum);
    DisposeMovie(movie);
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by AddMovieToStorage (page 29).

Availability
Available in Mac OS X v10.0 and later.

28 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
qteffects
qteffects.win
qtwiredactions
vrmakepano
vrmakepano.win

Declared In
Movies.h

AddMovieToStorage
Adds a movie to a storage container that was created by CreateMovieStorage.

OSErr AddMovieToStorage (
   Movie theMovie,
   DataHandler dh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dh
The data handler component that was returned by CreateMovieStorage (page 46).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function calls PutMovieIntoStorage internally. If you are writing a custom data handler, make sure
it implements DataHGetDataRef. Also implement DataHScheduleData64 and DataHGetFileSize64,
or DataHScheduleData and DataHGetFileSize if the data handler does not support 64-bit file offsets,
plus DataHWrite64, or DataHWrite if it does not support 64-bit offsets.

Version Notes
Introduced in QuickTime 6. Supersedes AddMovieResource (page 27).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
QTExtractAndConvertToMovieFile
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

Functions 29
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



AddSoundDescriptionExtension
Adds an extension to a SoundDescription structure.

OSErr AddSoundDescriptionExtension (
   SoundDescriptionHandle desc,
   Handle extension,
   OSType idType
);

Parameters
desc

A handle to the SoundDescription structure to add the extension to.

extension
The handle containing the extension data.

idType
A four-byte signature identifying the type of data being added to the SoundDescription.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Two extensions are defined to the SoundDescription record. The first is the slope, intercept, minClip,
and maxClip parameters for audio, represented as an atom of type 'flap'. The second extension is the
ability to store data specific to a given audio codec, using a SoundDescriptionV1 structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioconverter
audioconverter.win
ConvertMovieSndTrack
soundconverter
soundconverter.win

Declared In
Movies.h

AddUserData
Adds an item to a user data list.

30 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr AddUserData (
   UserData theUserData,
   Handle data,
   OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this item reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

data
A handle to the data to be added to the user data list.

udType
The type that is to be assigned to the new item.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You specify the user data list, the data to be added, and the data's type value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
qtactiontargets
qtactiontargets.win

Declared In
Movies.h

AddUserDataText
Places language-tagged text into an item in a user data list.

OSErr AddUserDataText (
   UserData theUserData,
   Handle data,
   OSType udType,
   long index,
   short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

Functions 31
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



data
A handle to the data to be added to the user data list.

udType
The type that is to be assigned to the new item.

index
The item to which the text is to be added. This parameter must specify an item in the user data list
identified by theUserData.

itlRegionTag
The region code of the text to be added. If there is already text with this region code in the item, the
function replaces the existing text with the data specified by the data parameter. See InsideMacintosh:
Text for more information about language and region codes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You specify the user data list and item, the data to be added, the data's type value, and the language code
of the data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtinfo
qtinfo.win
qttimecode
qttimecode.win

Declared In
Movies.h

AttachMovieToCurrentThread
Attaches a movie to the current thread.

OSErr AttachMovieToCurrentThread (
   Movie m
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

32 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

BeginFullScreen
Begins full-screen mode for a specified graphics device.

OSErr BeginFullScreen (
   Ptr *restoreState,
   GDHandle whichGD,
   short *desiredWidth,
   short *desiredHeight,
   WindowRef *newWindow,
   RGBColor *eraseColor,
   long flags
);

Parameters
restoreState

On exit, a pointer to a block of private state data that contains information on how to return from
full-screen mode. This value is passed to EndFullScreen (page 63) to enable it to return the monitor
to its previous state.

whichGD
A handle to the graphics device to put into full-screen mode. Set this parameter to NIL to select the
main screen.

desiredWidth
On entry, a pointer to a short integer that contains the desired width, in pixels, of the images to be
displayed. On exit, that short integer is set to the actual number of pixels that can be displayed
horizontally. Set this parameter to 0 to leave the width of the display unchanged.

desiredHeight
On entry, a pointer to a short integer that contains the desired height, in pixels, of the images to be
displayed. On exit, that short integer is set to the actual number of pixels that can be displayed
vertically. Set this parameter to 0 to leave the height of the display unchanged.

newWindow
On entry, a window-creation value. If this parameter is NIL, no window is created for you. If this
parameter has any other value, BeginFullScreen creates a new window that is large enough to fill
the entire screen and returns a pointer to that window in this parameter. You should not dispose of
that window yourself; instead, EndFullScreen (page 63) will do so.

Functions 33
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



eraseColor
The color to use when erasing the full-screen window created by BeginFullScreen if newWindow
is not NIL on entry. If this parameter is NIL, BeginFullScreen uses black when initially erasing the
window's content area.

flags
A set of bit flags (see below) that control certain aspects of the full-screen mode. See these constants:

fullScreenHideCursor

fullScreenAllowEvents

fullScreenDontChangeMenuBar

fullScreenPreflightSize

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function returns, in the restoreState parameter, a pointer to a block of private state information that
indicates how to return from full-screen mode. You pass that pointer as a parameter to the
EndFullScreen (page 63) function. The following sample code contains functions that illustrate how to
play a QuickTime movie full screen. It prompts the user for a movie, opens that movie, configures it to play
full screen, associates a movie controller, and lets the controller handle events. Your application would call
QTFullScreen_EventLoopAction in its event loop (on the Mac OS) or when it gets idle events (on Windows).

enum {
    fullScreenHideCursor            =1L << 0,
    fullScreenAllowEvents           =1L << 1,
    fullScreenDontChangeMenuBar     =1L << 2,
    fullScreenPreflightSize         =1L << 3
};
// QTFullScreen_PlayOnFullScreen
// Prompt the user for a movie and play it full screen.
OSErr QTFullScreen_PlayOnFullScreen (void)
{
    FSSpec              myFSSpec;
    Movie               myMovie =NIL;
    short               myRefNum =0;
    SFTypeList          myTypeList ={MovieFileType, 0, 0, 0};
    StandardFileReply   myReply;
    long                myFlags =fullScreenDontChangeMenuBar
                                                 | fullScreenAllowEvents;
    OSErr               myErr =noErr;

    StandardGetFilePreview(NIL, 1, myTypeList, &myReply);
    if (!myReply.sfGood)
        goto bail;

    // make an FSSpec record
    FSMakeFSSpec(myReply.sfFile.vRefNum, myReply.sfFile.parID,
                                          myReply.sfFile.name, &myFSSpec);
    myErr =OpenMovieFile(&myFSSpec, &myRefNum, fsRdPerm);
    if (myErr !=noErr)
        goto bail;
    // now fetch the first movie from the file
    myErr =NewMovieFromFile(&myMovie, myRefNum, NIL, NIL,
                                                    newMovieActive, NIL);

34 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



    if (myErr !=noErr)
        goto bail;

    CloseMovieFile(myRefNum);
    // set up for full-screen display
    myErr =BeginFullScreen(&gRestoreState, NIL, 0, 0,
                                       &gFullScreenWindow, NIL, myFlags);
#if TARGET_OS_WIN32
    // on Windows, set a window procedure for the new window
    // and associate a port with that window
    QTMLSetWindowWndProc(gFullScreenWindow, QTFullScreen_HandleMessages);
    CreatePortAssociation(GetPortNativeWindow(gFullScreenWindow), NIL, 0L);
#endif
    SetMovieGWorld(myMovie, (CGrafPtr)gFullScreenWindow,
                            GetGWorldDevice((CGrafPtr)gFullScreenWindow));
    SetMovieBox(myMovie, &gFullScreenWindow->
portRect);
    // create the movie controller
    gMC =NewMovieController(myMovie, &gFullScreenWindow->
portRect, 0);

Version Notes
The Macintosh human interface guidelines suggest that the menu bar must always be present, and that
information must always appear in windows. However, many multimedia applications have chosen to change
the look and feel of the interface based on their needs. The number of details to keep track of when doing
this continues to increase. To help solve this problem, QuickTime 2.1 added functions to put a graphics device
into full screen mode. The key elements to displaying full screen movies are the calls BeginFullScreen
and EndFullScreen, introduced in QuickTime 2.5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
QTCarbonShell
qtfullscreen
qtfullscreen.win

Declared In
Movies.h

CanQuickTimeOpenDataRef
Determines whether referenced data can be opened using a graphics importer or opened in place as a movie.

Functions 35
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr CanQuickTimeOpenDataRef (
   Handle dataRef,
   OSType dataRefType,
   Boolean *outCanOpenWithGraphicsImporter,
   Boolean *outCanOpenAsMovie,
   Boolean *outPreferGraphicsImporter,
   UInt32 inFlags
);

Parameters
dataRef

A handle to the referenced data.

dataRefType
The type of data reference pointed to by dataRef; see Data References.

outCanOpenWithGraphicsImporter
Points to a Boolean that will be set to TRUE if the file can be opened using a graphics importer and
FALSE otherwise. If you do not want this information, pass NIL.

outCanOpenAsMovie
Points to a Boolean that will be set to TRUE if the file can be opened as a movie and FALSE otherwise.
If you do not want this information, pass NIL.

outPreferGraphicsImporter
Points to a boolean which will be set to true if the file can be opened using a graphics importer and
opened as a movie, but, other factors being equal, QuickTime prefers a graphics importer. For example,
QuickTime recommends using a graphics importer for single-frame GIF files and opening as a movie
for multiple-frame GIF files. If you do not want this information, pass NIL. Passing a valid pointer
disables the kQTDontUseDataToFindImporter and
kQTDontLookForMovieImporterIfGraphicsImporterFound flags, if set.

inFlags
Flags (see below) that modify search behavior. Pass 0 for default behavior. See these constants:

kQTDontUseDataToFindImporter

kQTDontLookForMovieImporterIfGraphicsImporterFound

kQTAllowOpeningStillImagesAsMovies

kQTAllowImportersThatWouldCreateNewFile

kQTAllowAggressiveImporters

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function determines whether QuickTime can open a given area of data. You should pass NIL in parameters
that do not interest you, since that will allow QuickTime to perform a faster determination.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonCoreImage101
QTCarbonShell

36 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

CanQuickTimeOpenFile
Determines whether a file can be opened using a graphics importer or opened in place as a movie.

OSErr CanQuickTimeOpenFile (
   FSSpecPtr fileSpec,
   OSType fileType,
   OSType fileNameExtension,
   Boolean *outCanOpenWithGraphicsImporter,
   Boolean *outCanOpenAsMovie,
   Boolean *outPreferGraphicsImporter,
   UInt32 inFlags
);

Parameters
fileSpec

Points to an FSSpec structure that identifies a file. To ask about a particular file type or file name
suffix in general, pass NIL.

fileType
Contains the file type if already known, or 0 if not known. If fileSpec is provided and fileType is
0, QuickTime will determine the file type. If you pass NIL in fileSpec and 0 in fileNameExtension,
you must pass a file type here.

fileNameExtension
Contains the file name suffix if already known, or 0 if not known. The file name suffix should be
encoded as an uppercase four character code with trailing spaces; for instance, the suffix ".png" should
be encoded as 'PNG ', or 0x504E4720. If fileSpec is provided and fileNameExtension is 0,
QuickTime will examine fileSpec to determine the file name suffix. If you pass NIL in fileSpec
and 0 in fileType, you must pass a file name suffix here.

outCanOpenWithGraphicsImporter
Points to a Boolean that will be set to TRUE if the file can be opened using a graphics importer and
FALSE otherwise. If you do not want this information, pass NIL.

outCanOpenAsMovie
Points to a Boolean that will be set to TRUE if the file can be opened as a movie and FALSE otherwise.
If you do not want this information, pass NIL.

outPreferGraphicsImporter
Points to a boolean which will be set to true if the file can be opened using a graphics importer and
opened as a movie, but, other factors being equal, QuickTime prefers a graphics importer. For example,
QuickTime recommends using a graphics importer for single-frame GIF files and opening as a movie
for multiple-frame GIF files. If you do not want this information, pass NIL. Passing a valid pointer
disables the kQTDontUseDataToFindImporter and
kQTDontLookForMovieImporterIfGraphicsImporterFound flags, if set.

Functions 37
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



inFlags
Flags (see below) that modify search behavior. Pass 0 for default behavior. See these constants:

kQTDontUseDataToFindImporter

kQTDontLookForMovieImporterIfGraphicsImporterFound

kQTAllowOpeningStillImagesAsMovies

kQTAllowImportersThatWouldCreateNewFile

kQTAllowAggressiveImporters

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function determines whether QuickTime can open a given file or, in general, files of a given type. You
should pass NIL in parameters that do not interest you, since that will allow QuickTime to perform a faster
determination.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickTimeMovieControl
SetCustomIcon
SimpleVideoOut

Declared In
Movies.h

ClearMovieChanged
Sets the movie changed flag to indicate that the movie has not been changed.

void ClearMovieChanged (
   Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

38 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

CloseMovieFile
Closes an open movie file.

OSErr CloseMovieFile (
   short resRefNum
);

Parameters
resRefNum

The movie file to close. Your application obtains this reference number from OpenMovieFile (page
143).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The following code shows a typical use of CloseMovieFile.

// CloseMovieFile coding example
// See "Discovering QuickTime," page 50
void OpenMovie (HWND hwnd, char *szFileName)
{
    short   nFileRefNum =0;
    FSSpec  fss;
    // Convert path to FSSpec
    NativePathNameToFSSpec(szFileName, &fss, 0);
    // Set graphics port
    SetGWorld((CGrafPtr)GetNativeWindowPort(hwnd), NIL);
    OpenMovieFile(&fss, &nFileRefNum, fsRdPerm);   // Open movie file
    NewMovieFromFile(&movie, nFileRefNum, NIL,    // Get movie from file
                        NIL, newMovieActive, NIL);
    CloseMovieFile(nFileRefNum);                   // Close movie file
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by CloseMovieStorage (page 40).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
VRMakePano Library
vrmakepano.win
vrscript.win

Declared In
Movies.h

Functions 39
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



CloseMovieStorage
Closes an open movie storage container.

OSErr CloseMovieStorage (
   DataHandler dh
);

Parameters
dh

The data handler component that was returned by a previous call to CreateMovieStorage (page
46).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6. Supersedes CloseMovieFile (page 39).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTCarbonShell
QTExtractAndConvertToMovieFile
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

CopyMediaUserData
Copies a source media's user data into a destination media's user data.

OSErr CopyMediaUserData (
   Media srcMedia,
   Media dstMedia,
   OSType copyRule
);

Parameters
srcMedia

The source media for this operation. Your application obtains this media identifier from such functions
as NewTrackMedia and GetTrackMedia.

dstMedia
The destination media for this operation. Your application obtains this media identifier from such
functions as NewTrackMedia and GetTrackMedia.

40 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Using this function is equivalent to making the following call:

CopyUserData(GetMediaUserData(srcMedia), GetMediaUserData(dstMedia),
              copyRule);

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyMovieUserData
Copies a source movie's user data into a destination movie's user data.

OSErr CopyMovieUserData (
   Movie srcMovie,
   Movie dstMovie,
   OSType copyRule
);

Parameters
srcMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
as NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dstMovie
The destination movie for this operation. Your application obtains this movie identifier from such
functions as NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Using this function is equivalent to making the following call:

Functions 41
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



CopyUserData(GetMovieUserData(srcMovie), GetMovieUserData(dstMovie),
              copyRule);

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyTrackUserData
Copies a source track's user data into a destination track's user data.

OSErr CopyTrackUserData (
   Track srcTrack,
   Track dstTrack,
   OSType copyRule
);

Parameters
srcTrack

The source track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack and GetMovieTrack.

dstTrack
The destination track for this operation. Your application obtains this track identifier from such
functions as NewMovieTrack and GetMovieTrack.

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyUserData
Copies metadata items from the source user data container to the destination user data container.

42 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr CopyUserData (
   UserData srcUserData,
   UserData dstUserData,
   OSType copyRule
);

Parameters
srcUserData

The source user data list for this operation. You obtain this list reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

dstUserData
The destination user data list for this operation. You obtain this list reference by calling
GetMovieUserData, GetTrackUserData, or GetMediaUserData.

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The function detects if the source and destination containers already have the same content and does nothing
in that case.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CountUserDataType
Determines the number of items of a given type in a user data list.

short CountUserDataType (
   UserData theUserData,
   OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the GetMovieUserData,
GetTrackUserData, or GetMediaUserData functions.

udType
The type. The Movie Toolbox determines the number of items of this type in the user data list.

Return Value
The number of items of the given type in the user data list.

Functions 43
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MakeEffectMovie
qtactiontargets
qtactiontargets.win
vrmovies.win

Declared In
Movies.h

CreateMovieFile
Creates a movie file, creates an empty movie which references the file, and opens the movie file with write
permission.

OSErr CreateMovieFile (
   const FSSpec *fileSpec,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags,
   short *resRefNum,
   Movie *newmovie
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Use the Script Manager constant smSystemScript
to use the system script; use the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Controls movie file creation flags (see below). See these constants:

createMovieFileDontCreateResFile

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

newMovieActive

44 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



resRefNum
A pointer to a field that is to receive the file reference number for the opened movie file. Your
application must use this value when calling other Movie Toolbox functions that work with movie
files. If you set this parameter to NIL, the Movie Toolbox creates the movie file but does not open
the file.

newmovie
A pointer to a field that is to receive the identifier of the new movie. CreateMovieFile returns the
identifier of the new movie. If the function could not create a new movie, it sets this returned value
to NIL. If you set this parameter to NIL, the Movie Toolbox does not create a movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The following code snippet shows how CreateMovieFile may be used to create and open a QuickTime
movie file.

// CreateMovieFile coding example
// See "Discovering QuickTime," page 243
void CreateMyCoolMovie (void)
{
    StandardFileReply   sfr;
    Movie               movie =NIL;
    FSSpec              fss;
    short               nFileRefNum =0;
    short               nResID =movieInDataForkResID;
    StandardPutFile("\pEnter movie file name:", "\puntitled.mov", &sfr);
    if (!sfr.sfGood)
        return;
    CreateMovieFile(&sfr.sfFile,
                    FOUR_CHAR_CODE('TVOD'),
                    smCurrentScript,
                    createMovieFileDeleteCurFile |
                     createMovieFileDontCreateResFile,
                    &nFileRefNum,
                    &movie);
    CreateMyVideoTrack(movie);   // See "Discovering QuickTime," page 244
    CreateMySoundTrack(movie);   // See "Discovering QuickTime," page 250
    AddMovieResource(movie, nFileRefNum, &nResID, NIL);
    if (nFileRefNum !=0)
        CloseMovieFile(nFileRefNum);
    DisposeMovie(movie);
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by CreateMovieStorage (page 46).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library

Functions 45
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



vrmakepano.win

Declared In
Movies.h

CreateMovieStorage
Creates an empty storage location to hold a movie and opens a data handler to the stored movie with write
permission.

OSErr CreateMovieStorage (
   Handle dataRef,
   OSType dataRefType,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags,
   DataHandler *outDataHandler,
   Movie *newmovie
);

Parameters
dataRef

A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

creator
The creator type of the new container (for example, 'TV0D', the creator type for Apple's movie
player).

scriptTag
Constants (see below) that specify the script for the new container. See these constants:

createMovieFileFlags
Constants (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

newMovieActive

outDataHandler
A pointer to a field that is to receive the data handler for the opened movie container. Your application
must use this value when calling other Movie Toolbox functions. If you pass NIL, the Movie Toolbox
creates the movie container but does not open it.

newmovie
A pointer to a field that is to receive the returned identifier of the new movie. If the function could
not create a new movie, it sets this returned value to NIL. If you pass NIL, the Movie Toolbox does
not create a movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

46 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
If you are writing a custom data handler, make sure it supports DataHGetDataRef. It must also support
DataHWrite64, or DataHWrite if 64-bit offsets are not supported.

Version Notes
Introduced in QuickTime 6. Supersedes CreateMovieFile (page 44).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
QTKitCreateMovie
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

CreateShortcutMovieFile
Creates a movie file that just contains a reference to another movie.

OSErr CreateShortcutMovieFile (
   const FSSpec *fileSpec,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags,
   Handle targetDataRef,
   OSType targetDataRefType
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Use the Script Manager constant smSystemScript
to use the system script; use the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Contains movie file creation flags (see below). See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

Functions 47
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



targetDataRef
A handle to the data referred to by the movie that this function creates.

targetDataRefType
The type of the data referred to by the movie that this function creates; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtshortcut
qtshortcut.win

Declared In
Movies.h

DeleteMovieFile
Deletes a movie file.

OSErr DeleteMovieFile (
   const FSSpec *fileSpec
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be deleted.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by DeleteMovieStorage (page 49).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtstreamsplicer.win
Sequence Grabbing
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

48 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DeleteMovieStorage
Deletes a movie storage container.

OSErr DeleteMovieStorage (
   Handle dataRef,
   OSType dataRefType
);

Parameters
dataRef

A handle to a QuickTime data reference that identifies the movie storage to be deleted.

dataRefType
The data reference type. See Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
If you are writing a custom data handler that supports this call, make sure that it implements
DataHDeleteFile.

Version Notes
Introduced in QuickTime 6. Supersedes DeleteMovieFile (page 48).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

DetachMovieFromCurrentThread
Detaches a movie from the current thread.

OSErr DetachMovieFromCurrentThread (
   Movie m
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF

Functions 49
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

DisposeActionsUPP
Disposes of an ActionsUPP pointer.

void DisposeActionsUPP (
   ActionsUPP userUPP
);

Parameters
userUPP

An ActionsUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeAllSprites
Disposes of all sprites associated with a sprite world.

void DisposeAllSprites (
   SpriteWorld theSpriteWorld
);

Parameters
theSpriteWorld

The sprite world for this operation.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
This function calls DisposeSprite (page 59) for each sprite associated with the sprite world.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

50 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

DisposeDoMCActionUPP
Disposes of a DoMCActionUPP pointer.

void DisposeDoMCActionUPP (
   DoMCActionUPP userUPP
);

Parameters
userUPP

A DoMCActionUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeGetMovieUPP
Disposes of a GetMovieUPP pointer.

void DisposeGetMovieUPP (
   GetMovieUPP userUPP
);

Parameters
userUPP

A GetMovieUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMovieController
Disposes of a movie controller.

Functions 51
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void DisposeMovieController (
   ComponentInstance mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from the Component Manager's
OpenComponent or OpenDefaultComponent function, or from the NewMovieController (page
119) function.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
This function is implemented by the Movie Toolbox, not by movie controller components. If you are creating
your own movie controller component, you do not have to support this function. The following code snippet
illustrates its use:

// DisposeMovieController coding example
// See "Discovering QuickTime," page 221
// Resource identifiers
#define IDM_OPEN         101
char            szMovieFile[MAX_PATH];              // Name of movie file
Movie           movie;                              // Movie object
MovieController mc;                                 // Movie controller
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
                      LPSTR lpCmdLine, int nCmdShow)
{
    ...
    ...
    InitializeQTML(0);                          // Initialize QuickTime
    EnterMovies();                              // Initialize Toolbox
    ...
    //  Main message loop
    ...
    ExitMovies();                               // Terminate Toolbox
    TerminateQTML();                            // Terminate QuickTime
}  // end WinMain
//
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
    MSG             msg;
    EventRecord     er;

    . . .                                       // Fill in contents of MSG 
structure

    WinEventToMacEvent(&msg, &er);                  // Convert message to a QT
 event
    MCIsPlayerEvent(mc, (const EventRecord *)&er);  // Pass event to movie 
controller

    switch (iMsg) {
        case WM_CREATE:
            CreatePortAssociation(hwnd, NIL, 0L);  // Register window with QT
            break;
        case WM_COMMAND:
            switch (LOWORD(wParam)) {

52 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



                case IDM_OPEN:
                    MyCloseMovie();                 // Close previous movie, if
 any

                    if (MyGetFile(szMovieFile))         // Get file name from 
user
                        MyOpenMovie(hwnd, szMovieFile); // Open the movie
                    break;
                    . . .
                default:
                    return DefWindowProc(hwnd, iMsg, wParam, lParam);
            }  // end switch (LOWORD(wParam))
            break;
        case WM_CLOSE:
            DestroyPortAssociation(GetNativeWindowPort(hwnd));  // Unregister 
window
            break;
        . . .
        default:
            return DefWindowProc(hwnd, iMsg, wParam, lParam);

    }  // end switch (iMsg)

    return 0;
}  // end WndProc
//
BOOL MyGetFile (char *lpszMovieFile)
{
    OPENFILENAME         ofn;

    // Fill in contents of OPENFILENAME structure
                ...
                ...

     if (GetOpenFileName(&ofn))                     // Let user select file
        return TRUE;
    else
        return FALSE;
}  // end MyGetFile
//
void MyOpenMovie (HWND hwnd, char szFileName[255])
{
    short   nFileRefNum =0;
    FSSpec  fss;
    SetGWorld((CGrafPtr)GetNativeWindowPort(hwnd), NIL);   // Set graphics port
    NativePathNameToFSSpec(szFileName, &fss, 0);    // Convert pathname and make
 FSSpec
    OpenMovieFile(&fss, &nFileRefNum, fsRdPerm);    // Open movie file
    NewMovieFromFile(&movie, nFileRefNum, NIL,     // Get movie from file
                    NIL, newMovieActive, NIL);
    CloseMovieFile(nFileRefNum);                    // Close movie file

    mc =NewMovieController(movie, ...);            // Make movie controller
        ...
        ...

}  // end MyOpenMovie
//

Functions 53
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void MyCloseMovie (void)
{
    if (mc)                                     // Destroy movie controller, if
 any
        DisposeMovieController(mc);

    if (movie)                                  // Destroy movie object, if any
        DisposeMovie(movie);
}  // end MyCloseMovie

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
qtstreamsplicer.win
vrscript
vrscript.win

Declared In
Movies.h

DisposeMovieDrawingCompleteUPP
Disposes of a MovieDrawingCompleteUPP pointer.

void DisposeMovieDrawingCompleteUPP (
   MovieDrawingCompleteUPP userUPP
);

Parameters
userUPP

A MovieDrawingCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
ASCIIMoviePlayerSample for Windows
OpenGLMovieQT
VideoProcessing

54 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

DisposeMovieExecuteWiredActionsUPP
Disposes of a MovieExecuteWiredActionsUPP pointer.

void DisposeMovieExecuteWiredActionsUPP (
   MovieExecuteWiredActionsUPP userUPP
);

Parameters
userUPP

A MovieExecuteWiredActionsUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMoviePrePrerollCompleteUPP
Disposes of a MoviePrePrerollCompleteUPP pointer.

void DisposeMoviePrePrerollCompleteUPP (
   MoviePrePrerollCompleteUPP userUPP
);

Parameters
userUPP

A MoviePrePrerollCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
Movies.h

Functions 55
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DisposeMoviePreviewCallOutUPP
Disposes of a MoviePreviewCallOutUPP pointer.

void DisposeMoviePreviewCallOutUPP (
   MoviePreviewCallOutUPP userUPP
);

Parameters
userUPP

A MoviePreviewCallOutUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMovieProgressUPP
Disposes of a MovieProgressUPP pointer.

void DisposeMovieProgressUPP (
   MovieProgressUPP userUPP
);

Parameters
userUPP

A MovieProgressUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
qtdataexchange
qtdataexchange.win

Declared In
Movies.h

56 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DisposeMovieRgnCoverUPP
Disposes of a MovieRgnCoverUPP pointer.

void DisposeMovieRgnCoverUPP (
   MovieRgnCoverUPP userUPP
);

Parameters
userUPP

A MovieRgnCoverUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMoviesErrorUPP
Disposes of a MoviesErrorUPP pointer.

void DisposeMoviesErrorUPP (
   MoviesErrorUPP userUPP
);

Parameters
userUPP

A MoviesErrorUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeQTCallBackUPP
Disposes of a QTCallBackUPP pointer.

Functions 57
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void DisposeQTCallBackUPP (
   QTCallBackUPP userUPP
);

Parameters
userUPP

A QTCallBackUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win

Declared In
Movies.h

DisposeQTEffectListFilterUPP
Disposes of a QTEffectListFilterUPP pointer.

void DisposeQTEffectListFilterUPP (
   QTEffectListFilterUPP userUPP
);

Parameters
userUPP

A QTEffectListFilterUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

DisposeQTNextTaskNeededSoonerCallbackUPP
Disposes of a QTNextTaskNeededSoonerCallbackUPP pointer.

58 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void DisposeQTNextTaskNeededSoonerCallbackUPP (
   QTNextTaskNeededSoonerCallbackUPP userUPP
);

Parameters
userUPP

A QTNextTaskNeededSoonerCallbackUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

DisposeQTSyncTaskUPP
Disposes of a QTSyncTaskUPP pointer.

void DisposeQTSyncTaskUPP (
   QTSyncTaskUPP userUPP
);

Parameters
userUPP

A QTSyncTaskUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeSprite
Disposes of a sprite.

Functions 59
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void DisposeSprite (
   Sprite theSprite
);

Parameters
theSprite

The sprite to be disposed of.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
You call this function to dispose of a sprite created by NewSprite (page 137). The image description handle
and image data pointer associated with the sprite are not disposed of by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

DisposeSpriteWorld
Disposes of a sprite world.

void DisposeSpriteWorld (
   SpriteWorld theSpriteWorld
);

Parameters
theSpriteWorld

The sprite world to dispose of. It is safe to pass NIL to this function.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
You call this function to dispose of a sprite world created by NewSpriteWorld (page 139). This function also
disposes of all of the sprites associated with the sprite world. This function does not dispose of the graphics
worlds associated with the sprite world. Here is an example of using it:

// DisposeSpriteWorld coding example
// See "Discovering QuickTime," page 347
#define kNumSprites             4
#define kNumSpaceShipImages     24
SpriteWorld                 gSpriteWorld =NIL;
Sprite                      gSprites[kNumSprites];
Handle                      gCompressedPictures[kNumSpaceShipImages];

60 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



ImageDescriptionHandle      gImageDescriptions[kNumSpaceShipImages];
void MyDisposeEverything (void)
{
    short           nIndex;
    // dispose of the sprite world and associated graphics world
    if (gSpriteWorld)
        DisposeSpriteWorld(gSpriteWorld);

    // dispose of each sprite's image data
    for (nIndex =0; nIndex < kNumSprites; nIndex++) {
        if (gCompressedPictures[nIndex])
            DisposeHandle(gCompressedPictures[nIndex]);
        if (gImageDescriptions[nIndex])
            DisposeHandle((Handle)gImageDescriptions[nIndex]);
    }
    DisposeGWorld(spritePlane);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

DisposeTextMediaUPP
Disposes of a TextMediaUPP pointer.

void DisposeTextMediaUPP (
   TextMediaUPP userUPP
);

Parameters
userUPP

A TextMediaUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext

Functions 61
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



qttext.win

Declared In
Movies.h

DisposeTrackTransferUPP
Disposes of a TrackTransferUPP pointer.

void DisposeTrackTransferUPP (
   TrackTransferUPP userUPP
);

Parameters
userUPP

A TrackTransferUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeTweenerDataUPP
Disposes of a TweenerDataUPP pointer.

void DisposeTweenerDataUPP (
   TweenerDataUPP userUPP
);

Parameters
userUPP

A TweenerDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

62 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DisposeUserData
Disposes of a user data structure created by NewUserData.

OSErr DisposeUserData (
   UserData theUserData
);

Parameters
theUserData

The user data structure that is to be disposed of. It is acceptable but unnecessary to pass NIL in this
parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
QTKitTimeCode
qttimecode
qttimecode.win
WhackedTV

Declared In
Movies.h

EndFullScreen
Ends full-screen mode for a graphics device.

OSErr EndFullScreen (
   Ptr fullState,
   long flags
);

Parameters
fullState

The pointer to private state information returned by a previous call to BeginFullScreen (page 33).

flags
Reserved. Set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Functions 63
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
This function restores the graphics device and other settings to the state specified by the private state
information pointed to by the fullState parameter. The resulting state is that that was in effect prior to
the immediately previous call to BeginFullScreen (page 33). The following code illustrates its use:

OSErr QTFullScreen_RestoreScreen (void)
{
    OSErr       myErr =noErr;

#if TARGET_OS_WIN32
    DestroyPortAssociation((CGrafPtr)gFullScreenWindow);
#endif
    DisposeMovieController(gMC);
    myErr =EndFullScreen(gRestoreState, 0L);

    return(myErr);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FullScreen
qtbigscreen
QTCarbonShell
qtfullscreen
qtfullscreen.win

Declared In
Movies.h

FlattenMovie
Creates a new movie file containing a specified movie.

void FlattenMovie (
   Movie theMovie,
   long movieFlattenFlags,
   const FSSpec *theFile,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags,
   short *resId,
   ConstStr255Param resName
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

64 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



movieFlattenFlags
Contains flags (see below) that control the process of adding movie data to the new movie file. Set
unused flags to 0. See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

theFile
A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Set this parameter to the Script Manager constant
smSystemScript to use the system script; set it to smCurrentScript to use the current script. See
Inside Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Contains flags (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

resId
A pointer to a field that contains the resource ID number for the new resource. If the field referred to
by the resId parameter is set to 0, the Movie Toolbox assigns a unique resource ID number to the
new resource. The toolbox then returns the movie's resource ID number in the field referred to by
the resId parameter. The Movie Toolbox assigns resource ID numbers sequentially, starting at 128.
If the resId parameter is set to NIL, the Movie Toolbox assigns a unique resource ID number to the
new resource and does not return that resource's ID value.

resName
Points to a character string with the name of the movie resource. If you set the resName parameter
to NIL, the toolbox creates an unnamed resource.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
The file created by FlattenMovie also contains all the data for the movie; that is, the Movie Toolbox resolves
any data references and includes the corresponding movie data in the new movie file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AddFrameToMovie
mfc.win
MovieGWorlds
simpleeditsdi.win

Functions 65
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



simpleplayersdi.win

Declared In
Movies.h

FlattenMovieData
Creates a new movie and a file that contains all the movie data.

Movie FlattenMovieData (
   Movie theMovie,
   long movieFlattenFlags,
   const FSSpec *theFile,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

movieFlattenFlags
Contains flags (see below) that control the process of adding movie data to the new movie file. These
flags affect how the toolbox adds movies to the new movie file later. Set unused flags to 0. See these
constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

theFile
This parameter usually contains a pointer to the file system specification for the movie file to be
created. In place of a FSSpec pointer, QuickTime lets you pass a pointer to a data reference structure
to receive the flattened movie data.

creator
The creator value for the new file.

scriptTag
Contains constants (see below) that specify the script in which the movie file should be created. See
Inside Macintosh: Text for more information about scripts and script tags. See these constants:

createMovieFileFlags
Contains flags (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

Return Value
The identifier of the new movie. If the function could not create the movie, it sets this returned identifier to
NIL.

66 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
This function will take any movie and optionally make it self-contained, interleaved, and Fast Start. Unlike
FlattenMovie (page 64), this function does not add the new movie resource to the new movie file; instead,
FlattenMovieData returns the new movie to your application. Your application must dispose of the returned
movie. You can use this function to create a single-fork movie file, by setting the
flattenAddMovieToDataFork flag in the movieFlattenFlags parameter to 1. The Movie Toolbox then
places the movie into the data fork of the movie file. Instead of flattening to a file, you can specify a data
reference to flatten a movie to. The following two code samples show flattening a movie to a data location
and to a file:

// FlattenMovieData used to flatten a movie to a data location
// create a 0-length handle
    myHandle =NewHandleClear(mySize);
    if (myHandle ==NIL)
        goto bail;

// fill in the data reference record
    myDataRefRec.dataRefType =HandleDataHandlerSubType;
    myDataRefRec.dataRef =NewHandle(sizeof(Handle));
    if (myDataRefRec.dataRef ==NIL)
        goto bail;
    *((Handle *)*(myDataRefRec.dataRef)) =myHandle;
    myFlags =flattenFSSpecPtrIsDataRefRecordPtr;
    myFile =(FSSpec *)&myDataRefRec;
    // flatten the source movie into the handle
    myMemMovie =FlattenMovieData(mySrcMovie, myFlags, myFile, 0L,
                                  smSystemScript, 0L);
    Movie aMovie;
    aMovie =FlattenMovieData(theMovie,
        flattenAddMovieToDataFork |
        flattenForceMovieResourceBeforeMovieData,
        &theOutputFile, OSTypeConst('TVOD'), smSystemScript,
        createMovieFileDeleteCurFile | createMovieFileDontCreateResFile);

    DisposeMovie(aMovie);
    Movie aMovie;
    aMovie =FlattenMovieData(theMovie,
        flattenAddMovieToDataFork,
        &theOutputFile, OSTypeConst('TVOD'), smSystemScript,
        createMovieFileDeleteCurFile | createMovieFileDontCreateResFile);

    DisposeMovie(aMovie);
// FlattenMovieData used to flatten a movie to a Fast Start file
// See "Discovering QuickTime," page 257
myErr =OpenMovieFile(&myTempSpec, &myTempResRefNum, fsRdPerm);
if (myErr !=noErr)
    goto bail;
myErr =NewMovieFromFile(&myTempMovie, myTempResRefNum, NIL, 0, 0, 0);
if (myErr !=noErr)
    goto bail;
SetMovieProgressProc(myTempMovie, (MovieProgressUPP)-1, 0L);
// flatten the temporary file into a new movie file; put the movie
// resource first so that progressive downloading is possible
myPanoMovie =FlattenMovieData(
                        myTempMovie,
                        flattenDontInterleaveFlatten
                        | flattenAddMovieToDataFork

Functions 67
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



                        | flattenForceMovieResourceBeforeMovieData,
                        &myDestSpec,
                        FOUR_CHAR_CODE('TVOD'),
                        smSystemScript,
                        createMovieFileDeleteCurFile
                        | createMovieFileDontCreateResFile);

Special Considerations

Through the SetTrackLoadSettings (page 224) function, the Movie Toolbox allows you to set a movie's
preloading guidelines when you create the movie. The preload information is preserved when you save or
flatten the movie (using either FlattenMovie or FlattenMovieData). In flattened movies, the tracks that
are to be preloaded are stored at the start of the movie, rather than being interleaved with the rest of the
movie data. This greatly improves preload performance because it is not necessary for the device storing the
movie data to seek during retrieval of the data to be preloaded.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

FlattenMovieDataToDataRef
Performs a flattening operation to a movie at a storage location.

Movie FlattenMovieDataToDataRef (
   Movie theMovie,
   long movieFlattenFlags,
   Handle dataRef,
   OSType dataRefType,
   OSType creator,
   ScriptCode scriptTag,
   long createMovieFileFlags
);

Parameters
theMovie

The movie passed into this operation. Your application obtains this movie identifier from such functions
as NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

68 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



movieFlattenFlags
Constants (see below) that control the process of adding movie data to the new container. QuickTime
will read these flags later when it adds movies to the storage. Set unused flags to 0. See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenForceMovieResourceBeforeMovieData

dataRef
A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

creator
The creator type of the new container (for example, 'TV0D', the creator type for Apple's movie
player).

scriptTag
Constants (see below) that specify the script for the new container. See these constants:

createMovieFileFlags
Constants (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

Return Value
The identifier of the new movie. If the function could not create the movie, it sets the returned identifier to
NIL.

Discussion
This function performs a flattening operation to the destination data reference.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonShell

Declared In
Movies.h

GetMaxLoadedTimeInMovie
When a movie is being progressively downloaded, returns the duration of the part of a movie that has already
been downloaded.

Functions 69
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr GetMaxLoadedTimeInMovie (
   Movie theMovie,
   TimeValue *time
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

time
The duration of the part of a movie that has already been downloaded. This time value is expressed
in the movie's time coordinate system. If all of a movie has been downloaded, this parameter returns
the duration of the entire movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The Movie Toolbox creates a time table for a movie when either QTMovieNeedsTimeTable (page 177) or
GetMaxLoadedTimeInMovie is called for the movie, but the time table is used only by the toolbox and is
not accessible to applications. The toolbox disposes of the time table when the download is complete.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaDataRef
Returns a copy of a specified data reference.

OSErr GetMediaDataRef (
   Media theMedia,
   short index,
   Handle *dataRef,
   OSType *dataRefType,
   long *dataRefAttributes
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

index
The index value that corresponds to the data reference. It must be less than or equal to the value that
is returned by GetMediaDataRefCount (page 71).

70 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



dataRef
A pointer to a field that is to receive a handle to the data reference. The media handler returns a
handle to information that identifies the file that contains this media's data. The type of information
stored in that handle depends upon the value of the dataRefType parameter. If the function cannot
locate the specified data reference, the handler sets this returned value to NIL. Set the dataRef
parameter to NIL if you are not interested in this information.

dataRefType
A pointer to a field that is to receive the type of data reference. If the data reference is an alias, the
media handler sets this value to 'alis'. Set the dataRefType parameter to NIL if you are not
interested in this information.

dataRefAttributes
A pointer to a field that is to receive the reference's attribute flags (see below). Unused flags are set
to 0. See these constants:

dataRefSelfReference

dataRefWasNotResolved

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Use this function to retrieve information about a data reference. For example, you might want to verify the
condition of a movie's data references after loading the movie from its movie file. You could use this function
to check each data reference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
SlideShowImporter
SlideShowImporter.win
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

GetMediaDataRefCount
Determines the number of data references in a media.

Functions 71
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr GetMediaDataRefCount (
   Media theMedia,
   short *count
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

count
A pointer to a field that is to receive the number of data references in the media.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

GetMediaNextInterestingDecodeTime
Searches for decode times of interest in a media.

void GetMediaNextInterestingDecodeTime (
   Media theMedia,
   short interestingTimeFlags,
   TimeValue64 decodeTime,
   Fixed rate,
   TimeValue64 *interestingDecodeTime,
   TimeValue64 *interestingDecodeDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

72 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:
nextTimeMediaSample Set this flag to 1 to search for the next sample. nextTimeMediaEdit Set
this flag to 1 to search for the next group of samples. nextTimeSyncSample Set this flag to 1 to
search for the next sync sample. nextTimeEdgeOK Set this flag to 1 to accept information about
elements that begin or end at the time specified by the decodeTime parameter. When this flag is set
the function returns valid information about the beginning and end of a media. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

decodeTime
Specifies the starting point for the search in decode time. This time value must be expressed in the
media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDecodeTime
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media's time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to -1. Set this parameter to NULL if you are not interested in this information.

interestingDecodeDuration
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the duration
of the interesting time in the media's time coordinate system. Set this parameter to NULL if you don't
want this information; this lets the function works faster.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

GetMediaNextInterestingDisplayTime
Searches for display times of interest in a media.

Functions 73
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void GetMediaNextInterestingDisplayTime (
   Media theMedia,
   short interestingTimeFlags,
   TimeValue64 displayTime,
   Fixed rate,
   TimeValue64 *interestingDisplayTime,
   TimeValue64 *interestingDisplayDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as NewTrackMedia
and GetTrackMedia.

interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:
nextTimeMediaSample Set this flag to 1 to search for the next sample. nextTimeMediaEdit Set
this flag to 1 to search for the next group of samples. nextTimeSyncSample Set this flag to 1 to
search for the next sync sample. nextTimeEdgeOK Set this flag to 1 to accept information about
elements that begin or end at the time specified by the decodeTime parameter. When this flag is set
the function returns valid information about the beginning and end of a media. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

displayTime
Specifies the starting point for the search in display time. This time value must be expressed in the
media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDisplayTime
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media's time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to -1. Set this parameter to NIL if you are not interested in this information.

interestingDisplayDuration
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the duration of
the interesting time in the media's time coordinate system. Set this parameter to NIL if you don't
want this information; this lets the function works faster.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMediaNextInterestingTime
Searches for times of interest in a media.

74 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void GetMediaNextInterestingTime (
   Media theMedia,
   short interestingTimeFlags,
   TimeValue time,
   Fixed rate,
   TimeValue *interestingTime,
   TimeValue *interestingDuration
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit or nextTimeSyncSample flags to 1. Set unused
flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the media's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. Set this
parameter to NIL if you are not interested in this information.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the media's time coordinate system. Set this parameter to NIL if you don't want this
information; this lets the function works faster.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Discussion
Some compression algorithms conserve space by eliminating duplication between consecutive frames in a
sample. They do this by deriving frames from sync samples, which don't rely on preceding frames for content.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qdmediahandler

Functions 75
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



qdmediahandler.win
TimeCode Media Handlers

Declared In
Movies.h

GetMediaPlayHints
Undocumented

void GetMediaPlayHints (
   Media theMedia,
   long *flags
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

flags
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaPropertyAtom
Retrieves the property atom container of a media handler.

OSErr GetMediaPropertyAtom (
   Media theMedia,
   QTAtomContainer *propertyAtom
);

Parameters
theMedia

A reference to the media handler for this operation.

propertyAtom
A pointer to a QT atom container. On return, the atom container contains the property atoms for the
track associated with the media handler.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

76 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
You can call GetMediaPropertyAtom to retrieve the properties of the track associated with the specified
media handler. The contents of the returned QT atom container are defined by the media handler.

Special Considerations

The caller is responsible for disposing of the QT atom container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win
vrscript
vrscript.win

Declared In
Movies.h

GetMovieAnchorDataRef
Retrieves a movie's anchor data reference and type.

OSErr GetMovieAnchorDataRef (
   Movie theMovie,
   Handle *dataRef,
   OSType *dataRefType,
   long *outFlags
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dataRef
A handle to the data reference. The type of information stored in the handle depends upon the data
reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

outFlags
If there is no anchor data reference associated with the movie, then GetMovieAnchorDataRef sets
this parameter to kMovieAnchorDataRefIsDefault (see below) and returns copies of the default
data reference and type. See these constants:

kMovieAnchorDataRefIsDefault

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Functions 77
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
If there is neither an anchor nor a default data reference, NIL will be returned in dataRef and 0 in
dataRefType.

Special Considerations

The caller should dispose of the data reference returned.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieAudioBalance
Returns the balance value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioBalance (
   Movie m,
   Float32 *leftRight,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

leftRight
On return, a pointer to the current balance setting for the movie. The balance setting is a 32-bit
floating-point value that controls the relative volume of the left and right sound channels. A value of
0 sets the balance to neutral. Positive values up to 1.0 shift the balance to the right channel, negative
values up to -1.0 to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie's balance setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioBalance (page 205).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

78 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMovieAudioFrequencyLevels
Returns the current frequency meter levels of a movie mix.

OSStatus GetMovieAudioFrequencyLevels (
   Movie m,
   FourCharCode whatMixToMeter,
   QTAudioFrequencyLevels *pAveragePowerLevels
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

pAveragePowerLevels
A pointer to a QTAudioFrequencyLevels structure (page 325).

Return Value
An error code. Returns noErr if there is no error.

Discussion
In the structure pointed to by pAveragePowerLevels, the numChannels field must be set to the number
of channels in the movie mix being metered and the numBands field must be set to the number of bands
being metered (as previously configured). Enough memory for the structure must be allocated to hold 32-bit
values for all bands in all channels. This function returns the current frequency meter levels in the level
field of the structure, with all the band levels for the first channel first, all the band levels for the second
channel next and so on.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Core Animation QuickTime Layer
SillyFrequencyLevels

Declared In
Movies.h

GetMovieAudioFrequencyMeteringBandFrequencies
Returns the chosen middle frequency for each band in the configured frequency metering of a particular
movie mix.

Functions 79
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus GetMovieAudioFrequencyMeteringBandFrequencies (
   Movie m,
   FourCharCode whatMixToMeter,
   UInt32 numBands,
   Float32 *outBandFrequencies
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

numBands
The number of bands to examine.

outBandFrequencies
A pointer to an array of frequencies, each expressed in Hz.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use this function to label a visual meter in a user interface.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioFrequencyMeteringNumBands
Returns the number of frequency bands being metered for a movie's specified audio mix.

OSStatus GetMovieAudioFrequencyMeteringNumBands (
   Movie m,
   FourCharCode whatMixToMeter,
   UInt32 *outNumBands
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

outNumBands
A pointer to memory that stores the number of frequency bands currently being metered for the
movie's specified audio mix.

80 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioFrequencyMeteringNumBands (page 206).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioGain
Returns the gain value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioGain (
   Movie m,
   Float32 *gain,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the movie's volume. 0.0
is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the movie is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet movies to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioGain (page 207).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioMute
Returns the mute value for the audio mix of a movie currently playing.

Functions 81
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus GetMovieAudioMute (
   Movie m,
   Boolean *muted,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

muted
Returns TRUE if the movie audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioMute (page 207).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioVolumeLevels
Returns the current volume meter levels of a movie.

OSStatus GetMovieAudioVolumeLevels (
   Movie m,
   FourCharCode whatMixToMeter,
   QTAudioVolumeLevels *pAveragePowerLevels,
   QTAudioVolumeLevels *pPeakHoldLevels
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

pAveragePowerLevels
A pointer to a QTAudioVolumeLevels structure that stores the average power level of each channel
in the mix, measured in decibels. A return of NIL means no channels; if non-NIL, 0.0 dB for each
channel means full volume, -6.0 dB means half volume, -12.0 dB means quarter volume, and -infinite
dB means silence.

82 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



pPeakHoldLevels
A pointer to a QTAudioVolumeLevels structure that stores the peak hold level of each channel in
the mix, measured in decibels. A return of NIL means no channels; if non-NIL, 0.0 dB for each channel
means full volume, -6.0 dB means half volume, -12.0 dB means quarter volume, and -infinite dB means
silence.

Return Value
An error code. Returns noErr if there is no error.

Discussion
If either pAveragePowerLevels or pPeakHoldLevels returns non-NIL, it must have the numChannels
field in its QTAudioVolumeLevels structure set to the number of channels in the movie mix being metered
and the memory allocated for the structure must be large enough to hold levels for all those channels.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioVolumeMeteringEnabled
Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

OSStatus GetMovieAudioVolumeMeteringEnabled (
   Movie m,
   FourCharCode whatMixToMeter,
   Boolean *enabled
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

enabled
Returns TRUE if audio volume metering is enabled, FALSE if it is disabled.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioVolumeMeteringEnabled (page 208).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

Functions 83
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMovieColorTable
Retrieves a movie's color table.

OSErr GetMovieColorTable (
   Movie theMovie,
   CTabHandle *ctab
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

ctab
A pointer to a field that is to receive a handle to the movie's color table. If the movie does not have
a color table, the toolbox sets the field to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The toolbox returns a copy of the color table, so it is your responsibility to dispose of the color table when
you are done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieCoverProcs
Retrieves the cover functions that you set with the SetMovieCoverProcs function.

OSErr GetMovieCoverProcs (
   Movie theMovie,
   MovieRgnCoverUPP *uncoverProc,
   MovieRgnCoverUPP *coverProc,
   long *refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

uncoverProc
Where to return the current uncover procedure. This value is set to NIL if no uncover procedure was
specified.

84 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



coverProc
Where to return the current cover procedure. This value is set to NIL if no cover procedure was
specified.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your cover functions need.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function returns the uncover and cover functions for the movie as well as the reference constant for the
cover functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieDefaultDataRef
Gets a movie's default data reference.

OSErr GetMovieDefaultDataRef (
   Movie theMovie,
   Handle *dataRef,
   OSType *dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dataRef
A pointer to a field that is to receive a handle to the data reference. The function returns a handle to
information that identifies the file that contains this media's data. The type of information stored in
that handle depends upon the value of the dataRefType parameter. If the function cannot locate
the specified data reference, the handler sets this returned value to NIL. Set the dataRef parameter
to NIL if you are not interested in this information.

dataRefType
A pointer to a field that is to receive the type of data reference; see Data References. If the data
reference is an alias, the function sets this value to 'alis', indicating that the reference is an alias.
Set the dataRefType parameter to NIL if you are not interested in this information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Functions 85
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieLoadState
Returns a value that indicates the state of a movie's loading process.

long GetMovieLoadState (
   Movie theMovie
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

Return Value
A constant (see below) that indicates the movie's loading status.

Discussion
This function lets your code perform relative comparisons against movie loading milestones to determine if
certain operations make sense. Its return values are ordered so that they conform to this rule:

kMovieLoadStateError
< kMovieLoadStateLoading
< kMovieLoadStatePlayable
< kMovieLoadStateComplete

Special Considerations

Because of the "voting system" involved, an application checking for the load state should throttle its calling
of the routine. Not calling GetMovieLoadState more often than every quarter of a second is a good place
to start.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Movie From DataRef
QTCarbonShell

Declared In
Movies.h

86 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMovieNextInterestingTime
Searches for times of interest in a movie's enabled tracks.

void GetMovieNextInterestingTime (
   Movie theMovie,
   short interestingTimeFlags,
   short numMediaTypes,
   const OSType *whichMediaTypes,
   TimeValue time,
   Fixed rate,
   TimeValue *interestingTime,
   TimeValue *interestingDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit, nextTimeTrackEdit and nextTimeSyncSample
flags to 1. Set unused flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeTrackEdit

nextTimeSyncSample

nextTimeStep

nextTimeEdgeOK

nextTimeIgnoreActiveSegment

numMediaTypes
The number of media types in the table referred to by the whichMediaType parameter. Set this
parameter to 0 to search all media types.

whichMediaTypes
A pointer to an array of media type constants (see below). You can use this parameter to limit the
search to a specified set of media types. Each entry in the table referred to by this parameter identifies
a media type to be included in the search. You use the numMediaTypes parameter to indicate the
number of entries in the table. Set this parameter to NIL to search all media types. See these
constants:

VisualMediaCharacteristic

AudioMediaCharacteristic

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the movie's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

Functions 87
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the movie's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. If you are not
interested in this information, set this parameter to NIL.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the movie's time coordinate system. Set this parameter to NIL if you don't want this
information; in this case, the function works faster.

Discussion
The following code sample shows the use of GetMovieNextInterestingTime to return, through the time
parameter, the starting time of the first video sample of the specified QuickTime movie. The trick here is to
set the nextTimeEdgeOK flag, to indicate that you want to get the starting time of the beginning of the
movie. If this function encounters an error, it returns a (bogus) starting time of -1, as shown below:

static OSErr QTStep_GetStartTimeOfFirstVideoSample (Movie theMovie,
                                                    TimeValue *theTime)
{
    short           myFlags;
    OSType          myTypes[1];

    *theTime =kBogusStartingTime;               // a bogus starting time
    if (theMovie ==NIL)
        return(invalidMovie);

    myFlags =nextTimeMediaSample + nextTimeEdgeOK;
                                 // we want the first sample in the movie
    myTypes[0] =VisualMediaCharacteristic;      // we want video samples
    GetMovieNextInterestingTime(theMovie, myFlags, 1, myTypes,
                                      (TimeValue)0, fixed1, theTime, NIL);
    return(GetMoviesError());
}

Special Considerations

This function examines only the movie's enabled tracks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

88 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMovieProgressProc
Gets the MovieProgressProc callback attached to a movie.

void GetMovieProgressProc (
   Movie theMovie,
   MovieProgressUPP *p,
   long *refcon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

p
On return, a pointer to a MovieProgressProc callback.

refcon
On return, a reference constant passed to the callback. This parameter is used to point to a data
structure containing any information the function needs.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMoviePropertyAtom
Gets a movie's property atom.

OSErr GetMoviePropertyAtom (
   Movie theMovie,
   QTAtomContainer *propertyAtom
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

propertyAtom
A pointer to a property atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This routine is used to author event handlers for the kQTEventMovieLoaded QuickTime event.

Functions 89
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieSegmentDisplayBoundsRgn
Determines a movie's display boundary region for a specified segment.

RgnHandle GetMovieSegmentDisplayBoundsRgn (
   Movie theMovie,
   TimeValue time,
   TimeValue duration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

time
The starting time of the movie segment to consider. This time value must be expressed in the movie's
time coordinate system. The duration parameter specifies the length of the segment.

duration
The length of the segment to consider. Set this parameter to 0 to specify an instant in time.

Return Value
A handle to a MacRegion structure that the function allocates. This region is defined in the movie's display
coordinate system. If the movie does not have a spatial representation at the current time, the function
returns an empty region. If the function could not satisfy the request, it sets the returned handle to NIL.

Discussion
This function allocates a region and returns a handle to it. The Movie Toolbox derives the display boundary
region only from enabled tracks and only from those tracks that are used in the current display mode (movie,
poster, or preview). The display boundary region encloses all of a movie's enabled tracks after the track matrix,
track clip, movie matrix, and movie clip have been applied to them.

Special Considerations

Your application must dispose of the returned region when it is done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

90 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMovieStatus
Searches for errors in all the enabled tracks of the movie and returns information about errors that are
encountered during the processing associated with the MoviesTask function.

ComponentResult GetMovieStatus (
   Movie theMovie,
   Track *firstProblemTrack
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

firstProblemTrack
A pointer to a track identifier. The Movie Toolbox places the identifier for the first track that is found
to contain an error into the field referred to by this parameter. If you don't want to receive the track
identifier, set this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error in the movie status value.

Discussion
This function returns information about errors that are encountered during MoviesTask execution. These
errors typically reflect playback problems, such as low-memory conditions. GetMovieStatus returns the
error associated with the first problem track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Movie From DataRef
ThreadsImportMovie

Declared In
Movies.h

GetMovieThreadAttachState
Determines whether a given movie is attached to a thread.

OSErr GetMovieThreadAttachState (
   Movie m,
   Boolean *outAttachedToCurrentThread,
   Boolean *outAttachedToAnyThread
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Functions 91
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



outAttachedToCurrentThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to the current thread, FALSE
otherwise.

outAttachedToAnyThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to any thread, FALSE otherwise.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualBrightness
Returns the brightness adjustment for the movie.

OSStatus GetMovieVisualBrightness (
   Movie movie,
   Float32 *brightnessOut,
   UInt32 flags
);

Parameters
movie

The movie.

brightnessOut
Current brightness adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualContrast
Returns the contrast adjustment for the movie.

92 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus GetMovieVisualContrast (
   Movie movie,
   Float32 *contrastOut,
   UInt32 flags
);

Parameters
movie

The movie.

contrastOut
Current contrast adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid gray.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualHue
Returns the hue adjustment for the movie.

OSStatus GetMovieVisualHue (
   Movie movie,
   Float32 *hueOut,
   UInt32 flags
);

Parameters
movie

The movie.

hueOut
Current hue adjustment. (Float32)

flags
Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

Discussion
The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Functions 93
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualSaturation
Returns the color saturation adjustment for the movie.

OSStatus GetMovieVisualSaturation (
   Movie movie,
   Float32 *saturationOut,
   UInt32 flags
);

Parameters
movie

The movie.

saturationOut
Current saturation adjustment.(Float32)

flags
Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

Discussion
The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetNextUserDataType
Retrieves the next user data type in a specified user data list.

long GetNextUserDataType (
   UserData theUserData,
   OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

94 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



udType
Specifies a user data field; see User Data Identifiers. Set this parameter to 0 to retrieve the first
user data field in the user data list. On subsequent requests, use the previous value returned by this
function.

Return Value
The next user data type in the list. Returns 0 when there are no more user data types.

Discussion
Use this function to scan all the user data types in a user data list.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
Movies.h

GetPosterBox
Obtains a poster's boundary rectangle.

void GetPosterBox (
   Movie theMovie,
   Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

boxRect
A pointer to a rectangle. The Movie Toolbox returns the poster's boundary rectangle into the structure
referred to by this parameter.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 95
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetQuickTimePreference
Retrieves a particular preference from the QuickTime preferences.

OSErr GetQuickTimePreference (
   OSType preferenceType,
   QTAtomContainer *preferenceAtom
);

Parameters
preferenceType

A preference type to be retrieved (see below); see Atom ID Codes. See these constants:
ConnectionSpeedPrefsType

BandwidthManagementPrefsType

preferenceAtom
A pointer to the returned preference atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The following sample code shows how to retrieve the connection speed setting from the QuickTime
preferences:

struct ConnectionSpeedPrefsRecord {
   long connectionSpeed;
};
typedef struct ConnectionSpeedPrefsRecord ConnectionSpeedPrefsRecord;
. . .
OSErr                       err;
QTAtomContainer             prefs;
QTAtom                      prefsAtom;
long                        dataSize;
Ptr                         atomData;
ConnectionSpeedPrefsRecord  prefrec;
err =GetQuickTimePreference(ConnectionSpeedPrefsType, &amp;prefs);
if (err ==noErr) {
    prefsAtom =QTFindChildByID(prefs, kParentAtomIsContainer,
                                  ConnectionSpeedPrefsType, 1, nil);
    if (!prefsAtom) {
        // set the default setting to 28.8kpbs
        prefrec.connectionSpeed =kDataRate288ModemRate;
    } else {
        err =QTGetAtomDataPtr(prefs, prefsAtom, &dataSize,
                                                         &atomData);
        if (dataSize !=sizeof(ConnectionSpeedPrefsRecord)) {
            // the prefs record wasn't the right size,
            // so it must be corrupt -- set to the default
            prefrec.connectionSpeed =kDataRate288ModemRate;
        } else {
            // everything was fine -- read the connection speed
            prefrec =*(ConnectionSpeedPrefsRecord *)atomData;
        }
    }
    QTDisposeAtomContainer(prefs);
}

96 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

GetSoundDescriptionExtension
Gets the current extension to a SoundDescription structure.

OSErr GetSoundDescriptionExtension (
   SoundDescriptionHandle desc,
   Handle *extension,
   OSType idType
);

Parameters
desc

A handle to a SoundDescription structure.

extension
A pointer to a handle that, on return, contains the extension.

idType
A four-byte signature that identifies the type of data in the extension.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
SoundPlayer
SoundPlayer.win

Declared In
Movies.h

Functions 97
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetSpriteProperty
Retrieves the value of a specified sprite property.

OSErr GetSpriteProperty (
   Sprite theSprite,
   long propertyType,
   void *propertyValue
);

Parameters
theSprite

The sprite for this operation.

propertyType
The property whose value should be retrieved (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpritePropertyCanBeHitTested

propertyValue
A pointer to a variable that will hold the selected property value on return. Depending on the property
type, this parameter is either a pointer to the property value or the property value itself, cast as a
void pointer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to retrieve the value of a sprite property, setting the propertyType parameter to the
type of the property you want to retrieve.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackAudioGain
Returns the gain value for the audio mix of a track currently playing.

98 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus GetTrackAudioGain (
   Track t,
   Float32 *gain,
   UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the track's volume. 0.0 is
silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the track is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet tracks to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track gain setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioGain (page 223).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTrackAudioMute
Returns the mute value for the audio mix of a track currently playing.

OSStatus GetTrackAudioMute (
   Track t,
   Boolean *muted,
   UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Returns TRUE if the track's audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Functions 99
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
The track's mute setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioMute (page 223).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTrackLoadSettings
Retrieves a track's preload information.

void GetTrackLoadSettings (
   Track theTrack,
   TimeValue *preloadTime,
   TimeValue *preloadDuration,
   long *preloadFlags,
   long *defaultHints
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack.

preloadTime
Specifies a field to receive the starting point of the portion of the track to be preloaded. The toolbox
returns a value of -1 if the entire track is to be preloaded.

preloadDuration
Specifies a field to receive the amount of the track to be preloaded, starting from the time specified
in the preloadTime parameter. If the entire track is to be preloaded, this value is ignored.

preloadFlags
Specifies a field to receive the flags (see below) that control when the toolbox preloads the track. See
these constants:

preloadAlways

preloadOnlyIfEnabled

defaultHints
Specifies a field to receive the playback hints for the track.

Return Value
You can access this function's error returns through GetMoviesError and GetMoviesStickyError.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleVideoOut

100 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

GetTrackNextInterestingTime
Searches for times of interest in a track.

void GetTrackNextInterestingTime (
   Track theTrack,
   short interestingTimeFlags,
   TimeValue time,
   Fixed rate,
   TimeValue *interestingTime,
   TimeValue *interestingDuration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack.

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit, nextTimeTrackEdit and nextTimeSyncSample
flags to 1. Set unused flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeTrackEdit

nextTimeSyncSample

nextTimeEdgeOK

nextTimeIgnoreActiveSegment

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the movie's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the movie's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. Set this
parameter to NIL if you are not interested in this information.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the movie's time coordinate system. Set this parameter to NIL if you don't want this
information; in this case, the function works more quickly.

Discussion
Some compression algorithms conserve space by eliminating duplication between consecutive frames in a
sample. In this case, sync samples don't rely on preceding frames for content. You can access error returns
from this function through GetMoviesError and GetMoviesStickyError. See Error Codes.

Functions 101
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
MovieVideoChart
qttext
qttext.win
qtwiredactions

Declared In
Movies.h

GetTrackSegmentDisplayBoundsRgn
Determines the region a track occupies in a movie's graphics world during a specified segment.

RgnHandle GetTrackSegmentDisplayBoundsRgn (
   Track theTrack,
   TimeValue time,
   TimeValue duration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack.

time
The starting time of the track segment to consider. This time value must be expressed in the movie's
time coordinate system. The duration parameter specifies the length of the segment.

duration
The length of the segment to consider. Set this parameter to 0 to consider an instant in time.

Return Value
A handle to the region the specified track occupies in its movie's graphics world during a specified segment.
If the track does not have a spatial representation during the specified segment, the function returns an
empty region. If the function could not satisfy your request, it sets the returned handle to NIL.

Discussion
This function allocates the region and returns a handle to it. This region is valid for the specified segment.

Special Considerations

Your application must dispose of the returned region when you are done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

102 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
BurntTextSampleCode

Declared In
Movies.h

GetTrackStatus
Returns the value of the last error the media encountered while playing a specified track.

ComponentResult GetTrackStatus (
   Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from GetMovieStatus (page
91).

Return Value
GetTrackStatus returns the last error encountered for the specified track; see Error Codes. If the
component does not find any errors, the result is set to noErr.

Discussion
This function returns information about errors that are encountered during the processing associated with
MoviesTask. These errors typically reflect playback problems, such as low-memory conditions. This function
returns the last error encountered for the specified track. The media clears this error code when it detects
that the error has been corrected.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetUserData
Returns a specified user data item.

OSErr GetUserData (
   UserData theUserData,
   Handle data,
   OSType udType,
   long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the GetMovieUserData,
GetTrackUserData, or GetMediaUserData function.

Functions 103
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



data
A handle that is to receive the data from the specified item. GetUserData resizes this handle as
appropriate to accommodate the item. Your application is responsible for releasing this handle when
you are done with it. Set this parameter to NIL if you don't want to retrieve the user data item. This
can be useful if you want to verify that a user data item exists, but you don't need to work with the
item's contents.

udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qteffects.win

Declared In
Movies.h

GetUserDataItem
Returns a specified user data item.

OSErr GetUserDataItem (
   UserData theUserData,
   void *data,
   long size,
   OSType udType,
   long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

data
A pointer that is to receive the data from the specified item.

size
The size of the item.

104 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtcontroller
qtmusic.win
qtshellCEvents.win
samplemakeeffectmovie.win

Declared In
Movies.h

GetUserDataText
Retrieves language-tagged text from an item in a user data list.

OSErr GetUserDataText (
   UserData theUserData,
   Handle data,
   OSType udType,
   long index,
   short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the GetMovieUserData,
GetTrackUserData, or GetMediaUserData function.

data
A handle that is to receive the data. The GetUserDataText function resizes this handle as appropriate.
Your application must dispose of the handle when you are done with it.

udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

Functions 105
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



itlRegionTag
The language code of the text to be retrieved. See Localization Codes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You specify the user data list and item, and the item's type value and language code. The Movie Toolbox
retrieves the specified text from the user data item.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
QTCarbonShell
qtinfo
QTKitTimeCode
qttimecode.win

Declared In
Movies.h

HasMovieChanged
Determines whether a movie has changed and needs to be saved.

Boolean HasMovieChanged (
   Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

Return Value
Returns TRUE if the movie has changed, FALSE otherwise.

Discussion
Your application can clear the movie changed flag, indicating that the movie has not changed, by calling
ClearMovieChanged (page 38).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

106 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



InvalidateSprite
Invalidates the portion of a sprite's sprite world that is occupied by a sprite.

void InvalidateSprite (
   Sprite theSprite
);

Parameters
theSprite

The sprite for this operation.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
In most cases, you do not need to call this function. When you call SetSpriteProperty (page 218) to modify
a sprite's properties, it takes care of invalidating the appropriate regions of the sprite world. However, you
might call this function if you change a sprite's image data but retain the same image data pointer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

InvalidateSpriteWorld
Invalidates a rectangular area of a sprite world.

OSErr InvalidateSpriteWorld (
   SpriteWorld theSpriteWorld,
   Rect *invalidArea
);

Parameters
theSpriteWorld

The sprite world for this operation.

invalidArea
A pointer to the Rect structure that defines the area that should be invalidated. This rectangle should
be specified in the sprite world's source space, which is the coordinate system of the sprite layer's
graphics world before the sprite world's matrix is applied to it. To invalidate the entire sprite world,
pass NIL for this parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Typically, your application calls this function when the sprite world's destination window receives an update
event. Invalidating an area of the sprite world will cause the area to be redrawn the next time that
SpriteWorldIdle (page 229) is called.

Functions 107
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Special Considerations

When you modify sprite properties, invalidation takes place automatically; you do not need to call this
function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MakeMediaTimeTable
Returns a time table for the specified media.

ComponentResult ADD_MEDIA_BASENAME() MakeMediaTimeTable

Parameters
theMedia

The media for this operation. Your application obtains this identifier from such functions as
NewTrackMedia and GetTrackMedia.

offsets
A handle to an unlocked relocatable memory block allocated by your application. The function returns
the time table for the media in this block.

startTime
The first point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

endTime
The last point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

timeIncrement
The resolution of the time table. The values in a time table are for a points in the media, and these
points are separated by the amount of time specified by this parameter. The time value is expressed
in the media's time coordinate system.

firstDataRefIndex
An index to the first data reference for the media to be included in the time table. Set this parameter
to -1 to include all data references for the media. Set this parameter to 1 to specify the first data
reference for the media.

lastDataRefIndex
An index to the last data reference for the media to be included in the time table. The value 1 specifies
the first data reference for the media. If the value of the firstDataRefIndex parameter is -1, set
this parameter to 0.

retdataRefSkew
The offset to the next row of the time table, in long integers. The next row contains values for the
next data reference, as explained below. By adding the value of this parameter to an offset into the
table, you get the offset to the corresponding point for the next data reference.

108 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Your application must allocate an unlocked relocatable memory block for the time table to be returned and
pass a handle to it in the offsets parameter. The MakeMediaTimeTable (page 108) function resizes the
block to accommodate the time table it returns.

This time table is a two-dimensional array of long integers, organized so that each row in the table contains
values for one data reference. The first column in the table contains values for the time in the media specified
by the startTime parameter, and each subsequent column contains values for the point in the media that
is later by the value specified by the timeIncrement parameter. Each long integer value in the table specifies
the offset, in bytes, from the beginning of the data reference for that point in the media. The number of
columns in the table is equal to (endTime - startTime) / timeIncrement, rounded up. Because of
alignment issues, this value is not always the same as the value of the retdataRefSkew parameter.

Special Considerations

When all the data for a movie has been transferred, your application must dispose of the time table created
by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MakeTrackTimeTable
Returns a time table for a specified track in a movie.

OSErr MakeTrackTimeTable (
   Track trackH,
   long **offsets,
   TimeValue startTime,
   TimeValue endTime,
   TimeValue timeIncrement,
   short firstDataRefIndex,
   short lastDataRefIndex,
   long *retdataRefSkew
);

Parameters
trackH

The track for the operation. Your application gets this identifier from such functions as NewMovieTrack
and GetMovieTrack.

offsets
A handle to an unlocked relocatable memory block allocated by your application. The function returns
the time table for the track in this block.

Functions 109
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



startTime
The first point of the track to be included in the time table. This time value is expressed in the movie's
time coordinate system.

endTime
The last point of the track to be included in the time table. This time value is expressed in the movie's
time coordinate system.

timeIncrement
The resolution of the time table. The values in a time table are for a points in the track, and these
points are separated by the amount of time specified by this parameter. The time value is expressed
in the movie's time coordinate system.

firstDataRefIndex
An index to the first data reference for the track to be included in the time table. Set this parameter
to -1 to include all data references for the track. Set this parameter to 1 to specify the first data
reference for the track.

lastDataRefIndex
An index to the last data reference for the track to be included in the time table. The value 1 specifies
the first data reference for the track. If the value of the firstDataRefIndex parameter is -1, set this
parameter to 0.

retdataRefSkew
The offset to the next row of the time table, as a long integer. The next row contains values for the
next data reference, as explained below. By adding the value of this parameter to an offset into the
table, you get the offset to the corresponding point for the next data reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Your application must allocate an unlocked relocatable memory block for the time table to be returned and
pass a handle to it in the offsets parameter. The MakeTrackTimeTable (page 109) function resizes the
block to accommodate the time table it returns.

This time table is a two-dimensional array of long integers that is organized so that each row in the table
contains values for one data reference. The first column in the table contains values for the time in the track
specified by the startTime parameter, and each subsequent column contains values for the point in the
track that is later by the value specified by the timeIncrement parameter. Each long integer value in the
table specifies the offset, in bytes, from the beginning of the data reference for that point in the track. The
number of columns in the table is equal to (endTime - startTime) / timeIncrement, rounded up.
Because of alignment issues, this value is not always the same as the value of the retdataRefSkew parameter.
If there are track edits for a track, they are reflected in the track's time table.

Special Considerations

When all the data for a movie has been transferred, your application must dispose of the time table created
by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

110 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



MovieAudioExtractionBegin
Begins a movie audio extraction session.

OSStatus MovieAudioExtractionBegin (
   Movie m,
   UInt32 flags,
   MovieAudioExtractionRef *outSession
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

flags
Reserved; must be 0.

outSession
A pointer to an opaque session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function before doing any movie audio extraction, because you will pass the object returned
by outSession to the other movie audio extraction functions. The format of the extracted audio defaults
to the summary channel layout of the movie (all right channels mixed together, all left surround channels
mixed together, and so on.), 32-bit float, de-interleaved, with the sample rate set to the highest sample rate
found in the movie. You can set the audio format to be something else, as long as it is uncompressed and
you do it before your first call to MovieAudioExtractionFillBuffer (page 112).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionEnd
Ends a movie audio extraction session.

Functions 111
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus MovieAudioExtractionEnd (
   MovieAudioExtractionRef session
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 111).

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function when movie audio extraction is complete.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionFillBuffer
Extracts audio from a movie.

OSStatus MovieAudioExtractionFillBuffer (
   MovieAudioExtractionRef session,
   UInt32 *ioNumFrames,
   AudioBufferList *ioData,
   UInt32 *outFlags
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 111).

ioNumFrames
A pointer to the number of PCM frames to be extracted.

ioData
A pointer to an AudioBufferList allocated by the caller to hold the extracted audio data.

outFlags
A bit flag that indicates when extraction is complete: kMovieAudioExtractionComplete The
extraction process is complete. Value is (1L << 0). See these constants:

Return Value
An error code. Returns noErr if there is no error.

112 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
You call this function repeatedly; each call continues extracting audio where the last call left off. The function
will extract as many of the requested PCM frames as it can, given the limits of the buffer supplied and the
limits of the input movie. ioNumFrameswill be updated with the exact number of valid frames being returned.
When there is no more audio to extract from the movie, the function will continue to return noErr but will
return no further audio data. In this case, the outFlags parameter will have its
kMovieAudioExtractionComplete bit set. It is possible that the kMovieAudioExtractionComplete
bit will accompany the last buffer of valid data.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionGetProperty
Gets a property of a movie audio extraction session.

OSStatus MovieAudioExtractionGetProperty (
   MovieAudioExtractionRef session,
   QTPropertyClass inPropClass,
   QTPropertyID inPropID,
   ByteCount inPropValueSize,
   QTPropertyValuePtr outPropValueAddress,
   ByteCount *outPropValueSizeUsed
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 111).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_ChannelLayout The
summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

inPropValueSize
The size of the buffer allocated to receive the property value.

Functions 113
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
The actual size of the property value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionGetPropertyInfo
Gets information about a property of a movie audio extraction session.

OSStatus MovieAudioExtractionGetPropertyInfo (
   MovieAudioExtractionRef session,
   QTPropertyClass inPropClass,
   QTPropertyID inPropID,
   QTPropertyValueType *outPropType,
   ByteCount *outPropValueSize,
   UInt32 *outPropertyFlags
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 111).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_ChannelLayout The
summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

114 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



outPropFlags
On return, a pointer to flags representing the requested information about the item's property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionSetProperty
Sets a property of a movie audio extraction session.

OSStatus MovieAudioExtractionSetProperty (
   MovieAudioExtractionRef session,
   QTPropertyClass inPropClass,
   QTPropertyID inPropID,
   ByteCount inPropValueSize,
   ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 111).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_SummaryChannelLayout
The summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

inPropValueSize
The size of the property value.

inPropValueAddress
A const void pointer that points to the property value.

Return Value
An error code. Returns noErr if there is no error.

Functions 115
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieExecuteWiredActions
Undocumented

OSErr MovieExecuteWiredActions (
   Movie theMovie,
   long flags,
   QTAtomContainer actions
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

flags
Undocumented See these constants:

movieExecuteWiredActionDontExecute

actions
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieSearchText
Searches for text in a movie.

116 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr MovieSearchText (
   Movie theMovie,
   Ptr text,
   long size,
   long searchFlags,
   Track *searchTrack,
   TimeValue *searchTime,
   long *searchOffset
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

text
The text to be searched for.

size
The size of the text.

searchFlags
Flags (see below) that narrow the search process. See these constants:

searchTextDontGoToFoundTime

searchTextDontHiliteFoundText

searchTextOneTrackOnly

searchTextEnabledTracksOnly

searchTrack
On return, a pointer to the found track.

searchTime
On return, a pointer to the found time.

searchOffset
On return, a pointer to the found offset to the text.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

Functions 117
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewActionsUPP
Allocates a Universal Procedure Pointer for ActionsProc.

ActionsUPP NewActionsUPP (
   ActionsProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewActionsProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewDoMCActionUPP
Allocates a Universal Procedure Pointer for the DoMCActionProc callback.

DoMCActionUPP NewDoMCActionUPP (
   DoMCActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewDoMCActionProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

118 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewGetMovieUPP
Allocates a Universal Procedure Pointer for the GetMovieProc callback.

GetMovieUPP NewGetMovieUPP (
   GetMovieProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewGetMovieProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieController
Locates a movie controller component and assigns a movie to that controller.

ComponentInstance NewMovieController (
   Movie theMovie,
   const Rect *movieRect,
   long someFlags
);

Parameters
theMovie

The movie to be associated with the movie controller.

movieRect
A pointer to the Rect structure that is to define the display boundaries of the movie and its controller.

someFlags
Contains flags (see below) that control the operation. If you set these flags to 0, the movie controller
component centers the movie in the rectangle specified by the movieRect parameter and scales the
movie to fit in that rectangle. The control portion of the controller is also placed within that rectangle.
You may control how the movie and the control are drawn by setting one or more flags to 1. See
these constants:

mcTopLeftMovie

mcScaleMovieToFit

mcWithBadge

mcNotVisible

mcWithFrame

Functions 119
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
The ID of the new controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
qteffects.win
qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

NewMovieDrawingCompleteUPP
Allocates a Universal Procedure Pointer for the MovieDrawingCompleteProc callback.

MovieDrawingCompleteUPP NewMovieDrawingCompleteUPP (
   MovieDrawingCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieDrawingCompleteProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
ASCIIMoviePlayerSample for Windows
MovieGWorlds
OpenGLMovieQT
VideoProcessing

Declared In
Movies.h

120 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewMovieExecuteWiredActionsUPP
Allocates a Universal Procedure Pointer for the MovieExecuteWiredActionsProc callback.

MovieExecuteWiredActionsUPP NewMovieExecuteWiredActionsUPP (
   MovieExecuteWiredActionsProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieExecuteWiredActionsProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieForDataRefFromHandle
Creates a movie from a public movie handle, converting internal references to external references.

OSErr NewMovieForDataRefFromHandle (
   Movie *theMovie,
   Handle h,
   short newMovieFlags,
   Boolean *dataRefWasChanged,
   Handle dataRef,
   OSType dataRefType
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

h
A handle to the movie resource from which the movie is to be loaded.

newMovieFlags
Constants (see below) that control characteristics of the new movie. Set unused flags to 0. See these
constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Functions 121
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



dataRefWasChanged
A pointer to a Boolean value. The toolbox sets the value to TRUE if any references were changed. Pass
NIL if you don't want to receive this information.

dataRef
A data reference to the storage from which the movie was retrieved.

dataRefType
The data reference type. See Data References.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access Movie Toolbox error returns through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Discussion
This function creates a movie from a public movie handle in the same way as NewMovieFromHandle (page
128), but with one difference. If the public handle contains internal media data references, the function can
convert them to external references, as specified by dataRef and dataRefType. No other data references
are changed.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewMovieFromDataFork
Retrieves a movie that is stored anywhere in the data fork of a specified Macintosh file.

OSErr NewMovieFromDataFork (
   Movie *theMovie,
   short fRefNum,
   long fileOffset,
   short newMovieFlags,
   Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

fRefNum
A file reference number to a file that is already open.

fileOffset
The starting file offset of the atom in the data fork of the file specified by the fRefNum parameter.

122 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



newMovieFlags
Flags (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieResource (page 230) to preserve these changes. If you
do not want to receive this information, set the dataRefWasChanged parameter to NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromDataFork64
Provides a 64-bit version of NewMovieFromDataFork.

OSErr NewMovieFromDataFork64 (
   Movie *theMovie,
   long fRefNum,
   const wide *fileOffset,
   short newMovieFlags,
   Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

fRefNum
A file reference number to a file that is already open.

fileOffset
A pointer to the starting file offset of the atom in the data fork of the file specified by the fRefNum
parameter.

Functions 123
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



newMovieFlags
Flags (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieResource (page 230) to preserve these changes. If you
do not want to receive this information, set the dataRefWasChanged parameter to NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 4. Superseded in QuickTime 6 by NewMovieFromStorageOffset (page 130).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromDataRef
Creates a movie from any device with a corresponding data handler.

OSErr NewMovieFromDataRef (
   Movie *m,
   short flags,
   short *id,
   Handle dataRef,
   OSType dataRefType
);

Parameters
m

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

124 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



flags
Flags (see below) that control the operation of this function. Be sure to set unused flags to 0. See
these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

id
A pointer to the field that specifies the resource containing the movie data that is to be loaded. If the
field referred to by the id parameter is set to 0, the Movie Toolbox loads the first movie resource it
finds in the specified file. The toolbox then returns the movie's resource ID number in the field referred
to by the id parameter. An enumerated constant (see below) is available. See these constants:

movieInDataForkResID

dataRef
The default data reference. This parameter contains a handle to the information that identifies the
file to be used to resolve any data references and as a starting point for any Alias Manager searches.
The type of information stored in the handle depends upon the value of the dataRefType parameter.
For example, if your application is loading the movie from a file, you would refer to the file's alias in
this parameter and set the dataRefType parameter to rAliasType. If you do not want to identify
a default data reference, set the parameter to NIL.

dataRefType
The type of data reference. If the data reference is an alias, you must set the parameter to rAliasType,
indicating that the reference is an alias.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Discussion
This function is intended for use by specialized applications that need to instantiate movies from devices
not visible to the file system. Most applications should continue to use NewMovieFromFile (page 126). You
are not restricted to instantiating a movie from a file stored on a Macintosh HFS volume. With this function,
you can instantiate a movie from any device.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtdataref.win
SlideShowImporter.win

Functions 125
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

NewMovieFromFile
Creates a new movie in memory from a movie file or from any type of file for which QuickTime provides an
import component (AIFF, JPEG, MPEG-4, etc).

OSErr NewMovieFromFile (
   Movie *theMovie,
   short resRefNum,
   short *resId,
   StringPtr resName,
   short newMovieFlags,
   Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

resRefNum
The movie file from which the movie is to be loaded. Your application obtains this value from the
OpenMovieFile (page 143) function.

resId
A pointer to a field that specifies the resource containing the movie data that is to be loaded. If the
field referred to by the resId parameter is set to 0, the Movie Toolbox loads the first movie resource
it finds in the specified file. The Movie Toolbox then returns the movie's resource ID number in the
field referred to by the resId parameter. An enumerated constant (see below) is available. See these
constants:

movieInDataForkResID

resName
A pointer to a character string that is to receive the name of the movie resource that is loaded. If you
set the resName parameter to NIL, the Movie Toolbox does not return the resource name.

newMovieFlags
Flags (see below) that control the operation of NewMovieFromFile. Be sure to set unused flags to
0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any references were changed.
Use UpdateMovieResource (page 230) to preserve these changes. Set this parameter to NIL if you
don't want to receive this information. See NewMovieTrack for more information about data
references.

126 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox sets many movie characteristics to default values. If you want to change these defaults,
your application must call other Movie Toolbox functions. For example, the Movie Toolbox sets the movie's
graphics world to the one that is active when you call NewMovieFromFile. To change the graphics world
for the new movie, your application should use SetMovieGWorld.

The following is an example of using this function:

// NewMovieFromFile coding example
// See "Discovering QuickTime," page 385
Movie MyGetMovie (void)
{
    OSErr                   nErr;
    SFTypeList              types ={MovieFileType, 0, 0, 0};
    StandardFileReply       sfr;
    Movie                   movie =NIL;
    short                   nFileRefNum;
    StandardGetFilePreview(NIL, 1, types, &sfr);
    if (sfr.sfGood) {
        nErr =OpenMovieFile(&sfr.sfFile, &nFileRefNum, fsRdPerm);
        if (nErr ==noErr) {
            short           nResID =0;         //We want the first movie.
            Str255          strName;
            Boolean         bWasChanged;

            nErr =NewMovieFromFile(&movie, nFileRefNum, &nResID, strName,
                                    newMovieActive, &bWasChanged);
            CloseMovieFile(nFileRefNum);
        }
    }
    return movie;
}

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Special Considerations

This function works with some files that don't contain movie resources. When it encounters a file that does
not contain a movie resource, it tries to find a movie import component that can understand the data and
create a movie. It also works for MPEG, uLaw (.AU), and Wave (.WAV) file types. In some cases, the data in a
file is already sufficiently well formatted for QuickTime or its components to understand. For example, the
AIFF movie data import component can understand AIFF sound files and import the sound data into a
QuickTime movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 127
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
vrmakepano.win
vrscript
vrscript.win

Declared In
Movies.h

NewMovieFromHandle
Creates a movie in memory from a movie resource or a handle you obtained from PutMovieIntoHandle.

OSErr NewMovieFromHandle (
   Movie *theMovie,
   Handle h,
   short newMovieFlags,
   Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

h
A handle to the movie resource from which the movie is to be loaded.

newMovieFlags
Flags (see below) that control the operation of NewMovieFromHandle. Be sure to set unused flags
to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The toolbox sets the value to TRUE if any references were changed. Set
the dataRefWasChanged parameter to NIL if you don't want to receive this information.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox sets many movie characteristics to default values. If you want to change these defaults,
your application must call other Movie Toolbox functions. For example, the Movie Toolbox sets the movie's
graphics world to the one that is active when you call NewMovieFromHandle. To change the graphics world
for the new movie, your application should use SetMovieGWorld.

128 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
ThreadsExportMovie

Declared In
Movies.h

NewMovieFromScrap
Creates a movie from the contents of the scrap.

Movie NewMovieFromScrap (
   long newMovieFlags
);

Parameters
newMovieFlags

Flags (see below) that control the operation of the NewMovieFromScrap function. Be sure to set
unused flags to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Return Value
The identifier for the new movie. If NewMovieFromScrap fails, or if there is no movie in the scrap, the returned
identifier is set to NIL. You can use GetMoviesError to obtain the error result, or noErr if there was no
error. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Functions 129
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromStorageOffset
Creates a new movie based on the offset to data in a storage container.

OSErr NewMovieFromStorageOffset (
   Movie *theMovie,
   DataHandler dh,
   const wide *fileOffset,
   short newMovieFlags,
   Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL

dh
The data handler component that was returned by CreateMovieStorage (page 46). The data
handler's file must be open.

fileOffset
A pointer to the location of the movie data in the storage location specified by the dh parameter.
Unlike NewMovieFromDataFork and NewMovieFromDataFork64, there is no special meaning to a
file offset of -1.

newMovieFlags
Constants (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieInStorage (page 230) to preserve these changes. If you
do not want to receive this information, pass NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access Movie Toolbox error returns through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

130 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
This function serves the same purpose for data handlers as NewMovieFromDataFork64 (page 123) does for
movie file references. The API reads the 'moov' resource found at fileOffset and creates a Movie. The
data handler parameter should be an open data handler component instance for the storage holding the
'moov' resource. The newMovieFlags and dataRefWasChanged parameters are interpreted identically to
those same parameters in NewMovieFromDataFork64.

If you are writing a custom data handler, make sure it implements DataHGetDataRef. Also implement
DataHScheduleData64 and DataHGetFileSize64, or DataHScheduleData and DataHGetFileSize if
the data handler does not support 64-bit file offsets.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 6. Supersedes NewMovieFromDataFork64 (page 123).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewMovieFromUserProc
Creates a movie from data that you provide.

OSErr NewMovieFromUserProc (
   Movie *m,
   short flags,
   Boolean *dataRefWasChanged,
   GetMovieUPP getProc,
   void *refCon,
   Handle defaultDataRef,
   OSType dataRefType
);

Parameters
m

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

flags
Flags (see below) that control the operation of the NewMovieFromUserProc function. Be sure to set
unused flags to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Functions 131
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



dataRefWasChanged
A pointer to a Boolean value. The Toolbox sets the value to TRUE if any references were changed. Use
UpdateMovieResource (page 230) to preserve these changes. Set thedataRefWasChangedparameter
to NIL if you don't want to receive this information.

getProc
A Universal Procedure Pointer that accesses a GetMovieProc callback, which is responsible for
providing the movie data to the Movie Toolbox.

refCon
A reference constant (defined as a void pointer). This is the same value you provided to the Movie
Toolbox when you called NewMovieFromUserProc. Use this parameter to point to a data structure
containing any information your callback needs.

defaultDataRef
The default data reference. This parameter contains a handle to the information that identifies the
file to be used to resolve any data references and as a starting point for any Alias Manager searches.
The type of information stored in the handle depends upon the value of the dataRefType parameter.
For example, if your application is loading the movie from a file, you would refer to the file's alias in
the defaultDataRef parameter, and set the dataRefType parameter to rAliasType. If you don't
want to identify a default data reference, set the parameter to NIL.

dataRefType
The type of data reference. If the data reference is an alias, you must set the parameter to rAliasType,
indicating that the reference is an alias.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError and
GetMoviesStickyError, as well as in the function result. See Error Codes.

Discussion
Normally, when a movie is loaded from a file (for example, by means of NewMovieFromFile (page 126)), the
Movie Toolbox uses that file as the default data reference. Since this function does not require a file
specification, your application should specify the file to be used as the default data reference using the
defaultDataRef and dataRefType parameters.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMoviePrePrerollCompleteUPP
Allocates a Universal Procedure Pointer for the MoviePrePrerollCompleteProc callback.

132 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



MoviePrePrerollCompleteUPP NewMoviePrePrerollCompleteUPP (
   MoviePrePrerollCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviePrePrerollCompleteProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
Movies.h

NewMoviePreviewCallOutUPP
Allocates a Universal Procedure Pointer for the MoviePreviewCallOutProc callback.

MoviePreviewCallOutUPP NewMoviePreviewCallOutUPP (
   MoviePreviewCallOutProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviePreviewCallOutProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 133
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewMovieProgressUPP
Allocates a Universal Procedure Pointer for the MovieProgressProc callback.

MovieProgressUPP NewMovieProgressUPP (
   MovieProgressProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieProgressProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtdataexchange
qtdataexchange.win
ThreadsExportMovie
ThreadsImportMovie

Declared In
Movies.h

NewMovieRgnCoverUPP
Allocates a Universal Procedure Pointer for the MovieRgnCoverProc callback.

MovieRgnCoverUPP NewMovieRgnCoverUPP (
   MovieRgnCoverProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieRgnCoverProc.

134 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

NewMoviesErrorUPP
Allocates a Universal Procedure Pointer for the MoviesErrorProc callback.

MoviesErrorUPP NewMoviesErrorUPP (
   MoviesErrorProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviesErrorProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewQTCallBackUPP
Allocates a Universal Procedure Pointer for the QTCallBackProc callback.

QTCallBackUPP NewQTCallBackUPP (
   QTCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Functions 135
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 4.1. Replaces NewQTCallBackProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
Movies.h

NewQTEffectListFilterUPP
Allocates a Universal Procedure Pointer for the QTEffectListFilterProc callback.

QTEffectListFilterUPP NewQTEffectListFilterUPP (
   QTEffectListFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a QTEffectListFilterProc callback.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewQTNextTaskNeededSoonerCallbackUPP
Allocates a Universal Procedure Pointer for the QTNextTaskNeededSoonerCallbackProc callback.

QTNextTaskNeededSoonerCallbackUPP NewQTNextTaskNeededSoonerCallbackUPP (
   QTNextTaskNeededSoonerCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a QTNextTaskNeededSoonerCallbackProc callback.

Return Value
A new UPP; see Universal Procedure Pointers.

136 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

NewQTSyncTaskUPP
Allocates a Universal Procedure Pointer for the QTSyncTaskProc callback.

QTSyncTaskUPP NewQTSyncTaskUPP (
   QTSyncTaskProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTSyncTaskProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewSprite
Creates a new sprite in a specified sprite world.

Functions 137
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr NewSprite (
   Sprite *newSprite,
   SpriteWorld itsSpriteWorld,
   ImageDescriptionHandle idh,
   Ptr imageDataPtr,
   MatrixRecord *matrix,
   Boolean visible,
   short layer
);

Parameters
newSprite

A pointer to field that is to receive the new sprite's identifier. On return, this field contains the identifier
of the newly created sprite.

itsSpriteWorld
The sprite world with which the new sprite should be associated.

idh
A handle to an ImageDescription structure of the sprite's image.

imageDataPtr
A pointer to the sprite's image data.

matrix
A pointer to the sprite's MatrixRecord structure. If you pass NIL, an identity matrix is assigned to
the sprite.

visible
Specifies whether the sprite is visible.

layer
The sprite's layer. Sprites with lower layer values appear in front of sprites with higher layer values. If
you want to create a sprite that is drawn to the background graphics world, you should specify the
constant kBackgroundSpriteLayerNum for the layer parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The visible parameter, the layer parameter, and the newSprite and itsSpriteWorld parameters are
required. You can defer assigning image data to the sprite by passing NIL for both the idh and imageDataPtr
parameters. If you choose to defer assigning image data, you must call SetSpriteProperty (page 218) to
assign the image description handle and image data to the sprite before the next call to
SpriteWorldIdle (page 229).

Special Considerations

The caller owns the image description handle and the image data pointer; it is the caller's responsibility to
dispose of them after it disposes of a sprite.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites

138 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



DesktopSprites
DesktopSprites.win

Declared In
Movies.h

NewSpriteWorld
Creates a new sprite world.

OSErr NewSpriteWorld (
   SpriteWorld *newSpriteWorld,
   GWorldPtr destination,
   GWorldPtr spriteLayer,
   RGBColor *backgroundColor,
   GWorldPtr background
);

Parameters
newSpriteWorld

A pointer to a field that is to receive the new sprite world's identifier. On return, this field contains
the identifier for the newly created sprite world.

destination
A pointer to a CGrafPort structure that defines the graphics world to be used as the destination.

spriteLayer
A pointer to a CGrafPort structure that defines the graphics world to be used as the sprite layer.

backgroundColor
A pointer to an RGBColor structure that defines the color to be used as the background color. If you
pass a background graphics world to this function by setting the background parameter, you can
set this parameter to NIL.

background
A pointer to a CGrafPort structure that defines the graphics world to be used as the background.
If you pass a background color to this function by setting the backgroundColor parameter, you can
set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to create a new sprite world with associated destination and sprite layer graphics worlds,
and either a background color or a background graphics world. Once created, you can manipulate the sprite
world and add sprites to it using other sprite Movie Toolbox functions.

The newSpriteWorld, destination, and spriteLayer parameters are all required. You should specify a
background color, a background graphics world, or both. You should not pass NIL for both parameters. If
you specify both a background graphics world and a background color, the sprite world is filled with the
background color before the background sprites are drawn. If no background color is specified, black is the
default. If you specify a background graphics world, it should have the same dimensions and depth as the
graphics world specified by spriteLayer. If you draw to the graphics worlds associated with a sprite world
using standard QuickDraw and QuickTime functions, your drawing is erased by the sprite world's background
color. The sprite world created by this function has an identity matrix and does not have a clip shape.

Functions 139
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Here is an example of creating a sprite world:

// NewSpriteWorld coding example
// See "Discovering QuickTime," page 166
GWorldPtr       pSpritePlane =NIL;
SpriteWorld     spriteWorld =NIL;
Rect            rectBounce;
RGBColor        rgbcBackground;
void CreateSpriteStuff (Rect *pWndRect, CGrafPtr pMacWnd)
{
    OSErr       nErr;
    Rect        rect;
    // calculate the size of the destination
    rect =*pWndRect;
    OffsetRect(&rect, -rect.left, -rect.top);
    rectBounce =rect;
    InsetRect(&rectBounce, 16, 16);
    // create a sprite graphics world with a bit depth of 16
    NewGWorld(&pSpritePlane, 16, &rect, NIL, NIL, useTempMem);
    if (pSpritePlane ==NIL)
        NewGWorld(&pSpritePlane, 16, &rect, NIL, NIL, 0);
    if (pSpritePlane !=NIL) {
        LockPixels(pSpritePlane->
portPixMap);
        rgbcBackground.red =
        rgbcBackground.green =
        rgbcBackground.blue =0;
        // create a sprite world
        nErr =NewSpriteWorld(&spriteWorld, (CGrafPtr)pMacWnd,
            pSpritePlane, &rgbcBackground, NIL);
    }
}

Special Considerations

Before calling this function, you should lock the pixel maps of the sprite layer and background graphics
worlds. These graphics worlds must remain valid and locked for the lifetime of the sprite world. The sprite
world does not own the graphics worlds that are associated with it; it is the caller's responsibility to dispose
of the graphics worlds when they are no longer needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

140 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



NewTextMediaUPP
Allocates a Universal Procedure Pointer for the TextMediaProc callback.

TextMediaUPP NewTextMediaUPP (
   TextMediaProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTextMediaProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

NewTrackTransferUPP
Allocates a Universal Procedure Pointer for the TrackTransferProc callback.

TrackTransferUPP NewTrackTransferUPP (
   TrackTransferProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTrackTransferProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 141
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
MovieGWorlds

Declared In
Movies.h

NewTweenerDataUPP
Allocates a Universal Procedure Pointer for the TweenerDataProc callback.

TweenerDataUPP NewTweenerDataUPP (
   TweenerDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTweenerDataProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewUserData
Creates a new user data structure.

OSErr NewUserData (
   UserData *theUserData
);

Parameters
theUserData

A pointer to a pointer to a new UserDataRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error. If the function fails, theUserData is set to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

142 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
AlwaysPreview
Graphic Import-Export
QTKitTimeCode
qttimecode
qttimecode.win

Declared In
Movies.h

NewUserDataFromHandle
Creates a new user data structure from a handle.

OSErr NewUserDataFromHandle (
   Handle h,
   UserData *theUserData
);

Parameters
h

A handle to the data structure specified in theUserData.

theUserData
A pointer to a pointer to a new UserDataRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error. If the function fails, theUserData is set to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
Movies.h

OpenMovieFile
Opens a specified movie file.

Functions 143
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr OpenMovieFile (
   const FSSpec *fileSpec,
   short *resRefNum,
   SInt8 permission
);

Parameters
fileSpec

A pointer to the FSSpec structure for the movie file to be opened.

resRefNum
A pointer to a field that is to receive the file reference number for the opened movie file. Your
application must use this value when calling other Movie Toolbox functions that work with movie
files. This reference number refers to the file fork that contains the movie resource. If the movie is
stored in the data fork of the file, the returned reference number corresponds to the data fork.

permission
The permission level for the file (see below). If your application is only going to play the movie that
is stored in the file, you can open the file with read permission. If you plan to add data to the file or
change data in the file, you should open the file with write permission. See these constants:

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Your application must open a movie file before reading movie data from it or writing movie data to it. You
can open a movie file more than once; be sure to call CloseMovieFile (page 39) once for each time you
call this function. Note that opening the movie file with write permission does not prevent other applications
from reading data from the movie file.

If the specified file has a resource fork, this function opens the resource fork and returns a file reference
number to the resource fork. If the movie file does not have a resource fork (that is, it is a single-fork movie
file), this function opens the data fork instead. In this case, your application cannot use
AddMovieResource (page 27) with the movie file.

The following is an example of using OpenMovieFile:

// OpenMovieFile coding example
// See "Discovering QuickTime," page 385
Movie MyGetMovie (void)
{
    OSErr                   nErr;
    SFTypeList              types ={MovieFileType, 0, 0, 0};
    StandardFileReply       sfr;
    Movie                   movie =NIL;
    short                   nFileRefNum;
    StandardGetFilePreview(NIL, 1, types, &sfr);
    if (sfr.sfGood) {
        nErr =OpenMovieFile(&sfr.sfFile, &nFileRefNum, fsRdPerm);
        if (nErr ==noErr) {
            short           nResID =0;         //We want the first movie.
            Str255          strName;
            Boolean         bWasChanged;

            nErr =NewMovieFromFile(&movie, nFileRefNum, &nResID, strName,
                                    newMovieActive, &bWasChanged);

144 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



            CloseMovieFile(nFileRefNum);
        }
    }
    return movie;
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by OpenMovieStorage (page 145).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
vrmakepano.win
vrscript
vrscript.win

Declared In
Movies.h

OpenMovieStorage
Opens a data handler for movie storage.

OSErr OpenMovieStorage (
   Handle dataRef,
   OSType dataRefType,
   long flags,
   DataHandler *outDataHandler
);

Parameters
dataRef

A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

flags
A constant (see below) that determines the reading and writing capabilities of the data handler. See
these constants:

kDataHCanRead

kDataHCanWrite

outDataHandler
A pointer to a field that is to receive the data handler for the opened movie file. Your application uses
this value when calling other Movie Toolbox functions that work with movie files. If you pass NIL,
the Movie Toolbox creates the movie storage but does not open it.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Functions 145
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
This function is rarely used. It is an alternative to OpenMovieFile (page 143).

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CreateMovieFromReferences
QTCarbonShell

Declared In
Movies.h

PutMovieOnScrap
Places a movie into the Macintosh scrap.

OSErr PutMovieOnScrap (
   Movie theMovie,
   long movieScrapFlags
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

movieScrapFlags
Flags (see below) that control the operation. Be sure to set unused flags to 0. See these constants:

movieScrapDontZeroScrap

movieScrapOnlyPutMovie

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
mdiplayer.win
mfc.win
Play Movie with Controller
simpleeditsdi.win
simpleplayersdi.win

Declared In
Movies.h

146 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



PutUserDataIntoHandle
Returns a handle to a user data structure.

OSErr PutUserDataIntoHandle (
   UserData theUserData,
   Handle h
);

Parameters
theUserData

The user data structure.

h
A handle to the UserDataRecord structure pointed to by the theUserData parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
Movies.h

QTAddMovieError
Adds orthogonal errors to a movie's list of errors.

OSErr QTAddMovieError (
   Movie movieH,
   Component c,
   long errorCode,
   QTErrorReplacementPtr stringReplacements
);

Parameters
movieH

The movie to add the error to. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

c
An instance of the component that is adding the error. Your application obtains component instances
by calling OpenComponent or OpenDefaultComponent.

errorCode
The error to be added.

Functions 147
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



stringReplacements
A pointer to a QTErrorReplacementRecord data structure that contains the list of strings to subsitute
(in order) for "^1", "^2", etc.

Return Value
You can access the error return from this function through GetMoviesError and GetMoviesStickyError,
as well as in the function result. See Error Codes.

Discussion
This routine is used to add orthogonal errors to a list of errors that will later be reported (at the end of an
import or playback, for example). Errors are stored in 'qter' resources within the component.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTCopyAtom
Copies an atom and its children to a new atom container.

OSErr QTCopyAtom (
   QTAtomContainer container,
   QTAtom atom,
   QTAtomContainer *targetContainer
);

Parameters
container

The atom container that contains the atom to be copied.

atom
The atom to be copied. To duplicate the entire container, pass a value of kParentAtomIsContainer
for the atom parameter.

targetContainer
A pointer to an uninitialized atom container data structure. On return, this parameter points to an
atom container that contains a copy of the atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The caller is responsible for disposing of the new atom container by calling QTDisposeAtomContainer (page
154).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

148 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
addflashactions.win
qtwiredsprites
qtwiredsprites.win
SoftVideoOutputComponent
WiredSprites

Declared In
Movies.h

QTCopyAtomDataToHandle
Copies the specified leaf atom's data to a handle.

OSErr QTCopyAtomDataToHandle (
   QTAtomContainer container,
   QTAtom atom,
   Handle targetHandle
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be copied.

targetHandle
A handle. On return, the handle contains the atom's data. The handle must not be locked. This function
resizes the handle, if necessary.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function, passing an initialized handle, to retrieve a copy of a leaf atom's data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

Functions 149
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTCopyAtomDataToPtr
Copies the specified leaf atom's data to a buffer.

OSErr QTCopyAtomDataToPtr (
   QTAtomContainer container,
   QTAtom atom,
   Boolean sizeOrLessOK,
   long size,
   void *targetPtr,
   long *actualSize
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be copied.

sizeOrLessOK
Specifies whether the function may copy fewer bytes than the number of bytes specified by the size
parameter. The buffer may be larger than the amount of atom data if you set the value of this
parameter to TRUE. You can determine the size of an atom's data by calling QTGetAtomDataPtr (page
160).

size
The length, in bytes, of the buffer pointed to by the targetPtr parameter.

targetPtr
A pointer to a buffer. On return, the buffer contains the atom data.

actualSize
A pointer to a long integer which, on return, contains the number of bytes copied to the buffer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function, passing a data buffer, to retrieve a copy of a leaf atom's data. The buffer must be large
enough to contain the atom's data.

Special Considerations

This function may move memory.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

150 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

QTCountChildrenOfType
Returns the number of atoms of a given type in the child list of the specified parent atom.

short QTCountChildrenOfType (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomType childType
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

childType
The atom type for this operation. To retrieve the total number of atoms in the child list, set this
parameter to 0.

Return Value
The number of atoms of a given type in the child list of the specified parent atom.

Discussion
You can call this function to determine the number of atoms of a specified type in a parent atom's child list.
If the total number of atoms in the parent atom's child list is 0, the parent atom is a leaf atom.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies

Declared In
Movies.h

QTCreateStandardParameterDialog
Creates a dialog box that allows the user to choose an effect from the list of effects passed to the function.

Functions 151
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTCreateStandardParameterDialog (
   QTAtomContainer effectList,
   QTAtomContainer parameters,
   QTParameterDialogOptions dialogOptions,
   QTParameterDialog *createdDialog
);

Parameters
effectList

A list of the effects that the user can choose from. In most cases you should call
QTGetEffectsList (page 168) to generate this list. If you pass NIL in this parameter, the function
calls QTGetEffectsList to retrieve the list of all currently installed effects; this list is then presented
to the user.

parameters
An effect description containing the default parameter values for the effect. If the effect named in
the parameter description is in effectlist, that effect is displayed when the dialog is first shown and
its parameter values are set from the parameter description. Pass in an empty atom container to have
the dialog box display the first effect in the list, set to its default parameters. On return, this atom
container holds an effect description for the effect selected by the user, including the parameter
settings. This effect description can then be added to the media of an effect track. You will need to
add source atoms to this container for effects that require sources.

dialogOptions
Options (see below) that control the behavior of the dialog. See these constants:

pdOptionsCollectOneValue

pdOptionsAllowOptionalInterpolations

createdDialog
Returns a reference to the dialog box that is created by this function. You should pass this value only
to QTIsStandardParameterDialogEvent (page 175) and
QTDismissStandardParameterDialog (page 153).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function creates and displays a standard parameter dialog box that allows the user to choose an effect
from the list in the effectList parameter. The dialog box also allows the user to choose values for the parameters
of the effect, to preview the effects as they choose and customize them, and to get more information about
each effect. Your application must call the Mac OS function WaitNextEvent and
QTIsStandardParameterDialogEvent (page 175) to allow the user to interact with the dialog box that is
shown. Note that the dialog box will remain hidden until the first event is processed by
QTIsStandardParameterDialogEvent. At this point, the dialog box will be displayed. You can modify
the default behavior of the dialog box that is created by calling
QTStandardParameterDialogDoAction (page 194).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow

152 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

Declared In
Movies.h

QTCreateUUID
Creates a 128-bit universal unique ID number.

OSErr QTCreateUUID (
   QTUUID *outUUID,
   long creationFlags
);

Parameters
outUUID

A pointer to the new ID number.

creationFlags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTDismissStandardParameterDialog
Closes a standard parameter dialog box that was created using QTCreateStandardParameterDialog.

OSErr QTDismissStandardParameterDialog (
   QTParameterDialog createdDialog
);

Parameters
createdDialog

The reference to the standard parameters dialog box that is returned by
QTCreateStandardParameterDialog (page 151).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Functions 153
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
This function disposes of all memory associated with the dialog box.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qteffects
qteffects.win
samplemakeeffectmovie.win

Declared In
Movies.h

QTDisposeAtomContainer
Disposes of an atom container.

OSErr QTDisposeAtomContainer (
   QTAtomContainer atomData
);

Parameters
atomData

The atom container to be disposed of.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You can call this function to dispose of an atom container data structure that was created by
QTNewAtomContainer (page 178) or QTCopyAtom (page 148).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtwiredsprites
vrmakepano
WiredSprites

Declared In
Movies.h

154 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTDisposeTween
Disposes of a tween component instance.

OSErr QTDisposeTween (
   QTTweener tween
);

Parameters
tween

The tween to be disposed of.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Declared In
Movies.h

QTDoTween
Runs a tween component.

OSErr QTDoTween (
   QTTweener tween,
   TimeValue atTime,
   Handle result,
   long *resultSize,
   TweenerDataUPP tweenDataProc,
   void *tweenDataRefCon
);

Parameters
tween

The tween to be run.

atTime
A value that defines the time to run the tween.

result
A handle to the result of the tweening operation.

resultSize
A pointer to the size of the result.

tweenDataProc
A Universal Procedure Pointer that accesses a TweenerDataProc callback.

Functions 155
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



tweenDataRefCon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Declared In
Movies.h

QTDoTweenPtr
Runs a tween component and returns values in a pointer rather than a handle.

OSErr QTDoTweenPtr (
   QTTweener tween,
   TimeValue atTime,
   Ptr result,
   long resultSize
);

Parameters
tween

A pointer to a QTTweenerRecord structure that designates the tween component to be run.

atTime
The time to run the tween.

result
A pointer to the result of the tween operation. The QuickTime atom container used to receive the
tween result must be locked and its size must be large enough to contain the result.

resultSize
The size of the returned result.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes. Tween types that must allocate memory do not support
this call; they return codecUnimpErr.

Discussion
This routine is an interrupt-safe version of QTDoTween (page 155), which also runs a tween component. This
call is not supported for sequence tweens; you should use interpolation tweens instead.

Version Notes
Introduced in QuickTime 6.

156 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTEqualUUIDs
Compares two 128-bit ID numbers.

Boolean QTEqualUUIDs (
   const QTUUID *uuid1,
   const QTUUID *uuid2
);

Parameters
uuid1

A pointer to one 128-bit number.

uuid2
A pointer to the other 128-bit number.

Return Value
Returns TRUE if the two numbers are equal, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTFindChildByID
Retrieves an atom by ID from the child list of the specified parent atom.

QTAtom QTFindChildByID (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomType atomType,
   QTAtomID id,
   short *index
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

atomType
The type of the atom to be retrieved.

Functions 157
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



id
The ID of the atom to be retrieved.

index
A pointer to an uninitialized short integer. On return, if the atom specified by the id parameter was
found, the integer contains the atom's index. If you don't want this function to return the atom's
index, set the value of the index parameter to NIL.

Return Value
The found atom.

Discussion
You call this function to search for and retrieve an atom by its type and ID from a parent atom's child list.
The following code shows how you can use this function to insert a copy of container B's atoms as children
of the 'abcd' atom in container A:

// QTFindChildByID coding example
QTAtom targetAtom;
targetAtom =QTFindChildByID (containerA, kParentAtomIsContainer, 'abcd',
    1000, NIL);
FailOSErr (QTInsertChildren (containerA, targetAtom, containerB));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
Movies.h

QTFindChildByIndex
Retrieves an atom by index from the child list of the specified parent atom.

QTAtom QTFindChildByIndex (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomType atomType,
   short index,
   QTAtomID *id
);

Parameters
container

The atom container that contains the parent atom.

158 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



parentAtom
The parent atom for this operation.

atomType
The type of the atom to be retrieved.

index
The index of the atom to be retrieved.

id
A pointer to an uninitialized QTAtomID data structure. On return, if the atom specified by index was
found, the QTAtomID data structure contains the atom's ID. If you don't want this function to return
the atom's ID, set the value of the id parameter to NIL.

Return Value
The found atom.

Discussion
You call this function to search for and retrieve an atom by its type and index within that type from a parent
atom's child list. The following code illustrates one way to use it:

// QTFindChildByIndex coding example
if ((propertyAtom =QTFindChildByIndex (sprite, kParentAtomIsContainer,
    kSpritePropertyImageIndex, 1, NIL)) ==0)
    FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
        kSpritePropertyImageIndex, 1, 1, sizeof(short),&imageIndex,
        NIL));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

QTGetAccessKeys
Returns all the application and system access keys of a specified access key type.

Functions 159
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTGetAccessKeys (
   Str255 accessKeyType,
   long flags,
   QTAtomContainer *keys
);

Parameters
accessKeyType

The type of access keys to return.

flags
Unused; must be set to 0.

keys
A pointer to a QT atom container that contains atoms of type kAccessKeyAtomType at the top level.
These atoms contain the keys. If there are no access keys of the specified type, the function returns
an empty QT atom container.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
In the QT atom container, application keys, which are more likely to be the ones an application needs, appear
before system keys. You can get the key values by using QT atom functions.

Special Considerations

When your application is done with the QT atom container, it must dispose of it by calling
QTDisposeAtomContainer (page 154).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetAtomDataPtr
Retrieves a pointer to the atom data for a specified leaf atom.

OSErr QTGetAtomDataPtr (
   QTAtomContainer container,
   QTAtom atom,
   long *dataSize,
   Ptr *atomData
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be retrieved.

160 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



dataSize
On return, contains a pointer to the length, in bytes, of the leaf atom's data.

atomData
On return, contains a pointer to the leaf atom's data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function in retrieve a pointer to a leaf atom's data so that you can access the data directly.

Special Considerations

To ensure that the pointer returned in the atomData parameter will remain valid if memory is moved, you
should call QTLockContainer (page 176) before you call this function. If you call QTLockContainer, you
should call QTUnlockContainer (page 196) when you have finished using the atomData pointer. If you
pass a locked atom container to a function that resizes atom containers, the function returns an error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
SimpleVideoOut
vrscript
vrscript.win

Declared In
Movies.h

QTGetAtomParent
Gets the parent of a QT atom.

QTAtom QTGetAtomParent (
   QTAtomContainer container,
   QTAtom childAtom
);

Parameters
container

A QT atom container.

childAtom
A QT child atom in the container.

Return Value
On return, the parent of the child atom.

Version Notes
Introduced in QuickTime 4.

Functions 161
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetAtomTypeAndID
Retrieves an atom's type and ID.

OSErr QTGetAtomTypeAndID (
   QTAtomContainer container,
   QTAtom atom,
   QTAtomType *atomType,
   QTAtomID *id
);

Parameters
container

The atom container that contains the atom.

atom
The atom whose type and ID should be retrieved.

atomType
A pointer to an atom type. On return, this parameter points to the type of the specified atom. You
can pass NIL for this parameter if you don't need this information.

id
A pointer to an atom ID. On return, this parameter points to the ID of the specified atom. You can
pass NIL for this parameter if you don't need this information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win
vrscript.win

Declared In
Movies.h

162 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTGetDataHandlerDirectoryDataReference
Returns a new data reference to the parent directory of the storage location associated with a data handler
instance.

OSErr QTGetDataHandlerDirectoryDataReference (
   DataHandler dh,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
dh

A data handler component instance that is associated with a file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL.

Discussion
This function creates a new data reference that points at the parent directory of the storage location associated
to the data handler instance.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataHandlerFullPathCFString
Returns the full pathname of the storage location associated with a data handler.

OSErr QTGetDataHandlerFullPathCFString (
   DataHandler dh,
   QTPathStyle style,
   CFStringRef *outPath
);

Parameters
dh

A data handler component instance that is associated with a file.

Functions 163
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



style
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
outPath is NIL.

Discussion
This function creates a new CFString that represents the full pathname of the storage location associated
with the data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataHandlerTargetNameCFString
Returns the name of the storage location associated with a data handler.

OSErr QTGetDataHandlerTargetNameCFString (
   DataHandler dh,
   CFStringRef *fileName
);

Parameters
dh

A data handler component instance that is associated with a file.

fileName
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
fileName is NIL.

Discussion
This function creates a new CFString that represents the name of the storage location associated with the
data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

164 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataReferenceDirectoryDataReference
Returns a new data reference for a parent directory.

OSErr QTGetDataReferenceDirectoryDataReference (
   Handle dataRef,
   OSType dataRefType,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL.

Discussion
This function returns a new data reference that points to the parent directory of the storage location specified
by the data reference passed in dataRef. The new data reference returned will have the same type as
dataRefType.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataReferenceFullPathCFString
Returns the full pathname of the target of the data reference as a CFString.

Functions 165
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTGetDataReferenceFullPathCFString (
   Handle dataRef,
   OSType dataRefType,
   QTPathStyle style,
   CFStringRef *outPath
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

pathStyle
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the full pathname of the target pointed to by the
input data reference, which must be an alias data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTGetDataReferenceTargetNameCFString
Returns the name of the target of a data reference as a CFString.

166 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTGetDataReferenceTargetNameCFString (
   Handle dataRef,
   OSType dataRefType,
   CFStringRef *name
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to its directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

name
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the name of the target pointed to by the input data
reference, which must be an alias data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataRefMaxFileOffset
Undocumented

OSErr QTGetDataRefMaxFileOffset (
   Movie movieH,
   OSType dataRefType,
   Handle dataRef,
   long *offset
);

Parameters
movieH

Undocumented

dataRefType
The type of data reference; see Data References. If the data reference is an alias, you must set this
parameter to rAliasType. See Inside Macintosh: Files for more information about aliases and the
Alias Manager.

dataRef
A handle to a data reference. The type of information stored in the handle depends upon the data
reference type specified by the dataRefType parameter.

Functions 167
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



offset
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetEffectsList
Returns a QT atom container holding a list of the currently installed effects components.

OSErr QTGetEffectsList (
   QTAtomContainer *returnedList,
   long minSources,
   long maxSources,
   QTEffectListOptions getOptions
);

Parameters
returnedList

If the function returns noErr, this parameter contains a newly created QT atom container holding a
list of their currently installed effects. Any data stored in the parameter on entry is overwritten by the
list of effects. It is the responsibility of the calling application to dispose of the storage by calling
QTDisposeAtomContainer (page 154) once the list is no longer required.

minSources
The minimum number of sources that an effect must have to be added to the list. Pass -1 as this
parameter to specify no minimum.

maxSources
The maximum number of sources that an effect can have to be added to the list. Pass -1 as this
parameter to specify no maximum. The minSources and maxSources parameters allow you to
restrict which effects are returned in the list, by specifying the minimum and maximum number of
sources that qualifying effects can have.

getOptions
Options (see below) that control which effects are added to the list. If you pass 0, the function includes
every effect, except the "none" effect and any prohibited by the values of minSources and
maxSources. See these constants:

elOptionsIncludeNoneInList

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

168 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
The returned list contains two atoms for each effect component. The first atom, of type kEffectNameAtom,
contains the name of the effect. The second atom, of type kEffectTypeAtom, contains the type of the effect,
which is the sub-type of the effect component. This list is sorted alphabetically on the names of the effects.
You can constrain the list to certain types of effects, such as those that take two sources. Use this function
to obtain a list of effects that you can pass to QTCreateStandardParameterDialog (page 151).

Special Considerations

This function can take a fairly long time to execute, as it searches the system for installed effects components.
You will normally want to call this function once when your application starts, or after a pair of suspend and
resume events.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects
qteffects.win
qtshoweffect
samplemakeeffectmovie.win

Declared In
Movies.h

QTGetEffectsListExtended
Provides for more advanced filtering of effects to be placed into the effect list.

OSErr QTGetEffectsListExtended (
   QTAtomContainer *returnedList,
   long minSources,
   long maxSources,
   QTEffectListOptions getOptions,
   OSType majorClass,
   OSType minorClass,
   QTEffectListFilterUPP filterProc,
   void *filterRefCon
);

Parameters
returnedList

A pointer to an atom container in which the effects list is returned.

minSources
The minimum number of sources that an effect must have to be added to the list. Pass -1 to specify
no minimum.

maxSources
The maximum number of sources that an effect can have to be added to the list. Pass -1 to specify
no maximum.

Functions 169
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



getOptions
The options for populating the list.

majorClass
The major class to include, or 0 for all.

minorClass
The minor class to include, or 0 for all.

filterProc
A QTEffectListFilterProc callback that you can use for additional client filtering. The callback
is called for each effect that passes the other criteria for inclusion. If it returns TRUE, the effect is
included in the list. Note that your callback may receive multiple effects from various manufacturers.
If you return TRUE for multiple effects of a given type, only the one with the higher parameter version
number will be included. If you wish to filter for other criteria, such as for a given manufacturer, you
can return FALSE for rejected effects and TRUE for those that you prefer.

filterRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This routine provides for more advanced filtering of effects to be placed into the effect list. The minSources
and maxSources parameters allow you to restrict which effects are returned in the list, by specifying the
minimum and maximum number of sources that qualifying effects can have. Applications can filter on the
number of input sources or on an effect's major or minor class. They can also achieve custom filtering through
a callback.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTGetEffectSpeed
Returns the speed of the effect, expressed in frames per second.

OSErr QTGetEffectSpeed (
   QTAtomContainer parameters,
   Fixed *pFPS
);

Parameters
parameters

Contains parameter values for the effect.

170 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



pFPS
The speed of the effect is returned in this parameter, expressed in frames per second. Effects can also
return the pre-defined constant effectIsRealtime (see below) as their speed. See these constants:

effectIsRealtime

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The value returned should not be treated as an absolute measurement of effect performance. In particular,
most effects only return one value, regardless of parameter settings and hardware. This value is an estimate
of execution speed on a reference hardware platform. Actual performance will vary depending on hardware,
configuration and parameter options.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
Movies.h

QTGetMovieRestrictions
Returns the restrictions, if any, for a given movie.

OSErr QTGetMovieRestrictions (
   Movie theMovie,
   QTRestrictionSet *outRestrictionSet,
   UInt32 *outSeed
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

outRestrictionSet
A pointer to a QTRestrictionSetRecord structure. If there are no restrictions, this parameter returns
NIL. See Movie Restrictions.

outSeed
A pointer to a long integer. Each change to the restriction set will change this value. You can use this
value to detect alterations of the restriction set.

Return Value
Returns qtOperationNotAuthorizedErr if a restricted operation is attempted. You can access Movie
Toolbox error returns through GetMoviesError and GetMoviesStickyError, as well as in the function
result. See Error Codes.

Functions 171
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
You can use this function to preflight an operation on a movie to determine whether or not to perform the
operation. If a restricted operation is attempted, it will fail and the function will return
qtOperationNotAuthorizedErr.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTGetNextChildType
Returns the next atom type in the child list of the specified parent atom.

QTAtomType QTGetNextChildType (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomType currentChildType
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

currentChildType
The last atom type retrieved by this function.

Return Value
The next atom type in the child list of the atom specified by parentAtom.

Discussion
You can call this function to iterate through the atom types in a parent atom's child list. To retrieve the first
atom type, you should set the value of the currentChildType parameter to 0. To retrieve subsequent atom
types, you should set the value of the currentChildType parameter to the atom type retrieved by the
previous call to this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetSupportedRestrictions
Reports the movie restrictions enforced by the currently running version of QuickTime.

172 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTGetSupportedRestrictions (
   OSType inRestrictionClass,
   UInt32 *outRestrictionIDs
);

Parameters
inRestrictionClass

Specifies the class of restrictions to be reported: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

outRestrictionIDs
A pointer to the restrictions in force for the class passed in inRestrictionClass. See Movie
Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTInsertChild
Creates a new child atom of the specified parent atom.

OSErr QTInsertChild (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomType atomType,
   QTAtomID id,
   short index,
   long dataSize,
   void *data,
   QTAtom *newAtom
);

Parameters
container

The atom container that contains the parent atom. The atom container must not be locked.

parentAtom
The parent atom within the atom container.

atomType
The type of the new atom to be inserted.

id
The ID of the new atom to be inserted. This ID must be unique among atoms of the same type for
the specified parent. If you set this parameter to 0, the function assigns a unique ID to the atom.

Functions 173
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



index
The index of the new atom among atoms with the same parent. To insert the first atom for the specified
parent, you should set this parameter to 1. To insert an atom as the last atom in the child list, you
should set this parameter to 0. Index values greater than the index of the last atom in the child list
plus 1 are invalid.

dataSize
The size of the data for the new atom. If the new atom is to be a parent atom or if you want to add
the atom's data later, you should pass 0 for this parameter. To create the new atom as a leaf atom
that contains data, you should specify the data using the data parameter and and its size using the
dataSize parameter.

data
A pointer to a buffer containing the data for the new atom. If you set the value of the dataSize
parameter to 0, you should pass NIL for this parameter.

newAtom
A pointer to data of type QTAtom. On return, this parameter points to the newly created atom. You
can pass NIL for this parameter if you don't need a reference to the newly created atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to create a new child atom. The new child atom has the specified atom type and atom
ID, and is inserted into its parent atom's child list at the specified index. Any existing atoms at the same index
or greater are moved toward the end of the child list.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtwiredactions
qtwiredactions.win
qtwiredsprites
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
Movies.h

QTInsertChildren
Inserts a container of atoms as children of the specified parent atom.

174 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTInsertChildren (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtomContainer childrenContainer
);

Parameters
container

The atom container that contains the parent atom. The atom container must not be locked.

parentAtom
The parent atom within the atom container.

childrenContainer
The atom container that contains the child atoms to be inserted.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to insert a container of atoms as children of a parent atom in another atom container.
Each child atom is inserted as the last atom of its type and is assigned a corresponding index. The ID of a
child atom to be inserted must not duplicate that of an existing child atom of the same type. The following
code shows how you can use this function to create a container, insert an atom, and insert another container
as a child of the atom:

// QTInsertChildren coding example
FailOSErr (QTInsertChild (outerContainer, kParentAtomIsContainer,
    kSpriteAtomType, spriteID, 0, 0, NIL, &newParentAtom));
FailOSErr (QTInsertChildren (outerContainer, newParentAtom,
    innerContainer));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtwiredactions
qtwiredactions.win
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

QTIsStandardParameterDialogEvent
Determines if a Macintosh event is processed by a standard parameter dialog box created by
QTCreateStandardParameterDialog.

Functions 175
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTIsStandardParameterDialogEvent (
   EventRecord *pEvent,
   QTParameterDialog createdDialog
);

Parameters
pEvent

The Macintosh event.

createdDialog
The reference to the standard parameters dialog box that is returned by
QTCreateStandardParameterDialog (page 151).

Return Value
See below.

Discussion
After you create a standard parameter dialog box, pass every Macintosh event through this function to
determine if your application should handle the event. Once the dialog box has been confirmed or cancelled
by the user, you should no longer call this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qteffects.win
QTEffectsDialog - Cocoa
samplemakeeffectmovie.win

Declared In
Movies.h

QTLockContainer
Locks an atom container in memory.

OSErr QTLockContainer (
   QTAtomContainer container
);

Parameters
container

The atom container to be locked.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

176 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Discussion
You should call this function to lock an atom container before calling QTGetAtomDataPtr (page 160) to
directly access a leaf atom's data. When you have finished accessing a leaf atom's data, you should call
QTUnlockContainer (page 196). You may make nested pairs of calls to QTLockContainer and
QTUnlockContainer; you don't need to check the current state of the container first.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects.win
qtmusic.win
samplemakeeffectmovie.win
vrbackbuffer.win

Declared In
Movies.h

QTMovieNeedsTimeTable
Returns whether a movie is being progressively downloaded.

OSErr QTMovieNeedsTimeTable (
   Movie theMovie,
   Boolean *needsTimeTable
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

needsTimeTable
If TRUE, the movie is being progressively downloaded. If an error occurs, this parameter is set to FALSE.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
A movie can be progressively downloaded when its data is received over a network connection or other slow
data channel. Progressive downloads are not necessary when the data for the movie is on a local disk. The
Movie Toolbox creates a time table for a movie when either this function or
GetMaxLoadedTimeInMovie (page 69) is called for the movie, but the time table is used only by the toolbox
and is not accessible to applications. The toolbox disposes of the time table when the download is complete.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 177
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Related Sample Code
QTCarbonShell

Declared In
Movies.h

QTNewAlias
Creates a Mac OS alias to a file.

OSErr QTNewAlias (
   const FSSpec *fss,
   AliasHandle *alias,
   Boolean minimal
);

Parameters
fss

A pointer to an FSSpec structure that specifies a file.

alias
On return, a pointer to a handle to a new AliasRecord structure that defines an alias to the file. If
the function was unable to create an alias, the handle is set to NIL. This function does not create
relative aliases. For further information about Mac OS file aliases, see Chapter 4 of Inside Macintosh:
Files.

minimal
If you pass TRUE, the function writes in the AliasRecord structure only the target name, parent
directory ID, volume name and creation date, and volume mounting information. If you pass FALSE,
it fills out the structure fully.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win
qtdataref
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

QTNewAtomContainer
Creates a new atom container.

178 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTNewAtomContainer (
   QTAtomContainer *atomData
);

Parameters
atomData

A pointer to an unallocated atom container data structure. On return, this parameter points to an
allocated atom container.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function creates a new, empty atom container structure. Once you have created an atom container, you
can manipulate it using the atom container functions. The following example illustrates using this function
to create a new QT atom container and add an atom:

// QTNewAtomContainer coding example
QTAtom firstAtom;
QTAtomContainer container;
OSErr err
err =QTNewAtomContainer (&container);
if (!err)
    err =QTInsertChild (container, kParentAtomIsContainer, 'abcd',
        1000, 1, 0, NIL, &firstAtom);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtactiontargets
qtactiontargets.win
qteffects.win
qtspritesplus.win
qtwiredspritesjr

Declared In
Movies.h

QTNewDataReferenceFromCFURL
Creates a URL data reference from a CFURL.

Functions 179
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTNewDataReferenceFromCFURL (
   CFURLRef url,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
url

A reference to a Core Foundation struct that represents the URL to which you want a URL data
reference. These structs contain two parts: the string and a base URL, which may be empty. With a
relative URL, the string alone does not fully specify the address; with an absolute URL it does.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
ComboBoxPrefs
SimpleAudioExtraction

Declared In
Movies.h

QTNewDataReferenceFromFSRef
Creates an alias data reference from a file specification.

180 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTNewDataReferenceFromFSRef (
   const FSRef *fileRef,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
fileRef

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct a file specification for a file to which you want the new alias
data reference to point. Then you can pass the reference to other Movie Toolbox functions that take a data
reference. To construct a file specification, the file must already exist. To create an alias data reference for a
file that does not exist yet, such as a new file to be created by a Movie Toolbox function, call
QTNewDataReferenceFromFSRefCFString.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
BackgroundExporter
QTCarbonCoreImage101
QTCarbonShell
QTMetaData
ThreadsExportMovie

Declared In
Movies.h

QTNewDataReferenceFromFSRefCFString
Creates an alias data reference from a file reference pointing to a directory and a file name.

Functions 181
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTNewDataReferenceFromFSRefCFString (
   const FSRef *directoryRef,
   CFStringRef fileName,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
directoryRef

A pointer to an opaque file specification that specifies the directory of the newly created alias data
reference.

fileName
A reference to a CFString that specifies the name of the file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
This function is useful for creating an alias data reference to a file that does not exist yet. Note that you cannot
construct an FSRef for a nonexistent file. You can use File Manager functions to construct an FSRef for the
directory. Depending on where your file name comes from, you may already have it in a form of CFString,
or you may have to call CFString functions to create a new CFString for the file name. Then you can pass
the new alias data reference to other Movie Toolbox functions that take a data reference. If you already have
an FSRef for the file you want, you can call QTNewDataReferenceFromFSRef instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTNewDataReferenceFromFSSpec
Creates an alias data reference from a file specification of type FSSpec.

182 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTNewDataReferenceFromFSSpec (
   const FSSpec *fsspec,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
fsspec

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct an FSSpec structure to specify a file. Then you can pass the
new alias data reference to other Movie Toolbox functions that take a data reference. Because of the limitations
of its data structure, an FSSpecmay not work for a file with long or Unicode file names. Generally, you should
use either QTNewDataReferenceFromFSRef or QTNewDataReferenceFromFSRefCFString instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTNewDataReferenceFromFullPathCFString
Creates an alias data reference from a CFString that represents the full pathname of a file.

OSErr QTNewDataReferenceFromFullPathCFString (
   CFStringRef filePath,
   QTPathStyle pathStyle,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
filePath

A CFString that represents the full pathname of a file.

Functions 183
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



pathStyle
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You need to specify the syntax of the pathname as one of the QTPathStyle constants. The new alias data
reference created can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ASCIIMoviePlayerSample
Fiendishthngs
Quartz Composer QCTV
SCAudioCompress
WhackedTV

Declared In
Movies.h

QTNewDataReferenceFromURLCFString
Creates a URL data reference from a CFString that represents a URL string.

OSErr QTNewDataReferenceFromURLCFString (
   CFStringRef urlString,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
urlString

A CFString that represents a URL string.

184 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCarbonShell
QuickTimeMovieControl

Declared In
Movies.h

QTNewDataReferenceWithDirectoryCFString
Creates an alias data reference from another alias data reference pointing to the parent directory and a
CFString that contains the file name.

OSErr QTNewDataReferenceWithDirectoryCFString (
   Handle inDataRef,
   OSType inDataRefType,
   CFStringRef targetName,
   UInt32 flags,
   Handle *outDataRef,
   OSType *outDataRefType
);

Parameters
inDataRef

An alias data reference pointing to the parent directory.

inDataRefType
The type of the parent directory data reference; it must be AliasDataHandlerSubType.

targetName
A reference to a CFString containing the file name.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

Functions 185
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
In conjunction with QTGetDataReferenceDirectoryDataReference, this function is useful to construct
an alias data reference to a file in the same directory as the one you already have a data reference for. Then
you can pass the new alias data reference to other Movie Toolbox functions that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTNewTween
Undocumented

OSErr QTNewTween (
   QTTweener *tween,
   QTAtomContainer container,
   QTAtom tweenAtom,
   TimeValue maxTime
);

Parameters
tween

A pointer to a pointer to a QTTweenerRecord structure.

container
Undocumented

tweenAtom
Undocumented

maxTime
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

186 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

QTNextChildAnyType
Returns the next atom in the child list of the specified parent atom.

OSErr QTNextChildAnyType (
   QTAtomContainer container,
   QTAtom parentAtom,
   QTAtom currentChild,
   QTAtom *nextChild
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

currentChild
The last atom retrieved by this function. To retrieve the first atom in the child list, set the value of
currentChild to 0.

nextChild
A pointer to an uninitialized QT atom data structure. On return, the data structure contains the offset
of the next atom in the child list after the atom specified by currentChild, or 0 if the atom specified
by currentChild was the last atom in the list.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You can call this function to iterate through all the atoms in a parent atom's child list, regardless of their
types and IDs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addflashactions
addflashactions.win
Fiendishthngs
SimpleVideoOut

Declared In
Movies.h

Functions 187
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTRegisterAccessKey
Registers an access key.

OSErr QTRegisterAccessKey (
   Str255 accessKeyType,
   long flags,
   Handle accessKey
);

Parameters
accessKeyType

The access key type of the key to be registered.

flags
Flags that specify the operation of this function. To register a system access key, set the
kAccessKeySystemFlag flag (see below). To register an application access key, set this parameter
to 0. See these constants:

kAccessKeySystemFlag

accessKey
A handle to the key to be registered.

Return Value
See Error Codes. Returns noErr if there is no error or if the access key has already been registered.

Discussion
Most access keys are strings. A string stored in the accessKey handle does not include a trailing zero or
leading length byte; to get the length of the string, get the size of the handle. If the access key has already
been registered, no error is returned, and the request is simply ignored.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTRemoveAtom
Removes an atom and its children from the specified atom container.

OSErr QTRemoveAtom (
   QTAtomContainer container,
   QTAtom atom
);

Parameters
container

The atom container for this operation. The atom container must not be locked.

atom
The atom to be removed from the container.

188 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to remove a particular atom and its children from an atom container. To remove all the
atoms in an atom container, you should use QTRemoveChildren (page 189).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win

Declared In
Movies.h

QTRemoveChildren
Removes all the children of an atom from the specified atom container.

OSErr QTRemoveChildren (
   QTAtomContainer container,
   QTAtom atom
);

Parameters
container

The atom container for this operation. The atom container must not be locked.

atom
The atom whose children should be removed. To remove all the atoms in the atom container, pass
a value of kParentAtomIsContainer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qtsprites
qtsprites.win
qtwiredsprites
WiredSprites

Functions 189
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

QTReplaceAtom
Replaces the contents of an atom and its children with a different atom and its children.

OSErr QTReplaceAtom (
   QTAtomContainer targetContainer,
   QTAtom targetAtom,
   QTAtomContainer replacementContainer,
   QTAtom replacementAtom
);

Parameters
targetContainer

The atom container that contains the atom to be replaced. The atom container must not be locked.

targetAtom
The atom to be replaced.

replacementContainer
The atom container that contains the replacement atom.

replacementAtom
The replacement atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The target atom and the replacement atom must be of the same type. The target atom maintains its original
atom ID. This function does not modify the replacement container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win

Declared In
Movies.h

QTRestrictionsGetIndClass
Reports the class of a movie restriction.

190 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTRestrictionsGetIndClass (
   QTRestrictionSet inRestrictionSet,
   long inIndex,
   OSType *outClass
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions to be reported.

inIndex
The index of a restriction.

outClass
A pointer to the class of restrictions of inIndex: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionsGetInfo
Reports information about the restrictions in a specified restriction set.

OSErr QTRestrictionsGetInfo (
   QTRestrictionSet inRestrictionSet,
   long *outRestrictionClassCount,
   long *outSeed
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions to be reported.

outRestrictionClassCount
The number of restrictions classes currently in the restriction set.

outSeed
A pointer to a long integer. Each alteration of the restriction set will change this value.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
If you want to determine all the restrictions, use this routine to get their count.

Functions 191
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionsGetItem
Retrieves specific movie restrictions.

OSErr QTRestrictionsGetItem (
   QTRestrictionSet inRestrictionSet,
   OSType inRestrictionClass,
   UInt32 *outRestrictions
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions for a given
movie.

inRestrictionClass
Specifies the class of restrictions to be reported: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

outRestrictions
A pointer to a long integer holding constants that indicate individual restrictions. See Movie
Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
If the movie has no restrictions, outRestrictions returns 0. If a restriction class is not available, the function
won't return an error but outRestrictions will be set to 0.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTSetAtomData
Changes the data of a leaf atom.

192 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTSetAtomData (
   QTAtomContainer container,
   QTAtom atom,
   long dataSize,
   void *atomData
);

Parameters
container

The atom container that contains the atom to be modified.

atom
The atom to be modified.

dataSize
The length, in bytes, of the data pointed to by the atomData parameter.

atomData
A pointer to the new data for the atom.

Return Value
Only leaf atoms contain data; this function returns an error if you pass it to a nonleaf atom. You can access
Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as well as in the
function result. See Error Codes.

Discussion
You call this function to replace a leaf atom's data with new data. The atom container specified by the
container parameter should not be locked. The following code illustrates using this function to update an
atom container that describes a sprite:

// QTSetAtomData coding example
OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
    short *visible, short *layer, short *imageIndex)
{
    OSErr err =noErr;
    QTAtom propertyAtom;

    // if the sprite's visible property has a new value
    if (visible)
    {
        // retrieve the atom for the visible property
        // -- if none exists, insert one
        if ((propertyAtom =QTFindChildByIndex (sprite,
            kParentAtomIsContainer, kSpritePropertyVisible, 1,
            NIL)) ==0)
            FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
                kSpritePropertyVisible, 1, 1, sizeof(short), visible,
                NIL))

        // if an atom does exist, update its data
        else
            FailOSErr (QTSetAtomData (sprite, propertyAtom,
                sizeof(short), visible));
    }

Special Considerations

This function may move memory; if the pointer specified by the atomData parameter is a dereferenced
handle, you should lock the handle.

Functions 193
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtwiredsprites
qtwiredsprites.win
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
Movies.h

QTSetAtomID
Changes the ID of an atom.

OSErr QTSetAtomID (
   QTAtomContainer container,
   QTAtom atom,
   QTAtomID newID
);

Parameters
container

The atom container for this operation.

atom
The atom to be modified. You cannot change the ID of the container by passing 0 for the atom
parameter.

newID
The new ID for the atom. You cannot change an atom's ID to an ID already assigned to a sibling atom
of the same type.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTStandardParameterDialogDoAction
Lets you change some of the default behaviors of the standard parameter dialog box.

194 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr QTStandardParameterDialogDoAction (
   QTParameterDialog createdDialog,
   long action,
   void *params
);

Parameters
createdDialog

The reference to the dialog box created by calling QTCreateStandardParameterDialog (page
151).

action
Determines which of the actions (see below) supported by this function will be performed. See these
constants:

pdActionSetAppleMenu

pdActionSetEditMenu

pdActionSetPreviewPicture

pdActionSetDialogTitle

pdActionGetSubPanelMenu

pdActionActivateSubPanel

pdActionConductStopAlert

params
Optional parameters to the action. The type passed in this parameter depends on the value of the
action parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function allows you to change some of the default behaviors of a standard parameter dialog box you
create using theQTCreateStandardParameterDialog (page 151) function. To choose which of the available
customizations to perform, pass an action selector value in the action parameter and, optionally, a single
parameter in params.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

Declared In
Movies.h

Functions 195
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTSwapAtoms
Swaps the contents of two atoms in an atom container.

OSErr QTSwapAtoms (
   QTAtomContainer container,
   QTAtom atom1,
   QTAtom atom2
);

Parameters
container

The atom container for this operation.

atom1
Specifies an atom to be swapped with the atom specified by atom2.

atom2
Specifies an atom to be swapped with the atom specified by atom1.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
After swapping, the ID and index of each atom remains the same. The two atoms specified must be of the
same type. Either atom may be a leaf atom or a container atom.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTUnlockContainer
Unlocks an atom container in memory.

OSErr QTUnlockContainer (
   QTAtomContainer container
);

Parameters
container

The atom container to be unlocked.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You should call this function to unlock an atom container when you have finished accessing a leaf atom's
data. You may make nested pairs of calls to QTLockContainer (page 176) and this function; you don't need
to check the current state of the container first.

196 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects.win
qtmusic.win
samplemakeeffectmovie.win
vrbackbuffer.win

Declared In
Movies.h

QTUnregisterAccessKey
Removes a previously registered access key.

OSErr QTUnregisterAccessKey (
   Str255 accessKeyType,
   long flags,
   Handle accessKey
);

Parameters
accessKeyType

The access key type of the key to be removed.

flags
Flags (see below) that specify the operation of this function. To remove a system access key, set the
kAccessKeySystemFlag flag. To remove an application access key, set this parameter to 0. See
these constants:

kAccessKeySystemFlag

accessKey
The key to be removed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Most access keys are strings. A string stored in the accessKey handle does not include a trailing zero or a
leading length byte.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 197
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



RemoveMovieExecuteWiredActionsProc
Removes a MovieExecuteWiredActionsProc callback from a movie.

OSErr RemoveMovieExecuteWiredActionsProc (
   Movie theMovie,
   MovieExecuteWiredActionsUPP proc,
   void *refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

proc
A MovieExecuteWiredActionsProc callback that was previously installed using
AddMovieExecuteWiredActionsProc (page 26).

refCon
A reference constant that is passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveMovieResource
Removes a movie resource from a specified movie file.

OSErr RemoveMovieResource (
   short resRefNum,
   short resId
);

Parameters
resRefNum

Identifies the movie file that contains the movie resource. Your application obtains this value from
OpenMovieFile (page 143).

resId
ID of the resource to be removed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

198 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveSoundDescriptionExtension
Removes an extension from a SoundDescription structure.

OSErr RemoveSoundDescriptionExtension (
   SoundDescriptionHandle desc,
   OSType idType
);

Parameters
desc

A handle to the SoundDescription structure to remove the extension from.

idType
A four-byte signature identifying the type of data being removed from the SoundDescription
structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveUserData
Removes an item from a user data list.

OSErr RemoveUserData (
   UserData theUserData,
   OSType udType,
   long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

Functions 199
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



udType
The item's type value.

index
The item's index value. This parameter must specify an item in the user data list identified by the
theUserData parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
After the Movie Toolbox removes the item, it renumbers the remaining items of that type so that their index
values are sequential and start at 1.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qteffects.win
qtgraphics.win

Declared In
Movies.h

RemoveUserDataText
Removes language-tagged text from an item in a user data list.

OSErr RemoveUserDataText (
   UserData theUserData,
   OSType udType,
   long index,
   short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

udType
The item's type value.

index
The item's index value. This parameter must specify an item in the user data list identified by the
theUserData parameter.

itlRegionTag
The language code of the text to be removed. See Localization Codes.

200 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDataRef
Changes the file that the specified media identifies as the location for its data storage.

OSErr SetMediaDataRef (
   Media theMedia,
   short index,
   Handle dataRef,
   OSType dataRefType
);

Parameters
theMedia

Specifies The media for this operation. Your application obtains this media identifier from such
functions as NewTrackMedia and GetTrackMedia. See Media Identifiers.

index
A pointer to a short integer. The Movie Toolbox returns the index value that is assigned to the new
data reference. Your application can use this index to identify the reference to other Movie Toolbox
functions, such as GetMediaDataRef (page 70). As with all data reference functions, the index starts
with 1. If the Movie Toolbox cannot add the data reference to the media, it sets the returned index
value to 0.

dataRef
The data reference. This parameter contains a handle to the information that identifies the file that
contains this media's data. The type of information stored in that handle depends upon the value of
the dataRefType parameter.

dataRefType
The type of data reference. If the data reference is an alias, you must set this parameter to rAliasType.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
Don't call this function unless you have a really good reason. However, if you want to resolve your own
missing data references, or you are developing a special-purpose kind of application, this function can be
quite useful.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 201
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDataRefAttributes
Sets a data reference's attributes.

OSErr SetMediaDataRefAttributes (
   Media theMedia,
   short index,
   long dataRefAttributes
);

Parameters
theMedia

Specifies The media for this operation. Your application obtains this media identifier from such
functions as NewTrackMedia and GetTrackMedia. See Media Identifiers.

index
The index value that corresponds to the data reference. It must be less than or equal to the value that
is returned by GetMediaDataRefCount (page 71).

dataRefAttributes
A flag (see below) that determines whether or not the data reference is the movie default. See these
constants:

kMovieAnchorDataRefIsDefault

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaPlayHints
Provides information to the Movie Toolbox that can influence playback of a single media.

202 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void SetMediaPlayHints (
   Media theMedia,
   long flags,
   long flagsMask
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia and GetTrackMedia. See Media Identifiers.

flags
The optimizations that can be used with this media. Each bit in this parameter corresponds to a
specific optimization; be sure to set unused flags to 0. See these constants:

hintsScrubMode

hintsUseSoundInterp

hintsAllowInterlace

hintsAllowBlacklining

hintsDontPurge

hintsInactive

hintsHighQuality

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, you must set the corresponding
bit in the flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single
optimization without altering the settings of other flags.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
This function accepts a flag in which you specify optimizations that the Movie Toolbox can use during movie
playback. These optimizations apply to only the specified media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaPropertyAtom
Sets the property atom container of a media handler.

Functions 203
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr SetMediaPropertyAtom (
   Media theMedia,
   QTAtomContainer propertyAtom
);

Parameters
theMedia

A reference to the media handler for this operation.

propertyAtom
Specifies a QT atom container that contains the property atoms for the track associated with the
media handler.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You can call this function to set properties for the track associated with the specified media handler. The
contents of the QT atom container are defined by the media handler. Here is some sample code that uses
this function to define the background color for a sprite track:

// SetMediaPropertyAtom coding example
// See "Discovering QuickTime," page 360
if (bWithBackgroundPicture) {
    QTAtomContainer         qtacTrackProperties;
    RGBColor                rgbcBackColor;
    rgbcBackColor.red =EndianU16_NtoB(0x8000);
    rgbcBackColor.green =EndianU16_NtoB(0);
    rgbcBackColor.blue =EndianU16_NtoB0(xffff);
    // create a new atom container for sprite track properties
    QTNewAtomContainer(&qtacTrackProperties);
    // add an atom for the background color property
    QTInsertChild(qtacTrackProperties, 0,
        kSpriteTrackPropertyBackgroundColor, 1, 1, sizeof(RGBColor),
        &rgbcBackColor, NIL);
    // set the sprite track's properties
    nErr =SetMediaPropertyAtom(media, qtacTrackProperties);
    QTDisposeAtomContainer(qtacTrackProperties);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

204 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



SetMovieAnchorDataRef
Sets a movie's anchor data reference and type.

OSErr SetMovieAnchorDataRef (
   Movie theMovie,
   Handle dataRef,
   OSType dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dataRef
A handle to the data reference. The type of information to be placed in the handle depends upon
the data reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieAudioBalance
Sets the balance level for the mixed audio output of a movie.

OSStatus SetMovieAudioBalance (
   Movie m,
   Float32 leftRight,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

leftRight
A pointer to the new balance setting for the movie. The balance setting is a 32-bit floating-point value
that controls the relative volume of the left and right sound channels. A value of 0 sets the balance
to neutral. Positive values up to 1.0 shift the balance to the right channel, negative values up to -1.0
to the left channel.

Functions 205
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie's balance setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioBalance (page 78).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioFrequencyMeteringNumBands
Configures frequency metering for a particular audio mix in a movie.

OSStatus SetMovieAudioFrequencyMeteringNumBands (
   Movie m,
   FourCharCode whatMixToMeter,
   UInt32 *ioNumBands
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

ioNumBands
A pointer to memory that stores the number of bands being metered. On calling this function, you
specify the number of frequency bands you want to meter. If that number is higher than is possible
(determined by factors such as the sample rate of the audio being metered), the function will return
the number of bands it is actually going to meter. You can pass NIL or a pointer to 0 to disable
metering.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioFrequencyMeteringNumBands (page 80).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Core Animation QuickTime Layer
SillyFrequencyLevels

206 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

SetMovieAudioGain
Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the movie's
playback.

OSStatus SetMovieAudioGain (
   Movie m,
   Float32 gain,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the movie's volume. 0.0
is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the movie is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet movies to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioGain (page 81).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioMute
Sets the mute value for the audio mix of a movie currently playing.

Functions 207
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus SetMovieAudioMute (
   Movie m,
   Boolean muted,
   UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

muted
Pass TRUE to mute the movie audio, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioMute.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioVolumeMeteringEnabled
Enables or disables volume metering of a particular audio mix of a movie.

OSStatus SetMovieAudioVolumeMeteringEnabled (
   Movie m,
   FourCharCode whatMixToMeter,
   Boolean enabled
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromProperties, NewMovieFromFile, and NewMovieFromHandle (page
128).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

enabled
Pass TRUE to enable audio volume metering; pass FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioVolumeMeteringEnabled (page 83).

208 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieColorTable
Associates a ColorTable structure with a movie.

OSErr SetMovieColorTable (
   Movie theMovie,
   CTabHandle ctab
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

ctab
A handle to the ColorTable structure. Set this parameter to NIL to remove the movie's ColorTable
structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
The ColorTable structure you supply may be used to modify the palette of indexed display devices at
playback time. If you are using the movie controller, be sure to set the mcFlagsUseWindowPalette flag. If
you are not using the movie controller, you should retrieve the movie's ColorTable structure, using
GetMovieColorTable (page 84), and supply it to the Palette Manager.

Special Considerations

The toolbox makes a copy of the ColorTable structure, so it is your responsibility to dispose of the structure
when you are done with it. If the movie already has a color table, the toolbox uses the new table to replace
the old one.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieCoverProcs
Sets the callbacks invoked when a movie is covered or uncovered.

Functions 209
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



void SetMovieCoverProcs (
   Movie theMovie,
   MovieRgnCoverUPP uncoverProc,
   MovieRgnCoverUPP coverProc,
   long refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

uncoverProc
Points to a MovieRgnCoverProc callback. This function is called whenever one of your movie's tracks
is removed from the screen or resized, revealing a previously hidden screen region. If you want to
remove this uncover function, set this parameter to NIL. When the uncoverProc parameter is NIL
the function uses the default uncover function, which erases the uncovered area.

coverProc
Points to a MovieRgnCoverProc callback. The Movie Toolbox calls this function whenever one of
your movies covers a portion of the screen. If you want to remove the cover function, set this parameter
to NIL. When the coverProc parameter is NIL the function uses the default cover function, which
does nothing.

refcon
Specifies a reference constant. Use this parameter to point to a data structure containing any
information your callbacks need.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
If a movie with semi-transparent tracks has a movie uncover procedure, set with this function, the uncover
procedure is called before each frame to fill or erase the background.

Version Notes
Before QuickTime 1.6.1, the Movie Toolbox performed the erase, which limited a cover procedure-aware
application's options.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

210 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



SetMovieDefaultDataRef
Sets a movie's default data reference and type.

OSErr SetMovieDefaultDataRef (
   Movie theMovie,
   Handle dataRef,
   OSType dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dataRef
A handle to the data reference. The type of information to be placed in the handle depends upon
the data reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
qtdataref
SoundPlayer
SurfaceVertexProgram
ThreadsImportMovie

Declared In
Movies.h

SetMovieLanguage
Specifies a movie's localized language or region code.

void SetMovieLanguage (
   Movie theMovie,
   long language
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

Functions 211
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



language
The movie's language or region code; see Localization Codes.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
The Movie Toolbox examines the movie's alternate groups and selects and enables appropriate tracks. If the
Movie Toolbox cannot find an appropriate track, it does not change the movie's language.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMoviePlayHints
Provides information to the Movie Toolbox that can influence movie playback.

void SetMoviePlayHints (
   Movie theMovie,
   long flags,
   long flagsMask
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

flags
The optimizations that can be used with this movie. Each bit in the flags parameter corresponds to
a specific optimization (see below). Be sure to set unused flags to 0. See these constants:

hintsScrubMode

hintsUseSoundInterp

hintsAllowInterlace

hintsAllowBlacklining

hintsDontPurge

hintsInactive

hintsHighQuality

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, you must set the corresponding
bit in the flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single
optimization without altering the settings of other flags.

212 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
This function accepts a flag in which you specify optimizations that the Movie Toolbox can use during movie
playback. These optimizations apply to all of the media structures used by the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
vrmakeobject
vrmakeobject.win
vrmakepano

Declared In
Movies.h

SetMovieProgressProc
Attaches a progress function to a movie.

void SetMovieProgressProc (
   Movie theMovie,
   MovieProgressUPP p,
   long refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

p
Points to your MovieProgressProc callback. To remove a movie's progress function, set this parameter
to NIL. Set this parameter to -1 for the Movie Toolbox to provide a default progress function.

refcon
Specifies a reference constant. Use this parameter to point to a data structure containing any
information your callback needs.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
The Movie Toolbox calls your function only during long operations. It ensures that your progress function is
called regularly, but not too often.

Functions 213
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



The following Movie Toolbox functions use progress functions: ConvertFileToMovieFile,
CutMovieSelection, CopyMovieSelection, AddMovieSelection, and InsertMovieSegment.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
soundsnippets
soundsnippets.win
vrmakepano
vrmakepano.win

Declared In
Movies.h

SetMoviePropertyAtom
Sets a movie's property atom.

OSErr SetMoviePropertyAtom (
   Movie theMovie,
   QTAtomContainer propertyAtom
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

propertyAtom
A property atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieVisualBrightness
Sets the brightness adjustment for the movie.

214 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus SetMovieVisualBrightness (
   Movie movie,
   Float32 brightness,
   UInt32 flags
);

Parameters
movie

The movie.

brightness
New brightness adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualContrast
Sets the contrast adjustment for the movie.

OSStatus SetMovieVisualContrast (
   Movie movie,
   Float32 contrast,
   UInt32 flags
);

Parameters
movie

The movie.

contrast
The new contrast adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid gray. The setting is not stored in the movie. It is only used until the movie is closed, at which time it is
not saved.

Functions 215
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualHue
Sets the hue adjustment for the movie.

OSStatus SetMovieVisualHue (
   Movie movie,
   Float32 hue,
   UInt32 flags
);

Parameters
movie

The movie.

hue
New hue adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualSaturation
Sets the color saturation adjustment for the movie.

OSStatus SetMovieVisualSaturation (
   Movie movie,
   Float32 saturation,
   UInt32 flags
);

Parameters
movie

The movie.

216 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



saturation
The new saturation adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetPosterBox
Sets a poster's boundary rectangle.

void SetPosterBox (
   Movie theMovie,
   const Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

boxRect
A pointer to a Rect structure. The Movie Toolbox sets the poster's boundary rectangle to the
coordinates specified in the structure referred to by this parameter.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
You define the poster's image by specifying a time in the movie, using SetMoviePosterTime. You specify
the size and position of the poster image with this function. If you don't specify a boundary rectangle for the
poster, the Movie Toolbox uses the movie's matrix when it displays the poster.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 217
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



SetQuickTimePreference
Sets a particular preference in the QuickTime preferences.

OSErr SetQuickTimePreference (
   OSType preferenceType,
   QTAtomContainer preferenceAtom
);

Parameters
preferenceType

The type of preference to set (see below); also see Atom ID Codes. See these constants:
ConnectionSpeedPrefsType

BandwidthManagementPrefsType

preferenceAtom
A QT atom containing the preference information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

SetSpriteProperty
Sets the specified property of a sprite.

OSErr SetSpriteProperty (
   Sprite theSprite,
   long propertyType,
   void *propertyValue
);

Parameters
theSprite

The sprite for this operation.

218 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



propertyType
The property you want to modify (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpritePropertyCanBeHitTested

propertyValue
The new value of the property. Depending on the property type, you set the propertyValue
parameter to either a pointer to the property value or the property value itself, cast as a void pointer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You animate a sprite by modifying its properties, using this function. It invalidates the sprite's sprite world
as needed. Here is sample code that uses this function to modify a sprite's properties:

// SetSpriteProperty coding example
// See "Discovering QuickTime," page 345
#define kNumSprites             4
#define kNumSpaceShipImages     24
Rect            gBounceBox;
Sprite          gSprites[kNumSprites];
Rect            gDestRects[kNumSprites];
Point           gDeltas[kNumSprites];
short           gCurrentImages[kNumSprites];
Handle          gCompressedPictures[kNumSpaceShipImages];
void MyMoveSprites (void)
{
    short           nIndex;
    MatrixRecord    matrix;

    SetIdentityMatrix(&matrix);
    // for each sprite
    for (nIndex =0; nIndex < kNumSprites; nIndex++) {
        // modify the sprite's matrix
        OffsetRect(&gDestRects[nIndex], gDeltas[nIndex].h,
                    gDeltas[nIndex].v);

        if ((gDestRects[nIndex].right >
=gBounceBox.right) ||
            (gDestRects[nIndex].left <=gBounceBox.left))
            gDeltas[nIndex].h =-gDeltas[nIndex].h;

        if ((gDestRects[nIndex].bottom >
=gBounceBox.bottom) ||
            (gDestRects[nIndex].top <=gBounceBox.top))
            gDeltas[nIndex].v =-gDeltas[nIndex].v;

        matrix.matrix[2][0] =((long)gDestRects[nIndex].left << 16);
        matrix.matrix[2][1] =((long)gDestRects[nIndex].top << 16);

Functions 219
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



        SetSpriteProperty(gSprites[nIndex], kSpritePropertyMatrix,
                            &matrix);

        // change the sprite's image
        gCurrentImages[nIndex]++;
        if (gCurrentImages[nIndex] >
=(kNumSpaceShipImages *
                                        (nIndex+1)))
            gCurrentImages[nIndex] =0;
        SetSpriteProperty(gSprites[nIndex], kSpritePropertyImageDataPtr,
            *gCompressedPictures[gCurrentImages[nIndex] / (nIndex+1)]);
    }
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

SetSpriteWorldClip
Sets a sprite world's clip shape to the specified region.

OSErr SetSpriteWorldClip (
   SpriteWorld theSpriteWorld,
   RgnHandle clipRgn
);

Parameters
theSpriteWorld

The sprite world for this operation.

clipRgn
The new clip shape for the sprite world. The clip shape should be specified in the sprite world's source
space, the coordinate system of the sprite layer's graphics world before the sprite world's matrix is
applied to it. You may pass a value of NIL for this parameter to indicate that there is no longer a clip
shape for the sprite world. This means that the whole area is drawn.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You call this function to change the clip shape of a sprite world. The specified region is owned by the caller
and is not copied by this function.

220 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldFlags
Sets flags that govern the behavior of a sprite world.

OSErr SetSpriteWorldFlags (
   SpriteWorld spriteWorld,
   long flags,
   long flagsMask
);

Parameters
spriteWorld

The sprite world for this operation.

flags
Constants (see below) that govern sprite world behavior. See these constants:

kScaleSpritesToScaleWorld

kSpriteWorldHighQuality

kSpriteWorldDontAutoInvalidate

kSpriteWorldInvisible

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, set the corresponding bit in the
flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single optimization
without altering the settings of other flags.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldGraphicsMode
Sets the graphics transfer mode for a sprite world.

Functions 221
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSErr SetSpriteWorldGraphicsMode (
   SpriteWorld theSpriteWorld,
   long mode,
   const RGBColor *opColor
);

Parameters
theSpriteWorld

The sprite world for this operation.

mode
A long integer; see Graphics Transfer Modes.

opColor
A pointer to an RGBColor structure. This is the blend value for blends and the transparent color for
transparent operations. The toolbox supplies this value to QuickDraw when you draw in addPin,
subPin, blend, transparent, or graphicsModeStraightAlphaBlend mode.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldMatrix
Sets a sprite world's matrix to the specified matrix.

OSErr SetSpriteWorldMatrix (
   SpriteWorld theSpriteWorld,
   const MatrixRecord *matrix
);

Parameters
theSpriteWorld

The sprite world for this operation.

matrix
A pointer to the new matrix for the sprite world. Transformations may include translation, scaling,
rotation, skewing, and perspective. You may pass a value of NIL to set the sprite world's matrix to an
identity matrix.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

222 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackAudioGain
Sets the audio gain level for the audio output of a track, altering the perceived volume of the track's playback.

OSStatus SetTrackAudioGain (
   Track t,
   Float32 gain,
   UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the track's volume. 0.0 is
silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the track is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet tracks to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track's gain setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioGain (page 98).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetTrackAudioMute
Mutes or unmutes the audio output of a track.

Functions 223
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



OSStatus SetTrackAudioMute (
   Track t,
   Boolean muted,
   UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack and
GetMovieTrack.

muted
Pass TRUE to mute the track's audio, FALSE to unmute it.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track mute setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioMute (page 99).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetTrackLoadSettings
Specifies a portion of a track that is to be loaded into memory whenever it is played.

void SetTrackLoadSettings (
   Track theTrack,
   TimeValue preloadTime,
   TimeValue preloadDuration,
   long preloadFlags,
   long defaultHints
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack.

preloadTime
The starting point of the portion of the track to be preloaded. Set this parameter to -1 if you want to
preload the entire track (in this case the function ignores the preloadDuration parameter). This
parameter should be specified using the movie's time scale.

preloadDuration
The amount of the track to be preloaded, starting from the time specified in the preloadTime
parameter. If you are preloading the entire track, the function ignores this parameter.

224 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



preloadFlags
Controls when the toolbox preloads the track. The function supports the following flag values: See
these constants:

preloadAlways

preloadOnlyIfEnabled

defaultHints
Specifies playback hints for the track. You may specify any of the supported hints flags.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

Discussion
This function allows you to control how the toolbox preloads the tracks in your movie. By using its settings,
you make this information part of the movie, so that the preloading takes place every time the movie is
opened, without an application having to call LoadTrackIntoRam. Consequently, you should use this feature
carefully, so that your movies don't consume large amounts of memory when opened.

Special Considerations

The toolbox transfers this preload information when you call CopyTrackSettings. In addition, the preload
information is preserved when you save or flatten a movie. In flattened movies, the tracks that are to be
preloaded are stored at the start of the movie, rather than being interleaved with the rest of the movie data.
This improves preload performance.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetUserDataItem
Sets an item in a user data list.

OSErr SetUserDataItem (
   UserData theUserData,
   void *data,
   long size,
   OSType udType,
   long index
);

Parameters
theUserData

The user data list for this operation. You obtain this item reference by calling GetMovieUserData,
GetTrackUserData, or GetMediaUserData.

data
A pointer to the data item to be set in a user data list.

Functions 225
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



size
The size of the information pointed to by the data parameter.

udType
The type value assigned to the new item.

index
The item's index value. This parameter must specify an item in the user data list identified by
theUserData. An index value of 0 or 1 implies the first item, which is created if it doesn't already
exist.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtwiredactions
qtwiredactions.win
vrmakeobject

Declared In
Movies.h

ShowMovieInformation
Displays a movie's information.

void ShowMovieInformation (
   Movie theMovie,
   ModalFilterUPP filterProc,
   long refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie,
NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

filterProc
A Universal Procedure Pointer that accesses a ModalFilterProc callback.

refCon
A reference constant to be passed to your filter callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
You can access error returns from this function through GetMoviesError and GetMoviesStickyError.
See Error Codes.

226 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

SpriteHitTest
Determines whether a location in a sprite's display coordinate system intersects the sprite.

OSErr SpriteHitTest (
   Sprite theSprite,
   long flags,
   Point loc,
   Boolean *wasHit
);

Parameters
theSprite

The sprite for this operation.

flags
Specifies flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

spriteHitTestTreatAllSpritesAsHitTestable

loc
A point in the sprite world's display space to test for the existence of a sprite. You should apply the
sprite world's matrix to the point before passing it to this function.

wasHit
A pointer to a Boolean. On return, the value of the Boolean is TRUE if the sprite is at the specified
location.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function is useful for hit testing a subset of the sprites in a sprite world and for detecting multiple hits
for a single location.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 227
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteWorldHitTest
Determines whether any sprites are at a specified location in a sprite world.

OSErr SpriteWorldHitTest (
   SpriteWorld theSpriteWorld,
   long flags,
   Point loc,
   Sprite *spriteHit
);

Parameters
theSpriteWorld

The sprite world for this operation.

flags
Specifies flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

spriteHitTestTreatAllSpritesAsHitTestable

loc
A point in the sprite world's display space to test for the existence of a sprite.

spriteHit
A pointer to a field that is to receive a sprite identifier. On return, this field contains the identifier of
the frontmost sprite at the location specified by the loc parameter. If no sprite exists at the location,
the function sets the value of this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
If you are drawing the sprite world in a window, you should convert the location to your window's local
coordinate system before passing it to SpriteWorldHitTest. A hit testing operation does not occur unless
you pass either spriteHitTestBounds or spriteHitTestImage in the flags parameter. You can add
other flags as needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

228 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Declared In
Movies.h

SpriteWorldIdle
Allows a sprite world to update its invalid areas.

OSErr SpriteWorldIdle (
   SpriteWorld theSpriteWorld,
   long flagsIn,
   long *flagsOut
);

Parameters
theSpriteWorld

The sprite world for this operation.

flagsIn
Contains flags (see below) describing actions that may take place during the idle. For the default
behavior, set this parameter to 0. See these constants:

kOnlyDrawToSpriteWorld

flagsOut
On return, a pointer to flags (see below) describing actions that took place during the idle period.
This parameter is optional; if you do not need the information, set it to NIL. See these constants:

kSpriteWorldDidDraw

kSpriteWorldNeedsToDraw

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This is the only sprite function that causes drawing to occur; you should call it as often as is necessary.
Typically, you would make changes in perspective for a number of sprites and then call SpriteWorldIdle
to redraw the changed sprites.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

Functions 229
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



UpdateMovieInStorage
Updates a movie at a storage location.

OSErr UpdateMovieInStorage (
   Movie theMovie,
   DataHandler dh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

dh
The data handler component that was returned by CreateMovieStorage (page 46).

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
This function, which is similar to OpenMovieStorage (page 145), replaces the content of the movie in the
storage associated with the specified data handler.

Version Notes
Introduced in QuickTime 6. Supersedes UpdateMovieResource (page 230).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonShell

Declared In
Movies.h

UpdateMovieResource
Replaces the contents of a movie resource in a specified movie file.

OSErr UpdateMovieResource (
   Movie theMovie,
   short resRefNum,
   short resId,
   ConstStr255Param resName
);

Parameters
theMovie

The movie you wish to place in the movie file. Your application obtains this movie identifier from
such functions as NewMovie, NewMovieFromFile (page 126), and NewMovieFromHandle (page 128).

resRefNum
Identifies the movie file that contains the resource to be changed. Your application obtains this value
from OpenMovieFile (page 143).

230 Functions
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



resId
The resource to be changed. This value is obtained from a previous call to NewMovieFromFile (page
126), NewMovieFromDataRef (page 124), or AddMovieResource (page 27). If you specify a single-fork
movie file by passing the movieInDataForkResID constant, the Movie Toolbox places the movie
resource into the file's data fork.

resName
Points to a new name for the resource. If you don't want to change the resource's name, set this
parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError and GetMoviesStickyError, as
well as in the function result. See Error Codes.

Discussion
You specify the movie that is to be placed into the resource. This function can accommodate single-fork
movie files. After updating the movie file, this function clears the movie changed flag.

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by UpdateMovieInStorage (page 230).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
ChromaKeyMovie
MakeEffectMovie
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

Callbacks

GetMovieProc
Provides movie data to the Movie Toolbox.

typedef OSErr (*GetMovieProcPtr) (long offset, long size, void *dataPtr, void 
*refCon);

If you name your function MyGetMovieProc, you would declare it this way:

OSErr MyGetMovieProc (
    long    offset,
    long    size,
    void    *dataPtr,
    void    *refCon );

Callbacks 231
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Parameters
offset

Specifies the offset into the movie resource (not the movie file). This is the location from which your
function retrieves the movie data.

size
Specifies the amount of data requested by the toolbox, in bytes.

dataPtr
Specifies the destination for the movie data.

refCon
Contains a reference constant (defined as a void pointer). This is the same value you provided to the
toolbox when you called NewMovieFromUserProc (page 131).

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Discussion
Normally, when a movie is loaded from a file (for example, by means of the NewMovieFromFile function),
the toolbox uses that file as the default data reference. Since NewMovieFromUserProc (page 131) does not
require a file specification, your application should specify the file to be used as the default data reference
using the defaultDataRef and dataRefType parameters.

Special Considerations

The toolbox automatically sets the movie's graphics world based upon the current graphics port. Be sure
that your application's graphics world is valid before you call this function.

Declared In
Movies.h

MovieExecuteWiredActionsProc
Undocumented

typedef OSErr (*MovieExecuteWiredActionsProcPtr) (Movie theMovie, void *refcon, 
long flags, QTAtomContainer wiredActions);

If you name your function MyMovieExecuteWiredActionsProc, you would declare it this way:

OSErr MyMovieExecuteWiredActionsProc (
    Movie              theMovie,
    void               *refcon,
    long               flags,
    QTAtomContainer    wiredActions );

Parameters
theMovie

Specifies the movie for this operation.

refcon
Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

flags
Undocumented

232 Callbacks
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



wiredActions
Undocumented

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

MovieRgnCoverProc
Undocumented

typedef OSErr (*MovieRgnCoverProcPtr) (Movie theMovie, RgnHandle changedRgn, long
 refcon);

If you name your function MyMovieRgnCoverProc, you would declare it this way:

OSErr MyMovieRgnCoverProc (
    Movie        theMovie,
    RgnHandle    changedRgn,
    long         refcon );

Parameters
theMovie

Specifies the movie for this operation.

changedRgn
Undocumented

refcon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

QTEffectListFilterProc
Called for each effect which passes the other criteria for inclusion in the effects list, and returns TRUE if the
effect is to be included in the list.

typedef Boolean (*QTEffectListFilterProcPtr) (Component effect,
long effectMinSource, long effectMaxSource, OSType majorClass,
OSType minorClass, void *refcon);

If you name your function MyQTEffectListFilterProc, you would declare it this way:

Boolean MyQTEffectListFilterProc (
    Component    effect,
    long         effectMinSource,
    long         effectMaxSource,

Callbacks 233
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



    OSType       majorClass,
    OSType       minorClass,
    void         *refcon );

Parameters
effect

The effect component.

effectMinSource
The minimum number of sources that an effect must have to be added to the list. Pass -1 to specify
no minimum.

effectMaxSource
The maximum number of sources that an effect can have to be added to the list. Pass -1 to specify
no maximum.

majorClass
The major class to include, or 0 for all.

minorClass
The minor class to include, or 0 for all.

refcon
A reference constant that points to a data structure containing information the callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Discussion
Note that your filter proc may receive multiple effects from various manufacturers. If you return TRUE for
multiple effects of a given type, only the one with the higher parameter version number will be included. If
you wish other filtering such as effects from a given manufacturer, you can do this by returning FALSE for
the other effects and TRUE for those that you prefer.

Declared In
Movies.h

QTSyncTaskProc
Undocumented

typedef void (*QTSyncTaskProcPtr) (void *task);

If you name your function MyQTSyncTaskProc, you would declare it this way:

void MyQTSyncTaskProc (
    void    *task );

Parameters
task

Undocumented

Declared In
Movies.h

234 Callbacks
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



TweenerDataProc
A callback the tween component calls with the value generated by a tween operation.

typedef ComponentResult (*TweenerDataProcPtr) (TweenRecord *tr, void *tweenData, 
long tweenDataSize, long dataDescriptionSeed, Handle dataDescription,
ICMCompletionProcRecordPtr asyncCompletionProc, UniversalProcPtr transferProc, void
 *refCon);

If you name your function MyTweenerDataProc, you would declare it this way:

ComponentResult MyTweenerDataProc (
    TweenRecord                   *tr,
    void                          *tweenData,
    long                          tweenDataSize,
    long                          dataDescriptionSeed,
    Handle                        dataDescription,
    ICMCompletionProcRecordPtr    asyncCompletionProc,
    UniversalProcPtr              transferProc,
    void                          *refCon );

Parameters
tr

A pointer to the tween record for the tween operation.

tweenData
A pointer to the generated tween value.

tweenDataSize
The size, in bytes, of the tween value.

dataDescriptionSeed
The starting value for the calculation. Every time the content of the dataDescription handle
changes, this value should be incremented.

dataDescription
Specifies a handle containing a description of the tween value passed. For basic types such as integers,
the calling tween component should set this parameter to NIL. For more complex types such as
compressed image data, the calling tween component should set this handle to contain a description
of the tween value, such as an image description.

asyncCompletionProc
A pointer to a completion procedure for asynchronous operations. The calling tween component
should set the value of this parameter to NIL.

transferProc
A pointer to a procedure to transfer the data. The calling tween component should set the value of
this parameter to NIL.

refCon
A pointer to a reference constant. The calling tween component should set the value of this parameter
to NIL.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

Callbacks 235
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



Data Types

FourCharCode
Represents a type used by the Movie Toolkit API.

typedef unsigned long FourCharCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOHIDDescriptorParser.h

FSSpecPtr
Represents a type used by the Movie Toolkit API.

typedef FSSpec * FSSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

GetMovieUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(GetMovieProcPtr) GetMovieUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieExecuteWiredActionsUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(MovieExecuteWiredActionsProcPtr) MovieExecuteWiredActionsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

236 Data Types
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



MovieRgnCoverUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(MovieRgnCoverProcPtr) MovieRgnCoverUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTAtomType
Represents a type used by the Movie Toolkit API.

typedef long QTAtomType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTAudioFrequencyLevels
Stores the frequency meter level settings for the audio channels in a movie mix.

struct QTAudioFrequencyLevels {
 UInt32     numChannels;
 UInt32     numFrequencyBands;
 Float32    level[1];
};

Fields
numChannels

Discussion
The number of audio channels.

numFrequencyBands

Discussion
The number of frequency bands for each channel.

level

Discussion
A 32-bit floating-point value for each frequency band. The frequency bands for each channel are stored
contiguously, with all the band levels for the first channel first, all the band levels for the second channel
next, etc. The total number of 32-bit values in this field equals numFrequencyBands times numChannels.

Related Functions
Associated function: GetMovieAudioFrequencyLevels (page 79)

Declared In
Movies.h

Data Types 237
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



QTAudioVolumeLevels
Stores the volume level settings for the audio channels in a movie mix.

struct QTAudioVolumeLevels {
 UInt32     numChannels;
 Float32    level[1];
};

Fields
numChannels

Discussion
The number of audio channels.

level

Discussion
A 32-bit floating-point value for each channel's volume.

Related Functions
Associated function: GetMovieAudioVolumeLevels (page 82)

Declared In
Movies.h

QTEffectListFilterUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(QTEffectListFilterProcPtr) QTEffectListFilterUPP;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTEffectListOptions
Represents a type used by the Movie Toolkit API.

typedef long QTEffectListOptions;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTErrorReplacementPtr
Represents a type used by the Movie Toolkit API.

238 Data Types
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



typedef QTErrorReplacementRecord * QTErrorReplacementPtr;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTErrorReplacementRecord
Contains the list of strings to subsitute for variables in an error message.

struct QTErrorReplacementRecord {
     long         numEntries;
     StringPtr    replacementString[1];
 };

Fields
numEntries

Discussion
The number of string pointers in replacementString.

replacementString

Discussion
An array of string pointers. Memory for each string is allocated separately.

Version Notes
Introduced in QuickTime 6.

Related Functions
QTAddMovieError (page 147)

Declared In
Movies.h

QTRestrictionSet
Represents a type used by the Movie Toolkit API.

typedef QTRestrictionSetRecord * QTRestrictionSet;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionSetRecord
Holds a movie's restrictions.

Data Types 239
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



struct QTRestrictionSetRecord {
     long    data[1];
 };

Fields
data

Discussion
The restrictions for a movie. See Movie Restrictions.

Version Notes
Introduced in QuickTime 6.

Related Functions
QTGetMovieRestrictions (page 171)
QTRestrictionsGetIndClass (page 190)
QTRestrictionsGetInfo (page 191)
QTRestrictionsGetItem (page 192)

Declared In
Movies.h

QTSyncTaskUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(QTSyncTaskProcPtr) QTSyncTaskUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTTweener
Represents a type used by the Movie Toolkit API.

typedef QTTweenerRecord * QTTweener;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTTweenerRecord
Stores a tween for the QTNewTween function.

240 Data Types
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



struct QTTweenerRecord {
     long    data[1];
 };

Fields
data

Discussion
An array of data that constitutes a tween.

Declared In
Movies.h

QTUUID
Contains QuickTime's version of a universally unique identifier.

struct QTUUID {
     UInt32    data1;
     UInt16    data2;
     UInt16    data3;
     UInt8     data4[8];
 };

Fields
data1

Discussion
Undocumented

data2

Discussion
Undocumented

data3

Discussion
Undocumented

data4

Discussion
Undocumented

Version Notes
Introduced in QuickTime 6.

Related Functions
QTCreateUUID (page 153)
QTEqualUUIDs (page 157)

Declared In
Movies.h

Sprite
Represents a type used by the Movie Toolkit API.

Data Types 241
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



typedef SpriteRecord * Sprite;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteRecord
Contains a sprite.

struct SpriteRecord {
     long    data[1];
 };

Fields
data

Discussion
An array of sprite data.

Declared In
Movies.h

SpriteWorld
Represents a type used by the Movie Toolkit API.

typedef SpriteWorldRecord * SpriteWorld;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteWorldRecord
Contains a sprite world.

struct SpriteWorldRecord {
     long    data[1];
 };

Fields
data

Discussion
An array of sprite world data.

Declared In
Movies.h

242 Data Types
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



TweenerDataUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(TweenerDataProcPtr) TweenerDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Constants

SetQuickTimePreference Values
Constants passed to SetQuickTimePreference.

enum {
  BandwidthManagementPrefsType  = 'bwmg'
};

Declared In
Movies.h

CreateMovieFile Values
Constants passed to CreateMovieFile.

enum {
  createMovieFileDeleteCurFile  = 1L << 31,
  createMovieFileDontCreateMovie = 1L << 30,
  createMovieFileDontOpenFile   = 1L << 29,
  createMovieFileDontCreateResFile = 1L << 28
};

Constants
createMovieFileDontOpenFile

Controls whether the function opens the new movie file. If you set this flag to 1, the Movie Toolbox
does not open the new movie file. In this case, the function ignores the outDataHandler parameter.
If you set this flag to 0, the Movie Toolbox opens the new movie file and returns its reference number
into the field referenced by outDataHandler.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

Constants 243
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



GetMediaDataRef Values
Constants passed to GetMediaDataRef.

enum {
  dataRefSelfReference          = 1 << 0,
  dataRefWasNotResolved         = 1 << 1
};

Declared In
Movies.h

QTGetEffectSpeed Values
Constants passed to QTGetEffectSpeed.

enum {
  effectIsRealtime              = 0     /* effect can be rendered in real time */
};

Declared In
Movies.h

QTGetEffectsList Values
Constants passed to QTGetEffectsList.

enum {
  elOptionsIncludeNoneInList    = 0x00000001 /* "None" effect is included in list
 */
};

Declared In
Movies.h

Full Screen Flags
Constants that represent flags for full screen displays.

244 Constants
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



enum {
  fullScreenHideCursor          = 1L << 0,
  fullScreenAllowEvents         = 1L << 1,
  fullScreenDontChangeMenuBar   = 1L << 2,
  fullScreenPreflightSize       = 1L << 3,
  fullScreenDontSwitchMonitorResolution = 1L << 4,
  fullScreenCaptureDisplay      = 1 << 5L, /* capturedisplay is a mac os x specific
 parameter */
  fullScreenCaptureAllDisplays  = 1 << 6L /* capturealldisplays is a mac os x 
specific parameter */
};

Constants
fullScreenHideCursor

If this flag is set, BeginFullScreen hides the cursor. This is useful if you are going to play a QuickTime
movie and do not want the cursor to be visible over the movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenAllowEvents
If this flag is set, your application intends to allow other applications to run (by calling WaitNextEvent
to grant them processing time). In this case, BeginFullScreen does not change the monitor
resolution, because other applications might depend on the current resolution.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenDontChangeMenuBar
If this flag is set, BeginFullScreen does not hide the menu bar. This is useful if you want to change
the resolution of the monitor but still need to allow the user to access the menu bar.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenPreflightSize
If this flag is set, BeginFullScreen doesn't change any monitor settings, but returns the actual
height and width that it would use if this bit were not set. This allows applications to test for the
availability of a monitor setting without having to switch to it.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenCaptureDisplay
Capturedisplay is a Mac OS X specific parameter.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

Declared In
Movies.h

Hint Flags
Constants that represent hint flags.

Constants 245
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



enum {
  hintsScrubMode                = 1 << 0, /* mask == && (if flags == scrub on, 
flags != scrub off) */
  hintsLoop                     = 1 << 1,
  hintsDontPurge                = 1 << 2,
  hintsUseScreenBuffer          = 1 << 5,
  hintsAllowInterlace           = 1 << 6,
  hintsUseSoundInterp           = 1 << 7,
  hintsHighQuality              = 1 << 8, /* slooooow */
  hintsPalindrome               = 1 << 9,
  hintsInactive                 = 1 << 11,
  hintsOffscreen                = 1 << 12,
  hintsDontDraw                 = 1 << 13,
  hintsAllowBlacklining         = 1 << 14,
  hintsDontUseVideoOverlaySurface = 1 << 16,
  hintsIgnoreBandwidthRestrictions = 1 << 17,
  hintsPlayingEveryFrame        = 1 << 18,
  hintsAllowDynamicResize       = 1 << 19,
  hintsSingleField              = 1 << 20,
  hintsNoRenderingTimeOut       = 1 << 21,
  hintsFlushVideoInsteadOfDirtying = 1 << 22,
  hintsEnableSubPixelPositioning = 1L << 23,
  hintsRenderingMode            = 1L << 24,
  hintsAllowIdleSleep           = 1L << 25, /* asks media handlers not to call 
UpdateSystemActivity etc */
  hintsDeinterlaceFields        = 1L << 26
};

Constants
hintsAllowIdleSleep

Asks media handlers not to call UpdateSystemActivity etc.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

Declared In
Movies.h

QTUnregisterAccessKey Values
Constants passed to QTUnregisterAccessKey.

enum {
  kAccessKeySystemFlag          = 1L << 0
};

Declared In
Movies.h

Sprite Properties
Constants that represent the properties of sprites.

246 Constants
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



enum {
  kGetSpriteWorldInvalidRegionAndLeaveIntact = -1L,
  kGetSpriteWorldInvalidRegionAndThenSetEmpty = -2L
};
enum {
  kKeyFrameAndSingleOverride    = 1L << 1,
  kKeyFrameAndAllOverrides      = 1L << 2
};
enum {
  kNoQTIdleEvents               = -1
};
enum {
  kOnlyDrawToSpriteWorld        = 1L << 0,
  kSpriteWorldPreflight         = 1L << 1
};
enum {
  kScaleSpritesToScaleWorld     = 1L << 1,
  kSpriteWorldHighQuality       = 1L << 2,
  kSpriteWorldDontAutoInvalidate = 1L << 3,
  kSpriteWorldInvisible         = 1L << 4,
  kSpriteWorldDirtyInsteadOfFlush = 1L << 5
};
enum {
  kSpritePropertyMatrix         = 1,
  kSpritePropertyImageDescription = 2,
  kSpritePropertyImageDataPtr   = 3,
  kSpritePropertyVisible        = 4,
  kSpritePropertyLayer          = 5,
  kSpritePropertyGraphicsMode   = 6,
  kSpritePropertyImageDataSize  = 7,
  kSpritePropertyActionHandlingSpriteID = 8,
  kSpritePropertyCanBeHitTested = 9,
  kSpritePropertyImageIndex     = 100,
  kSpriteTrackPropertyBackgroundColor = 101,
  kSpriteTrackPropertyOffscreenBitDepth = 102,
  kSpriteTrackPropertySampleFormat = 103,
  kSpriteTrackPropertyScaleSpritesToScaleWorld = 104,
  kSpriteTrackPropertyHasActions = 105,
  kSpriteTrackPropertyVisible   = 106,
  kSpriteTrackPropertyQTIdleEventsFrequency = 107,
  kSpriteTrackPropertyAllSpritesHitTestingMode = 108,
  kSpriteTrackPropertyPreferredDepthInterpretationMode = 109,
  kSpriteImagePropertyRegistrationPoint = 1000,
  kSpriteImagePropertyGroupID   = 1001
};

Declared In
Movies.h

SetMediaDataRefAttributes Values
Constants passed to SetMediaDataRefAttributes.

Constants 247
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



enum {
  kMovieAnchorDataRefIsDefault  = 1 << 0 /* data ref returned is movie default data
 ref */
};

Declared In
Movies.h

CopyUserData Values
Constants passed to CopyUserData.

enum {
  kQTCopyUserDataReplace        = 'rplc', /* Delete all destination user data items
 and then add source user data items */
  kQTCopyUserDataMerge          = 'merg' /* Add source user data items to destination
 user data */
};

Declared In
Movies.h

CanQuickTimeOpenFile Values
Constants passed to CanQuickTimeOpenFile.

enum {
  kQTDontUseDataToFindImporter  = 1L << 0,
  kQTDontLookForMovieImporterIfGraphicsImporterFound = 1L << 1,
  kQTAllowOpeningStillImagesAsMovies = 1L << 2,
  kQTAllowImportersThatWouldCreateNewFile = 1L << 3,
  kQTAllowAggressiveImporters   = 1L << 4 /* eg, TEXT and PICT movie importers*/
};

Declared In
Movies.h

QTNewDataReferenceFromFullPathCFString Values
Constants passed to QTNewDataReferenceFromFullPathCFString.

enum {
  kQTNativeDefaultPathStyle     = -1,
  kQTPOSIXPathStyle             = 0,
  kQTHFSPathStyle               = 1,
  kQTWindowsPathStyle           = 2
};

Declared In
Movies.h

248 Constants
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



SpriteWorldIdle Values
Constants passed to SpriteWorldIdle.

enum {
  kSpriteWorldDidDraw           = 1L << 0,
  kSpriteWorldNeedsToDraw       = 1L << 1
};

Declared In
Movies.h

MovieExecuteWiredActions Values
Constants passed to MovieExecuteWiredActions.

enum {
  movieExecuteWiredActionDontExecute = 1L << 0
};

Declared In
Movies.h

NewMovieFromFile Values
Constants passed to NewMovieFromFile.

enum {
  movieInDataForkResID          = -1    /* magic res ID */
};

Declared In
Movies.h

PutMovieOnScrap Values
Constants passed to PutMovieOnScrap.

enum {
  movieScrapDontZeroScrap       = 1 << 0,
  movieScrapOnlyPutMovie        = 1 << 1
};

Declared In
Movies.h

SetTrackLoadSettings Values
Constants passed to SetTrackLoadSettings.

Constants 249
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



enum {
  preloadAlways                 = 1L << 0,
  preloadOnlyIfEnabled          = 1L << 1
};

Declared In
Movies.h

MovieSearchText Values
Constants passed to MovieSearchText.

enum {
  searchTextDontGoToFoundTime   = 1L << 16,
  searchTextDontHiliteFoundText = 1L << 17,
  searchTextOneTrackOnly        = 1L << 18,
  searchTextEnabledTracksOnly   = 1L << 19
};

Declared In
Movies.h

Media Characteristics
Constants that represent the characteristics of media.

enum {
  VisualMediaCharacteristic     = 'eyes',
  AudioMediaCharacteristic      = 'ears',
  kCharacteristicCanSendVideo   = 'vsnd',
  kCharacteristicProvidesActions = 'actn',
  kCharacteristicNonLinear      = 'nonl',
  kCharacteristicCanStep        = 'step',
  kCharacteristicHasNoDuration  = 'noti',
  kCharacteristicHasSkinData    = 'skin',
  kCharacteristicProvidesKeyFocus = 'keyf',
  kCharacteristicSupportsDisplayOffsets = 'dtdd'
};

Constants
AudioMediaCharacteristic

Value ='ears'. Instructs the Movie Toolbox to search all tracks that play sound.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

250 Constants
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Movie Toolkit Reference



This table describes the changes to Movie Toolkit Reference.

NotesDate

New document, based on previously published material, that describes the API
for QuickTime Movie Toolkit.

2006-05-23

251
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



252
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



A

AddMediaDataRef function 26
AddMovieExecuteWiredActionsProc function 26
AddMovieResource function 27
AddMovieToStorage function 29
AddSoundDescriptionExtension function 30
AddUserData function 30
AddUserDataText function 31
AttachMovieToCurrentThread function 32
AudioMediaCharacteristic constant 250

B

BeginFullScreen function 33

C

CanQuickTimeOpenDataRef function 35
CanQuickTimeOpenFile function 37
CanQuickTimeOpenFile Values 248
ClearMovieChanged function 38
CloseMovieFile function 39
CloseMovieStorage function 40
CopyMediaUserData function 40
CopyMovieUserData function 41
CopyTrackUserData function 42
CopyUserData function 42
CopyUserData Values 248
CountUserDataType function 43
CreateMovieFile function 44
CreateMovieFile Values 243
createMovieFileDontOpenFile constant 243
CreateMovieStorage function 46
CreateShortcutMovieFile function 47

D

DeleteMovieFile function 48
DeleteMovieStorage function 49
DetachMovieFromCurrentThread function 49
DisposeActionsUPP function 50
DisposeAllSprites function 50
DisposeDoMCActionUPP function 51
DisposeGetMovieUPP function 51
DisposeMovieController function 51
DisposeMovieDrawingCompleteUPP function 54
DisposeMovieExecuteWiredActionsUPP function 55
DisposeMoviePrePrerollCompleteUPP function 55
DisposeMoviePreviewCallOutUPP function 56
DisposeMovieProgressUPP function 56
DisposeMovieRgnCoverUPP function 57
DisposeMoviesErrorUPP function 57
DisposeQTCallBackUPP function 57
DisposeQTEffectListFilterUPP function 58
DisposeQTNextTaskNeededSoonerCallbackUPP

function 58
DisposeQTSyncTaskUPP function 59
DisposeSprite function 59
DisposeSpriteWorld function 60
DisposeTextMediaUPP function 61
DisposeTrackTransferUPP function 62
DisposeTweenerDataUPP function 62
DisposeUserData function 63

E

EndFullScreen function 63

F

FlattenMovie function 64
FlattenMovieData function 66
FlattenMovieDataToDataRef function 68
FourCharCode data type 236

253
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Index



FSSpecPtr data type 236
Full Screen Flags 244
fullScreenAllowEvents constant 245
fullScreenCaptureDisplay constant 245
fullScreenDontChangeMenuBar constant 245
fullScreenHideCursor constant 245
fullScreenPreflightSize constant 245

G

GetMaxLoadedTimeInMovie function 69
GetMediaDataRef function 70
GetMediaDataRef Values 244
GetMediaDataRefCount function 71
GetMediaNextInterestingDecodeTime function 72
GetMediaNextInterestingDisplayTime function 73
GetMediaNextInterestingTime function 74
GetMediaPlayHints function 76
GetMediaPropertyAtom function 76
GetMovieAnchorDataRef function 77
GetMovieAudioBalance function 78
GetMovieAudioFrequencyLevels function 79
GetMovieAudioFrequencyMeteringBandFrequencies

function 79
GetMovieAudioFrequencyMeteringNumBands function

80
GetMovieAudioGain function 81
GetMovieAudioMute function 81
GetMovieAudioVolumeLevels function 82
GetMovieAudioVolumeMeteringEnabled function 83
GetMovieColorTable function 84
GetMovieCoverProcs function 84
GetMovieDefaultDataRef function 85
GetMovieLoadState function 86
GetMovieNextInterestingTime function 87
GetMovieProc callback 231
GetMovieProgressProc function 89
GetMoviePropertyAtom function 89
GetMovieSegmentDisplayBoundsRgn function 90
GetMovieStatus function 91
GetMovieThreadAttachState function 91
GetMovieUPP data type 236
GetMovieVisualBrightness function 92
GetMovieVisualContrast function 92
GetMovieVisualHue function 93
GetMovieVisualSaturation function 94
GetNextUserDataType function 94
GetPosterBox function 95
GetQuickTimePreference function 96
GetSoundDescriptionExtension function 97
GetSpriteProperty function 98
GetTrackAudioGain function 98

GetTrackAudioMute function 99
GetTrackLoadSettings function 100
GetTrackNextInterestingTime function 101
GetTrackSegmentDisplayBoundsRgn function 102
GetTrackStatus function 103
GetUserData function 103
GetUserDataItem function 104
GetUserDataText function 105

H

HasMovieChanged function 106
Hint Flags 245
hintsAllowIdleSleep constant 246

I

InvalidateSprite function 107
InvalidateSpriteWorld function 107

M

MakeMediaTimeTable function 108
MakeTrackTimeTable function 109
Media Characteristics 250
MovieAudioExtractionBegin function 111
MovieAudioExtractionEnd function 111
MovieAudioExtractionFillBuffer function 112
MovieAudioExtractionGetProperty function 113
MovieAudioExtractionGetPropertyInfo function

114
MovieAudioExtractionSetProperty function 115
MovieExecuteWiredActions function 116
MovieExecuteWiredActions Values 249
MovieExecuteWiredActionsProc callback 232
MovieExecuteWiredActionsUPP data type 236
MovieRgnCoverProc callback 233
MovieRgnCoverUPP data type 237
MovieSearchText function 116
MovieSearchText Values 250

N

NewActionsUPP function 118
NewDoMCActionUPP function 118
NewGetMovieUPP function 119
NewMovieController function 119

254
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX



NewMovieDrawingCompleteUPP function 120
NewMovieExecuteWiredActionsUPP function 121
NewMovieForDataRefFromHandle function 121
NewMovieFromDataFork function 122
NewMovieFromDataFork64 function 123
NewMovieFromDataRef function 124
NewMovieFromFile function 126
NewMovieFromFile Values 249
NewMovieFromHandle function 128
NewMovieFromScrap function 129
NewMovieFromStorageOffset function 130
NewMovieFromUserProc function 131
NewMoviePrePrerollCompleteUPP function 132
NewMoviePreviewCallOutUPP function 133
NewMovieProgressUPP function 134
NewMovieRgnCoverUPP function 134
NewMoviesErrorUPP function 135
NewQTCallBackUPP function 135
NewQTEffectListFilterUPP function 136
NewQTNextTaskNeededSoonerCallbackUPP function

136
NewQTSyncTaskUPP function 137
NewSprite function 137
NewSpriteWorld function 139
NewTextMediaUPP function 141
NewTrackTransferUPP function 141
NewTweenerDataUPP function 142
NewUserData function 142
NewUserDataFromHandle function 143

O

OpenMovieFile function 143
OpenMovieStorage function 145

P

PutMovieOnScrap function 146
PutMovieOnScrap Values 249
PutUserDataIntoHandle function 147

Q

QTAddMovieError function 147
QTAtomType data type 237
QTAudioFrequencyLevels structure 237
QTAudioVolumeLevels structure 238
QTCopyAtom function 148
QTCopyAtomDataToHandle function 149

QTCopyAtomDataToPtr function 150
QTCountChildrenOfType function 151
QTCreateStandardParameterDialog function 151
QTCreateUUID function 153
QTDismissStandardParameterDialog function 153
QTDisposeAtomContainer function 154
QTDisposeTween function 155
QTDoTween function 155
QTDoTweenPtr function 156
QTEffectListFilterProc callback 233
QTEffectListFilterUPP data type 238
QTEffectListOptions data type 238
QTEqualUUIDs function 157
QTErrorReplacementPtr data type 238
QTErrorReplacementRecord structure 239
QTFindChildByID function 157
QTFindChildByIndex function 158
QTGetAccessKeys function 159
QTGetAtomDataPtr function 160
QTGetAtomParent function 161
QTGetAtomTypeAndID function 162
QTGetDataHandlerDirectoryDataReference function

163
QTGetDataHandlerFullPathCFString function 163
QTGetDataHandlerTargetNameCFString function 164
QTGetDataReferenceDirectoryDataReference

function 165
QTGetDataReferenceFullPathCFString function 165
QTGetDataReferenceTargetNameCFString function

166
QTGetDataRefMaxFileOffset function 167
QTGetEffectsList function 168
QTGetEffectsList Values 244
QTGetEffectsListExtended function 169
QTGetEffectSpeed function 170
QTGetEffectSpeed Values 244
QTGetMovieRestrictions function 171
QTGetNextChildType function 172
QTGetSupportedRestrictions function 172
QTInsertChild function 173
QTInsertChildren function 174
QTIsStandardParameterDialogEvent function 175
QTLockContainer function 176
QTMovieNeedsTimeTable function 177
QTNewAlias function 178
QTNewAtomContainer function 178
QTNewDataReferenceFromCFURL function 179
QTNewDataReferenceFromFSRef function 180
QTNewDataReferenceFromFSRefCFString function

181
QTNewDataReferenceFromFSSpec function 182
QTNewDataReferenceFromFullPathCFString function

183

255
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX



QTNewDataReferenceFromFullPathCFString Values 248
QTNewDataReferenceFromURLCFString function 184
QTNewDataReferenceWithDirectoryCFString

function 185
QTNewTween function 186
QTNextChildAnyType function 187
QTRegisterAccessKey function 188
QTRemoveAtom function 188
QTRemoveChildren function 189
QTReplaceAtom function 190
QTRestrictionSet data type 239
QTRestrictionSetRecord structure 239
QTRestrictionsGetIndClass function 190
QTRestrictionsGetInfo function 191
QTRestrictionsGetItem function 192
QTSetAtomData function 192
QTSetAtomID function 194
QTStandardParameterDialogDoAction function 194
QTSwapAtoms function 196
QTSyncTaskProc callback 234
QTSyncTaskUPP data type 240
QTTweener data type 240
QTTweenerRecord structure 240
QTUnlockContainer function 196
QTUnregisterAccessKey function 197
QTUnregisterAccessKey Values 246
QTUUID structure 241

R

RemoveMovieExecuteWiredActionsProc function 198
RemoveMovieResource function 198
RemoveSoundDescriptionExtension function 199
RemoveUserData function 199
RemoveUserDataText function 200

S

SetMediaDataRef function 201
SetMediaDataRefAttributes function 202
SetMediaDataRefAttributes Values 247
SetMediaPlayHints function 202
SetMediaPropertyAtom function 203
SetMovieAnchorDataRef function 205
SetMovieAudioBalance function 205
SetMovieAudioFrequencyMeteringNumBands function

206
SetMovieAudioGain function 207
SetMovieAudioMute function 207
SetMovieAudioVolumeMeteringEnabled function 208

SetMovieColorTable function 209
SetMovieCoverProcs function 209
SetMovieDefaultDataRef function 211
SetMovieLanguage function 211
SetMoviePlayHints function 212
SetMovieProgressProc function 213
SetMoviePropertyAtom function 214
SetMovieVisualBrightness function 214
SetMovieVisualContrast function 215
SetMovieVisualHue function 216
SetMovieVisualSaturation function 216
SetPosterBox function 217
SetQuickTimePreference function 218
SetQuickTimePreference Values 243
SetSpriteProperty function 218
SetSpriteWorldClip function 220
SetSpriteWorldFlags function 221
SetSpriteWorldGraphicsMode function 221
SetSpriteWorldMatrix function 222
SetTrackAudioGain function 223
SetTrackAudioMute function 223
SetTrackLoadSettings function 224
SetTrackLoadSettings Values 249
SetUserDataItem function 225
ShowMovieInformation function 226
Sprite data type 241
Sprite Properties 246
SpriteHitTest function 227
SpriteRecord structure 242
SpriteWorld data type 242
SpriteWorldHitTest function 228
SpriteWorldIdle function 229
SpriteWorldIdle Values 249
SpriteWorldRecord structure 242

T

TweenerDataProc callback 235
TweenerDataUPP data type 243

U

UpdateMovieInStorage function 230
UpdateMovieResource function 230

256
2006-05-23   |   © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX


	Movie Toolkit Reference
	Contents
	Movie Toolkit Reference
	Overview
	Functions by Task
	Associating Movies With Controllers
	Audio Conversion and Extraction
	Copying Existing Atoms
	Creating and Disposing of Atom Containers
	Creating and Manipulating Sprites
	Creating New Atoms
	Enhancing Movie Playback Performance
	Error Functions
	Finding and Adding Samples
	Finding Interesting Times
	High-Level Download Control
	High-Level Effects Functions
	High-Level Movie Editing Functions
	Low-Level Download Control
	Metering Sound Level and Frequency
	Modifying Atoms
	Movie Functions
	Movie Posters and Movie Previews
	Movies and Your Event Loop
	Registering and Unregistering Access Keys
	Removing Atoms From an Atom Container
	Retrieving Access Keys
	Retrieving Atoms and Atom Data
	Saving Movies
	Setting Sound Parameters
	Tween Component Requirements
	Using the Full Screen
	Working With Alternate Tracks
	Working With Data References
	Working With Media Handler Properties
	Working With Movie Restrictions
	Working With Movie Spatial Characteristics
	Working With Progress and Cover Functions
	Working With Sprite Worlds
	Working With User Data
	Supporting Functions

	Functions
	AddMediaDataRef
	AddMovieExecuteWiredActionsProc
	AddMovieResource
	AddMovieToStorage
	AddSoundDescriptionExtension
	AddUserData
	AddUserDataText
	AttachMovieToCurrentThread
	BeginFullScreen
	CanQuickTimeOpenDataRef
	CanQuickTimeOpenFile
	ClearMovieChanged
	CloseMovieFile
	CloseMovieStorage
	CopyMediaUserData
	CopyMovieUserData
	CopyTrackUserData
	CopyUserData
	CountUserDataType
	CreateMovieFile
	CreateMovieStorage
	CreateShortcutMovieFile
	DeleteMovieFile
	DeleteMovieStorage
	DetachMovieFromCurrentThread
	DisposeActionsUPP
	DisposeAllSprites
	DisposeDoMCActionUPP
	DisposeGetMovieUPP
	DisposeMovieController
	DisposeMovieDrawingCompleteUPP
	DisposeMovieExecuteWiredActionsUPP
	DisposeMoviePrePrerollCompleteUPP
	DisposeMoviePreviewCallOutUPP
	DisposeMovieProgressUPP
	DisposeMovieRgnCoverUPP
	DisposeMoviesErrorUPP
	DisposeQTCallBackUPP
	DisposeQTEffectListFilterUPP
	DisposeQTNextTaskNeededSoonerCallbackUPP
	DisposeQTSyncTaskUPP
	DisposeSprite
	DisposeSpriteWorld
	DisposeTextMediaUPP
	DisposeTrackTransferUPP
	DisposeTweenerDataUPP
	DisposeUserData
	EndFullScreen
	FlattenMovie
	FlattenMovieData
	FlattenMovieDataToDataRef
	GetMaxLoadedTimeInMovie
	GetMediaDataRef
	GetMediaDataRefCount
	GetMediaNextInterestingDecodeTime
	GetMediaNextInterestingDisplayTime
	GetMediaNextInterestingTime
	GetMediaPlayHints
	GetMediaPropertyAtom
	GetMovieAnchorDataRef
	GetMovieAudioBalance
	GetMovieAudioFrequencyLevels
	GetMovieAudioFrequencyMeteringBandFrequencies
	GetMovieAudioFrequencyMeteringNumBands
	GetMovieAudioGain
	GetMovieAudioMute
	GetMovieAudioVolumeLevels
	GetMovieAudioVolumeMeteringEnabled
	GetMovieColorTable
	GetMovieCoverProcs
	GetMovieDefaultDataRef
	GetMovieLoadState
	GetMovieNextInterestingTime
	GetMovieProgressProc
	GetMoviePropertyAtom
	GetMovieSegmentDisplayBoundsRgn
	GetMovieStatus
	GetMovieThreadAttachState
	GetMovieVisualBrightness
	GetMovieVisualContrast
	GetMovieVisualHue
	GetMovieVisualSaturation
	GetNextUserDataType
	GetPosterBox
	GetQuickTimePreference
	GetSoundDescriptionExtension
	GetSpriteProperty
	GetTrackAudioGain
	GetTrackAudioMute
	GetTrackLoadSettings
	GetTrackNextInterestingTime
	GetTrackSegmentDisplayBoundsRgn
	GetTrackStatus
	GetUserData
	GetUserDataItem
	GetUserDataText
	HasMovieChanged
	InvalidateSprite
	InvalidateSpriteWorld
	MakeMediaTimeTable
	MakeTrackTimeTable
	MovieAudioExtractionBegin
	MovieAudioExtractionEnd
	MovieAudioExtractionFillBuffer
	MovieAudioExtractionGetProperty
	MovieAudioExtractionGetPropertyInfo
	MovieAudioExtractionSetProperty
	MovieExecuteWiredActions
	MovieSearchText
	NewActionsUPP
	NewDoMCActionUPP
	NewGetMovieUPP
	NewMovieController
	NewMovieDrawingCompleteUPP
	NewMovieExecuteWiredActionsUPP
	NewMovieForDataRefFromHandle
	NewMovieFromDataFork
	NewMovieFromDataFork64
	NewMovieFromDataRef
	NewMovieFromFile
	NewMovieFromHandle
	NewMovieFromScrap
	NewMovieFromStorageOffset
	NewMovieFromUserProc
	NewMoviePrePrerollCompleteUPP
	NewMoviePreviewCallOutUPP
	NewMovieProgressUPP
	NewMovieRgnCoverUPP
	NewMoviesErrorUPP
	NewQTCallBackUPP
	NewQTEffectListFilterUPP
	NewQTNextTaskNeededSoonerCallbackUPP
	NewQTSyncTaskUPP
	NewSprite
	NewSpriteWorld
	NewTextMediaUPP
	NewTrackTransferUPP
	NewTweenerDataUPP
	NewUserData
	NewUserDataFromHandle
	OpenMovieFile
	OpenMovieStorage
	PutMovieOnScrap
	PutUserDataIntoHandle
	QTAddMovieError
	QTCopyAtom
	QTCopyAtomDataToHandle
	QTCopyAtomDataToPtr
	QTCountChildrenOfType
	QTCreateStandardParameterDialog
	QTCreateUUID
	QTDismissStandardParameterDialog
	QTDisposeAtomContainer
	QTDisposeTween
	QTDoTween
	QTDoTweenPtr
	QTEqualUUIDs
	QTFindChildByID
	QTFindChildByIndex
	QTGetAccessKeys
	QTGetAtomDataPtr
	QTGetAtomParent
	QTGetAtomTypeAndID
	QTGetDataHandlerDirectoryDataReference
	QTGetDataHandlerFullPathCFString
	QTGetDataHandlerTargetNameCFString
	QTGetDataReferenceDirectoryDataReference
	QTGetDataReferenceFullPathCFString
	QTGetDataReferenceTargetNameCFString
	QTGetDataRefMaxFileOffset
	QTGetEffectsList
	QTGetEffectsListExtended
	QTGetEffectSpeed
	QTGetMovieRestrictions
	QTGetNextChildType
	QTGetSupportedRestrictions
	QTInsertChild
	QTInsertChildren
	QTIsStandardParameterDialogEvent
	QTLockContainer
	QTMovieNeedsTimeTable
	QTNewAlias
	QTNewAtomContainer
	QTNewDataReferenceFromCFURL
	QTNewDataReferenceFromFSRef
	QTNewDataReferenceFromFSRefCFString
	QTNewDataReferenceFromFSSpec
	QTNewDataReferenceFromFullPathCFString
	QTNewDataReferenceFromURLCFString
	QTNewDataReferenceWithDirectoryCFString
	QTNewTween
	QTNextChildAnyType
	QTRegisterAccessKey
	QTRemoveAtom
	QTRemoveChildren
	QTReplaceAtom
	QTRestrictionsGetIndClass
	QTRestrictionsGetInfo
	QTRestrictionsGetItem
	QTSetAtomData
	QTSetAtomID
	QTStandardParameterDialogDoAction
	QTSwapAtoms
	QTUnlockContainer
	QTUnregisterAccessKey
	RemoveMovieExecuteWiredActionsProc
	RemoveMovieResource
	RemoveSoundDescriptionExtension
	RemoveUserData
	RemoveUserDataText
	SetMediaDataRef
	SetMediaDataRefAttributes
	SetMediaPlayHints
	SetMediaPropertyAtom
	SetMovieAnchorDataRef
	SetMovieAudioBalance
	SetMovieAudioFrequencyMeteringNumBands
	SetMovieAudioGain
	SetMovieAudioMute
	SetMovieAudioVolumeMeteringEnabled
	SetMovieColorTable
	SetMovieCoverProcs
	SetMovieDefaultDataRef
	SetMovieLanguage
	SetMoviePlayHints
	SetMovieProgressProc
	SetMoviePropertyAtom
	SetMovieVisualBrightness
	SetMovieVisualContrast
	SetMovieVisualHue
	SetMovieVisualSaturation
	SetPosterBox
	SetQuickTimePreference
	SetSpriteProperty
	SetSpriteWorldClip
	SetSpriteWorldFlags
	SetSpriteWorldGraphicsMode
	SetSpriteWorldMatrix
	SetTrackAudioGain
	SetTrackAudioMute
	SetTrackLoadSettings
	SetUserDataItem
	ShowMovieInformation
	SpriteHitTest
	SpriteWorldHitTest
	SpriteWorldIdle
	UpdateMovieInStorage
	UpdateMovieResource

	Callbacks
	GetMovieProc
	MovieExecuteWiredActionsProc
	MovieRgnCoverProc
	QTEffectListFilterProc
	QTSyncTaskProc
	TweenerDataProc

	Data Types
	FourCharCode
	FSSpecPtr
	GetMovieUPP
	MovieExecuteWiredActionsUPP
	MovieRgnCoverUPP
	QTAtomType
	QTAudioFrequencyLevels
	QTAudioVolumeLevels
	QTEffectListFilterUPP
	QTEffectListOptions
	QTErrorReplacementPtr
	QTErrorReplacementRecord
	QTRestrictionSet
	QTRestrictionSetRecord
	QTSyncTaskUPP
	QTTweener
	QTTweenerRecord
	QTUUID
	Sprite
	SpriteRecord
	SpriteWorld
	SpriteWorldRecord
	TweenerDataUPP

	Constants
	SetQuickTimePreference Values
	CreateMovieFile Values
	GetMediaDataRef Values
	QTGetEffectSpeed Values
	QTGetEffectsList Values
	Full Screen Flags
	Hint Flags
	QTUnregisterAccessKey Values
	Sprite Properties
	SetMediaDataRefAttributes Values
	CopyUserData Values
	CanQuickTimeOpenFile Values
	QTNewDataReferenceFromFullPathCFString Values
	SpriteWorldIdle Values
	MovieExecuteWiredActions Values
	NewMovieFromFile Values
	PutMovieOnScrap Values
	SetTrackLoadSettings Values
	MovieSearchText Values
	Media Characteristics


	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U



