
QuickTime Framework Reference
QuickTime

2006-05-23

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, eMac, FireWire, iTunes, Logic, Mac,
Mac OS, Macintosh, MPW, Objective-C, Pixlet,
Quartz, QuickDraw, QuickTime, and SoundTrack
are trademarks of Apple Inc., registered in the
United States and other countries.

Aperture, Numbers, QuickStart, and Shuffle are
trademarks of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

DEC is a trademark of Digital Equipment
Corporation.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Quicktime Framework Reference 9

Part I Managers 11

Chapter 1 Image Compression Manager Reference 13

Overview 13
Functions by Task 13
Functions 21
Callbacks 130
Data Types 136
Constants 140

Chapter 2 Movie Manager Reference 163

Overview 163
Functions by Task 163
Functions 177
Callbacks 351
Data Types 351
Constants 356

Part II Constants 361

Chapter 3 QuickTime Constants Reference 363

Overview 363
Constants 363

Part III Other References 443

Chapter 4 Component Creation Reference for QuickTime 445

Overview 445
Functions by Task 445
Functions 453
Callbacks 551
Data Types 555
Constants 565

3
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 5 Compression and Decompression Reference for QuickTime 575

Overview 575
Functions by Task 575
Functions 586
Callbacks 740
Data Types 740
Constants 748

Chapter 6 Data Components Reference for QuickTime 753

Overview 753
Functions by Task 753
Functions 759
Callbacks 842
Data Types 842
Constants 846

Chapter 7 Image Codec Reference for QuickTime 849

Overview 849
Functions by Task 849
Functions 854
Callbacks 932
Data Types 933
Constants 957

Chapter 8 Import and Export Reference for QuickTime 965

Overview 965
Functions by Task 965
Functions 974
Callbacks 1080
Data Types 1081
Constants 1081

Chapter 9 Media Types and Media Handlers Reference 1087

Overview 1087
Functions by Task 1087
Functions 1093
Callbacks 1164
Data Types 1164
Constants 1170

4
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 10 Movie Controller Reference 1175

Overview 1175
Functions by Task 1175
Functions 1179
Callbacks 1223
Data Types 1224
Constants 1225

Chapter 11 QuickTime Movie Properties Reference 1229

Overview 1229
Functions by Task 1229
Functions 1232
Callbacks 1276
Data Types 1276
Constants 1278

Chapter 12 Movie Toolkit Reference 1283

Overview 1283
Functions by Task 1283
Functions 1298
Callbacks 1504
Data Types 1509
Constants 1516

Chapter 13 QuickTime Movie Track and Media Reference 1525

Overview 1525
Functions by Task 1525
Functions 1534
Callbacks 1661
Data Types 1661
Constants 1665

Chapter 14 QuickTime Music Architecture Reference 1669

Overview 1669
Functions by Task 1669
Functions 1676
Callbacks 1761
Data Types 1763
Constants 1777

5
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 15 QuickTime Streaming Reference 1791

Overview 1791
Functions 1791
Callbacks 1931
Data Types 1932
Constants 1957

Chapter 16 QuickTime Virtual Reality Reference 1969

Overview 1969
Functions by Task 1969
Functions 1975
Callbacks 2065
Data Types 2069
Constants 2075

Chapter 17 Sequence Grabber Reference for QuickTime 2085

Overview 2085
Functions by Task 2085
Functions 2096
Callbacks 2228
Data Types 2236
Constants 2245

Chapter 18 Video Components Reference for QuickTime 2251

Overview 2251
Functions by Task 2251
Functions 2258
Callbacks 2340
Data Types 2340
Constants 2349

Chapter 19 Windows API Reference for QuickTime 2361

Overview 2361
Functions 2361
Callbacks 2365
Data Types 2365
Constants 2365

Chapter 20 QuickTime Atoms and Resources Reference 2367

Overview 2367

6
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 21 QuickTime Atoms 2369

Atoms 2369

Chapter 22 QuickTime Public Resources 2455

Resources 2455

Document Revision History 2477

Index 2479

7
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

8
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Declared in Components.h
Controls.h
Dialogs.h
Files.h
HIMovieView.h
HIObject.h
IOHIDDescriptorParser.h
IOMacOSTypes.h
IOMacOSVideo.h
ImageCodec.h
ImageCompression.h
MacErrors.h
MacTypes.h
MediaHandlers.h
Movies.h
OSTypes.h
OSUtils.h
QTML.h
QTSMovie.h
QTStreamingComponents.h
QuickTimeComponents.h
QuickTimeMusic.h
QuickTimeStreaming.h
QuickTimeVR.h
QuickdrawTypes.h
Script.h
Sound.h
TextEdit.h

This collection of documents provides the API reference for the QuickTime framework. This framework
provides C functions to support creation and display of multimedia in the form of QuickTime movies for both
Mac OS and Windows. The functions in this reference collection are organized into reference documents
according to the header file in which they are declared.

Note: The Objective-C API for QuickTime is documented in the QTKit Framework Reference.

9
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Quicktime Framework
Reference

10
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Quicktime Framework Reference

11
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Managers

12
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Managers

Framework: Frameworks/QuickTime.framework

Declared in ImageCompression.h

Overview

Applications can use the QuickTime image compression APIs to compress and decompress sounds, images,
and image sequences, as well as to transcode sounds and images between compression formats.

Functions by Task

Image Transcoder Support

ImageTranscoderBeginSequence (page 103)
Initiates an image transcoding sequence and specifies the input data format.

ImageTranscoderConvert (page 104)
Performs image transcoding operations.

ImageTranscoderDisposeData (page 105)
Disposes of transcoded data.

ImageTranscoderEndSequence (page 106)
Ends an image transcoding sequence.

Managing an ICM Compression Session

ICMCompressionSessionCompleteFrames (page 34)
Forces a compression session to complete encoding frames.

ICMCompressionSessionCreate (page 35)
Creates a compression session for a specified codec type.

ICMCompressionSessionEncodeFrame (page 37)
Presents video frames to a compression session.

ICMCompressionSessionGetImageDescription (page 38)
Retrieves the image description for a video compression session.

ICMCompressionSessionGetPixelBufferPool (page 39)
Returns a pool that can provide ideal source pixel buffers for a compression session.

Overview 13
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionGetProperty (page 40)
Retrieves the value of a specific property of a compression session.

Using the OpenGL Texture Context

QTOpenGLTextureContextCreate (page 121)
Creates a new OpenGL texture context for a specified OpenGL context and pixel format.

QTVisualContextCopyImageForTime (page 125)
Retrieves an image buffer from the visual context, indexed by the provided time.

QTVisualContextGetAttribute (page 125)
Returns a visual context attribute.

QTVisualContextGetTypeID (page 126)
Returns the CFTypeID for QTVisualContextRef.

QTVisualContextIsNewImageAvailable (page 126)
Queries whether a new image is available for a given time.

QTVisualContextRelease (page 127)
Releases a visual context object.

QTVisualContextRetain (page 128)
Retains a visual context object.

QTVisualContextSetAttribute (page 128)
Sets a visual context attribute.

QTVisualContextSetImageAvailableCallback (page 129)
Installs a user-defined callback to receive notifications when a new image becomes available.

QTVisualContextTask (page 129)
Causes visual context to release internally held resources for later re-use.

Supporting Functions

DisposeICMAlignmentUPP (page 21)
Disposes of an ICMAlignmentUPP pointer.

DisposeICMCompletionUPP (page 22)
Disposes of an ICMCompletionUPP pointer.

DisposeICMConvertDataFormatUPP (page 22)
Disposes of an ICMConvertDataFormatUPP pointer.

DisposeICMCursorShieldedUPP (page 23)
Disposes of an ICMCursorShieldedUPP pointer.

DisposeICMDataUPP (page 23)
Disposes of an ICMDataUPP pointer.

DisposeICMFlushUPP (page 24)
Disposes of an ICMFlushUPP pointer.

DisposeICMMemoryDisposedUPP (page 24)
Disposes of an ICMMemoryDisposedUPP pointer.

14 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

DisposeICMProgressUPP (page 25)
Disposes of an ICMProgressUPP pointer.

DisposeQDPixUPP (page 25)
Disposes of a QDPixUPP pointer.

DisposeStdPixUPP (page 26)
Disposes of a StdPixUPP pointer.

ICMCompressionFrameOptionsCreate (page 26)
Creates a frame compression options object.

ICMCompressionFrameOptionsCreateCopy (page 27)
Copies a frame compression options object.

ICMCompressionFrameOptionsGetForceKeyFrame (page 27)
Retrieves the force key frame flag.

ICMCompressionFrameOptionsGetFrameType (page 28)
Retrieves the frame type setting.

ICMCompressionFrameOptionsGetProperty (page 28)
Retrieves the value of a specific property of a compression frame options object.

ICMCompressionFrameOptionsGetPropertyInfo (page 29)
Retrieves information about properties of a compression frame options object.

ICMCompressionFrameOptionsGetTypeID (page 30)
Returns the type ID for the current frame compression options object.

ICMCompressionFrameOptionsRelease (page 30)
Decrements the retain count of a frame compression options object.

ICMCompressionFrameOptionsRetain (page 31)
Increments the retain count of a frame compression options object.

ICMCompressionFrameOptionsSetForceKeyFrame (page 31)
Forces frames to be compressed as key frames.

ICMCompressionFrameOptionsSetFrameType (page 32)
Requests a frame be compressed as a particular frame type.

ICMCompressionFrameOptionsSetProperty (page 33)
Sets the value of a specific property of a compression frame options object.

ICMCompressionSessionBeginPass (page 33)
Announces the start of a specific compression pass.

ICMCompressionSessionEndPass (page 38)
Announces the end of a pass.

ICMCompressionSessionGetPropertyInfo (page 41)
Retrieves information about properties of a compression session.

ICMCompressionSessionGetTimeScale (page 42)
Retrieves the time scale for a compression session.

ICMCompressionSessionGetTypeID (page 42)
Returns the type ID for the current compression session.

ICMCompressionSessionOptionsCreate (page 42)
Creates a compression session options object.

ICMCompressionSessionOptionsCreateCopy (page 43)
Copies a compression session options object.

Functions by Task 15
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionOptionsGetAllowFrameReordering (page 44)
Retrieves the allow frame reordering flag.

ICMCompressionSessionOptionsGetAllowFrameTimeChanges (page 44)
Retrieves the allow frame time changes flag.

ICMCompressionSessionOptionsGetAllowTemporalCompression (page 44)
Retrieves the allow temporal compression flag.

ICMCompressionSessionOptionsGetDurationsNeeded (page 45)
Retrieves the durations needed flag.

ICMCompressionSessionOptionsGetMaxKeyFrameInterval (page 45)
Retrieves the maximum key frame interval.

ICMCompressionSessionOptionsGetProperty (page 46)
Retrieves the value of a specific property of a compression session options object.

ICMCompressionSessionOptionsGetPropertyInfo (page 47)
Retrieves information about properties of a compression session options object.

ICMCompressionSessionOptionsGetTypeID (page 48)
Returns the type ID for the current compression session options object.

ICMCompressionSessionOptionsRelease (page 49)
Decrements the retain count of a compression session options object.

ICMCompressionSessionOptionsRetain (page 49)
Increments the retain count of a compression session options object.

ICMCompressionSessionOptionsSetAllowFrameReordering (page 49)
Enables frame reordering.

ICMCompressionSessionOptionsSetAllowFrameTimeChanges (page 50)
Allows the compressor to modify frame times.

ICMCompressionSessionOptionsSetAllowTemporalCompression (page 51)
Enables temporal compression.

ICMCompressionSessionOptionsSetDurationsNeeded (page 51)
Indicates that the durations of outputted frames must be calculated.

ICMCompressionSessionOptionsSetMaxKeyFrameInterval (page 52)
Sets the maximum interval between key frames.

ICMCompressionSessionOptionsSetProperty (page 53)
Sets the value of a specific property of a compression session options object.

ICMCompressionSessionProcessBetweenPasses (page 54)
Lets the compressor perform processing between passes.

ICMCompressionSessionRelease (page 55)
Decrements the retain count of a compression session.

ICMCompressionSessionRetain (page 55)
Increments the retain count of a compression session.

ICMCompressionSessionSetProperty (page 56)
Sets the value of a specific property of a compression session.

ICMCompressionSessionSupportsMultiPassEncoding (page 57)
Queries whether a compression session supports multipass encoding.

16 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressorSessionDropFrame (page 57)
Called by a compressor to notify the ICM that a source frame has been dropped and will not contribute
to any encoded frames.

ICMCompressorSessionEmitEncodedFrame (page 58)
Called by a compressor to output an encoded frame corresponding to one or more source frames.

ICMCompressorSourceFrameGetDisplayNumber (page 59)
Retrieves a source frames display number.

ICMCompressorSourceFrameGetDisplayTimeStampAndDuration (page 59)
Retrieves the display time stamp and duration of a source frame.

ICMCompressorSourceFrameGetFrameOptions (page 60)
Retrieves the frame compression options for a source frame.

ICMCompressorSourceFrameGetPixelBuffer (page 60)
Retrieves a source frames pixel buffer.

ICMCompressorSourceFrameGetTypeID (page 61)
Returns the type ID for the current source frame object.

ICMCompressorSourceFrameRelease (page 61)
Decrements the retain count of a source frame object.

ICMCompressorSourceFrameRetain (page 62)
Increments the retain count of a source frame object.

ICMDecompressionFrameOptionsCreate (page 62)
Creates a frame decompression options object.

ICMDecompressionFrameOptionsCreateCopy (page 63)
Copies a frame decompression options object.

ICMDecompressionFrameOptionsGetProperty (page 63)
Retrieves the value of a specific property of a decompression frame options object.

ICMDecompressionFrameOptionsGetPropertyInfo (page 64)
Retrieves information about properties of a decompression frame options object.

ICMDecompressionFrameOptionsGetTypeID (page 65)
Returns the type ID for the current frame decompression options object.

ICMDecompressionFrameOptionsRelease (page 66)
Decrements the retain count of a frame decompression options object.

ICMDecompressionFrameOptionsRetain (page 66)
Increments the retain count of a frame decompression options object.

ICMDecompressionFrameOptionsSetProperty (page 66)
Sets the value of a specific property of a decompression frame options object.

ICMDecompressionSessionCreate (page 67)
Creates a session for decompressing video frames.

ICMDecompressionSessionCreateForVisualContext (page 68)
Creates a session for decompressing video frames.

ICMDecompressionSessionDecodeFrame (page 69)
Queues a frame for decompression.

ICMDecompressionSessionFlush (page 70)
Flushes the frames queued for a decompression session.

Functions by Task 17
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMDecompressionSessionGetProperty (page 71)
Retrieves the value of a specific property of a decompression session.

ICMDecompressionSessionGetPropertyInfo (page 72)
Retrieves information about the properties of a decompression session.

ICMDecompressionSessionGetTypeID (page 73)
Returns the type ID for the current decompression session.

ICMDecompressionSessionOptionsCreate (page 73)
Creates a decompression session options object.

ICMDecompressionSessionOptionsCreateCopy (page 74)
Copies a decompression session options object.

ICMDecompressionSessionOptionsGetProperty (page 74)
Retrieves the value of a specific property of a decompression session options object.

ICMDecompressionSessionOptionsGetPropertyInfo (page 75)
Retrieves information about properties of a decompression session options object.

ICMDecompressionSessionOptionsGetTypeID (page 76)
Returns the type ID for the current decompression session options object.

ICMDecompressionSessionOptionsRelease (page 76)
Decrements the retain count of a decompression session options object.

ICMDecompressionSessionOptionsRetain (page 77)
Increments the retain count of a decompression session options object.

ICMDecompressionSessionOptionsSetProperty (page 77)
Sets the value of a specific property of a decompression session options object.

ICMDecompressionSessionRelease (page 78)
Decrements the retain count of a decompression session.

ICMDecompressionSessionRetain (page 79)
Increments the retain count of a decompression session.

ICMDecompressionSessionSetNonScheduledDisplayDirection (page 79)
Sets the direction for non-scheduled display time.

ICMDecompressionSessionSetNonScheduledDisplayTime (page 80)
Sets the display time for a decompression session, and requests display of the non-scheduled queued
frame at that display time, if there is one.

ICMDecompressionSessionSetProperty (page 81)
Sets the value of a specific property of a decompression session.

ICMEncodedFrameCreateMutable (page 82)
Called by a compressor to create an encoded-frame token corresponding to a given source frame.

ICMEncodedFrameGetBufferSize (page 82)
Gets the size of an encoded frame's data buffer.

ICMEncodedFrameGetDataPtr (page 83)
Gets the data buffer for an encoded frame.

ICMEncodedFrameGetDataSize (page 83)
Gets the data size of the compressed frame in an encoded frame's buffer.

ICMEncodedFrameGetDecodeDuration (page 84)
Retrieves an encoded frame's decode duration.

18 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameGetDecodeNumber (page 84)
Retrieves the decode number of an encoded frame.

ICMEncodedFrameGetDecodeTimeStamp (page 85)
Retrieves an encoded frame's decode time stamp.

ICMEncodedFrameGetDisplayDuration (page 85)
Retrieves an encoded frame's display duration.

ICMEncodedFrameGetDisplayOffset (page 85)
Retrieves an encoded frame's display offset.

ICMEncodedFrameGetDisplayTimeStamp (page 86)
Retrieves an encoded frame's display time stamp.

ICMEncodedFrameGetFrameType (page 86)
Retrieves the frame type for an encoded frame.

ICMEncodedFrameGetImageDescription (page 87)
Retrieves the image description of an encoded frame.

ICMEncodedFrameGetMediaSampleFlags (page 88)
Retrieves the media sample flags for an encoded frame.

ICMEncodedFrameGetSimilarity (page 88)
Retrieves the similarity value for an encoded frame.

ICMEncodedFrameGetSourceFrameRefCon (page 88)
Retrieves the reference value of an encoded frame's source frame.

ICMEncodedFrameGetTimeScale (page 89)
Retrieves the timescale of an encoded frame.

ICMEncodedFrameGetTypeID (page 89)
Returns the type ID for the current encoded frame object.

ICMEncodedFrameGetValidTimeFlags (page 90)
Retrieves an encoded frame's flags indicating which of its time stamps and durations are valid.

ICMEncodedFrameRelease (page 90)
Decrements the retain count of an encoded frame object.

ICMEncodedFrameRetain (page 91)
Increments the retain count of an encoded frame object.

ICMEncodedFrameSetDataSize (page 91)
Sets the data size of the compressed frame in an encoded frame's buffer.

ICMEncodedFrameSetDecodeDuration (page 91)
Sets an encoded frame's decode duration.

ICMEncodedFrameSetDecodeTimeStamp (page 92)
Sets an encoded frame's decode time stamp.

ICMEncodedFrameSetDisplayDuration (page 92)
Sets an encoded frame's display duration.

ICMEncodedFrameSetDisplayTimeStamp (page 93)
Sets an encoded frame's display time stamp.

ICMEncodedFrameSetFrameType (page 93)
Sets the frame type for an encoded frame.

ICMEncodedFrameSetMediaSampleFlags (page 94)
Sets the media sample flags for an encoded frame.

Functions by Task 19
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameSetSimilarity (page 95)
Sets the similarity for an encoded frame.

ICMEncodedFrameSetValidTimeFlags (page 95)
Sets an encoded frame's flags that indicate which of its time stamps and durations are valid.

ICMImageDescriptionGetProperty (page 96)
Returns a particular property of a image description handle.

ICMImageDescriptionGetPropertyInfo (page 97)
Returns information about a particular property of a image description.

ICMImageDescriptionSetProperty (page 97)
Sets a particular property of a image description handle.

ICMMultiPassStorageCopyDataAtTimeStamp (page 98)
Called by a multipass-capable compressor to retrieve data at a given time stamp.

ICMMultiPassStorageCreateWithCallbacks (page 99)
Assembles a multipass storage mechanism from callbacks.

ICMMultiPassStorageCreateWithTemporaryFile (page 99)
Creates multipass storage using a temporary file.

ICMMultiPassStorageGetTimeStamp (page 100)
Called by a multipass-capable compressor to retrieve a time stamp for which a value is stored.

ICMMultiPassStorageGetTypeID (page 101)
Returns the type ID for the current multipass storage object.

ICMMultiPassStorageRelease (page 101)
Decrements the retain count of a multipass storage object.

ICMMultiPassStorageRetain (page 102)
Increments the retain count of a multipass storage object.

ICMMultiPassStorageSetDataAtTimeStamp (page 102)
Called by a multipass-capable compressor to store data at a given time stamp.

NewICMAlignmentUPP (page 106)
Allocates a Universal Procedure Pointer for the ICMAlignmentProc callback.

NewICMCompletionUPP (page 107)
Allocates a Universal Procedure Pointer for the ICMCompletionProc callback.

NewICMConvertDataFormatUPP (page 107)
Allocates a Universal Procedure Pointer for the ICMConvertDataFormatProc callback.

NewICMCursorShieldedUPP (page 108)
Allocates a Universal Procedure Pointer for the ICMCursorShieldedProc callback.

NewICMDataUPP (page 108)
Allocates a Universal Procedure Pointer for the ICMDataProc callback.

NewICMFlushUPP (page 109)
Allocates a Universal Procedure Pointer for the ICMFlushProc callback.

NewICMMemoryDisposedUPP (page 109)
Allocates a Universal Procedure Pointer for the ICMMemoryDisposedProc callback.

NewICMProgressUPP (page 110)
Allocates a Universal Procedure Pointer for the ICMProgressProc callback.

NewQDPixUPP (page 110)
Allocates a Universal Procedure Pointer for the QDPixProc callback.

20 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

NewStdPixUPP (page 111)
Allocates a Universal Procedure Pointer for the StdPixProc callback.

QTAddComponentPropertyListener (page 111)
Installs a callback to monitor a component property.

QTComponentPropertyListenerCollectionAddListener (page 113)
Adds a listener callback for a specified property class and ID to a property listener collection.

QTComponentPropertyListenerCollectionCreate (page 114)
Creates a collection of component property monitors.

QTComponentPropertyListenerCollectionHasListenersForProperty (page 114)
Determines if there are any listeners in a component property listener collection registered for a
specified property class and ID.

QTComponentPropertyListenerCollectionIsEmpty (page 115)
Determines if a listener collection is empty.

QTComponentPropertyListenerCollectionNotifyListeners (page 116)
Calls all listener callbacks in a component property listener collection registered for a specified property
class and ID.

QTComponentPropertyListenerCollectionRemoveListener (page 117)
Removes a listener callback with a specified property class and ID from a property listener collection.

QTGetComponentProperty (page 118)
Returns the value of a specific component property.

QTGetComponentPropertyInfo (page 120)
Returns information about the properties of a component.

QTPixelBufferContextCreate (page 122)
Creates a new pixel buffer context with the given attributes.

QTRemoveComponentPropertyListener (page 122)
Removes a component property monitoring callback.

QTSetComponentProperty (page 123)
Sets the value of a specific component property.

Functions

DisposeICMAlignmentUPP
Disposes of an ICMAlignmentUPP pointer.

void DisposeICMAlignmentUPP (
 ICMAlignmentUPP userUPP
);

Parameters
userUPP

An ICMAlignmentUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Functions 21
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DisposeICMCompletionUPP
Disposes of an ICMCompletionUPP pointer.

void DisposeICMCompletionUPP (
 ICMCompletionUPP userUPP
);

Parameters
userUPP

An ICMCompletionUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
ImageCompression.h

DisposeICMConvertDataFormatUPP
Disposes of an ICMConvertDataFormatUPP pointer.

void DisposeICMConvertDataFormatUPP (
 ICMConvertDataFormatUPP userUPP
);

Parameters
userUPP

An ICMConvertDataFormatUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

22 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DisposeICMCursorShieldedUPP
Disposes of an ICMCursorShieldedUPP pointer.

void DisposeICMCursorShieldedUPP (
 ICMCursorShieldedUPP userUPP
);

Parameters
userUPP

An ICMCursorShieldedUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DisposeICMDataUPP
Disposes of an ICMDataUPP pointer.

void DisposeICMDataUPP (
 ICMDataUPP userUPP
);

Parameters
userUPP

An ICMDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Functions 23
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

DisposeICMFlushUPP
Disposes of an ICMFlushUPP pointer.

void DisposeICMFlushUPP (
 ICMFlushUPP userUPP
);

Parameters
userUPP

An ICMFlushUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DisposeICMMemoryDisposedUPP
Disposes of an ICMMemoryDisposedUPP pointer.

void DisposeICMMemoryDisposedUPP (
 ICMMemoryDisposedUPP userUPP
);

Parameters
userUPP

An ICMMemoryDisposedUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

24 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

DisposeICMProgressUPP
Disposes of an ICMProgressUPP pointer.

void DisposeICMProgressUPP (
 ICMProgressUPP userUPP
);

Parameters
userUPP

An ICMProgressUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataexchange
qtdataexchange.win

Declared In
ImageCompression.h

DisposeQDPixUPP
Disposes of a QDPixUPP pointer.

void DisposeQDPixUPP (
 QDPixUPP userUPP
);

Parameters
userUPP

A QDPixUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 25
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

DisposeStdPixUPP
Disposes of a StdPixUPP pointer.

void DisposeStdPixUPP (
 StdPixUPP userUPP
);

Parameters
userUPP

A StdPixUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
ImageCompression.h

ICMCompressionFrameOptionsCreate
Creates a frame compression options object.

OSStatus ICMCompressionFrameOptionsCreate (
 CFAllocatorRef allocator,
 ICMCompressionSessionRef session,
 ICMCompressionFrameOptionsRef *options
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

session
A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

options
On return, a reference to a new frame compression options object.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

26 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMCompressionFrameOptionsCreateCopy
Copies a frame compression options object.

OSStatus ICMCompressionFrameOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMCompressionFrameOptionsRef originalOptions,
 ICMCompressionFrameOptionsRef *copiedOptions
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A frame compression options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

copiedOptions
On return, a reference to a copy of the frame compression options object passed in originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetForceKeyFrame
Retrieves the force key frame flag.

Boolean ICMCompressionFrameOptionsGetForceKeyFrame (
 ICMCompressionFrameOptionsRef options
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

Return Value
Returns TRUE if frames are forced to be compressed as key frames, FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Functions 27
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetFrameType
Retrieves the frame type setting.

ICMFrameType ICMCompressionFrameOptionsGetFrameType (
 ICMCompressionFrameOptionsRef options
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

Return Value
On return, one of the frame types listed below.

Discussion
This function can return one of these constants:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetProperty
Retrieves the value of a specific property of a compression frame options object.

OSStatus ICMCompressionFrameOptionsGetProperty (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

28 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueAddress
A pointer to a variable to receive the returned property's value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetPropertyInfo
Retrieves information about properties of a compression frame options object.

OSStatus ICMCompressionFrameOptionsGetPropertyInfo (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

Functions 29
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsGetTypeID
Returns the type ID for the current frame compression options object.

CFTypeID ICMCompressionFrameOptionsGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsRelease
Decrements the retain count of a frame compression options object.

30 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void ICMCompressionFrameOptionsRelease (
 ICMCompressionFrameOptionsRef options
);

Parameters
options

A reference to a frame compression options object. This reference is returned by
ICMCompressionFrameOptionsCreate. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsRetain
Increments the retain count of a frame compression options object.

ICMCompressionFrameOptionsRef ICMCompressionFrameOptionsRetain (
 ICMCompressionFrameOptionsRef options
);

Parameters
options

A reference to a frame compression options object. This reference is returned by
ICMCompressionFrameOptionsCreate. If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetForceKeyFrame
Forces frames to be compressed as key frames.

OSStatus ICMCompressionFrameOptionsSetForceKeyFrame (
 ICMCompressionFrameOptionsRef options,
 Boolean forceKeyFrame
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

Functions 31
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

forceKeyFrame
Pass TRUE to force frames to be compressed as key frames, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The compressor must obey this flag if set. By default it is set FALSE.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionFrameOptionsSetFrameType
Requests a frame be compressed as a particular frame type.

OSStatus ICMCompressionFrameOptionsSetFrameType (
 ICMCompressionFrameOptionsRef options,
 ICMFrameType frameType
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

frameType
A constant that identifies a frame type. Pass one of the following but do not assume that there are
no other frame types: kICMFrameType_I = 'I' An I frame. kICMFrameType_P = 'P' A P frame.
kICMFrameType_B = 'B' A B frame. kICMFrameType_Unknown = 0 A frame of unknown type. See
these constants:

kICMFrameType_I

kICMFrameType_P

kICMFrameType_B

kICMFrameType_Unknown

Return Value
An error code. Returns noErr if there is no error.

Discussion
The frame type setting may be ignored by the compressor if it is not appropriate. By default it is set to
kICMFrameType_Unknown.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

32 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionFrameOptionsSetProperty
Sets the value of a specific property of a compression frame options object.

OSStatus ICMCompressionFrameOptionsSetProperty (
 ICMCompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
options

A compression frame options reference. This reference is returned by
ICMCompressionFrameOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionBeginPass
Announces the start of a specific compression pass.

Functions 33
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionBeginPass (
 ICMCompressionSessionRef session,
 ICMCompressionPassModeFlags passModeFlags,
 UInt32 flags
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

passModeFlags
Flags that describe how the compressor should behave in this pass of multipass encoding:
kICMCompressionPassMode_OutputEncodedFrames = 1L<<0 Output encoded frames.
kICMCompressionPassMode_NoSourceFrames = 1L<<1 The client need not provide source frame
buffers. kICMCompressionPassMode_WriteToMultiPassStorage = 1L<<2 The compressor may
write private data to multipass storage. kICMCompressionPassMode_ReadFromMultiPassStorage
= 1L<<3 The compressor may read private data from multipass storage. See these constants:

kICMCompressionPassMode_OutputEncodedFrames

kICMCompressionPassMode_NoSourceFrames

kICMCompressionPassMode_WriteToMultiPassStorage

kICMCompressionPassMode_ReadFromMultiPassStorage

flags
Reserved. Set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The source frames and frame options for each display time should be the same across passes. During multipass
compression, valid displayTimeStamp values must be passed to
ICMCompressionSessionEncodeFrame (page 37), because they are used to index the compressor's stored
state.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionCompleteFrames
Forces a compression session to complete encoding frames.

34 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionCompleteFrames (
 ICMCompressionSessionRef session,
 Boolean completeAllFrames,
 TimeValue64 completeUntilDisplayTimeStamp,
 TimeValue64 nextDisplayTimeStamp
);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 35).

completeAllFrames
Pass TRUE to direct the session to complete all pending frames.

completeUntilDisplayTimeStamp
A 64-bit time value that represents the display time up to which to complete frames. This value is
ignored if completeAllFrames is TRUE.

nextDisplayTimeStamp
A 64-bit time value that represents the display time of the next frame that should be passed to
EncodeFrame. This value is ignored unlessICMCompressionSessionOptionsSetDurationsNeeded
set TRUE and kICMValidTime_DisplayDurationIsValid was 0 in validTimeFlags in the last
call to ICMCompressionSessionEncodeFrame (page 37).

Return Value
Returns an error code, or 0 if there is no error. The function may return before frames are completed if the
encoded frame callback routine returns an error.

Discussion
Call this function to force a compression session to complete encoding frames. Set completeAllFrames to
direct the session to complete all pending frames. If completeAllFrames is false, only frames with display
time stamps up to and including the time passed in completeUntilDisplayTimeStamp will be encoded.
If ICMCompressionSessionOptionsSetDurationsNeeded set TRUE and you are passing valid display
timestamps but not display durations to ICMCompressionSessionEncodeFrame (page 37), pass in
nextDisplayTimeStamp the display timestamp of the next frame that would be passed to EncodeFrame.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionCreate
Creates a compression session for a specified codec type.

Functions 35
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionCreate (
 CFAllocatorRef allocator,
 int width,
 int height,
 CodecType cType,
 TimeScale timescale,
 ICMCompressionSessionOptionsRef compressionOptions,
 CFDictionaryRef sourcePixelBufferAttributes,
 ICMEncodedFrameOutputRecord *encodedFrameOutputRecord,
 ICMCompressionSessionRef *compressionSessionOut
);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

width
The width of frames. Pass 0 to let the compressor control the width.

height
The height of frames. Pass 0 to let the compressor control the height.

cType
The codec type.

timescale
The timescale to be used for all time stamps and durations used in the session.

compressionOptions
A reference to a settings object that configures the session. You create such an object by calling
ICMCompressionSessionOptionsCreate. You can then use these constants to set its properties:
kICMUnlimitedFrameDelayCount No limit on the number of frames in the compression window.
kICMUnlimitedFrameDelayTime No time limit on the frames in the compression window.
kICMUnlimitedCPUTimeBudget No CPU time limit on compression.

sourcePixelBufferAttributes
Required attributes for source pixel buffers, used when creating a pixel buffer pool for source frames.
If you do not want the ICM to create one for you, pass NULL. Using pixel buffers not allocated by the
ICM may increase the chance that it will be necessary to copy image data.

encodedFrameOutputRecord
The callback that will receive encoded frames.

compressionSessionOut
Points to a variable to receive the created session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Some compressors do not support arbitrary source dimensions, and may override the suggested width and
height.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

36 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMCompressionSessionEncodeFrame
Presents video frames to a compression session.

OSStatus ICMCompressionSessionEncodeFrame (
 ICMCompressionSessionRef session,
 CVPixelBufferRef pixelBuffer,
 TimeValue64 displayTimeStamp,
 TimeValue64 displayDuration,
 ICMValidTimeFlags validTimeFlags,
 ICMCompressionFrameOptionsRef frameOptions,
 ICMSourceTrackingCallbackRecord *sourceTrackingCallback,
 void *sourceFrameRefCon
);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 35).

pixelBuffer
A reference to a buffer containing a source image to be compressed, which must have a nonzero
reference count. The session will retain it as long as necessary. The client should not modify the pixel
buffer's pixels until the pixel buffer release callback is called. In a multipass encoding session pass,
where the compressor suggested the flag kICMCompressionPassMode_NoSourceFrames, you may
pass NULL in this parameter.

displayTimeStamp
A 64-bit time value that represents the display time of the frame, using the time scale passed to
ICMCompressionSessionCreate (page 35). If you pass a valid value, set the
kICMValidTime_DisplayTimeStampIsValid flag in the validTimeFlags parameter (below).

displayDuration
A 64-bit time value that represents the display duration of the frame, using the time scale passed to
ICMCompressionSessionCreate (page 35). If you pass a valid value, set the
kICMValidTime_DisplayDurationIsValid flag in the validTimeFlags parameter (below).

validTimeFlags
Flags to indicate which of the values passed in displayTimeStamp and displayDuration are valid:
kICMValidTime_DisplayTimeStampIsValid The time value passed in displayTimeStamp is
valid. kICMValidTime_DisplayDurationIsValid The time value passed in displayDuration
is valid. See these constants:

kICMValidTime_DisplayTimeStampIsValid

kICMValidTime_DisplayDurationIsValid

frameOptions
Options for this frame. Currently not used; pass NULL.

sourceTrackingCallback
A pointer to a callback to be notified about the status of this source frame. Pass NULL if you do not
require notification.

Functions 37
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

sourceFrameRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
Returns an error code, or 0 if there is no error. Encoded frames may or may not be output before the function
returns.

Discussion
The session will retain the pixel buffer as long as necessary, and the client should not modify the pixel data
until the session releases it. The most practical way to deal with this is by allocating pixel buffers from a pool.
The client may fill in both, either, or neither of displayTimeStamp and displayDuration, but should set
the appropriate flags to indicate which are valid. If the client needs to track the progress of a source frame,
it should provide a source tracking callback. If multipass compression is enabled, calls to this function must
be bracketed by calls to ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionEndPass
Announces the end of a pass.

OSStatus ICMCompressionSessionEndPass (
 ICMCompressionSessionRef session
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionGetImageDescription
Retrieves the image description for a video compression session.

38 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionGetImageDescription (
 ICMCompressionSessionRef session,
 ImageDescriptionHandle *imageDescOut
);

Parameters
session

A reference to a video compression session, returned by a previous call to
ICMCompressionSessionCreate (page 35).

imageDescOut
A handle to an ImageDescription structure. The caller must not dispose of this handle; the ICM
will dispose of it when the compression session is disposed.

Return Value
Returns an error code, or 0 if there is no error. For some codecs, this function may fail if called before the first
frame is compressed.

Discussion
Multiple calls to this function return the same handle.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionGetPixelBufferPool
Returns a pool that can provide ideal source pixel buffers for a compression session.

CVPixelBufferPoolRef ICMCompressionSessionGetPixelBufferPool (
 ICMCompressionSessionRef session
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

Return Value
A reference to a pool of pixel buffers. The compression session creates this pixel buffer pool based on the
compressor's pixel buffer attributes and any pixel buffer attributes passed to
ICMCompressionSessionCreate (page 35).

Discussion
A new compression session builds this pixel buffer pool based on the compressor's pixel buffer attributes
and any pixel buffer attributes passed in to ICMCompressionSessionCreate (page 35). If the source pixel
buffer attributes and the compressor pixel buffer attributes cannot be reconciled, the pool is based on the
source pixel buffer attributes and the ICM converts each pixel buffer internally.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 39
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionGetProperty
Retrieves the value of a specific property of a compression session.

OSStatus ICMCompressionSessionGetProperty (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueAddress
A pointer to a variable to receive the returned property's value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

40 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionGetPropertyInfo
Retrieves information about properties of a compression session.

OSStatus ICMCompressionSessionGetPropertyInfo (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 41
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionGetTimeScale
Retrieves the time scale for a compression session.

TimeScale ICMCompressionSessionGetTimeScale (
 ICMCompressionSessionRef session
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

Return Value
The time scale for the compression session.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionGetTypeID
Returns the type ID for the current compression session.

CFTypeID ICMCompressionSessionGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionOptionsCreate
Creates a compression session options object.

42 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionOptionsCreate (
 CFAllocatorRef allocator,
 ICMCompressionSessionOptionsRef *options
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a new compression session options object.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionOptionsCreateCopy
Copies a compression session options object.

OSStatus ICMCompressionSessionOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMCompressionSessionOptionsRef originalOptions,
 ICMCompressionSessionOptionsRef *copiedOptions
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

copiedOptions
On return, a reference to a copy of the compression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 43
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionOptionsGetAllowFrameReordering
Retrieves the allow frame reordering flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameReordering (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Return Value
Returns TRUE if frame reordering is allowed, FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowFrameTimeChanges
Retrieves the allow frame time changes flag.

Boolean ICMCompressionSessionOptionsGetAllowFrameTimeChanges (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Return Value
Returns TRUE if the compressor is allowed to modify frame times, FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetAllowTemporalCompression
Retrieves the allow temporal compression flag.

44 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Boolean ICMCompressionSessionOptionsGetAllowTemporalCompression (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Return Value
Returns TRUE if temporal compression is allowed, FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetDurationsNeeded
Retrieves the durations needed flag.

Boolean ICMCompressionSessionOptionsGetDurationsNeeded (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Return Value
Returns TRUE if the durations of outputted frames must be calculated, FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetMaxKeyFrameInterval
Retrieves the maximum key frame interval.

Functions 45
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

SInt32 ICMCompressionSessionOptionsGetMaxKeyFrameInterval (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Return Value
Returns the maximum key frame interval.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetProperty
Retrieves the value of a specific property of a compression session options object.

OSStatus ICMCompressionSessionOptionsGetProperty (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

46 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueAddress
A pointer to a variable to receive the returned property's value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetPropertyInfo
Retrieves information about properties of a compression session options object.

OSStatus ICMCompressionSessionOptionsGetPropertyInfo (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

Functions 47
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionOptionsGetTypeID
Returns the type ID for the current compression session options object.

CFTypeID ICMCompressionSessionOptionsGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

48 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressionSessionOptionsRelease
Decrements the retain count of a compression session options object.

void ICMCompressionSessionOptionsRelease (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsRetain
Increments the retain count of a compression session options object.

ICMCompressionSessionOptionsRef ICMCompressionSessionOptionsRetain (
 ICMCompressionSessionOptionsRef options
);

Parameters
options

A reference to a compression session options object. This reference is returned by
ICMCompressionSessionOptionsCreate. If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowFrameReordering
Enables frame reordering.

Functions 49
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionOptionsSetAllowFrameReordering (
 ICMCompressionSessionOptionsRef options,
 Boolean allowFrameReordering
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

allowFrameReordering
Pass TRUE to enable frame reordering, FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
To encode B-frames a compressor must reorder frames, which means that the order in which they will be
emitted and stored (the decode order) is different from the order in which they were presented to the
compressor (the display order). By default, frame reordering is disabled. To encode using B-frames, you must
call this function, passing TRUE.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowFrameTimeChanges
Allows the compressor to modify frame times.

OSStatus ICMCompressionSessionOptionsSetAllowFrameTimeChanges (
 ICMCompressionSessionOptionsRef options,
 Boolean allowFrameTimeChanges
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

allowFrameTimeChanges
Pass TRUE to let the compressor to modify frame times, FALSE to prohibit it.

Return Value
An error code. Returns noErr if there is no error.

50 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Discussion
Some compressors are able to identify and coalesce runs of identical frames and output single frames with
longer durations, or output frames at a different frame rate from the original. This feature is controlled by
the allow frame time changes flag. By default, this flag is set to false, which forces compressors to emit one
encoded frame for every source frame and preserve frame display times.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetAllowTemporalCompression
Enables temporal compression.

OSStatus ICMCompressionSessionOptionsSetAllowTemporalCompression (
 ICMCompressionSessionOptionsRef options,
 Boolean allowTemporalCompression
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

allowTemporalCompression
Pass TRUE to enable temporal compression, FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
By default, temporal compression is disabled. If you want temporal compression for P-frames or B-frames
you must call this function and pass TRUE.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetDurationsNeeded
Indicates that the durations of outputted frames must be calculated.

Functions 51
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMCompressionSessionOptionsSetDurationsNeeded (
 ICMCompressionSessionOptionsRef options,
 Boolean decodeDurationsNeeded
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

decodeDurationsNeeded
Pass TRUE to indicate that durations must be calculated, FALSE otherwise.

Return Value
An error code. Returns noErr if there is no error.

Discussion
If this flag is set and source frames are provided with times but not durations, then frames will be delayed
so that durations can be calculated as the difference between one frame's time stamp and the next frame's
time stamp. By default this flag is 0, so frames will not be delayed in order to calculate durations.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetMaxKeyFrameInterval
Sets the maximum interval between key frames.

OSStatus ICMCompressionSessionOptionsSetMaxKeyFrameInterval (
 ICMCompressionSessionOptionsRef options,
 SInt32 maxKeyFrameInterval
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

maxKeyFrameInterval
The maximum interval between key frames, also known as the key frame rate.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Compressors are allowed to generate key frames more frequently if this would result in more efficient
compression. The default key frame interval is 0, which indicates that the compressor should choose where
to place all key frames.

52 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie

Declared In
ImageCompression.h

ICMCompressionSessionOptionsSetProperty
Sets the value of a specific property of a compression session options object.

OSStatus ICMCompressionSessionOptionsSetProperty (
 ICMCompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
options

A compression session options reference. This reference is returned by
ICMCompressionSessionOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Functions 53
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionProcessBetweenPasses
Lets the compressor perform processing between passes.

OSStatus ICMCompressionSessionProcessBetweenPasses (
 ICMCompressionSessionRef session,
 UInt32 flags,
 Boolean *interpassProcessingDoneOut,
 ICMCompressionPassModeFlags *requestedNextPassModeFlagsOut
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

flags
Reserved. Set to 0.

interpassProcessingDoneOut
A pointer to a Boolean that will be set to FALSE if this function should be called again, TRUE if not.

requestedNextPassModeFlagsOut
A pointer to ICMCompressionPassModeFlags that will be set to the codec's recommended mode
flags for the next pass. kICMCompressionPassMode_OutputEncodedFrames will be set only if it
recommends that the next pass be the final one:
kICMCompressionPassMode_OutputEncodedFrames = 1L<<0 Output encoded frames.
kICMCompressionPassMode_NoSourceFrames = 1L<<1 The client need not provide source frame
buffers. kICMCompressionPassMode_WriteToMultiPassStorage = 1L<<2 The compressor may
write private data to multipass storage. kICMCompressionPassMode_ReadFromMultiPassStorage
= 1L<<3 The compressor may read private data from multipass storage. See these constants:

kICMCompressionPassMode_OutputEncodedFrames

kICMCompressionPassMode_NoSourceFrames

kICMCompressionPassMode_WriteToMultiPassStorage

kICMCompressionPassMode_ReadFromMultiPassStorage

Return Value
An error code. Returns noErr if there is no error.

54 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Discussion
Call this function repeatedly until the compressor sets interpassProcessingDoneOut to TRUE to indicate
that it is done with this round of interpass processing. When done, the compressor will indicate its preferred
mode for the next pass. At this point the client may choose to begin an encoding pass, by OR-combining
the kICMCompressionPassMode_OutputEncodedFrames flag, regardless of the compressor's request.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionRelease
Decrements the retain count of a compression session.

void ICMCompressionSessionRelease (
 ICMCompressionSessionRef session
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the session is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMCompressionSessionRetain
Increments the retain count of a compression session.

ICMCompressionSessionRef ICMCompressionSessionRetain (
 ICMCompressionSessionRef session
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in session, for convenience.

Functions 55
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressionSessionSetProperty
Sets the value of a specific property of a compression session.

OSStatus ICMCompressionSessionSetProperty (
 ICMCompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

56 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMCompressionSessionSupportsMultiPassEncoding
Queries whether a compression session supports multipass encoding.

Boolean ICMCompressionSessionSupportsMultiPassEncoding (
 ICMCompressionSessionRef session,
 UInt32 multiPassStyleFlags,
 ICMCompressionPassModeFlags *firstPassModeFlagsOut
);

Parameters
session

A compression session reference. This reference is returned by
ICMCompressionSessionCreate (page 35).

multiPassStyleFlags
Reserved; set to 0.

firstPassModeFlagsOut
A pointer to a variable to receive the session's requested mode flags for the first pass. The client may
modify these flags, but should not set kICMCompressionPassMode_NoSourceFrames. Pass NULL
if you do not want this information.

Return Value
Returns TRUE if the compression session supports multipass encoding, FALSE otherwise.

Discussion
Even if this function returns FALSE, if you passed TRUE to ICMCompressionSessionOptionsSetMultiPass,
you must call ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressorSessionDropFrame
Called by a compressor to notify the ICM that a source frame has been dropped and will not contribute to
any encoded frames.

OSStatus ICMCompressorSessionDropFrame (
 ICMCompressorSessionRef session,
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

Functions 57
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

sourceFrame
A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37). If you pass NULL, nothing happens.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Calling this function does not automatically release the source frame; if the compressor called
ICMCompressorSourceFrameRetain it should still call ICMCompressorSourceFrameRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressorSessionEmitEncodedFrame
Called by a compressor to output an encoded frame corresponding to one or more source frames.

OSStatus ICMCompressorSessionEmitEncodedFrame (
 ICMCompressorSessionRef session,
 ICMMutableEncodedFrameRef encodedFrame,
 long numberOfSourceFrames,
 ICMCompressorSourceFrameRef sourceFrames[]
);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

encodedFrame
A reference to an encoded frame object with write capabilities.

numberOfSourceFrames
The number of source frames encoded in the encoded frame.

sourceFrames
References to frames that have been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

Return Value
An error code. Returns noErr if there is no error.

Discussion
Encoded frames may correspond to more than one source frame only if allowFrameTimeChanges is set in
the compression session's compressionSessionOptions.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

58 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompressorSourceFrameGetDisplayNumber
Retrieves a source frames display number.

long ICMCompressorSourceFrameGetDisplayNumber (
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

Return Value
The display number of the source frame.

Discussion
The ICM tags source frames with display numbers in the order that they are passed to
ICMCompressionSessionEncodeFrame (page 37). The first display number is 1. Compressors may compare
these numbers to work out whether prediction is forward or backward, even when display times are not
provided.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetDisplayTimeStampAndDuration
Retrieves the display time stamp and duration of a source frame.

OSStatus ICMCompressorSourceFrameGetDisplayTimeStampAndDuration (
 ICMCompressorSourceFrameRef sourceFrame,
 TimeValue64 *displayTimeStampOut,
 TimeValue64 *displayDurationOut,
 TimeScale *timeScaleOut,
 ICMValidTimeFlags *validTimeFlagsOut
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

displayTimeStampOut
A pointer to the source frame's display time stamp.

displayDurationOut
A pointer to the source frame's display duration.

timeScaleOut
A pointer to the source frame's display time scale.

Functions 59
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

validTimeFlagsOut
A pointer to one of these display time flags for the source frame:
kICMValidTime_DisplayTimeStampIsValid = 1L<<0 The value of displayTimeStamp is valid.
kICMValidTime_DisplayDurationIsValid = 1L<<1 The value of displayDuration is valid.
See these constants:

kICMValidTime_DisplayTimeStampIsValid

kICMValidTime_DisplayDurationIsValid

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetFrameOptions
Retrieves the frame compression options for a source frame.

ICMCompressionFrameOptionsRef ICMCompressorSourceFrameGetFrameOptions (
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

Return Value
A compression session frame options reference representing options for this frame. A frame options object
is created by ICMCompressionFrameOptionsCreate.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetPixelBuffer
Retrieves a source frames pixel buffer.

60 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

CVPixelBufferRef ICMCompressorSourceFrameGetPixelBuffer (
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

Return Value
A reference to the pixel buffer containing the source frame's image being compressed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressorSourceFrameGetTypeID
Returns the type ID for the current source frame object.

CFTypeID ICMCompressorSourceFrameGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMCompressorSourceFrameRelease
Decrements the retain count of a source frame object.

void ICMCompressorSourceFrameRelease (
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37). If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Functions 61
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMCompressorSourceFrameRetain
Increments the retain count of a source frame object.

ICMCompressorSourceFrameRef ICMCompressorSourceFrameRetain (
 ICMCompressorSourceFrameRef sourceFrame
);

Parameters
sourceFrame

A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37). If you pass NULL, nothing happens.

Return Value
A reference to the object passed in sourceFrame, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreate
Creates a frame decompression options object.

OSStatus ICMDecompressionFrameOptionsCreate (
 CFAllocatorRef allocator,
 ICMDecompressionFrameOptionsRef *options
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a frame decompression options object.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

62 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsCreateCopy
Copies a frame decompression options object.

OSStatus ICMDecompressionFrameOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMDecompressionFrameOptionsRef originalOptions,
 ICMDecompressionFrameOptionsRef *copiedOptions
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate.

copiedOptions
On return, a reference to a copy of the frame decompression options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetProperty
Retrieves the value of a specific property of a decompression frame options object.

OSStatus ICMDecompressionFrameOptionsGetProperty (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate.

Functions 63
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueAddress
A pointer to a variable to receive the returned property's value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetPropertyInfo
Retrieves information about properties of a decompression frame options object.

OSStatus ICMDecompressionFrameOptionsGetPropertyInfo (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate.

64 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the frame option's property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsGetTypeID
Returns the type ID for the current frame decompression options object.

CFTypeID ICMDecompressionFrameOptionsGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 65
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMDecompressionFrameOptionsRelease
Decrements the retain count of a frame decompression options object.

void ICMDecompressionFrameOptionsRelease (
 ICMDecompressionFrameOptionsRef options
);

Parameters
options

A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsRetain
Increments the retain count of a frame decompression options object.

ICMDecompressionFrameOptionsRef ICMDecompressionFrameOptionsRetain (
 ICMDecompressionFrameOptionsRef options
);

Parameters
options

A reference to a frame decompression options object. You can create this object by calling
ICMDecompressionFrameOptionsCreate. If you pass NULL, nothing happens.

Return Value
A reference to the frame decompression options object passed in options, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionFrameOptionsSetProperty
Sets the value of a specific property of a decompression frame options object.

66 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionFrameOptionsSetProperty (
 ICMDecompressionFrameOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
options

A decompression frame options reference. This reference is returned by
ICMDecompressionFrameOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionCreate
Creates a session for decompressing video frames.

Functions 67
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionSessionCreate (
 CFAllocatorRef allocator,
 ImageDescriptionHandle desc,
 ICMDecompressionSessionOptionsRef decompressionOptions,
 CFDictionaryRef destinationPixelBufferAttributes,
 ICMDecompressionTrackingCallbackRecord *trackingCallback,
 ICMDecompressionSessionRef *decompressionSessionOut
);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

desc
An image description for the source frames.

decompressionOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate. The session will retain the object. You may change
some options during the session by modifying the object. You may also pass NULL.

destinationPixelBufferAttributes
Requirements for emitted pixel buffers. You may pass NULL.

trackingCallback
A pointer to a structure that designates a callback to be called for information about queued frames
and pixel buffers containing decompressed frames. See
ICMDecompressionTrackingCallbackRecord andICMDecompressionTrackingCallbackProc.

decompressionSessionOut
A pointer to a variable to receive a reference to the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames are returned through calls to the callback pointed to by trackingCallback.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
WhackedTV

Declared In
ImageCompression.h

ICMDecompressionSessionCreateForVisualContext
Creates a session for decompressing video frames.

68 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionSessionCreateForVisualContext (
 CFAllocatorRef allocator,
 ImageDescriptionHandle desc,
 ICMDecompressionSessionOptionsRef decompressionOptions,
 QTVisualContextRef visualContext,
 ICMDecompressionTrackingCallbackRecord *trackingCallback,
 ICMDecompressionSessionRef *decompressionSessionOut
);

Parameters
allocator

An allocator for the session. Pass NULL to use the default allocator.

desc
An image description for the source frames.

decompressionOptions
Options for the session. The session will retain this options object. You may change some options
during the session by modifying the object.

visualContext
The target visual context.

trackingCallback
The callback to be called with information about queued frames, and pixel buffers containing the
decompressed frames.

decompressionSessionOut
Points to a variable to receive the new decompression session.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Frames will be output to a visual context. If desired, the trackingCallback may attach additional data to
pixel buffers before they are sent to the visual context.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTQuartzPlayer

Declared In
ImageCompression.h

ICMDecompressionSessionDecodeFrame
Queues a frame for decompression.

Functions 69
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionSessionDecodeFrame (
 ICMDecompressionSessionRef session,
 const UInt8 *data,
 ByteCount dataSize,
 ICMDecompressionFrameOptionsRef frameOptions,
 const ICMFrameTimeRecord *frameTime,
 void *sourceFrameRefCon
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

data
A pointer to the compressed data for this frame. The data must remain in this location until
ICMDecompressionTrackingCallbackProc is called with the
kICMDecompressionTracking_ReleaseSourceData flag set indecompressionTrackingFlags.

dataSize
The number of bytes of compressed data. You may not pass 0 in this parameter.

frameOptions
A reference to a frame decompression options object containing options for this frame. You can create
this object by calling ICMDecompressionFrameOptionsCreate.

frameTime
A pointer to a structure describing the frame's timing information.

sourceFrameRefCon
Your reference value for the frame.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
QTQuartzPlayer
WhackedTV

Declared In
ImageCompression.h

ICMDecompressionSessionFlush
Flushes the frames queued for a decompression session.

OSStatus ICMDecompressionSessionFlush (
 ICMDecompressionSessionRef session
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

Return Value
An error code. Returns noErr if there is no error.

70 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Discussion
The tracking callback will be called for each frame with the result -1.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionGetProperty
Retrieves the value of a specific property of a decompression session.

OSStatus ICMDecompressionSessionGetProperty (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueAddress
A pointer to a variable to receive the returned property's value.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property.

Functions 71
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionGetPropertyInfo
Retrieves information about the properties of a decompression session.

OSStatus ICMDecompressionSessionGetPropertyInfo (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

72 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionGetTypeID
Returns the type ID for the current decompression session.

CFTypeID ICMDecompressionSessionGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsCreate
Creates a decompression session options object.

OSStatus ICMDecompressionSessionOptionsCreate (
 CFAllocatorRef allocator,
 ICMDecompressionSessionOptionsRef *options
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

options
On return, a reference to a decompression session options object.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
WhackedTV

Declared In
ImageCompression.h

Functions 73
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMDecompressionSessionOptionsCreateCopy
Copies a decompression session options object.

OSStatus ICMDecompressionSessionOptionsCreateCopy (
 CFAllocatorRef allocator,
 ICMDecompressionSessionOptionsRef originalOptions,
 ICMDecompressionSessionOptionsRef *copiedOptions
);

Parameters
allocator

An allocator. Pass NULL to use the default allocator.

originalOptions
A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate.

copiedOptions
On return, a reference to a copy of the decompression session options object passed in
originalOptions.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetProperty
Retrieves the value of a specific property of a decompression session options object.

OSStatus ICMDecompressionSessionOptionsGetProperty (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

74 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be retrieved.

outPropValueAddress
A pointer to a variable to hold the value of the property.

outPropValueSizeUsed
On return, a pointer to the number of bytes actually used to store the property value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetPropertyInfo
Retrieves information about properties of a decompression session options object.

OSStatus ICMDecompressionSessionOptionsGetPropertyInfo (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

Functions 75
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsGetTypeID
Returns the type ID for the current decompression session options object.

CFTypeID ICMDecompressionSessionOptionsGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRelease
Decrements the retain count of a decompression session options object.

76 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void ICMDecompressionSessionOptionsRelease (
 ICMDecompressionSessionOptionsRef options
);

Parameters
options

A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
WhackedTV

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsRetain
Increments the retain count of a decompression session options object.

ICMDecompressionSessionOptionsRef ICMDecompressionSessionOptionsRetain (
 ICMDecompressionSessionOptionsRef options
);

Parameters
options

A reference to a decompression session options object. This reference is returned by
ICMDecompressionSessionOptionsCreate. If you pass NULL, nothing happens.

Return Value
A copy of the object reference passed in options, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionOptionsSetProperty
Sets the value of a specific property of a decompression session options object.

Functions 77
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionSessionOptionsSetProperty (
 ICMDecompressionSessionOptionsRef options,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
options

A decompression session options reference. This reference is returned by
ICMDecompressionSessionOptionsCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size of the property value to be set.

inPropValueAddress
A pointer to the value of the property to be set.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
WhackedTV

Declared In
ImageCompression.h

ICMDecompressionSessionRelease
Decrements the retain count of a decompression session.

78 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void ICMDecompressionSessionRelease (
 ICMDecompressionSessionRef session
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.
If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
QTQuartzPlayer
WhackedTV

Declared In
ImageCompression.h

ICMDecompressionSessionRetain
Increments the retain count of a decompression session.

ICMDecompressionSessionRef ICMDecompressionSessionRetain (
 ICMDecompressionSessionRef session
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.
If you pass NULL, nothing happens.

Return Value
A copy of the reference passed in session, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayDirection
Sets the direction for non-scheduled display time.

Functions 79
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMDecompressionSessionSetNonScheduledDisplayDirection (
 ICMDecompressionSessionRef session,
 Fixed rate
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

rate
The display direction. Negative values represent backward display and positive values represent
forward display.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMDecompressionSessionSetNonScheduledDisplayTime
Sets the display time for a decompression session, and requests display of the non-scheduled queued frame
at that display time, if there is one.

OSStatus ICMDecompressionSessionSetNonScheduledDisplayTime (
 ICMDecompressionSessionRef session,
 TimeValue64 displayTime,
 TimeScale displayTimeScale,
 UInt32 flags
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

displayTime
A display time. Usually this is the display time of a non-scheduled queued frame.

displayTimeScale
The timescale according to which displayTime should be interpreted.

flags
Reserved; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTQuartzPlayer
WhackedTV

80 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMDecompressionSessionSetProperty
Sets the value of a specific property of a decompression session.

OSStatus ICMDecompressionSessionSetProperty (
 ICMDecompressionSessionRef session,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
session

A decompression session reference. This reference is returned byICMDecompressionSessionCreate.

inPropClass
Pass the following constant to define the property class: kComponentPropertyClassPropertyInfo
= 'pnfo' The property information class. See these constants:

kComponentPropertyClassPropertyInfo

inPropID
Pass one of these constants to define the property ID: kComponentPropertyInfoList = 'list'
An array of CFData values, one for each property. kComponentPropertyCacheSeed = 'seed' A
property cache seed value. kComponentPropertyCacheFlags = 'flgs' One of the
kComponentPropertyCache flags: kComponentPropertyCacheFlagNotPersistentProperty
metadata should not be saved in persistent cache.
kComponentPropertyCacheFlagIsDynamicProperty metadata should not cached at all.
kComponentPropertyExtendedInfo = 'meta' A CFDictionary with extended property
information. See these constants:

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyCacheFlags

kComponentPropertyExtendedInfo

inPropValueSize
The size in bytes of the property's value.

inPropValueAddress
A pointer to the property value to be set.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 81
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameCreateMutable
Called by a compressor to create an encoded-frame token corresponding to a given source frame.

OSStatus ICMEncodedFrameCreateMutable (
 ICMCompressorSessionRef session,
 ICMCompressorSourceFrameRef sourceFrame,
 ByteCount bufferSize,
 ICMMutableEncodedFrameRef *frameOut
);

Parameters
session

A reference to the compression session between the ICM and an image compressor component.

sourceFrame
A reference to a frame that has been passed in sourceFrameRefCon to
ICMCompressionSessionEncodeFrame (page 37).

bufferSize
The size of the frame buffer in bytes.

frameOut
On return, a reference to an encoded frame object with write capabilities.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The encoded frame will initially show 0 for mediaSampleFlags; if the frame is not a key frame, the compressor
must callICMEncodedFrameSetMediaSampleFlags to setmediaSampleNotSync. If the frame is droppable,
the compressor should set mediaSampleDroppable. If the frame is a partial key frame, the compressor
should set mediaSamplePartialSync.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMEncodedFrameGetBufferSize
Gets the size of an encoded frame's data buffer.

ByteCount ICMEncodedFrameGetBufferSize (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The physical size in bytes of the encoded frame's data buffer.

82 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameGetDataPtr
Gets the data buffer for an encoded frame.

UInt8 * ICMEncodedFrameGetDataPtr (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
A pointer to the object's data buffer.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
ExampleIPBCodec
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMEncodedFrameGetDataSize
Gets the data size of the compressed frame in an encoded frame's buffer.

ByteCount ICMEncodedFrameGetDataSize (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The logical size in bytes of the encoded frame's data buffer, which may be less than the physical size of the
buffer.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
Quartz Composer QCTV

Functions 83
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeDuration
Retrieves an encoded frame's decode duration.

TimeValue64 ICMEncodedFrameGetDecodeDuration (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's decode duration.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
ImageCompression.h

ICMEncodedFrameGetDecodeNumber
Retrieves the decode number of an encoded frame.

UInt32 ICMEncodedFrameGetDecodeNumber (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The decode number of the encoded frame.

Discussion
The ICM automatically stamps ascending decode numbers on frames after the compressor emits them. The
first decode number in session is 1. Compressors should not call this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

84 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameGetDecodeTimeStamp
Retrieves an encoded frame's decode time stamp.

TimeValue64 ICMEncodedFrameGetDecodeTimeStamp (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's decode time stamp.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayDuration
Retrieves an encoded frame's display duration.

TimeValue64 ICMEncodedFrameGetDisplayDuration (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's display duration.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayOffset
Retrieves an encoded frame's display offset.

Functions 85
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

TimeValue64 ICMEncodedFrameGetDisplayOffset (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's display offset. This is the time offset from decode time stamp to display time stamp.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameGetDisplayTimeStamp
Retrieves an encoded frame's display time stamp.

TimeValue64 ICMEncodedFrameGetDisplayTimeStamp (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's display time stamp.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameGetFrameType
Retrieves the frame type for an encoded frame.

86 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMFrameType ICMEncodedFrameGetFrameType (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's frame type (see below).

Discussion
This function returns one of these values:

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameGetImageDescription
Retrieves the image description of an encoded frame.

OSStatus ICMEncodedFrameGetImageDescription (
 ICMEncodedFrameRef frame,
 ImageDescriptionHandle *imageDescOut
);

Parameters
frame

A reference to an encoded frame object.

imageDescOut
A pointer to a handle containing the encoded frame's image description. The caller should not dispose
of this handle.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function returns the same image description handle as
ICMCompressionSessionGetImageDescription (page 38).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

Functions 87
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameGetMediaSampleFlags
Retrieves the media sample flags for an encoded frame.

MediaSampleFlags ICMEncodedFrameGetMediaSampleFlags (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The object's media sample flags. These flags are listed in the header file Movies.h.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameGetSimilarity
Retrieves the similarity value for an encoded frame.

Float32 ICMEncodedFrameGetSimilarity (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The encoded frame's similarity value. 1.0 means identical; 0.0 means not at all alike. The default value is -1.0,
which means unknown.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameGetSourceFrameRefCon
Retrieves the reference value of an encoded frame's source frame.

88 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void * ICMEncodedFrameGetSourceFrameRefCon (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Discussion
The source frame's reference value is copied from the session's sourceFrameRefCon parameter that was
passed to ICMCompressionSessionEncodeFrame (page 37).

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameGetTimeScale
Retrieves the timescale of an encoded frame.

TimeScale ICMEncodedFrameGetTimeScale (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
The time scale of an encoded frame. This is always the same as the time scale of the compression session.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameGetTypeID
Returns the type ID for the current encoded frame object.

CFTypeID ICMEncodedFrameGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Functions 89
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMEncodedFrameGetValidTimeFlags
Retrieves an encoded frame's flags indicating which of its time stamps and durations are valid.

ICMValidTimeFlags ICMEncodedFrameGetValidTimeFlags (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object.

Return Value
One of the constants listed below.

Discussion
This function returns one of these values:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie

Declared In
ImageCompression.h

ICMEncodedFrameRelease
Decrements the retain count of an encoded frame object.

void ICMEncodedFrameRelease (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

90 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameRetain
Increments the retain count of an encoded frame object.

ICMEncodedFrameRef ICMEncodedFrameRetain (
 ICMEncodedFrameRef frame
);

Parameters
frame

A reference to an encoded frame object. If you pass NULL, nothing happens.

Return Value
A reference to the object passed in frame, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetDataSize
Sets the data size of the compressed frame in an encoded frame's buffer.

OSStatus ICMEncodedFrameSetDataSize (
 ICMMutableEncodedFrameRef frame,
 ByteCount dataSize
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

dataSize
The data size of the compressed frame in the encoded frame object's buffer.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeDuration
Sets an encoded frame's decode duration.

Functions 91
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMEncodedFrameSetDecodeDuration (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 decodeDuration
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

decodeDuration
The encoded frame's decode duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeDurationIsValid flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetDecodeTimeStamp
Sets an encoded frame's decode time stamp.

OSStatus ICMEncodedFrameSetDecodeTimeStamp (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 decodeTimeStamp
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

decodeTimeStamp
The encoded frame's decode time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DecodeTimeStampIsValid flag. If the display time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetDisplayDuration
Sets an encoded frame's display duration.

92 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMEncodedFrameSetDisplayDuration (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 displayDuration
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

displayDuration
The encoded frame's display duration.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayDurationIsValid flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetDisplayTimeStamp
Sets an encoded frame's display time stamp.

OSStatus ICMEncodedFrameSetDisplayTimeStamp (
 ICMMutableEncodedFrameRef frame,
 TimeValue64 displayTimeStamp
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

displayTimeStamp
The encoded frame's display time stamp.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function automatically sets the kICMValidTime_DisplayTimeStampIsValid flag. If the decode time
stamp is valid, it also sets the kICMValidTime_DisplayOffsetIsValid flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetFrameType
Sets the frame type for an encoded frame.

Functions 93
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMEncodedFrameSetFrameType (
 ICMMutableEncodedFrameRef frame,
 ICMFrameType frameType
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

frameType
The frame type to be set: kICMFrameType_I = 'I' An I frame. kICMFrameType_P = 'P' A P frame.
kICMFrameType_B = 'B' A B frame. kICMFrameType_Unknown = 0 A frame of unknown type. See
these constants:

kICMFrameType_I

kICMFrameType_P

kICMFrameType_B

kICMFrameType_Unknown

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

Declared In
ImageCompression.h

ICMEncodedFrameSetMediaSampleFlags
Sets the media sample flags for an encoded frame.

OSStatus ICMEncodedFrameSetMediaSampleFlags (
 ICMMutableEncodedFrameRef frame,
 MediaSampleFlags mediaSampleFlags
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

mediaSampleFlags
The object's media sample flags. These flags are listed in the header file Movies.h.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec

94 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMEncodedFrameSetSimilarity
Sets the similarity for an encoded frame.

OSStatus ICMEncodedFrameSetSimilarity (
 ICMMutableEncodedFrameRef frame,
 Float32 similarity
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

similarity
The encoded frame's similarity value to be set. 1.0 means identical; 0.0 means not at all alike. The
default value is -1.0, which means unknown.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMEncodedFrameSetValidTimeFlags
Sets an encoded frame's flags that indicate which of its time stamps and durations are valid.

OSStatus ICMEncodedFrameSetValidTimeFlags (
 ICMMutableEncodedFrameRef frame,
 ICMValidTimeFlags validTimeFlags
);

Parameters
frame

A reference to an encoded frame object with write capabilities.

validTimeFlags
One of the following constants: kICMValidTime_DisplayTimeStampIsValid = 1L<<0 The value
of displayTimeStamp is valid. kICMValidTime_DisplayDurationIsValid = 1L<<1 The value
of displayDuration is valid. See these constants:

kICMValidTime_DisplayTimeStampIsValid

kICMValidTime_DisplayDurationIsValid

Return Value
An error code. Returns noErr if there is no error.

Functions 95
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Discussion
Setting an encoded frame's decode or display time stamp or duration automatically sets the corresponding
valid time flags. For example, calling ICMEncodedFrameSetDecodeTimeStamp sets
kICMValidTime_DisplayTimeStampIsValid. If both the encoded frame's decode time stamp and display
time stamp are valid, kICMValidTime_DisplayOffsetIsValid is automatically set.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMImageDescriptionGetProperty
Returns a particular property of a image description handle.

OSStatus ICMImageDescriptionGetProperty (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inDesc

The image description handle being interrogated.

inPropClass
The class of property being requested.

inPropID
The ID of the property being requested.

inPropValueSize
The size of the property value buffer.

outPropValueAddress
Points to the buffer to receive the property value.

outPropValueSizeUsed
Points to a variable to receive the actual size of returned property value. (This can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns a particular property of a image description handle.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
WhackedTV

96 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMImageDescriptionGetPropertyInfo
Returns information about a particular property of a image description.

OSStatus ICMImageDescriptionGetPropertyInfo (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
inDesc

The image description handle being interrogated.

inPropClass
The class of property being requested.

inPropID
The ID of the property being requested.

outPropType
The type of property is returned here. (This can be NULL).

outPropValueSize
The size of property is returned here. (This can be NULL).

outPropertyFlags
The property flags are returned here. (This can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMImageDescriptionSetProperty
Sets a particular property of a image description handle.

Functions 97
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMImageDescriptionSetProperty (
 ImageDescriptionHandle inDesc,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
inDesc

The image description handle being modified.

inPropClass
The class of property being set.

inPropID
The ID of the property being set.

inPropValueSize
The size of property value.

inPropValueAddress
Points to the property value buffer.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExampleIPBCodec
SoftVDigX
WhackedTV

Declared In
ImageCompression.h

ICMMultiPassStorageCopyDataAtTimeStamp
Called by a multipass-capable compressor to retrieve data at a given time stamp.

OSStatus ICMMultiPassStorageCopyDataAtTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 timeStamp,
 long index,
 CFMutableDataRef *dataOut
);

Parameters
multiPassStorage

The multipass storage object.

timeStamp
The time stamp at which the value should be retrieved.

98 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

index
An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

dataOut
A pointer to memory to receive the data at the time stamp.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithCallbacks
Assembles a multipass storage mechanism from callbacks.

OSStatus ICMMultiPassStorageCreateWithCallbacks (
 CFAllocatorRef allocator,
 ICMMultiPassStorageCallbacks *callbacks,
 ICMMultiPassStorageRef *multiPassStorageOut
);

Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

callbacks
A structure containing a collection of callbacks for creating a custom multipass storage object. See
ICMMultiPassStorageCallbacks.

multiPassStorageOut
A reference to the new multipass storage object.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithTemporaryFile
Creates multipass storage using a temporary file.

Functions 99
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMMultiPassStorageCreateWithTemporaryFile (
 CFAllocatorRef allocator,
 FSRef *directoryRef,
 CFStringRef fileName,
 ICMMultiPassStorageCreationFlags flags,
 ICMMultiPassStorageRef *multiPassStorageOut
);

Parameters
allocator

An allocator for this task. Pass NULL to use the default allocator.

directoryRef
A reference to a file directory. If you pass NULL, the ICM will use the user's Temporary Items folder.

fileName
A file name to use for the storage. If you pass NULL, the ICM will pick a unique name. If you pass the
name of a file that already exists, the ICM will assume you are continuing a previous multipass session
where you left off. This file will be deleted when the multipass storage is released, unless you set the
kICMMultiPassStorage_DoNotDeleteWhenDone flag.

flags
Flag controlling this process: kICMMultiPassStorage_DoNotDeleteWhenDone = 1L<<0 The
temporary file should not be deleted when the multipass storage is released. See these constants:

kICMMultiPassStorage_DoNotDeleteWhenDone

multiPassStorageOut
A reference to the new multipass storage.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageGetTimeStamp
Called by a multipass-capable compressor to retrieve a time stamp for which a value is stored.

OSStatus ICMMultiPassStorageGetTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 fromTimeStamp,
 ICMMultiPassStorageStep step,
 TimeValue64 *timeStampOut
);

Parameters
multiPassStorage

The multipass storage object.

fromTimeStamp
The initial time stamp. This value is ignored for some values of step.

100 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

step
Indicates the kind of time stamp search to perform: kICMMultiPassStorage_GetFirstTimeStamp
= 1 Requests the first time stamp at which a value is stored.
kICMMultiPassStorage_GetPreviousTimeStamp = 2 Requests the previous time stamp before
the time stamp specified in fromTimeStamp at which a value is stored.
kICMMultiPassStorage_GetNextTimeStamp = 3 Requests the next time stamp after the time
stamp specified in fromTimeStamp at which a value is stored.
kICMMultiPassStorage_GetLastTimeStamp = 4 Requests the last time stamp at which a value
is stored. See these constants:

kICMMultiPassStorage_GetFirstTimeStamp

kICMMultiPassStorage_GetPreviousTimeStamp

kICMMultiPassStorage_GetNextTimeStamp

kICMMultiPassStorage_GetLastTimeStamp

timeStampOut
A pointer to a TimeValue64 value to receive the found time stamp. It will be set to -1 if no time stamp
is found.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageGetTypeID
Returns the type ID for the current multipass storage object.

CFTypeID ICMMultiPassStorageGetTypeID (
 void
);

Return Value
A CFTypeID value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageRelease
Decrements the retain count of a multipass storage object.

Functions 101
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void ICMMultiPassStorageRelease (
 ICMMultiPassStorageRef multiPassStorage
);

Parameters
multiPassStorageOut

A reference to a multipass storage object. You can create this object using
ICMMultiPassStorageCreateWithTemporaryFile or
ICMMultiPassStorageCreateWithCallbacks. If you pass NULL, nothing happens.

Discussion
If the retain count drops to 0, the object is disposed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageRetain
Increments the retain count of a multipass storage object.

ICMMultiPassStorageRef ICMMultiPassStorageRetain (
 ICMMultiPassStorageRef multiPassStorage
);

Parameters
multiPassStorageOut

A reference to a multipass storage object. You can create this object using
ICMMultiPassStorageCreateWithTemporaryFile or
ICMMultiPassStorageCreateWithCallbacks. If you pass NULL, nothing happens.

Return Value
A reference to the object passed in multiPassStorage, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageSetDataAtTimeStamp
Called by a multipass-capable compressor to store data at a given time stamp.

102 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus ICMMultiPassStorageSetDataAtTimeStamp (
 ICMMultiPassStorageRef multiPassStorage,
 TimeValue64 timeStamp,
 long index,
 CFDataRef data
);

Parameters
multiPassStorage

The multipass storage object.

timeStamp
The time stamp at which the value should be stored.

index
An index by which multiple values may be stored at a time stamp. The meaning of individual indexes
is private to the compressor.

data
The data to be stored, or NULL to delete the value.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The new data replaces any previous data held at that time stamp. If the value of data is NULL, the data for
that time stamp is deleted. The format of the data is private to the compressor.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

ImageTranscoderBeginSequence
Initiates an image transcoding sequence and specifies the input data format.

ComponentResult ImageTranscoderBeginSequence (
 ImageTranscoderComponent itc,
 ImageDescriptionHandle srcDesc,
 ImageDescriptionHandle *dstDesc,
 void *data,
 long dataSize
);

Parameters
itc

The image transcoder component.

srcDesc
The ImageDescription structure for the source compressed image data.

dstDesc
On return, a new ImageDescription structure.

data
First frame of data to be transcoded (may be NIL).

Functions 103
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

dataSize
Size of compressed image data pointed to by the data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function specifies the format of source compressed image data in the srcDesc parameter. The image
transcoder should allocate a new ImageDescription structure and return it in the dstDesc parameter.
The new ImageDescription structure should be a completely filled out image description which is sufficient
for correctly decompressing the data generated by subsequent calls to ImageTranscoderConvert (page
104).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscoderConvert
Performs image transcoding operations.

ComponentResult ImageTranscoderConvert (
 ImageTranscoderComponent itc,
 void *srcData,
 long srcDataSize,
 void **dstData,
 long *dstDataSize
);

Parameters
itc

The image transcoder component.

srcData
A pointer to the source compressed image data to transcode.

srcDataSize
The size of the source image data, in bytes.

dstData
On return, a pointer to the transcoded data.

dstDataSize
On return, the size of the transcoded data in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The image transcoder component is responsible for allocating storage for the transcoded data, transcoding
the data, and returning a pointer to the transcoded data in the dstData parameter. The size of the transcoded
data in bytes should be returned in the dstDataSize parameter. The caller is responsible for disposing of
the transcoded data using ImageTranscoderDisposeData (page 105).

104 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

The memory allocated to store the transcoded image data must not be in an unlocked handle. Even if the
image transcoding operation can be performed in place, the transcoded data must be placed in a separate
block of memory from the source data. The image transcoder component must not write back into the source
image data.

The responsibility for allocating the buffer for the transcoded data has been placed in the transcoder with
the intent that some hardware manufacturers may find it useful to place the transcoded data directly into
on-board memory on their video board. If the transcoding operation is being performed on a QuickTime
movie, the transcoded data pointer will be almost immediately passed on to a decompressor. If the
decompressor is implemented in hardware, performance may be increased because the transcoded data is
already loaded onto the decompression hardware.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscoderDisposeData
Disposes of transcoded data.

ComponentResult ImageTranscoderDisposeData (
 ImageTranscoderComponent itc,
 void *dstData
);

Parameters
itc

The image transcoder component.

dstData
A pointer to the transcoded data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When the client of the image transcoder component is done with a piece of transcoded data, this function
must be called with a pointer to the transcoded data. The image transcoder component should not make
any assumptions about the maximum number of outstanding pieces of transcoded data or the order in which
the transcoding data will be disposed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 105
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ImageTranscoderEndSequence
Ends an image transcoding sequence.

ComponentResult ImageTranscoderEndSequence (
 ImageTranscoderComponent itc
);

Parameters
itc

The image transcoder component whose transcoder sequence is ending.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
ImageTranscoderEndSequence is called when there are no more frames of data to be transcoded using
the parameters specified in the previous call to ImageTranscoderBeginSequence (page 103). After calling
this function, the component will either be closed or receive another call to
ImageTranscoderBeginSequence with a different ImageDescription structure. For example, the
dimensions of the source image may be different.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

NewICMAlignmentUPP
Allocates a Universal Procedure Pointer for the ICMAlignmentProc callback.

ICMAlignmentUPP NewICMAlignmentUPP (
 ICMAlignmentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMAlignmentProc.

Availability
Available in Mac OS X v10.0 and later.

106 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

NewICMCompletionUPP
Allocates a Universal Procedure Pointer for the ICMCompletionProc callback.

ICMCompletionUPP NewICMCompletionUPP (
 ICMCompletionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMCompletionProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

NewICMConvertDataFormatUPP
Allocates a Universal Procedure Pointer for the ICMConvertDataFormatProc callback.

ICMConvertDataFormatUPP NewICMConvertDataFormatUPP (
 ICMConvertDataFormatProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMConvertDataFormatProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 107
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

NewICMCursorShieldedUPP
Allocates a Universal Procedure Pointer for the ICMCursorShieldedProc callback.

ICMCursorShieldedUPP NewICMCursorShieldedUPP (
 ICMCursorShieldedProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMCursorShieldedProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

NewICMDataUPP
Allocates a Universal Procedure Pointer for the ICMDataProc callback.

ICMDataUPP NewICMDataUPP (
 ICMDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMDataProc.

Availability
Available in Mac OS X v10.0 and later.

108 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

NewICMFlushUPP
Allocates a Universal Procedure Pointer for the ICMFlushProc callback.

ICMFlushUPP NewICMFlushUPP (
 ICMFlushProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMFlushProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

NewICMMemoryDisposedUPP
Allocates a Universal Procedure Pointer for the ICMMemoryDisposedProc callback.

ICMMemoryDisposedUPP NewICMMemoryDisposedUPP (
 ICMMemoryDisposedProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMMemoryDisposedProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 109
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

NewICMProgressUPP
Allocates a Universal Procedure Pointer for the ICMProgressProc callback.

ICMProgressUPP NewICMProgressUPP (
 ICMProgressProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewICMProgressProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataexchange
qtdataexchange.win
ThreadsExporter
ThreadsImporter

Declared In
ImageCompression.h

NewQDPixUPP
Allocates a Universal Procedure Pointer for the QDPixProc callback.

QDPixUPP NewQDPixUPP (
 QDPixProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

110 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Version Notes
Introduced in QuickTime 4.1. Replaces NewQDPixProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

NewStdPixUPP
Allocates a Universal Procedure Pointer for the StdPixProc callback.

StdPixUPP NewStdPixUPP (
 StdPixProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewStdPixProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
ImageCompression.h

QTAddComponentPropertyListener
Installs a callback to monitor a component property.

Functions 111
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ComponentResult QTAddComponentPropertyListener (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inDispatchProc,
 void *inUserData
);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inDispatchProc
A Universal Procedure Pointer to a QTComponentPropertyListenerProc callback.

inUserData
A pointer to user data that will be passed to the callback. You may pass NULL in this parameter.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
WhackedTV

Declared In
ImageCompression.h

112 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

QTComponentPropertyListenerCollectionAddListener
Adds a listener callback for a specified property class and ID to a property listener collection.

OSStatus QTComponentPropertyListenerCollectionAddListener (
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inListenerProc,
 const void *inListenerProcRefCon
);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inListenerProc
A QTComponentPropertyListenerProc callback.

inListenerProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Functions 113
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

QTComponentPropertyListenerCollectionCreate
Creates a collection of component property monitors.

OSStatus QTComponentPropertyListenerCollectionCreate (
 CFAllocatorRef inAllocator,
 const QTComponentPropertyListenerCollectionContext *inContext,
 QTComponentPropertyListenersRef *outCollection
);

Parameters
inAllocator

A pointer to the allocator used to create the collection and its contents. You can pass NIL.

inContext
A pointer to a QTComponentPropertyInfo data structure. You can pass NIL if no structure exists.
A copy of the contents of the structure is made; therefore you can pass a pointer to a structure on
the stack.

outCollection
On return, a pointer to the new empty listener collection.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionHasListenersForProperty
Determines if there are any listeners in a component property listener collection registered for a specified
property class and ID.

Boolean QTComponentPropertyListenerCollectionHasListenersForProperty (
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID
);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

114 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

Return Value
Returns TRUE if there are any listeners in the listener collection registered for the specified property class
and ID, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionIsEmpty
Determines if a listener collection is empty.

Boolean QTComponentPropertyListenerCollectionIsEmpty (
 QTComponentPropertyListenersRef inCollection
);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

Return Value
Returns TRUE if the collection is empty, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.4.

Functions 115
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionNotifyListeners
Calls all listener callbacks in a component property listener collection registered for a specified property class
and ID.

OSStatus QTComponentPropertyListenerCollectionNotifyListeners (
 QTComponentPropertyListenersRef inCollection,
 ComponentInstance inNotifier,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 const void *inFilterProcRefCon,
 UInt32 inFlags
);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inNotifier
The caller's component instance.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inFilterProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs. You may pass NIL.

116 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inFlags
Currently not used.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
If the filterProcUPP field in the QTComponentPropertyListenerCollectionContext data structure
that was passed to QTComponentPropertyListenerCollectionCreate is not NIL, the
QTComponentPropertyListenerFilterProc callback it points to will be called before each call to a
registered listener that matches the specified property class and ID passed to this function. If the filter function
return FALSE, that listener callback will not be called. This lets a component change the calling semantics
(for example, to call another thread) or use a different listener callback signature.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionRemoveListener
Removes a listener callback with a specified property class and ID from a property listener collection.

OSStatus QTComponentPropertyListenerCollectionRemoveListener (
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inListenerProc,
 const void *inListenerProcRefCon
);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

Functions 117
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inListenerProc
The QTComponentPropertyListenerProc callback to be removed.

inListenerProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTGetComponentProperty
Returns the value of a specific component property.

118 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ComponentResult QTGetComponentProperty (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Functions 119
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

SCAudioCompress
WhackedTV

Declared In
ImageCompression.h

QTGetComponentPropertyInfo
Returns information about the properties of a component.

ComponentResult QTGetComponentPropertyInfo (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

outPropType
A pointer to memory allocated to hold the property type on return. This pointer may be NULL.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return. This pointer may be
NULL.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

120 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ElectricImageComponent
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SCAudioCompress
WhackedTV

Declared In
ImageCompression.h

QTOpenGLTextureContextCreate
Creates a new OpenGL texture context for a specified OpenGL context and pixel format.

OSStatus QTOpenGLTextureContextCreate (
 CFAllocatorRef allocator,
 CGLContextObj cglContext,
 CGLPixelFormatObj cglPixelFormat,
 CFDictionaryRef attributes,
 QTVisualContextRef *newTextureContext
);

Parameters
allocator

The allocator used to create the texture context.

cglContext
A pointer to an opaque CGLPContextObj structure representing the OpenGL context used to create
textures. You can create this structure using CGLCreateContext.

cglPixelFormat
The pixel format object that specifies buffer types and other attributes of the new context.

attributes
A dictionary of attributes.

newTextureContext
A pointer to a variable to receive the new OpenGL texture context.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2

Functions 121
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

LiveVideoMixer3
QTCoreImage101
QTCoreVideo103
QTCoreVideo201

Declared In
ImageCompression.h

QTPixelBufferContextCreate
Creates a new pixel buffer context with the given attributes.

OSStatus QTPixelBufferContextCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef attributes,
 QTVisualContextRef *newPixelBufferContext
);

Parameters
allocator

Allocator used to create the pixel buffer context.

attributes
Dictionary of attributes.

newPixelBufferContext
Points to a variable to receive the new pixel buffer context.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine creates a new pixel buffer context with the given attributes.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo301
QTPixelBufferVCToCGImage

Declared In
ImageCompression.h

QTRemoveComponentPropertyListener
Removes a component property monitoring callback.

122 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ComponentResult QTRemoveComponentPropertyListener (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inDispatchProc,
 void *inUserData
);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value (see below) of type OSType that specifies a property class:
kComponentPropertyClassPropertyInfo ('pnfo') A QTComponentPropertyInfo structure
that defines a property information class. kComponentPropertyInfoList ('list') An array of
QTComponentPropertyInfo structures, one for each property. kComponentPropertyCacheSeed
('seed') A component property cache seed value. kComponentPropertyExtendedInfo ('meta')
A CFDictionarywith extended property information. kComponentPropertyCacheFlags ('flgs')
One of the following two flags:kComponentPropertyCacheFlagNotPersistent Property metadata
should not be saved in persistent cache. kComponentPropertyCacheFlagIsDynamic Property
metadata should not be cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inDispatchProc
A Universal Procedure Pointer to a QTComponentPropertyListenerProc callback.

inUserData
User data to be passed to the callback.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTSetComponentProperty
Sets the value of a specific component property.

Functions 123
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ComponentResult QTSetComponentProperty (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress
);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value of type OSType that specifies a property class: kComponentPropertyClassPropertyInfo
('pnfo') A QTComponentPropertyInfo structure that defines a property information class.
kComponentPropertyInfoList ('list') An array of QTComponentPropertyInfo structures,
one for each property. kComponentPropertyCacheSeed ('seed') A component property cache
seed value.kComponentPropertyExtendedInfo ('meta') ACFDictionarywith extended property
information. kComponentPropertyCacheFlags ('flgs') One of the following two flags:
kComponentPropertyCacheFlagNotPersistent Property metadata should not be saved in
persistent cache. kComponentPropertyCacheFlagIsDynamic Property metadata should not be
cached at all. See these constants:

kComponentPropertyClassPropertyInfo

kComponentPropertyInfoList

kComponentPropertyCacheSeed

kComponentPropertyExtendedInfo

kComponentPropertyCacheFlags

kComponentPropertyCacheFlagNotPersistent

kComponentPropertyCacheFlagIsDynamic

inPropID
A value of type OSType that specifies a property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SCAudioCompress
WhackedTV

124 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

QTVisualContextCopyImageForTime
Retrieves an image buffer from the visual context, indexed by the provided time.

OSStatus QTVisualContextCopyImageForTime (
 QTVisualContextRef visualContext,
 CFAllocatorRef allocator,
 const CVTimeStamp *timeStamp,
 CVImageBufferRef *newImage
);

Parameters
visualContext

The visual context.

allocator
Allocator used to create new CVImageBufferRef.

timeStamp
Time in question. Pass NULL to request the image at the current time.

newImage
Points to variable to receive the new image.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You should not request image buffers further ahead of the current time than the read-ahead time specified
with the kQTVisualContextExpectedReadAheadKey attribute. You may skip images by passing later
times, but you may not pass an earlier time than passed to a previous call to this function.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreImage101
QTCoreVideo103
QTCoreVideo201
QTPixelBufferVCToCGImage
VideoViewer

Declared In
ImageCompression.h

QTVisualContextGetAttribute
Returns a visual context attribute.

Functions 125
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

OSStatus QTVisualContextGetAttribute (
 QTVisualContextRef visualContext,
 CFStringRef attributeKey,
 CFTypeRef *attributeValueOut
);

Parameters
visualContext

The visual context.

attributeKey
Identifier of attribute to get.

attributeValueOut
A pointer to a variable that will receive the attribute value or NULL if the attribute is not set.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns a visual context attribute.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTVisualContextGetTypeID
Returns the CFTypeID for QTVisualContextRef.

CFTypeID QTVisualContextGetTypeID (
 void
);

Return Value
Undocumented.

Discussion
Use this function to test whether a CFTypeRef that extracted from a CF container such as a CFArray was a
QTVisualContextRef.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

QTVisualContextIsNewImageAvailable
Queries whether a new image is available for a given time.

126 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Boolean QTVisualContextIsNewImageAvailable (
 QTVisualContextRef visualContext,
 const CVTimeStamp *timeStamp
);

Parameters
visualContext

The visual context.

timeStamp
Time in question.

Return Value
A Boolean.

Discussion
This function returns TRUE if there is a image available for the specified time that is different from the last
image retrieved from QTVisualContextCopyImageForTime (page 125).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2
QTCoreImage101
QTCoreVideo103
QTCoreVideo201
QTPixelBufferVCToCGImage

Declared In
ImageCompression.h

QTVisualContextRelease
Releases a visual context object.

void QTVisualContextRelease (
 QTVisualContextRef visualContext
);

Parameters
visualContext

A reference to a visual context object. If you pass NULL, nothing happens.

Discussion
When the retain count decreases to zero the visual context is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer3
QTCoreVideo103
QTCoreVideo201
QTPixelBufferVCToCGImage

Functions 127
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

QTQuartzPlayer

Declared In
ImageCompression.h

QTVisualContextRetain
Retains a visual context object.

QTVisualContextRef QTVisualContextRetain (
 QTVisualContextRef visualContext
);

Parameters
visualContext

A reference to a visual context object. If you pass NULL, nothing happens.

Return Value
On return, a reference to the same visual context object, for convenience.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTQuartzPlayer

Declared In
ImageCompression.h

QTVisualContextSetAttribute
Sets a visual context attribute.

OSStatus QTVisualContextSetAttribute (
 QTVisualContextRef visualContext,
 CFStringRef attributeKey,
 CFTypeRef attributeValue
);

Parameters
visualContext

The visual context.

attributeKey
Identifier of attribute to set

attributeValue
The value of the attribute to set, or NULL to remove a value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

128 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Related Sample Code
CIVideoDemoGL
VideoViewer

Declared In
ImageCompression.h

QTVisualContextSetImageAvailableCallback
Installs a user-defined callback to receive notifications when a new image becomes available.

OSStatus QTVisualContextSetImageAvailableCallback (
 QTVisualContextRef visualContext,
 QTVisualContextImageAvailableCallback imageAvailableCallback,
 void *refCon
);

Parameters
visualContext

The visual context invoking the callback.

imageAvailableCallback
Time for which a new image has become available. May be NULL.

refCon
A user-defined value passed to QTImageAvailableCallback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Due to unpredictible activity, such as user seeks or the arrival of streaming video packets from a network,
new images may become available for times supposedly occupied by previous images. Applications using
the CoreVideo display link to drive rendering probably do not need to install a callback of this type, since
they will already be checking for new images at a sufficient rate.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTPixelBufferVCToCGImage

Declared In
ImageCompression.h

QTVisualContextTask
Causes visual context to release internally held resources for later re-use.

Functions 129
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

void QTVisualContextTask (
 QTVisualContextRef visualContext
);

Parameters
visualContext

The visual context.

Discussion
For optimal resource management, this function should be called in every rendering pass, after old images
have been released, new images have been used and all rendering has been flushed to the screen. This call
is not mandatory.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2
QTCoreImage101
QTCoreVideo103
QTCoreVideo201
QTPixelBufferVCToCGImage

Declared In
ImageCompression.h

Callbacks

ICMAlignmentProc
Provides an alignment behavior for windows based on the screen's bit depth.

typedef void (*ICMAlignmentProcPtr) (Rect *rp, long refcon);

If you name your function MyICMAlignmentProc, you would declare it this way:

void MyICMAlignmentProc (
 Rect *rp,
 long refcon);

Parameters
rp

Contains a pointer to a rectangle that has already been aligned with a default alignment function.

refcon
Contains a reference constant value for use by your alignment function. Your application specifies
the value of this reference constant in the alignment function structure you pass to the Image
Compression Manager.

Declared In
ImageCompression.h

130 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMCompletionProc
Called by a compressor component upon completion of an asynchronous operation.

typedef void (*ICMCompletionProcPtr) (OSErr result, short flags, long refcon);

If you name your function MyICMCompletionProc, you would declare it this way:

void MyICMCompletionProc (
 OSErr result,
 short flags,
 long refcon);

Parameters
result

Indicator of success of current operation.

flags
Contains flags (see below) that indicate which part of the operation is complete. Note that more than
one of the flags may be set to 1. See these constants:

codecCompletionSource

codecCompletionDest

refcon
Contains a reference constant value for use by your completion function. Your application specifies
the value of this reference constant in the callback function structure you pass to the Image
Compression Manager.

Declared In
ImageCompression.h

ICMCursorShieldedProc
Undocumented

typedef void (*ICMCursorShieldedProcPtr) (const Rect *r, void *refcon, long flags);

If you name your function MyICMCursorShieldedProc, you would declare it this way:

void MyICMCursorShieldedProc (
 const Rect *r,
 void *refcon,
 long flags);

Parameters
r

Undocumented

refcon
Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

flags
Undocumented

Callbacks 131
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMDataProc
Supplies compressed data during a decompression operation.

typedef OSErr (*ICMDataProcPtr) (Ptr *dataP, long bytesNeeded, long refcon);

If you name your function MyICMDataProc, you would declare it this way:

OSErr MyICMDataProc (
 Ptr *dataP,
 long bytesNeeded,
 long refcon);

Parameters
dataP

Contains a pointer to the address of the data buffer. The decompressor uses this parameter to indicate
where your data-loading function should return the compressed data. You establish this data buffer
when you start the decompression operation. For example, the data parameter to
FDecompressImage (page 643) defines the location of the data buffer for that operation. Upon return
from your data-loading function, this pointer should refer to the beginning of the compressed data
that you loaded. The decompressor may also use this parameter to indicate that it wants to reset the
mark within the compressed data stream. If the dataP parameter is set to NIL, the bytesNeeded
parameter contains the new mark position, relative to the current position of the data stream. If your
data-loading function does not support this operation, return a nonzero result code.

bytesNeeded
Specifies the number of bytes requested or the new mark offset. If the decompressor has requested
additional compressed data (that is, the value of the dataP parameter is not NIL), then this parameter
specifies how many bytes to return. This value never exceeds the size of the original data buffer. Your
data-loading function should read the data from the current mark in the input data stream. If the
decompressor has requested to set a new mark position in the data stream (that is, the value of the
dataP parameter is NIL), then this parameter specifies the new mark position relative to the current
position of the data stream.

refcon
Contains a reference constant value for use by your data-loading function. Your application specifies
the value of this reference constant in the data-loading function structure you pass to the Image
Compression Manager.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
ImageCompression.h

ICMFlushProc
Writes compressed data to a storage device during a compression operation.

132 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

typedef OSErr (*ICMFlushProcPtr) (Ptr data, long bytesAdded, long refcon);

If you name your function MyICMFlushProc, you would declare it this way:

OSErr MyICMFlushProc (
 Ptr data,
 long bytesAdded,
 long refcon);

Parameters
data

Points to the data buffer. The compressor uses this parameter to indicate where your data-unloading
function can find the compressed data. You establish this data buffer when you start the compression
operation. For example, the data parameter to FCompressImage (page 637) defines the location of
the data buffer for that operation. This pointer contains a 32-bit clean address. Your ICMFlushProc
function should make no other assumptions about the value of this address. The compressor may
also use this parameter to indicate that it wants to reset the mark within the compressed data stream.
If the data parameter is set to NIL, the bytesNeeded parameter contains the new mark position,
relative to the current position of the output data stream. If your ICMFlushProc function does not
support this operation, return a nonzero result code.

bytesAdded
Specifies the number of bytes to write or the new mark offset. If the compressor wants to write out
some compressed data (that is, the value of data is not NIL), then this parameter specifies how many
bytes to write. This value never exceeds the size of the original data buffer. Your ICMFlushProc
function should write that data at the current mark in the output data stream. If the compressor has
requested to set a new mark position in the output data stream (that is, the value of data is NIL), then
this parameter specifies the new mark position relative to the current position of the data stream.

refcon
Contains a reference constant value for use by your ICMFlushProc function. Your application specifies
the value of this reference constant in the data-unloading function structure you pass to the Image
Compression Manager.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Discussion
You assign an ICMFlushProc function to an image or a sequence by passing a pointer to a structure that
identifies the function to the appropriate compression function.

Declared In
ImageCompression.h

ICMProgressProc
Reports on the progress of a compressor or decompressor.

typedef OSErr (*ICMProgressProcPtr) (short message, Fixed completeness, long refcon);

If you name your function MyICMProgressProc, you would declare it this way:

OSErr MyICMProgressProc (
 short message,
 Fixed completeness,

Callbacks 133
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 long refcon);

Parameters
message

Indicates why the Image Compression Manager called your function. There are three valid messages,
listed below. See these constants:

codecProgressOpen

codecProgressUpdatePercent

codecProgressClose

completeness
Contains a fixed-point value indicating how far the operation has progressed. Its value is always
between 0.0 and 1.0. This parameter is valid only when the message field is set to
codecProgressUpdatePercent.

refcon
Contains a reference constant value for use by your progress function. Your application specifies the
value of this reference constant in the progress function structure you pass to the Image Compression
Manager.

Return Value
See Error Codes. Your callback should return noErr if there is no error. When a component calls your
progress function, it supplies you with a number that indicates the completion percentage. Your program
can cause the component to terminate the current operation by returning a result code of codecAbortErr.

Discussion
The Image Compression Manager calls your progress function only during long operations, and it does not
call your function more than 30 times per second.

Declared In
ImageCompression.h

QDPixProc
Undocumented

typedef void (*QDPixProcPtr) (PixMap *src, Rect *srcRect, MatrixRecord *matrix,
short mode, RgnHandle mask, PixMap *matte, Rect *matteRect,
short flags);

If you name your function MyQDPixProc, you would declare it this way:

void MyQDPixProc (
 PixMap *src,
 Rect *srcRect,
 MatrixRecord *matrix,
 short mode,
 RgnHandle mask,
 PixMap *matte,
 Rect *matteRect,
 short flags);

134 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Parameters
src

Undocumented

srcRect
Undocumented

matrix
Undocumented

mode
Undocumented

mask
Undocumented

matte
Undocumented

matteRect
Undocumented

flags
Undocumented

Declared In
ImageCompression.h

StdPixProc
Undocumented

typedef void (*StdPixProcPtr) (PixMap *src, Rect *srcRect, MatrixRecord *matrix,
short mode, RgnHandle mask, PixMap *matte, Rect *matteRect,
short flags);

If you name your function MyStdPixProc, you would declare it this way:

void MyStdPixProc (
 PixMap *src,
 Rect *srcRect,
 MatrixRecord *matrix,
 short mode,
 RgnHandle mask,
 PixMap *matte,
 Rect *matteRect,
 short flags);

Parameters
src

Undocumented

srcRect
Undocumented

matrix
Undocumented

Callbacks 135
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

mode
Undocumented

mask
Undocumented

matte
Undocumented

matteRect
Undocumented

flags
Undocumented

Declared In
ImageCompression.h

Data Types

ICMAlignmentUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMAlignmentProcPtr) ICMAlignmentUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMCompletionUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMCompletionProcPtr) ICMCompletionUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMCursorShieldedUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMCursorShieldedProcPtr) ICMCursorShieldedUPP;

Availability
Available in Mac OS X v10.0 and later.

136 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

ICMDataUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMDataProcPtr) ICMDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMDecompressionTrackingCallbackRecord
Designates a tracking callback for an ICM decompression session.

struct ICMDecompressionTrackingCallbackRecord {
ICMDecompressionTrackingCallback decompressionTrackingCallback;
void *decompressionTrackingRefCon;
};

Fields
decompressionTrackingCallback

Discussion
The callback function pointer. See ICMDecompressionTrackingCallbackProc.

decompressionTrackingRefCon

Discussion
The callback's reference value.

Declared In
ImageCompression.h

ICMFlushUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMFlushProcPtr) ICMFlushUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMMultiPassStorageCallbacks
Designates a collection of callbacks for creating a custom multipass storage object.

Data Types 137
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

struct ICMMultiPassStorageCallbacks {
UInt32 version;
void *storageRefCon;
ICMMultiPassSetDataAtTimeStampCallback setDataAtTimeStampCallback;
ICMMultiPassGetTimeStampCallback getTimeStampCallback;
ICMMultiPassCopyDataAtTimeStampCallback copyDataAtTimeStampCallback;
ICMMultiPassReleaseCallback releaseCallback;
};

Fields
version

Discussion
The version of this structure. Set to kICMMultiPassStorageCallbacksVersionOne.

storageRefCon

Discussion
A pointer to a reference constant. Use this parameter to point to a data structure containing any information
your callback needs.

setDataAtTimeStampCallback

Discussion
A callback for storing values.

getTimeStampCallback

Discussion
A callback for finding time stamps.

copyDataAtTimeStampCallback

Discussion
A callback for retrieving values.

releaseCallback

Discussion
A callback for disposing the callback's state when done.

Discussion
This structure is used by ICMMultiPassStorageCreateWithCallbacks.

Declared In
ImageCompression.h

ICMProgressUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(ICMProgressProcPtr) ICMProgressUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

138 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ImageTranscoderComponent
Represents a type used by the Image Compression API.

typedef ComponentInstance ImageTranscoderComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QDPixUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(QDPixProcPtr) QDPixUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionContext
Provides context information for a QTComponentPropertyListenerFilterProc callback.

struct QTComponentPropertyListenerCollectionContext
{
 UInt32 version;
 QTComponentPropertyListenerFilterUPP filterProcUPP;
 void *filterProcData;
};

Fields
version

Discussion
The version of this callback.

filterProcUPP

Discussion
A Universal Procedure Pointer to a QTComponentPropertyListenerFilterProc callback.

filterProcData

Discussion
A pointer to data for the callback.

Version Notes
Introduced in QuickTime 6.4.

Related Functions
Associated function:
QTComponentPropertyListenerCollectionNotifyListeners (page 116)

Data Types 139
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Declared In
ImageCompression.h

StdPixUPP
Represents a type used by the Image Compression API.

typedef STACK_UPP_TYPE(StdPixProcPtr) StdPixUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Constants

ICMProgressProc Values
Constants passed to ICMProgressProc.

enum {
 codecProgressOpen = 0,
 codecProgressUpdatePercent = 1,
 codecProgressClose = 2
};

Constants
codecProgressOpen

Indicates the start of a long operation. This is always the first message sent to your function. Your
function can use this message to trigger the display of your progress window.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecProgressUpdatePercent
Passes completion information to your function. The Image Compression Manager repeatedly sends
this message to your function. The completeness parameter indicates the relative completion of the
operation. You can use this value to update your progress window.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

ICM Property IDs
Constants that contain the IDs of ICM properties.

140 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

enum {
 /*
 * Both fields should be decompressed.
 */
 kICMFieldMode_BothFields = 0,
 /*
 * Only the top field should be decompressed, producing a half-height
 * image.
 */
 kICMFieldMode_TopFieldOnly = 1,
 /*
 * Only the bottom field should be decompressed, producing a
 * half-height image.
 */
 kICMFieldMode_BottomFieldOnly = 2,
 /*
 * Both fields should be decompressed, and then filtered to reduce
 * interlacing artifacts.
 */
 kICMFieldMode_DeinterlaceFields = 3
};
enum {
 /*
 * Class identifier for compression frame options object properties.
 */
 kQTPropertyClass_ICMCompressionFrameOptions = 'icfo',
 /*
 * Forces frames to be compressed as key frames.
 * The compressor must obey the "force key frame" flag if set. By
 * default this property is false.
 */
 kICMCompressionFrameOptionsPropertyID_ForceKeyFrame = 'keyf', /* Boolean,
Read/Write */
 /*
 * Requests a frame be compressed as a particular frame type.
 * The frame type setting may be ignored by the compressor if not
 * appropriate.
 * By default this is set to kICMFrameType_Unknown.
 * Do not assume that kICMFrameType_I means a key frame; if you need
 * a key frame, set the "force key frame" property.
 */
 kICMCompressionFrameOptionsPropertyID_FrameType = 'frty' /* ICMFrameType,
Read/Write */
};
enum {
 /*
 * Class identifier for compression session options object properties.
 */
 kQTPropertyClass_ICMCompressionSessionOptions = 'icso',
 /*
 * Enables temporal compression. By default, temporal compression is
 * disabled.
 * IMPORTANT: If you want temporal compression (P frames and/or B
 * frames) you must set this to true.
 */
 kICMCompressionSessionOptionsPropertyID_AllowTemporalCompression = 'p ok', /*
Boolean, Read/Write */
 /*

Constants 141
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * Enables frame reordering.
 * In order to encode B frames, a compressor must reorder frames,
 * which means that the order in which they will be emitted and
 * stored (the decode order) is different from the order in which
 * they were presented to the compressor (the display order).
 * By default, frame reordering is disabled.
 * IMPORTANT: In order to encode using B frames, you must enable
 * frame reordering.
 */
 kICMCompressionSessionOptionsPropertyID_AllowFrameReordering = 'b ok', /* Boolean,
 Read/Write */
 /*
 * Indicates that durations of emitted frames are needed.
 * If this flag is set and source frames are provided with times but
 * not durations, then frames will be delayed so that durations can
 * be calculated as the difference between one frame's time stamp and
 * the next frame's time stamp.
 * By default, this flag is clear, so frames will not be delayed in
 * order to calculate durations.
 * IMPORTANT: If you will be passing encoded frames to
 * AddMediaSampleFromEncodedFrame, you must set this flag to true.
 */
 kICMCompressionSessionOptionsPropertyID_DurationsNeeded = 'need', /* Boolean,
Read/Write */
 /*
 * The maximum interval between key frames, also known as the key
 * frame rate.
 * Key frames, also known as sync frames, reset inter-frame
 * dependencies; decoding a key frame is sufficient to prepare a
 * decompressor for correctly decoding the difference frames that
 * follow.
 * Compressors are allowed to generate key frames more frequently if
 * this would result in more efficient compression.
 * The default key frame interval is 0, which indicates that the
 * compressor should choose where to place all key frames. A key
 * frame interval of 1 indicates that every frame must be a key
 * frame, 2 indicates that at least every other frame must be a key
 * frame, etc.
 */
 kICMCompressionSessionOptionsPropertyID_MaxKeyFrameInterval = 'kyfr', /* SInt32,
 Read/Write */
 /*
 * The requested maximum interval between partial sync frames. If the
 * interval is n, any sequence of n successive frames must include at
 * least one key or partial sync frame.
 * Where supported, partial sync frames perform a partial reset of
 * inter-frame dependencies; decoding two partial sync frames and the
 * non-droppable difference frames between them is sufficient to
 * prepare a decompressor for correctly decoding the difference
 * frames that follow.
 * Compressors are allowed to generate partial sync frames more
 * frequently if this would result in more efficient compression.
 *
 * The default partial sync frame interval is 0, which indicates that
 * the compressor should choose where to place partial sync frames. A
 * partial sync frame interval of 1 means there can be no difference
 * frames, so it is equivalent to a key frame interval of 1. A
 * partial sync frame interval of 2 means that every other frame must

142 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * be a key frame or a partial sync frame.
 * Compressors that do not support partial sync frames will ignore
 * this setting.
 */
 kICMCompressionSessionOptionsPropertyID_MaxPartialSyncFrameInterval = 'psfr', /*
 SInt32, Read/Write */
 /*
 * Enables the compressor to modify frame times.
 * Some compressors are able to identify and coalesce runs of
 * identical frames and output single frames with longer duration, or
 * output frames at a different frame rate from the original. This
 * feature is controlled by the "allow frame time changes" flag. By
 * default, this flag is set to false, which forces compressors to
 * emit one encoded frame for every source frame, and to preserve
 * frame display times.
 * (Note: this feature replaces the practice of having compressors
 * return special high similarity values to indicate that frames
 * could be dropped.)
 * If you want to allow the compressor to modify frame times in order
 * to improve compression performance, enable frame time changes.
 */
 kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges = '+ ok', /* Boolean,
 Read/Write */
 /*
 * Enables the compressor to call the encoded-frame callback from a
 * different thread.
 * By default, the flag is false, which means that the compressor
 * must call the encoded-frame callback from the same thread that
 * ICMCompressionSessionEncodeFrame and
 * ICMCompressionSessionCompleteFrames were called on.
 */
 kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion = 'asok', /* Boolean,
 Read/Write */
 /*
 * The maximum frame delay count is the maximum number of frames that
 * a compressor is allowed to hold before it must output a compressed
 * frame. It limits the number of frames that may be held in the
 * "compression window". If the maximum frame delay count is M, then
 * before the call to encode frame N returns, frame N-M must have
 * been emitted.
 * The default is kICMUnlimitedFrameDelayCount, which sets no limit
 * on the compression window.
 */
 kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount = 'cwin', /* SInt32,
 Read/Write */
 /*
 * The maximum frame delay time is the maximum difference between a
 * source frame's display time and the corresponding encoded frame's
 * decode time. It limits the span of display time that may be held
 * in the "compression window". If the maximum frame delay time is
 * TM, then before the call to encode a frame with display time TN
 * returns, all frames with display times up to and including TN-TM
 * must have been emitted.
 * The default is kICMUnlimitedFrameDelayTime, which sets no time
 * limit on the compression window.
 */
 kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime = 'cwit', /* TimeValue64,
 Read/Write */

Constants 143
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 /*
 * Sets a specific compressor component or component instance to be
 * used, or one of the wildcards anyCodec, bestSpeedCodec,
 * bestFidelityCodec, or bestCompressionCodec.
 * Use this API to force the Image Compression Manager to use a
 * specific compressor component or compressor component instance.
 * (If you pass in a component instance that you opened, the ICM will
 * not close that instance; you must do so after the compression
 * session is released.) To allow the Image Compression Manager to
 * choose the compressor component, set the compressorComponent to
 * anyCodec (the default), bestSpeedCodec, bestFidelityCodec or
 * bestCompressionCodec.
 */
 kICMCompressionSessionOptionsPropertyID_CompressorComponent = 'imco', /*
CompressorComponent, Read/Write */
 /*
 * A handle containing compressor settings. The compressor will be
 * configured with these settings (by a call to
 * ImageCodecSetSettings) during ICMCompressionSessionCreate.
 */
 kICMCompressionSessionOptionsPropertyID_CompressorSettings = 'cost', /* Handle,
 Read/Write */
 /*
 * The depth for compression.
 * If a compressor does not support a specific depth, the closest
 * supported depth will be used (preferring deeper depths to
 * shallower depths). The default depth is k24RGBPixelFormat.
 */
 kICMCompressionSessionOptionsPropertyID_Depth = 'deep', /* UInt32, Read/Write */
 /*
 * The color table for compression. Used with indexed-color depths.
 *
 * Clients who get this property are responsible for disposing the
 * returned CTabHandle.
 */
 kICMCompressionSessionOptionsPropertyID_ColorTable = 'clut', /* CTabHandle,
Read/Write*/
 /*
 * The compression quality.
 * This value is always used to set the spatialQuality; if temporal
 * compression is enabled, it is also used to set temporalQuality.
 *
 The default quality is codecNormalQuality.
 */
 kICMCompressionSessionOptionsPropertyID_Quality = 'qual', /* CodecQ, Read/Write
 */
 /*
 * The long-term desired average data rate in bytes per second.
 * This is not a hard limit.
 * The default data rate is zero, which indicates that the quality
 * setting should determine the size of compressed data.
 * Note that data rate settings only have an effect when timing
 * information is provided for source frames, and that some codecs do
 * not support limiting to specified data rates.
 */
 kICMCompressionSessionOptionsPropertyID_AverageDataRate = 'aver', /* SInt32,
Read/Write */
 /*
 * Zero, one or two hard limits on data rate.

144 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * Each hard limit is described by a data size in bytes and a
 * duration in seconds, and requires that the total size of
 * compressed data for any contiguous segment of that duration (in
 * decode time) must not exceed the data size.
 * By default, no data rate limits are set.
 * When setting this property, the inPropValueSize parameter should
 * be the number of data rate limits multiplied by
 * sizeof(ICMDataRateLimit).
 * Note that data rate settings only have an effect when timing
 * information is provided for source frames, and that some codecs do
 * not support limiting to specified data rates.
 */
 kICMCompressionSessionOptionsPropertyID_DataRateLimits = 'hard', /* C array of
ICMDataRateLimit struct, Read/Write */
 /*
 * The current number of data rate limits.
 */
 kICMCompressionSessionOptionsPropertyID_DataRateLimitCount = 'har#', /* UInt32,
 Read */
 /*
 * The maximum allowed number of data rate limits. (Currently 2.)
 */
 kICMCompressionSessionOptionsPropertyID_MaxDataRateLimits = 'mhar', /* UInt32,
Read */
 /*
 * Indicates that the source was previously compressed.
 * This property is purely an optional, informational hint to the
 * compressor; by default it is false.
 */
 kICMCompressionSessionOptionsPropertyID_WasCompressed = 'wasc', /* Boolean,
Read/Write */
 /*
 * Recommends a CPU time budget for the compressor in microseconds
 * per frame.
 * Zero means to go as fast as possible.
 * By default, this is set to kICMUnlimitedCPUTimeBudget, which sets
 * no limit.
 * This is an advisory hint to the compressor, and some compressors
 * may ignore it. Multithreaded compressors may use this amount of
 * CPU time on each processor.
 * Compressors should not feel compelled to use the full time budget
 * if they complete ahead of time!
 */
 kICMCompressionSessionOptionsPropertyID_CPUTimeBudget = 'cput', /* UInt32,
Read/Write */
 /*
 * Storage for multi-pass compression.
 * To enable multipass compression, the client must provide a storage
 * location for multipass data. Use
 * ICMMultiPassStorageCreateWithTemporaryFile to have the ICM store
 * it in a temporary file. Use
 * ICMMultiPassStorageCreateWithCallbacks to manage the storage
 * yourself.
 * Note that the amount of multipass data to be stored can be
 * substantial; it could be greater than the size of the output movie
 * file.
 * If this property is not NULL, the client must call
 * ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass

Constants 145
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * around groups of calls to ICMCompressionSessionEncodeFrame.
 * By default, this property is NULL and multipass compression is
 * not enabled. The compression session options object retains the
 * multipass storage object, when one is set.
 */
 kICMCompressionSessionOptionsPropertyID_MultiPassStorage = 'imps', /*
ICMMultiPassStorageRef, Read/Write */
 /*
 * Indicates the number of source frames, if known. If nonzero, this
 * should be the exact number of times that the client calls
 * ICMCompressionSessionEncodeFrame in each pass.
 * The default is 0, which indicates that the number of source frames
 * is not known.
 */
 kICMCompressionSessionOptionsPropertyID_SourceFrameCount = 'frco', /* UInt64,
Read/Write */
 /*
 * Indicates the expected frame rate, if known. The frame rate is
 * measured in frames per second. This is not used to control the
 * frame rate; it is provided as a hint to the compressor so that it
 * can set up internal configuration before compression begins. The
 * actual frame rate will depend on frame durations and may vary. By
 * default, this is zero, indicating "unknown".
 */
 kICMCompressionSessionOptionsPropertyID_ExpectedFrameRate = 'fran', /* Fixed,
Read/Write */
 /*
 * Indicates how source frames to a compression session should be
 * scaled if the dimensions and/or display aspect ratio do not match.
 */
 kICMCompressionSessionOptionsPropertyID_ScalingMode = 'scam', /* OSType, Read/Write
 */
 /*
 * Describes the clean aperture for compressed frames. Note that if
 * the compressor enforces a clean aperture, it will override this
 * setting. The clean aperture will be set on the output image
 * description and may affect scaling in some scaling modes. By
 * default, this is all zeros, meaning unset.
 */
 kICMCompressionSessionOptionsPropertyID_CleanAperture = 'clap', /* Native-endian
 CleanApertureImageDescriptionExtension, Read/Write */
 /*
 * Describes the pixel aspect ratio for compressed frames. Note that
 * if the compressor enforces a pixel aspect ratio, it will override
 * this setting. The pixel aspect ratio will be set on the output
 * image description and may affect scaling in some scaling modes. By
 * default, this is all zeros, meaning unset.
 */
 kICMCompressionSessionOptionsPropertyID_PixelAspectRatio = 'pasp', /* Native-endian
 PixelAspectRatioImageDescriptionExtension, Read/Write */
 /*
 * Describes the number and order of fields for compressed frames.
 * Note that if the compressor enforces field info, it will override
 * this setting. The field info will be set on the output image
 * description and may affect scaling in some scaling modes. By
 * default, this is all zeros, meaning unset.
 */
 kICMCompressionSessionOptionsPropertyID_FieldInfo = 'fiel' /*

146 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

FieldInfoImageDescriptionExtension2, Read/Write */
};
enum {
 /*
 * Class identifier for compression session properties.
 */
 kQTPropertyClass_ICMCompressionSession = 'icse',
 /*
 * The time scale for the compression session.
 */
 kICMCompressionSessionPropertyID_TimeScale = 'tscl', /* TimeScale, Read */
 /*
 * The compressor's pixel buffer attributes for the compression
 * session. You can use these to create a pixel buffer pool for
 * source pixel buffers. Note that this is not the same as the
 * sourcePixelBufferAttributes passed in to
 * ICMCompressionSessionCreate. Getting this property does not change
 * its retain count.
 */
 kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes = 'batt', /*
CFDictionaryRef, Read */
 /*
 * A pool that can provide ideal source pixel buffers for a
 * compression session. The compression session creates this pixel
 * buffer pool based on the compressor's pixel buffer attributes and
 * any pixel buffer attributes passed in to
 * ICMCompressionSessionCreate. If the source pixel buffer attributes
 * and the compressor pixel buffer attributes can not be reconciled,
 * the pool is based on the source pixel buffer attributes and the
 * ICM converts each CVPixelBuffer internally.
 */
 kICMCompressionSessionPropertyID_PixelBufferPool = 'pool', /* CVPixelBufferPoolRef,
 Read */
 /*
 * The image description for the compression session. For some
 * codecs, the image description may not be available before the
 * first frame is compressed. Multiple calls to retrieve this
 * property will return the same handle. The ICM will dispose this
 * handle when the compression session is disposed.
 * IMPORTANT: The caller must NOT dispose this handle.
 */
 kICMCompressionSessionPropertyID_ImageDescription = 'idsc' /*
ImageDescriptionHandle, Read */
};
enum {
 /*
 * Class identifier for decompression frame options object properties.
 */
 kQTPropertyClass_ICMDecompressionFrameOptions = 'idfo',
 /*
 * A specific pixel buffer that the frame should be decompressed
 * into. Setting this circumvents the pixel buffer pool mechanism. If
 * this buffer is not compatible with the codec's pixel buffer
 * requirements, decompression will fail.
 */
 kICMDecompressionFrameOptionsPropertyID_DestinationPixelBuffer = 'cvpb' /*
CVPixelBufferRef, Read/Write */
};

Constants 147
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

enum {
 /*
 * Class identifier for decompression session options object
 * properties.
 */
 kQTPropertyClass_ICMDecompressionSessionOptions = 'idso',
 /*
 * By default, this is true, meaning that frames must be output in
 * display order. Set this to false to allow frames to be output in
 * decode order rather than in display order.
 */
 kICMDecompressionSessionOptionsPropertyID_DisplayOrderRequired = 'dorq', /*
Boolean, Read/Write */
 /*
 * A specific decompressor component or component instance to be
 * used, or one of the wildcards anyCodec, bestSpeedCodec,
 * bestFidelityCodec, or bestCompressionCodec.
 * By default, this is anyCodec.
 */
 kICMDecompressionSessionOptionsPropertyID_DecompressorComponent = 'imdc', /*
DecompressorComponent, Read/Write */
 /*
 * The decompression accuracy.
 * The default accuracy is codecNormalQuality.
 */
 kICMDecompressionSessionOptionsPropertyID_Accuracy = 'acur', /* CodecQ, Read/Write
 */
 /*
 * Requests special handling of fields. Not all codecs will obey this
 * request; some codecs will only handle it at certain accuracy
 * levels. Ignored for non-interlaced content.
 */
 kICMDecompressionSessionOptionsPropertyID_FieldMode = 'fiel', /* ICMFieldMode,
Read/Write */
 /*
 * The maximum number of buffers ahead of the current time that
 * should be decompressed. Used in sessions that target visual
 * contexts. By default, the number of buffers will be determined
 * from the visual context.
 */
 kICMDecompressionSessionOptionsPropertyID_MaxBufferCount = 'm#bf', /* UInt32,
Read/Write */
 /*
 * The minimum time ahead of the current time that frames should be
 * decompressed. Used in sessions that target visual contexts. By
 * default, the output-ahead time will be determined from the visual
 * context.
 */
 kICMDecompressionSessionOptionsPropertyID_OutputAheadTime = 'futu' /* TimeRecord,
 Read/Write */
};
enum {
 /*
 * Class identifier for decompression session properties.
 */
 kQTPropertyClass_ICMDecompressionSession = 'icds',
 /*
 * The non-scheduled display time for a decompression session.

148 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * Setting this requests display of the non-scheduled queued frame at
 * that display time, if there is one.
 * See ICMDecompressionSessionSetNonScheduledDisplayTime.
 */
 kICMDecompressionSessionPropertyID_NonScheduledDisplayTime = 'nsti', /*
ICMNonScheduledDisplayTime, Read/Write */
 /*
 * The direction for non-scheduled display time.
 * See ICMDecompressionSessionSetNonScheduledDisplayDirection.
 */
 kICMDecompressionSessionPropertyID_NonScheduledDisplayDirection = 'nsdu', /*
Fixed, Read/Write */
 /*
 * The pixel buffer pool from which emitted pixel buffers are
 * allocated. Getting this does not change the retain count of the
 * pool.
 */
 kICMDecompressionSessionPropertyID_PixelBufferPool = 'pool', /*
CVPixelBufferPoolRef, Read */
 /*
 * Indicates whether the a common pixel buffer pool is shared between
 * the decompressor and the session client. This is false if separate
 * pools are used because the decompressor's and the client's pixel
 * buffer attributes were incompatible.
 */
 kICMDecompressionSessionPropertyID_PixelBufferPoolIsShared = 'plsh' /* Boolean,
 Read */
};
enum {
 /*
 * Class identifier for image description properties.
 */
 kQTPropertyClass_ImageDescription = 'idsc',
 /*
 * The width of the encoded image. Usually, but not always, this is
 * the ImageDescription's width field.
 */
 kICMImageDescriptionPropertyID_EncodedWidth = 'encw', /* SInt32, Read/Write */
 /*
 * The height of the encoded image. Usually, but not always, this is
 * the ImageDescription's height field.
 */
 kICMImageDescriptionPropertyID_EncodedHeight = 'ench', /* SInt32, Read/Write */
 /*
 * Describes the clean aperture of the buffer. If not specified
 * explicitly in the image description, the default clean aperture
 * (full encoded width and height) will be returned.
 */
 kICMImageDescriptionPropertyID_CleanAperture = 'clap', /* Native-endian
CleanApertureImageDescriptionExtension, Read/Write */
 /*
 * Describes the pixel aspect ratio. If not specified explicitly in
 * the image description, a square (1:1) pixel aspect ratio will be
 * returned.
 */
 kICMImageDescriptionPropertyID_PixelAspectRatio = 'pasp', /* Native-endian
PixelAspectRatioImageDescriptionExtension, Read/Write */
 /*

Constants 149
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * A width at which the buffer's image could be displayed on a
 * square-pixel display, possibly calculated using the clean aperture
 * and pixel aspect ratio.
 */
 kICMImageDescriptionPropertyID_DisplayWidth = 'disw', /* SInt32, Read */
 /*
 * A height at which the buffer's image could be displayed on a
 * square-pixel display, possibly calculated using the clean aperture
 * and pixel aspect ratio.
 */
 kICMImageDescriptionPropertyID_DisplayHeight = 'dish', /* SInt32, Read */
 /*
 * A width at which the image could be displayed on a square-pixel
 * display, disregarding any clean aperture but honoring the pixel
 * aspect ratio. This may be useful for authoring applications that
 * want to expose the edge processing region. For general viewing,
 * use kICMImageDescriptionPropertyID_DisplayWidth instead.
 */
 kICMImageDescriptionPropertyID_ProductionDisplayWidth = 'pdsw', /* SInt32, Read
 */
 /*
 * A height at which the image could be displayed on a square-pixel
 * display, disregarding any clean aperture but honoring the pixel
 * aspect ratio. This may be useful for authoring applications that
 * want to expose the edge processing region. For general viewing,
 * use kICMImageDescriptionPropertyID_DisplayHeight instead.
 */
 kICMImageDescriptionPropertyID_ProductionDisplayHeight = 'pdsh', /* SInt32, Read
 */
 /*
 * Color information, if available in the
 * NCLCColorInfoImageDescriptionExtension format.
 */
 kICMImageDescriptionPropertyID_NCLCColorInfo = 'nclc', /* Native-endian
NCLCColorInfoImageDescriptionExtension, Read/Write */
 /*
 * The gamma level described by the image description.
 */
 kICMImageDescriptionPropertyID_GammaLevel = 'gama', /* Fixed, Read/Write */
 /*
 * Information about the number and order of fields, if available.
 */
 kICMImageDescriptionPropertyID_FieldInfo = 'fiel', /*
FieldInfoImageDescriptionExtension2, Read/Write */
 /*
 * The offset in bytes from the start of one row to the next. Only
 * valid if the codec type is a chunky pixel format.
 */
 kICMImageDescriptionPropertyID_RowBytes = 'rowb', /* SInt32, Read/Write */
 /*
 * A track width suitable for passing to NewMovieTrack when creating
 * a new track to hold this image data.
 */
 kICMImageDescriptionPropertyID_ClassicTrackWidth = 'claw', /* Fixed, Read */
 /*
 * A track height suitable for passing to NewMovieTrack when creating
 * a new track to hold this image data.
 */

150 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 kICMImageDescriptionPropertyID_ClassicTrackHeight = 'clah' /* Fixed, Read */
};
enum {
 /*
 * In this pass the compressor shall output encoded frames.
 */
 kICMCompressionPassMode_OutputEncodedFrames = 1L << 0,
 /*
 * In this pass the client need not provide source frame buffers.
 */
 kICMCompressionPassMode_NoSourceFrames = 1L << 1,
 /*
 * In this pass the compressor may write private data to multipass
 * storage.
 */
 kICMCompressionPassMode_WriteToMultiPassStorage = 1L << 2,
 /*
 * In this pass the compressor may read private data from multipass
 * storage.
 */
 kICMCompressionPassMode_ReadFromMultiPassStorage = 1L << 3,
 /*
 * The compressor will set this flag to indicate that it will not be
 * able to output encoded frames in the coming pass. If this flag is
 * not set, then the client is allowed to set the
 * kICMCompressionPassMode_OutputEncodedFrames flag before calling
 * ICMCompressionSessionBeginPass.
 */
 kICMCompressionPassMode_NotReadyToOutputEncodedFrames = 1L << 4
};
enum {
 /*
 * Indicates that this is the last call for this sourceFrameRefCon.
 */
 kICMSourceTracking_LastCall = 1L << 0,
 /*
 * Indicates that the session is done with the source pixel buffer
 * and has released any reference to it that it had.
 */
 kICMSourceTracking_ReleasedPixelBuffer = 1L << 1,
 /*
 * Indicates that this frame was encoded.
 */
 kICMSourceTracking_FrameWasEncoded = 1L << 2,
 /*
 * Indicates that this frame was dropped.
 */
 kICMSourceTracking_FrameWasDropped = 1L << 3,
 /*
 * Indicates that this frame was merged into other frames.
 */
 kICMSourceTracking_FrameWasMerged = 1L << 4,
 /*
 * Indicates that the time stamp of this frame was modified.
 */
 kICMSourceTracking_FrameTimeWasChanged = 1L << 5,
 /*
 * Indicates that the ICM has copied the image from the source pixel

Constants 151
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

 * buffer into another pixel buffer because the source pixel buffer
 * was not compatible with the compressor's required pixel buffer
 * attributes.
 */
 kICMSourceTracking_CopiedPixelBuffer = 1L << 6
};
enum {
 /*
 * The full width and height of source frames shall be scaled to the
 * full width and height of the destination. This is the default if
 * no other scaling mode is specified.
 */
 kICMScalingMode_StretchProductionAperture = 'sp2p',
 /*
 * The clean aperture of the source frames shall be scaled to the
 * clean aperture of the destination.
 */
 kICMScalingMode_StretchCleanAperture = 'sc2c',
 /*
 * The clean aperture of the source frames shall be scaled to fit
 * inside the clean aperture of the destination, preserving the
 * original display aspect ratio. If the display aspect ratios are
 * different, the source frames will be centered with black bars
 * above and below, or to the left and right.
 */
 kICMScalingMode_Letterbox = 'lett',
 /*
 * The clean aperture of the source frames shall be scaled to cover
 * the clean aperture of the destination, preserving the original
 * display aspect ratio. If the display aspect ratios are different,
 * the source frames will be centered and cropped.
 */
 kICMScalingMode_Trim = 'trim'
};

Constants
kICMCompressionFrameOptionsPropertyID_ForceKeyFrame

Boolean, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionFrameOptionsPropertyID_FrameType
ICMFrameType, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kQTPropertyClass_ICMCompressionSessionOptions
Class identifier for compression session option object properties. Also 'icso'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_AllowTemporalCompression
Enables temporal compression of P-frames and B-frames. By default, temporal compression is disabled.
Also 'p ok'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

152 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMCompressionSessionOptionsPropertyID_AllowFrameReordering
Enables frame reordering. To encode B-frames a compressor must reorder frames, which may mean
that the order in which they are emitted and stored (the decode order) may be different from the
order in which they are presented to the compressor (the display order). By default, frame reordering
is disabled. To encode using B-frames, you must enable frame reordering by passing TRUE in this
property. Also 'b ok'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_DurationsNeeded
Indicates that durations of emitted frames are needed. If this option is set and source frames are
provided with times but not durations, then frames will be delayed so that durations can be calculated
as the difference between one frame's time stamp and the next frame's time stamp. By default, this
flag is FALSE, so frames will not be delayed in order to calculate durations. If you pass encoded frames
to AddMediaSampleFromEncodedFrame, you must set this flag to TRUE. Also 'need'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_MaxKeyFrameInterval
The maximum interval between key frames, also known as the key frame rate. Compressors are allowed
to generate key frames more frequently if this would result in more efficient compression. The default
key frame interval is 0, which indicates that the compressor should choose where to place all key
frames. This differs from previous practice, in which a key frame rate of zero disabled temporal
compression. Also 'kyfr'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_MaxPartialSyncFrameInterval
SInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_AllowFrameTimeChanges
Enables the compressor to modify frame times, improving its performance. Some compressors are
able to identify and coalesce runs of identical frames and emit single frames with longer duration, or
emit frames at a different frame rate from the original. By default, this flag is set to FALSE, which forces
the compressor to emit one encoded frame for every source frame and to preserve frame display
times. This option replaces the practice of having compressors return special high similarity values
to indicate that frames can be dropped. Also '+ ok'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_AllowAsyncCompletion
Enables the compressor to call the encoded-frame callback from a different thread. By default this
option is FALSE, which means that the compressor must call the encoded-frame callback from the
same thread as ICMCompressionSessionEncodeFrame and
ICMCompressionSessionCompleteFrames. Also 'asok'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Constants 153
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayCount
The maximum frame delay count is the maximum number of frames that a compressor is allowed to
hold before it must output a compressed frame. This value limits the number of frames that may be
held in the compression window. If the maximum frame delay count is M, then before the call to
encode frame N returns, frame N-M must have been emitted. The default value is
kICMUnlimitedFrameDelayCount, which sets no limit on the compression window. Also 'cwin'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_MaxFrameDelayTime
TimeValue64, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_CompressorComponent
Sets a specific compressor component or component instance to be used, or passes one of the
wildcards anyCodec, bestSpeedCodec, bestFidelityCodec, or bestCompressionCodec. Pass
this option to force the Image Compression Manager to use a specific compressor component or
compressor component instance. To allow the Image Compression Manager to choose the compressor
component, set the compressorComponent to anyCodec (the default), bestSpeedCodec,
bestFidelityCodec, or bestCompressionCodec. If you pass in a component instance that you
opened, the ICM will not close that instance; you must do so after the compression session is released.
Also 'imco'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_CompressorSettings
A handle containing compressor settings. The compressor will be configured with these settings (by
a call to ImageCodecSetSettings) during the ICMCompressionSessionCreate process. Also
'cost'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_Depth
UInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_ColorTable
The color table for compression, used with indexed-color depths. Clients who are passed this property
are responsible for disposing the returned CTabHandle. Also 'clut'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_Quality
The compression quality. This value is always used to set the spatial quality; if temporal compression
is enabled, it is also used to set temporal quality. The default quality is codecNormalQuality. Also
'qual'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

154 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMCompressionSessionOptionsPropertyID_AverageDataRate
The long-term desired average data rate in bytes per second. This is not an absolute limit. The default
data rate is zero, indicating that the setting of
kICMCompressionSessionOptionsPropertyID_Quality should determine the size of compressed
data. Data rate settings have effect only when timing information is provided for source frames. Some
codecs do not accept limiting to specified data rates. Also 'aver'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_DataRateLimits
Zero, one, or two hard limits on data rate. Each hard limit is described by a data size in bytes and a
duration in seconds. It requires that the total size of compressed data for any contiguous segment of
that duration (in decode time) must not exceed the data size. By default, no data rate limits are set.
When setting this property, the inPropValueSize parameter should be the number of data rate
limits multiplied by sizeof(ICMDataRateLimit). Data rate settings have an effect only when timing
information is provided for source frames. Some codecs do not accept limiting to specified data rates.
Also 'hard'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_DataRateLimitCount
UInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_MaxDataRateLimits
UInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_WasCompressed
Indicates that the source was previously compressed. This property is an optional information hint
to the compressor; by default it is FALSE. Also 'wasc'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_CPUTimeBudget
UInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Constants 155
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMCompressionSessionOptionsPropertyID_MultiPassStorage
A multipass compression client must provide a storage location for multipass data. Pass
ICMMultiPassStorageCreateWithTemporaryFile to make the ICM store multipass data in a
temporary file. Pass ICMMultiPassStorageCreateWithCallbacks to manage the storage yourself.
Note that the amount of multipass data to be stored can be substantial; it could be greater than the
size of the output movie file. If this property is not NULL, the client must call
ICMCompressionSessionBeginPass and ICMCompressionSessionEndPass around groups of
calls to ICMCompressionSessionEncodeFrame. By default, this property is NULL and multipass
compression is not enabled. The compression session options object retains the multipass storage
object when one is set. Also 'imps'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_SourceFrameCount
UInt64, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_ExpectedFrameRate
Fixed, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_ScalingMode
OSType, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_CleanAperture
Native-endian CleanApertureImageDescriptionExtension, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_PixelAspectRatio
Native-endian PixelAspectRatioImageDescriptionExtension, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionOptionsPropertyID_FieldInfo
FieldInfoImageDescriptionExtension2, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kQTPropertyClass_ICMCompressionSession
Class identifier for compression session properties. Also 'icse'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionPropertyID_TimeScale
The time scale for the compression session. Also 'tscl'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

156 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMCompressionSessionPropertyID_CompressorPixelBufferAttributes
The compressor's pixel buffer attributes for the compression session. You can use these to create a
pixel buffer pool for source pixel buffers. This is not the same as the sourcePixelBufferAttributes
property passed to ICMCompressionSessionCreate. Getting this property does not change its
retain count. Also 'batt'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionPropertyID_PixelBufferPool
A pool that can provide ideal source pixel buffers for a compression session. The compression session
creates this pixel buffer pool based on the compressor's pixel buffer attributes and any pixel buffer
attributes passed in to ICMCompressionSessionCreate. If the source pixel buffer attributes and
the compressor pixel buffer attributes can not be reconciled, the pool is based on the source pixel
buffer attributes and the ICM converts each CVPixelBuffer internally. Also 'pool'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMCompressionSessionPropertyID_ImageDescription
The image description for a compression session. For some codecs, the image description may not
be available before the first frame is compressed. Multiple calls to retrieve this property will return
the same handle. The ICM will dispose of this handle when the compression session is disposed; the
caller must not dispose of it. Also 'idsc'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionFrameOptionsPropertyID_DestinationPixelBuffer
CVPixelBufferRef, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionOptionsPropertyID_DisplayOrderRequired
Boolean, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionOptionsPropertyID_DecompressorComponent
DecompressorComponent, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionOptionsPropertyID_Accuracy
CodecQ, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionOptionsPropertyID_FieldMode
ICMFieldMode, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Constants 157
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMDecompressionSessionOptionsPropertyID_MaxBufferCount
UInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionOptionsPropertyID_OutputAheadTime
TimeRecord, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionPropertyID_NonScheduledDisplayTime
ICMNonScheduledDisplayTime, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionPropertyID_NonScheduledDisplayDirection
Fixed, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionPropertyID_PixelBufferPool
CVPixelBufferPoolRef, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMDecompressionSessionPropertyID_PixelBufferPoolIsShared
Boolean, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_EncodedWidth
SInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_EncodedHeight
SInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_CleanAperture
Native-endian CleanApertureImageDescriptionExtension, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_PixelAspectRatio
Native-endian PixelAspectRatioImageDescriptionExtension, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

158 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

kICMImageDescriptionPropertyID_DisplayWidth
SInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_DisplayHeight
SInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_ProductionDisplayWidth
SInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_ProductionDisplayHeight
SInt32, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_NCLCColorInfo
Native-endian NCLCColorInfoImageDescriptionExtension, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_GammaLevel
Fixed, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_FieldInfo
FieldInfoImageDescriptionExtension2, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_RowBytes
SInt32, ReadWrite.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_ClassicTrackWidth
Fixed, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMImageDescriptionPropertyID_ClassicTrackHeight
Fixed, Read.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

Constants 159
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

ICMEncodedFrameSetFrameType Values
Constants passed to ICMEncodedFrameSetFrameType.

enum {
 kICMFrameType_I = 'I',
 kICMFrameType_P = 'P',
 kICMFrameType_B = 'B',
 kICMFrameType_Unknown = 0
};

Declared In
ImageCompression.h

ICMMultiPassStorageCreateWithTemporaryFile Values
Constants passed to ICMMultiPassStorageCreateWithTemporaryFile.

enum {
 /*
 * Indicates that the temporary file should not be deleted when the
 * multipass storage is released.
 */
 kICMMultiPassStorage_DoNotDeleteWhenDone = 1L << 0
};

Declared In
ImageCompression.h

ICMMultiPassStorageGetTimeStamp Values
Constants passed to ICMMultiPassStorageGetTimeStamp.

160 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

enum {
 /*
 * Requests the first time stamp at which a value is stored.
 */
 kICMMultiPassStorage_GetFirstTimeStamp = 1,
 /*
 * Requests the previous time stamp before the given time stamp at
 * which a value is stored.
 */
 kICMMultiPassStorage_GetPreviousTimeStamp = 2,
 /*
 * Requests the next time stamp after the given time stamp at which a
 * value is stored.
 */
 kICMMultiPassStorage_GetNextTimeStamp = 3,
 /*
 * Requests the last time stamp at which a value is stored.
 */
 kICMMultiPassStorage_GetLastTimeStamp = 4
};

Declared In
ImageCompression.h

kICMValidTime_DecodeDurationIsValid
Constants grouped with kICMValidTime_DecodeDurationIsValid.

Constants 161
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

enum {
 /*
 * Indicates that a display time stamp is valid.
 */
 kICMValidTime_DisplayTimeStampIsValid = 1L << 0,
 /*
 * Indicates that a display duration is valid.
 */
 kICMValidTime_DisplayDurationIsValid = 1L << 1,
 /*
 * Indicates that a decode time stamp is valid.
 */
 kICMValidTime_DecodeTimeStampIsValid = 1L << 2,
 /*
 * Indicates that a decode duration is valid.
 */
 kICMValidTime_DecodeDurationIsValid = 1L << 3,
 /*
 * Indicates that a display offset (the offset from a decode time
 * stamp to a display time stamp) is valid.
 */
 kICMValidTime_DisplayOffsetIsValid = 1L << 4
};

Constants
kICMValidTime_DisplayTimeStampIsValid

The time value passed in displayTimeStamp is valid.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kICMValidTime_DisplayDurationIsValid
The time value passed in displayDuration is valid.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

162 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Image Compression Manager Reference

Framework: Frameworks/QuickTime.framework

Declared in Movies.h

Overview

QuickTime movies have certain overall timing and other presentation characteristics that an application can
manage, including the presentation of special kinds of media such as flash media and sprites.

Functions by Task

Controlling Movie Playback

GoToBeginningOfMovie (page 240)
Repositions a movie to play from its start.

GoToEndOfMovie (page 241)
Repositions a movie to play from its end.

StartMovie (page 332)
Starts the movie playing from the current movie time.

StopMovie (page 333)
Stops the playback of a movie.

Creating and Disposing of Time Bases

ChooseMovieClock (page 181)
Searches media handlers to find the best clock for a movie.

DisposeTimeBase (page 189)
Disposes of a time base once you are finished with it.

GetTimeBaseMasterClock (page 229)
Determines the clock component that is assigned to a time base.

GetTimeBaseMasterTimeBase (page 231)
Determines the master time base that is assigned to a time base.

NewTimeBase (page 261)
Obtains a new time base.

Overview 163
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

QTGetWallClockTimeBase (page 271)
Returns the system's real-time time base.

SetMovieMasterClock (page 290)
Assigns a clock component to a movie.

SetMovieMasterTimeBase (page 291)
Assigns a master time base to a movie.

SetTimeBaseMasterClock (page 304)
Assigns a clock component to a time base.

SetTimeBaseMasterTimeBase (page 305)
Assigns a master time base to a time base.

SetTimeBaseZero (page 309)
Changes the offset from a time base to either its master time base or its clock component.

Determining Movie Creation and Modification Time

GetMovieCreationTime (page 209)
Returns the movie's creation date and time information.

GetMovieModificationTime (page 213)
Returns a movie's modification date and time.

Disabling Movies and Tracks

GetMovieActive (page 204)
Determines whether a movie is currently active.

SetMovieActive (page 284)
Activates or deactivates a movie.

Enhancing Movie Playback Performance

AbortPrePrerollMovie (page 177)
Terminates the operation of PrePrerollMovie.

GetMovieActiveSegment (page 205)
Determines what portion of a movie is currently active for playing.

LoadMediaIntoRam (page 245)
Loads a media's data into memory.

LoadMovieIntoRam (page 246)
Loads a movie's data into memory.

LoadTrackIntoRam (page 247)
Loads a track's data into memory.

PrePrerollMovie (page 263)
Sets up any necessary network connections to receive streaming content.

PrerollMovie (page 264)
Prepares a portion of a movie for playback.

164 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetMovieActiveSegment (page 285)
Defines a movie's active segment.

Error Functions

ClearMoviesStickyError (page 182)
Clears the sticky error value.

GetMoviesError (page 221)
Returns the contents of the current error value and resets the current error value to 0.

GetMoviesStickyError (page 222)
Returns the contents of the sticky error value.

SetMoviesErrorProc (page 298)
Performs custom error notification.

Generating Pictures From Movies

GetMoviePict (page 214)
Creates a QuickDraw picture from a specified movie at a specified time.

GetMoviePosterPict (page 215)
Creates a QuickDraw picture that contains a movie's poster.

GetTrackPict (page 239)
Creates a QuickDraw picture from a specified track at a specified time.

High-Level Movie Editing Functions

GetMovieSelection (page 220)
Returns information about a movie's current selection.

SetMovieSelection (page 297)
Sets a movie's current selection.

Initializing the Movie Toolbox

EnterMovies (page 189)
Initializes the Movie Toolbox and creates a private storage area for your application.

ExitMovies (page 192)
Automatically called when an application quits.

Managing Movie Sprites

SpriteMediaCountImages (page 313)
Retrieves the number of images that currently exist in a sprite track.

Functions by Task 165
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SpriteMediaCountSprites (page 314)
Retrieves the number of sprites that currently exist in a sprite track.

SpriteMediaGetDisplayedSampleNumber (page 317)
Retrieves the number of the sprite media sample that is currently being displayed.

SpriteMediaGetImageName (page 317)
Returns the name of the image with the specified index from the current key frame sample.

SpriteMediaGetIndImageDescription (page 318)
Retrieves an image description for a specified image in a sprite track.

SpriteMediaGetIndImageProperty (page 319)
Returns a property value for a sprite image specified by an index.

SpriteMediaGetSpriteName (page 321)
Returns the name of the sprite with the specified ID from the currently displayed sample.

SpriteMediaGetSpriteProperty (page 322)
Retrieves the value of the specified sprite or sprite track property.

SpriteMediaHitTestAllSprites (page 323)
Determines whether any sprites are at a specified location.

SpriteMediaHitTestOneSprite (page 324)
Performs a hit testing operation on the sprite specified by a spriteID.

SpriteMediaSetSpriteProperty (page 330)
Sets the specified property of a sprite or sprite track.

SpriteMediaSpriteIDToIndex (page 331)
Converts a sprite ID to the corresponding sprite index.

SpriteMediaSpriteIndexToID (page 331)
Returns the ID of a sprite specified by a sprite index.

Managing Sprite Images Outside a Movie

SpriteMediaDisposeImage (page 314)
Frees the memory allocated for a sprite image outside a movie and removes that image from the
sprite track in which it appears.

SpriteMediaImageIDToIndex (page 325)
Returns the index of an outside sprite image from the ID of that image.

SpriteMediaImageIndexToID (page 326)
Returns the ID of an outside sprite image from the index of that image.

SpriteMediaNewImage (page 326)
Creates a new movie sprite image outside a movie.

Managing the Video Frame Playback Rate

VideoMediaGetStatistics (page 349)
Returns the play-back frame rate of a movie.

VideoMediaResetStatistics (page 350)
Resets the video media handler's counters before using VideoMediaGetStatistics to determine the
frame rate of a movie.

166 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Movie Functions

DisposeMovie (page 188)
Frees any memory being used by a movie, including the memory used by the movie's tracks and
media structures.

NewMovie (page 259)
Creates a new movie in memory.

PutMovieForDataRefIntoHandle (page 265)
Puts a self-contained movie into a handle.

Movie Posters and Movie Previews

GetMoviePosterTime (page 216)
Returns the poster's time in a movie.

GetMoviePreviewMode (page 218)
Determines whether a movie is in preview mode.

GetMoviePreviewTime (page 218)
Returns the starting time and duration of the movie's preview.

PlayMoviePreview (page 262)
Plays a movie's preview.

SetMoviePosterTime (page 293)
Sets the poster time for the movie.

SetMoviePreviewMode (page 295)
Places a movie into and out of preview mode.

SetMoviePreviewTime (page 296)
Defines the starting time and duration of the movie's preview.

ShowMoviePoster (page 312)
Displays a movie's poster.

Movie Toolbox Clock Support Functions

AddCallBackToTimeBase (page 178)
Places a callback event into the list of scheduled callback events.

ExecuteCallBack (page 192)
Called by a clock component when it determines that it is time to execute a callback function.

GetFirstCallBack (page 204)
Returns the first callback event associated with a specified time base.

GetNextCallBack (page 227)
Returns the next callback event associated with a specified time base.

RemoveCallBackFromTimeBase (page 284)
Removes a callback event from the list of scheduled callback events.

Functions by Task 167
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Movies and Your Event Loop

CreateMovieControl (page 184)
Creates a movie control object to pass to the Mac OS Control Manager.

InvalidateMovieRegion (page 241)
Invalidates a small area of a movie.

IsMovieDone (page 242)
Determines if a particular movie has completely finished playing.

MoviesTask (page 257)
Services active movies.

QTGetTimeUntilNextTask (page 270)
Reports the duration until the next time QuickTime needs to run a task.

QTInstallNextTaskNeededSoonerCallback (page 277)
Installs a QTNextTaskNeededSoonerCallbackProc callback.

QTUninstallNextTaskNeededSoonerCallback (page 283)
Removes a QTNextTaskNeededSoonerCallbackProc callback.

UpdateMovie (page 347)
Ensures that the Movie Toolbox properly displays your movie after it has been uncovered.

Preferred Movie Settings

GetMoviePreferredRate (page 217)
Returns a movie's default playback rate.

GetMoviePreferredVolume (page 217)
Returns a movie's preferred volume setting.

SetMoviePreferredRate (page 293)
Specifies a movie's default playback rate.

SetMoviePreferredVolume (page 294)
Sets a movie's preferred volume setting.

Saving Movies

PutMovieIntoDataFork (page 266)
Stores a movie in the data fork of a given file.

PutMovieIntoHandle (page 268)
Creates a new movie resource.

PutMovieIntoStorage (page 268)
Writes a movie to a storage location managed by a data handler.

Text Media Handler Functions

TextMediaAddHiliteSample (page 334)
Provides dynamic highlighting of text.

168 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

TextMediaAddTESample (page 335)
Specifies a TextEdit handle to be added to a specified media.

TextMediaAddTextSample (page 337)
Adds a single block of styled text to an existing media.

TextMediaFindNextText (page 340)
Searches for text with a specified media handler starting at a given time.

TextMediaHiliteTextSample (page 342)
Specifies selected text to be highlighted for a given text media handler.

TextMediaSetTextProc (page 345)
Specifies a custom function to be called whenever a text sample is displayed in a movie.

TextMediaSetTextSampleData (page 346)
Sets values before calling TextMediaAddTextSample or TextMediaAddTESample.

The Sound Description Structure

QTSoundDescriptionConvert (page 278)
Converts a sound description from one version to another.

Time Base Callback Functions

CallMeWhen (page 179)
Schedules a callback event.

CancelCallBack (page 180)
Cancels a callback event before it executes.

DisposeCallBack (page 186)
Disposes of a callback event.

GetCallBackTimeBase (page 203)
Retrieves the time base of a callback event.

GetCallBackType (page 203)
Retrieves a callback event's type.

NewCallBack (page 258)
Creates a new callback event.

Using the OpenGL Texture Context

GetMovieVisualContext (page 226)
Returns the current visual context for a movie.

SetMovieVisualContext (page 302)
Targets a movie to render into a visual context.

Functions by Task 169
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Working With Movie Spatial Characteristics

DisposeMatte (page 187)
Disposes of a matte obtained from the GetTrackMatte function.

GetMovieBoundsRgn (page 206)
Determines a movie's boundary region.

GetMovieBox (page 207)
Returns a movie's boundary rectangle, which is a rectangle that encompasses all of the movie's enabled
tracks.

GetMovieClipRgn (page 208)
Determines a movie's clipping region.

GetMovieDisplayBoundsRgn (page 209)
Determines a movie's display boundary region.

GetMovieDisplayClipRgn (page 210)
Determines a movie's current display clipping region.

GetMovieGWorld (page 212)
Returns a movie's graphics world.

GetMovieMatrix (page 213)
Retrieves a movie's transformation matrix.

GetTrackBoundsRgn (page 236)
Lets the media limit the size of a track boundary rectangle.

GetTrackClipRgn (page 237)
Determines the clipping region of a track.

GetTrackDisplayBoundsRgn (page 237)
Determines the region a track occupies in a movie's graphics world.

GetTrackMatte (page 238)
Retrieves a copy of a track's matte.

GetTrackMovieBoundsRgn (page 239)
Determines the region the track occupies in a movie's boundary region.

SetMovieBox (page 286)
Sets a movie's boundary rectangle.

SetMovieClipRgn (page 287)
Establishes a movie's clipping region.

SetMovieDisplayClipRgn (page 288)
Establishes a movie's current display clipping region.

SetMovieGWorld (page 290)
Establishes a movie's display coordinate system by setting the graphics world for displaying the movie.

SetMovieMatrix (page 292)
Sets a movie's transformation matrix.

SetTrackClipRgn (page 310)
Sets the clipping region of a track.

SetTrackGWorld (page 311)
Forces a track to draw into a particular graphics world, which may be different from that of the movie.

170 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetTrackMatte (page 312)
Sets a track's matte.

Working With Movie Time

GetMovieDuration (page 211)
Returns the duration of a movie.

GetMovieRate (page 219)
Returns a movie's playback rate.

GetMovieTime (page 223)
Returns a movie's current time both as a time value and in a time structure.

GetMovieTimeBase (page 224)
Returns a movie's time base.

GetMovieTimeScale (page 224)
Returns the time scale of a movie.

SetMovieRate (page 296)
Sets a movie's playback rate.

SetMovieTime (page 299)
Changes a movie's current time.

SetMovieTimeScale (page 300)
Establishes a movie's time scale.

SetMovieTimeValue (page 300)
Sets a movie's time value.

Working With Progress and Cover Functions

SetMovieDrawingCompleteProc (page 289)
Assigns a drawing-complete function to a movie.

Working With Sound Descriptions

QTSoundDescriptionCreate (page 279)
Creates a sound description structure of the requested kind from an AudioStreamBasicDescription,
optional audio channel layout, and optional magic cookie.

Working With Sound Volume

GetMovieVolume (page 226)
Returns a movie's current volume setting.

SetMovieVolume (page 302)
Sets a movie's current volume but does not store the setting in the movie.

Functions by Task 171
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Working With The Idle Manager

QTIdleManagerClose (page 271)
Closes the Mac OS Idle Manager.

QTIdleManagerGetNextIdleTime (page 272)
Retrieves the next idle time known to the Idle Manager.

QTIdleManagerNeedsAnIdle (page 272)
Tells the Idle Manager whether an idle will be required.

QTIdleManagerOpen (page 273)
Opens the Mac OS Idle Manager.

QTIdleManagerSetNextIdleTime (page 273)
Informs the idle manager of the next required idle time.

QTIdleManagerSetNextIdleTimeDelta (page 274)
Informs the idle manager of the time from the currently set idle time to the next idle time required
after it.

QTIdleManagerSetNextIdleTimeNever (page 275)
Sets the next idle time indefinitely in the future.

QTIdleManagerSetNextIdleTimeNow (page 275)
Requests an idle as soon as possible.

QTIdleManagerSetParent (page 276)
Sets the parent of an Idle Manager instance.

Working With Time Base Values

GetTimeBaseEffectiveRate (page 228)
Returns the effective rate at which the specified time base is moving relative to its master clock.

GetTimeBaseFlags (page 229)
Obtains the control flags of a time base.

GetTimeBaseRate (page 231)
Retrieves the rate of a time base.

GetTimeBaseStartTime (page 233)
Determines the start time of a time base.

GetTimeBaseStatus (page 234)
Determines when the current time of a time base would fall outside of the range of values specified
by the time base's start and stop times.

GetTimeBaseStopTime (page 234)
Determines the stop time of a time base.

GetTimeBaseTime (page 235)
Obtains the current time value from a time base.

SetTimeBaseFlags (page 303)
Sets the contents of the control flags of a time base.

SetTimeBaseRate (page 306)
Sets the rate of a time base.

172 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetTimeBaseStartTime (page 307)
Sets the start time of a time base.

SetTimeBaseStopTime (page 307)
Sets the stop time of a time base.

SetTimeBaseTime (page 308)
Sets the current time of a time base.

SetTimeBaseValue (page 309)
Sets the current time of a time base.

Working With Times

AddTime (page 178)
Adds two times.

ConvertTime (page 183)
Converts a time obtained from one time base into a time that is relative to another time base.

ConvertTimeScale (page 183)
Converts a time from one time scale into a time that is relative to another time scale.

SubtractTime (page 333)
Subtracts one time from another.

Working With User Data

GetMovieUserData (page 225)
Obtains access to a movie's user data list.

Working With Wired Sprites

SpriteMediaGetActionVariable (page 315)
Returns the value of the sprite track variable with the specified ID.

SpriteMediaSetActionVariable (page 328)
Sets the value of a sprite track variable to a specified value.

Supporting Functions

AttachTimeBaseToCurrentThread (page 179)
Attaches a time base to the current thread.

CheckQuickTimeRegistration (page 181)
Deprecated.

ConvertTimeToClockTime (page 184)
Converts a time record in a time base to clock time.

DetachTimeBaseFromCurrentThread (page 186)
Detaches a time base from the current thread.

Functions by Task 173
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

EnterMoviesOnThread (page 191)
Indicates that the client will be using QuickTime on the current thread.

ExitMoviesOnThread (page 194)
Indicates to QuickTime that the client will no longer be using QuickTime on the current thread.

FlashMediaDoButtonActions (page 194)
Performs actions attached to a specified button.

FlashMediaFrameLabelToMovieTime (page 195)
Undocumented

FlashMediaFrameNumberToMovieTime (page 196)
Undocumented

FlashMediaGetDisplayedFrameNumber (page 196)
Undocumented

FlashMediaGetFlashVariable (page 197)
Gets the value of a specified Flash action variable.

FlashMediaGetRefConBounds (page 198)
Undocumented

FlashMediaGetRefConID (page 198)
Undocumented

FlashMediaGetSupportedSwfVersion (page 199)
Identifies the version of Flash that this version of QuickTime supports.

FlashMediaIDToRefCon (page 200)
Undocumented

FlashMediaSetFlashVariable (page 200)
Sets the specified Flash action variable to a value.

FlashMediaSetPan (page 201)
Undocumented

FlashMediaSetZoom (page 202)
Undocumented

FlashMediaSetZoomRect (page 202)
Undocumented

GetMovieAudioContext (page 205)
Returns the current audio context for a movie.

GetMovieNaturalBoundsRect (page 214)
Gets a movie's natural boundary rectangle.

GetMovieRateChangeConstraints (page 220)
Returns the minimum and maximum delay you can get when a movie's rate is changed.

GetNextTrackForCompositing (page 227)
Determines the next track in a movie's compositing process.

GetPrevTrackForCompositing (page 228)
Determines the previous track in a movie's compositing process.

GetTimeBaseMasterOffsetTimeBase (page 230)
Allows an offset time base to retrieve the master time base it is attached to.

GetTimeBaseRateChangeStatus (page 232)
Lets a time base client determine the time base's last rate change status.

174 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetTimeBaseThreadAttachState (page 235)
Determines whether a given time base is attached to a thread.

ITextAddString (page 243)
Undocumented

ITextGetString (page 244)
Undocumented

ITextRemoveString (page 244)
Undocumented

Media3DGetCameraAngleAspect (page 248)
Deprecated.

Media3DGetCameraData (page 248)
Deprecated.

Media3DGetCameraRange (page 248)
Deprecated.

Media3DGetCurrentGroup (page 249)
Deprecated.

Media3DGetNamedObjectList (page 249)
Deprecated.

Media3DGetRendererList (page 249)
Deprecated.

Media3DGetViewObject (page 250)
Deprecated.

Media3DRotateNamedObjectTo (page 250)
Deprecated.

Media3DScaleNamedObjectTo (page 251)
Deprecated.

Media3DSetCameraAngleAspect (page 251)
Deprecated.

Media3DSetCameraData (page 251)
Deprecated.

Media3DSetCameraRange (page 252)
Deprecated.

Media3DTranslateNamedObjectTo (page 252)
Deprecated.

MovieMediaGetChildDoMCActionCallback (page 252)
Undocumented

MovieMediaGetChildMovieDataReference (page 253)
Undocumented

MovieMediaGetCurrentMovieProperty (page 254)
Retrieves current properties from a media handler's movie.

MovieMediaGetCurrentTrackProperty (page 255)
Retrieves the media type property from a media handler's track.

MovieMediaGetDoMCActionCallback (page 255)
Gets a DoMCActionProc callback for a media.

Functions by Task 175
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

MovieMediaLoadChildMovieFromDataReference (page 256)
Undocumented

MovieMediaSetChildMovieDataReference (page 257)
Undocumented

NewMovieFromProperties (page 260)
Creates a new movie using movie properties.

PutMovieIntoDataFork64 (page 267)
Provides a 64-bit version of PutMovieIntoDataFork.

QTAudioContextCreateForAudioDevice (page 269)
Creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.

QTParseTextHREF (page 277)
Undocumented

QTSoundDescriptionGetProperty (page 280)
Gets a particular property of a sound description.

QTSoundDescriptionGetPropertyInfo (page 281)
Gets information about a particular property of a sound description.

QTSoundDescriptionSetProperty (page 282)
Sets a particular property of a sound description.

QTTextToNativeText (page 282)
Undocumented

SetMovieAudioContext (page 286)
Targets a movie to render into an audio context.

SetMovieVideoOutput (page 301)
Indicates to the ICM the video output component being used with a given movie.

SetTimeBaseOffsetTimeBase (page 306)
Attaches an offset time base to another time base.

SpriteMediaDisposeSprite (page 315)
Disposes of memory allocated for a sprite.

SpriteMediaGetActionVariableAsString (page 316)
Undocumented

SpriteMediaGetProperty (page 319)
Gets a sprite property; superseded by SpriteMediaGetSpriteProperty.

SpriteMediaGetSpriteActionsForQTEvent (page 320)
Gets the sprite action atom for an event.

SpriteMediaHitTestSprites (page 324)
Undocumented

SpriteMediaNewSprite (page 327)
Creates a new sprite.

SpriteMediaSetActionVariableToString (page 328)
Undocumented

SpriteMediaSetProperty (page 329)
Sets a sprite property; superseded by SpriteMediaSetSpriteProperty.

TextMediaDrawRaw (page 339)
Undocumented

176 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

TextMediaGetTextProperty (page 341)
Sets properties of a text media.

TextMediaRawIdle (page 343)
Undocumented

TextMediaRawSetup (page 344)
Undocumented

TextMediaSetTextProperty (page 345)
Sets properties of a text media.

VideoMediaGetCodecParameter (page 348)
Undocumented

VideoMediaGetStallCount (page 349)
Undocumented

VideoMediaSetCodecParameter (page 351)
Undocumented

Functions

AbortPrePrerollMovie
Terminates the operation of PrePrerollMovie.

void AbortPrePrerollMovie (
 Movie m,
 OSErr err
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

err
See Error Codes. Returns noErr if there is no error.

Discussion
You normally call this function only if you have previously called PrePrerollMovie (page 263) asynchronously
and the user quits your application.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 177
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

AddCallBackToTimeBase
Places a callback event into the list of scheduled callback events.

OSErr AddCallBackToTimeBase (
 QTCallBack cb
);

Parameters
cb

Specifies the callback event for the operation. Your clock component obtains this value from the
parameters passed to ClockCallMeWhen (page 453).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If your component calls this function, the Movie Toolbox notifies it of time, rate, or stop and start changes
via ClockRateChanged (page 458) and ClockTimeChanged (page 460).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AddTime
Adds two times.

void AddTime (
 TimeRecord *dst,
 const TimeRecord *src
);

Parameters
dst

A pointer to a time structure. This time structure contains one of the operands for the addition.
AddTime returns the result of the addition into this time structure.

src
A pointer to a time structure. The Movie Toolbox adds this value to the time or duration specified by
the dst parameter.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
You must specify the input times in time structures. The result value is formatted as a duration or a time
value, the same as the format of the structure pointed to by the dst parameter.

178 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AttachTimeBaseToCurrentThread
Attaches a time base to the current thread.

OSErr AttachTimeBaseToCurrentThread (
 TimeBase tb
);

Parameters
tb

A time base.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

CallMeWhen
Schedules a callback event.

OSErr CallMeWhen (
 QTCallBack cb,
 QTCallBackUPP callBackProc,
 long refCon,
 long param1,
 long param2,
 long param3
);

Parameters
cb

The callback event for the operation. You obtain this identifier from NewCallBack (page 258).

callBackProc
Points to your callback function, described in QTCallBackProc.

Functions 179
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

param1
Contains scheduling information. The Movie Toolbox interprets this parameter based on the value of
the cbType parameter to NewCallBack (page 258). If cbType is set to callBackAtTime, the param1
parameter contains flags (see below) indicating when to invoke your callback function for this callback
event. If the cbTypeparameter is set to callBackAtRate, param1 contains flags (see below) indicating
when to invoke your callback function for this event. Be sure to set unused flags to 0.

param2
Contains scheduling information. The Movie Toolbox interprets this parameter based on the value of
the cbType parameter to NewCallBack (page 258). If cbType is set to callBackAtTime, the param2
parameter contains the time value at which your callback function is to be invoked for this event. The
param1 parameter contains flags affecting when the Movie Toolbox calls your function. If cbType is
set to callBackAtRate, the param2 parameter contains the rate value at which your callback function
is to be invoked for this event. The param1 parameter contains flags affecting when the Movie Toolbox
calls your function.

param3
The time scale in which to interpret the time value that is stored in param3 if cbType is set to
callBackAtTime.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can call this function from your callback function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
Show Movie
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
Movies.h

CancelCallBack
Cancels a callback event before it executes.

180 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void CancelCallBack (
 QTCallBack cb
);

Parameters
cb

The callback event for this operation. You obtain this value from NewCallBack (page 258).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

CheckQuickTimeRegistration
Deprecated.

void CheckQuickTimeRegistration (
 void *registrationKey,
 long flags
);

Version Notes
This function is listed for historical purposes only. It may be unsupported or removed in future versions of
QuickTime.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

ChooseMovieClock
Searches media handlers to find the best clock for a movie.

void ChooseMovieClock (
 Movie m,
 long flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Functions 181
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

flags
Currently not used; set to 0.

Discussion
This function calls MediaGetClock (page 1101) and finds the first media handler that has a custom clock. It
then calls SetMovieMasterClock (page 290) to use the best clock as the movie's master timebase clock.

ChooseMovieClock can be used to tie the movie's master timebase to a sound clock if there is a sound
track. If there is no sound track, the microseconds clock is used as the master timebase.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

ClearMoviesStickyError
Clears the sticky error value.

void ClearMoviesStickyError (
 void
);

Discussion
The Movie Toolbox provides two error values to your application: the current error and the sticky error. The
current error is the result code from the last Movie Toolbox function; it is updated each time your application
calls a Movie Toolbox function. The Movie Toolbox saves the same result code in the sticky error value. Your
application clears the sticky error value by calling ClearMoviesStickyError. The Movie Toolbox then
places the first nonzero result code from any toolbox function used by your application into the sticky error
value. The Movie Toolbox does not update the sticky error value until your application clears it again.

Special Considerations

Many Movie Toolbox functions don't return an error as a function result; you must use GetMoviesError to
obtain the result code. Even if a function explicitly returns an error as a function result, that result is also
available using GetMoviesError. The Movie Toolbox does not place a result code into the sticky error value
until the field has been cleared. Your application is responsible for clearing the sticky error value to ensure
that it does not contain a stale result code.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win

182 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

ConvertTime
Converts a time obtained from one time base into a time that is relative to another time base.

void ConvertTime (
 TimeRecord *theTime,
 TimeBase newBase
);

Parameters
theTime

A pointer to a time structure that contains the time value to be converted. The ConvertTime function
replaces the contents of this time structure with the time value relative to the specified time base.

newBase
The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
This function includes the rate associated with each time value in the conversion; therefore, you should use
this function when you want to convert time values. Both time bases must rely on the same time source, and
you must specify the time to be converted in a time structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

ConvertTimeScale
Converts a time from one time scale into a time that is relative to another time scale.

void ConvertTimeScale (
 TimeRecord *theTime,
 TimeScale newScale
);

Parameters
theTime

A pointer to a time structure that contains the time value to be converted. ConvertTimeScale
replaces the contents of this time structure with the time value relative to the specified time scale.

newScale
The time scale for this operation.

Functions 183
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
This function does not include the rate associated with the time value in the conversion; therefore, you should
use this function when you want to convert time durations, but not when converting time values.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
qtsndtween
qtsndtween.win
qttext.win
TimeCode Media Handlers

Declared In
Movies.h

ConvertTimeToClockTime
Converts a time record in a time base to clock time.

void ConvertTimeToClockTime (
 TimeRecord *time
);

Parameters
time

The TimeRecord structure to be converted. It must contain a valid time base; otherwise it remains
untouched.

Discussion
The result of this call has no meaning it the time base rate is 0.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

CreateMovieControl
Creates a movie control object to pass to the Mac OS Control Manager.

184 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr CreateMovieControl (
 WindowRef theWindow,
 Rect *localRect,
 Movie theMovie,
 UInt32 options,
 ControlRef *returnedControl
);

Parameters
theWindow

The window in which the control is placed.

localRect
A pointer to a Rect structure that describes in local coordinates the window in which the movie
control is placed. If NIL is passed, the movie control is positioned at 0,0 within the window; it will
have the natural dimensions of the movie plus the height of the movie controls if they are visible. If
0 height and width is passed, this parameter is interpreted as an anchor point and the top left point
of the movie control will be located at this position with height and width as in the NIL case. For all
other cases of rectangles, the movie control is centered within the rectangle by default and is sized
to fit within it while maintaining the movie's aspect ratio.

theMovie
The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

options
Constants (see below) that determine parts of the movie control's appearance. See these constants:

kMovieControlOptionHideController

kMovieControlOptionLocateTopLeft

kMovieControlOptionEnableEditing

kMovieControlOptionHandleEditingHI

kMovieControlOptionSetKeysEnabled

kMovieControlOptionManuallyIdled

returnedControl
A handle to a ControlRecord struct. This defines a movie control, suitable for passing to Mac OS
Control Manager functions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes. This routine returns
an error if there is a problem with one of the parameters or if an error occurred while creating the underlying
movie controller or the custom control itself. If an error is returned, the value of returnedControl is
undefined.

Discussion
The Carbon Movie Control is implemented as a custom control, which installs an event handler to handle
the Carbon Events sent to controls. When a Carbon Movie Control is created for a movie, a movie controller
is also created. The movie control then directs user interface events to the controller. The application can
install event handlers on the Carbon Movie Control to handle such things as contextual menu clicks or to
intercept events to do special processing. Control Manager calls can be made as well.

Functions 185
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Special Considerations

The control can be deleted by calling the Mac OS function DisposeControl. Note that the control is
automatically disposed of if the enclosing window is destroyed. Note, too, that the underlying movie controller
is disposed of when the control is deleted.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonShell
qtshellCEvents
qtshellCEvents.win
QuickTimeMovieControl

Declared In
Movies.h

DetachTimeBaseFromCurrentThread
Detaches a time base from the current thread.

OSErr DetachTimeBaseFromCurrentThread (
 TimeBase tb
);

Parameters
tb

A time base.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

DisposeCallBack
Disposes of a callback event.

186 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void DisposeCallBack (
 QTCallBack cb
);

Parameters
cb

The callback event for the operation. You obtain this value from NewCallBack (page 258).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
You should call this function when you are done with each callback event.

Special Considerations

Don't call this function at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
Show Movie
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
Movies.h

DisposeMatte
Disposes of a matte obtained from the GetTrackMatte function.

void DisposeMatte (
 PixMapHandle theMatte
);

Parameters
theMatte

Handle to the matte to be disposed. Your application obtains this handle from GetTrackMatte (page
238).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 187
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code

Declared In
Movies.h

DisposeMovie
Frees any memory being used by a movie, including the memory used by the movie's tracks and media
structures.

void DisposeMovie (
 Movie theMovie
);

Parameters
theMovie

Identifies the movie to be freed. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), or NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
Your application should call this function when it is done working with a movie, as shown in the following
example:

// DisposeMovie coding example
// See "Discovering QuickTime," page 85
void CreateMyCoolMovie (void)
{
 StandardFileReply sfr;
 Movie movie =NIL;
 FSSpec fss;
 short nFileRefNum =0;
 short nResID =movieInDataForkResID;
 StandardPutFile("\pEnter movie file name:", "\puntitled.mov", &sfr);
 if (!sfr.sfGood)
 return;
 CreateMovieFile(&sfr.sfFile,
 FOUR_CHAR_CODE('TVOD'),
 smCurrentScript,
 createMovieFileDeleteCurFile |
createMovieFileDontCreateResFile,
 &nFileRefNum,
 &movie);
 CreateMyVideoTrack(movie); // See "Creating a Track," below
 AddMovieResource(movie, nFileRefNum, &nResID, NIL);
 if (nFileRefNum !=0)
 CloseMovieFile(nFileRefNum);
 DisposeMovie(movie);
}

188 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

DisposeTimeBase
Disposes of a time base once you are finished with it.

void DisposeTimeBase (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
qtshoweffect.win
vrscript.win

Declared In
Movies.h

EnterMovies
Initializes the Movie Toolbox and creates a private storage area for your application.

Functions 189
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr EnterMovies (
 void
);

Return Value
Be sure to check the value returned by this function before using any other facilities of the Movie Toolbox.
See Error Codes. Returns noErr if there is no error.

Discussion
Before calling any Movie Toolbox functions, you must use EnterMovies to initialize the toolbox. Your
application may call EnterMovies multiple times. The following code sample demonstrates how your
application can call the Gestalt Manager to determine whether the Movie Toolbox is installed, using the
selector gestaltQuickTime ('qtim'), before calling EnterMovies:

//Using the Gestalt Manager with the Movie Toolbox
#include <GestaltEqu.h>
#include <Movies.h>
Boolean IsQuickTimeInstalled (void)
{
 short error;
 long result;

 error =Gestalt (gestaltQuickTime, &result);
 return (error ==noErr);
}
void main (void)
{
 Boolean qtInstalled;
 .
 .
 .
 qtInstalled =IsQuickTimeInstalled ();
}
// EnterMovies coding example
// See "Discovering QuickTime," page 242
void MyInitMovieToolbox (void)
{
 InitGraf(&qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(NIL);
 EnterMovies();
}
void main (void)
{
 MyInitMovieToolbox();
 CreateMyCoolMovie();
}

Special Considerations

You should initialize any other Macintosh managers your application uses before calling EnterMovies. You
do not need to balance calls to EnterMovies with calls to ExitMovies (page 192); you need to call
ExitMovies only if you finish with the Movie Toolbox long before your application is ready to quit.

190 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code
MakeEffectMovie
mfc.win
MovieGWorlds
SGDataProcSample

Declared In
Movies.h

EnterMoviesOnThread
Indicates that the client will be using QuickTime on the current thread.

OSErr EnterMoviesOnThread (
 UInt32 inFlags
);

Parameters
inFlags

Flag (see below) indicating how the executing thread will use QuickTime. Setting the thread mode
is a convenience provided by this function. Pass 0 for the default options. See these constants:

kQTEnterMoviesFlagDontSetComponentsThreadMode

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. This function returns
an appropriate operating system or QuickTime error if the operation couldn't be completed. This might occur
because a second call on the thread was made that used incompatible flags (for example, the first call required
a shared state but a subsequent call required a private state).

Discussion
This function is analogous to EnterMovies. It initializes QuickTime and prepares QuickTime for calls from
its thread. Unlike EnterMovies, this function allows the client to indicate if its access to QuickTime requires
sharing of QuickTime state with the main thread. The default is to maintain a private state.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
ThreadsExportMovie
ThreadsImporter
ThreadsImportMovie

Functions 191
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

ExecuteCallBack
Called by a clock component when it determines that it is time to execute a callback function.

void ExecuteCallBack (
 QTCallBack cb
);

Parameters
cb

Specifies the callback event for the operation. Your clock component obtains this value from the
parameters passed to your ClockCallMeWhen (page 453) function.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
Before calling the application's function, the ExecuteCallBack function cancels the callback event. In this
manner, the callback event is prevented from executing twice in succession. It is up to the application, or
the callback function itself, to reschedule the callback event.

Special Considerations

Your clock component should not release the memory associated with the callback event at this time. You
should do so only with ClockDisposeCallBack (page 455). This is particularly important when a callback
function cannot execute at interrupt time, since the Movie Toolbox schedules such functions for invocation
at a later time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

ExitMovies
Automatically called when an application quits.

void ExitMovies (
 void
);

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

192 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
You only need to call this function if you finish with the Movie Toolbox long before your application is ready
to quit. When you call ExitMovies, the Movie Toolbox releases the private storage (which may be significant)
that was allocated when you called EnterMovies (page 189). As a general rule, your application seldom uses
this function; the following code illustrates an exception:

// ExitMovies coding example
// See "Discovering QuickTime," page 225
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG msg;
 HANDLE hAccelTable;

 if (!hPrevInstance) // Is there a previous instance?
 if (!(InitApplication(hInstance))) // Register window class
 return FALSE; // Report failure

 if (InitializeQTML(0) !=0) { // Initialize QTML
 MessageBox(hwnd, "QuickTime not available", // Notify user
 "", MB_OK);
 return FALSE; // Report failure
 } // end if (InitializeQTML(0) !=0)

 if (EnterMovies() !=0) { // Initialize QuickTime
 MessageBox(hwnd, "QuickTime not available", // Notify user
 "", MB_OK);
 return FALSE; // Report failure
 } // end if (EnterMovies() !=0)

 if (!(InitInstance(hInstance, nCmdShow))) // Create main window
 return FALSE; // Report failure

 hAccelTable =LoadAccelerators(hInstance, // Load accelerator table
 MAKEINTRESOURCE(IDR_ACCELSIMPLESDI));

 // Main message loop

 while (GetMessage(&msg, NIL, 0, 0)) // Retrieve next message
 if (!TranslateAccelerator(msg.hwnd, // Check for kbd accelerator
 hAccelTable, &msg)) {
 TranslateMessage(&msg); // Convert virtual key to character
 DispatchMessage(&msg); // Send message to window procedure
 } // end if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))

 ExitMovies(); // Terminate Toolbox
 TerminateQTML(); // Terminate QuickTime

 return msg.wParam;
} // end WinMain

Special Considerations

Before calling ExitMovies, be sure that you have closed your connections to any components that use the
Movie Toolbox, such as movie controllers, sequence grabbers, and so on.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 193
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
mfc.win
qtcontroller
qtwiredactions

Declared In
Movies.h

ExitMoviesOnThread
Indicates to QuickTime that the client will no longer be using QuickTime on the current thread.

OSErr ExitMoviesOnThread (
 void
);

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns an appropriate
operating system or QuickTime error if the operation couldn't be completed. This might occur because a
previous call to EnterMoviesOnThread was not made.

Discussion
This function should be called before exiting from a spawned thread that uses QuickTime. It undoes the
setup performed by EnterMoviesOnThread. Each call to EnterMoviesOnThread should be matched with
a call to this function. This function should not be called on a thread without a previous call to
EnterMoviesOnThread.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
ThreadsExportMovie
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

FlashMediaDoButtonActions
Performs actions attached to a specified button.

194 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult FlashMediaDoButtonActions (
 MediaHandler mh,
 char *path,
 long buttonID,
 long transition
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

path
Specifies the path to the button to which the action is attached.

buttonID
The ID of the button.

transition
Sends a mouse transition message to the object and whatever Flash actions are associated with that
transition on the object that should be performed. The values are specific Flash transition constants.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaFrameLabelToMovieTime
Undocumented

ComponentResult FlashMediaFrameLabelToMovieTime (
 MediaHandler mh,
 Ptr theLabel,
 TimeValue *movieTime
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

theLabel
Undocumented

movieTime
Undocumented

Functions 195
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaFrameNumberToMovieTime
Undocumented

ComponentResult FlashMediaFrameNumberToMovieTime (
 MediaHandler mh,
 long flashFrameNumber,
 TimeValue *movieTime
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

flashFrameNumber
Undocumented

movieTime
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaGetDisplayedFrameNumber
Undocumented

196 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult FlashMediaGetDisplayedFrameNumber (
 MediaHandler mh,
 long *flashFrameNumber
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

flashFrameNumber
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaGetFlashVariable
Gets the value of a specified Flash action variable.

ComponentResult FlashMediaGetFlashVariable (
 MediaHandler mh,
 char *path,
 char *name,
 Handle *theVariableCStringOut
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

path
Specifies the path to the Flash button to which the variable is attached.

name
Specifies the name of the Flash variable.

theVariableCStringOut
A handle to the value of the Flash variable as a C string.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Functions 197
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaGetRefConBounds
Undocumented

ComponentResult FlashMediaGetRefConBounds (
 MediaHandler mh,
 long refCon,
 long *left,
 long *top,
 long *right,
 long *bottom
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

refCon
Undocumented

left
Undocumented

top
Undocumented

right
Undocumented

bottom
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaGetRefConID
Undocumented

198 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult FlashMediaGetRefConID (
 MediaHandler mh,
 long refCon,
 long *refConID
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

refCon
Undocumented

refConID
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaGetSupportedSwfVersion
Identifies the version of Flash that this version of QuickTime supports.

ComponentResult FlashMediaGetSupportedSwfVersion (
 MediaHandler mh,
 unsigned char *swfVersion
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

swfVersion
The version number of the most current version of Flash that this version of QuickTime supports.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Functions 199
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

FlashMediaIDToRefCon
Undocumented

ComponentResult FlashMediaIDToRefCon (
 MediaHandler mh,
 long refConID,
 long *refCon
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

refConID
Undocumented

refCon
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaSetFlashVariable
Sets the specified Flash action variable to a value.

ComponentResult FlashMediaSetFlashVariable (
 MediaHandler mh,
 char *path,
 char *name,
 char *value,
 Boolean updateFocus
);

Parameters
mh

The Toolbox's connection to your derived Flash media handler. You can obtain this reference from
GetMediaHandler (page 1577).

200 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

path
Specifies the path to the Flash button to which the variable is attached.

name
Specifies the name of the Flash variable.

value
Specifies the new value of the Flash variable.

updateFocus
Pass TRUE if the focus is to be changed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaSetPan
Undocumented

ComponentResult FlashMediaSetPan (
 MediaHandler mh,
 short xPercent,
 short yPercent
);

Parameters
mh

Undocumented

xPercent
Undocumented

yPercent
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 201
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

FlashMediaSetZoom
Undocumented

ComponentResult FlashMediaSetZoom (
 MediaHandler mh,
 short factor
);

Parameters
mh

Undocumented

factor
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

FlashMediaSetZoomRect
Undocumented

ComponentResult FlashMediaSetZoomRect (
 MediaHandler mh,
 long left,
 long top,
 long right,
 long bottom
);

Parameters
mh

Undocumented

left
Undocumented

top
Undocumented

right
Undocumented

bottom
Undocumented

202 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetCallBackTimeBase
Retrieves the time base of a callback event.

TimeBase GetCallBackTimeBase (
 QTCallBack cb
);

Parameters
cb

The callback event for the operation. You obtain this value from the NewCallBack (page 258) function.

Return Value
A pointer to a TimeBaseRecord structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetCallBackType
Retrieves a callback event's type.

short GetCallBackType (
 QTCallBack cb
);

Parameters
cb

The callback event for the operation. You obtain this value from NewCallBack (page 258).

Return Value
The callback type constant (see below). If the high-order bit (defined by callBackAtInterrupt) of the
returned value is set to 1, the event can be invoked at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 203
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetFirstCallBack
Returns the first callback event associated with a specified time base.

QTCallBack GetFirstCallBack (
 TimeBase tb
);

Parameters
tb

Specifies the time base for the operation. Your component can obtain the time base reference from
your ClockSetTimeBase (page 459) function or from the Movie Toolbox's
GetCallBackTimeBase (page 203) function.

Return Value
A pointer to a CallBackRecord structure. Your software can pass this structure to other functions, such as
ClockRateChanged (page 458).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieActive
Determines whether a movie is currently active.

Boolean GetMovieActive (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
TRUE if the movie is currently active, FALSE otherwise.

Special Considerations

The Movie Toolbox services only active movies.

Version Notes
Introduced in QuickTime 3 or earlier.

204 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieActiveSegment
Determines what portion of a movie is currently active for playing.

void GetMovieActiveSegment (
 Movie theMovie,
 TimeValue *startTime,
 TimeValue *duration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

startTime
A pointer to a time value. GetMovieActiveSegment places the starting time of the active segment
into the field referred to by this parameter. If the returned time value is set to -1, the entire movie is
active. In this case, the Movie Toolbox does not return any duration information.

duration
A pointer to a time value. GetMovieActiveSegment places the duration of the active movie segment
into the field referred to by this parameter. If the entire movie is active, the startTime parameter is
set to -1 and this parameter does not return any duration information.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieAudioContext
Returns the current audio context for a movie.

Functions 205
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSStatus GetMovieAudioContext (
 Movie movie,
 QTAudioContextRef *audioContext
);

Parameters
movie

The movie.

audioContext
A pointer to a variable to receive the audio context.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieBoundsRgn
Determines a movie's boundary region.

RgnHandle GetMovieBoundsRgn (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A handle to a MacRegion structure that the function allocates. If the movie does not have a spatial
representation at the current time, the function returns an empty region. If the function could not satisfy the
request, it sets the returned handle to NIL.

Discussion
The Movie Toolbox derives the boundary region only from enabled tracks, and only from those tracks that
are used in the current display mode (that is, movie or preview). The boundary region is valid for the current
movie time.

Special Considerations

Your application must dispose of the returned region when it is done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

206 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetMovieBox
Returns a movie's boundary rectangle, which is a rectangle that encompasses all of the movie's enabled
tracks.

void GetMovieBox (
 Movie theMovie,
 Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

boxRect
A pointer to a rectangle. GetMovieBox returns the coordinates of the movie's boundary rectangle
into the structure referred to by this parameter.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
The movie box is in the coordinate system of the movie's graphics world and defines the movie's boundaries
over the entire duration of the movie. The movie's boundary rectangle defines the size and shape of the
movie before the Movie Toolbox applies the display clipping region. The following code sample illustrates
the use of GetMovieBox:

// GetMovieBox coding example
// See "Discovering QuickTime," page 218
void main (void)
{
 WindowRef pMacWnd;
 Rect rectWnd;
 Rect rectMovie;
 Movie movie;
 Boolean bDone =FALSE;
 OSErr nErr;
 EventRecord er;
 WindowRef pWhichWnd;
 short nPart;
 InitGraf(&qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(NIL);
 nErr =EnterMovies();
 if (nErr !=noErr)
 return;

 SetRect(&rectWnd, 100, 100, 200, 200);
 pMacWnd =NewCWindow(NIL, &rectWnd, "\pMovie", FALSE,
 noGrowDocProc, (WindowRef)-1, TRUE, 0);
 SetPort(pMacWnd);
 movie =GetMovie();
 if (movie ==NIL)

Functions 207
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

 return;

 GetMovieBox(movie, &rectMovie);
 OffsetRect(&rectMovie, -rectMovie.left, -rectMovie.top);
 SetMovieBox(movie, &rectMovie);

 SizeWindow(pMacWnd, rectMovie.right, rectMovie.bottom, TRUE);
 ShowWindow(pMacWnd);
 SetMovieGWorld(movie, (CGrafPtr)pMacWnd, NIL);

 StartMovie(movie);

 . . .

 DisposeMovie(movie);
 DisposeWindow(pMacWnd);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
vrmovies
vrscript
vrscript.win

Declared In
Movies.h

GetMovieClipRgn
Determines a movie's clipping region.

RgnHandle GetMovieClipRgn (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A handle to a MacRegion structure, which the function allocates, that represents the clipping region. If the
function could not satisfy your request or if there is no clipping region defined for the movie,
GetMovieClipRgn sets the returned handle to NIL.

Discussion
The clipping region is saved with the movie when your application saves the movie.

208 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Special Considerations

Your application must dispose of this region when it is done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieCreationTime
Returns the movie's creation date and time information.

unsigned long GetMovieCreationTime (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The movie's creation date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieDisplayBoundsRgn
Determines a movie's display boundary region.

RgnHandle GetMovieDisplayBoundsRgn (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A handle to a MacRegion structure that the function allocates. If the movie does not have a spatial
representation at the current time, the function returns an empty region. If the function could not satisfy the
request, it sets the returned handle to NIL.

Functions 209
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
The display boundary region encloses all of a movie's enabled tracks after the track matrix, track clip, movie
matrix, and movie clip have been applied to them. This region is in the display coordinate system of the
movie's graphics world. The Movie Toolbox derives the display boundary region only from enabled tracks,
and only from those tracks that are used in the current display mode (that is, movie, poster, or preview). The
display boundary region is valid for the current movie time.

Special Considerations

Your application must dispose of the returned handle when it is done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code

Declared In
Movies.h

GetMovieDisplayClipRgn
Determines a movie's current display clipping region.

RgnHandle GetMovieDisplayClipRgn (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A handle to a MacRegion structure that the function allocates. If the movie does not have a spatial
representation at the current time, the function returns an empty region. If the function could not satisfy the
request, it sets the returned handle to NIL.

Special Considerations

Your application must dispose of the returned handle when it is done with it. Note that the display clipping
region is not saved with the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

210 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetMovieDuration
Returns the duration of a movie.

TimeValue GetMovieDuration (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The duration of the designated movie.

Discussion
This function returns a time value, expressed in the movie's time scale, that is calculated to be the maximum
durations of all the tracks in the movie. The following code sample illustrates its use:

// GetMovieDuration coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 211
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Related Sample Code
CompressMovies
MovieGWorlds
QT Internals
qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

GetMovieGWorld
Returns a movie's graphics world.

void GetMovieGWorld (
 Movie theMovie,
 CGrafPtr *port,
 GDHandle *gdh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

port
A pointer to a field that is to receive a pointer to a CGrafPort structure. Set this parameter to NIL
if you don't want this information.

gdh
A pointer to a field that is to receive a handle to a GDevice structure. Set this parameter to NIL if
you don't want this information.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
Inside Mac Movie TB Code
MovieGWorlds
vrscript
vrscript.win

Declared In
Movies.h

212 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetMovieMatrix
Retrieves a movie's transformation matrix.

void GetMovieMatrix (
 Movie theMovie,
 MatrixRecord *matrix
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

matrix
A pointer to a MatrixRecord structure, where GetMovieMatrix returns the movie's matrix.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
QTCarbonShell
qtskins.win
VideoFrameToGWorld
vrmovies

Declared In
Movies.h

GetMovieModificationTime
Returns a movie's modification date and time.

unsigned long GetMovieModificationTime (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The movie's modification date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 213
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieNaturalBoundsRect
Gets a movie's natural boundary rectangle.

void GetMovieNaturalBoundsRect (
 Movie theMovie,
 Rect *naturalBounds
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

naturalBounds
A pointer to a Rect structure that represents the movie's bounding rectangle.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
QTCarbonShell
SimpleVideoOut
ThreadsExportMovie
ThreadsImportMovie

Declared In
Movies.h

GetMoviePict
Creates a QuickDraw picture from a specified movie at a specified time.

214 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

PicHandle GetMoviePict (
 Movie theMovie,
 TimeValue time
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The movie time from which the image is to be taken.

Return Value
A handle to a Picture structure. If the function could not create the picture, the returned handle is set to
NIL.

Discussion
This function uses only those movie tracks that are currently enabled and would therefore be used in playback.
Your application may call this function even if the movie is inactive.

Special Considerations

Your application must dispose of this picture handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
DigitizerShell
DragAndDrop Shell
MovieGWorlds
VelEng Wavelet

Declared In
Movies.h

GetMoviePosterPict
Creates a QuickDraw picture that contains a movie's poster.

PicHandle GetMoviePosterPict (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Functions 215
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
A handle to a Picture structure. If the function could not create the picture, the returned handle is set to
NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
bMoviePaletteCocoa
CompressMovies
MovieGWorlds
qtcompress.win
qtinfo

Declared In
Movies.h

GetMoviePosterTime
Returns the poster's time in a movie.

TimeValue GetMoviePosterTime (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The time in the movie from which its poster is taken.

Discussion
Since a movie poster has no duration, it is defined by a point in time within the movie. The time value returned
by GetMoviePosterTime is in the time coordinate system of the movie and represents the starting time
for the movie frame that contains the poster image.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

216 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

GetMoviePreferredRate
Returns a movie's default playback rate.

Fixed GetMoviePreferredRate (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The movie's default playback rate.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
qtbigscreen
qtbigscreen.win
vrscript
vrscript.win

Declared In
Movies.h

GetMoviePreferredVolume
Returns a movie's preferred volume setting.

short GetMoviePreferredVolume (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The movie's preferred volume setting.

Functions 217
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
A movie's tracks have their own volume settings. A track's volume is scaled by the movie's volume to produce
the track's final volume. On Macintosh computers, the movie's volume is further scaled by the sound volume
that the user controls from the Sound control panel.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

GetMoviePreviewMode
Determines whether a movie is in preview mode.

Boolean GetMoviePreviewMode (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
TRUE if the movie is in preview mode; FALSE if the movie is in normal playback mode.

Discussion
If a movie is in preview mode, only the movie's preview can be displayed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMoviePreviewTime
Returns the starting time and duration of the movie's preview.

218 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void GetMoviePreviewTime (
 Movie theMovie,
 TimeValue *previewTime,
 TimeValue *previewDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

previewTime
A pointer to a time value. The Movie Toolbox places the preview's starting time into the field referred
to by this parameter. If the movie does not have a preview, the Movie Toolbox sets this returned value
to 0.

previewDuration
A pointer to a time value. The Movie Toolbox places the preview's duration into the field referred to
by this parameter. If the movie does not have a preview, the Movie Toolbox sets this returned value
to 0.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

GetMovieRate
Returns a movie's playback rate.

Fixed GetMovieRate (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The rate at which the movie is currently playing, expressed as a 32-bit fixed-point number. Positive integers
indicate forward rates and negative integers indicate reverse rates. A value of 1 indicates normal speed, a
value of 2 indicates double speed, -2 means the movie is playing backward at double speed, and so on. A
value of 0 means the movie is paused or stopped.

Functions 219
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QT Internals
QTCarbonShell
vrscript
vrscript.win

Declared In
Movies.h

GetMovieRateChangeConstraints
Returns the minimum and maximum delay you can get when a movie's rate is changed.

OSErr GetMovieRateChangeConstraints (
 Movie theMovie,
 TimeRecord *minimumDelay,
 TimeRecord *maximumDelay
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

minimumDelay
A pointer to a TimeRecord structure. The function updates this structure to contain the minimum
delay when a rate change happens.

maximumDelay
A pointer to a TimeRecord structure. The function updates this structure to contain the maximum
delay when a rate change happens.

Discussion
If the time base master clock of the movie is changed, this function must be called again to reflect the current
constraints.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieSelection
Returns information about a movie's current selection.

220 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void GetMovieSelection (
 Movie theMovie,
 TimeValue *selectionTime,
 TimeValue *selectionDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

selectionTime
A pointer to a time value. The GetMovieSelection function places the starting time of the current
selection into the field referred to by this parameter. Set this parameter to NIL if you don't want this
information.

selectionDuration
A pointer to a time value. The GetMovieSelection function places the duration of the current
selection into the field referred to by this parameter. Set this parameter to NIL if you don't want this
information.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

GetMoviesError
Returns the contents of the current error value and resets the current error value to 0.

OSErr GetMoviesError (
 void
);

Return Value
See Error Codes. Returns noErr if there is no error in the current error value.

Discussion
The Movie Toolbox provides two error values to your application: the current error and the sticky error. The
current error is the result code from the last Movie Toolbox function; it is updated each time your application
calls a Movie Toolbox function. The following code sample shows a typical use:

// GetMoviesError coding example
// See "Discovering QuickTime," page 256

Functions 221
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr QTUtils_SaveMovie (Movie theMovie)
{
 StandardFileReply mySFReply;
 StringPtr myPrompt =QTUtils_ConvertCToPascalString(kSavePrompt);
 StringPtr myFileName =
 QTUtils_ConvertCToPascalString(kSaveMovieFileName);
 OSErr myErr =noErr;
 if (theMovie ==NIL)
 return(invalidMovie);
 StandardPutFile(myPrompt, myFileName, &mySFReply);
 if (mySFReply.sfGood) {
 FlattenMovieData(theMovie,
 flattenAddMovieToDataFork,
 &mySFReply.sfFile,
 FOUR_CHAR_CODE('TVOD'),
 smSystemScript,
 createMovieFileDeleteCurFile);
 myErr =GetMoviesError();
 }
 free(myPrompt);
 free(myFileName);
 return(myErr);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

GetMoviesStickyError
Returns the contents of the sticky error value.

OSErr GetMoviesStickyError (
 void
);

Return Value
See Error Codes. Returns noErr if there is no error in the sticky error value.

Discussion
The sticky error value contains the first nonzero result code from any Movie Toolbox function that you called
after having cleared the sticky error with ClearMoviesStickyError (page 182).

222 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

GetMovieTime
Returns a movie's current time both as a time value and in a time structure.

TimeValue GetMovieTime (
 Movie theMovie,
 TimeRecord *currentTime
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

currentTime
A pointer to a TimeRecord structure. The function updates this time structure to contain the movie's
current time. If you don't want this information, set this parameter to NIL.

Return Value
The time value of the current time.

Discussion
This function returns the movie's current time value in two formats: as a time value and in a time structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell
DragAndDrop Shell
MovieBrowser
MovieGWorlds
QT Internals

Functions 223
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

GetMovieTimeBase
Returns a movie's time base.

TimeBase GetMovieTimeBase (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The movie's TimeBaseRecord structure.

Special Considerations

The Movie Toolbox disposes of a movie's time base when you dispose of the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LiveVideoMixer2
qtinfo
vrmovies
vrscript
vrscript.win

Declared In
Movies.h

GetMovieTimeScale
Returns the time scale of a movie.

TimeScale GetMovieTimeScale (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A long integer that contains the movie's time scale.

224 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
qteffects.win
qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

GetMovieUserData
Obtains access to a movie's user data list.

UserData GetMovieUserData (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The UserDataRecord structure for the movie. If the function could not locate the movie's user data, it sets
this return value to NIL.

Discussion
This function returns a reference to the movie's user data list, which is valid until you dispose of the movie.
When you save the movie, the Movie Toolbox saves the user data as well.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

Functions 225
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetMovieVisualContext
Returns the current visual context for a movie.

OSStatus GetMovieVisualContext (
 Movie movie,
 QTVisualContextRef *visualContext
);

Parameters
movie

The movie.

visualContext
A pointer to a variable to receive the visual context.

Return Value
An error code. Returns noErr if there is no error. Returns memFullErr if memory cannot be allocated. Returns
kQTVisualContextRequiredErr if the movie is not using a visual context. Returns paramErr if the movie
or visualContextOut is NULL.

Discussion
Returns the QTVisualContext object associated with the movie. You are responsible for retaining and
releasing the object as needed (that is, if the returned object has not been retained for you). If the visual
context was set to NULL (see SetMovieVisualContext (page 302)), noErr is returned and
visualContextOut receives NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVolume
Returns a movie's current volume setting.

short GetMovieVolume (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The current volume setting for the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie

226 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

qteffects.win
qtgraphics.win
vrscript
vrscript.win

Declared In
Movies.h

GetNextCallBack
Returns the next callback event associated with a specified time base.

QTCallBack GetNextCallBack (
 QTCallBack cb
);

Parameters
cb

Specifies the starting callback event for the operation. Your clock component obtains this value from
the GetFirstCallBack (page 204) function or from previous calls to the GetNextCallBack function.

Return Value
A pointer to a CallBackRecord structure. Your software can pass this structure to other functions, such as
ClockRateChanged (page 458).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetNextTrackForCompositing
Determines the next track in a movie's compositing process.

Track GetNextTrackForCompositing (
 Movie theMovie,
 Track theTrack
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

theTrack
The identifier of the track from which to start.

Return Value
The returned identifier of the next track to be composited.

Functions 227
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetPrevTrackForCompositing
Determines the previous track in a movie's compositing process.

Track GetPrevTrackForCompositing (
 Movie theMovie,
 Track theTrack
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

theTrack
The identifier of the track from which to start.

Return Value
The returned identifier of the previous track in the compositing process.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTimeBaseEffectiveRate
Returns the effective rate at which the specified time base is moving relative to its master clock.

Fixed GetTimeBaseEffectiveRate (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

Return Value
The effective rate at which the time base specified by tb is moving relative to its master clock.

228 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTimeBaseFlags
Obtains the control flags of a time base.

long GetTimeBaseFlags (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

Return Value
Control flags (see below). Unused flags are set to 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

GetTimeBaseMasterClock
Determines the clock component that is assigned to a time base.

ComponentInstance GetTimeBaseMasterClock (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

Functions 229
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
A reference to a component instance. If a clock component is not assigned to the time base, the returned
reference is NIL. In this case, the time base relies on another time base for its time source. Use
GetTimeBaseMasterTimeBase (page 231) to obtain the time base reference to that master time base.

Discussion
This function returns a reference to a component instance of the clock component that provides a time
source to the specified time base. Every time base derives its time from either a clock component or from
another time base. If a time base derives its time from a clock component, use this function to obtain the
component instance of the clock component.

Special Considerations

The Component Manager allows a single component to serve multiple client applications at the same time.
Each client application has a unique connection to the component, identified by a component instance.
Don't close this connection; the time base is using it to maintain its time source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
QTMusicToo

Declared In
Movies.h

GetTimeBaseMasterOffsetTimeBase
Allows an offset time base to retrieve the master time base it is attached to.

TimeBase GetTimeBaseMasterOffsetTimeBase (
 TimeBase tb
);

Parameters
tb

An offset time base.

Return Value
The master time base for the offset time base passed in tb. Returns NIL if tb does not contain an offset time
base.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

230 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetTimeBaseMasterTimeBase
Determines the master time base that is assigned to a time base.

TimeBase GetTimeBaseMasterTimeBase (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

Return Value
A time base. If a master time base is not assigned to the time base, this function sets the returned reference
to NIL. In this case, the time base relies on a clock component for its time source. Use
GetTimeBaseMasterClock (page 229) to obtain the component instance reference to that clock component.

Discussion
This function returns a reference to the master time base that provides a time source to this time base. A
time base derives its time from either a clock component or from another time base. If a time base derives
its time from another time base, use this function to obtain the identifier for that master time base.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTimeBaseRate
Retrieves the rate of a time base.

Fixed GetTimeBaseRate (
 TimeBase tb
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

Return Value
The time base's rate. This rate value may be nonzero even if the time base has stopped, because it has reached
its stop time. Rates may be set to negative values, which cause time to move backward for the time base.

Discussion
This function returns the current rate of the time base as a fixed-point number.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 231
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Movies.h

GetTimeBaseRateChangeStatus
Lets a time base client determine the time base's last rate change status.

OSErr GetTimeBaseRateChangeStatus (
 TimeBase tb,
 TimeScale scale,
 Fixed *ratedChangedTo,
 TimeBaseStatus *flags,
 TimeRecord *rateChangeTimeBaseTime,
 TimeRecord *rateChangeClockTime,
 TimeRecord *currentClockTime
);

Parameters
tb

A pointer to a TimeBaseRecord structure.

scale
The scale to use for the returned time values. Pass 0 to retrieve the time in the preferred time scale
of the time base.

rateChangedTo
The rate value changed to. Clients may pass NIL if they do not want to receive this information.

flags
A pointer to a flag (see below) that will be returned when the clock is waiting for a future time to start
moving while its rate is nonzero. When set, the unpinned time will return a negative value telling
how far you are from the real start time. Clients may pass NIL if they do not want to receive this
information. rateChangeTimeBaseTime The time base time when the rate changed. Clients may
pass NIL if they do not want to receive this information. rateChangeClockTime The clock time
when the rate changed. Clients may pass NIL if they do not want to receive this information.
currentClockTime The current clock time value. Clients may pass NIL if they do not want to receive
this information. timeBaseRateChanging The clock is waiting for a future time to start moving while
its rate is nonzero. When set, the unpinned time will return a negative value telling how far you are
from the real start time. See these constants:

timeBaseRateChanging

rateChangeTimeBaseTime
The time base time when the rate changed. Clients may pass NIL if they do not want to receive this
information.

rateChangeClockTime
The clock time when the rate changed. Clients may pass NIL if they do not want to receive this
information.

232 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

currentClockTime
The current clock time value. Clients may pass NIL if they do not want to receive this information.

Discussion
When the flag timeBaseRateChanging is returned, the amount of time left before the time base ticks is
equal to (rateChangeClockTime - currentClockTime).

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTimeBaseStartTime
Determines the start time of a time base.

TimeValue GetTimeBaseStartTime (
 TimeBase tb,
 TimeScale s,
 TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

s
The time scale in which to return the start time.

tr
A pointer to a time structure that is to receive the start time. This is an optional parameter. If you
don't want the time value represented in a time structure, set this parameter to NIL.

Return Value
The time base's start time.

Discussion
This function returns a time value that contains the start time for the specified time base in the specified
time scale. The function returns this value even if you specify a time structure with the tr parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 233
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

GetTimeBaseStatus
Determines when the current time of a time base would fall outside of the range of values specified by the
time base's start and stop times.

long GetTimeBaseStatus (
 TimeBase tb,
 TimeRecord *unpinnedTime
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

unpinnedTime
A pointer to a time structure that is to receive the current time of the time base. Note that this time
value may be outside the range of values specified by the start and stop times of the time base.

Return Value
Status flags (see below).

Discussion
The status information returned by this function allows you to determine when the current time of a time
base would fall outside of the range of values specified by the start and stop times of the time base. This can
happen when a time base relies on a master time base or when its time has reached the stop time.

Special Considerations

This function returns no error codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTimeBaseStopTime
Determines the stop time of a time base.

TimeValue GetTimeBaseStopTime (
 TimeBase tb,
 TimeScale s,
 TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

s
The time scale in which to return the stop time.

234 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

tr
A pointer to a time structure that is to receive the stop time. This is an optional parameter. If you don't
want the time value represented in a time structure, set this parameter to NIL.

Return Value
The time base's stop time.

Discussion
This function returns a time value that contains the stop time for the specified time base in the specified
time scale. The function returns this value even if you specify a time structure with the tr parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTimeBaseThreadAttachState
Determines whether a given time base is attached to a thread.

OSErr GetTimeBaseThreadAttachState (
 TimeBase inTimeBase,
 Boolean *outAttachedToCurrentThread,
 Boolean *outAttachedToAnyThread
);

Parameters
inTimeBase

A time base.

outAttachedToCurrentThread
A pointer to a Boolean that on exit is TRUE if the time base is attached to the current thread, FALSE
otherwise.

outAttachedToAnyThread
A pointer to a Boolean that on exit is TRUE if the time base is attached to any thread, FALSE otherwise.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTimeBaseTime
Obtains the current time value from a time base.

Functions 235
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

TimeValue GetTimeBaseTime (
 TimeBase tb,
 TimeScale s,
 TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from the
NewTimeBase (page 261) function.

s
The time scale in which to return the current time value. Set this parameter to 0 to retrieve the time
in the preferred time scale of the time base.

tr
A pointer to a time structure that is to receive the current time value. This is an optional parameter.
If you don't want the time value represented in a time structure, set this parameter to NIL.

Return Value
The time base's current time.

Discussion
This function returns a time value that contains the current time from the specified time base in the specified
time scale. The function returns this value even if you specify a time structure with the tr parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BrideOfMungGrab
QTMusicToo
SoftVDigX

Declared In
Movies.h

GetTrackBoundsRgn
Lets the media limit the size of a track boundary rectangle.

RgnHandle GetTrackBoundsRgn (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A handle to the region limited by the media.

236 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
Because the media limits the size of the track boundary rectangle, the region returned by GetTrackBoundsRgn
may not be rectangular and may be smaller than the track boundary region.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackClipRgn
Determines the clipping region of a track.

RgnHandle GetTrackClipRgn (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A handle to the track's clipping region.

Discussion
This function allocates the region and returns a handle to the region. Your application must dispose of this
region when you are done with it. If the function could not satisfy your request or if there is no clipping
region defined for the track, it sets the returned handle to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackDisplayBoundsRgn
Determines the region a track occupies in a movie's graphics world.

Functions 237
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

RgnHandle GetTrackDisplayBoundsRgn (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A handle to the region the specified track occupies in a movie's graphics world.

Discussion
This function allocates the region and returns a handle to the region. If the track does not have a spatial
representation at the current movie time, the function returns an empty region. If the function could not
satisfy your request, it sets the returned handle to NIL.

Special Considerations

Your application must dispose of the returned region when you are done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode

Declared In
Movies.h

GetTrackMatte
Retrieves a copy of a track's matte.

PixMapHandle GetTrackMatte (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A handle to a PixMap structure that represents the specified track's matte. If the function could not satisfy
your request, it sets the returned handle to NIL.

Discussion
The matte defines which of the track's pixels are displayed in a movie, and it is valid for the entire duration
of the movie.

Special Considerations

You should use DisposeMatte (page 187) to dispose of the matte when you are finished with it.

238 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code

Declared In
Movies.h

GetTrackMovieBoundsRgn
Determines the region the track occupies in a movie's boundary region.

RgnHandle GetTrackMovieBoundsRgn (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A handle to the region the specified track occupies in its movie's boundary region. If the track does not have
a spatial representation at the current movie time, the function returns an empty region. If the function could
not satisfy your request, it sets the returned handle to NIL.

Discussion
This function determines the region by applying the track's clipping region and matrix. This region is valid
only for the current movie time. The function allocates the region and returns a handle to it.

Special Considerations

Your application must dispose of the returned region when you are done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackPict
Creates a QuickDraw picture from a specified track at a specified time.

Functions 239
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

PicHandle GetTrackPict (
 Track theTrack,
 TimeValue time
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

time
The time at which the image is taken.

Return Value
A handle to the specified picture. If the function could not create the picture, the returned handle is set to
NIL.

Special Considerations

Your application must dispose of the returned picture handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

Declared In
Movies.h

GoToBeginningOfMovie
Repositions a movie to play from its start.

void GoToBeginningOfMovie (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Discussion
If the movie is in preview mode, the function goes to the start of the preview segment of the movie. In all
other cases, this function goes to the start of the movie, where the movie time value is 0. You can access
error returns from this function through GetMoviesError (page 221) and GetMoviesStickyError (page
222). See Error Codes.

240 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MovieGWorlds
OpenGLMovieQT
vrscript
vrscript.win

Declared In
Movies.h

GoToEndOfMovie
Repositions a movie to play from its end.

void GoToEndOfMovie (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

InvalidateMovieRegion
Invalidates a small area of a movie.

Functions 241
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr InvalidateMovieRegion (
 Movie theMovie,
 RgnHandle invalidRgn
);

Parameters
theMovie

The movie whose area you wish to invalidate. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

invalidRgn
A region indicating the area of the movie to invalidate. If necessary, QuickTime will make a copy of
this region. To invalidate the entire movie area, pass NIL for this parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function instead of UpdateMovie (page 347) to invalidate a small area of a movie. It marks all areas
of the movie that intersect the invalidRgn parameter. The next time you call MoviesTask (page 257), the
Movie Toolbox redraws the marked areas. This provides a way to invalidate a portion of the movie's area
instead of its entire area, as does UpdateMovie. This allows for higher performance update handling when
a movie has many tracks or covers a large area. For handling of update events, applications should continue
to use UpdateMovie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

IsMovieDone
Determines if a particular movie has completely finished playing.

Boolean IsMovieDone (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
Returns TRUE if the specified movie has finished playing, otherwise returns FALSE.

242 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
A movie with a positive rate (playing forward) is considered done when its movie time reaches the movie
end time. Conversely, a movie with a negative rate (playing backward) is considered done when its movie
time reaches the movie start time. If your application has changed the movie's active segment, the status
returned by this function is relative to the active segment, rather than to the entire movie. You can use
SetMovieActiveSegment (page 285) to change a movie's active segment.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MovieGWorlds
SimpleCocoaMovie
vrscript
vrscript.win

Declared In
Movies.h

ITextAddString
Undocumented

OSErr ITextAddString (
 QTAtomContainer container,
 QTAtom parentAtom,
 RegionCode theRegionCode,
 ConstStr255Param theString
);

Parameters
container

Undocumented

parentAtom
Undocumented

theRegionCode
A 16-bit signed integer containing an international region code; see Localization Codes.

theString
The string to add.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 243
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

ITextGetString
Undocumented

OSErr ITextGetString (
 QTAtomContainer container,
 QTAtom parentAtom,
 RegionCode requestedRegion,
 RegionCode *foundRegion,
 StringPtr theString
);

Parameters
container

Undocumented

parentAtom
Undocumented

requestedRegion
Undocumented

foundRegion
On return, a 16-bit signed integer containing an international region code; see Localization Codes.

theString
The found string.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

ITextRemoveString
Undocumented

244 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr ITextRemoveString (
 QTAtomContainer container,
 QTAtom parentAtom,
 RegionCode theRegionCode,
 long flags
);

Parameters
container

Undocumented

parentAtom
Undocumented

theRegionCode
A 16-bit signed integer containing an international region code; see Localization Codes.

flags
Flags (see below) that modify the process. See these constants:

kITextRemoveEverythingBut

kITextRemoveLeaveSuggestedAlternate

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

LoadMediaIntoRam
Loads a media's data into memory.

OSErr LoadMediaIntoRam (
 Media theMedia,
 TimeValue time,
 TimeValue duration,
 long flags
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

time
The starting time of the media segment to load. This time value must be expressed in the media's
time coordinate system.

Functions 245
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

duration
The length of the segment to load. Use GetMediaDuration (page 1576) to determine the length of
the entire media. Note that the media handler may load more data than you specify if the media data
was added in larger pieces.

flags
Flags that give you explicit control over what is loaded into memory and how long to keep it around.
See RAM Loading Flags. You can set these flags in any combination.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The exact behavior of LoadMediaIntoRam is dependent on the media handler.

Special Considerations

If LoadMediaIntoRam fails because it is out of memory, no data is purged.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

LoadMovieIntoRam
Loads a movie's data into memory.

OSErr LoadMovieIntoRam (
 Movie theMovie,
 TimeValue time,
 TimeValue duration,
 long flags
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The starting time of the movie segment to load.

duration
The length of the segment to load. Use GetMovieDuration (page 211) to determine the length of
the entire movie. Note that the Movie Toolbox may load more data than you specify due to the way
the data is loaded.

flags
Flags that give you explicit control over what is loaded into memory and how long to keep it around.
See RAM Loading Flags. You can set these flags in any combination.

246 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

LoadTrackIntoRam
Loads a track's data into memory.

OSErr LoadTrackIntoRam (
 Track theTrack,
 TimeValue time,
 TimeValue duration,
 long flags
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

time
The starting time of the track segment to load. You must specify this time value in the movie's time
coordinate system.

duration
The length of the segment to load. Use GetTrackDuration (page 1607) to determine the length of
the entire movie. Note that the media handler may load more data than you specify.

flags
Flags that give you explicit control over what is loaded into memory and how long to keep it around.
See RAM Loading Flags. You can set these flags in any combination.

Return Value
If the track does not fit, the function returns an error. See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 247
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

Media3DGetCameraAngleAspect
Deprecated.

ComponentResult Media3DGetCameraAngleAspect (
 MediaHandler mh,
 QTFloatSingle *fov,
 QTFloatSingle *aspectRatioXToY
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetCameraData
Deprecated.

ComponentResult Media3DGetCameraData (
 MediaHandler mh,
 void *cameraData
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetCameraRange
Deprecated.

248 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult Media3DGetCameraRange (
 MediaHandler mh,
 void *tQ3CameraRange
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetCurrentGroup
Deprecated.

ComponentResult Media3DGetCurrentGroup (
 MediaHandler mh,
 void *group
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetNamedObjectList
Deprecated.

ComponentResult Media3DGetNamedObjectList (
 MediaHandler mh,
 QTAtomContainer *objectList
);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetRendererList
Deprecated.

Functions 249
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult Media3DGetRendererList (
 MediaHandler mh,
 QTAtomContainer *rendererList
);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DGetViewObject
Deprecated.

ComponentResult Media3DGetViewObject (
 MediaHandler mh,
 void *tq3viewObject
);

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DRotateNamedObjectTo
Deprecated.

ComponentResult Media3DRotateNamedObjectTo (
 MediaHandler mh,
 char *objectName,
 Fixed xDegrees,
 Fixed yDegrees,
 Fixed zDegrees
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

250 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Media3DScaleNamedObjectTo
Deprecated.

ComponentResult Media3DScaleNamedObjectTo (
 MediaHandler mh,
 char *objectName,
 Fixed xScale,
 Fixed yScale,
 Fixed zScale
);

Return Value

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DSetCameraAngleAspect
Deprecated.

ComponentResult Media3DSetCameraAngleAspect (
 MediaHandler mh,
 QTFloatSingle fov,
 QTFloatSingle aspectRatioXToY
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DSetCameraData
Deprecated.

ComponentResult Media3DSetCameraData (
 MediaHandler mh,
 void *cameraData
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 251
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

Media3DSetCameraRange
Deprecated.

ComponentResult Media3DSetCameraRange (
 MediaHandler mh,
 void *tQ3CameraRange
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Media3DTranslateNamedObjectTo
Deprecated.

ComponentResult Media3DTranslateNamedObjectTo (
 MediaHandler mh,
 char *objectName,
 Fixed x,
 Fixed y,
 Fixed z
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaGetChildDoMCActionCallback
Undocumented

252 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult MovieMediaGetChildDoMCActionCallback (
 MediaHandler mh,
 DoMCActionUPP *doMCActionCallbackProc,
 long *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

doMCActionCallbackProc
A pointer to a Universal Procedure Pointer that accesses a DoMCActionProc callback.

refcon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaGetChildMovieDataReference
Undocumented

ComponentResult MovieMediaGetChildMovieDataReference (
 MediaHandler mh,
 QTAtomID dataRefID,
 short dataRefIndex,
 OSType *dataRefType,
 Handle *dataRef,
 QTAtomID *dataRefIDOut,
 short *dataRefIndexOut
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

dataRefID
Undocumented

dataRefIndex
Undocumented

dataRefType
Undocumented

Functions 253
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

dataRef
Undocumented

dataRefIDOut
Undocumented

dataRefIndexOut
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaGetCurrentMovieProperty
Retrieves current properties from a media handler's movie.

ComponentResult MovieMediaGetCurrentMovieProperty (
 MediaHandler mh,
 OSType whichProperty,
 void *value
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

whichProperty
A constant (see below) that designates the property to be retrieved. See these constants:

kMoviePropertyDuration

kMoviePropertyTimeScale

kMoviePropertyTime

kMoviePropertyNaturalBounds

kMoviePropertyMatrix

kMoviePropertyTrackList

value
A pointer to the returned property value.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

254 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaGetCurrentTrackProperty
Retrieves the media type property from a media handler's track.

ComponentResult MovieMediaGetCurrentTrackProperty (
 MediaHandler mh,
 long trackID,
 OSType whichProperty,
 void *value
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

trackID
The ID value of the track for this operation.

whichProperty
A constant (see below) that designates the property to be retrieved. Only the track's media type
property constant is currently defined. See these constants:

kTrackPropertyMediaType

value
A pointer to the returned property value.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaGetDoMCActionCallback
Gets a DoMCActionProc callback for a media.

Functions 255
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult MovieMediaGetDoMCActionCallback (
 MediaHandler mh,
 DoMCActionUPP *doMCActionCallbackProc,
 long *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

doMCActionCallbackProc
A pointer to a Universal Procedure Pointer that accesses a DoMCActionProc callback.

refcon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieMediaLoadChildMovieFromDataReference
Undocumented

ComponentResult MovieMediaLoadChildMovieFromDataReference (
 MediaHandler mh,
 QTAtomID dataRefID
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

dataRefID
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

256 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

MovieMediaSetChildMovieDataReference
Undocumented

ComponentResult MovieMediaSetChildMovieDataReference (
 MediaHandler mh,
 QTAtomID dataRefID,
 OSType dataRefType,
 Handle dataRef
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

dataRefID
Undocumented

dataRefType
Undocumented

dataRef
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MoviesTask
Services active movies.

void MoviesTask (
 Movie theMovie,
 long maxMilliSecToUse
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page 1400). If you
set this parameter to NIL, the Movie Toolbox services all of your active movies.

Functions 257
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

maxMilliSecToUse
Determines the maximum number of milliseconds that MoviesTask can work before returning. If
this parameter is 0, MoviesTask services every active movie exactly once and then returns. If the
parameter is nonzero, MoviesTask services as many movies as it can in the allotted time before
returning. Once the MoviesTask function starts servicing a movie, it cannot stop until it has completely
met the requirements of the movie. Consequently, the MoviesTask function may execute for a longer
time than that specified in maxMilliSecToUse. However, the function does not start servicing a
new movie if the time specified by maxMilliSecToUse has elapsed. The preferred way to use
MoviesTask is to set the maxMilliSecToUse parameter to 0; however, if you just want to play one
movie, you can call MoviesTask on that one. If your rate is 0, MoviesTask draws that frame and no
other.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
You should call MoviesTask as often as possible from your application's main event loop. Note that you
should call this function after you have performed your own event processing. MoviesTask services only
active movies, and only enabled tracks within those active movies.

Special Considerations

Note that the MoviesTask function services only your movies. Your application must give other applications
the opportunity to call MoviesTask for their movies.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
Graphic Import-Export
MovieGWorlds
vrscript
vrscript.win

Declared In
Movies.h

NewCallBack
Creates a new callback event.

QTCallBack NewCallBack (
 TimeBase tb,
 short cbType
);

Parameters
tb

The callback event's time base. You obtain this identifier from NewTimeBase (page 261).

258 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

cbType
Constants (see below) that specify when the callback event is to be invoked. The value of this field
governs how the Movie Toolbox interprets the data supplied in the param1, param2, and param3
parameters to the CallMeWhen (page 179) function. In addition, if the high-order bit of the cbType
parameter is set to 1 (this bit is defined by the callBackAtInterrupt flag), the event can be invoked
at interrupt time. See these constants:

callBackAtTime

callBackAtRate

callBackAtTimeJump

callBackAtExtremes

callBackAtInterrupt

Return Value
A pointer to a CallBackRecord structure containing the new callback event.

Special Considerations

The callback event created is not active until you schedule it by calling the CallMeWhen (page 179) function.
You must not call this function at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
Show Movie
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
Movies.h

NewMovie
Creates a new movie in memory.

Movie NewMovie (
 long flags
);

Parameters
flags

Flags (see below) that specify control information for the new movie. Be sure to set unused flags to
0.

Return Value
The identifier for the new movie. If NewMovie fails, the returned identifier is set to NIL. You can use
GetMoviesError (page 221) to obtain the error result, or noErr if there was no error. See Error Codes.

Functions 259
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
You can use NewMovie to create a new empty movie, which contains no tracks. The Movie Toolbox initializes
the data structures for the new movie. Your application assigns the data to the movie by calling the functions
that are described in NewMovieTrack (page 1628).

The Movie Toolbox sets many movie characteristics to default values. If you want to change these defaults,
your application must call other Movie Toolbox functions. For example, the Movie Toolbox sets the movie's
graphics world to the one that is active when you call NewMovie. To change the graphics world for the new
movie, your application should use SetMovieGWorld (page 290). The default QuickTime movie time scale is
600 units per second; however, this number may change in the future. The default time scale was chosen
because it is convenient for working with common video frame rates of 30, 25, 24, 15, 12, 10, and 8.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
mfc.win
qtdataref
qtdataref.win
SoundPlayer.win

Declared In
Movies.h

NewMovieFromProperties
Creates a new movie using movie properties.

OSStatus NewMovieFromProperties (
 ItemCount inputPropertyCount,
 QTNewMoviePropertyElement *inputProperties,
 ItemCount outputPropertyCount,
 QTNewMoviePropertyElement *outputProperties,
 Movie *theMovie
);

Parameters
inputPropertyCount

The number of properties in the array passed in inputProperties.

inputProperties
A pointer to a property array describing how to instantiate the movie. See
QTNewMoviePropertyElement.

260 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

outputPropertyCount
The number of properties in the array passed in outputProperties.

outputProperties
A pointer to a property array to receive output parameters. See QTNewMoviePropertyElement. You
may pass NULL if you don't want this information. The caller is responsible for calling the appropriate
routines to dispose of any property values returned here. Since callers specify the property classes
and IDs, they know who to call to dispose of the property values.

theMovie
A pointer to a variable that receives the new movie.

Return Value
An error code. ReturnsmemFullErr if the function could not allocate memory,paramErr ifinputProperties
or theMovie is NULL, or noErr if there is no error.

Discussion
This function can be used in all the cases where an existing NewMovieFrom... call is used. When calling this
function, you supply a set of input properties that describe the information required to instantiate the movie
(its data reference, audio context, visual context, and so on). You can also supply a set of output properties
that you may be interested in; for example, information about whether the data reference was changed. See
New Movie Property Codes.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2
LiveVideoMixer3
QTPixelBufferVCToCGImage
SimpleAudioExtraction
SimpleHIMovieViewPlayer

Declared In
Movies.h

NewTimeBase
Obtains a new time base.

TimeBase NewTimeBase (
 void
);

Return Value
The ID of the new time base.

Discussion
This function sets the rate of the time base to 0, the start time to its minimum value, the time value to 0, and
the stop time to its maximum value. The function assigns the default clock component to the new time base.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 261
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
QTMusicToo
qtshoweffect
VideoProcessing
vrscript.win

Declared In
Movies.h

PlayMoviePreview
Plays a movie's preview.

void PlayMoviePreview (
 Movie theMovie,
 MoviePreviewCallOutUPP callOutProc,
 long refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

callOutProc
A pointer to a MoviePreviewCallOutProc callback in your application. The Movie Toolbox calls
this function repeatedly while the movie preview is playing. You can use this function to stop the
preview. If you don't want to assign a function, set this parameter to NIL.

refcon
A reference constant that the Movie Toolbox passes to your callback. Use this parameter to point to
a data structure containing any information your callback needs.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
This function sets the movie into preview mode, plays the movie preview, sets the movie back to normal
playback mode, and returns to your application. The Movie Toolbox plays the preview in the movie's graphics
world. Note that if you call the GetMovieActiveSegment (page 205) function from within your movie callout
function, the Movie Toolbox will have changed the active movie segment to be the preview segment of the
movie. The Movie Toolbox restores the active segment when the preview is done playing.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

262 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

PrePrerollMovie
Sets up any necessary network connections to receive streaming content.

OSErr PrePrerollMovie (
 Movie m,
 TimeValue time,
 Fixed rate,
 MoviePrePrerollCompleteUPP proc,
 void *refcon
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The starting time of the movie segment to play.

rate
The rate at which you anticipate playing the movie. You specify the movie rate as a 32-bit, fixed-point
number. Positive integers indicate forward rates and negative integers indicate reverse rates.

proc
The MoviePrePrerollCompleteProc callback you want called when pre-prerolling is complete. If
a completion proc is specified, PrePrerollMovie operates asynchronously. You must call
MoviesTask periodically during asynchronous operation. If no completion proc is specified,
PrePrerollMovie operates synchronously.

refcon
A reference constant that is passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Before a movie is played, it is normally prerolled. During preroll, the Movie Toolbox tells the appropriate
media handlers to load the movie data, allocate sound channels, start up image-decompression sequences,
and so on. Before a movie that contains streaming content is prerolled, it must be pre-prerolled. This sets up
any necessary network connections between the client and the server. If a movie contains streaming content
(one or more 'strm' tracks), you must call this function before calling PrerollMovie (page 264). If the
movie does not contain streaming content, calling this function has no effect. If your application calls
PrerollMovie, it should always call this function first. If you play movies using a movie controller, you don't
need to preroll or pre-preroll the movie explicitly; it is done for you automatically. If a completion proc is
specified in the proc parameter, this function operates asynchronously; it returns almost immediately and
calls the completion proc when pre-prerolling is complete.

Functions 263
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Special Considerations

You must call MoviesTask (page 257) periodically to grant time for pre-prerolling during asynchronous
operation. If no completion proc is specified, this function operates synchronously; the function will not
return until pre-prerolling is complete. This can take a long time, particularly if a dial-up network connection
must be established.

Version Notes
Introduced in QuickTime 4. Beginning with QuickTime 4, your application should call this function any time
it calls PrerollMovie (page 264).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtfullscreen
qtfullscreen.win
vrscript
vrscript.win

Declared In
Movies.h

PrerollMovie
Prepares a portion of a movie for playback.

OSErr PrerollMovie (
 Movie theMovie,
 TimeValue time,
 Fixed Rate
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The starting time of the movie segment to play.

Rate
The rate at which you anticipate playing the movie. You specify the movie rate as a 32-bit, fixed-point
number. Positive integers indicate forward rates and negative integers indicate reverse rates.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
When your application calls PrerollMovie, the Movie Toolbox tells the appropriate media handlers to
prepare to play the movie. The media handlers may then load the movie data and perform any other necessary
preparations to play the movie, such as allocating sound channels and starting up image-decompression
sequences. In this manner, you can eliminate playback stutter when the movie starts playing.

264 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

If your application uses QuickTime's Movie Toolbox to play back movies, there are two choices for how to
preroll the movie. Like the movie controller, the Movie Toolbox provides a single function call,
StartMovie (page 332), which will both preroll the movie and start it playing. Unlike the movie controller,
the Movie Toolbox function doesn't allow you to specific the rate to play the movie at, but instead assumes
the movie's preferred rate.

Calling StartMovie, just like the movie controller's preroll and play action, first prerolls the movie and then
sets it playing. If your application requires more control, the Movie Toolbox provides lower level functions
that give you more control:

// PrerollMovie coding example
StartMovie(theMovie);

TimeValue timeNow;
Fixed playRate;
timeNow =GetMovieTime(theMovie, NIL);
playRate =GetMoviePreferredRate(theMovie);
PrePrerollMovie(theMovie, timeNow, playRate, NIL, NIL);
PrerollMovie(theMovie, timeNow, playRate);
SetMovieRate(theMovie, playRate);

Special Considerations

You should always call PrePrerollMovie (page 263) before calling this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell
LiveVideoMixer2
LiveVideoMixer3
MovieBrowser
MovieGWorlds

Declared In
Movies.h

PutMovieForDataRefIntoHandle
Puts a self-contained movie into a handle.

Functions 265
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr PutMovieForDataRefIntoHandle (
 Movie theMovie,
 Handle dataRef,
 OSType dataRefType,
 Handle publicMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dataRef
A handle to the storage in which the movie will be written.

dataRefType
The data reference type. See Data References.

publicMovie
The handle that is to receive the new movie resource. The function resizes the handle if necessary.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If the data reference and data reference type is passed, all media references to the same storage are converted
to self-references in the resulting public movie handle. This 'moov' atom can be then written to the storage.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

PutMovieIntoDataFork
Stores a movie in the data fork of a given file.

OSErr PutMovieIntoDataFork (
 Movie theMovie,
 short fRefNum,
 long offset,
 long maxSize
);

Parameters
theMovie

The movie to be stored in the data fork of an atom. Your application obtains this movie identifier
from such functions as NewMovie (page 259), NewMovieFromFile (page 1398), and
NewMovieFromHandle (page 1400).

266 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

fRefNum
A file reference number for the data fork of the given file. You pass in an open write path in the
fRefNum parameter.

offset
Indicates where the movie should be written.

maxSize
The largest number of bytes that may be written.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

PutMovieIntoDataFork64
Provides a 64-bit version of PutMovieIntoDataFork.

OSErr PutMovieIntoDataFork64 (
 Movie theMovie,
 long fRefNum,
 const wide *offset,
 unsigned long maxSize
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

fRefNum
A file reference number for the data fork of the given file. You pass in an open write path in the
fRefNum parameter.

offset
Pointer to a 64-bit value that indicates where the movie should be written.

maxSize
The largest number of bytes that may be written.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4. Superseded in QuickTime 6 by PutMovieIntoStorage (page 268).

Availability
Available in Mac OS X v10.0 and later.

Functions 267
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

PutMovieIntoHandle
Creates a new movie resource.

OSErr PutMovieIntoHandle (
 Movie theMovie,
 Handle publicMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

publicMovie
The handle that is to receive the new movie resource. The function resizes the handle if necessary.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this handle to store a QuickTime movie in a specialized storage format.

Special Considerations

Note that you cannot use this new movie with other Movie Toolbox functions, except for
NewMovieFromHandle (page 1400).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DragAndDrop Shell
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
ThreadsExportMovie

Declared In
Movies.h

PutMovieIntoStorage
Writes a movie to a storage location managed by a data handler.

268 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr PutMovieIntoStorage (
 Movie theMovie,
 DataHandler dh,
 const wide *offset,
 unsigned long maxSize
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dh
A data handler for the data fork of the storage container. You pass an open write path in this parameter.

offset
A pointer to a value that indicates where the movie should be written in the container.

maxSize
The largest number of bytes that may be written.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you are writing a custom data handler, make sure it supports DataHGetDataRef (page 780). It must also
support DataHWrite64 (page 819), or DataHWrite (page 817) if 64-bit offsets are not supported.

Version Notes
Introduced in QuickTime 6. This function supersedes PutMovieIntoDataFork64 (page 267).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTAudioContextCreateForAudioDevice
Creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.

OSStatus QTAudioContextCreateForAudioDevice (
 CFAllocatorRef allocator,
 CFStringRef audioDeviceUID,
 CFDictionaryRef options,
 QTAudioContextRef *newAudioContextOut
);

Parameters
allocator

Allocator used to create the audio context.

coreAudioDeviceUID
CoreAudio device UID. NULL means the default device.

options
Reserved. Pass NULL.

Functions 269
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

newAudioContextOut
Points to a variable to receive the new audio context.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine creates a QTAudioContext object that encapsulates a connection to a CoreAudio output device.
This object is suitable for passing to SetMovieAudioContext or NewMovieFromProperties (page 260),
which targets the audio output of the movie to that device. A QTAudioContext object cannot be associated
with more than one movie. Each movie needs its own connection to the device. In order to play more than
one movie to a particular device, create a QTAudioContext object for each movie. You are responsible for
releasing the QTAudioContext object created by this routine. After calling SetMovieAudioContext or
NewMovieFromProperties (page 260), you can release the object since these APIs will retain it for their
own use.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTSetMovieAudioDevice

Declared In
Movies.h

QTGetTimeUntilNextTask
Reports the duration until the next time QuickTime needs to run a task.

OSErr QTGetTimeUntilNextTask (
 long *duration,
 long scale
);

Parameters
duration

A pointer to the duration until the next time QuickTime needs access to the processor. If the returned
duration is 0, QuickTime needs to run a task immediately.

scale
The time scale in which to express the returned duration. For example, pass 60 if you want the duration
value expressed in ticks (60ths of a second).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Periodically, applications have to give processing time to QuickTime by calling a function such as
MCIsPlayerEvent (page 1204). Instead of routinely calling MCIsPlayerEvent 10 to 20 times per second,
you can call QTGetTimeUntilNextTask to determine when QuickTime next needs access to the processor.
The result is a more efficent use of processor resources. To handle cases when QuickTime may need to run
a task earlier than projected by this function, you can install a QTNextTaskNeededSoonerCallbackProc
callback.

270 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonCoreImage101
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

QTGetWallClockTimeBase
Returns the system's real-time time base.

OSErr QTGetWallClockTimeBase (
 TimeBase *wallClockTimeBase
);

Parameters
wallClockTimeBase

A pointer to the wall clock's time base.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerClose
Closes the Mac OS Idle Manager.

OSErr QTIdleManagerClose (
 IdleManager im
);

Parameters
im

A pointer to the opaque data structure that was returned by QTIdleManagerOpen (page 273).

Functions 271
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application should call this function after it no longer needs access to the Idle Manager.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerGetNextIdleTime
Retrieves the next idle time known to the Idle Manager.

OSErr QTIdleManagerGetNextIdleTime (
 IdleManager im,
 TimeRecord *nextIdle
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

nextIdle
A pointer to the next idle time.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerNeedsAnIdle
Tells the Idle Manager whether an idle will be required.

272 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr QTIdleManagerNeedsAnIdle (
 IdleManager im,
 Boolean *needsOne
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

needsOne
Pass a pointer to a variable; on return, TRUE means that an idle will be required, FALSE means no idle
will be required.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerOpen
Opens the Mac OS Idle Manager.

IdleManager QTIdleManagerOpen (
 void
);

Return Value
A pointer to an opaque data structure that belongs to the Mac OS Idle Manager.

Discussion
You must call this function before using the Mac OS Idle Manager.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerSetNextIdleTime
Informs the idle manager of the next required idle time.

Functions 273
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr QTIdleManagerSetNextIdleTime (
 IdleManager im,
 TimeRecord *nextIdle
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

nextIdle
A pointer to the time of the next required idle.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If a media handler needs to call this function, you must do wallclock time calculations. That means you may
need to call QTGetWallClockTimeBase (page 271) and ConvertTime (page 183) to convert from track time
or media time to wallclock time, plus ConvertTimeScale (page 183) to convert to the timescale you like to
work in.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerSetNextIdleTimeDelta
Informs the idle manager of the time from the currently set idle time to the next idle time required after it.

OSErr QTIdleManagerSetNextIdleTimeDelta (
 IdleManager im,
 TimeValue duration,
 TimeScale scale
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

duration
The time from the current idle time to the next one.

scale
The time scale in which the duration is expressed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

274 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
This routine lets you pass in a duration and a scale and it gives you a single idle. For example, if you need an
idle a half second from now, you can pass in a duration of 500 and a scale of 1000, or a duration of 1 and
scale of 2. This will get you one idle 0.5 seconds from now.

Special Considerations

Every time you get idled, you need to call this function again to set your next idle. If you don't, QuickTime
will assume a default duration to the next idle of 0 and you'll be idled all the time.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerSetNextIdleTimeNever
Sets the next idle time indefinitely in the future.

OSErr QTIdleManagerSetNextIdleTimeNever (
 IdleManager im
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerSetNextIdleTimeNow
Requests an idle as soon as possible.

Functions 275
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr QTIdleManagerSetNextIdleTimeNow (
 IdleManager im
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTIdleManagerSetParent
Sets the parent of an Idle Manager instance.

OSErr QTIdleManagerSetParent (
 IdleManager im,
 IdleManager parent
);

Parameters
im

A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

parent
A pointer to a different Idle Manager data structure. You get this pointer also by calling
QTIdleManagerOpen (page 273).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

276 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

QTInstallNextTaskNeededSoonerCallback
Installs a QTNextTaskNeededSoonerCallbackProc callback.

OSErr QTInstallNextTaskNeededSoonerCallback (
 QTNextTaskNeededSoonerCallbackUPP callbackProc,
 TimeScale scale,
 unsigned long flags,
 void *refcon
);

Parameters
callbackProc

A Universal Procedure Pointer to a QTNextTaskNeededSoonerCallbackProc callback.

scale
The time scale that QuickTime will use when reporting the duration until the next time QuickTime
needs to be called, via QTGetTimeUntilNextTask (page 270).

flags
Unused; set to 0.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This routine installs a callback procedure that specifies when QuickTime next needs to be tasked. The callback
procedure may be called at interrupt time or from another Mac OS X thread, so you must be careful not to
cause race conditions. You can install or uninstall multiple callback procedures if necessary; they will be called
in sequence. You can also install the same callback multiple times with different refcon values, in which
case it will be called once with each refcon value.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonCoreImage101
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

QTParseTextHREF
Undocumented

Functions 277
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

OSErr QTParseTextHREF (
 char *href,
 SInt32 hrefLen,
 QTAtomContainer inContainer,
 QTAtomContainer *outContainer
);

Parameters
href

A pointer to an HREF string.

hrefLen
The length of the HREF string.

inContainer
Undocumented

outContainer
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTSoundDescriptionConvert
Converts a sound description from one version to another.

OSStatus QTSoundDescriptionConvert (
 QTSoundDescriptionKind fromKind,
 SoundDescriptionHandle fromDescription,
 QTSoundDescriptionKind toKind,
 SoundDescriptionHandle *toDescription
);

Parameters
fromKind

Reserved. Set to kSoundDescriptionKind_Movie_AnyVersion.

fromDescription
A handle to the sound description to be converted.

toKind
The version you want fromDescription to be.

toDescription
A reference to the resulting SoundDescription structure. You must dispose of the reference using
DisposeHandle.

278 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
An error code. Returns noErr if there is no error.

Discussion
The fromKind parameter is reserved for future expansion; at present you must set it to
kQTSoundDescriptionKind_Movie_AnyVersion. Depending on the value you pass in toKind, you can
specify that you would like a specific SoundDescription version, the lowest possible version (given the
constraints of the format described by fromDescription), or any version at all. Use these constants:

enum {
 kQTSoundDescriptionKind_Movie_Version1 = 'mvv1',
 kQTSoundDescriptionKind_Movie_Version2 = 'mvv2',
 kQTSoundDescriptionKind_Movie_LowestPossibleVersion = 'mvlo',
 kQTSoundDescriptionKind_Movie_AnyVersion = 'mvny'
};

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSoundDescriptionCreate
Creates a sound description structure of the requested kind from an AudioStreamBasicDescription, optional
audio channel layout, and optional magic cookie.

OSStatus QTSoundDescriptionCreate (
 AudioStreamBasicDescription *inASBD,
 AudioChannelLayout *inLayout,
 ByteCount inLayoutSize,
 void *inMagicCookie,
 ByteCount inMagicCookieSize,
 QTSoundDescriptionKind inRequestedKind,
 SoundDescriptionHandle *outSoundDesc
);

Parameters
inASBD

A description of the format.

inLayout
The audio channel layout (can be NULL if there isn't one).

inLayoutSize
The size of the audio channel layout (should be 0 if inLayout is NULL).

inMagicCookie
The magic cookie for the decompressor (can be NULL if the decompressor doesn't require one).

inMagicCookieSize
The size of the magic cookie (should be 0 if the inMagicCookie parameter is NULL).

inRequestedKind
The kind of sound description to create (see Discussion, below).

outSoundDesc
The resulting sound description. The caller must dispose of it with DisposeHandle.

Functions 279
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
An error code. Returns noErr if there is no error.

Discussion
The value of inRequestedKind can be taken from these values:

enum {
 kQTSoundDescriptionKind_Movie_Version1 = 'mvv1',
 kQTSoundDescriptionKind_Movie_Version2 = 'mvv2',
 kQTSoundDescriptionKind_Movie_LowestPossibleVersion = 'mvlo',
 kQTSoundDescriptionKind_Movie_AnyVersion = 'mvny'
};

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTExtractAndConvertToMovieFile
SCAudioCompress
WhackedTV

Declared In
Movies.h

QTSoundDescriptionGetProperty
Gets a particular property of a sound description.

OSStatus QTSoundDescriptionGetProperty (
 SoundDescriptionHandle inDesc,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inDesc

The sound description being interrogated.

inPropClass
The class of the property being requested.

inPropID
The ID of the property being requested.

inPropValueSize
The size of the property value buffer.

outPropValueAddress
A pointer to the property value buffer.

outPropValueSizeUsed
The actual size of the returned property value (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

280 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
The following constants identify sound description properties.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
WhackedTV

Declared In
Movies.h

QTSoundDescriptionGetPropertyInfo
Gets information about a particular property of a sound description.

OSStatus QTSoundDescriptionGetPropertyInfo (
 SoundDescriptionHandle inDesc,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
inDesc

The sound description being interrogated.

inPropClass
The class of the property being requested.

inPropID
The ID of the property being requested.

outPropType
The type of the property returned here (can be NULL).

outPropValueSize
The size of the property returned here (can be NULL).

outPropertyFlags
The property flags returned here (can be NULL).

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

Functions 281
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

QTSoundDescriptionSetProperty
Sets a particular property of a sound description.

OSStatus QTSoundDescriptionSetProperty (
 SoundDescriptionHandle inDesc,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
inDesc

The sound description being modified.

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
The size of the property value buffer.

inPropValueAddress
A pointer to the property value buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The following constants identify sound description properties.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SCAudioCompress

Declared In
Movies.h

QTTextToNativeText
Undocumented

OSErr QTTextToNativeText (
 Handle theText,
 long encoding,
 long flags
);

Parameters
theText

Undocumented

282 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

encoding
Undocumented

flags
Flags (see below) that define the text atom type. See these constants:

kITextAtomType

kITextStringAtomType

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTUninstallNextTaskNeededSoonerCallback
Removes a QTNextTaskNeededSoonerCallbackProc callback.

OSErr QTUninstallNextTaskNeededSoonerCallback (
 QTNextTaskNeededSoonerCallbackUPP callbackProc,
 void *refcon
);

Parameters
callbackProc

A Universal Procedure Pointer to a QTNextTaskNeededSoonerCallbackProc callback that you
installed by a previous call to QTInstallNextTaskNeededSoonerCallback (page 277).

refcon
A pointer to the reference constant that you passed when the callback was installed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You pass this routine both a pointer to a callback procedure and a pointer to its reference constant, so you
can uninstall one instance of a callback that you installed more than once with different refcon values.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonCoreImage101
VideoProcessing

Functions 283
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

RemoveCallBackFromTimeBase
Removes a callback event from the list of scheduled callback events.

OSErr RemoveCallBackFromTimeBase (
 QTCallBack cb
);

Parameters
cb

The callback event for the operation. Your clock component obtains this value from the parameters
passed to your ClockCallMeWhen (page 453) function.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your clock component should call this function when your ClockCancelCallBack (page 454) function
determines that your component can cancel the callback event.

Special Considerations

Your component should call this function only for callback events that were successfully added to the schedule
with AddCallBackToTimeBase (page 178).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieActive
Activates or deactivates a movie.

void SetMovieActive (
 Movie theMovie,
 Boolean active
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

active
Activates or deactivates the movie. Set this parameter to TRUE to activate the movie; set this parameter
to FALSE to deactivate the movie.

284 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
QTCarbonShell
qtcontroller
qtshellCEvents.win
vrcursors

Declared In
Movies.h

SetMovieActiveSegment
Defines a movie's active segment.

void SetMovieActiveSegment (
 Movie theMovie,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

startTime
A time value specifying the starting point of the active segment. Set this parameter to -1 to make the
entire movie active. In this case, the SetMovieActiveSegment function ignores the duration
parameter.

duration
A time value that specifies the duration of the active segment. If you are making the entire movie
active (by setting the startTime parameter to -1), the Movie Toolbox ignores this parameter.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Your application defines the active segment by specifying the starting time and duration of the segment.
These values must be expressed in the movie's time coordinate system. By default, the entire movie is active.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 285
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieAudioContext
Targets a movie to render into an audio context.

OSStatus SetMovieAudioContext (
 Movie movie,
 QTAudioContextRef audioContext
);

Parameters
movie

The movie.

audioContext
The audio context that the movie will render into.

Return Value
An error code. Returns noErr if there is no error. .

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTSetMovieAudioDevice

Declared In
Movies.h

SetMovieBox
Sets a movie's boundary rectangle.

void SetMovieBox (
 Movie theMovie,
 const Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

boxRect
A pointer to a rectangle that contains the coordinates of the new boundary rectangle.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

286 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
The Movie Toolbox changes the rectangle by modifying the translation and scale values of the movie's matrix
to accommodate the new boundary rectangle.

The movie box might not have its upper-left corner set at (0,0) in its display window when the movie is first
loaded. Consequently, your application may need to adjust the position of the movie box so that it appears
in the appropriate location within your application's document window. If you don't reset the movie position,
the movie might not be visible when it starts playing. The following sample code demonstrates how to do
this:

//Zeroing the boundary rectangle with SetMovieBox
GetMovieBox (movie, &movieBox);
OffsetRect (&movieBox, -movieBox.left, -movieBox.top);
SetMovieBox (movie, &movieBox);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

SetMovieClipRgn
Establishes a movie's clipping region.

void SetMovieClipRgn (
 Movie theMovie,
 RgnHandle theClip
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

theClip
A handle to the movie's clipping region. The Movie Toolbox makes a copy of this region. Your
application must dispose of the region referred to by this parameter when you are done with it. Set
this parameter to NIL to disable clipping for the movie.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Functions 287
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
The clipping region is saved with the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
Movies.h

SetMovieDisplayClipRgn
Establishes a movie's current display clipping region.

void SetMovieDisplayClipRgn (
 Movie theMovie,
 RgnHandle theClip
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

theClip
A handle to the movie's display clipping region as a MacRegion structure. The Movie Toolbox makes
a copy of this region. Your application must dispose of the region referred to by this parameter when
you are done with it. Set this parameter to NIL to disable a movie's clipping region.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The display clipping region is not saved with the movie. You can access error returns from this function
through GetMoviesError (page 221) and GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

288 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetMovieDrawingCompleteProc
Assigns a drawing-complete function to a movie.

void SetMovieDrawingCompleteProc (
 Movie theMovie,
 long flags,
 MovieDrawingCompleteUPP proc,
 long refCon
);

Parameters
theMovie

The movie for this operation.

flags
Contains flags (see below) that control when your drawing complete function is called. See these
constants:

movieDrawingCallWhenChanged

movieDrawingCallAlways

proc
A pointer to your MovieDrawingCompleteProc callback. Set this parameter to NIL if you want to
remove your callback.

refCon
The reference constant you supplied when your application called your callback. Use this parameter
to point to a data structure containing any information your callback needs.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox calls this function based upon guidelines you establish when you assign the function to
the movie.

Special Considerations

Some media handlers may take less efficient playback paths when a drawing-complete function is used, so
it should be used only when absolutely necessary.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
bMoviePaletteCocoa
MovieGWorlds
OpenGLMovieQT
VideoProcessing

Declared In
Movies.h

Functions 289
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetMovieGWorld
Establishes a movie's display coordinate system by setting the graphics world for displaying the movie.

void SetMovieGWorld (
 Movie theMovie,
 CGrafPtr port,
 GDHandle gdh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

port
Points to the movie's CGrafPort structure or graphics world. Set this parameter to NIL to use the
current graphics port.

gdh
A handle to the movie's GDevice structure. Set this parameter to NIL to use the current device. If
the port parameter specifies a graphics world, set this parameter to NIL to use that graphics world's
graphics device.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Special Considerations

When you use this function, the Movie Toolbox remembers the current background color and background
pattern. These are used for erasing in the default movie uncover function; see SetMovieCoverProcs (page
1482).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
QTCarbonShell
vrmovies
vrscript
vrscript.win

Declared In
Movies.h

SetMovieMasterClock
Assigns a clock component to a movie.

290 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetMovieMasterClock (
 Movie theMovie,
 Component clockMeister,
 const TimeRecord *slaveZero
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

clockMeister
The clock component to be assigned to this movie. Your application can obtain this component
identifier from FindNextComponent.

slaveZero
A pointer to the time, in the clock's time scale, that corresponds to a 0 time value for the movie. This
parameter allows you to set an offset between the clock component and the time base of the movie.
Set this parameter to NIL if there is no offset.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Don't use SetTimeBaseMasterClock (page 304) to assign a clock component to a movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieMasterTimeBase
Assigns a master time base to a movie.

void SetMovieMasterTimeBase (
 Movie theMovie,
 TimeBase tb,
 const TimeRecord *slaveZero
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

tb
The master time base to be assigned to this movie. Your application obtains this time base identifier
from NewTimeBase (page 261).

Functions 291
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

slaveZero
A pointer to the time, in the time scale of the master time base, that corresponds to a 0 time value
for the movie. This parameter allows you to set an offset between the movie and the master time
base. Set this parameter to NIL if there is no offset.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Show Movie

Declared In
Movies.h

SetMovieMatrix
Sets a movie's transformation matrix.

void SetMovieMatrix (
 Movie theMovie,
 const MatrixRecord *matrix
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

matrix
A pointer to the MatrixRecord structure for the movie. If you set this parameter to NIL, the Movie
Toolbox uses the identity matrix.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox uses a movie's matrix to map a movie from its display coordinate system to its graphics
world.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OpenGLMovieQT
QTCarbonShell

292 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

vrmovies
vrscript
vrscript.win

Declared In
Movies.h

SetMoviePosterTime
Sets the poster time for the movie.

void SetMoviePosterTime (
 Movie theMovie,
 TimeValue posterTime
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

posterTime
The starting time for the movie frame that contains the poster image, expressed in the movie's time
coordinate system.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Since a movie poster is a still frame, it is defined by a point in time within the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
qtinfo
qtinfo.win
vrmakeobject

Declared In
Movies.h

SetMoviePreferredRate
Specifies a movie's default playback rate.

Functions 293
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetMoviePreferredRate (
 Movie theMovie,
 Fixed rate
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

rate
The new movie rate as a 32-bit, fixed-point number. Positive integers indicate forward rates and
negative integers indicate reverse rates.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMoviePreferredVolume
Sets a movie's preferred volume setting.

void SetMoviePreferredVolume (
 Movie theMovie,
 short volume
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

volume
The preferred volume setting of the movie. The volume parameter must contain a 16-bit, fixed-point
number that contains the movie's default volume. The high-order 8 bits contain the integer part of
the value; the low-order 8 bits contain the fractional part. Volume values range from -1.0 to 1.0.
Negative values play no sound but preserve the absolute value of the volume setting. You may find
the constants shown below useful. See these constants:

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
A movie's tracks may have their own volume settings. Use SetTrackVolume (page 1657) to set the volume
of an individual track. A track's volume is scaled by the movie's volume to produce the track's final volume.

294 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Special Considerations

After calling this function you must save the changes it has made, for example by updating or flattening the
movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
QTMusicToo
vrbackbuffer.win

Declared In
Movies.h

SetMoviePreviewMode
Places a movie into and out of preview mode.

void SetMoviePreviewMode (
 Movie theMovie,
 Boolean usePreview
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

usePreview
The movie's mode. Set this parameter to TRUE to place the movie into preview mode. Set this parameter
to FALSE to place the movie into normal playback mode.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
When a movie is in preview mode, only those tracks identified as preview tracks are serviced. You specify
how a track is used by calling SetTrackUsage (page 1656).

When you place a movie into preview mode, the Movie Toolbox sets the active movie segment to be the
preview segment of the movie. When you take a movie out of preview mode and place it back in normal
playback mode, the toolbox sets the active movie segment to be the entire movie. For information about
working with active movie segments, see PrerollMovie (page 264).

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 295
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMoviePreviewTime
Defines the starting time and duration of the movie's preview.

void SetMoviePreviewTime (
 Movie theMovie,
 TimeValue previewTime,
 TimeValue previewDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

previewTime
A time value that specifies the preview's starting time.

previewDuration
A time value that specifies the preview's duration.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win
vrmakeobject
vrmakeobject.win

Declared In
Movies.h

SetMovieRate
Sets a movie's playback rate.

296 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetMovieRate (
 Movie theMovie,
 Fixed rate
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

rate
The new movie rate as a 32-bit, fixed-point number. Positive integers indicate forward rates and
negative integers indicate reverse rates. This value immediately changes the rate at which the movie
is playing. A value of 1 starts the movie playing at normal speed, a value of 2 causes the movie to
play at double speed, -2 starts the movie playing backward at double speed, and so on. A value of 0
stops the movie.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Use this function to change the speed at which a movie is playing. You do not normally use this function to
start and stop movies; use the higher level functions StartMovie (page 332) and StopMovie (page 333)
instead. If you start a movie using this function, you should call PrePrerollMovie (page 263) and
PrerollMovie (page 264) first, to set up any network connections, buffers, and data structures necessary to
play the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AddFrameToMovie
OpenGLMovieQT
QTCarbonCoreImage101
Show Movie
vrscript.win

Declared In
Movies.h

SetMovieSelection
Sets a movie's current selection.

Functions 297
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetMovieSelection (
 Movie theMovie,
 TimeValue selectionTime,
 TimeValue selectionDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

selectionTime
A time value specifying the starting point of the current selection.

selectionDuration
A time value that specifies the duration of the current selection.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

SetMoviesErrorProc
Performs custom error notification.

void SetMoviesErrorProc (
 MoviesErrorUPP errProc,
 long refcon
);

Parameters
errProc

A MoviesErrorProc callback.

refcon
A reference constant value. The Movie Toolbox passes this reference constant to your
MoviesErrorProc callback each time it calls it. Use this parameter to point to a data structure
containing any information your callback needs.

298 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Your application must identify its custom error-notification function to the Movie Toolbox. Once you have
identified an error-notification function, the Movie Toolbox calls your function each time the current error
value is to be set to a nonzero value. The Movie Toolbox calls your error-notification function only in response
to errors generated by the Movie Toolbox.

Special Considerations

Error-notification functions can be especially useful when you are debugging your program. The Movie
Toolbox manages the sticky error value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieTime
Changes a movie's current time.

void SetMovieTime (
 Movie theMovie,
 const TimeRecord *newtime
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

newtime
A pointer to a TimeRecord structure containing the new time.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox saves the movie's current time when you save the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTPixelBufferVCToCGImage

Functions 299
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

SetMovieTimeScale
Establishes a movie's time scale.

ComponentResult ADD_MEDIA_BASENAME() SetMovieTimeScale

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

timeScale
The movie's new time scale.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
makeeffectslideshow.win
vrmakepano
vrmakepano.win

Declared In
Movies.h

SetMovieTimeValue
Sets a movie's time value.

void SetMovieTimeValue (
 Movie theMovie,
 TimeValue newtime
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

newtime
The new time value. You must ensure that the time value is in the movie's time scale.

300 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

SetMovieVideoOutput
Indicates to the ICM the video output component being used with a given movie.

void SetMovieVideoOutput (
 Movie theMovie,
 ComponentInstance vout
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

vout
The video output component. Applications obtain this reference from OpenComponent or
OpenDefaultComponent. Call the function and pass NIL in this parameter as soon as the video
output component is no longer in use.

Discussion
As soon as you turn on the echo port on any video output component, you should make this call so the ICM
keeps track of the video output in use.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 301
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetMovieVisualContext
Targets a movie to render into a visual context.

OSStatus SetMovieVisualContext (
 Movie movie,
 QTVisualContextRef visualContext
);

Parameters
movie

The movie.

visualContext
The visual context that the movie will render into. May be NULL..

Return Value
An error code. Returns noErr if there is no error. Returns memFullErr if memory cannot be allocated. Returns
kQTVisualContextNotAllowed if the movie is not able to render using a visual context. Returns paramErr
if the movie is NULL.

Discussion
When SetMovieVisualContext (page 302) succeeds, it will retain the QTVisualContext object for its
own use. If visualContext is NULL, the movie will not render any visual media.
SetMovieVisualContext (page 302) will fail if a different movie is already using the visual context, so you
should first disassociate the other movie by calling SetMovieVisualContext (page 302) with a NULL
visualContext.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreImage101
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo301

Declared In
Movies.h

SetMovieVolume
Sets a movie's current volume but does not store the setting in the movie.

void SetMovieVolume (
 Movie theMovie,
 short volume
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

302 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

volume
The current volume setting of the movie represented as a 16-bit, fixed-point number. The high-order
8 bits contain the integer part of the value; the low-order 8 bits contain the fractional part. Volume
values range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the
volume setting. You can use the constants shown below. See these constants:

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The setting made by this function is not persistent. To store a volume setting in the movie, call
SetMoviePreferredVolume (page 294).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieBrowser
QTMusicToo
SimpleCocoaMovie
vrscript
vrscript.win

Declared In
Movies.h

SetTimeBaseFlags
Sets the contents of the control flags of a time base.

void SetTimeBaseFlags (
 TimeBase tb,
 long timeBaseFlags
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

timeBaseFlags
The control flags for this time base (see below). You may set only one flag to 1. Be sure to set unused
flags to 0. See these constants:

loopTimeBase

palindromeLoopTimeBase

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Functions 303
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

SetTimeBaseMasterClock
Assigns a clock component to a time base.

void SetTimeBaseMasterClock (
 TimeBase slave,
 Component clockMeister,
 const TimeRecord *slaveZero
);

Parameters
slave

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

clockMeister
The clock component to be assigned to this time base. Your application can obtain this component
identifier from FindNextComponent.

slaveZero
A pointer to the time, in the clock's time scale, that corresponds to a 0 time value for the slave time
base. This parameter allows you to set an offset between the time base and the clock component.
Set this parameter to NIL if there is no offset.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
A time base derives its time from either a clock component or from another time base. Don't use this function
to assign a clock to a movie's time base.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

304 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Related Sample Code
BrideOfMungGrab
QTMusicToo

Declared In
Movies.h

SetTimeBaseMasterTimeBase
Assigns a master time base to a time base.

void SetTimeBaseMasterTimeBase (
 TimeBase slave,
 TimeBase master,
 const TimeRecord *slaveZero
);

Parameters
slave

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

master
The master time base to be assigned to this time base. Your application obtains this time base identifier
from NewTimeBase (page 261).

slaveZero
A pointer to the time, in the time scale of the master time base, that corresponds to a 0 time value
for the slave time scale. This parameter allows you to set an offset between the time base and the
master time base. Set this parameter to NIL if there is no offset.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
A time base derives its time from either a clock component or another time base. Don't use this function to
assign a master time base to a movie's time base.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LiveVideoMixer2
LiveVideoMixer3
QTMusicToo

Declared In
Movies.h

Functions 305
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SetTimeBaseOffsetTimeBase
Attaches an offset time base to another time base.

OSErr SetTimeBaseOffsetTimeBase (
 TimeBase tb,
 TimeBase offsettb,
 const TimeRecord *offsetZero
);

Parameters
masterOffsetTimeBase

The time base to which the offset time base is to be attached. A NIL value can be passed when the
offset time base has already be set but a new offset value is needed.

offsetTimeBase
The offset time base to be attached.

offsetZero
A pointer to a TimeRecord value set to the offset between the master time base and the offset time
base. Passing a negative value means the offset time base will start sooner.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetTimeBaseRate
Sets the rate of a time base.

void SetTimeBaseRate (
 TimeBase tb,
 Fixed r
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

r
The rate of the time base.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Rates may be set to negative values. Negative rates cause time to move backward for the time base.

306 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
QTMusicToo
qtshoweffect
VideoProcessing
vrscript.win

Declared In
Movies.h

SetTimeBaseStartTime
Sets the start time of a time base.

void SetTimeBaseStartTime (
 TimeBase tb,
 const TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

tr
A pointer to a TimeRecord structure that contains the start time value.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The start time defines the time base's minimum time value. You must specify the new start time in a time
structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTimeBaseStopTime
Sets the stop time of a time base.

Functions 307
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetTimeBaseStopTime (
 TimeBase tb,
 const TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

tr
A pointer to a TimeRecord structure that contains the stop time value.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The stop time defines the time base's maximum time value. You must specify the new stop time in a time
structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTimeBaseTime
Sets the current time of a time base.

void SetTimeBaseTime (
 TimeBase tb,
 const TimeRecord *tr
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

tr
A pointer to a TimeRecord structure that contains the current time value.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

308 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

SetTimeBaseValue
Sets the current time of a time base.

void SetTimeBaseValue (
 TimeBase tb,
 TimeValue t,
 TimeScale s
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

t
The new time value.

s
The time scale of the new time value.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtshoweffect
Show Movie
VideoProcessing
vrscript.win

Declared In
Movies.h

SetTimeBaseZero
Changes the offset from a time base to either its master time base or its clock component.

Functions 309
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SetTimeBaseZero (
 TimeBase tb,
 TimeRecord *zero
);

Parameters
tb

The time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

zero
A pointer to the time that corresponds to a 0 time value for the slave time scale. This parameter allows
you to set an offset between the time base and its time source. Set this parameter to NIL if there is
no offset.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
You establish the initial offset when you assign the time base to its time source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackClipRgn
Sets the clipping region of a track.

void SetTrackClipRgn (
 Track theTrack,
 RgnHandle theClip
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

theClip
A handle to the track's clipping region. The Movie Toolbox makes a copy of this region. Your application
must dispose of the region referred to by this parameter when you are done with it. Set this parameter
to NIL to disable clipping for the track.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

310 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
Movies.h

SetTrackGWorld
Forces a track to draw into a particular graphics world, which may be different from that of the movie.

void SetTrackGWorld (
 Track theTrack,
 CGrafPtr port,
 GDHandle gdh,
 TrackTransferUPP proc,
 long refCon
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

port
Points to the graphics port structure or graphics world to which to draw the track. Set this parameter
to NIL to use the movie's graphics port.

gdh
A handle to the movie's graphics device structure. Set this parameter to NIL to use the current device.
If the port parameter specifies a graphics world, set this parameter to NIL to use that graphics world's
graphics device.

proc
A pointer to your TrackTransferProc callback. Set this parameter to NIL if you want to remove
your callback.

refCon
A value to pass to your TrackTransferProc callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
After this function draws a track, it calls your transfer callback to copy the track to the actual movie graphics
world. When your transfer callback is called, the current graphics world is set to the correct destination. You
can also install a transfer callback and set the graphics world to NIL. In this case, the function calls your
callback only as a notification that the track has been drawn; no transfer needs to take place.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 311
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds

Declared In
Movies.h

SetTrackMatte
Sets a track's matte.

void SetTrackMatte (
 Track theTrack,
 PixMapHandle theMatte
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

theMatte
A handle to the matte. The Movie Toolbox makes a copy of the matte, including its ColorTable
structure and pixels. Consequently, your application must dispose of the matte when you are done
with it. Set this parameter to NIL to remove the track's matte.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
This matte defines which of the track's pixels are displayed in a movie. You must specify the matte in a PixMap
structure. The Movie Toolbox displays the weighted average of the track and its destination based on the
corresponding pixel in the matte.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code

Declared In
Movies.h

ShowMoviePoster
Displays a movie's poster.

312 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void ShowMoviePoster (
 Movie theMovie
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox draws the movie poster once, in the movie's graphics world, using the movie's matrix
and display clipping characteristics. You can access error returns from this function through
GetMoviesError (page 221) and GetMoviesStickyError (page 222). See Error Codes.

Special Considerations

This function works on both active and inactive movies.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaCountImages
Retrieves the number of images that currently exist in a sprite track.

ComponentResult SpriteMediaCountImages (
 MediaHandler mh,
 short *numImages
);

Parameters
mh

The sprite media handler for this operation.

numImages
A pointer to a short integer. On return, this integer contains the number of images for the sprite
media's current time.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function determines the number of images that currently exist based on the key frame that is in effect.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 313
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaCountSprites
Retrieves the number of sprites that currently exist in a sprite track.

ComponentResult SpriteMediaCountSprites (
 MediaHandler mh,
 short *numSprites
);

Parameters
mh

The sprite media handler for this operation.

numSprites
A pointer to a short integer. On return, this integer contains the number of sprites for the sprite
media's current time.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function determines the number of sprites that currently exist based on the key frame that is in effect.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaDisposeImage
Frees the memory allocated for a sprite image outside a movie and removes that image from the sprite track
in which it appears.

ComponentResult SpriteMediaDisposeImage (
 MediaHandler mh,
 short imageIndex
);

Parameters
mh

The sprite media handler for this operation.

314 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

imageIndex
The index of a sprite image that was previously created by SpriteMediaNewImage (page 326). If you
know only the image ID, you can convert it to the index by calling
SpriteMediaImageIDToIndex (page 325).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The image disposed of is no longer available to the sprite track, and the image index location remains empty
for the duration of the current key sample.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

SpriteMediaDisposeSprite
Disposes of memory allocated for a sprite.

ComponentResult SpriteMediaDisposeSprite (
 MediaHandler mh,
 QTAtomID spriteID
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The ID of the sprite for this operation.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetActionVariable
Returns the value of the sprite track variable with the specified ID.

Functions 315
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaGetActionVariable (
 MediaHandler mh,
 QTAtomID variableID,
 float *value
);

Parameters
mh

The sprite media handler for this operation.

variableID
A variable ID of the sprite variable.

value
A pointer to a floating-point value. If the specified variable has never been set, the value is set to 0
and the error cannotFindAtomErr is returned.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetActionVariableAsString
Undocumented

ComponentResult SpriteMediaGetActionVariableAsString (
 MediaHandler mh,
 QTAtomID variableID,
 Handle *theCString
);

Parameters
mh

The sprite media handler for this operation.

variableID
A variable ID of the sprite variable.

theCString
A pointer to a handle to a C string.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

316 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetDisplayedSampleNumber
Retrieves the number of the sprite media sample that is currently being displayed.

ComponentResult SpriteMediaGetDisplayedSampleNumber (
 MediaHandler mh,
 long *sampleNum
);

Parameters
mh

The sprite media handler for this operation.

sampleNum
A pointer to a long integer. On return, this integer contains the number of the sample that is currently
being displayed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetImageName
Returns the name of the image with the specified index from the current key frame sample.

ComponentResult SpriteMediaGetImageName (
 MediaHandler mh,
 short imageIndex,
 Str255 imageName
);

Parameters
mh

The sprite media handler for this operation.

imageIndex
The index of the image whose image name is to be retrieved. This value must be between 1 and the
number of available images. You can determine how many images are available by calling
SpriteMediaCountImages (page 313).

Functions 317
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

imageName
Returns a Pascal string with the image name of the image, or an empty string if the image is unnamed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetIndImageDescription
Retrieves an image description for a specified image in a sprite track.

ComponentResult SpriteMediaGetIndImageDescription (
 MediaHandler mh,
 short imageIndex,
 ImageDescriptionHandle imageDescription
);

Parameters
mh

The sprite media handler for this operation.

imageIndex
The index of the image whose image description is to be retrieved. This value must be between 1
and the number of available images. You can determine how many images are available by calling
SpriteMediaCountImages (page 313).

imageDescription
Specifies an image description handle. On return, this handle contains the ImageDescription
structure that describes the specified image. This handle must be unlocked; the function resizes the
handle if necessary.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

318 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SpriteMediaGetIndImageProperty
Returns a property value for a sprite image specified by an index.

ComponentResult SpriteMediaGetIndImageProperty (
 MediaHandler mh,
 short imageIndex,
 long imagePropertyType,
 void *imagePropertyValue
);

Parameters
mh

The sprite media handler for this operation.

imageIndex
The index of the image whose property value is to be retrieved. This value must be between 1 and
the number of available images. You can determine how many images are available by calling
SpriteMediaCountImages (page 313).

imagePropertyType
The property whose value should be retrieved (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

imagePropertyValue
A pointer to a variable that will hold the selected property value on return.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetProperty
Gets a sprite property; superseded by SpriteMediaGetSpriteProperty.

Functions 319
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaGetProperty (
 MediaHandler mh,
 short spriteIndex,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The sprite media handler for this operation.

spriteIndex
The index of the sprite for this operation.

propertyType
The property whose value should be retrieved (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

propertyValue
A pointer to a variable that will hold the selected property value on return.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetSpriteActionsForQTEvent
Gets the sprite action atom for an event.

ComponentResult SpriteMediaGetSpriteActionsForQTEvent (
 MediaHandler mh,
 QTEventRecordPtr event,
 QTAtomID spriteID,
 QTAtomContainer *container,
 QTAtom *atom
);

Parameters
mh

The sprite media handler for this operation.

320 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

event
A pointer to a QTEventRecord structure.

spriteID
The ID of the sprite for this operation.

container
A pointer to a QT atom container.

atom
A pointer to a QT atom in the container.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaGetSpriteName
Returns the name of the sprite with the specified ID from the currently displayed sample.

ComponentResult SpriteMediaGetSpriteName (
 MediaHandler mh,
 QTAtomID spriteID,
 Str255 spriteName
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The sprite ID of the sprite name.

spriteName
Returns a Pascal string with the name of the sprite or an empty string if the sprite is unnamed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 321
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SpriteMediaGetSpriteProperty
Retrieves the value of the specified sprite or sprite track property.

ComponentResult SpriteMediaGetSpriteProperty (
 MediaHandler mh,
 QTAtomID spriteID,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The ID of the sprite for this operation. Pass 'Trck' to return the properties of a whole sprite track.

propertyType
A constant (see below) that specifies the property whose value should be retrieved. See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpriteTrackPropertyAllSpritesHitTestingMode

kSpriteTrackPropertyPreferredDepthInterpretationMode

propertyValue
On return, a pointer to the value of the property; the data type of that value depends on the
property.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Function introduced in QuickTime 3 or earlier. The kSpriteTrackPropertyAllSpritesHitTestingMode
and kSpriteTrackPropertyPreferredDepthInterpretationMode constants were added in QuickTime
6.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qtsprites.win
qtspritesplus.win
vrscript
vrscript.win

Declared In
Movies.h

322 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SpriteMediaHitTestAllSprites
Determines whether any sprites are at a specified location.

ComponentResult SpriteMediaHitTestAllSprites (
 MediaHandler mh,
 long flags,
 Point loc,
 QTAtomID *spriteHitID
);

Parameters
mh

The sprite media handler for this operation.

flags
Specifies flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

loc
A point in the coordinate system of the sprite track's movie to test for the existence of a sprite.

spriteHitID
A pointer to a short integer. On return, this integer contains the ID of the frontmost sprite at the
location specified by loc. If no sprite exists at the location, the function sets the value of this
parameter to 0.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to determine whether any sprites exist at a specified location in the coordinate system
of a sprite track's movie. You can pass flags to this function to control the hit testing operation more precisely.
For example, you may want the hit test operation to detect a sprite whose bounding box contains the
specified location.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qtsprites
qtsprites.win
qtspritesplus.win
vrscript.win

Declared In
Movies.h

Functions 323
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

SpriteMediaHitTestOneSprite
Performs a hit testing operation on the sprite specified by a spriteID.

ComponentResult SpriteMediaHitTestOneSprite (
 MediaHandler mh,
 QTAtomID spriteID,
 long flags,
 Point loc,
 Boolean *wasHit
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The sprite ID of the sprite.

flags
Flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

loc
A point to test for the existence of a sprite. The point should be defined in the local coordinates of
the sprite track, unless the spriteHitTestLocInDisplayCoordinates flag is set.

wasHit
A pointer to a Boolean. If the sprite is hit, wasHit is set to TRUE; otherwise, it is set to FALSE.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This routine allows you to hit test a sprite which is fully or partially covered by other sprites.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaHitTestSprites
Undocumented

324 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaHitTestSprites (
 MediaHandler mh,
 long flags,
 Point loc,
 short *spriteHitIndex
);

Parameters
mh

The sprite media handler for this operation.

flags
Flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

loc
A point to test for the existence of a sprite.

spriteHitIndex
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaImageIDToIndex
Returns the index of an outside sprite image from the ID of that image.

ComponentResult SpriteMediaImageIDToIndex (
 MediaHandler mh,
 QTAtomID imageID,
 short *imageIndex
);

Parameters
mh

The sprite media handler for this operation.

imageID
The ID of a sprite image.

Functions 325
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

imageIndex
On return, a pointer to the index of the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

SpriteMediaImageIndexToID
Returns the ID of an outside sprite image from the index of that image.

ComponentResult SpriteMediaImageIndexToID (
 MediaHandler mh,
 short imageIndex,
 QTAtomID *imageID
);

Parameters
mh

The sprite media handler for this operation.

imageIndex
The index of a sprite image.

imageID
On return, a pointer to the ID of the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

SpriteMediaNewImage
Creates a new movie sprite image outside a movie.

326 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaNewImage (
 MediaHandler mh,
 Handle dataRef,
 OSType dataRefType,
 QTAtomID desiredID
);

Parameters
mh

The sprite media handler for this operation.

dataRef
A pointer to a URL or an alias that references the image to be used as a sprite image.

dataRefType
A four character code for the type of the dataRef parameter. See Component Identifiers. For
example, pass URLDataHandlerSubType if dataRef is a URL

desiredID
The desired ID identifier for the image. If the requested ID is in use, the call returns an error. If you
pass 0 the function assigns the next sequential integer ID, which is usually the same as the next
available index unless that ID has been previously assigned.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The newly created image can be used in a sprite track like any other sprite image. It can be referenced by
the next available image index, equal to the number of images in the track before the call was made +1, or
by the ID that was requested via the desiredID parameter.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

SpriteMediaNewSprite
Creates a new sprite.

ComponentResult SpriteMediaNewSprite (
 MediaHandler mh,
 QTRuntimeSpriteDescPtr newSpriteDesc
);

Parameters
mh

The sprite media handler for this operation.

newSpriteDesc
A pointer to a QTRuntimeSpriteDescStruct structure.

Functions 327
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaSetActionVariable
Sets the value of a sprite track variable to a specified value.

ComponentResult SpriteMediaSetActionVariable (
 MediaHandler mh,
 QTAtomID variableID,
 const float *value
);

Parameters
mh

The sprite media handler for this operation.

variableID
A variable ID of the sprite name.

value
A pointer to a floating-point number. The value is passed by reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function is specific to sprite tracks using wired sprites.

Special Considerations

This function is specific to sprite tracks using wired sprites.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaSetActionVariableToString
Undocumented

328 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaSetActionVariableToString (
 MediaHandler mh,
 QTAtomID variableID,
 Ptr theCString
);

Parameters
mh

The sprite media handler for this operation.

variableID
A variable ID of the sprite variable.

theCString
A pointer to a C string.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaSetProperty
Sets a sprite property; superseded by SpriteMediaSetSpriteProperty.

ComponentResult SpriteMediaSetProperty (
 MediaHandler mh,
 short spriteIndex,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The sprite media handler for this operation.

spriteIndex
The index of the sprite for this operation.

propertyType
The property whose value should be set (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

Functions 329
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

propertyValue
A pointer to a variable that contains the new value of the selected property. The type of data you
pass for this parameter depends on the property type.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaSetSpriteProperty
Sets the specified property of a sprite or sprite track.

ComponentResult SpriteMediaSetSpriteProperty (
 MediaHandler mh,
 QTAtomID spriteID,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The ID of the sprite for this operation. Pass 'Trck' to set the properties of a whole sprite track.

propertyType
A constant (see below) that specifies the property whose value should be set. See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpriteTrackPropertyAllSpritesHitTestingMode

kSpriteTrackPropertyPreferredDepthInterpretationMode

propertyValue
A pointer to the new value of the selected property. The type of data you pass for this parameter
depends on the property type.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

330 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Function introduced in QuickTime 3 or earlier. The kSpriteTrackPropertyAllSpritesHitTestingMode
and kSpriteTrackPropertyPreferredDepthInterpretationMode constants were added in QuickTime
6.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qtsprites.win
qtspritesplus.win
vrscript
vrscript.win

Declared In
Movies.h

SpriteMediaSpriteIDToIndex
Converts a sprite ID to the corresponding sprite index.

ComponentResult SpriteMediaSpriteIDToIndex (
 MediaHandler mh,
 QTAtomID spriteID,
 short *spriteIndex
);

Parameters
mh

The sprite media handler for this operation.

spriteID
The ID of the sprite for this operation.

spriteIndex
On return, a pointer to the index of the sprite.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteMediaSpriteIndexToID
Returns the ID of a sprite specified by a sprite index.

Functions 331
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult SpriteMediaSpriteIndexToID (
 MediaHandler mh,
 short spriteIndex,
 QTAtomID *spriteID
);

Parameters
mh

The sprite media handler for this operation.

spriteIndex
The index of the sprite for this operation.

spriteID
A pointer to the sprite ID corresponding to the sprite index. If a sprite with the specified index does
not exist, the error paramErr is returned.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

StartMovie
Starts the movie playing from the current movie time.

void StartMovie (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
You are not required to call this function to start a movie. It is included in the QuickTime API for convenience.
Before playing the movie, the Movie Toolbox makes the movie active, prerolls the movie, and sets the movie
to its preferred playback rate. You can use SetMoviePreferredRate (page 293) to change this setting.

Special Considerations

A movie's current time is saved when a movie is stored in a movie file. Therefore, your application should
appropriately position a movie before playing the movie. Use GoToBeginningOfMovie (page 240) to set a
movie to play from its start.

332 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
Graphic Import-Export
MovieGWorlds
OpenGLCompositorLab
vrscript.win

Declared In
Movies.h

StopMovie
Stops the playback of a movie.

void StopMovie (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
Graphic Import-Export
vrmovies
vrscript
vrscript.win

Declared In
Movies.h

SubtractTime
Subtracts one time from another.

Functions 333
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

void SubtractTime (
 TimeRecord *dst,
 const TimeRecord *src
);

Parameters
dst

A pointer to a TimeRecord structure. This time structure contains one of the operands for the
subtraction. This function returns the result of the subtraction into this time structure as a duration.

src
A pointer to a TimeRecord structure. The Movie Toolbox subtracts this value from the time or duration
specified by the dst parameter.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
If the two times are relative to different time scales or time bases, this function converts the times as
appropriate to yield reasonable results. However, the time bases for both time values must rely on the same
time source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaAddHiliteSample
Provides dynamic highlighting of text.

ComponentResult TextMediaAddHiliteSample (
 MediaHandler mh,
 short hiliteStart,
 short hiliteEnd,
 RGBColor *rgbHiliteColor,
 TimeValue duration,
 TimeValue *sampleTime
);

Parameters
mh

The media handler for the text media obtained by GetMediaHandler (page 1577).

hiliteStart
Indicates the beginning of the text to be highlighted.

hiliteEnd
Indicates the ending of the text to be highlighted. If the value of the hiliteStart parameter equals
that of the hiliteEnd parameter, then no text is highlighted (that is, highlighting is turned off for
the duration of the specified sample).

334 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

rgbHiliteColor
A pointer to the RGBColor structure that defines the color for highlighting. If this parameter is not
NIL, then the specified color is used when highlighting the text indicated by the hiliteStart and
hiliteEnd parameters. Otherwise, the default system highlight color is used.

duration
Specifies how long the text sample should last. This duration is expressed in the media's time base.

sampleTime
A pointer to a time value. The actual media time at which the sample was added is returned here.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaAddTESample
Specifies a TextEdit handle to be added to a specified media.

ComponentResult TextMediaAddTESample (
 MediaHandler mh,
 TEHandle hTE,
 RGBColor *backColor,
 short textJustification,
 Rect *textBox,
 long displayFlags,
 TimeValue scrollDelay,
 short hiliteStart,
 short hiliteEnd,
 RGBColor *rgbHiliteColor,
 TimeValue duration,
 TimeValue *sampleTime
);

Parameters
mh

The media handler for the text media obtained by GetMediaHandler (page 1577).

hTE
A handle to a TERec structure.

backColor
A pointer to an RGBColor structure specifying the text background color. Passing NIL for this
parameter in defaults to white.

Functions 335
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

textJustification
Indicates the justification of the text (see below). See these constants:

textBox
A pointer to a Rect structure that defines the box within which the text is to be displayed. The box
is relative to the track bounds.

displayFlags
Contains the text display flags (see below). See these constants:

dfDontDisplay

dfDontAutoScale

dfClipToTextBox

dfShrinkTextBoxToFit

dfScrollIn

dfScrollOut

dfHorizScroll

dfReverseScroll

dfContinuousScroll

dfFlowHoriz

dfContinuousKaraoke

dfDropShadow

dfAntiAlias

dfKeyedText

dfInverseHilite

dfTextColorHilite

scrollDelay
Indicates the delay in scrolling associated with the setting of the dfScrollIn and dfScrollOut
display flags. If the value of the scrollDelay parameter is greater than 0 and the dfScrollIn flag
is set, the text pauses when it has scrolled all the way in for the amount of time specified by
scrollDelay. If the dfScrollOut flag is set, the pause occurs first before the text scrolls out. If both
these flags are set, the pause occurs at the midpoint between scrolling in and scrolling out.

hiliteStart
The beginning of the text to be highlighted.

hiliteEnd
The end of the text to be highlighted. If the hiliteEnd parameter is greater than the hiliteStart
parameter, then the text is highlighted from the selection specified by hiliteStart to hiliteEnd.
To specify additional highlighting, you can use TextMediaAddHiliteSample (page 334).

rgbHiliteColor
Contains a pointer to an RGBColor structure that defines the color for highlighting. If this parameter
is not NIL, then the specified color is used when highlighting the text indicated by the hiliteStart
and hiliteEnd parameters. Otherwise, the default system highlight color is used.

duration
A time value that specifies how long the text sample should last. This duration is expressed in the
media's time base.

sampleTime
Contains a pointer to a time value. The actual media time at which the sample was added is returned
here.

336 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

Be sure to turn on the dfDropShadow display flag after you call this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaAddTextSample
Adds a single block of styled text to an existing media.

ComponentResult TextMediaAddTextSample (
 MediaHandler mh,
 Ptr text,
 unsigned long size,
 short fontNumber,
 short fontSize,
 Style textFace,
 RGBColor *textColor,
 RGBColor *backColor,
 short textJustification,
 Rect *textBox,
 long displayFlags,
 TimeValue scrollDelay,
 short hiliteStart,
 short hiliteEnd,
 RGBColor *rgbHiliteColor,
 TimeValue duration,
 TimeValue *sampleTime
);

Parameters
mh

The media handler for the text media obtained by GetMediaHandler (page 1577).

text
A pointer to a block of text.

size
Indicates the size of the text block, in bytes.

fontNumber
The number for the font in which to display the text.

fontSize
Indicates the size of the font.

Functions 337
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

textFace
Indicates the typeface or style of the text (that is, bold, italic, and so on).

textColor
A pointer to an RGBColor structure specifying the color of the text. Passing NIL for this parameter
in defaults to black.

backColor
A pointer to an RGBColor structure specifying the text background color. Passing NIL for this
parameter in defaults to white.

textJustification
Indicates the justification of the text (see below). See these constants:

textBox
A pointer to a Rect structure that defines the box within which the text is to be displayed. The box
is relative to the track bounds.

displayFlags
Contains the text display flags (see below). See these constants:

dfDontDisplay

dfDontAutoScale

dfClipToTextBox

dfShrinkTextBoxToFit

dfScrollIn

dfScrollOut

dfHorizScroll

dfReverseScroll

dfContinuousScroll

dfFlowHoriz

dfContinuousKaraoke

dfDropShadow

dfAntiAlias

dfKeyedText

dfInverseHilite

dfTextColorHilite

scrollDelay
Indicates the delay in scrolling associated with the setting of the dfScrollIn and dfScrollOut
display flags. If the value of the scrollDelay parameter is greater than 0 and the dfScrollIn flag
is set, the text pauses when it has scrolled all the way in for the amount of time specified by
scrollDelay. If the dfScrollOut flag is set, the pause occurs first before the text scrolls out. If both
these flags are set, the pause occurs at the midpoint between scrolling in and scrolling out.

hiliteStart
The beginning of the text to be highlighted.

hiliteEnd
The end of the text to be highlighted. If the hiliteEnd parameter is greater than the hiliteStart
parameter, then the text is highlighted from the selection specified by hiliteStart to hiliteEnd.
To specify additional highlighting, you can use TextMediaAddHiliteSample (page 334).

338 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

rgbHiliteColor
Contains a pointer to an RGBColor structure that defines the color for highlighting. If this parameter
is not NIL, then the specified color is used when highlighting the text indicated by the hiliteStart
and hiliteEnd parameters. Otherwise, the default system highlight color is used.

duration
A time value that specifies how long the text sample should last. This duration is expressed in the
media's time base.

sampleTime
Contains a pointer to a time value. The actual media time at which the sample was added is returned
here.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

Be sure to turn on the dfDropShadow display flag after you call this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addhtactions.win
qttext
qttext.win
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

TextMediaDrawRaw
Undocumented

ComponentResult TextMediaDrawRaw (
 MediaHandler mh,
 GWorldPtr gw,
 GDHandle gd,
 void *data,
 long dataSize,
 TextDescriptionHandle tdh
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

gw
A pointer to a CGrafPort structure that defines a graphics world.

Functions 339
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

gd
A handle to a graphics device.

data
A pointer to the source data.

dataSize
The size of the source data.

tdh
A handle to a TextDescription structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaFindNextText
Searches for text with a specified media handler starting at a given time.

ComponentResult TextMediaFindNextText (
 MediaHandler mh,
 Ptr text,
 long size,
 short findFlags,
 TimeValue startTime,
 TimeValue *foundTime,
 TimeValue *foundDuration,
 long *offset
);

Parameters
mh

The media handler for the text media obtained by GetMediaHandler (page 1577).

text
Points to the text to be found.

size
The length of the text to be found.

findFlags
Flags (see below) that determine the conditions of the search. See these constants:

findTextEdgeOK

findTextCaseSensitive

findTextReverseSearch

findTextWrapAround

findTextUseOffset

340 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

startTime
Indicates the time (expressed in the movie time scale) at which to begin the search.

foundTime
A pointer to the movie time at which the text sample is found if the search is successful. Otherwise,
it returns -1.

foundDuration
A pointer to the duration of the sample (in the movie time scale) that is found if the search is successful.

offset
A pointer to the offset of the found text from the beginning of the text portion of the sample.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

TextMediaGetTextProperty
Sets properties of a text media.

ComponentResult TextMediaGetTextProperty (
 MediaHandler mh,
 TimeValue atMediaTime,
 long propertyType,
 void *data,
 long dataSize
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

atMediaTime
The media time of the text.

Functions 341
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

propertyType
A constant (see below) that identifies the text property to be set. See these constants:

kTextTextHandle

kTextTextPtr

kTextTEStyle

kTextBackColor

kTextForeColor

kTextFace

kTextFont

kTextSize

kTextAlignment

kTextHilite

kTextDropShadow

kTextDisplayFlags

kTextScroll

data
A pointer to text data.

dataSize
The size of the data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaHiliteTextSample
Specifies selected text to be highlighted for a given text media handler.

ComponentResult TextMediaHiliteTextSample (
 MediaHandler mh,
 TimeValue sampleTime,
 short hiliteStart,
 short hiliteEnd,
 RGBColor *rgbHiliteColor
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

sampleTime
The starting time in the sample.

342 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

hiliteStart
The beginning of the text to be highlighted.

hiliteEnd
The end of the text to be highlighted. If the hiliteEnd parameter is greater than the hiliteStart
parameter, then the text is highlighted from the selection specified by hiliteStart to hiliteEnd.

rgbHiliteColor
Contains a pointer to an RGBColor structure that defines the color for highlighting. If this parameter
is not NIL, then the specified color is used when highlighting the text indicated by the hiliteStart
and hiliteEnd parameters. Otherwise, the default system highlight color is used.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

TextMediaRawIdle
Undocumented

ComponentResult TextMediaRawIdle (
 MediaHandler mh,
 GWorldPtr gw,
 GDHandle gd,
 TimeValue sampleTime,
 long flagsIn,
 long *flagsOut
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

gw
A pointer to a CGrafPort structure that defines a graphics world.

gd
A handle to a graphics device.

sampleTime
Undocumented

flagsIn
Undocumented

Functions 343
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

flagsOut
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaRawSetup
Undocumented

ComponentResult TextMediaRawSetup (
 MediaHandler mh,
 GWorldPtr gw,
 GDHandle gd,
 void *data,
 long dataSize,
 TextDescriptionHandle tdh,
 TimeValue sampleDuration
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

gw
A pointer to a CGrafPort structure that defines a graphics world.

gd
A handle to a graphics device.

data
A pointer to data.

dataSize
The size of the data.

tdh
A handle to a TextDescription structure.

sampleDuration
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

344 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaSetTextProc
Specifies a custom function to be called whenever a text sample is displayed in a movie.

ComponentResult TextMediaSetTextProc (
 MediaHandler mh,
 TextMediaUPP TextProc,
 long refcon
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

TextProc
A Universal Procedure Pointer that points to a TextMediaProc callback.

refcon
Indicates a reference constant that will be passed to your callback. Use this parameter to point to a
data structure containing any information your function needs. Set this parameter to 0 if you don't
need it.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

TextMediaSetTextProperty
Sets properties of a text media.

Functions 345
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult TextMediaSetTextProperty (
 MediaHandler mh,
 TimeValue atMediaTime,
 long propertyType,
 void *data,
 long dataSize
);

Parameters
mh

The text media handler obtained by GetMediaHandler (page 1577).

atMediaTime
The media time of the text.

propertyType
A constant (see below) that identifies the text property to be set. See these constants:

kTextTextHandle

kTextTextPtr

kTextTEStyle

kTextBackColor

kTextForeColor

kTextFace

kTextFont

kTextSize

kTextAlignment

kTextHilite

kTextDropShadow

kTextDisplayFlags

kTextScroll

data
A pointer to text data.

dataSize
The size of the data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TextMediaSetTextSampleData
Sets values before calling TextMediaAddTextSample or TextMediaAddTESample.

346 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult TextMediaSetTextSampleData (
 MediaHandler mh,
 void *data,
 OSType dataType
);

Parameters
mh

A reference to the text media handler. You obtain this reference from GetMediaHandler (page 1577).

data
A pointer to the data, defined by the dataType parameter.

dataType
The type of data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following code sample demonstrates how to use this function:

// TextMediaSetTextSampleData coding example
short trans =127;
Point dropOffset;
MediaHandler mh;
dropOffset.h =dropOffset.v =4
TextMediaSetTextSampleData(mh,(void *)&dropOffset,dropShadowOffsetType);
TextMediaSetTextSampleData(mh,(void *)&trans,dropShadowTranslucencyType);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

UpdateMovie
Ensures that the Movie Toolbox properly displays your movie after it has been uncovered.

OSErr UpdateMovie (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 347
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Discussion
Your application should call this function during window updating. Don't call MoviesTask (page 257) at this
time; you will observe better display behavior if you call it at the end of your update processing.

This function does not actually update the movie's graphics world. Rather, it invalidates the movie's display
state so that the Movie Toolbox redraws the movie the next time you call MoviesTask. If you need to force
a movie to be redrawn outside of a window update sequence, your application can call this function and
then call MoviesTask to service the movie. The Movie Toolbox determines the portion of the screen to
update by examining the graphics port's visible region.

The following code snippet uses this function in a Macintosh Window Manager update sequence:

// UpdateMovie coding example
#include <Events.h>
#include <ToolUtils.h>
#include "Movies.h"
void DoUpdate (WindowRef theWindow, Movie theMovie)
{
 BeginUpdate (theWindow);
 UpdateMovie (theMovie);
 EndUpdate (theWindow);
} /* DoUpdate */

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
mfc.win
MovieGWorlds

Declared In
Movies.h

VideoMediaGetCodecParameter
Undocumented

ComponentResult VideoMediaGetCodecParameter (
 MediaHandler mh,
 CodecType cType,
 OSType parameterID,
 Handle outParameterData
);

Parameters
mh

A reference to a video media handler. You obtain this reference from GetMediaHandler (page 1577).

348 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

cType
A valid codec type constant; see Codec Identifiers.

parameterID
Undocumented

outParameterData
A handle to the returned data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

VideoMediaGetStallCount
Undocumented

ComponentResult VideoMediaGetStallCount (
 MediaHandler mh,
 unsigned long *stalls
);

Parameters
mh

A reference to a video media handler. You obtain this reference from GetMediaHandler (page 1577).

stalls
The number of stalls.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

VideoMediaGetStatistics
Returns the play-back frame rate of a movie.

Functions 349
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

ComponentResult VideoMediaGetStatistics (
 MediaHandler mh
);

Parameters
mh

A reference to a video media handler. You obtain this reference from GetMediaHandler (page 1577).

Return Value
The average frame rate since the last time VideoMediaResetStatistics (page 350) was called. Because
of sampling errors, the values returned from this function are accurate only after waiting at least one second
after calling VideoMediaResetStatistics.

Discussion
This function can only be used on video or MPEG media handlers. Because not all QuickTime movies have a
constant frame rate, the results of this call can be difficult to interpret correctly. For this reason, the results
of this function should not be displayed in a place where a novice user is likely to see it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

VideoMediaResetStatistics
Resets the video media handler's counters before using VideoMediaGetStatistics to determine the frame rate
of a movie.

ComponentResult VideoMediaResetStatistics (
 MediaHandler mh
);

Parameters
mh

A reference to a video media handler. You obtain this reference from GetMediaHandler (page 1577).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

This call can only be used on video or MPEG media handlers.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

350 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

VideoMediaSetCodecParameter
Undocumented

ComponentResult VideoMediaSetCodecParameter (
 MediaHandler mh,
 CodecType cType,
 OSType parameterID,
 long parameterChangeSeed,
 void *dataPtr,
 long dataSize
);

Parameters
mh

A reference to a video media handler. You obtain this reference from GetMediaHandler (page 1577).

cType
A valid codec type constant; see Codec Identifiers.

parameterID
Undocumented

parameterChangeSeed
Undocumented

dataPtr
A pointer to the data to be set.

dataSize
The size of the data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Callbacks

Data Types

ControlPtr
Represents a type used by the Movie Manager API.

Callbacks 351
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

typedef ControlRecord * ControlPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Controls.h

ControlRef
Represents a type used by the Movie Manager API.

typedef ControlPtr * ControlRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIObject.h

QTFloatSingle
Represents a type used by the Movie Manager API.

typedef Float32 QTFloatSingle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTNewMoviePropertyElement
Stores a movie property for NewMovieFromProperties.

struct QTNewMoviePropertyElement {
QTPropertyClass propClass;
QTPropertyID propID;
ByteCount propValueSize;
QTPropertyValuePtr propValueAddress;
OSStatus propStatus;
};

Fields
propClass

Discussion
A four-character code designating the class of a movie property. See New Movie Property Codes.

propID

Discussion
The ID of the property.

352 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

propValueSize

Discussion
The size in bytes of the property passed in propValueAddress.

propValueAddress

Discussion
A pointer to a movie property. Since the data type is fixed for each element's property class and ID, these
is no ambiguity about the data type for its property value.

propStatus

Discussion
Indicates any problems with the property. For example, if a property is not understood by the function it is
passed to, this field is set appropriately. See the discussion in NewMovieFromProperties (page 260).

Discussion
When you call NewMovieFromProperties (page 260), you allocate and own arrays of these elements to
pass to it, as well as the property values that each element points to. You are responsible for disposing of all
of these memory allocations.

Related Functions
Associated function: NewMovieFromProperties (page 260)

Declared In
Movies.h

QTRuntimeSpriteDescPtr
Represents a type used by the Movie Manager API.

typedef QTRuntimeSpriteDescStruct * QTRuntimeSpriteDescPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTRuntimeSpriteDescStruct
Provides a sprite description for the SpriteMediaNewSprite function.

Data Types 353
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

QTRuntimeSpriteDescStruct {
 long version;
 QTAtomID spriteID;
 short imageIndex;
 MatrixRecord matrix;
 short visible;
 short layer;
 ModifierTrackGraphicsModeRecord graphicsMode;
 QTAtomID actionHandlingSpriteID;
 };

Fields
version

Discussion
Set to 0.

spriteID

Discussion
The QT atom ID of the sprite atom.

imageIndex

Discussion
The index of the sprite image. This value must be between 1 and the number of available images. You can
determine how many images are available by calling SpriteMediaCountImages (page 313).

matrix

Discussion
A MatrixRecord structure that defines the sprite's matrix.

visible

Discussion
Undocumented

layer

Discussion
The sprite's layer number.

graphicsMode

Discussion
A ModifierTrackGraphicsModeRecord structure that defines the graphics mode setting for the sprite.

actionHandlingSpriteID

Discussion
Undocumented

Declared In
Movies.h

RegionCode
Represents a type used by the Movie Manager API.

354 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

typedef SInt16 RegionCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTypes.h

Style
Represents a type used by the Movie Manager API.

typedef unsigned char Style;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTypes.h

TEHandle
Represents a type used by the Movie Manager API.

typedef TEPtr * TEHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEPtr
Represents a type used by the Movie Manager API.

typedef TERec * TEPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TextDescriptionHandle
Represents a type used by the Movie Manager API.

typedef TextDescriptionPtr * TextDescriptionHandle;

Availability
Available in Mac OS X v10.0 and later.

Data Types 355
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

Declared In
Movies.h

TextDescriptionPtr
Represents a type used by the Movie Manager API.

typedef TextDescription * TextDescriptionPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TimeBaseStatus
Represents a type used by the Movie Manager API.

typedef unsigned long TimeBaseStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Constants

TextMediaFindNextText Values
Constants passed to TextMediaFindNextText.

enum {
 findTextEdgeOK = 1 << 0, /* Okay to find text at specified sample
 time*/
 findTextCaseSensitive = 1 << 1, /* Case sensitive search*/
 findTextReverseSearch = 1 << 2, /* Search from sampleTime backwards*/
 findTextWrapAround = 1 << 3, /* Wrap search when beginning or end of
 movie is hit*/
 findTextUseOffset = 1 << 4 /* Begin search at the given character
offset into sample rather than edge*/
};

Declared In
Movies.h

356 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

QTTextToNativeText Values
Constants passed to QTTextToNativeText.

enum {
 kITextAtomType = 'itxt',
 kITextStringAtomType = 'text'
};

Declared In
Movies.h

ITextRemoveString Values
Constants passed to ITextRemoveString.

enum {
 kITextRemoveEverythingBut = 0 << 1,
 kITextRemoveLeaveSuggestedAlternate = 1 << 1
};

Declared In
Movies.h

CreateMovieControl Values
Constants passed to CreateMovieControl.

enum {
 kMovieControlOptionHideController = (1L << 0),
 kMovieControlOptionLocateTopLeft = (1L << 1),
 kMovieControlOptionEnableEditing = (1L << 2),
 kMovieControlOptionHandleEditingHI = (1L << 3),
 kMovieControlOptionSetKeysEnabled = (1L << 4),
 kMovieControlOptionManuallyIdled = (1L << 5)
};

Declared In
Movies.h

MovieMediaGetCurrentMovieProperty Values
Constants passed to MovieMediaGetCurrentMovieProperty.

Constants 357
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

enum {
 kMoviePropertyDuration = 'dura', /* TimeValue **/
 kMoviePropertyTimeScale = 'tims', /* TimeValue **/
 kMoviePropertyTime = 'timv', /* TimeValue **/
 kMoviePropertyNaturalBounds = 'natb', /* Rect **/
 kMoviePropertyMatrix = 'mtrx', /* Matrix **/
 kMoviePropertyTrackList = 'tlst' /* long ****/
};

Declared In
Movies.h

EnterMoviesOnThread Values
Constants passed to EnterMoviesOnThread.

enum {
 kQTEnterMoviesFlagDontSetComponentsThreadMode = 1L << 0
};

Declared In
Movies.h

loopTimeBase
Constants grouped with loopTimeBase.

enum {
 loopTimeBase = 1,
 palindromeLoopTimeBase = 2,
 maintainTimeBaseZero = 4
};

Declared In
Movies.h

SetMovieDrawingCompleteProc Values
Constants passed to SetMovieDrawingCompleteProc.

enum {
 movieDrawingCallWhenChanged = 0,
 movieDrawingCallAlways = 1
};

Declared In
Movies.h

timeBaseAfterStopTime
Constants grouped with timeBaseAfterStopTime.

358 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

enum {
 timeBaseBeforeStartTime = 1,
 timeBaseAfterStopTime = 2,
 timeBaseRateChanging = 4
};

Declared In
Movies.h

Constants 359
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

360 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Movie Manager Reference

361
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Constants

362
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Constants

Framework: Frameworks/QuickTime.framework

Declared in QuickTime.h

Overview

This reference covers the constants common to multiple QuickTime frameworks.

Constants

Atom ID Codes
Identify the four-character type codes of atoms.

Overview 363
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 ConnectionSpeedPrefsType = 'cspd',
 ConnectionSpeedIsValidPrefsType = 'vspd'
};
enum {
 kEffectNameAtom = 'name', /* name of effect */
 kEffectTypeAtom = 'type', /* codec sub-type for effect */
 kEffectManufacturerAtom = 'manu' /* codec manufacturer for effect */
};
enum {
 kGraphicsExportGroup = 'expo',
 kGraphicsExportFileType = 'ftyp',
 kGraphicsExportMIMEType = 'mime',
 kGraphicsExportExtension = 'ext ',
 kGraphicsExportDescription = 'desc'
};
enum {
 kInputMapSubInputID = 'subi'
};
enum {
 kMovieMediaDataReference = 'mmdr', /* data reference*/
 kMovieMediaDefaultDataReferenceID = 'ddri', /* atom id*/
 kMovieMediaSlaveTime = 'slti', /* boolean*/
 kMovieMediaSlaveAudio = 'slau', /* boolean*/
 kMovieMediaSlaveGraphicsMode = 'slgr', /* boolean*/
 kMovieMediaAutoPlay = 'play', /* boolean*/
 kMovieMediaLoop = 'loop', /* UInt8 (0=no loop, 1=loop, 2=palindrome
 loop)*/
 kMovieMediaUseMIMEType = 'mime', /* string indicating the MIME type to
use for the dataref (usually not required)*/
 kMovieMediaTitle = 'titl', /* string of the media's title (tooltips)*/
 kMovieMediaAltText = 'altt', /* string of alternate text if media
isn't loaded*/
 kMovieMediaClipBegin = 'clpb', /* MovieMediaTimeRecord of start time of
 embedded media*/
 kMovieMediaClipDuration = 'clpd', /* MovieMediaTimeRecord of duration of
embedded media*/
 kMovieMediaRegionAtom = 'regi', /* contains subatoms that describe layout*/
 kMovieMediaSlaveTrackDuration = 'sltr', /* Boolean indicating that media handler
 should adjust track and media based on actual embedded movie duration*/
 kMovieMediaEnableFrameStepping = 'enfs', /* boolean. if true stepping on external
 movie steps frames within embedded movie.*/
 kMovieMediaBackgroundColor = 'bkcl', /* RGBColor.*/
 kMovieMediaPrerollTime = 'prer' /* SInt32 indicating preroll time*/
};
enum {
 kMovieMediaSpatialAdjustment = 'fit ', /* OSType from kMovieMediaFit**/
 kMovieMediaRectangleAtom = 'rect',
 kMovieMediaTop = 'top ',
 kMovieMediaLeft = 'left',
 kMovieMediaWidth = 'wd ',
 kMovieMediaHeight = 'ht '
};
enum {
 kQTEventType = 'evnt',
 kAction = 'actn',
 kWhichAction = 'whic',
 kActionParameter = 'parm',

364 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 kActionTarget = 'targ',
 kActionFlags = 'flag',
 kActionParameterMinValue = 'minv',
 kActionParameterMaxValue = 'maxv',
 kActionListAtomType = 'list',
 kExpressionContainerAtomType = 'expr',
 kConditionalAtomType = 'test',
 kOperatorAtomType = 'oper',
 kOperandAtomType = 'oprn',
 kCommentAtomType = 'why ',
 kCustomActionHandler = 'cust',
 kCustomHandlerID = 'id ',
 kCustomHandlerDesc = 'desc',
 kQTEventRecordAtomType = 'erec'
};
enum {
 kQTParseTextHREFText = 'text', /* string*/
 kQTParseTextHREFBaseURL = 'burl', /* string*/
 kQTParseTextHREFClickPoint = 'clik', /* Point; if present, QTParseTextHREF
will expand URLs to support server-side image maps*/
 kQTParseTextHREFUseAltDelim = 'altd', /* boolean; if no
kQTParseTextHREFDelimiter, delim is ':'*/
 kQTParseTextHREFDelimiter = 'delm', /* character*/
 kQTParseTextHREFRecomposeHREF = 'rhrf' /* Boolean; if true, QTParseTextHREF
returns recomposed HREF with URL expanded as appropriate*/
};
enum {
 kQTResolutionSettings = 'reso',
 kQTTargetDataSize = 'dasz',
 kQTDontRecompress = 'dntr',
 kQTInterlaceStyle = 'ilac',
 kQTColorSyncProfile = 'iccp',
 kQTThumbnailSettings = 'thum',
 kQTEnableExif = 'exif', /* UInt8 (boolean)*/
 kQTMetaData = 'meta'
};
enum {
 kQTSConnectionPrefsType = 'stcm', /* root atom that all other atoms are
contained in*/
 /* kQTSNotUsedForProxyPrefsType = 'nopr',
 // comma-delimited list of URLs that are never used for proxies*/
 kQTSConnectionMethodPrefsType = 'mthd', /* connection method (OSType that
matches one of the following three)*/
 kQTSDirectConnectPrefsType = 'drct', /* used if direct connect
(QTSDirectConnectPrefsRecord)*/
 /* kQTSRTSPProxyPrefsType = 'rtsp',
 // used if RTSP Proxy (QTSProxyPrefsRecord)*/
 kQTSSOCKSPrefsType = 'sock' /* used if SOCKS Proxy
(QTSProxyPrefsRecord)*/
};
enum {
 kQTSNullNotification = 'null', /* NULL */
 kQTSErrorNotification = 'err ', /* QTSErrorParams*, optional */
 kQTSNewPresDetectedNotification = 'newp', /* QTSNewPresDetectedParams* */
 kQTSPresBeginChangingNotification = 'prcb', /* NULL */
 kQTSPresDoneChangingNotification = 'prcd', /* NULL */
 kQTSPresentationChangedNotification = 'prch', /* NULL */
 kQTSNewStreamNotification = 'stnw', /* QTSNewStreamParams* */

Constants 365
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 kQTSStreamBeginChangingNotification = 'stcb', /* QTSStream */
 kQTSStreamDoneChangingNotification = 'stcd', /* QTSStream */
 kQTSStreamChangedNotification = 'stch', /* QTSStreamChangedParams* */
 kQTSStreamGoneNotification = 'stgn', /* QTSStreamGoneParams* */
 kQTSPreviewAckNotification = 'pvak', /* QTSStream */
 kQTSPrerollAckNotification = 'pack', /* QTSStream */
 kQTSStartAckNotification = 'sack', /* QTSStream */
 kQTSStopAckNotification = 'xack', /* QTSStream */
 kQTSStatusNotification = 'stat', /* QTSStatusParams* */
 kQTSURLNotification = 'url ', /* QTSURLParams* */
 kQTSDurationNotification = 'dura', /* QTSDurationAtom* */
 kQTSNewPresentationNotification = 'nprs', /* QTSPresentation */
 kQTSPresentationGoneNotification = 'xprs', /* QTSPresentation */
 kQTSPresentationDoneNotification = 'pdon', /* NULL */
 kQTSBandwidthAlertNotification = 'bwal', /* QTSBandwidthAlertParams* */
 kQTSAnnotationsChangedNotification = 'meta' /* NULL */
};
enum {
 kQTSStatisticsInfo = 'stat', /* QTSStatisticsParams* */
 kQTSMinStatusDimensionsInfo = 'mstd', /* QTSDimensionParams* */
 kQTSNormalStatusDimensionsInfo = 'nstd', /* QTSDimensionParams* */
 kQTSTotalDataRateInfo = 'drtt', /* UInt32*, add to what's there */
 kQTSTotalDataRateInInfo = 'drti', /* UInt32*, add to what's there */
 kQTSTotalDataRateOutInfo = 'drto', /* UInt32*, add to what's there */
 kQTSLostPercentInfo = 'lpct', /* QTSLostPercentParams*, add to what's
 there */
 kQTSNumViewersInfo = 'nviw', /* UInt32* */
 kQTSMediaTypeInfo = 'mtyp', /* OSType* */
 kQTSNameInfo = 'name', /* QTSNameParams* */
 kQTSCanHandleSendDataType = 'chsd', /* QTSCanHandleSendDataTypeParams* */
 kQTSAnnotationsInfo = 'meta', /* QTAtomContainer */
 kQTSRemainingBufferTimeInfo = 'btms', /* UInt32* remaining buffer time before
 playback, in microseconds */
 kQTSInfo_SettingsText = 'sttx', /* QTSSettingsTextParams* */
 kQTSInfo_AverageFrameRate = 'fps ' /* UnsignedFixed* */
};
enum {
 kQTSStreamMediaType = 'strm'
};
enum {
 kQTSTargetBufferDurationInfo = 'bufr', /* Fixed* in seconds; expected, not actual
 */
 kQTSDurationInfo = 'dura', /* QTSDurationAtom* */
 kQTSSoundLevelMeteringEnabledInfo = 'mtrn', /* Boolean* */
 kQTSSoundLevelMeterInfo = 'levm', /* LevelMeterInfoPtr */
 kQTSSourceTrackIDInfo = 'otid', /* UInt32* */
 kQTSSourceLayerInfo = 'olyr', /* UInt16* */
 kQTSSourceLanguageInfo = 'olng', /* UInt16* */
 kQTSSourceTrackFlagsInfo = 'otfl', /* SInt32* */
 kQTSSourceDimensionsInfo = 'odim', /* QTSDimensionParams* */
 kQTSSourceVolumesInfo = 'ovol', /* QTSVolumesParams* */
 kQTSSourceMatrixInfo = 'omat', /* MatrixRecord* */
 kQTSSourceClipRectInfo = 'oclp', /* Rect* */
 kQTSSourceGraphicsModeInfo = 'ogrm', /* QTSGraphicsModeParams* */
 kQTSSourceScaleInfo = 'oscl', /* Point* */
 kQTSSourceBoundingRectInfo = 'orct', /* Rect* */
 kQTSSourceUserDataInfo = 'oudt', /* UserData */
 kQTSSourceInputMapInfo = 'oimp', /* QTAtomContainer */

366 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 kQTSInfo_DataProc = 'datp', /* QTSDataProcParams* */
 kQTSInfo_SendDataExtras = 'dext', /* QTSSendDataExtrasParams* */
 kQTSInfo_HintTrackID = 'htid', /* long* */
 kQTSInfo_URL = 'url ', /* Handle*, cstring in handle */
 kQTSInfo_Authentication = 'auup', /* QTSAuthenticationParams */
 kQTSInfo_MediaPacketizer = 'rmpk' /* ComponentInstance */
};
enum {
 kQTVRNodeHeaderAtomType = 'ndhd',
 kQTVRHotSpotParentAtomType = 'hspa',
 kQTVRHotSpotAtomType = 'hots',
 kQTVRHotSpotInfoAtomType = 'hsin',
 kQTVRLinkInfoAtomType = 'link'
};
enum {
 kQTVRObjectInfoAtomID = 1,
 kQTVRObjectImageTrackRefAtomID = 1, /* New with 2.1, it adds a track reference
 to select between multiple image tracks*/
 kQTVRObjectHotSpotTrackRefAtomID = 1 /* New with 2.1, it adds a track reference
 to select between multiple hotspot tracks*/
};
enum {
 kQTVRStringAtomType = 'vrsg',
 kQTVRStringEncodingAtomType = 'vrse', /* New with 2.1*/
 kQTVRPanoSampleDataAtomType = 'pdat',
 kQTVRObjectInfoAtomType = 'obji',
 kQTVRImageTrackRefAtomType = 'imtr', /* Parent is kQTVRObjectInfoAtomType.
Required if track ref is not 1 as required by 2.0 format.*/
 kQTVRHotSpotTrackRefAtomType = 'hstr', /* Parent is kQTVRObjectInfoAtomType.
Required if track ref is not 1 as required by 2.0 format.*/
 kQTVRAngleRangeAtomType = 'arng',
 kQTVRTrackRefArrayAtomType = 'tref',
 kQTVRPanConstraintAtomType = 'pcon',
 kQTVRTiltConstraintAtomType = 'tcon',
 kQTVRFOVConstraintAtomType = 'fcon',
 kQTVRCubicViewAtomType = 'cuvw', /* New with 5.0*/
 kQTVRCubicFaceDataAtomType = 'cufa' /* New with 5.0*/
};
enum {
 kQTVRWorldHeaderAtomType = 'vrsc',
 kQTVRImagingParentAtomType = 'imgp',
 kQTVRPanoImagingAtomType = 'impn',
 kQTVRObjectImagingAtomType = 'imob',
 kQTVRNodeParentAtomType = 'vrnp',
 kQTVRNodeIDAtomType = 'vrni',
 kQTVRNodeLocationAtomType = 'nloc',
 kQTVRCursorParentAtomType = 'vrcp', /* New with 2.1*/
 kQTVRCursorAtomType = 'CURS', /* New with 2.1*/
 kQTVRColorCursorAtomType = 'crsr' /* New with 2.1*/
};
enum {
 kSpriteAtomType = 'sprt',
 kSpriteImagesContainerAtomType = 'imct',
 kSpriteImageAtomType = 'imag',
 kSpriteImageDataAtomType = 'imda',
 kSpriteImageDataRefAtomType = 'imre',
 kSpriteImageDataRefTypeAtomType = 'imrt',
 kSpriteImageGroupIDAtomType = 'imgr',

Constants 367
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 kSpriteImageRegistrationAtomType = 'imrg',
 kSpriteImageDefaultImageIndexAtomType = 'defi',
 kSpriteSharedDataAtomType = 'dflt',
 kSpriteNameAtomType = 'name',
 kSpriteImageNameAtomType = 'name',
 kSpriteUsesImageIDsAtomType = 'uses', /* leaf data is an array of QTAtomID's,
 one per image used*/
 kSpriteBehaviorsAtomType = 'beha',
 kSpriteImageBehaviorAtomType = 'imag',
 kSpriteCursorBehaviorAtomType = 'crsr',
 kSpriteStatusStringsBehaviorAtomType = 'sstr',
 kSpriteVariablesContainerAtomType = 'vars',
 kSpriteStringVariableAtomType = 'strv',
 kSpriteFloatingPointVariableAtomType = 'flov'
};
enum {
 kTargetMovie = 'moov', /* no data */
 kTargetMovieName = 'mona', /* (PString movieName) */
 kTargetMovieID = 'moid', /* (long movieID) */
 kTargetRootMovie = 'moro', /* no data */
 kTargetParentMovie = 'mopa', /* no data */
 kTargetChildMovieTrackName = 'motn', /* (PString childMovieTrackName) */
 kTargetChildMovieTrackID = 'moti', /* (long childMovieTrackID) */
 kTargetChildMovieTrackIndex = 'motx', /* (long childMovieTrackIndex) */
 kTargetChildMovieMovieName = 'momn', /* (PString childMovieName) */
 kTargetChildMovieMovieID = 'momi', /* (long childMovieID) */
 kTargetTrackName = 'trna', /* (PString trackName) */
 kTargetTrackID = 'trid', /* (long trackID) */
 kTargetTrackType = 'trty', /* (OSType trackType) */
 kTargetTrackIndex = 'trin', /* (long trackIndex) */
 kTargetSpriteName = 'spna', /* (PString spriteName) */
 kTargetSpriteID = 'spid', /* (QTAtomID spriteID) */
 kTargetSpriteIndex = 'spin', /* (short spriteIndex) */
 kTargetQD3DNamedObjectName = 'nana', /* (CString objectName) */
 kTargetCurrentQTEventParams = 'evpa' /* no data */
};
enum {
 kTrackModifierInput = 0x696E, /* is really 'in'*/
 kTrackModifierType = 0x7479, /* is really 'ty'*/
 kTrackModifierReference = 'ssrc',
 kTrackModifierObjectID = 'obid',
 kTrackModifierInputName = 'name'
};
enum {
 kTrackPropertyMediaType = 'mtyp', /* OSType*/
 kTrackPropertyInstantiation = 'inst' /* MovieMediaInstantiationInfoRecord*/
};
enum {
 kTrackReferenceChapterList = 'chap',
 kTrackReferenceTimeCode = 'tmcd',
 kTrackReferenceModifier = 'ssrc'
};
enum {
 kTweenEntry = 'twen',
 kTweenData = 'data',
 kTweenType = 'twnt',
 kTweenStartOffset = 'twst',
 kTweenDuration = 'twdu',

368 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 kTweenFlags = 'flag',
 kTweenOutputMin = 'omin',
 kTweenOutputMax = 'omax',
 kTweenSequenceElement = 'seqe',
 kTween3dInitialCondition = 'icnd',
 kTweenInterpolationID = 'intr',
 kTweenRegionData = 'qdrg',
 kTweenPictureData = 'PICT',
 kListElementType = 'type',
 kListElementDataType = 'daty',
 kNameAtom = 'name',
 kInitialRotationAtom = 'inro',
 kNonLinearTweenHeader = 'nlth'
};
enum {
 MovieAID = 'moov',
 MovieHeaderAID = 'mvhd',
 ClipAID = 'clip',
 RgnClipAID = 'crgn',
 MatteAID = 'matt',
 MatteCompAID = 'kmat',
 TrackAID = 'trak',
 UserDataAID = 'udta',
 TrackHeaderAID = 'tkhd',
 EditsAID = 'edts',
 EditListAID = 'elst',
 MediaAID = 'mdia',
 MediaHeaderAID = 'mdhd',
 MediaInfoAID = 'minf',
 VideoMediaInfoHeaderAID = 'vmhd',
 SoundMediaInfoHeaderAID = 'smhd',
 GenericMediaInfoHeaderAID = 'gmhd',
 GenericMediaInfoAID = 'gmin',
 DataInfoAID = 'dinf',
 DataRefAID = 'dref',
 SampleTableAID = 'stbl',
 STSampleDescAID = 'stsd',
 STTimeToSampAID = 'stts',
 STSyncSampleAID = 'stss',
 STSampleToChunkAID = 'stsc',
 STShadowSyncAID = 'stsh',
 HandlerAID = 'hdlr',
 STSampleSizeAID = 'stsz',
 STChunkOffsetAID = 'stco',
 STChunkOffset64AID = 'co64',
 STSampleIDAID = 'stid',
 STCompositionOffsetAID = 'ctts',
 STSampleDependencyAID = 'sdtp',
 STCompositionShiftLeastGreatestAID = 'cslg',
 STPartialSyncSampleAID = 'stps',
 DataRefContainerAID = 'drfc',
 TrackReferenceAID = 'tref',
 ColorTableAID = 'ctab',
 LoadSettingsAID = 'load',
 PropertyAtomAID = 'code',
 InputMapAID = 'imap',
 MovieBufferHintsAID = 'mbfh',
 MovieDataRefAliasAID = 'mdra',

Constants 369
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 SoundLocalizationAID = 'sloc',
 CompressedMovieAID = 'cmov',
 CompressedMovieDataAID = 'cmvd',
 DataCompressionAtomAID = 'dcom',
 ReferenceMovieRecordAID = 'rmra',
 ReferenceMovieDescriptorAID = 'rmda',
 ReferenceMovieDataRefAID = 'rdrf',
 ReferenceMovieVersionCheckAID = 'rmvc',
 ReferenceMovieDataRateAID = 'rmdr',
 ReferenceMovieComponentCheckAID = 'rmcd',
 ReferenceMovieQualityAID = 'rmqu',
 ReferenceMovieLanguageAID = 'rmla',
 ReferenceMovieCPURatingAID = 'rmcs',
 ReferenceMovieAlternateGroupAID = 'rmag',
 ReferenceMovieNetworkStatusAID = 'rnet',
 CloneMediaAID = 'clon',
 FileTypeAID = 'ftyp',
 SecureContentInfoAID = 'sinf',
 SecureContentSchemeTypeAID = 'schm',
 SecureContentSchemeInfoAID = 'schi'
};
enum {
 MovieResourceAtomType = 'moov',
 MovieDataAtomType = 'mdat',
 FreeAtomType = 'free',
 SkipAtomType = 'skip',
 WideAtomPlaceholderType = 'wide'
};
enum {
 quickTimeImageFileImageDescriptionAtom = 'idsc',
 quickTimeImageFileImageDataAtom = 'idat',
 quickTimeImageFileMetaDataAtom = 'meta',
 quickTimeImageFileColorSyncProfileAtom = 'iicc'
};

Constants
kMovieMediaDefaultDataReferenceID

Atom id.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kMovieMediaSlaveTime
Boolean.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kMovieMediaSlaveGraphicsMode
Boolean.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kMovieMediaBackgroundColor
RGBColor..

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

370 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kMovieMediaPrerollTime
SInt32 indicating preroll time.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kQTParseTextHREFText
String.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kQTEnableExif
UInt8 (Boolean).

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

kTargetChildMovieTrackIndex
(long childMovieTrackIndex).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetChildMovieMovieName
(PString childMovieName).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetTrackType
(OSType trackType).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetTrackIndex
(long trackIndex).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetSpriteName
(PString spriteName).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetSpriteID
(QTAtomID spriteID).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTargetQD3DNamedObjectName
(CString objectName).

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Constants 371
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kTargetCurrentQTEventParams
No data.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

FCompressImage Values
Constants passed to FCompressImage.

enum {
 codecFlagUseImageBuffer = (1L << 0), /* decompress*/
 codecFlagUseScreenBuffer = (1L << 1), /* decompress*/
 codecFlagUpdatePrevious = (1L << 2), /* compress*/
 codecFlagNoScreenUpdate = (1L << 3), /* decompress*/
 codecFlagWasCompressed = (1L << 4), /* compress*/
 codecFlagDontOffscreen = (1L << 5), /* decompress*/
 codecFlagUpdatePreviousComp = (1L << 6), /* compress*/
 codecFlagForceKeyFrame = (1L << 7), /* compress*/
 codecFlagOnlyScreenUpdate = (1L << 8), /* decompress*/
 codecFlagLiveGrab = (1L << 9), /* compress*/
 codecFlagDiffFrame = (1L << 9), /* decompress*/
 codecFlagDontUseNewImageBuffer = (1L << 10), /* decompress*/
 codecFlagInterlaceUpdate = (1L << 11), /* decompress*/
 codecFlagCatchUpDiff = (1L << 12), /* decompress*/
 codecFlagSupportDisable = (1L << 13), /* decompress*/
 codecFlagReenable = (1L << 14) /* decompress*/
};

Constants
codecFlagUpdatePrevious

Controls whether your compressor updates the previous image during compression. This flag is only
used with sequences that are being temporally compressed. If this flag is set to 1, your compressor
should copy the current frame into the previous frame buffer at the end of the frame-compression
sequence. Use the source image.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagWasCompressed
Indicates to your compressor that the image to be compressed has been compressed before. This
information may be useful to compressors that can compensate for the image degradation that may
otherwise result from repeated compression and decompression of the same image. This flag is set
to 1 to indicate that the image was previously compressed. This flag is set to 0 if the image was not
previously compressed.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

372 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecFlagUpdatePreviousComp
Controls whether your compressor updates the previous image buffer with the compressed image.
This flag is only used with temporal compression. If this flag is set to 1, your compressor should update
the previous frame buffer at the end of the frame-compression sequence, allowing your compressor
to perform frame differencing against the compression results. Use the image that results from the
compression operation. If this flag is set to 0, your compressor should not modify the previous frame
buffer during compression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagLiveGrab
Indicates whether the current sequence results from grabbing live video. When working with live
video, your compressor should operate as quickly as possible and disable any additional processing,
such as compensation for previously compressed data. This flag is set to 1 when you are compressing
from a live video source.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagDiffFrame
Decompress.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagSupportDisable
Decompress.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Codec Flags
Constants that represent codec flags.

Constants 373
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 codecCompletionSource = (1 << 0), /* asynchronous codec is done with
source data */
 codecCompletionDest = (1 << 1), /* asynchronous codec is done with
destination data */
 codecCompletionDontUnshield = (1 << 2), /* on dest complete don't unshield
cursor */
 codecCompletionWentOffscreen = (1 << 3), /* codec used offscreen buffer */
 codecCompletionUnlockBits = (1 << 4), /* on dest complete, call
ICMSequenceUnlockBits */
 codecCompletionForceChainFlush = (1 << 5), /* ICM needs to flush the whole chain
 */
 codecCompletionDropped = (1 << 6), /* codec decided to drop this frame */
 codecCompletionDecoded = (1 << 10), /* codec has decoded this frame; if
it is cancelled and rescheduled, set icmFrameAlreadyDecoded in
ICMFrameTimeRecord.flags */
 codecCompletionNotDisplayable = (1 << 11), /* the frame may still be scheduled
for decode, but will not be able to be displayed because the buffer containing it
 will need to be recycled to display earlier frames. */
 codecCompletionNotDrawn = (1 << 12) /* set in conjunction with
codecCompletionDest to indicate that the frame was not drawn */
};
enum {
 codecFlagOutUpdateOnNextIdle = (1L << 9),
 codecFlagOutUpdateOnDataSourceChange = (1L << 10),
 codecFlagSequenceSensitive = (1L << 11),
 codecFlagOutUpdateOnTimeChange = (1L << 12),
 codecFlagImageBufferNotSourceImage = (1L << 13),
 codecFlagUsedNewImageBuffer = (1L << 14),
 codecFlagUsedImageBuffer = (1L << 15)
};
enum {
 codecInfoDoes1 = (1L << 0), /* codec can work with 1-bit pixels
*/
 codecInfoDoes2 = (1L << 1), /* codec can work with 2-bit pixels
*/
 codecInfoDoes4 = (1L << 2), /* codec can work with 4-bit pixels
*/
 codecInfoDoes8 = (1L << 3), /* codec can work with 8-bit pixels
*/
 codecInfoDoes16 = (1L << 4), /* codec can work with 16-bit pixels
 */
 codecInfoDoes32 = (1L << 5), /* codec can work with 32-bit pixels
 */
 codecInfoDoesDither = (1L << 6), /* codec can do ditherMode */
 codecInfoDoesStretch = (1L << 7), /* codec can stretch to arbitrary
sizes */
 codecInfoDoesShrink = (1L << 8), /* codec can shrink to arbitrary sizes
 */
 codecInfoDoesMask = (1L << 9), /* codec can mask to clipping regions
 */
 codecInfoDoesTemporal = (1L << 10), /* codec can handle temporal redundancy
 */
 codecInfoDoesDouble = (1L << 11), /* codec can stretch to double size
 exactly */
 codecInfoDoesQuad = (1L << 12), /* codec can stretch to quadruple
size exactly */
 codecInfoDoesHalf = (1L << 13), /* codec can shrink to half size */

374 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 codecInfoDoesQuarter = (1L << 14), /* codec can shrink to quarter size
 */
 codecInfoDoesRotate = (1L << 15), /* codec can rotate on decompress */
 codecInfoDoesHorizFlip = (1L << 16), /* codec can flip horizontally on
decompress */
 codecInfoDoesVertFlip = (1L << 17), /* codec can flip vertically on
decompress */
 codecInfoHasEffectParameterList = (1L << 18), /* codec implements get effects
parameter list call, once was codecInfoDoesSkew */
 codecInfoDoesBlend = (1L << 19), /* codec can blend on decompress */
 codecInfoDoesReorder = (1L << 19), /* codec can rearrange frames during
 compression */
 codecInfoDoesWarp = (1L << 20), /* codec can warp arbitrarily on
decompress */
 codecInfoDoesMultiPass = (1L << 20), /* codec can perform multi-pass
compression */
 codecInfoDoesRecompress = (1L << 21), /* codec can recompress image without
 accumulating errors */
 codecInfoDoesSpool = (1L << 22), /* codec can spool image data */
 codecInfoDoesRateConstrain = (1L << 23) /* codec can data rate constrain */
};
enum {
 codecLockBitsShieldCursor = (1 << 0) /* shield cursor */
};

Constants
codecCompletionSource

The Image Compression Manager is done with the source buffer. The Image Compression Manager
sets this flag to 1 when it is done with the processing associated with the source buffer. For
compression operations, the source is the uncompressed pixel map you are compressing. For
decompression operations, the source is the decompressed data you are decompressing.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecCompletionDest
The Image Compression Manager is done with the destination buffer. The Image Compression Manager
sets this flag to 1 when it is done with the processing associated with the destination buffer.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecCompletionWentOffscreen
Codec used offscreen buffer.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecCompletionUnlockBits
On dest complete, call ICMSequenceUnlockBits.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecCompletionForceChainFlush
ICM needs to flush the whole chain.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Constants 375
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecCompletionDropped
Codec decided to drop this frame.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecCompletionDecoded
Codec has decoded this frame; if it is cancelled and rescheduled, set icmFrameAlreadyDecoded in
ICMFrameTimeRecord.flags.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

codecCompletionNotDisplayable
The frame may still be scheduled for decode, but will not be able to be displayed because the buffer
containing it will need to be recycled to display earlier frames..

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

codecCompletionNotDrawn
Set in conjunction with codecCompletionDest to indicate that the frame was not drawn.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

codecFlagUsedImageBuffer
Indicates to your application that the decompressor used the offscreen image buffer for this frame.
If this flag is set to 1, the decompressor used the image buffer. If this flag is set to 0, the decompressor
did not use the image buffer.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoes1
Codec can work with 1-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoes2
Codec can work with 2-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoes4
Codec can work with 4-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoes8
Codec can work with 8-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

376 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecInfoDoes16
Codec can work with 16-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoes32
Codec can work with 32-bit pixels.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesDither
Codec can dither images.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesStretch
Codec can stretch images to arbitrary sizes.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesShrink
Codec can shrink images to arbitrary sizes.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesMask
Codec can mask images to clipping regions.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesTemporal
Codec can handle temporal redundancy.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesDouble
Codec can stretch images to exactly double size.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesQuad
Codec can stretch images to exactly quadruple size.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesHalf
Codec can shrink images to exactly half size.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Constants 377
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecInfoDoesQuarter
Codec can shrink images to exactly quarter size.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesRotate
Codec can rotate images during decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesHorizFlip
Codec can flip images horizontally during decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesVertFlip
Codec can flip images vertically during decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoHasEffectParameterList
Codec implements QTGetEffectsList.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesBlend
Codec can blend image during decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesReorder
Codec can rearrange frames during compression.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

codecInfoDoesWarp
Codec can warp image arbitrarily during decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesMultiPass
Codec can perform multi-pass compression.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

codecInfoDoesRecompress
Codec can recompress image without accumulating errors.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

378 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecInfoDoesSpool
Codec can spool image data.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

VDSetCompression Values
Constants passed to VDSetCompression.

enum {
 codecLosslessQuality = 0x00000400,
 codecMaxQuality = 0x000003FF,
 codecMinQuality = 0x00000000,
 codecLowQuality = 0x00000100,
 codecNormalQuality = 0x00000200,
 codecHighQuality = 0x00000300
};

Constants
codecLosslessQuality

Lossless compression or decompression. This special value is valid only for components that can
support lossless compression or decompression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecMaxQuality
The maximum standard value.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecMinQuality
The minimum valid value.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecLowQuality
Low-quality image reproduction. This value should correspond to the lowest image quality that still
results in acceptable display characteristics.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecNormalQuality
Image reproduction of normal quality.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

CodecInfo Values
Constants passed to CodecInfo.

Constants 379
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 codecInfoDepth1 = (1L << 0), /* compressed data at 1 bpp depth
available */
 codecInfoDepth2 = (1L << 1), /* compressed data at 2 bpp depth
available */
 codecInfoDepth4 = (1L << 2), /* compressed data at 4 bpp depth
available */
 codecInfoDepth8 = (1L << 3), /* compressed data at 8 bpp depth
available */
 codecInfoDepth16 = (1L << 4), /* compressed data at 16 bpp depth
available */
 codecInfoDepth32 = (1L << 5), /* compressed data at 32 bpp depth
available */
 codecInfoDepth24 = (1L << 6), /* compressed data at 24 bpp depth
available */
 codecInfoDepth33 = (1L << 7), /* compressed data at 1 bpp monochrome
 depth available */
 codecInfoDepth34 = (1L << 8), /* compressed data at 2 bpp grayscale
 depth available */
 codecInfoDepth36 = (1L << 9), /* compressed data at 4 bpp grayscale
 depth available */
 codecInfoDepth40 = (1L << 10), /* compressed data at 8 bpp grayscale
 depth available */
 codecInfoStoresClut = (1L << 11), /* compressed data can have custom
cluts */
 codecInfoDoesLossless = (1L << 12), /* compressed data can be stored in
 lossless format */
 codecInfoSequenceSensitive = (1L << 13) /* compressed data is sensitive to
out of sequence decoding */
};

Constants
codecInfoDepth1

Compressed data available at 1 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth2
Compressed data available at 2 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth4
Compressed data available at 4 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth8
Compressed data available at 8 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

380 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecInfoDepth16
Compressed data available at 16 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth32
Compressed data available at 32 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth24
Compressed data available at 24 bit-per-pixel depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth33
Compressed data available at 1 bit-per-pixel monochrome depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth34
Compressed data available at 2 bit-per-pixel grayscale depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth36
Compressed data available at 4 bit-per-pixel grayscale depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDepth40
Compressed data available at 8 bit-per-pixel grayscale depth.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoStoresClut
Compressed data can have custom color lookup tables.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecInfoDoesLossless
Compressed data can be stored in lossless format.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

CreateMovieFile Values
Constants passed to CreateMovieFile.

Constants 381
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 createMovieFileDeleteCurFile = 1L << 31,
 createMovieFileDontCreateMovie = 1L << 30,
 createMovieFileDontOpenFile = 1L << 29,
 createMovieFileDontCreateResFile = 1L << 28
};

Constants
createMovieFileDontOpenFile

Controls whether the function opens the new movie file. If you set this flag to 1, the Movie Toolbox
does not open the new movie file. In this case, the function ignores the outDataHandler parameter.
If you set this flag to 0, the Movie Toolbox opens the new movie file and returns its reference number
into the field referenced by outDataHandler.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

FlattenMovieData Values
Constants passed to FlattenMovieData.

enum {
 flattenAddMovieToDataFork = 1L << 0,
 flattenActiveTracksOnly = 1L << 2,
 flattenDontInterleaveFlatten = 1L << 3,
 flattenFSSpecPtrIsDataRefRecordPtr = 1L << 4,
 flattenCompressMovieResource = 1L << 5,
 flattenForceMovieResourceBeforeMovieData = 1L << 6
};

ICM Preferences and Flags
Constants that represent the flags and preferences for ICM sessions.

382 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 icmFrameTimeHasVirtualStartTimeAndDuration = 1 << 0,
 icmFrameAlreadyDecoded = 1 << 1,
 icmFrameTimeIsNonScheduledDisplayTime = 1 << 2,
 icmFrameTimeHasDecodeTime = 1 << 3,
 icmFrameTimeDecodeImmediately = 1 << 4,
 icmFrameTimeDoNotDisplay = 1 << 5
};
enum {
 kICMGetChainUltimateParent = 0,
 kICMGetChainParent = 1,
 kICMGetChainChild = 2,
 kICMGetChainUltimateChild = 3
};
enum {
 kICMImageBufferNoPreference = 0,
 kICMImageBufferPreferMainMemory = 1,
 kICMImageBufferPreferVideoMemory = 2
};
enum {
 kICMNoDeinterlacing = 0,
 kICMDeinterlaceFields = 1
};
enum {
 kICMPixelFormatIsPlanarMask = 0x0F, /* these bits in formatFlags indicate how
 many planes there are; they're 0 if chunky*/
 kICMPixelFormatIsIndexed = (1L << 4),
 kICMPixelFormatIsSupportedByQD = (1L << 5),
 kICMPixelFormatIsMonochrome = (1L << 6),
 kICMPixelFormatHasAlphaChannel = (1L << 7)
};
enum {
 kICMSequenceTaskWeight = 'twei', /* data is pointer to UInt32*/
 kICMSequenceTaskName = 'tnam', /* data is pointer to OSType*/
 kICMSequenceUserPreferredCodecs = 'punt' /* data is pointer to
CodecComponentHandle*/
};
enum {
 kICMTempThenAppMemory = 1L << 12,
 kICMAppThenTempMemory = 1L << 13
};

Constants
icmFrameTimeHasVirtualStartTimeAndDuration

Indicates that virtualStartTime and virtualDuration are valid.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

icmFrameTimeHasDecodeTime
Indicates that decodeTime is valid.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

Constants 383
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kICMPixelFormatIsPlanarMask
If this flag is 1, the pixel format is a planar mask and bitsPerPixel[] represents the bits for each pixel
component. If this flag is 0, the pixel format is chunky (not planar) and bitsPerPixel[0] represents the
bits per pixel. Chunky pixel formats pack the different components together. For example, 3 pixels
of 32-bit ARGB is represented in memory as ARGBARGBARGB. Planar formats pack the different
components separately. If the pixel format is planar, then (formatFlags & kICMPixelFormatIsPlanarMask)
is equal to the number of components.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kICMPixelFormatIsIndexed
If the pixel format is indexed (which, by definition, means that there are no individual components)
then this flag is 1. Generally, color modes of 8 bit per pixel or less are indexed.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kICMPixelFormatIsSupportedByQD
If this flag is 1, you can call QuickDraw on PixMap structures that store this kind of pixel data. With
Macintosh, the classic QD pixel formats will have this set, but not any of the YUV pixel formats. With
Windows, more formats will have this set, because the Windows implementation of QuickDraw needs
to support more pixel formats.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kICMSequenceUserPreferredCodecs
Data is pointer to CodecComponentHandle.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

ImageFieldSequenceExtractCombine Values
Constants passed to ImageFieldSequenceExtractCombine.

enum {
 evenField1ToEvenFieldOut = 1 << 0,
 evenField1ToOddFieldOut = 1 << 1,
 oddField1ToEvenFieldOut = 1 << 2,
 oddField1ToOddFieldOut = 1 << 3,
 evenField2ToEvenFieldOut = 1 << 4,
 evenField2ToOddFieldOut = 1 << 5,
 oddField2ToEvenFieldOut = 1 << 6,
 oddField2ToOddFieldOut = 1 << 7
};

QTSetComponentProperty Values
Constants passed to QTSetComponentProperty.

384 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 kComponentPropertyCacheFlagNotPersistent = (1L << 0), /* property metadata should
 not be saved in persistent cache*/
 kComponentPropertyCacheFlagIsDynamic = (1L << 1) /* property metadata should not
 cached at all*/
};
enum {
 kComponentPropertyClassPropertyInfo = 'pnfo', /* property info class */
 /* property info property IDs */
 kComponentPropertyInfoList = 'list', /* array of ComponentPropertyInfo (CFData),
 one for each property */
 kComponentPropertyCacheSeed = 'seed', /* property cache seed value */
 kComponentPropertyCacheFlags = 'flgs', /* see kComponentPropertyCache flags */
 kComponentPropertyExtendedInfo = 'meta' /* CFDictionary with extended property
information*/
};

Constants
kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kComponentPropertyCacheFlagIsDynamic
Property metadata should not be cached at all.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kComponentPropertyClassPropertyInfo
A QTComponentPropertyInfo structure that defines a property information class. Also 'pnfo'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kComponentPropertyInfoList
An array of QTComponentPropertyInfo structures, one for each property. Also 'list'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kComponentPropertyCacheSeed
A component property cache seed value. Also 'seed'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kComponentPropertyCacheFlags
One of the following two flags: Also 'flgs'.

Available in Mac OS X v10.3 and later.

Declared in ImageCompression.h.

kDataHCanRead
Constants grouped with kDataHCanRead.

Constants 385
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 kDataHCanRead = 1L << 0,
 kDataHSpecialRead = 1L << 1,
 kDataHSpecialReadFile = 1L << 2,
 kDataHCanWrite = 1L << 3,
 kDataHSpecialWrite = 1 << 4,
 kDataHSpecialWriteFile = 1 << 5,
 kDataHCanStreamingWrite = 1 << 6,
 kDataHMustCheckDataRef = 1 << 7
};

Constants
kDataHCanRead

Indicates that your data handler can read from the volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHSpecialRead
Indicates that your data handler can read from the volume using a specialized method. For example,
your data handler might support access to networked multimedia servers using a special protocol.
In that case, your component would set this flag to 1 whenever the volume resides on a supported
server.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHSpecialReadFile
Reserved for use by Apple.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHCanWrite
Indicates that your data handler can write data to the volume. In particular, use this flag to indicate
that your data handler's DataHPutData function will work with this volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHSpecialWrite
Indicates that your data handler can write to the volume using a specialized method. As with the
kDataHSpecialRead flag, your data handler would use this flag to indicate that your component can
access the volume using specialized support (for example, special network protocols).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHCanStreamingWrite
Indicates that your data handler can support the special write functions for capturing movie data
when writing to this volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

QTVRWrapAndConstrain Values
Constants passed to QTVRWrapAndConstrain.

386 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 kQTVRPan = 0,
 kQTVRTilt = 1,
 kQTVRFieldOfView = 2,
 kQTVRViewCenterH = 4, /* WrapAndConstrain only*/
 kQTVRViewCenterV = 5 /* WrapAndConstrain only*/
};

Sprite Properties
Constants that represent the properties of sprites.

Constants 387
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 kGetSpriteWorldInvalidRegionAndLeaveIntact = -1L,
 kGetSpriteWorldInvalidRegionAndThenSetEmpty = -2L
};
enum {
 kKeyFrameAndSingleOverride = 1L << 1,
 kKeyFrameAndAllOverrides = 1L << 2
};
enum {
 kNoQTIdleEvents = -1
};
enum {
 kOnlyDrawToSpriteWorld = 1L << 0,
 kSpriteWorldPreflight = 1L << 1
};
enum {
 kScaleSpritesToScaleWorld = 1L << 1,
 kSpriteWorldHighQuality = 1L << 2,
 kSpriteWorldDontAutoInvalidate = 1L << 3,
 kSpriteWorldInvisible = 1L << 4,
 kSpriteWorldDirtyInsteadOfFlush = 1L << 5
};
enum {
 kSpritePropertyMatrix = 1,
 kSpritePropertyImageDescription = 2,
 kSpritePropertyImageDataPtr = 3,
 kSpritePropertyVisible = 4,
 kSpritePropertyLayer = 5,
 kSpritePropertyGraphicsMode = 6,
 kSpritePropertyImageDataSize = 7,
 kSpritePropertyActionHandlingSpriteID = 8,
 kSpritePropertyCanBeHitTested = 9,
 kSpritePropertyImageIndex = 100,
 kSpriteTrackPropertyBackgroundColor = 101,
 kSpriteTrackPropertyOffscreenBitDepth = 102,
 kSpriteTrackPropertySampleFormat = 103,
 kSpriteTrackPropertyScaleSpritesToScaleWorld = 104,
 kSpriteTrackPropertyHasActions = 105,
 kSpriteTrackPropertyVisible = 106,
 kSpriteTrackPropertyQTIdleEventsFrequency = 107,
 kSpriteTrackPropertyAllSpritesHitTestingMode = 108,
 kSpriteTrackPropertyPreferredDepthInterpretationMode = 109,
 kSpriteImagePropertyRegistrationPoint = 1000,
 kSpriteImagePropertyGroupID = 1001
};

QTSampleTableGetSampleFlags Values
Constants passed to QTSampleTableGetSampleFlags.

388 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 mediaSampleNotSync = 1 << 0, /* sample is not a sync sample (eg. is
frame differenced */
 mediaSampleShadowSync = 1 << 1, /* sample is a shadow sync */
 mediaSampleDroppable = 1 << 27, /* sample is not required to be decoded
 for later samples to be decoded properly */
 mediaSamplePartialSync = 1 << 16, /* sample is a partial sync (e.g., I
frame after open GOP) */
 mediaSampleHasRedundantCoding = 1 << 24, /* sample is known to contain redundant
 coding */
 mediaSampleHasNoRedundantCoding = 1 << 25, /* sample is known not to contain
redundant coding */
 mediaSampleIsDependedOnByOthers = 1 << 26, /* one or more other samples depend
upon the decode of this sample */
 mediaSampleIsNotDependedOnByOthers = 1 << 27, /* synonym for mediaSampleDroppable
 */
 mediaSampleDependsOnOthers = 1 << 28, /* sample's decode depends upon decode
 of other samples */
 mediaSampleDoesNotDependOnOthers = 1 << 29, /* sample's decode does not depend
upon decode of other samples */
 mediaSampleEarlierDisplayTimesAllowed = 1 << 30 /* samples later in decode order
 may have earlier display times */
};

Constants
mediaSampleNotSync

Returned for frame-differenced video sample data.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

movieFileSpecValid
Constants grouped with movieFileSpecValid.

enum {
 pasteInParallel = 1 << 0,
 showUserSettingsDialog = 1 << 1,
 movieToFileOnlyExport = 1 << 2,
 movieFileSpecValid = 1 << 3
};

MovieImportDataRef Values
Constants passed to MovieImportDataRef.

Constants 389
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 movieImportCreateTrack = 1,
 movieImportInParallel = 2,
 movieImportMustUseTrack = 4,
 movieImportWithIdle = 16
};
enum {
 movieImportResultUsedMultipleTracks = 8,
 movieImportResultNeedIdles = 32,
 movieImportResultComplete = 64
};

Constants
movieImportResultNeedIdles

Undocumented

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

MovieProgressProc Values
Constants passed to MovieProgressProc.

enum {
 movieProgressOpen = 0,
 movieProgressUpdatePercent = 1,
 movieProgressClose = 2
};
enum {
 progressOpFlatten = 1,
 progressOpInsertTrackSegment = 2,
 progressOpInsertMovieSegment = 3,
 progressOpPaste = 4,
 progressOpAddMovieSelection = 5,
 progressOpCopy = 6,
 progressOpCut = 7,
 progressOpLoadMovieIntoRam = 8,
 progressOpLoadTrackIntoRam = 9,
 progressOpLoadMediaIntoRam = 10,
 progressOpImportMovie = 11,
 progressOpExportMovie = 12
};

Constants
movieProgressOpen

Indicates the start of a long operation. This is always the first message sent to your function. Your
function can use this message to trigger the display of your progress window.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

390 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

movieProgressUpdatePercent
Passes completion information to your function. The Movie Toolbox repeatedly sends this message
to your function. The percentDone parameter indicates the relative completion of the operation. You
can use this value to update your progress window.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

movieProgressClose
Indicates the end of a long operation. This is always the last message sent to your function. Your
function can use this message as an indication to remove its progress window.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpFlatten
Your application has called the FlattenMovie or FlattenMovieData function.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpInsertTrackSegment
Your application has called the InsertTrackSegment function. The Movie Toolbox calls the progress
function that is assigned to the movie that contains the destination track.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpInsertMovieSegment
Your application has called the InsertMovieSegment function. The Movie Toolbox calls the progress
function that is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpPaste
Your application has called the PasteMovieSelection function. The Movie Toolbox calls the progress
function that is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpAddMovieSelection
Your application has called the AddMovieSelection function. The Movie Toolbox calls the progress
function that is assigned to the destination movie. The Movie Toolbox calls the progress function that
is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpCopy
Your application has called the CopyMovieSelection function The Movie Toolbox calls the progress
function that is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Constants 391
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

progressOpCut
Your application has called the CutMovieSelection function. The Movie Toolbox calls the progress
function that is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpLoadMovieIntoRam
Your application has called the LoadMovieIntoRam function. The Movie Toolbox calls the progress
function that is assigned to the destination movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpLoadTrackIntoRam
Your application has called the LoadTrackIntoRam function. The Movie Toolbox calls the progress
function that is assigned to the destination track.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpLoadMediaIntoRam
Your application has called the LoadMediaIntoRam function. The Movie Toolbox calls the progress
function that is assigned to the destination media.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

progressOpImportMovie
Your application has called the ConvertFileToMovieFile function. The Movie Toolbox calls the progress
function that is associated with the destination movie file. This flag is also used, as appropriate, for
the PasteHandleIntoMovie functions.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

New Movie Properties
Constants that represent the properties of new movies.

enum {
 newMovieActive = 1 << 0,
 newMovieDontResolveDataRefs = 1 << 1,
 newMovieDontAskUnresolvedDataRefs = 1 << 2,
 newMovieDontAutoAlternates = 1 << 3,
 newMovieDontUpdateForeBackPointers = 1 << 4,
 newMovieDontAutoUpdateClock = 1 << 5,
 newMovieAsyncOK = 1 << 8,
 newMovieIdleImportOK = 1 << 10,
 newMovieDontInteractWithUser = 1 << 11
};

NewMovieController Values
Constants passed to NewMovieController.

392 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 mcTopLeftMovie = 1 << 0, /* usually centered */
 mcScaleMovieToFit = 1 << 1, /* usually only scales down */
 mcWithBadge = 1 << 2, /* give me a badge */
 mcNotVisible = 1 << 3, /* don't show controller */
 mcWithFrame = 1 << 4 /* gimme a frame */
};

QuickTime Preferences Dialog Options
Constants that represent options for QuickTime preference dialogs.

Constants 393
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 pdActionConfirmDialog = 1, /* no param*/
 pdActionSetAppleMenu = 2, /* param is MenuRef*/
 pdActionSetEditMenu = 3, /* param is MenuRef*/
 pdActionGetDialogValues = 4, /* param is QTAtomContainer*/
 pdActionSetPreviewUserItem = 5, /* param is long*/
 pdActionSetPreviewPicture = 6, /* param is QTParamPreviewPtr;*/
 pdActionSetColorPickerEventProc = 7, /* param is UserEventUPP*/
 pdActionSetDialogTitle = 8, /* param is StringPtr */
 pdActionGetSubPanelMenu = 9, /* param is MenuRef* */
 pdActionActivateSubPanel = 10, /* param is long */
 pdActionConductStopAlert = 11, /* param is StringPtr */
 pdActionModelessCallback = 12, /* param is QTParamDialogEventPtr */
 pdActionFetchPreview = 13, /* param is QTParamFetchPreviewPtr */
 pdActionSetDialogSettings = 14, /* param is QTAtomContainer */
 pdActionGetDialogSettings = 15, /* param is QTAtomContainer */
 pdActionGetNextSample = 16, /* param is QTAtomContainer with effect
sample to change - createdDialog may be NIL */
 pdActionGetPreviousSample = 17, /* param is QTAtomContainer with effect
sample to change - createdDialog may be NIL */
 pdActionCompactSample = 18, /* param is QTAtomContainer with effect
sample to compact, - createdDialog may be NIL */
 pdActionSetEditCallout = 19, /* param is QTParamPreviewCalloutPtr, can
 be NIL */
 pdActionSetSampleTime = 20, /* param is QTParamSampleTimePtr, can be
NIL */
 pdActionDoEditCommand = 21, /* param is long with menu command (ie,
mcMenuCut etc) */
 pdActionGetSubPanelMenuValue = 22, /* param is long and returns current
sub-panel value selected by the effect */
 /* Action codes and typedefs used for custom
 controls within effects */
 pdActionCustomNewControl = 23, /* param is QTCustomControlNewPtr */
 pdActionCustomDisposeControl = 24, /* param is QTCustomControlNewPtr */
 pdActionCustomPositionControl = 25, /* param is QTCustomControlPositionControlPtr
 */
 pdActionCustomShowHideControl = 26, /* param is QTCustomControlShowHideControlPtr
 */
 pdActionCustomHandleEvent = 27, /* param is QTCustomControlHandleEventPtr
 */
 pdActionCustomSetFocus = 28, /* param is QTCustomControlSetFocusPtr */
 pdActionCustomSetEditMenu = 29, /* param is QTCustomControlSetEditMenuPtr
 */
 pdActionCustomSetPreviewPicture = 30, /* param is
QTCustomControlSetPreviewPicturePtr */
 pdActionCustomSetEditCallout = 31, /* param is QTCustomControlSetEditCalloutPtr
 */
 pdActionCustomGetEnableValue = 32, /* param is QTCustomControlGetEnableValuePtr
 */
 pdActionCustomSetSampleTime = 33, /* param is QTCustomControlSetSampleTimePtr
 */
 pdActionCustomGetValue = 34, /* param is QTCustomControlGetValue */
 pdActionCustomDoEditCommand = 35, /* param is QTCustomControlDoEditCommand
*/
 /* more actions for the dialog */
 pdActionRunInEventLoop = 36, /* param is QTEventLoopDescriptionPtr - OS
 X only*/
 pdActionConvertSettingsToXML = 37, /* param is QTAtomContainer* inbound,

394 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

Handle* outbound contains the XML - createdDialog may be NIL */
 pdActionConvertSettingsToXMLWithComments = 38, /* param is QTAtomContainer*
inbound, Handle* outbound contains the XML with comments - createdDialog may be
NIL */
 pdActionConvertSettingsToText = 39, /* param is QTAtomContainer* inbound,
Handle* outbound contains human readable text - createdDialog may be NIL */
 pdActionConvertXMLToSettings = 40, /* param is Handle* inbound, QTAtomContainer*
 outbound contains parameters - createdDialog may be NIL */
 pdActionSetPropertyComponent = 41 /* param is QTParamComponentPropertyPtr */
};
enum {
 pdOptionsCollectOneValue = 0x00000001, /* should collect a single value
only*/
 pdOptionsAllowOptionalInterpolations = 0x00000002, /* non-novice interpolation
options are shown */
 pdOptionsModalDialogBox = 0x00000004, /* dialog box should be modal */
 pdOptionsEditCurrentEffectOnly = 0x00000008, /* List of effects will not be shown
 */
 pdOptionsHidePreview = 0x00000010, /* Preview item will not be shown */
 pdOptionsDisplayAsSheet = 0x00000020 /* Dialog will be used as a sheet (on
 platforms that support it) */
};
enum {
 pdSampleTimeDisplayOptionsNone = 0x00000000
};

Constants
pdActionModelessCallback

Parameter is QTParamDialogEventPtr.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

pdActionFetchPreview
Parameter is QTParamFetchPreviewPtr.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

pdActionSetDialogSettings
Parameter is QTAtomContainer.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionGetDialogSettings
Parameter is QTAtomContainer.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionGetNextSample
Parameter is QTAtomContainer with effect sample to change - createdDialog may be NIL.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

Constants 395
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

pdActionGetPreviousSample
Parameter is QTAtomContainer with effect sample to change - createdDialog may be NIL.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCompactSample
Parameter is QTAtomContainer with effect sample to compact, - createdDialog may be NIL.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionSetEditCallout
Parameter is QTParamPreviewCalloutPtr, can be NIL.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionSetSampleTime
Parameter is QTParamSampleTimePtr, can be NIL.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionDoEditCommand
Parameter is long with menu command (that is, mcMenuCut etc).

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionGetSubPanelMenuValue
Parameter is long and returns current sub-panel value selected by the effect.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomNewControl
Parameter is QTCustomControlNewPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomDisposeControl
Parameter is QTCustomControlNewPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomPositionControl
Parameter is QTCustomControlPositionControlPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomShowHideControl
Parameter is QTCustomControlShowHideControlPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

396 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

pdActionCustomHandleEvent
Parameter is QTCustomControlHandleEventPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomSetFocus
Parameter is QTCustomControlSetFocusPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomSetEditMenu
Parameter is QTCustomControlSetEditMenuPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomSetPreviewPicture
Parameter is QTCustomControlSetPreviewPicturePtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomSetEditCallout
Parameter is QTCustomControlSetEditCalloutPtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomGetEnableValue
Parameter is QTCustomControlGetEnableValuePtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomSetSampleTime
Parameter is QTCustomControlSetSampleTimePtr.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomGetValue
Parameter is QTCustomControlGetValue.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionCustomDoEditCommand
Parameter is QTCustomControlDoEditCommand.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdActionRunInEventLoop
Parameter is QTEventLoopDescriptionPtr - OS X only.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

Constants 397
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

pdActionConvertSettingsToXML
Parameter is QTAtomContainer inbound, Handle outbound contains the XML - createdDialog may
be NIL.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

pdActionConvertSettingsToXMLWithComments
Parameter is QTAtomContainer inbound, Handle outbound contains the XML with comments -
createdDialog may be NIL.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

pdActionConvertSettingsToText
Parameter is QTAtomContainer inbound, Handle outbound contains human readable text -
createdDialog may be NIL.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

pdActionConvertXMLToSettings
Parameter is Handle inbound, QTAtomContainer outbound contains parameters - createdDialog may
be NIL.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

pdActionSetPropertyComponent
Parameter is QTParamComponentPropertyPtr.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

pdOptionsModalDialogBox
Dialog box should be modal.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

pdOptionsEditCurrentEffectOnly
List of effects will not be shown.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

pdOptionsHidePreview
Preview item will not be shown.

Available in Mac OS X v10.2 and later.

Declared in Movies.h.

Standard Compression Constants
Constants that represent constants for Standard Compression.

398 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 /*
 * Indicates the client is ready to use the ICM compression session
 * API to perform compression operations. StdCompression disables
 * frame reordering and multi pass encoding if this flag is cleared.
 */
 scAllowEncodingWithCompressionSession = 1L << 8,
 /*
 * Indicates the client does not want the user to change the frame
 * reordering setting.
 */
 scDisableFrameReorderingItem = 1L << 9,
 /*
 * Indicates the client does not want the user to change the multi
 * pass encoding setting
 */
 scDisableMultiPassEncodingItem = 1L << 10
};
enum {
 /*
 * Specifies if frame reordering can occur in encoding.
 */
 scVideoAllowFrameReorderingType = 'bfra', /* pointer to Boolean*/
 /*
 * The settings to control multi pass encoding.
 */
 scVideoMultiPassEncodingSettingsType = 'mpes' /* pointer to
SCVideoMutiPassEncodingSettings struct*/
};
enum {
 scListEveryCodec = 1L << 1,
 scAllowZeroFrameRate = 1L << 2,
 scAllowZeroKeyFrameRate = 1L << 3,
 scShowBestDepth = 1L << 4,
 scUseMovableModal = 1L << 5,
 scDisableFrameRateItem = 1L << 6,
 scShowDataRateAsKilobits = 1L << 7
};
enum {
 scOKItem = 1,
 scCancelItem = 2,
 scCustomItem = 3
};
enum {
 scPositionRect = 2,
 scPositionDialog = 3,
 scSetTestImagePictHandle = 4,
 scSetTestImagePictFile = 5,
 scSetTestImagePixMap = 6,
 scGetBestDeviceRect = 7,
 scRequestImageSettings = 10,
 scCompressImage = 11,
 scCompressPicture = 12,
 scCompressPictureFile = 13,
 scRequestSequenceSettings = 14,
 scCompressSequenceBegin = 15,
 scCompressSequenceFrame = 16,
 scCompressSequenceEnd = 17,

Constants 399
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

 scDefaultPictHandleSettings = 18,
 scDefaultPictFileSettings = 19,
 scDefaultPixMapSettings = 20,
 scGetInfo = 21,
 scSetInfo = 22,
 scNewGWorld = 23
};
enum {
 scPreferCropping = 1 << 0,
 scPreferScaling = 1 << 1,
 scPreferScalingAndCropping = scPreferScaling | scPreferCropping,
 scDontDetermineSettingsFromTestImage = 1 << 2
};
enum {
 scSpatialSettingsType = 'sptl', /* pointer to SCSpatialSettings struct*/
 scTemporalSettingsType = 'tprl', /* pointer to SCTemporalSettings struct*/
 scDataRateSettingsType = 'drat', /* pointer to SCDataRateSettings struct*/
 scColorTableType = 'clut', /* pointer to CTabHandle*/
 scProgressProcType = 'prog', /* pointer to ProgressRecord struct*/
 scExtendedProcsType = 'xprc', /* pointer to SCExtendedProcs struct*/
 scPreferenceFlagsType = 'pref', /* pointer to long*/
 scSettingsStateType = 'ssta', /* pointer to Handle*/
 scSequenceIDType = 'sequ', /* pointer to ImageSequence*/
 scWindowPositionType = 'wndw', /* pointer to Point*/
 scCodecFlagsType = 'cflg', /* pointer to CodecFlags*/
 scCodecSettingsType = 'cdec', /* pointer to Handle*/
 scForceKeyValueType = 'ksim', /* pointer to long*/
 scCompressionListType = 'ctyl', /* pointer to OSType Handle*/
 scCodecManufacturerType = 'cmfr', /* pointer to OSType*/
 scAvailableCompressionListType = 'avai', /* pointer to OSType Handle*/
 scWindowOptionsType = 'shee', /* pointer to SCWindowSettings struct*/
 scSoundVBRCompressionOK = 'cvbr', /* pointer to Boolean*/
 scSoundSampleRateChangeOK = 'rcok', /* pointer to Boolean*/
 scSoundCompressionType = 'ssct', /* pointer to OSType*/
 scSoundSampleRateType = 'ssrt', /* pointer to UnsignedFixed*/
 scSoundInputSampleRateType = 'ssir', /* pointer to UnsignedFixed*/
 scSoundSampleSizeType = 'ssss', /* pointer to short*/
 scSoundChannelCountType = 'sscc' /* pointer to short*/
};
enum {
 scTestImageWidth = 80,
 scTestImageHeight = 80
};
enum {
 scUserCancelled = 1
};
enum {
 scWindowRefKindCarbon = 'carb' /* WindowRef*/
};

Constants
scVideoAllowFrameReorderingType

Pointer to Boolean.

Available in Mac OS X v10.3 and later.

Declared in QuickTimeComponents.h.

400 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

scSpatialSettingsType
A video track's SCSpatialSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scTemporalSettingsType
A video track's SCTemporalSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scDataRateSettingsType
A video track's SCDataRateSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scCodecSettingsType
Pointer to Handle.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scForceKeyValueType
Pointer to long.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scCodecManufacturerType
Pointer to OSType.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scAvailableCompressionListType
Pointer to OSType Handle.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scWindowOptionsType
Pointer to SCWindowSettings struct.

Available in Mac OS X v10.3 and later.

Declared in QuickTimeComponents.h.

scSoundVBRCompressionOK
Pointer to Boolean.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scSoundSampleRateChangeOK
Pointer to Boolean.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

Constants 401
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

scSoundCompressionType
A sound track's compression type constant; see Codec Identifiers.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundSampleRateType
An UnsignedFixed value that represents a sound track's sampling rate.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundInputSampleRateType
Pointer to UnsignedFixed.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scSoundSampleSizeType
A short integer that represents a sound track's sample size.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundChannelCountType
A short integer that represents a sound track's channel count.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

SGPanelGetDITLForSize Values
Constants passed to SGPanelGetDITLForSize.

enum {
 kSGSmallestDITLSize = -1, /* requestedSize h and v set to this to
retrieve small size*/
 kSGLargestDITLSize = -2 /* requestedSize h and v set to this to
retrieve large size*/
};

Media Identifiers
Identify media types in QuickTime.

402 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 VideoMediaType = 'vide',
 SoundMediaType = 'soun',
 TextMediaType = 'text',
 BaseMediaType = 'gnrc',
 MPEGMediaType = 'MPEG',
 MusicMediaType = 'musi',
 TimeCodeMediaType = 'tmcd',
 SpriteMediaType = 'sprt',
 FlashMediaType = 'flsh',
 MovieMediaType = 'moov',
 TweenMediaType = 'twen',
 ThreeDeeMediaType = 'qd3d',
 SkinMediaType = 'skin',
 HandleDataHandlerSubType = 'hndl',
 PointerDataHandlerSubType = 'ptr ',
 NullDataHandlerSubType = 'null',
 ResourceDataHandlerSubType = 'rsrc',
 URLDataHandlerSubType = 'url ',
 AliasDataHandlerSubType = 'alis',
 WiredActionHandlerType = 'wire'
};

Constants
SoundMediaType

Sound channel.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

TextMediaType
Text media.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

SpriteWorldHitTest Values
Constants passed to SpriteWorldHitTest.

Constants 403
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 spriteHitTestBounds = 1L << 0, /* point must only be within sprite's
 bounding box*/
 spriteHitTestImage = 1L << 1, /* point must be within the shape of
the sprite's image*/
 spriteHitTestInvisibleSprites = 1L << 2, /* invisible sprites may be hit tested*/
 spriteHitTestIsClick = 1L << 3, /* for codecs that want mouse events*/
 spriteHitTestLocInDisplayCoordinates = 1L << 4, /* set if you want to pass a
 display coordiate point to SpriteHitTest*/
 spriteHitTestTreatAllSpritesAsHitTestable = 1L << 5 /* set if you want to override
 each sprites hittestable property as true*/
};

Text Properties
Constants that represent the properties of text.

404 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

enum {
 /* set property parameter / get property
parameter*/
 kTextTextHandle = 1, /* Handle / preallocated Handle*/
 kTextTextPtr = 2, /* Pointer*/
 kTextTEStyle = 3, /* TextStyle * / TextStyle **/
 kTextSelection = 4, /* long [2] / long [2]*/
 kTextBackColor = 5, /* RGBColor * / RGBColor **/
 kTextForeColor = 6, /* RGBColor * / RGBColor **/
 kTextFace = 7, /* long / long **/
 kTextFont = 8, /* long / long **/
 kTextSize = 9, /* long / long **/
 kTextAlignment = 10, /* short * / short **/
 kTextHilite = 11, /* hiliteRecord * / hiliteRecord **/
 kTextDropShadow = 12, /* dropShadowRecord * / dropShadowRecord
**/
 kTextDisplayFlags = 13, /* long / long **/
 kTextScroll = 14, /* TimeValue * / TimeValue **/
 kTextRelativeScroll = 15, /* Point **/
 kTextHyperTextFace = 16, /* hyperTextSetFace * / hyperTextSetFace
**/
 kTextHyperTextColor = 17, /* hyperTextSetColor * / hyperTextSetColor
 **/
 kTextKeyEntry = 18, /* short*/
 kTextMouseDown = 19, /* Point **/
 kTextTextBox = 20, /* Rect * / Rect **/
 kTextEditState = 21, /* short / short **/
 kTextLength = 22 /* / long **/
};
enum {
 dfDontDisplay = 1 << 0, /* Don't display the text*/
 dfDontAutoScale = 1 << 1, /* Don't scale text as track bounds grows
 or shrinks*/
 dfClipToTextBox = 1 << 2, /* Clip update to the textbox*/
 dfUseMovieBGColor = 1 << 3, /* Set text background to movie's
background color*/
 dfShrinkTextBoxToFit = 1 << 4, /* Compute minimum box to fit the sample*/
 dfScrollIn = 1 << 5, /* Scroll text in until last of text is
 in view */
 dfScrollOut = 1 << 6, /* Scroll text out until last of text is
 gone (if both set, scroll in then out)*/
 dfHorizScroll = 1 << 7, /* Scroll text horizontally (otherwise
it's vertical)*/
 dfReverseScroll = 1 << 8, /* vert: scroll down rather than up;
horiz: scroll backwards (justfication dependent)*/
 dfContinuousScroll = 1 << 9, /* new samples cause previous samples to
 scroll out */
 dfFlowHoriz = 1 << 10, /* horiz scroll text flows in textbox
rather than extend to right */
 dfContinuousKaraoke = 1 << 11, /* ignore begin offset, hilite everything
 up to the end offset(karaoke)*/
 dfDropShadow = 1 << 12, /* display text with a drop shadow */
 dfAntiAlias = 1 << 13, /* attempt to display text anti aliased*/
 dfKeyedText = 1 << 14, /* key the text over background*/
 dfInverseHilite = 1 << 15, /* Use inverse hiliting rather than
using hilite color*/
 dfTextColorHilite = 1 << 16 /* changes text color in place of hiliting.
 */

Constants 405
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

};

Constants
kTextSelection

Long [2] long [2].

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextScroll
The text scroll position.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextRelativeScroll
Point.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextHyperTextFace
HyperTextSetFace hyperTextSetFace.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextHyperTextColor
HyperTextSetColor hyperTextSetColor.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextKeyEntry
Short.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextMouseDown
Point.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextTextBox
Rect Rect.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextEditState
Short short.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

kTextLength
Long.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

406 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

dfDontDisplay
Does not display the specified sample.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfDontAutoScale
Does not scale the text if the track bounds increase.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfClipToTextBox
Clips to just the text box. This is useful if the text overlays the video.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfUseMovieBGColor
Set text background to movie’s background color.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfShrinkTextBoxToFit
Recalculates size of the textBox parameter to just fit the given text and stores this rectangle with the
text data.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfScrollIn
Scrolls the text in until the last of the text is in view. This flag is associated with the scrollDelay
parameter.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfScrollOut
Scrolls text out until the last of the text is out of view. This flag is associated with the scrollDelay
parameter. If both dfScrollIn and dfScrollOut are set, the text is scrolled in, then out.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfHorizScroll
Scrolls a single line of text horizontally. If the dfHorizScroll flag is not set, then the scrolling is vertical.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

dfReverseScroll
If set, scrolls vertically down, rather than up. If not set, horizontal scrolling proceeds toward the left
rather than toward the right.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Constants 407
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

ToneDescription Values
Constants passed to ToneDescription.

enum {
 kSoftSynthComponentSubType = 'ss ',
 kGMSynthComponentSubType = 'gm '
};

Constants
kSoftSynthComponentSubType

Software synthesizer; value is 'ss '.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Arithmetic and Logical Operator IDs
Constants that identify arithmetic and logical operations.

kOperatorAdd = 'add '
kOperatorSubtract = 'sub '
kOperatorMultiply = 'mult'
kOperatorDivide = 'div '
kOperatorOr = 'or '
kOperatorAnd = 'and '
kOperatorNot = 'not '
kOperatorLessThan = '< '
kOperatorLessThanEqualTo = '<= '
kOperatorEqualTo = '= '
kOperatorNotEqualTo = '!= '
kOperatorGreaterThan = '> '
kOperatorGreaterThanEqualTo = '>= '
kOperatorModulo = 'mod '
kOperatorIntegerDivide = 'idiv'
kOperatorAbsoluteValue = 'abs '
kOperatorNegate = 'neg '

Codec Identifiers
Identify codec components and data types in QuickTime.

408 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kAnimationCodecType ='rle '
kAVRJPEGCodecType ='avr '
kBaseCodecType ='base'
kBMPCodecType ='WRLE'
kCinepakCodecType ='cvid'
kCloudCodecType ='clou'
kCMYKCodecType ='cmyk'
kComponentVideoCodecType ='yuv2'
kComponentVideoSigned ='yuvu'
kComponentVideoUnsigned ='yuvs'
kDVCNTSCCodecType ='dvc '
kDVCPALCodecType ='dvcp'
kDVCProNTSCCodecType ='dvpn'
kDVCProPALCodecType ='dvpp'
kFireCodecType ='fire'
kFLCCodecType ='flic'
k48RGBCodecType ='b48r'
kGIFCodecType ='gif '
kGraphicsCodecType ='smc '
kH261CodecType ='h261'
kH263CodecType ='h263'
kIndeo4CodecType ='IV41'
kJPEGCodecType ='jpeg'
kMacPaintCodecType ='PNTG'
kMicrosoftVideo1CodecType ='msvc'
kMotionJPEGACodecType ='mjpa'
kMotionJPEGBCodecType ='mjpb'
kMpegYUV420CodecType ='myuv'
kOpenDMLJPEGCodecType ='dmb1'
kPhotoCDCodecType ='kpcd'
kPlanarRGBCodecType ='8BPS'
kPNGCodecType ='png '
kQuickDrawCodecType ='qdrw'
kQuickDrawGXCodecType ='qdgx'
kRawCodecType ='raw '
kSGICodecType ='.SGI'
k16GrayCodecType ='b16g'
k64ARGBCodecType ='b64a'
kSorensonCodecType ='SVQ1'
kSorensonYUV9CodecType ='syv9'
kTargaCodecType ='tga '
k32AlphaGrayCodecType ='b32a'
kTIFFCodecType ='tiff'
kVectorCodecType ='path'
kVideoCodecType ='rpza'
kWaterRippleCodecType ='ripl'
kWindowsRawCodecType ='WRAW'
kYUV420CodecType ='y420

Discussion
All codec components of the same type provide the same kinds of services and support a common application
programming interface.

Codec Properties
Constants that represent the properties of codecs.

Constants 409
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecImageBufferIsInPCIMemory = 1L << 5
codecSupportsOutOfOrderDisplayTimes = 1L << 8
codecSupportsScheduledBackwardsPlaybackWithDifferenceFrames = 1L << 9
codecConditionNewMask = 1L << 6
codecInfoResourceType = 'cdci'
codecInterfaceVersion = 2
codecSuggestedBufferSentinel = 'sent'
codecMinimumDataSize = 32768L

codecImageBufferIsInPCIMemory
Codec image buffer is across a PCI bus; byte writes are bad.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecSupportsOutOfOrderDisplayTimes
Codec supports frames queued in one order for display in a different order, for example IPB content.

Available in Mac OS X v10.3 and later.

Declared in ImageCodec.h.

codecSupportsScheduledBackwardsPlaybackWithDifferenceFrames
Codec can use additional buffers to minimize redecoding during backwards playback.

Available in Mac OS X v10.3 and later.

Declared in ImageCodec.h.

codecInfoResourceType
Codec info resource type.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecInterfaceVersion
High word returned in component GetVersion.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecSuggestedBufferSentinel
Codec public resource containing suggested data pattern to put past end of data buffer.

Available in Mac OS X v10.2 and later.

Declared in ImageCodec.h.

Codec Type Constants
Constants that represent codec types.

410 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kDVCPro50NTSCCodecType = 'dv5n'
kDVCPro50PALCodecType = 'dv5p'
kDVCPro100NTSCCodecType = 'dv1n'
kDVCPro100PALCodecType = 'dv1p'
kDVCPROHD720pCodecType = 'dvhp'
kDVCPROHD1080i60CodecType = 'dvh6'
kDVCPROHD1080i50CodecType = 'dvh5'
kSorenson3CodecType = 'SVQ3'
kMPEG4VisualCodecType = 'mp4v'
k422YpCbCr8CodecType = '2vuy'
k444YpCbCr8CodecType = 'v308'
k4444YpCbCrA8CodecType = 'v408'
k422YpCbCr16CodecType = 'v216'
k422YpCbCr10CodecType = 'v210'
k444YpCbCr10CodecType = 'v410'
k4444YpCbCrA8RCodecType = 'r408'
kJPEG2000CodecType = 'mjp2'
kPixletCodecType = 'pxlt'
kH264CodecType = 'avc1'

kSorenson3CodecType
Available in QuickTime 5 and later.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k422YpCbCr8CodecType
Component Y'CbCr 8-bit 4:2:2.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k444YpCbCr8CodecType
Component Y'CbCr 8-bit 4:4:4.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k4444YpCbCrA8CodecType
Component Y'CbCrA 8-bit 4:4:4:4.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k422YpCbCr16CodecType
Component Y'CbCr 10,12,14,16-bit 4:2:2.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k422YpCbCr10CodecType
Component Y'CbCr 10-bit 4:2:2.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

k444YpCbCr10CodecType
Component Y'CbCr 10-bit 4:4:4.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Constants 411
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

k4444YpCbCrA8RCodecType
Component Y'CbCrA 8-bit 4:4:4:4, rendering format. full range alpha, zero biased YUV.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Color Constants
Identify default colors for a graphics importer component.

blackColor =33
blueColor =409
cyanColor =273
greenColor =341
magentaColor =137
redColor =205
whiteColor =30
yellowColor =69

Color Modes
Constants that represent color modes.

useColorMatching = 4
graphicsModePreWhiteAlpha = 257
graphicsModePreBlackAlpha = 258
graphicsModeComposition = 259
graphicsModePreMulColorAlpha = 261
graphicsModePerComponentAlpha = 272
kQTAlphaMode = 'almo'
kQTAlphaModePreMulColor = 'almp'

kQTAlphaMode
UInt32; for example, graphicsModeStraightAlpha or graphicsModePreBlackAlpha.

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

kQTAlphaModePreMulColor
RGBColor; used if kQTAlphaMode is graphicsModePreMulColorAlpha.

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

Component Call Selectors
Constants that represent selectors for component calls.

412 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kClockGetTimeSelect = 0x0001
kClockNewCallBackSelect = 0x0002
kClockDisposeCallBackSelect = 0x0003
kClockCallMeWhenSelect = 0x0004
kClockCancelCallBackSelect = 0x0005
kClockRateChangedSelect = 0x0006
kClockTimeChangedSelect = 0x0007
kClockSetTimeBaseSelect = 0x0008
kClockStartStopChangedSelect = 0x0009
kClockGetRateSelect = 0x000A
kClockGetTimesForRateChangeSelect = 0x000B
kClockGetRateChangeConstraintsSelect = 0x000C
kSCGetCompressionExtendedSelect = 0x0001
kSCPositionRectSelect = 0x0002
kSCPositionDialogSelect = 0x0003
kSCSetTestImagePictHandleSelect = 0x0004
kSCSetTestImagePictFileSelect = 0x0005
kSCSetTestImagePixMapSelect = 0x0006
kSCGetBestDeviceRectSelect = 0x0007
kSCRequestImageSettingsSelect = 0x000A
kSCCompressImageSelect = 0x000B
kSCCompressPictureSelect = 0x000C
kSCCompressPictureFileSelect = 0x000D
kSCRequestSequenceSettingsSelect = 0x000E
kSCCompressSequenceBeginSelect = 0x000F
kSCCompressSequenceFrameSelect = 0x0010
kSCCompressSequenceEndSelect = 0x0011
kSCDefaultPictHandleSettingsSelect = 0x0012
kSCDefaultPictFileSettingsSelect = 0x0013
kSCDefaultPixMapSettingsSelect = 0x0014
kSCGetInfoSelect = 0x0015
kSCSetInfoSelect = 0x0016
kSCNewGWorldSelect = 0x0017
kSCSetCompressFlagsSelect = 0x0018
kSCGetCompressFlagsSelect = 0x0019
kSCGetSettingsAsTextSelect = 0x001A
kSCGetSettingsAsAtomContainerSelect = 0x001B
kSCSetSettingsFromAtomContainerSelect = 0x001C
kSCCompressSequenceFrameAsyncSelect = 0x001D
kSCAsyncIdleSelect = 0x001E
kSCCopyCompressionSessionOptionsSelect = 0x001F
kSCAudioInvokeLegacyCodecOptionsDialogSelect = 0x0081
kTweenerInitializeSelect = 0x0001
kTweenerDoTweenSelect = 0x0002
kTweenerResetSelect = 0x0003
kTCGetCurrentTimeCodeSelect = 0x0101
kTCGetTimeCodeAtTimeSelect = 0x0102
kTCTimeCodeToStringSelect = 0x0103
kTCTimeCodeToFrameNumberSelect = 0x0104
kTCFrameNumberToTimeCodeSelect = 0x0105
kTCGetSourceRefSelect = 0x0106
kTCSetSourceRefSelect = 0x0107
kTCSetTimeCodeFlagsSelect = 0x0108
kTCGetTimeCodeFlagsSelect = 0x0109
kTCSetDisplayOptionsSelect = 0x010A
kTCGetDisplayOptionsSelect = 0x010B
kMovieImportHandleSelect = 0x0001
kMovieImportFileSelect = 0x0002

Constants 413
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kMovieImportSetSampleDurationSelect = 0x0003
kMovieImportSetSampleDescriptionSelect = 0x0004
kMovieImportSetMediaFileSelect = 0x0005
kMovieImportSetDimensionsSelect = 0x0006
kMovieImportSetChunkSizeSelect = 0x0007
kMovieImportSetProgressProcSelect = 0x0008
kMovieImportSetAuxiliaryDataSelect = 0x0009
kMovieImportSetFromScrapSelect = 0x000A
kMovieImportDoUserDialogSelect = 0x000B
kMovieImportSetDurationSelect = 0x000C
kMovieImportGetAuxiliaryDataTypeSelect = 0x000D
kMovieImportValidateSelect = 0x000E
kMovieImportGetFileTypeSelect = 0x000F
kMovieImportDataRefSelect = 0x0010
kMovieImportGetSampleDescriptionSelect = 0x0011
kMovieImportGetMIMETypeListSelect = 0x0012
kMovieImportSetOffsetAndLimitSelect = 0x0013
kMovieImportGetSettingsAsAtomContainerSelect = 0x0014
kMovieImportSetSettingsFromAtomContainerSelect = 0x0015
kMovieImportSetOffsetAndLimit64Select = 0x0016
kMovieImportIdleSelect = 0x0017
kMovieImportValidateDataRefSelect = 0x0018
kMovieImportGetLoadStateSelect = 0x0019
kMovieImportGetMaxLoadedTimeSelect = 0x001A
kMovieImportEstimateCompletionTimeSelect = 0x001B
kMovieImportSetDontBlockSelect = 0x001C
kMovieImportGetDontBlockSelect = 0x001D
kMovieImportSetIdleManagerSelect = 0x001E
kMovieImportSetNewMovieFlagsSelect = 0x001F
kMovieImportGetDestinationMediaTypeSelect = 0x0020
kMovieImportSetMediaDataRefSelect = 0x0021
kMovieImportDoUserDialogDataRefSelect = 0x0022
kMovieExportToHandleSelect = 0x0080
kMovieExportToFileSelect = 0x0081
kMovieExportGetAuxiliaryDataSelect = 0x0083
kMovieExportSetProgressProcSelect = 0x0084
kMovieExportSetSampleDescriptionSelect = 0x0085
kMovieExportDoUserDialogSelect = 0x0086
kMovieExportGetCreatorTypeSelect = 0x0087
kMovieExportToDataRefSelect = 0x0088
kMovieExportFromProceduresToDataRefSelect = 0x0089
kMovieExportAddDataSourceSelect = 0x008A
kMovieExportValidateSelect = 0x008B
kMovieExportGetSettingsAsAtomContainerSelect = 0x008C
kMovieExportSetSettingsFromAtomContainerSelect = 0x008D
kMovieExportGetFileNameExtensionSelect = 0x008E
kMovieExportGetShortFileTypeStringSelect = 0x008F
kMovieExportGetSourceMediaTypeSelect = 0x0090
kMovieExportSetGetMoviePropertyProcSelect = 0x0091
kTextExportGetDisplayDataSelect = 0x0100
kTextExportGetTimeFractionSelect = 0x0101
kTextExportSetTimeFractionSelect = 0x0102
kTextExportGetSettingsSelect = 0x0103
kTextExportSetSettingsSelect = 0x0104
kMIDIImportGetSettingsSelect = 0x0100
kMIDIImportSetSettingsSelect = 0x0101
kMovieExportNewGetDataAndPropertiesProcsSelect = 0x0100
kMovieExportDisposeGetDataAndPropertiesProcsSelect = 0x0101

414 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kGraphicsImageImportSetSequenceEnabledSelect = 0x0100
kGraphicsImageImportGetSequenceEnabledSelect = 0x0101
kPreviewShowDataSelect = 0x0001
kPreviewMakePreviewSelect = 0x0002
kPreviewMakePreviewReferenceSelect = 0x0003
kPreviewEventSelect = 0x0004
kDataCodecDecompressSelect = 0x0001
kDataCodecGetCompressBufferSizeSelect = 0x0002
kDataCodecCompressSelect = 0x0003
kDataCodecBeginInterruptSafeSelect = 0x0004
kDataCodecEndInterruptSafeSelect = 0x0005
kDataCodecDecompressPartialSelect = 0x0006
kDataCodecCompressPartialSelect = 0x0007
kDataHGetDataSelect = 0x0002
kDataHPutDataSelect = 0x0003
kDataHFlushDataSelect = 0x0004
kDataHOpenForWriteSelect = 0x0005
kDataHCloseForWriteSelect = 0x0006
kDataHOpenForReadSelect = 0x0008
kDataHCloseForReadSelect = 0x0009
kDataHSetDataRefSelect = 0x000A
kDataHGetDataRefSelect = 0x000B
kDataHCompareDataRefSelect = 0x000C
kDataHTaskSelect = 0x000D
kDataHScheduleDataSelect = 0x000E
kDataHFinishDataSelect = 0x000F
kDataHFlushCacheSelect = 0x0010
kDataHResolveDataRefSelect = 0x0011
kDataHGetFileSizeSelect = 0x0012
kDataHCanUseDataRefSelect = 0x0013
kDataHGetVolumeListSelect = 0x0014
kDataHWriteSelect = 0x0015
kDataHPreextendSelect = 0x0016
kDataHSetFileSizeSelect = 0x0017
kDataHGetFreeSpaceSelect = 0x0018
kDataHCreateFileSelect = 0x0019
kDataHGetPreferredBlockSizeSelect = 0x001A
kDataHGetDeviceIndexSelect = 0x001B
kDataHIsStreamingDataHandlerSelect = 0x001C
kDataHGetDataInBufferSelect = 0x001D
kDataHGetScheduleAheadTimeSelect = 0x001E
kDataHSetCacheSizeLimitSelect = 0x001F
kDataHGetCacheSizeLimitSelect = 0x0020
kDataHGetMovieSelect = 0x0021
kDataHAddMovieSelect = 0x0022
kDataHUpdateMovieSelect = 0x0023
kDataHDoesBufferSelect = 0x0024
kDataHGetFileNameSelect = 0x0025
kDataHGetAvailableFileSizeSelect = 0x0026
kDataHGetMacOSFileTypeSelect = 0x0027
kDataHGetMIMETypeSelect = 0x0028
kDataHSetDataRefWithAnchorSelect = 0x0029
kDataHGetDataRefWithAnchorSelect = 0x002A
kDataHSetMacOSFileTypeSelect = 0x002B
kDataHSetTimeBaseSelect = 0x002C
kDataHGetInfoFlagsSelect = 0x002D
kDataHScheduleData64Select = 0x002E
kDataHWrite64Select = 0x002F

Constants 415
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kDataHGetFileSize64Select = 0x0030
kDataHPreextend64Select = 0x0031
kDataHSetFileSize64Select = 0x0032
kDataHGetFreeSpace64Select = 0x0033
kDataHAppend64Select = 0x0034
kDataHReadAsyncSelect = 0x0035
kDataHPollReadSelect = 0x0036
kDataHGetDataAvailabilitySelect = 0x0037
kDataHGetFileSizeAsyncSelect = 0x003A
kDataHGetDataRefAsTypeSelect = 0x003B
kDataHSetDataRefExtensionSelect = 0x003C
kDataHGetDataRefExtensionSelect = 0x003D
kDataHGetMovieWithFlagsSelect = 0x003E
kDataHGetFileTypeOrderingSelect = 0x0040
kDataHCreateFileWithFlagsSelect = 0x0041
kDataHGetMIMETypeAsyncSelect = 0x0042
kDataHGetInfoSelect = 0x0043
kDataHSetIdleManagerSelect = 0x0044
kDataHDeleteFileSelect = 0x0045
kDataHSetMovieUsageFlagsSelect = 0x0046
kDataHUseTemporaryDataRefSelect = 0x0047
kDataHGetTemporaryDataRefCapabilitiesSelect = 0x0048
kDataHRenameFileSelect = 0x0049
kDataHGetAvailableFileSize64Select = 0x004E
kDataHGetDataAvailability64Select = 0x004F
kDataHPlaybackHintsSelect = 0x0103
kDataHPlaybackHints64Select = 0x010E
kDataHGetDataRateSelect = 0x0110
kDataHSetTimeHintsSelect = 0x0111
kVDGetMaxSrcRectSelect = 0x0001
kVDGetActiveSrcRectSelect = 0x0002
kVDSetDigitizerRectSelect = 0x0003
kVDGetDigitizerRectSelect = 0x0004
kVDGetVBlankRectSelect = 0x0005
kVDGetMaskPixMapSelect = 0x0006
kVDGetPlayThruDestinationSelect = 0x0008
kVDUseThisCLUTSelect = 0x0009
kVDSetInputGammaValueSelect = 0x000A
kVDGetInputGammaValueSelect = 0x000B
kVDSetBrightnessSelect = 0x000C
kVDGetBrightnessSelect = 0x000D
kVDSetContrastSelect = 0x000E
kVDSetHueSelect = 0x000F
kVDSetSharpnessSelect = 0x0010
kVDSetSaturationSelect = 0x0011
kVDGetContrastSelect = 0x0012
kVDGetHueSelect = 0x0013
kVDGetSharpnessSelect = 0x0014
kVDGetSaturationSelect = 0x0015
kVDGrabOneFrameSelect = 0x0016
kVDGetMaxAuxBufferSelect = 0x0017
kVDGetDigitizerInfoSelect = 0x0019
kVDGetCurrentFlagsSelect = 0x001A
kVDSetKeyColorSelect = 0x001B
kVDGetKeyColorSelect = 0x001C
kVDAddKeyColorSelect = 0x001D
kVDGetNextKeyColorSelect = 0x001E
kVDSetKeyColorRangeSelect = 0x001F

416 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kVDGetKeyColorRangeSelect = 0x0020
kVDSetDigitizerUserInterruptSelect = 0x0021
kVDSetInputColorSpaceModeSelect = 0x0022
kVDGetInputColorSpaceModeSelect = 0x0023
kVDSetClipStateSelect = 0x0024
kVDGetClipStateSelect = 0x0025
kVDSetClipRgnSelect = 0x0026
kVDClearClipRgnSelect = 0x0027
kVDGetCLUTInUseSelect = 0x0028
kVDSetPLLFilterTypeSelect = 0x0029
kVDGetPLLFilterTypeSelect = 0x002A
kVDGetMaskandValueSelect = 0x002B
kVDSetMasterBlendLevelSelect = 0x002C
kVDSetPlayThruDestinationSelect = 0x002D
kVDSetPlayThruOnOffSelect = 0x002E
kVDSetFieldPreferenceSelect = 0x002F
kVDGetFieldPreferenceSelect = 0x0030
kVDPreflightDestinationSelect = 0x0032
kVDPreflightGlobalRectSelect = 0x0033
kVDSetPlayThruGlobalRectSelect = 0x0034
kVDSetInputGammaRecordSelect = 0x0035
kVDGetInputGammaRecordSelect = 0x0036
kVDSetBlackLevelValueSelect = 0x0037
kVDGetBlackLevelValueSelect = 0x0038
kVDSetWhiteLevelValueSelect = 0x0039
kVDGetWhiteLevelValueSelect = 0x003A
kVDGetVideoDefaultsSelect = 0x003B
kVDGetNumberOfInputsSelect = 0x003C
kVDGetInputFormatSelect = 0x003D
kVDSetInputSelect = 0x003E
kVDGetInputSelect = 0x003F
kVDSetInputStandardSelect = 0x0040
kVDSetupBuffersSelect = 0x0041
kVDGrabOneFrameAsyncSelect = 0x0042
kVDDoneSelect = 0x0043
kVDSetCompressionSelect = 0x0044
kVDCompressOneFrameAsyncSelect = 0x0045
kVDCompressDoneSelect = 0x0046
kVDReleaseCompressBufferSelect = 0x0047
kVDGetImageDescriptionSelect = 0x0048
kVDResetCompressSequenceSelect = 0x0049
kVDSetCompressionOnOffSelect = 0x004A
kVDGetCompressionTypesSelect = 0x004B
kVDSetTimeBaseSelect = 0x004C
kVDSetFrameRateSelect = 0x004D
kVDGetDataRateSelect = 0x004E
kVDGetSoundInputDriverSelect = 0x004F
kVDGetDMADepthsSelect = 0x0050
kVDGetPreferredTimeScaleSelect = 0x0051
kVDReleaseAsyncBuffersSelect = 0x0052
kVDSetDataRateSelect = 0x0054
kVDGetTimeCodeSelect = 0x0055
kVDUseSafeBuffersSelect = 0x0056
kVDGetSoundInputSourceSelect = 0x0057
kVDGetCompressionTimeSelect = 0x0058
kVDSetPreferredPacketSizeSelect = 0x0059
kVDSetPreferredImageDimensionsSelect = 0x005A
kVDGetPreferredImageDimensionsSelect = 0x005B

Constants 417
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kVDGetInputNameSelect = 0x005C
kVDSetDestinationPortSelect = 0x005D
kVDGetDeviceNameAndFlagsSelect = 0x005E
kVDCaptureStateChangingSelect = 0x005F
kVDGetUniqueIDsSelect = 0x0060
kVDSelectUniqueIDsSelect = 0x0061
kVDCopyPreferredAudioDeviceSelect = 0x0063
kVDIIDCGetFeaturesSelect = 0x0200
kVDIIDCSetFeaturesSelect = 0x0201
kVDIIDCGetDefaultFeaturesSelect = 0x0202
kVDIIDCGetCSRDataSelect = 0x0203
kVDIIDCSetCSRDataSelect = 0x0204
kVDIIDCGetFeaturesForSpecifierSelect = 0x0205
kXMLParseDataRefSelect = 0x0001
kXMLParseFileSelect = 0x0002
kXMLParseDisposeXMLDocSelect = 0x0003
kXMLParseGetDetailedParseErrorSelect = 0x0004
kXMLParseAddElementSelect = 0x0005
kXMLParseAddAttributeSelect = 0x0006
kXMLParseAddMultipleAttributesSelect = 0x0007
kXMLParseAddAttributeAndValueSelect = 0x0008
kXMLParseAddMultipleAttributesAndValuesSelect = 0x0009
kXMLParseAddAttributeValueKindSelect = 0x000A
kXMLParseAddNameSpaceSelect = 0x000B
kXMLParseSetOffsetAndLimitSelect = 0x000C
kXMLParseSetEventParseRefConSelect = 0x000D
kXMLParseSetStartDocumentHandlerSelect = 0x000E
kXMLParseSetEndDocumentHandlerSelect = 0x000F
kXMLParseSetStartElementHandlerSelect = 0x0010
kXMLParseSetEndElementHandlerSelect = 0x0011
kXMLParseSetCharDataHandlerSelect = 0x0012
kXMLParseSetPreprocessInstructionHandlerSelect = 0x0013
kXMLParseSetCommentHandlerSelect = 0x0014
kXMLParseSetCDataHandlerSelect = 0x0015
kSGInitializeSelect = 0x0001
kSGSetDataOutputSelect = 0x0002
kSGGetDataOutputSelect = 0x0003
kSGSetGWorldSelect = 0x0004
kSGGetGWorldSelect = 0x0005
kSGNewChannelSelect = 0x0006
kSGDisposeChannelSelect = 0x0007
kSGStartPreviewSelect = 0x0010
kSGStartRecordSelect = 0x0011
kSGIdleSelect = 0x0012
kSGStopSelect = 0x0013
kSGPauseSelect = 0x0014
kSGPrepareSelect = 0x0015
kSGReleaseSelect = 0x0016
kSGGetMovieSelect = 0x0017
kSGSetMaximumRecordTimeSelect = 0x0018
kSGGetMaximumRecordTimeSelect = 0x0019
kSGGetStorageSpaceRemainingSelect = 0x001A
kSGGetTimeRemainingSelect = 0x001B
kSGGrabPictSelect = 0x001C
kSGGetLastMovieResIDSelect = 0x001D
kSGSetFlagsSelect = 0x001E
kSGGetFlagsSelect = 0x001F
kSGSetDataProcSelect = 0x0020

418 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kSGNewChannelFromComponentSelect = 0x0021
kSGDisposeDeviceListSelect = 0x0022
kSGAppendDeviceListToMenuSelect = 0x0023
kSGSetSettingsSelect = 0x0024
kSGGetSettingsSelect = 0x0025
kSGGetIndChannelSelect = 0x0026
kSGUpdateSelect = 0x0027
kSGGetPauseSelect = 0x0028
kSGSettingsDialogSelect = 0x0029
kSGGetAlignmentProcSelect = 0x002A
kSGSetChannelSettingsSelect = 0x002B
kSGGetChannelSettingsSelect = 0x002C
kSGGetModeSelect = 0x002D
kSGSetDataRefSelect = 0x002E
kSGGetDataRefSelect = 0x002F
kSGNewOutputSelect = 0x0030
kSGDisposeOutputSelect = 0x0031
kSGSetOutputFlagsSelect = 0x0032
kSGSetChannelOutputSelect = 0x0033
kSGGetDataOutputStorageSpaceRemainingSelect = 0x0034
kSGHandleUpdateEventSelect = 0x0035
kSGSetOutputNextOutputSelect = 0x0036
kSGGetOutputNextOutputSelect = 0x0037
kSGSetOutputMaximumOffsetSelect = 0x0038
kSGGetOutputMaximumOffsetSelect = 0x0039
kSGGetOutputDataReferenceSelect = 0x003A
kSGWriteExtendedMovieDataSelect = 0x003B
kSGGetStorageSpaceRemaining64Select = 0x003C
kSGGetDataOutputStorageSpaceRemaining64Select = 0x003D
kSGWriteMovieDataSelect = 0x0100
kSGAddFrameReferenceSelect = 0x0101
kSGGetNextFrameReferenceSelect = 0x0102
kSGGetTimeBaseSelect = 0x0103
kSGSortDeviceListSelect = 0x0104
kSGAddMovieDataSelect = 0x0105
kSGChangedSourceSelect = 0x0106
kSGAddExtendedFrameReferenceSelect = 0x0107
kSGGetNextExtendedFrameReferenceSelect = 0x0108
kSGAddExtendedMovieDataSelect = 0x0109
kSGAddOutputDataRefToMediaSelect = 0x010A
kSGSetSettingsSummarySelect = 0x010B
kSGSetChannelUsageSelect = 0x0080
kSGGetChannelUsageSelect = 0x0081
kSGSetChannelBoundsSelect = 0x0082
kSGGetChannelBoundsSelect = 0x0083
kSGSetChannelVolumeSelect = 0x0084
kSGGetChannelVolumeSelect = 0x0085
kSGGetChannelInfoSelect = 0x0086
kSGSetChannelPlayFlagsSelect = 0x0087
kSGGetChannelPlayFlagsSelect = 0x0088
kSGSetChannelMaxFramesSelect = 0x0089
kSGGetChannelMaxFramesSelect = 0x008A
kSGSetChannelRefConSelect = 0x008B
kSGSetChannelClipSelect = 0x008C
kSGGetChannelClipSelect = 0x008D
kSGGetChannelSampleDescriptionSelect = 0x008E
kSGGetChannelDeviceListSelect = 0x008F
kSGSetChannelDeviceSelect = 0x0090

Constants 419
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kSGSetChannelMatrixSelect = 0x0091
kSGGetChannelMatrixSelect = 0x0092
kSGGetChannelTimeScaleSelect = 0x0093
kSGChannelPutPictureSelect = 0x0094
kSGChannelSetRequestedDataRateSelect = 0x0095
kSGChannelGetRequestedDataRateSelect = 0x0096
kSGChannelSetDataSourceNameSelect = 0x0097
kSGChannelGetDataSourceNameSelect = 0x0098
kSGChannelSetCodecSettingsSelect = 0x0099
kSGChannelGetCodecSettingsSelect = 0x009A
kSGGetChannelTimeBaseSelect = 0x009B
kSGGetChannelRefConSelect = 0x009C
kSGGetChannelDeviceAndInputNamesSelect = 0x009D
kSGSetChannelDeviceInputSelect = 0x009E
kSGSetChannelSettingsStateChangingSelect = 0x009F
kSGInitChannelSelect = 0x0180
kSGWriteSamplesSelect = 0x0181
kSGGetDataRateSelect = 0x0182
kSGAlignChannelRectSelect = 0x0183
kSGPanelGetDitlSelect = 0x0200
kSGPanelGetTitleSelect = 0x0201
kSGPanelCanRunSelect = 0x0202
kSGPanelInstallSelect = 0x0203
kSGPanelEventSelect = 0x0204
kSGPanelItemSelect = 0x0205
kSGPanelRemoveSelect = 0x0206
kSGPanelSetGrabberSelect = 0x0207
kSGPanelSetResFileSelect = 0x0208
kSGPanelGetSettingsSelect = 0x0209
kSGPanelSetSettingsSelect = 0x020A
kSGPanelValidateInputSelect = 0x020B
kSGPanelSetEventFilterSelect = 0x020C
kSGPanelGetDITLForSizeSelect = 0x020D
kSGGetSrcVideoBoundsSelect = 0x0100
kSGSetVideoRectSelect = 0x0101
kSGGetVideoRectSelect = 0x0102
kSGGetVideoCompressorTypeSelect = 0x0103
kSGSetVideoCompressorTypeSelect = 0x0104
kSGSetVideoCompressorSelect = 0x0105
kSGGetVideoCompressorSelect = 0x0106
kSGGetVideoDigitizerComponentSelect = 0x0107
kSGSetVideoDigitizerComponentSelect = 0x0108
kSGVideoDigitizerChangedSelect = 0x0109
kSGSetVideoBottlenecksSelect = 0x010A
kSGGetVideoBottlenecksSelect = 0x010B
kSGGrabFrameSelect = 0x010C
kSGGrabFrameCompleteSelect = 0x010D
kSGDisplayFrameSelect = 0x010E
kSGCompressFrameSelect = 0x010F
kSGCompressFrameCompleteSelect = 0x0110
kSGAddFrameSelect = 0x0111
kSGTransferFrameForCompressSelect = 0x0112
kSGSetCompressBufferSelect = 0x0113
kSGGetCompressBufferSelect = 0x0114
kSGGetBufferInfoSelect = 0x0115
kSGSetUseScreenBufferSelect = 0x0116
kSGGetUseScreenBufferSelect = 0x0117
kSGGrabCompressCompleteSelect = 0x0118

420 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

kSGDisplayCompressSelect = 0x0119
kSGSetFrameRateSelect = 0x011A
kSGGetFrameRateSelect = 0x011B
kSGSetPreferredPacketSizeSelect = 0x0121
kSGGetPreferredPacketSizeSelect = 0x0122
kSGSetUserVideoCompressorListSelect = 0x0123
kSGGetUserVideoCompressorListSelect = 0x0124
kSGSetSoundInputDriverSelect = 0x0100
kSGGetSoundInputDriverSelect = 0x0101
kSGSoundInputDriverChangedSelect = 0x0102
kSGSetSoundRecordChunkSizeSelect = 0x0103
kSGGetSoundRecordChunkSizeSelect = 0x0104
kSGSetSoundInputRateSelect = 0x0105
kSGGetSoundInputRateSelect = 0x0106
kSGSetSoundInputParametersSelect = 0x0107
kSGGetSoundInputParametersSelect = 0x0108
kSGSetAdditionalSoundRatesSelect = 0x0109
kSGGetAdditionalSoundRatesSelect = 0x010A
kSGSetFontNameSelect = 0x0100
kSGSetFontSizeSelect = 0x0101
kSGSetTextForeColorSelect = 0x0102
kSGSetTextBackColorSelect = 0x0103
kSGSetJustificationSelect = 0x0104
kSGGetTextReturnToSpaceValueSelect = 0x0105
kSGSetTextReturnToSpaceValueSelect = 0x0106
kSGGetInstrumentSelect = 0x0100
kSGSetInstrumentSelect = 0x0101
kQTVideoOutputGetDisplayModeListSelect = 0x0001
kQTVideoOutputGetCurrentClientNameSelect = 0x0002
kQTVideoOutputSetClientNameSelect = 0x0003
kQTVideoOutputGetClientNameSelect = 0x0004
kQTVideoOutputBeginSelect = 0x0005
kQTVideoOutputEndSelect = 0x0006
kQTVideoOutputSetDisplayModeSelect = 0x0007
kQTVideoOutputGetDisplayModeSelect = 0x0008
kQTVideoOutputSaveStateSelect = 0x000A
kQTVideoOutputRestoreStateSelect = 0x000B
kQTVideoOutputGetGWorldSelect = 0x000C
kQTVideoOutputGetGWorldParametersSelect = 0x000D
kQTVideoOutputGetIndSoundOutputSelect = 0x000E
kQTVideoOutputGetClockSelect = 0x000F
kQTVideoOutputSetEchoPortSelect = 0x0010
kQTVideoOutputGetIndImageDecompressorSelect = 0x0011
kQTVideoOutputBaseSetEchoPortSelect = 0x0012
kQTVideoOutputCopyIndAudioOutputDeviceUIDSelect = 0x0016

Component Identifiers
Identify the types of components.

Constants 421
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

clockComponentType ='clok'
compressorComponentType ='imco'
CreateFilePreviewComponentType ='pmak'
DataHandlerType ='dhlr'
decompressorComponentType ='imdc'
MediaHandlerType ='mhlr'
MovieControllerComponentType ='play'
MovieExportType ='spit'
MovieImportType ='eat '
SeqGrabChannelType ='sgch'
SeqGrabComponentType ='barg'
SeqGrabCompressionPanelType ='cmpr'
SeqGrabPanelType ='sgpn'
SeqGrabSourcePanelType ='sour'
ShowFilePreviewComponentType ='pnot'
StandardCompressionSubType ='imag'
StandardCompressionSubTypeSound ='soun'
StandardCompressionType ='scdi'
systemMicrosecondClock ='micr'
systemMillisecondClock ='mill'
systemSecondClock ='seco'
systemTickClock ='tick'
videoDigitizerComponentType ='vdig'

Discussion
All components of the same type or subtype provide the same kinds of services and support a common
application programming interface. Codecs have their own set of types.

Component Property IDs and Flags
Constants that contain the flags and IDs of component properties.

uppCallComponentGetComponentPropertyInfoProcInfo = 0x0003FFF0
uppCallComponentGetComponentPropertyProcInfo = 0x0003FFF0
uppCallComponentSetComponentPropertyProcInfo = 0x0000FFF0
uppCallComponentAddComponentPropertyListenerProcInfo = 0x0000FFF0
uppCallComponentRemoveComponentPropertyListenerProcInfo = 0x0000FFF0
kCallComponentExecuteWiredActionSelect = -9
kComponentPropertyFlagCanSetLater = (1L << 0)
kComponentPropertyFlagCanSetNow = (1L << 1)
kComponentPropertyFlagCanGetNow = (1L << 3)
kComponentPropertyFlagHasExtendedInfo = (1L << 4)
kComponentPropertyFlagValueMustBeReleased = (1L << 5)
kComponentPropertyFlagValueIsCFTypeRef = (1L << 6)
kComponentPropertyFlagGetBufferMustBeInitialized = (1L << 7)
kQTComponentPropertyListenerCollectionContextVersion = 1
kQTGetComponentPropertyInfoSelect = -11
kQTGetComponentPropertySelect = -12
kQTSetComponentPropertySelect = -13
kQTAddComponentPropertyListenerSelect = -14
kQTRemoveComponentPropertyListenerSelect = -15

Error Codes
Identify errors generated while executing QuickTime calls.

422 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

// General QuickTime errors
couldNotResolveDataRef =-2000
badImageDescription =-2001
badPublicMovieAtom =-2002
cantFindHandler =-2003
cantOpenHandler =-2004
badComponentType =-2005
noMediaHandler =-2006
noDataHandler =-2007
invalidMedia =-2008
invalidTrack =-2009
invalidMovie =-2010
invalidSampleTable =-2011
invalidDataRef =-2012
invalidHandler =-2013
invalidDuration =-2014
invalidTime =-2015
cantPutPublicMovieAtom =-2016
badEditList =-2017
mediaTypesDontMatch =-2018
progressProcAborted =-2019
movieToolboxUninitialized =-2020
noRecordOfApp =-2020
wfFileNotFound =-2021
cantCreateSingleForkFile =-2022
invalidEditState =-2023
nonMatchingEditState =-2024
staleEditState =-2025
userDataItemNotFound =-2026
maxSizeToGrowTooSmall =-2027
badTrackIndex =-2028
trackIDNotFound =-2029
trackNotInMovie =-2030
timeNotInTrack =-2031
timeNotInMedia =-2032
badEditIndex =-2033
internalQuickTimeError =-2034
cantEnableTrack =-2035
invalidRect =-2036
invalidSampleNum =-2037
invalidChunkNum =-2038
invalidSampleDescIndex =-2039
invalidChunkCache =-2040
invalidSampleDescription =-2041
dataNotOpenForRead =-2042
dataNotOpenForWrite =-2043
dataAlreadyOpenForWrite =-2044
dataAlreadyClosed =-2045
endOfDataReached =-2046
dataNoDataRef =-2047
noMovieFound =-2048
invalidDataRefContainer =-2049
badDataRefIndex =-2050
noDefaultDataRef =-2051
couldNotUseAnExistingSample =-2052
featureUnsupported =-2053
unsupportedAuxiliaryImportData =-2057
auxiliaryExportDataUnavailable =-2058

Constants 423
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

samplesAlreadyInMediaErr =-2059
noSourceTreeFoundErr =-2060
sourceNotFoundErr =-2061
movieTextNotFoundErr =-2062
missingRequiredParameterErr =-2063
invalidSpriteWorldPropertyErr =-2064
invalidSpritePropertyErr =-2065
gWorldsNotSameDepthAndSizeErr =-2066
invalidSpriteIndexErr =-2067
invalidImageIndexErr =-2068
invalidSpriteIDErr =-2069
// QuickTime Music Architecture errors
internalComponentErr =-2070
notImplementedMusicOSErr =-2071
cantSendToSynthesizerOSErr =-2072
cantReceiveFromSynthesizerOSErr =-2073
illegalVoiceAllocationOSErr =-2074
illegalPartOSErr =-2075
illegalChannelOSErr =-2076
illegalKnobOSErr =-2077
illegalKnobValueOSErr =-2078
illegalInstrumentOSErr =-2079
illegalControllerOSErr =-2080
midiManagerAbsentOSErr =-2081
synthesizerNotRespondingOSErr =-2082
synthesizerOSErr =-2083
illegalNoteChannelOSErr =-2084
noteChannelNotAllocatedOSErr =-2085
tunePlayerFullOSErr =-2086
tuneParseOSErr =-2087
noExportProcAvailableErr =-2089
videoOutputInUseErr =-2090
// Windows-specific errors
componentDllLoadErr =-2091
componentDllEntryNotFoundErr =-2092
qtmlDllLoadErr =-2093
qtmlDllEntryNotFoundErr =-2094
qtmlUninitialized =-2095
unsupportedOSErr =-2096
unsupportedProcessorErr =-2097
noVideoTrackInMovieErr =-2054
noSoundTrackInMovieErr =-2055
soundSupportNotAvailableErr =-2056
// QT atom errors
cannotFindAtomErr =-2101
notLeafAtomErr =-2102
atomsNotOfSameTypeErr =-2103
atomIndexInvalidErr =-2104
duplicateAtomTypeAndIDErr =-2105
invalidAtomErr =-2106
invalidAtomContainerErr =-2107
invalidAtomTypeErr =-2108
cannotBeLeafAtomErr =-2109
// Data access errors
pathTooLongErr =-2110
emptyPathErr =-2111
noPathMappingErr =-2112
pathNotVerifiedErr =-2113

424 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

unknownFormatErr =-2114
wackBadFileErr =-2115
wackForkNotFoundErr =-2116
wackBadMetaDataErr =-2117
qfcbNotFoundErr =-2118
qfcbNotCreatedErr =-2119
AAPNotCreatedErr =-2120
AAPNotFoundErr =-2121
ASDBadHeaderErr =-2122
ASDBadForkErr =-2123
ASDEntryNotFoundErr =-2124
fileOffsetTooBigErr =-2125
notAllowedToSaveMovieErr =-2126
qtNetworkAlreadyAllocatedErr =-2127
urlDataHHTTPProtocolErr =-2129
urlDataHHTTPNoNetDriverErr =-2130
urlDataHHTTPURLErr =-2131
urlDataHHTTPRedirectErr =-2132
urlDataHFTPProtocolErr =-2133
urlDataHFTPShutdownErr =-2134
urlDataHFTPBadUserErr =-2135
urlDataHFTPBadPasswordErr =-2136
urlDataHFTPServerErr =-2137
urlDataHFTPDataConnectionErr =-2138
urlDataHFTPNoDirectoryErr =-2139
urlDataHFTPQuotaErr =-2140
urlDataHFTPPermissionsErr =-2141
urlDataHFTPFilenameErr =-2142
urlDataHFTPNoNetDriverErr =-2143
urlDataHFTPBadNameListErr =-2144
urlDataHFTPNeedPasswordErr =-2145
urlDataHFTPNoPasswordErr =-2146
urlDataHFTPServerDisconnectedErr =-2147
urlDataHFTPURLErr =-2148
notEnoughDataErr =-2149
qtActionNotHandledErr =-2157
// Digitizing errors
digiUnimpErr =-2201
qtParamErr =-2202
matrixErr =-2203
notExactMatrixErr =-2204
noMoreKeyColorsErr =-2205
notExactSizeErr =-2206
badDepthErr =-2207
noDMAErr =-2208
badCallOrderErr =-2209
// Codec errors
codecErr =-8960
noCodecErr =-8961
codecUnimpErr =-8962
codecSizeErr =-8963
codecScreenBufErr =-8964
codecImageBufErr =-8965
codecSpoolErr =-8966
codecAbortErr =-8967
codecWouldOffscreenErr =-8968
codecBadDataErr =-8969
codecDataVersErr =-8970

Constants 425
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

codecExtensionNotFoundErr =-8971
scTypeNotFoundErr =-8971
codecConditionErr =-8972
codecOpenErr =-8973
codecCantWhenErr =-8974
codecCantQueueErr =-8975
codecNothingToBlitErr =-8976
codecNoMemoryPleaseWaitErr =-8977
codecDisabledErr =-8978
codecNeedToFlushChainErr =-8979
lockPortBitsBadSurfaceErr =-8980
lockPortBitsWindowMovedErr =-8981
lockPortBitsWindowResizedErr =-8982
lockPortBitsWindowClippedErr =-8983
lockPortBitsBadPortErr =-8984
lockPortBitsSurfaceLostErr =-8985
codecParameterDialogConfirm =-8986
codecNeedAccessKeyErr =-8987
codecOffscreenFailedErr =-8988
codecDroppedFrameErr =-8989
directXObjectAlreadyExists =-8990
lockPortBitsWrongGDeviceErr =-8991
codecOffscreenFailedPleaseRetryErr =-8992
// Sequence Grabber errors
noDeviceForChannel =-9400,
grabTimeComplete =-9401,
cantDoThatInCurrentMode =-9402,
notEnoughMemoryToGrab =-9403,
notEnoughDiskSpaceToGrab =-9404,
couldntGetRequiredComponent =-9405,
badSGChannel =-9406,
seqGrabInfoNotAvailable =-9407,
deviceCantMeetRequest =-9408,
// Movie Controller errors
badControllerHeight =-9994,
editingNotAllowed =-9995,
controllerBoundsNotExact =-9996,
cannotSetWidthOfAttachedController =-9997,
controllerHasFixedHeight =-9998,
cannotMoveAttachedController =-9999
// QuickTime VR Errors
notAQTVRMovieErr =-30540
constraintReachedErr =-30541
callNotSupportedByNodeErr =-30542
selectorNotSupportedByNodeErr =-30543
invalidNodeIDErr =-30544
invalidViewStateErr =-30545
timeNotInViewErr =-30546
propertyNotSupportedByNodeErr =-30547
settingNotSupportedByNodeErr =-30548
limitReachedErr =-30549
invalidNodeFormatErr =-30550
invalidHotSpotIDErr =-30551
noMemoryNodeFailedInitialize =-30552
streamingNodeNotReadyErr =-30553
qtvrLibraryLoadErr =-30554
qtvrUninitialized =-30555

426 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

noRecordOfApp
A replica of the movieToolboxUninitialized error.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

cantCreateSingleForkFile
The file to be created already exists.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

componentDllLoadErr
Windows error returned when a component is loading.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

componentDllEntryNotFoundErr
Windows error returned when a component is loading.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

qtmlDllLoadErr
Windows error returned when the QuickTime Media Layer is loading.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

qtmlDllEntryNotFoundErr
Windows error returned when the QuickTime Media Layer is loading.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

digiUnimpErr
Digitizer feature is unimplemented.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

qtParamErr
Bad input parameter (out of range, for example).

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

matrixErr
Bad matrix; the digitizer did nothing.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

notExactMatrixErr
Warning of a bad matrix; the digitizer did its best.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

Constants 427
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

noMoreKeyColorsErr
All the key indexes are in use.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

notExactSizeErr
Can't digitize to the exact size requested.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

badDepthErr
Can't digitize into the requested pixel depth.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

noDMAErr
Can't do DMA digitizing; that is, can't go to the requested destination.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

badCallOrderErr
A status call was made before being set up first.

Available in Mac OS X v10.0 and later.

Declared in MacErrors.h.

Discussion
The Movie Toolbox provides two error values to your application: the current error and the sticky error. The
current error is the result code from the last Movie Toolbox function; it is updated each time your application
calls a Movie Toolbox function. The sticky error value contains the first nonzero result code from any Movie
Toolbox function that you called after having cleared the sticky error with ClearMoviesStickyError.

File Types and Creators
Identify the formats of graphics files and the applications that create them.

428 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

// File types
ftAdobePremiereMovie ='MooV'
ftAfterDarkModule ='ADgm'
ftClip3Dgraphic ='EZ3D'
ftCricketChart ='CGPC'
ftCricketDrawing ='CKDT'
ftDesignCADDrawing ='DCAD'
ftImageStudioGraphic ='RIFF'
ftKaleidaGraphGraphic ='QPCT'
ftMacFlowChart ='FLCH'
ftMacSpinDataSet ='D2BN'
ftMoviePlayerMovie ='MooV'
ftPixelPaint ='PX01'
ftSuper3DDrawing ='3DBX'
ftSwivel3DDrawing ='SMDL'
ftVersaCADDrawing ='2D '
// Creator codes
sigAdobePremiere ='PrMr'
sigAfterDark ='ADrk'
sigAldusSuper3D ='SP3D'
sigAutoCAD ='ACAD'
sigClip3D ='EZ3E'
sigCricketDraw ='CRDW'
sigCricketGraph ='CGRF'
sigDeltagraphPro ='DGRH'
sigDesign2 ='DESG'
sigDesignCAD ='ASBC'
sigDesignStudio ='MRJN'
sigDigDarkroom ='DIDR'
sigDreams ='PHNX'
sigDynaperspective ='PERS'
sigGenericCADD ='CAD3'
sigGraphMaster ='GRAM'
sigImageStudio ='FSPE'
sigInfiniD ='SI∞D'
sigKaleidaGraph ='QKPT'
sigKidPix ='Kid2'
sigLabVIEW ='LBVW'
sigMacDraft ='MD20'
sigMacDraw ='MDRW'
sigMacFlow ='MCFL'
sigMacSpin ='D2SP'
sigMiniCad ='CDP3'
sigModelShop ='MDSP'
sigMoviePlayer ='TVOD'
sigMovieRecorder ='mrcr'
sigOasis ='TAOA'
sigOBJECTMASTER ='BROW'
sigOfoto ='APLS'
sigOmnis5 ='Q2$$'
sigOptix ='PIXL'
sigPhotoMac ='PMAC'
sigPictureCompressor ='ppxi'
sigPICTViewer ='MDTS'
sigPixelPaint ='PIXR'
sigScreenPlay ='SPLY'
sigSmoothie ='Smoo'
sigStudio1 ='ST/1'

Constants 429
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

sigStudio32 ='ST32'
sigStudio8 ='ST/8'
sigSwivel3D ='SWVL'
sigVersaCad ='VCAD'

Discussion
Constant names for creator codes are written as sig followed by the application name. Constant names for
file types are written as ft followed by the document type.

Graphics Transfer Modes
Determine how images will be transferred.

// Boolean modes
// src modes are used with bitmaps and text;
// pat modes are used with lines and shapes
srcCopy =0
srcOr =1
srcXor =2
srcBic =3
notSrcCopy =4
notSrcOr =5
notSrcXor =6
notSrcBic =7
patCopy =8
patOr =9
patXor =10
patBic =11
notPatCopy =12
notPatOr =13
notPatXor =14
notPatBic =15
// Text dimming
grayishTextOr =49
// Highlighting
hilite =50
hilitetransfermode =50
// Arithmetic modes
blend =32
addPin =33
addOver =34
subPin =35
addMax =37
adMax =37
subOver =38
adMin =39
ditherCopy =64
// Transparent mode
transparent =36

srcCopy
If the source is black, apply the foreground color to the destination; if the source is white, apply the
background color; otherwise apply weighted portions of the foreground and background colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

430 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

srcOr
If the source is black, apply the foreground color to the destination; if the source is white, do nothing;
otherwise apply weighted portions of the foreground color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcXor
If the source is black, invert the destination (this operation is undefined for a colored destination).
Otherwise, do nothing.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcBic
If the source is black, apply the background color to the destination. If the source is white, do nothing.
Otherwise, apply weighted portions of the background color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcCopy
If the source is white, apply the foreground color to the destination; if the source is black, apply the
background color; otherwise apply weighted portions of the foreground and background colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcOr
If the source is white, apply the foreground color to the destination; if the source is black, do nothing;
otherwise apply weighted portions of the foreground color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcXor
If the source is white, invert the destination (this operation is undefined for a colored destination
pixel). Otherwise, do nothing.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcBic
If the source is white, apply the background color to the destination. If the source is black, do nothing.
Otherwise, apply weighted portions of the background color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patCopy
If the source is black, apply the foreground color to the destination; if the source is white, apply the
background color; otherwise apply weighted portions of the foreground and background colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 431
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

patOr
If the source is black, apply the foreground color to the destination; if the source is white, do nothing;
otherwise apply weighted portions of the foreground color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patXor
If the source is black, invert the destination (this operation is undefined for a colored destination).
Otherwise, do nothing.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patBic
If the source is black, apply the background color to the destination. If the source is white, do nothing.
Otherwise, apply weighted portions of the background color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatCopy
If the source is white, apply the foreground color to the destination; if the source is black, apply the
background color; otherwise apply weighted portions of the foreground and background colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatOr
If the source is white, apply the foreground color to the destination; if the source is black, do nothing;
otherwise apply weighted portions of the foreground color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatXor
If the source is white, invert the destination (this operation is undefined for a colored destination
pixel). Otherwise, do nothing.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

grayishTextOr
Dim the destination. If in color, replace it with a blend of the foreground and background; if
black-and-white, replace it with dithered black and white. This mode is used primarily for text.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

hilite
Replace the background color with the highlight color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

hilitetransfermode
Replace the background color with the highlight color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

432 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

blend
Replace the destination with a blend of the source and destination colors. If the destination is a bitmap,
this is the same as srcCopy.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addPin
Replace the destination with the sum of the source and destination, up to a maximum value. If the
destination is a bitmap, this is the same as srcBic.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addOver
Replace the destination with the sum of the source and destination, but if the resulting red, green,
or blue value exceeds 65536, then subtract 65536 from it. If the destination is a bitmap, this is the
same as srcXor.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subPin
Replace the destination with the difference between the source and destination, but not less than a
minimum value. If the destination is a bitmap, this is the same as srcOr.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addMax
Compare the source and destination, and replace the destination with the greater value of each of
the red, green, and blue components. If the destination is a bitmap, this is the same as srcBic.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

adMax
Compare the source and destination, and replace the destination with the greater value of each of
the red, green, and blue components. If the destination is a bitmap, this is the same as srcBic.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subOver
Replace the destination with the difference between the source and destination, but if the resulting
red, green, or blue value is negative, then add 65536 to it. If the destination is a bitmap, this is the
same as srcXor.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

adMin
Compare the source and destination, and replace the destination with the lesser value of each of the
red, green, and blue components. If the destination is a bitmap, this is the same as srcOr.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 433
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

ditherCopy
Replace the destination with a dither mix of the source and destination.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

transparent
Replace the destination with the source if the source is not equal to the background.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

See Also

For more information about graphics transfer modes, see Inside Macintosh: Imaging With QuickDraw.

Localization Codes
Identify languages, scripts, numbering systems, calendar systems, and geographical regions.

434 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

// Language codes:
langAfrikaans =141 // smRoman script
langBreton =142 // smRoman or smRoman/Celtic script
langAlbanian =36 // smRoman script
langAmharic =85 // smEthiopic script
langArabic =12 // smArabic script
langArmenian =51 // smArmenian script
langAssamese =68 // smBengali script
langAymara =134 // smRoman script
langAzerbaijanAr =50 // Azerbaijani in smArabic script
langAzerbaijani =49 // Azerbaijani in smCyrillic script
langBasque =129 // smRoman script
langBelorussian =46 // Synonym for langByelorussian
langUzbek =47 // smCyrillic script
langBengali =67 // smBengali script
langBulgarian =44 // smCyrillic script
langBurmese =77 // smBurmese script
langByelorussian =46 // smCyrillic script
langCatalan =130 // smRoman script
langChewa =92 // synonym for langNyanja
langCroatian =18 // modified smRoman/Croatian script
langCzech =38 // smCentralEuroRoman script
langDanish =7 // smRoman script
langDutch =4 // smRoman script
langDzongkha =137 // (Bhutan) smTibetan script
langEnglish =0 // smRoman script
langEsperanto =94 // smRoman script
langEstonian =27 // smCentralEuroRoman script
langFaroese =30 // smRoman/Icelandic script
langFarsi =31 // modified smArabic/Farsi script
langFinnish =13 // smRoman script
langFlemish =34 // smRoman script
langFrench =1 // smRoman script
langGalician =140 // smRoman script
langGeorgian =52 // smGeorgian script
langGerman =2 // smRoman script
langGreek =14 // Greek script using smRoman script
langGreekPoly =148 // smGreek script
langGreenlandic =149 // smRoman script
langGuarani =133 // smRoman script
langGujarati =69 // smGujarati script
langHebrew =10 // smHebrew script
langHindi =21 // smDevanagari script
langHungarian =26 // smCentralEuroRoman script
langIcelandic =15 // modified smRoman/Icelandic script
langIndonesian =81 // smRoman script
langInuktitut =143 // Inuit using smEthiopic script
langIrishGaelic =35 // smRoman or smRoman/Celtic script
langIrishGaelicScript =146 // smRoman/Gaelic script
langItalian =3 // smRoman script
langJapanese =11 // smJapanese script
langJavaneseRom =138 // Javanese in smRoman script
langKannada =73 // smKannada script
langKashmiri =61 // smArabic script
langKazakh =48 // smCyrillic script
langKhmer =78 // smKhmer script
langKinyarwanda =90 // smRoman script
langKirghiz =54 // smCyrillic script

Constants 435
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

langKorean =23 // smKorean script
langKurdish =60 // smArabic script
langLao =79 // smLao script
langLatin =131 // smRoman script
langLatvian =28 // smCentralEuroRoman script
langLithuanian =24 // smCentralEuroRoman script
langMacedonian =43 // smCyrillic script
langMalagasy =93 // smRoman script
langMalayalam =72 // smMalayalam script
langMalayArabic =84 // Malay in smArabic script
langMalayRoman =83 // Malay in smRoman script
langMaltese =16 // smRoman script
langManxGaelic =145 // smRoman or smRoman/Celtic script
langMarathi =66 // smDevanagari script
langMoldavian =53 // smCyrillic script
langMongolian =57 // Mongolian in smMongolian script
langMongolianCyr =58 // Mongolian in smCyrillic script
langNepali =64 // smDevanagari script
langNorwegian =9 // smRoman script
langNyanja =92 // smRoman script
langOriya =71 // smOriya script
langOromo =87 // smEthiopic script
langPashto =59 // smArabic script
langPersian =31 // Synonym for langFarsi
langPolish =25 // smCentralEuroRoman script
langPortuguese =8 // smRoman script
langPunjabi =70 // smGurmukhi script
langQuechua =132 // smRoman script
langRomanian =37 // modified smRoman/Romanian script
langRuanda =90 // synonym for langKinyarwanda
langRundi =91 // smRoman script
langRussian =32 // smCyrillic script
langSami =29 // language of the Sami in Scandanavia
langSanskrit =65 // smDevanagari script
langScottishGaelic =144 // smRoman or smRoman/Celtic script
langSerbian =42 // smCyrillic script
langSimpChinese =33 // Mandarin in smSimpChinese script
langSindhi =62 // smArabic script
langSinhalese =76 // smSinhalese script
langSlovak =39 // smCentralEuroRoman script
langSlovenian =40 // modified smRoman/Croatian script
langSomali =88 // smRoman script
langSpanish =6 // smRoman script
langSundaneseRom =139 // Sundanese in smRoman script
langSwahili =89 // smRoman script
langSwedish =5 // smRoman script
langTagalog =82 // smRoman script
langTajiki =55 // smCyrillic script
langTamil =74 // smTamil script
langTatar =135 // smCyrillic script
langTelugu =75 // smTelugu script
langThai =22 // smThai script
langTibetan =63 // smTibetan script
langTigrinya =86 // smEthiopic script
langTongan =147 // smRoman script
langTradChinese =19 // Mandarin in smTradChinese script
langTurkish =17 // modified smRoman/Turkish script
langTurkmen =56 // smCyrillic script

436 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

langUighur =136 // smArabic script
langUkrainian =45 // modified smCyrillic/Ukrainian script
langUrdu =20 // smArabic script
langVietnamese =80 // smVietnamese script
langWelsh =128 // modified smRoman/Celtic script
langYiddish =41 // smHebrew script
langUnspecified =32767
// Script codes
smArabic =4
smArmenian =24
smBengali =13
smBurmese =19
smCentralEuroRoman =29
smCyrillic =7
smDevanagari =9
smEthiopic =28
smExtArabic =31 // extended Arabic
smGeez =28 // Synonym for smEthiopic
smGeorgian =23
smGreek =6
smGujarati =11
smGurmukhi =10
smHebrew =5
smJapanese =1
smKannada =16 // Kannada/Kanarese
smKhmer =20 // Khmer/Cambodian
smKorean =3
smLao =22
smMalayalam =17
smMongolian =27
smOriya =12
smRoman =0
smRSymbol =8 // Right-left symbol
smSimpChinese =25 // Simplified Chinese
smSinhalese =18
smTamil =14
smTelugu =15
smThai =21
smTibetan =26
smTradChinese =2 // Traditional Chinese
smUnicodeScript =0x7E // Unicode
smUninterp =32 // Uninterpreted symbols
smVietnamese =30
// Calendar codes
calGregorian =0
calArabicCivil =1
calArabicLunar =2
calJapanese =3
calJewish =4
calCoptic =5
calPersian =6
 // Integer format codes
intWestern =0
intArabic =1
intRoman =2
intJapanese =3
intEuropean =4
// Region codes

Constants 437
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

verAfrikaans =102
verArabic =16
verArmenian =84
verAustralia =15
verAustria =92
verBengali =60
verBhutan =83
verBrazil =71
verBreton =77
verBritain =2
verBulgaria =72
verByeloRussian =61
verCatalonia =73
verChina =52
verCroatia =68
verCyprus =23
verCzech =56
verDenmark =9
verEngCanada =82
verEsperanto =103
verEstonia =44
verFarEastGeneric =58
verFaroeIsl =47
verFinland =17
verFlemish =6
verFrance =1
verFrBelgium =98
verFrCanada =11
verFrenchUniversal =91
verFrSwiss =18
verGeorgian =85
verGermany =3
verGreece =20
verGreecePoly =40
verGreenland =107
verGrSwiss =19
verGujarati =94
verHungary =43
verIceland =21
verIndiaHindi =33
verIndiaUrdu =96
verInternational =37
verIran =48
verIreland =50
verIrishGaelicScript =81
verIsrael =13
verItalianSwiss =36
verItaly =4
verJapan =14
verKorea =51
verLatvia =45
verLithuania =41
verMacedonian =67
verMagyar =59
verMalta =22
verManxGaelic =76
verMarathi =104
verMultilingual =74

438 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

verNepal =106
verNetherlands =5
verNorway =12
verNunavut =78
verNynorsk =101
verPakistanUrdu =34
verPoland =42
verPortugal =10
verPunjabi =95
verRomania =39
verRussia =49
verSami =46
verScottishGaelic =75
verScriptGeneric =55
verSerbian =65
verSingapore =100
verSlovak =57
verSlovenian =66
verSpain =8
verSpLatinAmerica =86
verSweden =7
verTaiwan =53
verThailand =54
verTibetan =105
verTonga =88
verTurkey =24
verTurkishModified =35
verUkraine =62
verUS =0
verUzbek =99
verVietnam =97
verWelsh =79

langIrishGaelic
Irish Gaelic for Ireland (without dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIreland
Irish Gaelic for Ireland (without dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langIrishGaelicScript
Irish Gaelic for Ireland (using dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIrishGaelicScript
Irish Gaelic for Ireland (using dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 439
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

langSimpChinese
Chinese using simplified characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smSimpChinese
Chinese using simplified characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verChina
Chinese using simplified characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTradChinese
Chinese using traditional characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTradChinese
Chinese using traditional characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verTaiwan
Chinese using traditional characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCentralEuroRoman
Script for Czech, Slovak, Polish, Hungarian, and the Baltic languages.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smRSymbol
Right-left symbol for bidirectional scripts (such as Arabic and Hebrew).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFarEastGeneric
Generic Far East system (no language or script).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verGreece
Monotonic modern Greek.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

440 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

verGreecePoly
Polytonic ancient Greek.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verInternational
English for international use.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verMultilingual
No language or script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verScriptGeneric
Generic script system (no language or script).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verSpain
Spanish for Spain.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verSpLatinAmerica
Spanish for Latin America.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

See Also

For more information about localization codes, see Inside Macintosh: Text. For general information about
localization, see Guide to Macintosh Software Localization (Addison-Wesley 1992, ISBN 0-201-60856-1).

Constants 441
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

442 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QuickTime Constants Reference

443
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART III

Other References

444
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART III

Other References

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeComponents.h

Overview

APIs are provided to help developer create new components that import and export data to and from
QuickTime movies, including managing movie previews.

Functions by Task

Compressing Image Sequences

SCCompressSequenceBegin (page 517)
Initiates a sequence-compression operation.

SCCompressSequenceEnd (page 518)
Ends a sequence-compression operation.

SCCompressSequenceFrame (page 518)
Continues a sequence-compression operation.

Compressing Still Images

SCCompressImage (page 514)
Compresses an image that is stored in a PixMap structure.

SCCompressPicture (page 515)
Compresses a Picture structure that is stored by a handle.

SCCompressPictureFile (page 516)
Compresses a Picture structure that is stored in a file.

Configuring Movie Data Export Components

MovieExportDoUserDialog (page 468)
Requests that a component display its user dialog box.

Overview 445
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

MovieExportSetProgressProc (page 476)
Assigns a movie progress function.

Configuring Movie Data Import Components

MovieImportDoUserDialog (page 484)
Requests that a component display its user dialog box.

MovieImportSetAuxiliaryData (page 495)
Provides additional data to a component.

MovieImportSetChunkSize (page 496)
The amount of data a component works with at a time.

MovieImportSetDimensions (page 497)
Specifies a new track's spatial dimensions.

MovieImportSetDuration (page 498)
Controls the duration of the data that a component pastes into the target movie.

MovieImportSetFromScrap (page 499)
Indicates that the source data resides on the scrap.

MovieImportSetMediaFile (page 501)
Specifies a media file that is to receive the imported movie data.

MovieImportSetProgressProc (page 503)
Assigns a movie progress function.

MovieImportSetSampleDescription (page 504)
Provides a SampleDescription structure to a movie data import component.

MovieImportSetSampleDuration (page 505)
Sets the sample duration for new samples to be created with a component.

Creating a Compression Graphics World

SCNewGWorld (page 528)
Creates a graphics world based on the current compression settings.

Creating Previews

PreviewMakePreview (page 511)
Creates previews by allocating a handle to data that is to be added to a file.

PreviewMakePreviewReference (page 512)
Returns the type and identification number of a resource within a file to be used as the preview for
a file.

Displaying Previews

PreviewShowData (page 513)
Displays a preview if it does not handle events.

446 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Displaying the Standard Image-Compression Dialog Box

SCRequestImageSettings (page 530)
Displays the standard image dialog box to the user and shows default settings you have established.

SCRequestSequenceSettings (page 531)
Displays the standard sequence dialog box to the user and shows default settings you have established.

Exporting Movie Data

MovieExportAddDataSource (page 466)
Defines a data source for use with an export operation performed by
MovieExportFromProceduresToDataRef.

MovieExportDisposeGetDataAndPropertiesProcs (page 467)
Disposes of the memory associated with the procedures returned by
MovieExportNewGetDataAndPropertiesProcs.

MovieExportFromProceduresToDataRef (page 469)
Exports data provided by MovieExportAddDataSource to a specified location.

MovieExportGetAuxiliaryData (page 470)
Retrieves additional data from a component.

MovieExportGetSettingsAsAtomContainer (page 471)
Retrieves the current settings from the movie export component.

MovieExportNewGetDataAndPropertiesProcs (page 473)
Returns MovieExportGetPropertyProc and MovieExportGetDataProc callbacks that can be passed to
MovieExportAddDataSource to create a new data source.

MovieExportSetGetMoviePropertyProc (page 475)
Specifies the procedure that the export component should call to retrieve movie level properties
during MovieExportFromProceduresToDataRef.

MovieExportSetSampleDescription (page 476)
Requests the format of the exported data.

MovieExportSetSettingsFromAtomContainer (page 477)
Sets the movie export component's current configuration from passed settings data.

MovieExportToDataRef (page 479)
Allows an application to request that data be exported to a data reference instead of to a file.

MovieExportToFile (page 480)
Exports data to a file, using a movie data export component.

MovieExportToHandle (page 481)
Exports data from a movie, using a movie data export component.

MovieExportValidate (page 482)
Determines whether a movie export component can export all the data for a specified movie or track.

Exporting Text

TextExportGetDisplayData (page 546)
Retrieves text display information for the current sample in the specified text export component.

Functions by Task 447
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

TextExportGetSettings (page 546)
Retrieves the value of the text export option for the specified text export component.

TextExportGetTimeFraction (page 547)
Retrieves the time scale the specified text export component uses to calculate time stamps.

TextExportSetSettings (page 548)
Sets the value of the text export option for the specified text export component.

TextExportSetTimeFraction (page 548)
Sets the time scale the specified text export component uses to calculate time stamps.

Getting Default Settings for an Image or a Sequence

SCDefaultPictFileSettings (page 522)
Derives default compression settings for a Picture structure that is stored in a file.

SCDefaultPictHandleSettings (page 522)
Derives default compression settings for a Picture structure that is stored by a handle.

SCDefaultPixMapSettings (page 523)
Derives default compression settings for an image that is stored in a pixel map.

Handling Preview Events

PreviewEvent (page 511)
May be called as appropriate if a preview component handles events.

Importing MIDI Files

MIDIImportGetSettings (page 464)
Obtains settings that control the importation of MIDI files.

MIDIImportSetSettings (page 465)
Define settings that control the importation of MIDI files.

Importing Movie Data

MovieImportFile (page 486)
Imports data from a file, using a movie data import component.

MovieImportGetAuxiliaryDataType (page 488)
Returns the type of the auxiliary data that a component can accept.

MovieImportGetDestinationMediaType (page 489)
Returns the current type of a movie importer's destination media.

MovieImportGetFileType (page 490)
Allows your movie data import component to tell the Movie Toolbox the appropriate file type for the
most-recently imported movie file.

MovieImportGetMIMETypeList (page 492)
Returns a list of MIME types supported by the movie import component.

448 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

MovieImportGetSettingsAsAtomContainer (page 493)
Retrieves the current settings from the movie import component.

MovieImportHandle (page 493)
Imports data from a handle, using a movie data import component.

MovieImportSetOffsetAndLimit (page 502)
Specifies location and size of data that should be imported.

MovieImportSetOffsetAndLimit64 (page 503)
Specifies location and size of data that should be imported from a file.

MovieImportSetSettingsFromAtomContainer (page 505)
Sets the movie import component's current configuration from the passed settings data.

MovieImportValidate (page 506)
Allows your movie data import component to validate the data to be passed to your component.

MovieImportValidateDataRef (page 507)
Validates the data file indicated by the data reference.

Managing the Time

ClockRateChanged (page 458)
In a clock component, is called whenever the callback's time base rate changes.

ClockSetTimeBase (page 459)
In a clock component, is called when an application creates a time base that uses the clock component.

ClockStartStopChanged (page 459)
In a clock component, is called whenever the start or stop time of the callback's time base changes.

ClockTimeChanged (page 460)
In a clock component, is called whenever the callback's time base time value is set.

Movie Functions

MovieImportSetNewMovieFlags (page 501)
Implemented by a movie import component to determine the original flags for NewMovieFromDataRef.

Positioning Dialog Boxes and Rectangles

SCGetBestDeviceRect (page 524)
Determines the boundary rectangle that surrounds the display device that supports the largest color
or grayscale palette.

SCPositionDialog (page 529)
Helps position a dialog box on the screen.

SCPositionRect (page 529)
Positions a rectangle on the screen.

Functions by Task 449
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Specifying a Test Image

SCSetTestImagePictFile (page 534)
Sets the dialog box's test image from a Picture structure that is stored in a picture file.

SCSetTestImagePictHandle (page 535)
Sets the dialog box's test image from a Picture structure that is stored in a handle.

SCSetTestImagePixMap (page 536)
Sets the dialog box's test image from a Picture structure that is stored in a PixMap structure.

Tween Component Requirements

TweenerDoTween (page 549)
Performs a tween operation.

TweenerInitialize (page 550)
Initializes your tween component for a single tween operation.

TweenerReset (page 551)
Cleans up when the tween operation is finished.

Using Callback Functions

ClockCallMeWhen (page 453)
In a clock component, schedules a callback event for invocation.

ClockCancelCallBack (page 454)
In a clock component, removes the specified callback event from the list of scheduled callback events
for a time base.

ClockDisposeCallBack (page 455)
In a clock component, disposes of the memory associated with the specified callback event.

ClockNewCallBack (page 457)
In a clock component, allocates memory for a new callback event.

Working With Image or Sequence Settings

SCGetInfo (page 526)
Retrieves configuration information from the standard dialog component.

SCSetInfo (page 532)
Modifies the standard dialog component's configuration information.

Working With The Idle Manager

MovieImportSetIdleManager (page 499)
Lets a movie importer report its idling needs.

450 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Working With the Timecode Media Handler

TCFrameNumberToTimeCode (page 538)
Converts a frame number into its corresponding timecode time value.

TCGetCurrentTimeCode (page 538)
Retrieves the timecode and source identification information for the current movie time.

TCGetDisplayOptions (page 539)
Retrieves the text characteristics that apply to timecode information displayed in a movie.

TCGetSourceRef (page 540)
Retrieves the source information from the timecode media sample reference.

TCGetTimeCodeAtTime (page 540)
Returns a track's timecode information corresponding to a specific media time.

TCGetTimeCodeFlags (page 541)
Retrieves the timecode control flags.

TCSetDisplayOptions (page 542)
Sets the text characteristics that apply to timecode information displayed in a movie.

TCSetSourceRef (page 543)
Changes the source information in the timecode media sample reference.

TCSetTimeCodeFlags (page 543)
Changes the flag that affects how the toolbox handles timecode information.

TCTimeCodeToFrameNumber (page 544)
Converts a timecode time value into its corresponding frame number.

TCTimeCodeToString (page 545)
Converts a time value into a text string (HH:MM:SS:FF).

Supporting Functions

ClockGetRate (page 456)
Fetches the rate of a specified clock.

ClockGetRateChangeConstraints (page 456)
Obtains minimum and maximum delays that a clock could introduce during a rate change.

ClockGetTime (page 457)
Obtains the current time according to a specified clock.

DisposeMovieExportGetDataUPP (page 461)
Disposes of a MovieExportGetDataUPP pointer.

DisposeMovieExportGetPropertyUPP (page 461)
Disposes of a MovieExportGetPropertyUPP pointer.

DisposeMovieExportStageReachedCallbackUPP (page 462)
Disposes of a MovieExportStageReachedCallbackUPP pointer.

DisposeSCModalFilterUPP (page 462)
Disposes of an SCModalFilterUPP pointer.

DisposeSCModalHookUPP (page 463)
Disposes of an SCModalHookUPP pointer.

Functions by Task 451
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

GraphicsImageImportGetSequenceEnabled (page 463)
Undocumented

GraphicsImageImportSetSequenceEnabled (page 464)
Undocumented

MovieExportGetCreatorType (page 470)
Undocumented

MovieExportGetFileNameExtension (page 471)
Undocumented

MovieExportGetShortFileTypeString (page 472)
Undocumented

MovieExportGetSourceMediaType (page 473)
Returns either the track type if a movie export component is track-specific or 0 if it is track-independent.

MovieImportDataRef (page 483)
Undocumented

MovieImportDoUserDialogDataRef (page 485)
Requests that a movie import component display its user dialog box.

MovieImportEstimateCompletionTime (page 486)
Undocumented

MovieImportGetDontBlock (page 489)
Undocumented

MovieImportGetLoadState (page 490)
Undocumented

MovieImportGetMaxLoadedTime (page 491)
Undocumented

MovieImportGetSampleDescription (page 492)
Gets the current sample description for a movie import component.

MovieImportIdle (page 495)
Undocumented

MovieImportSetDontBlock (page 497)
Undocumented

MovieImportSetMediaDataRef (page 500)
Specifies a storage location that is to receive imported movie data.

NewMovieExportGetDataUPP (page 508)
Allocates a Universal Procedure Pointer for the MovieExportGetDataProc callback.

NewMovieExportGetPropertyUPP (page 509)
Allocates a Universal Procedure Pointer for the MovieExportGetPropertyProc callback.

NewMovieExportStageReachedCallbackUPP (page 509)
Allocates a new Universal Procedure Pointer for a MovieExportStageReachedCallbackProc callback.

NewSCModalFilterUPP (page 510)
Allocates a Universal Procedure Pointer for the SCModalFilterProc callback.

NewSCModalHookUPP (page 510)
Allocates a Universal Procedure Pointer for the SCModalHookProc callback.

452 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

SCAsyncIdle (page 514)
Called occasionally while performing asynchronous compression with
SCCompressSequenceFrameAsync.

SCAudioInvokeLegacyCodecOptionsDialog (page 514)
Invokes the legacy code options dialog of an audio codec component.

SCCompressSequenceFrameAsync (page 520)
An asynchronous variant of SCCompressSequenceFrame, with a completion callback.

SCCopyCompressionSessionOptions (page 521)
Creates a compression session options object based upon the settings in the Standard Compression
component.

SCGetCompressFlags (page 524)
Gets compression flags for a standard image-compression dialog component.

SCGetCompressionExtended (page 525)
Undocumented

SCGetSettingsAsAtomContainer (page 527)
Places the current configuration from the standard image-compression component in a QT atom
container.

SCGetSettingsAsText (page 527)
Undocumented

SCSetCompressFlags (page 532)
Sets compression flags for a standard image-compression dialog component.

SCSetSettingsFromAtomContainer (page 533)
Sets the standard image-compression component's current configuration from data in a QT atom
container.

Functions

ClockCallMeWhen
In a clock component, schedules a callback event for invocation.

ComponentResult ClockCallMeWhen (
 ComponentInstance aClock,
 QTCallBack cb,
 long param1,
 long param2,
 long param3
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from OpenComponent.

cb
Specifies the callback event for the operation. The Movie Toolbox obtains this value from your
component's ClockNewCallBack (page 457) function.

Functions 453
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

param1
Contains data supplied to the Movie Toolbox in the param1 parameter to the CallMeWhen (page
179) function. Your component interprets this parameter based on the value of the callBackType
parameter to theClockNewCallBack (page 457) function. IfcallBackType is set tocallBackAtTime,
the param1 parameter contains flags (see below) indicating when to invoke your callback function
for this callback event. If the callBackType parameter is set to callBackAtRate, param1 contains
flags (see below) indicating when to invoke your callback function for this event.

param2
Contains data supplied to the Movie Toolbox in the param2 parameter to the CallMeWhen (page
179) function. Your component interprets this parameter based on the value of the callBackType
parameter to theClockNewCallBack (page 457) function. IfcallBackType is set tocallBackAtTime,
the param2 parameter contains the time value at which your callback function is to be invoked for
this event. The param1 parameter contains flags affecting when the Movie Toolbox calls your function.
If callBackType is set to callBackAtRate, the param2 parameter contains the rate value at which
your callback function is to be invoked for this event.

param3
Contains data supplied to the Movie Toolbox in the param3 parameter to the CallMeWhen (page
179) function. If cbType is set to callBackAtTime, param3 contains the time scale in which to
interpret the time value that is stored in param2.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your clock component successfully schedules the callback event, you should call the
AddCallBackToTimeBase (page 178) function to add it to the list of callback events for the corresponding
time base. If your component cannot schedule the callback event, it should return an appropriate error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockCancelCallBack
In a clock component, removes the specified callback event from the list of scheduled callback events for a
time base.

ComponentResult ClockCancelCallBack (
 ComponentInstance aClock,
 QTCallBack cb
);

Parameters
aClock

Specifies the clock for the operation. Your application obtains this identifier from the Component
Manager's OpenComponent function.

454 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

cb
Specifies the callback event for the operation. The Movie Toolbox obtains this value from your
component's ClockNewCallBack (page 457) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your clock component successfully cancels the callback event, you should call the
RemoveCallBackFromTimeBase (page 284) function so that the Movie Toolbox can remove the callback
event from its list of scheduled events.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockDisposeCallBack
In a clock component, disposes of the memory associated with the specified callback event.

ComponentResult ClockDisposeCallBack (
 ComponentInstance aClock,
 QTCallBack cb
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

cb
Specifies the callback event for the operation. The Movie Toolbox obtains this value from your
component's ClockNewCallBack (page 457) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should not call this function at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 455
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ClockGetRate
Fetches the rate of a specified clock.

ComponentResult ClockGetRate (
 ComponentInstance aClock,
 Fixed *rate
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

rate
Pointer to memory where the clock rate is returned.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockGetRateChangeConstraints
Obtains minimum and maximum delays that a clock could introduce during a rate change.

ComponentResult ClockGetRateChangeConstraints (
 ComponentInstance aClock,
 TimeRecord *minimumDelay,
 TimeRecord *maximumDelay
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from OpenComponent.

minimum
A pointer to a TimeRecord structure that the clock will update with the minimum delay introduced
during a rate change. You can pass NIL if you do not want to receive this information.

maximum
A pointer to a TimeRecord structure that the clock will update with the maximum delay introduced
during a rate change. You can pass NIL if you do not want to receive this information.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns
badComponentSelector if the component does not support the call.

Version Notes
Introduced in QuickTime 6.4.

456 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

ClockGetTime
Obtains the current time according to a specified clock.

ComponentResult ClockGetTime (
 ComponentInstance aClock,
 TimeRecord *out
);

Parameters
aClock

Specifies the clock for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent.

out
A pointer to a TimeRecord structure. The clock component updates this structure with the current
time information. Specifically, the clock component sets the value field and the scale field in the
time structure. Your clock component should always return values in its native time scale. This time
scale does not change during the life of the component connection.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockNewCallBack
In a clock component, allocates memory for a new callback event.

QTCallBack ClockNewCallBack (
 ComponentInstance aClock,
 TimeBase tb,
 short callBackType
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

Functions 457
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

tb
Specifies the callback event's time base. Typically, your component does not need to save this
specification. You can use the Movie Toolbox's GetCallBackTimeBase (page 203) function to
determine the callback event's time base when it is invoked. For more information about time bases,
see Inside Macintosh: QuickTime.

callBackType
Contains a constant (see below) that specifies when the callback event is to be invoked. The value of
this parameter governs how your component interprets the data supplied in the param1, param2,
and param3 parameters to ClockCallMeWhen (page 453). See these constants:

callBackAtTime

callBackAtRate

callBackAtTimeJump

callBackAtInterrupt

Return Value
A pointer to a CallBackRecord structure. Your software can pass this structure to other functions, such as
ClockRateChanged (page 458).

Discussion
Your component allocates the memory required to support the callback event. The memory must be in a
locked block and must begin with a QTCallBackHeader structure initialized to 0. Your component can
allocate an arbitrarily large piece of memory for the callback event.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockRateChanged
In a clock component, is called whenever the callback's time base rate changes.

ComponentResult ClockRateChanged (
 ComponentInstance aClock,
 QTCallBack cb
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

cb
Specifies the callback for the operation. The Movie Toolbox obtains this value from your component's
ClockNewCallBack (page 457) function.

Return Value
See Error Codes. Returns noErr if there is no error.

458 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
The Movie Toolbox calls this function once for each qualified callback function associated with the time base.
Note that the Movie Toolbox calls this function only for callback events that are currently scheduled.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockSetTimeBase
In a clock component, is called when an application creates a time base that uses the clock component.

ComponentResult ClockSetTimeBase (
 ComponentInstance aClock,
 TimeBase tb
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

tb
Specifies the time base that is associated with the clock.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockStartStopChanged
In a clock component, is called whenever the start or stop time of the callback's time base changes.

Functions 459
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult ClockStartStopChanged (
 ComponentInstance aClock,
 QTCallBack cb,
 Boolean startChanged,
 Boolean stopChanged
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

cb
Specifies the callback for the operation. The Movie Toolbox obtains this value from your component's
ClockNewCallBack (page 457) function.

startChanged
Indicates that the start time of the time base associated with the clock component instance has
changed.

stopChanged
Indicates that the stop time of the time base associated with the clock component instance has
changed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The Movie Toolbox calls this function once for each qualified callback function associated with the time base.
Note that the Movie Toolbox calls this function only for callback events that are currently scheduled.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

ClockTimeChanged
In a clock component, is called whenever the callback's time base time value is set.

ComponentResult ClockTimeChanged (
 ComponentInstance aClock,
 QTCallBack cb
);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from the Component Manager's
OpenComponent function.

cb
Specifies the callback for the operation. The Movie Toolbox obtains this value from your component's
ClockNewCallBack (page 457) function.

460 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeMovieExportGetDataUPP
Disposes of a MovieExportGetDataUPP pointer.

void DisposeMovieExportGetDataUPP (
 MovieExportGetDataUPP userUPP
);

Parameters
userUPP

A MovieExportGetDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtmoviefromprocs
qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

DisposeMovieExportGetPropertyUPP
Disposes of a MovieExportGetPropertyUPP pointer.

void DisposeMovieExportGetPropertyUPP (
 MovieExportGetPropertyUPP userUPP
);

Parameters
userUPP

A MovieExportGetPropertyUPP pointer. See Universal Procedure Pointers.

Functions 461
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtmoviefromprocs
qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

DisposeMovieExportStageReachedCallbackUPP
Disposes of a MovieExportStageReachedCallbackUPP pointer.

void DisposeMovieExportStageReachedCallbackUPP (
 MovieExportStageReachedCallbackUPP userUPP
);

Parameters
userUPP

A MovieExportStageReachedCallbackUPP pointer.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

DisposeSCModalFilterUPP
Disposes of an SCModalFilterUPP pointer.

void DisposeSCModalFilterUPP (
 SCModalFilterUPP userUPP
);

Parameters
userUPP

An SCModalFilterUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

462 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
QuickTimeComponents.h

DisposeSCModalHookUPP
Disposes of an SCModalHookUPP pointer.

void DisposeSCModalHookUPP (
 SCModalHookUPP userUPP
);

Parameters
userUPP

An SCModalHookUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
QuickTimeComponents.h

GraphicsImageImportGetSequenceEnabled
Undocumented

ComponentResult GraphicsImageImportGetSequenceEnabled (
 GraphicImageMovieImportComponent ci,
 Boolean *enable
);

Parameters
ci

The component instance that identifies your connection to the movie importer component.

enable
A pointer to a Boolean that returns TRUE if enabled, FALSE otherwise.

Functions 463
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

GraphicsImageImportSetSequenceEnabled
Undocumented

ComponentResult GraphicsImageImportSetSequenceEnabled (
 GraphicImageMovieImportComponent ci,
 Boolean enable
);

Parameters
ci

The component instance that identifies your connection to the movie importer component.

enable
Pass TRUE to enable, FALSE to disable.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
QuickTimeComponents.h

MIDIImportGetSettings
Obtains settings that control the importation of MIDI files.

464 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MIDIImportGetSettings (
 TextExportComponent ci,
 long *setting
);

Parameters
ci

A text export component instance used to import a MIDI file. Your software obtains this reference
from OpenComponent or OpenDefaultComponent.

setting
Flags (see below) that control the importation of MIDI files. The flags correspond to the checkboxes
in the MIDI Import Options dialog box. See these constants:

kMIDIImportSilenceBefore

kMIDIImportSilenceAfter

kMIDIImport20Playable

kMIDIImportWantLyrics

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MIDIImportSetSettings
Define settings that control the importation of MIDI files.

ComponentResult MIDIImportSetSettings (
 TextExportComponent ci,
 long setting
);

Parameters
ci

A text export component instance used to import a MIDI file. Your software obtains this reference
from OpenComponent or OpenDefaultComponent.

setting
Flags (see below) that control the importation of MIDI files. The flags correspond to the checkboxes
in the MIDI Import Options dialog box. See these constants:

kMIDIImportSilenceBefore

kMIDIImportSilenceAfter

kMIDIImport20Playable

kMIDIImportWantLyrics

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 465
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportAddDataSource
Defines a data source for use with an export operation performed by MovieExportFromProceduresToDataRef.

ComponentResult MovieExportAddDataSource (
 MovieExportComponent ci,
 OSType trackType,
 TimeScale scale,
 long *trackID,
 MovieExportGetPropertyUPP getPropertyProc,
 MovieExportGetDataUPP getDataProc,
 void *refCon
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

trackType
The type of media provided by this data source. This normally corresponds to a QuickTime media
type such as VideoMediaType or SoundMediaType.

scale
The time scale for time values passed to getDataProc parameter. If the source data is being taken
from a QuickTime track, this value is typically the media's time scale.

trackID
An identifier for the data source. This identifier is returned from the call.

getPropertyProc
A MovieExportGetPropertyProc callback that provides information about processing source
samples.

getDataProc
A MovieExportGetDataProc callback the export component uses to request sample data.

refCon
Passed to the procedures specified in the getPropertyProc and getDataProc parameters. Use
this parameter to point to a data structure containing any information your callbacks need.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before starting an export operation, all the data sources must be defined by calling this function once for
each data source.

466 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ElectricImageComponent
ElectricImageComponent.win
qtmoviefromprocs
qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

MovieExportDisposeGetDataAndPropertiesProcs
Disposes of the memory associated with the procedures returned by
MovieExportNewGetDataAndPropertiesProcs.

ComponentResult MovieExportDisposeGetDataAndPropertiesProcs (
 MovieExportComponent ci,
 MovieExportGetPropertyUPP getPropertyProc,
 MovieExportGetDataUPP getDataProc,
 void *refCon
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

getPropertyProc
A MovieExportGetPropertyProc callback that provides information about processing source
samples.

getDataProc
A MovieExportGetDataProc callback that the export component uses to request sample data.

refCon
Passed to the procedures specified in the getPropertyProc and getDataProc parameters. Use
this parameter to point to a data structure containing any information your callbacks need.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL

Functions 467
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

MovieExportDoUserDialog
Requests that a component display its user dialog box.

ComponentResult MovieExportDoUserDialog (
 MovieExportComponent ci,
 Movie theMovie,
 Track onlyThisTrack,
 TimeValue startTime,
 TimeValue duration,
 Boolean *canceled
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

theMovie
The movie containing the data to be exported.

onlyThisTrack
Specifies that the export component should only attempt to export the data from a single track. If
this parameter is set to NIL, the exporter should attempt to export the entire movie, or all of the
tracks in the movie that it can export. For example, an audio export component might export multiple
audio tracks, mixing them if necessary. If this parameter is not NIL, the exporter should attempt to
export only the specified track.

startTime
The movie time at which to begin the export operation. If you pass 0, the operation should start at
the beginning of the movie or track.

duration
The duration, in movie timescale units, of the segment to be exported. To export the entire movie,
or an entire track, pass in the value returned by GetMovieDuration (page 211) or
GetTrackDuration (page 1607), minus the value passed in startTime, as described above.

canceled
A pointer to a Boolean value. Your component should set this value to TRUE if the user cancels the
dialog box, otherwise FALSE. If the user cancels the dialog box, your component should revert to its
settings as they were before executing this function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

468 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Related Sample Code
ImportExportMovie
qtdataexchange.win
qthintmovies.win
qtmoviefromprocs.win
ThreadsExportMovie

Declared In
QuickTimeComponents.h

MovieExportFromProceduresToDataRef
Exports data provided by MovieExportAddDataSource to a specified location.

ComponentResult MovieExportFromProceduresToDataRef (
 MovieExportComponent ci,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

dataRef
The data reference for the export operation.

dataRefType
The type identifier for the data reference specified by dataRef.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function exports data provided by MovieExportAddDataSource (page 466) to a location specified by
dataRef and dataRefType. Typically dataRef contains a Macintosh file alias and dataRefType is set to
rAliasType.

Special Considerations

Movie data export components that support export operations from procedures must set the
canMovieExportFromProcedures flag in their component flags.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ElectricImageComponent
ElectricImageComponent.win
qtmoviefromprocs

Functions 469
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

MovieExportGetAuxiliaryData
Retrieves additional data from a component.

ComponentResult MovieExportGetAuxiliaryData (
 MovieExportComponent ci,
 Handle dataH,
 OSType *handleType
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

dataH
A handle that is to be filled with the additional data. Your component should resize this handle as
appropriate. Your component is not responsible for disposing of this handle.

handleType
A pointer to the type of data you place in the handle specified by the data parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component should expect the application to call this function after the export process ends.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportGetCreatorType
Undocumented

ComponentResult MovieExportGetCreatorType (
 MovieExportComponent ci,
 OSType *creator
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

470 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

creator
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportGetFileNameExtension
Undocumented

ComponentResult MovieExportGetFileNameExtension (
 MovieExportComponent ci,
 OSType *extension
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

extension
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportGetSettingsAsAtomContainer
Retrieves the current settings from the movie export component.

Functions 471
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieExportGetSettingsAsAtomContainer (
 MovieExportComponent ci,
 QTAtomContainer *settings
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

settings
The address where the newly-created atom container should be stored by the call. The caller is
responsible for disposing of the returned QT atom container.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Applications can call this function to obtain a correctly formatted atom container to use with
MovieExportSetSettingsFromAtomContainer (page 477). This might be done after a call to
MovieExportDoUserDialog (page 468), for example, to apply the user-obtained settings to a series of
exports.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
qtdataexchange
qtdataexchange.win
qtmoviefromprocs.win
ThreadsExportMovie

Declared In
QuickTimeComponents.h

MovieExportGetShortFileTypeString
Undocumented

ComponentResult MovieExportGetShortFileTypeString (
 MovieExportComponent ci,
 Str255 typeString
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

typeString
Undocumented

472 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportGetSourceMediaType
Returns either the track type if a movie export component is track-specific or 0 if it is track-independent.

ComponentResult MovieExportGetSourceMediaType (
 MovieExportComponent ci,
 OSType *mediaType
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

mediaType
The track type if the component is track-specific or 0 if it is track-independent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine returns the same values that were previously stored in the componentManufacturer field of
the ComponentDescription structure. This frees up the field to be used for the manufacturer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportNewGetDataAndPropertiesProcs
Returns MovieExportGetPropertyProc and MovieExportGetDataProc callbacks that can be passed to
MovieExportAddDataSource to create a new data source.

Functions 473
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieExportNewGetDataAndPropertiesProcs (
 MovieExportComponent ci,
 OSType trackType,
 TimeScale *scale,
 Movie theMovie,
 Track theTrack,
 TimeValue startTime,
 TimeValue duration,
 MovieExportGetPropertyUPP *getPropertyProc,
 MovieExportGetDataUPP *getDataProc,
 void **refCon
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

trackType
The format of the data to be generated by the returned MovieExportGetDataProc.

scale
The time scale returned from this function; this should be passed on to
MovieExportAddDataSource (page 466) with the procedures.

theMovie
The movie for this operation, supplied by the Movie Toolbox. Your component may use this identifier
to obtain sample data from the movie or to obtain information about the movie.

theTrack
The track for this operation. This track identifier is supplied by the Movie Toolbox.

startTime
The starting point of the track or movie segment to be converted. This time value is expressed in the
movie's time coordinate system.

duration
The duration of the track or movie segment to be converted. This duration value is expressed in the
movie's time coordinate system.

getPropertyProc
A MovieExportGetPropertyProc callback that provides information about processing source
samples.

getDataProc
A MovieExportGetDataProc callback that the export component uses to request sample data.

refCon
Passed to the procedures specified in the getPropertyProc and getDataProc parameters. Use
this parameter to point to a data structure containing any information your callbacks need.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function exists in order to provide a standard way of getting data using this protocol out of a movie or
track. The returned procedures must be disposed by calling
MovieExportDisposeGetDataAndPropertiesProcs (page 467).

474 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Special Considerations

This function is only implemented by movie data export components.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

MovieExportSetGetMoviePropertyProc
Specifies the procedure that the export component should call to retrieve movie level properties during
MovieExportFromProceduresToDataRef.

ComponentResult MovieExportSetGetMoviePropertyProc (
 MovieExportComponent ci,
 MovieExportGetPropertyUPP getPropertyProc,
 void *refCon
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

getPropertyProc
The MovieExportGetPropertyProc callback that the export component will call to retrieve
movie-level properties.

refCon
The reference value that will be passed to the callback specified by getPropertyProc. Use this
parameter to point to a data structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4. With QuickTime 4, applications can specify a MovieExportGetPropertyProc
that will be called to retrieve movie level properties during the exporter's
MovieExportFromProceduresToDataRef (page 469) execution. This procedure is identical to a data source
property procedure except that it is called for movie properties. For example, with QuickTime 4, the QuickTime
movie export component calls the procedure to retrieve the time scale for the exported movie. If the property
procedure is not specified or doesn't support this property, than the default movie time scale (600) is used.

Availability
Available in Mac OS X v10.0 and later.

Functions 475
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

MovieExportSetProgressProc
Assigns a movie progress function.

ComponentResult MovieExportSetProgressProc (
 MovieExportComponent ci,
 MovieProgressUPP proc,
 long refcon
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

proc
A pointer to the application's MovieProgressProc callback. If this parameter is set to NIL, the
application is removing its progress function. In this case, your component should stop calling the
progress function.

refcon
A reference constant. Your component should pass this constant back to the application's progress
function whenever you call that function. Use this parameter to point to a data structure containing
any information the callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
These progress functions must support the same interface as Movie Toolbox progress functions. Note that
this interface not only allows you to report progress to the application, but also allows the application to
cancel the request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ThreadsExportMovie

Declared In
QuickTimeComponents.h

MovieExportSetSampleDescription
Requests the format of the exported data.

476 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieExportSetSampleDescription (
 MovieExportComponent ci,
 SampleDescriptionHandle desc,
 OSType mediaType
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

desc
A handle to a valid SampleDescription structure.

mediaType
The type of media the SampleDescription structure is for. For example, if the sample description
was a sound description, this parameter would be set to SoundMediaType.

Return Value
See Error Codes. Returns badComponentSelector if you should be passing a QT atom container (see
discussion, below). Returns noErr if there is no error.

Discussion
A movie export component may use all, some, or none of the settings from the SampleDescription
structure.

If your application attempts to set the sample description using this function, and receives the
badComponentSelector error, you may need to pass in the sample description using
MovieExportSetSettingsFromAtomContainer (page 477). You can use
MovieExportGetSettingsAsAtomContainer (page 471) to obtain a correctly formatted atom container
to modify.

Special Considerations

This function is not implemented by all movie export components, but is supported by the sound movie
export component, for example.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieToAIFF
soundsnippets
soundsnippets.win

Declared In
QuickTimeComponents.h

MovieExportSetSettingsFromAtomContainer
Sets the movie export component's current configuration from passed settings data.

Functions 477
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieExportSetSettingsFromAtomContainer (
 MovieExportComponent ci,
 QTAtomContainer settings
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

settings
A QT atom container that contains the settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The atom container may contain atoms other than those expected by the particular component type or may
be missing certain atoms. This function uses only those settings it understands.

Here is sample code that overrides compression settings:

// MovieExportSetSettingsFromAtomContainer coding example
ComponentInstance sc;
QTAtomContainer compressorData;
SCSpatialSettings ss;
sc =OpenDefaultComponent(StandardCompressionType,
 StandardCompressionSubType);
ss.codecType =kCinepakCodecType;
ss.codec =NIL;
ss.depth =0;
ss.spatialQuality =codecHighQuality
err =SCSetInfo(sc, scSpatialSettingsType, &ss);
err =SCGetSettingsAsAtomContainer(sc, &compressorData);
MovieExportSetSettingsFromAtomContainer (qtvrExport, compressorData);

Special Considerations

Some movie export components treat sample descriptions as part of their settings. If your application attempts
to set the sample description using MovieExportSetSampleDescription (page 476), and receives the
badComponentSelector error, you may need to pass in the SampleDescription structure using this
function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
qtdataexchange
qtdataexchange.win
ThreadsExportMovie
vrmakepano

478 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

MovieExportToDataRef
Allows an application to request that data be exported to a data reference instead of to a file.

ComponentResult MovieExportToDataRef (
 MovieExportComponent ci,
 Handle dataRef,
 OSType dataRefType,
 Movie theMovie,
 Track onlyThisTrack,
 TimeValue startTime,
 TimeValue duration
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

dataRef
A handle to a data reference indicating where the data should be stored.

dataRefType
The type of the data reference. For exporting to a file, the dataRef is a Macintosh file alias and the
dataRefType is rAliasType.

theMovie
The movie for this operation. This movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to obtain sample data from the movie or to obtain information about the
movie.

onlyThisTrack
Identifies a track that is to be converted. This track identifier is supplied by the Movie Toolbox. If this
parameter contains a track identifier, your component must convert only the specified track.

startTime
The starting point of the track or movie segment to be converted. This time value is expressed in the
movie's time coordinate system.

duration
The duration of the track or movie segment to be converted. This duration value is expressed in the
movie's time coordinate system.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ElectricImageComponent

Functions 479
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ElectricImageComponent.win
ThreadsExportMovie

Declared In
QuickTimeComponents.h

MovieExportToFile
Exports data to a file, using a movie data export component.

ComponentResult MovieExportToFile (
 MovieExportComponent ci,
 const FSSpec *theFile,
 Movie theMovie,
 Track onlyThisTrack,
 TimeValue startTime,
 TimeValue duration
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

theFile
A pointer to the file that is to receive the converted movie data. This file's type value corresponds to
your component's subtype value.

theMovie
The movie for this operation. This movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to obtain sample data from the movie or to obtain information about the
movie.

onlyThisTrack
Identifies a track that is to be converted. This track identifier is supplied by the Movie Toolbox. If this
parameter contains a track identifier, your component must convert only the specified track.

startTime
The starting point of the track or movie segment to be converted. This time value is expressed in the
movie's time coordinate system.

duration
The duration of the track or movie segment to be converted. This duration value is expressed in the
movie's time coordinate system.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The requesting program or Movie Toolbox must create the destination file before calling this function.
Furthermore, your component may not destroy any data in the destination file. If you cannot add data to
the specified file, return an appropriate error. If your component can write data to a file, be sure to set the
canMovieExportFiles flag in the componentFlags field of your component's ComponentDescription
structure. Here is an example of using this function with a flattener component:

// MovieExportToFile coding example
ComponentDescription desc;

480 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Component flattener;
ComponentInstance qtvrExport =NIL;
desc.componentType =MovieExportType;
desc.componentSubType =MovieFileType;
desc.componentManufacturer =QTVRFlattenerType;
flattener =FindNextComponent(NIL, &desc);
if (flattener) qtvrExport =OpenComponent (flattener);
if (qtvrExport)
 MovieExportToFile (qtvrExport, &myFileSpec, myQTVRMovie, NIL, 0, 0);

Special Considerations

Your component must be prepared to perform this function at any time. You should not expect that any of
your component's configuration functions will be called first.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmakepano
VRMakePano Library

Declared In
QuickTimeComponents.h

MovieExportToHandle
Exports data from a movie, using a movie data export component.

ComponentResult MovieExportToHandle (
 MovieExportComponent ci,
 Handle dataH,
 Movie theMovie,
 Track onlyThisTrack,
 TimeValue startTime,
 TimeValue duration
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

dataH
A handle to be filled with the converted movie data. Your component must write data into this handle
that corresponds to your component's subtype value. Your component should resize this handle as
appropriate.

theMovie
The movie for this operation. This movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to obtain sample data from the movie or to obtain information about the
movie.

Functions 481
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

onlyThisTrack
Identifies a track that is to be converted. This track identifier is supplied by the Movie Toolbox. If this
parameter contains a track identifier, your component must convert only the specified track.

startTime
The starting point of the track or movie segment to be converted. This time value is expressed in the
movie's time coordinate system.

duration
The duration of the track or movie segment to be converted. This duration value is expressed in the
movie's time coordinate system.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component must be prepared to perform this function at any time. You should not expect that any of
your component's configuration functions will be called first. If your component can write data to a handle,
be sure to set the canMovieExportHandles flag in in the componentFlags field of your component's
ComponentDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportValidate
Determines whether a movie export component can export all the data for a specified movie or track.

ComponentResult MovieExportValidate (
 MovieExportComponent ci,
 Movie theMovie,
 Track onlyThisTrack,
 Boolean *valid
);

Parameters
ci

A movie export component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

theMovie
The movie to validate.

onlyThisTrack
A track within the movie to validate, or NIL if the entire movie is to be validated.

valid
A pointer to a Boolean value. If the data for the movie or track can be exported by the component,
the value is TRUE.

Return Value
See Error Codes. Returns noErr if there is no error.

482 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
This function allows an application to determine if a particular movie or track could be exported by the
specified movie data export component. The movie or track is passed in the theMovie and onlyThisTrack
parameters as they are passed to MovieExportToFile (page 480). Although a movie export component
can export one or more media types, it may not be able to export all the kinds of data stored in those media.
The MovieExportValidate function allows applications to get this additional information. Movie data
export components that implement this function also set the canMovieExportValidateMovie flag in in
the componentFlags field of their ComponentDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

MovieImportDataRef
Undocumented

ComponentResult MovieImportDataRef (
 MovieImportComponent ci,
 Handle dataRef,
 OSType dataRefType,
 Movie theMovie,
 Track targetTrack,
 Track *usedTrack,
 TimeValue atTime,
 TimeValue *addedDuration,
 long inFlags,
 long *outFlags
);

Parameters
ci

A movie import component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

dataRef
The data reference to the data to be imported.

dataRefType
The type of data reference in the dataRef parameter.

theMovie
A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

targetTrack
Undocumented

Functions 483
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

usedTrack
Undocumented

atTime
Undocumented

addedDuration
Undocumented

inFlags
Flags (see below) that control the behavior of this function. See these constants:

movieImportCreateTrack

movieImportInParallel

movieImportMustUseTrack

movieImportWithIdle

outFlags
Flags (see below) that this function sets on return. See these constants:

movieImportResultUsedMultipleTracks

movieImportResultNeedIdles

movieImportResultComplete

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

MovieImportDoUserDialog
Requests that a component display its user dialog box.

ComponentResult MovieImportDoUserDialog (
 MovieImportComponent ci,
 const FSSpec *theFile,
 Handle theData,
 Boolean *canceled
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

484 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

theFile
A pointer to a valid file specification. If the import request pertains to a file, the application must
specify the source file with this parameter and set the theData parameter to NIL. If the request is
for a handle, this parameter is set to NIL.

theData
A handle to the data to be imported. If the import request pertains to a handle, the application must
specify the source of the data with this parameter, and set the theFile parameter to NIL. If the
request is for a file, this parameter is set to NIL.

canceled
A pointer to a Boolean value. Your component should set this value to TRUE if the user cancels the
dialog box; otherwise, set it to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your component supports a user dialog box, be sure to set the hasMovieImportUserInterface flag in
the componentFlags field of your component's ComponentDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImportExportMovie
ImproveYourImage

Declared In
QuickTimeComponents.h

MovieImportDoUserDialogDataRef
Requests that a movie import component display its user dialog box.

ComponentResult MovieImportDoUserDialogDataRef (
 MovieImportComponent ci,
 Handle dataRef,
 OSType dataRefType,
 Boolean *canceled
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location that contains the data to import.

dataRefType
The type of the data reference.

Functions 485
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

canceled
A pointer to a Boolean entity that is set to TRUE if the user cancels the export operation.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function brings up the option dialog for the import component. The data reference specified the storage
location that contains the data to import.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

MovieImportEstimateCompletionTime
Undocumented

ComponentResult MovieImportEstimateCompletionTime (
 MovieImportComponent ci,
 TimeRecord *time
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

time
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportFile
Imports data from a file, using a movie data import component.

486 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportFile (
 MovieImportComponent ci,
 const FSSpec *theFile,
 Movie theMovie,
 Track targetTrack,
 Track *usedTrack,
 TimeValue atTime,
 TimeValue *addedDuration,
 long inFlags,
 long *outFlags
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

theFile
A pointer to the file that contains the data that is to be imported into the movie. This file's type value
corresponds to your component's subtype value.

theMovie
The movie for this operation. This movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to add sample data to the target movie or to obtain information about the
movie.

targetTrack
The track that is to receive the imported data. This track identifier is supplied by the Movie Toolbox
and is valid only if the movieImportMustUseTrack flag in the inFlags parameter is set to 1.

usedTrack
A pointer to the track that received the imported data. Your component returns this track identifier
to the Movie Toolbox. Your component needs to set this parameter only if you operate on a single
track or if you create a new track. If you modify more than one track, leave the field referred to by
this parameter unchanged.

atTime
The time corresponding to the location where your component is to place the imported data. This
time value is expressed in the movie's time coordinate system.

addedDuration
A pointer to the duration of the data that your component added to the movie. Your component
must specify this value in the movie's time coordinate system.

inFlags
Flags (see below) that specify control information governing the import operation. See these constants:

movieImportCreateTrack

movieImportMustUseTrack

movieImportInParallel

outFlags
Flags (see below) that identify a field that is to receive status information about the import operation.
Your component sets the appropriate flags in this field when the operation is complete. See these
constants:

movieImportResultUsedMultipleTracks

movieImportInParallel

Functions 487
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component must be prepared to perform this function at any time. You should not expect that any of
your component's configuration functions will be called first. If your component can accept data from a file,
be sure to set the canMovieImportFiles flag in the componentFlags field of your component's
ComponentDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
Graphic Import-Export
SoundPlayer
SoundPlayer.win
SurfaceVertexProgram

Declared In
QuickTimeComponents.h

MovieImportGetAuxiliaryDataType
Returns the type of the auxiliary data that a component can accept.

ComponentResult MovieImportGetAuxiliaryDataType (
 MovieImportComponent ci,
 OSType *auxType
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

auxType
A pointer to the type of auxiliary data it can import.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the type of the auxiliary data that the ci component can accept. For example, calling
the text import component with this function indicates that the text import component will use 'styl'
information in addition to 'TEXT' data. Note that if component includes a private component resource
holding this MIME data, it can use GetComponentResource to retrieve it. If the resource is a public component
resource, it either use GetComponentPublicResource with the public type and ID or
GetComponentResource with the private type and ID.

Version Notes
Introduced in QuickTime 3 or earlier.

488 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetDestinationMediaType
Returns the current type of a movie importer's destination media.

ComponentResult MovieImportGetDestinationMediaType (
 MovieImportComponent ci,
 OSType *mediaType
);

Parameters
ci

A movie import component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

mediaType
A pointer to a media data type; see Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

MovieImportGetDontBlock
Undocumented

ComponentResult MovieImportGetDontBlock (
 MovieImportComponent ci,
 Boolean *willBlock
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

willBlock
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 489
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetFileType
Allows your movie data import component to tell the Movie Toolbox the appropriate file type for the
most-recently imported movie file.

ComponentResult MovieImportGetFileType (
 MovieImportComponent ci,
 OSType *fileType
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

fileType
A pointer to an OSType field. Your component should place the file type value that best identifies
the movie data just imported. For example, Apple's Audio CD movie data import component sets this
field to 'AIFF' whenever it creates an AIFF file instead of a movie file.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should implement this function only if your movie data import component creates files other than
QuickTime movies. By default, the Movie Toolbox makes new files into movies, unless you override that
default by providing this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetLoadState
Undocumented

490 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportGetLoadState (
 MovieImportComponent ci,
 long *importerLoadState
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

importerLoadState
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetMaxLoadedTime
Undocumented

ComponentResult MovieImportGetMaxLoadedTime (
 MovieImportComponent ci,
 TimeValue *time
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

time
A pointer to a value containing the maximum loaded time.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 491
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

MovieImportGetMIMETypeList
Returns a list of MIME types supported by the movie import component.

ComponentResult MovieImportGetMIMETypeList (
 MovieImportComponent ci,
 QTAtomContainer *mimeInfo
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

mimeInfo
A pointer to a MIME type list, a QT atom container that contains a list of MIME types supported by
the movie import component. The caller should dispose of the atom container when finished with
it.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your movie import component can support MIME types that correspond to formats it supports. To make a
list of these MIME types available to applications or other software, it must implement this function. To
indicate that your movie import component supports this function, set the hasMovieImportMIMEList flag
in the componentFlags field of the ComponentDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetSampleDescription
Gets the current sample description for a movie import component.

ComponentResult MovieImportGetSampleDescription (
 MovieImportComponent ci,
 SampleDescriptionHandle *desc,
 OSType *mediaType
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

desc
A pointer to a handle to a SampleDescription structure.

mediaType
A pointer to the type of the data; see Data References.

492 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportGetSettingsAsAtomContainer
Retrieves the current settings from the movie import component.

ComponentResult MovieImportGetSettingsAsAtomContainer (
 MovieImportComponent ci,
 QTAtomContainer *settings
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

settings
The address where the reference to the newly created atom container should be stored by the call.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller is responsible for disposing of the returned QT atom container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

MovieImportHandle
Imports data from a handle, using a movie data import component.

Functions 493
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportHandle (
 MovieImportComponent ci,
 Handle dataH,
 Movie theMovie,
 Track targetTrack,
 Track *usedTrack,
 TimeValue atTime,
 TimeValue *addedDuration,
 long inFlags,
 long *outFlags
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

dataH
A handle to the data that is to be imported into the movie identified by the theMovie parameter.
The data contained in this handle has a data type value that corresponds to your component's subtype
value. Your component is not responsible for disposing of this handle.

theMovie
The movie for this operation. This movie identifier is supplied by the Movie Toolbox. Your component
may use this identifier to add sample data to the target movie, or to obtain information about the
movie.

targetTrack
The track that is to receive the imported data. This track identifier is supplied by the Movie Toolbox
and is valid only if the movieImportMustUseTrack flag in the inFlags parameter is set to 1.

usedTrack
A pointer to the track that received the imported data. Your component returns this track identifier
to the Movie Toolbox. Your component needs to set this parameter only if you operate on a single
track or if you create a new track. If you modify more than one track, leave the field referred to by
this parameter unchanged.

atTime
The time corresponding to the location where your component is to place the imported data. This
time value is expressed in the movie's time coordinate system.

addedDuration
A pointer to the duration of the data that your component added to the movie. Your component
must specify this value in the movie's time coordinate system.

inFlags
Flags (see below) that specify control information governing the import operation. See these constants:

movieImportCreateTrack

movieImportMustUseTrack

movieImportInParallel

outFlags
Flags (see below) that receive status information about the import operation. Your component sets
the appropriate flags in this field when the operation is complete. See these constants:

movieImportResultUsedMultipleTracks

movieImportInParallel

494 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component must be prepared to perform this function at any time. You should not expect that any of
your component's configuration functions will be called first. If your component can accept data from a
handle, be sure to set the canMovieImportHandles flag in your component's componentFlags field.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportIdle
Undocumented

ComponentResult MovieImportIdle (
 MovieImportComponent ci,
 long inFlags,
 long *outFlags
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

inFlags
Undocumented

outFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetAuxiliaryData
Provides additional data to a component.

Functions 495
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportSetAuxiliaryData (
 MovieImportComponent ci,
 Handle data,
 OSType handleType
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

data
A handle to the additional data. Your component should not dispose of this handle. Be sure to copy
any data you need to keep.

handleType
The type of data in the specified handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component should expect the application to call this function before the import process begins.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetChunkSize
The amount of data a component works with at a time.

ComponentResult MovieImportSetChunkSize (
 MovieImportComponent ci,
 long chunkSize
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

chunkSize
The number of seconds of data your movie data import component places into each chunk of movie
data. This parameter may not be set to a value less than 1.

Return Value
See Error Codes. Returns noErr if there is no error.

496 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
Generally, your component should determine a reasonable default chunk size, based on the type of data you
are importing. However, you may choose to allow applications to override your default value. This can be
especially useful for sound data, where the chunk size affects the quality of sound playback.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetDimensions
Specifies a new track's spatial dimensions.

ComponentResult MovieImportSetDimensions (
 MovieImportComponent ci,
 Fixed width,
 Fixed height
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

width
The width, in pixels, of the track rectangle. This parameter, along with the height parameter, specifies
a rectangle that surrounds the image that is to be displayed when the current media is played. This
value corresponds to the x coordinate of the lower-right corner of the rectangle, and it is expressed
as a fixed-point number.

height
The height, in pixels, of the track rectangle. This value corresponds to the y coordinate of the lower-right
corner of the rectangle, and it is expressed as a fixed-point number.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetDontBlock
Undocumented

Functions 497
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportSetDontBlock (
 MovieImportComponent ci,
 Boolean dontBlock
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

dontBlock
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetDuration
Controls the duration of the data that a component pastes into the target movie.

ComponentResult MovieImportSetDuration (
 MovieImportComponent ci,
 TimeValue duration
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

duration
The duration in the movie's time scale. If this parameter is set to 0, then you may paste any amount
of movie data that is appropriate for the data to be imported.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your component supports paste operations (that is, your component allows the application to set the
movieImportInParallel flag to 1 with the MovieImportHandle (page 493) or MovieImportFile (page
486) function), then you must support this function. If an application calls this function and sets a duration
limit, you must abide by that limit. This function is not valid for insert operations (where the
movieImportInParallel flag is set to 0).

Version Notes
Introduced in QuickTime 3 or earlier.

498 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetFromScrap
Indicates that the source data resides on the scrap.

ComponentResult MovieImportSetFromScrap (
 MovieImportComponent ci,
 Boolean fromScrap
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

fromScrap
Set to TRUE if the data originated on the scrap; otherwise, set to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetIdleManager
Lets a movie importer report its idling needs.

ComponentResult MovieImportSetIdleManager (
 MovieImportComponent ci,
 IdleManager im
);

Parameters
ci

A movie import component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

im
A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 499
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
This routine must be implemented by a movie importer if it needs to report its idling requirements. In general,
however, movie importers don't get idled. Typically, a movie importer just examines a file, scans it, and then
determines if it can create a movie that will point at the file and describe how to play it. The media data is
in that file, but the movie itself is in memory.

An idling importer is mostly used when you open a URL. For example, if you open an .avi file, the movie
isn't completely constructed until the entire .avi file is downloaded. The job of the importer is to construct
the movie, so the importer isn't going to be done constructing the movie until it is downloaded, which means
you can't fast start an AVI movie. So the AVI importer returns immediately with a movie that is partially
constructed. Every time QuickTime gets tasked, it gets some more time, but you can go ahead and start
playing because it has already returned a movie, though one that is not complete yet.

An idling importer can return even before there's enough downloaded to construct a movie. It just creates
an empty movie with no tracks and keep idling it, and eventually a movie appears.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

MovieImportSetMediaDataRef
Specifies a storage location that is to receive imported movie data.

ComponentResult MovieImportSetMediaDataRef (
 MovieImportComponent ci,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location that receives the imported data.

dataRefType
The type of the data reference.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
By calling this function you can specify a storage location that receives some imported movie data.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

500 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

MovieImportSetMediaFile
Specifies a media file that is to receive the imported movie data.

ComponentResult MovieImportSetMediaFile (
 MovieImportComponent ci,
 AliasHandle alias
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

alias
The media file that is to receive the imported movie data. Your component must make a copy of this
parameter. You should not dispose of it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetNewMovieFlags
Implemented by a movie import component to determine the original flags for NewMovieFromDataRef.

ComponentResult MovieImportSetNewMovieFlags (
 MovieImportComponent ci,
 long newMovieFlags
);

Parameters
ci

A movie import component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

newMovieFlags
Constants (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Functions 501
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

MovieImportSetOffsetAndLimit
Specifies location and size of data that should be imported.

ComponentResult MovieImportSetOffsetAndLimit (
 MovieImportComponent ci,
 unsigned long offset,
 unsigned long limit
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

offset
A byte offset into the file that indicates where the import operation begins.

limit
A byte offset into the file that indicates the last data in the file that can be imported.

Return Value
See Error Codes. Returns badComponentSelector if the movie import component does not support this
function. Returns noErr if there is no error.

Discussion
Typically, this function is used when the data is from a part of a file rather than the entire file. It is especially
useful when one file format is embedded in another; it allows your application to skip header data for the
enclosing file and begin importing data at the start of the desired format.

Special Considerations

Not all movie import components support this function. Those that do include the movie import components
for the kQTFileTypeAIFF, kQTFileTypeWave, and kQTFileTypeMuLaw file types. Those that do not return
the badComponentSelector result code in response to a this call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

502 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

MovieImportSetOffsetAndLimit64
Specifies location and size of data that should be imported from a file.

ComponentResult MovieImportSetOffsetAndLimit64 (
 MovieImportComponent ci,
 const wide *offset,
 const wide *limit
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

offset
A byte offset into the file that indicates where the import operation begins.

limit
A byte offset into the file that indicates the last data in the file that can be imported.

Return Value
See Error Codes. Returns badComponentSelector if the movie import component does not support this
function. Returns noErr if there is no error.

Discussion
This function serves the same purpose as MovieImportSetOffsetAndLimit (page 502). The only difference
is that the offset and limit can hold 64-bit offsets. This function is especially useful when one file format is
embedded in another; it allows your application to skip header data for the enclosing file and begin importing
data at the start of the desired format.

Special Considerations

Not all movie import components support this function. Those that do not return thebadComponentSelector
result code. If this function is not implemented and the offset and limit can be expressed using 32-bit offsets,
MovieImportSetOffsetAndLimit (page 502) should be tried.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetProgressProc
Assigns a movie progress function.

Functions 503
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportSetProgressProc (
 MovieImportComponent ci,
 MovieProgressUPP proc,
 long refcon
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

proc
A pointer to the application's MovieProgressProc callback. If this parameter is set to NIL, the
application is removing its progress function. In this case, your component should stop calling the
progress function.

refcon
Specifies a reference constant. Your component should pass this constant back to the application's
progress function whenever you call that function. The application may use this parameter to point
to a data structure containing any information the callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The MovieProgressProc callback interface not only allows you to report progress to the application, but
also allows the application to cancel the request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetSampleDescription
Provides a SampleDescription structure to a movie data import component.

ComponentResult MovieImportSetSampleDescription (
 MovieImportComponent ci,
 SampleDescriptionHandle desc,
 OSType mediaType
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

desc
A handle to a SampleDescription structure. Your component must not dispose of this handle. If
you want to save any data from the structure, be sure to copy it at this time.

504 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

mediaType
The type of sample description referred to by the desc parameter. If the desc parameter refers to
an ImageDescription structure, this parameter is set to VideoMediaType ('vide'); for
SoundDescription structures, this parameter is set to SoundMediaType ('soun').

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetSampleDuration
Sets the sample duration for new samples to be created with a component.

ComponentResult MovieImportSetSampleDuration (
 MovieImportComponent ci,
 TimeValue duration,
 TimeScale scale
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

duration
The sample duration in units specified by the scale parameter.

scale
The time scale for the duration value. This may be any arbitrary time scale; that is, it may not correspond
to the movie's time scale. You should convert this time scale to the movie's time scale before using
the duration value, using ConvertTimeScale (page 183).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportSetSettingsFromAtomContainer
Sets the movie import component's current configuration from the passed settings data.

Functions 505
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult MovieImportSetSettingsFromAtomContainer (
 MovieImportComponent ci,
 QTAtomContainer settings
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

settings
A QT atom container containing settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The settings QT atom container may contain atoms other than those expected by the particular component
type or may be missing certain atoms. The function uses only those settings it understands.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportValidate
Allows your movie data import component to validate the data to be passed to your component.

ComponentResult MovieImportValidate (
 MovieImportComponent ci,
 const FSSpec *theFile,
 Handle theData,
 Boolean *valid
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

theFile
An FSSpec structure that defines the file to validate if the importer imports from files.

theData
The data to validate if the importer imports from handles.

valid
A pointer to a Boolean value. If the data or file can be imported, the value returned is TRUE. Otherwise,
it returns FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

506 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
Movie import components can implement this function to allow applications to determine if a given file or
handle to data is acceptable for a particular import component. As this function may be called on many files,
the validation process should be as fast as possible.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportValidateDataRef
Validates the data file indicated by the data reference.

ComponentResult MovieImportValidateDataRef (
 MovieImportComponent ci,
 Handle dataRef,
 OSType dataRefType,
 UInt8 *valid
);

Parameters
ci

A movie data import component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

dataRef
The data reference to the file to be validated.

dataRefType
The type of data reference for the dataRef parameter.

valid
A pointer to a UInt8 value. If the data or file cannot be imported, the value returned should be 0.
Otherwise, it should be set to 128.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Movie import components can implement this function to allow applications to determine if a given file
referenced by a data reference is acceptable for a particular import component. The data reference can refer
to any data for which there is a suitable data handler component installed and available to QuickTime. As
this function may be called on many files, the validation process should be as fast as possible. Furthermore,
the importer should probably limit the amount of reading it performs, especially when the data handler
refers to data on the Internet.

Functions 507
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Special Considerations

Unlike MovieImportValidate (page 506), the valid parameter for this function is a value that can be
interpreted as the degree to which the importer can interpret the file's contents. In all cases, returning 0
indicates the file cannot be interpreted by the importer. However, other non-zero values can be used to
determine the relative weighting between multiple importers that can import a particular kind of file. For
now, it is best to return either 0 or 128 only.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

NewMovieExportGetDataUPP
Allocates a Universal Procedure Pointer for the MovieExportGetDataProc callback.

MovieExportGetDataUPP NewMovieExportGetDataUPP (
 MovieExportGetDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieExportGetDataProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtmoviefromprocs
qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

508 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

NewMovieExportGetPropertyUPP
Allocates a Universal Procedure Pointer for the MovieExportGetPropertyProc callback.

MovieExportGetPropertyUPP NewMovieExportGetPropertyUPP (
 MovieExportGetPropertyProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieExportGetPropertyProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtmoviefromprocs
qtmoviefromprocs.win

Declared In
QuickTimeComponents.h

NewMovieExportStageReachedCallbackUPP
Allocates a new Universal Procedure Pointer for a MovieExportStageReachedCallbackProc callback.

MovieExportStageReachedCallbackUPP NewMovieExportStageReachedCallbackUPP (
 MovieExportStageReachedCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined callback function; see
ICMDecompressionTrackingCallbackProc.

Return Value
A new Universal Procedure Pointer that you will use to invoke your callback.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

Functions 509
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

NewSCModalFilterUPP
Allocates a Universal Procedure Pointer for the SCModalFilterProc callback.

SCModalFilterUPP NewSCModalFilterUPP (
 SCModalFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSCModalFilterProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
QuickTimeComponents.h

NewSCModalHookUPP
Allocates a Universal Procedure Pointer for the SCModalHookProc callback.

SCModalHookUPP NewSCModalHookUPP (
 SCModalHookProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSCModalHookProc.

Availability
Available in Mac OS X v10.0 and later.

510 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Related Sample Code
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

PreviewEvent
May be called as appropriate if a preview component handles events.

ComponentResult PreviewEvent (
 pnotComponent p,
 EventRecord *e,
 Boolean *handledEvent
);

Parameters
p

Specifies your preview component. You obtain this identifier from OpenComponent.

e
A pointer to the event structure for this operation.

handledEvent
A pointer to a Boolean value. If you completely handle an event such as a mouse-down event or
keystroke, you should set the handledEvent parameter to TRUE. Otherwise, set it to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

PreviewMakePreview
Creates previews by allocating a handle to data that is to be added to a file.

Functions 511
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult PreviewMakePreview (
 pnotComponent p,
 OSType *previewType,
 Handle *previewResult,
 const FSSpec *sourceFile,
 ICMProgressProcRecordPtr progress
);

Parameters
p

Specifies your preview component. You obtain this identifier from OpenComponent.

previewType
A pointer to the type of preview component that should be used to display the preview.

previewResult
A pointer to a handle of cached preview data created by this function.

sourceFile
A pointer to a reference to the file for which the preview is created.

progress
A pointer to an ICMProgressProcRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

PreviewMakePreviewReference
Returns the type and identification number of a resource within a file to be used as the preview for a file.

ComponentResult PreviewMakePreviewReference (
 pnotComponent p,
 OSType *previewType,
 short *resID,
 const FSSpec *sourceFile
);

Parameters
p

Specifies your preview component. You obtain this identifier from OpenComponent.

previewType
A pointer to the type of preview component that should be used to display the preview.

resID
A pointer to the identification number of a resource within the file to be used as the preview for the
file.

512 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

sourceFile
A pointer to an FSSpec structure that provides a reference to the file for which the preview is created.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

PreviewShowData
Displays a preview if it does not handle events.

ComponentResult PreviewShowData (
 pnotComponent p,
 OSType dataType,
 Handle data,
 const Rect *inHere
);

Parameters
p

Specifies your preview component. You obtain this identifier from OpenComponent.

dataType
The type of handle pointing to the data to be displayed in the preview.

data
A handle to the data, which is typically the same as the subtype of your preview component.

inHere
A pointer to a Rect structure that defines the area into which you draw the preview. The current port
is set to the correct graphics port for drawing. You must not draw outside the given rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

Functions 513
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

SCAsyncIdle
Called occasionally while performing asynchronous compression with SCCompressSequenceFrameAsync.

ComponentResult SCAsyncIdle (
 ComponentInstance ci
);

Parameters
ci

Your application's connection to the image-compression component being used by
SCCompressSequenceFrameAsync (page 520). You obtain this identifier from
OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
QuickTimeComponents.h

SCAudioInvokeLegacyCodecOptionsDialog
Invokes the legacy code options dialog of an audio codec component.

ComponentResult SCAudioInvokeLegacyCodecOptionsDialog (
 ComponentInstance ci
);

Parameters
ci

A component instance that identifies a connection to an audio codec component.

Return Value
An error code, or noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

SCCompressImage
Compresses an image that is stored in a PixMap structure.

514 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCCompressImage (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 ImageDescriptionHandle *desc,
 Handle *data
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

src
A handle to the PixMap structure to be compressed.

srcRect
A pointer to a portion of the PixMap structure to compress as a Rect structure. This rectangle must
be in the pixel map's coordinate system. If you want to compress the entire pixel map, set this
parameter to NIL.

desc
A pointer to a handle to an ImageDescription structure. The standard dialog component creates
an ImageDescription structure when it compresses the image, and returns a handle to that structure
in the field referred to by this parameter. The component sizes that handle appropriately. Your
application is responsible for disposing of that handle when you are done with it.

data
A pointer to a handle. The standard dialog component returns a handle to the compressed image
data in the field referred to by this parameter. The component sizes that handle appropriately. Your
application is responsible for disposing of that handle when you are done with it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win
qtstdcompr
qtstdcompr.win

Declared In
QuickTimeComponents.h

SCCompressPicture
Compresses a Picture structure that is stored by a handle.

Functions 515
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCCompressPicture (
 ComponentInstance ci,
 PicHandle srcPicture,
 PicHandle dstPicture
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

srcPicture
A handle to the Picture structure to be compressed.

dstPicture
A handle to the compressed Picture structure. The standard dialog component resizes this handle
to accommodate the compressed structure. Your application is responsible for creating and disposing
of this handle when you are done with it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCCompressPictureFile
Compresses a Picture structure that is stored in a file.

ComponentResult SCCompressPictureFile (
 ComponentInstance ci,
 short srcRefNum,
 short dstRefNum
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

srcRefNum
A reference to the file to be compressed.

dstRefNum
A reference to the file that is to receive the compressed data. This may be the same as the source file.
The standard dialog component places the compressed image data into the file identified by this
reference. Your application is responsible for this file after the compression operation.

Return Value
See Error Codes. Returns noErr if there is no error.

516 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Std Compression Examples

Declared In
QuickTimeComponents.h

SCCompressSequenceBegin
Initiates a sequence-compression operation.

ComponentResult SCCompressSequenceBegin (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 ImageDescriptionHandle *desc
);

Parameters
ci

Identifies your application's connection to a standard image-compression component. You obtain
this identifier from OpenDefaultComponent.

src
A handle to the PixMap structure to be compressed. This pixel map must contain the first image in
the sequence.

srcRect
A pointer to a portion of the PixMap structure to compress as a Rect structure. This rectangle must
be in the pixel map's coordinate system. If you want to compress the entire structure, set this parameter
to NIL.

desc
A pointer to an image description handle. The standard dialog component creates an image description
structure when it compresses the image, and returns a handle to that structure in the field referred
to by this parameter. The component sizes the handle appropriately. If you do not want this
information, set this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress

Functions 517
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

SCCompressSequenceEnd
Ends a sequence-compression operation.

ComponentResult SCCompressSequenceEnd (
 ComponentInstance ci
);

Parameters
ci

Identifies your application's connection to a standard image-compression component. You obtain
this identifier from OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The standard dialog component disposes of any memory it used to compress the image sequence, including
the data and image description buffers. You must call this function once for each sequence you start.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

SCCompressSequenceFrame
Continues a sequence-compression operation.

518 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCCompressSequenceFrame (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 Handle *data,
 long *dataSize,
 short *notSyncFlag
);

Parameters
ci

Identifies your application's connection to a standard image-compression component. You obtain
this identifier from OpenDefaultComponent.

src
A handle to the PixMap structure to be compressed.

srcRect
A pointer to a portion of the PixMap structure to compress as a Rect structure. This rectangle must
be in the pixel map's coordinate system. If you want to compress the entire pixel map, set this
parameter to NIL.

data
A pointer to a handle. The standard compression component returns a handle to the compressed
image data in the field referred to by this parameter. The component sizes that handle appropriately
for the sequence.

dataSize
A pointer to a long integer. The standard compression component returns a value that indicates the
number of bytes of compressed image data that it returns. Note that this value will differ from the
size of the handle referred to by the data parameter, because the handle is allocated to accommodate
the largest image in the sequence.

notSyncFlag
A pointer to a short integer that indicates whether the compressed frame is a key frame. If the frame
is a key frame, the standard compression component sets the field referred to by this parameter to
0; otherwise, the component sets this field to mediaSampleNotSync. You may use this field to set
the sampleFlags parameter of the AddMediaSample (page 1536) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must call this function once for each frame in the sequence, including the first frame.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Functions 519
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

SCCompressSequenceFrameAsync
An asynchronous variant of SCCompressSequenceFrame, with a completion callback.

ComponentResult SCCompressSequenceFrameAsync (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 Handle *data,
 long *dataSize,
 short *notSyncFlag,
 ICMCompletionProcRecordPtr asyncCompletionProc
);

Parameters
ci

Identifies your application's connection to a standard image-compression component. You obtain
this identifier from OpenDefaultComponent.

src
A handle to the PixMap structure to be compressed.

srcRect
A pointer to a portion of the PixMap structure to compress as a Rect structure. This rectangle must
be in the pixel map's coordinate system. If you want to compress the entire pixel map, set this
parameter to NIL.

data
A pointer to a handle. The standard compression component returns a handle to the compressed
image data in the field referred to by this parameter. The component sizes that handle appropriately
for the sequence.

dataSize
A pointer to a long integer. The standard compression component returns a value that indicates the
number of bytes of compressed image data that it returns. Note that this value will differ from the
size of the handle referred to by the data parameter, because the handle is allocated to accommodate
the largest image in the sequence.

notSyncFlag
A pointer to a short integer that indicates whether the compressed frame is a key frame. If the frame
is a key frame, the standard compression component sets the field referred to by this parameter to
0; otherwise, the component sets this field to mediaSampleNotSync. You may use this field to set
the sampleFlags parameter of the AddMediaSample (page 1536) function.

asyncCompletionProc
A pointer to an ICMCompletionProcRecord structure. If you pass NIL, the
SCCompressSequenceFrameAsync function acts like SCCompressSequenceFrame (page 518).

Return Value
See Error Codes. Returns noErr if there is no error.

520 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
While performing asynchronous compression with this function, you should occasionally call
SCAsyncIdle (page 514). This gives the standard compression component an opportunity to restart its
compression operation if it needs to force a key frame.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcompress
qtcompress.win

Declared In
QuickTimeComponents.h

SCCopyCompressionSessionOptions
Creates a compression session options object based upon the settings in the Standard Compression
component.

ComponentResult SCCopyCompressionSessionOptions (
 ComponentInstance ci,
 ICMCompressionSessionOptionsRef *outOptions
);

Parameters
ci

A component instance of Standard Compression component.

outOptions
On return, a reference to a new compression session options object.

Return Value
An error code. Returns noErr if there is no error. paramErr if the client did not set the
scAllowEncodingWithCompressionSession preference flag.

Discussion
This function creates a new compression session options object using the compression settings of the Standard
Compression component instance. You can use other Standard Compression component calls to set up the
compression settings. Then you call this function to extract the compression settings in the form of a
compression session options object. The returned object can be used to create a compression session object
through ICMCompressionSessionCreate (page 35)().

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

Functions 521
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

SCDefaultPictFileSettings
Derives default compression settings for a Picture structure that is stored in a file.

ComponentResult SCDefaultPictFileSettings (
 ComponentInstance ci,
 short srcRef,
 short motion
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

srcRef
A reference to the file to be analyzed.

motion
Specifies whether the image is part of a sequence. Set this parameter to TRUE if the image is part of
a sequence; set it to FALSE if you are working with a single still image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Std Compression Examples

Declared In
QuickTimeComponents.h

SCDefaultPictHandleSettings
Derives default compression settings for a Picture structure that is stored by a handle.

ComponentResult SCDefaultPictHandleSettings (
 ComponentInstance ci,
 PicHandle srcPicture,
 short motion
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

srcPicture
A handle to the Picture structure to be analyzed.

522 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

motion
Specifies whether the image is part of a sequence. Set this parameter to TRUE if the image is part of
a sequence; set it to FALSE if you are working with a single still image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCDefaultPixMapSettings
Derives default compression settings for an image that is stored in a pixel map.

ComponentResult SCDefaultPixMapSettings (
 ComponentInstance ci,
 PixMapHandle src,
 short motion
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

src
A handle to the PixMap structure to be analyzed.

motion
Specifies whether the image is part of a sequence. Set this parameter to TRUE if the image is part of
a sequence; set it to FALSE if you are working with a single still image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

Functions 523
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

SCGetBestDeviceRect
Determines the boundary rectangle that surrounds the display device that supports the largest color or
grayscale palette.

ComponentResult SCGetBestDeviceRect (
 ComponentInstance ci,
 Rect *r
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

r
A pointer to a Rect structure. The function returns the global coordinates of a rectangle that surrounds
the appropriate display device.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The standard image-compression dialog component uses this function to position rectangles and dialog
boxes when you indicate that the component is to choose the best display device. It subtracts the menu bar
from the returned rectangle if the best device is also the main display device.

Special Considerations

In general, your application does not need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCGetCompressFlags
Gets compression flags for a standard image-compression dialog component.

ComponentResult SCGetCompressFlags (
 ComponentInstance ci,
 long *flags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

flags
A pointer to compression flags (see below). See these constants:

scCompressFlagIgnoreIdenticalFrames

524 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCGetCompressionExtended
Undocumented

ComponentResult SCGetCompressionExtended (
 ComponentInstance ci,
 SCParams *params,
 Point where,
 SCModalFilterUPP filterProc,
 SCModalHookUPP hookProc,
 long refcon,
 StringPtr customName
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

params
A pointer to an SCParams structure.

where
Undocumented

filterProc
A Universal Procedure Pointer that accesses a SCModalFilterProc callback.

hookProc
A Universal Procedure Pointer that accesses a SCModalHookProc callback.

refcon
A reference constant to be passed to your callbacks. Use this parameter to point to a data structure
containing any information your callbacks need.

customName
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 525
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

SCGetInfo
Retrieves configuration information from the standard dialog component.

ComponentResult SCGetInfo (
 ComponentInstance ci,
 OSType infoType,
 void *info
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

infoType
A constant (see below) that specifies the type of information you want to retrieve. See these constants:

scSpatialSettingsType

scTemporalSettingsType

scDataRateSettingsType

scColorTableType

scProgressProcType

scExtendedProcsType

scPreferenceFlagsType

scSettingsStateType

scSequenceIDType

scWindowPositionType

scCodecFlagsType

info
A pointer to a field that is to receive the information. The infoType constant descriptions (see below)
include information about this field.

Return Value
See Error Codes. If the component cannot satisfy your request, it returns a result code of
scTypeNotFoundErr. It returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertMovieSndTrack
ConvertToMovieJr
qtcompress
VideoProcessing

526 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

SCGetSettingsAsAtomContainer
Places the current configuration from the standard image-compression component in a QT atom container.

ComponentResult SCGetSettingsAsAtomContainer (
 ComponentInstance ci,
 QTAtomContainer *settings
);

Parameters
ci

The standard compression component instance.

settings
The address where the newly-created atom container should be stored.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller is responsible for disposing of the returned QT atom container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
ElectricImageComponent.win
Quartz Composer QCTV
ThreadsExportMovie
vrmakepano

Declared In
QuickTimeComponents.h

SCGetSettingsAsText
Undocumented

ComponentResult SCGetSettingsAsText (
 ComponentInstance ci,
 Handle *text
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

Functions 527
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

text
A pointer to a handle to text.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCNewGWorld
Creates a graphics world based on the current compression settings.

ComponentResult SCNewGWorld (
 ComponentInstance ci,
 GWorldPtr *gwp,
 Rect *rp,
 GWorldFlags flags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

gwp
A pointer to a pointer to a CGrafPort structure that defines a graphics world. The standard dialog
component places a pointer to the new graphics world into the field referred to by this parameter.
If the component cannot create the graphics world, it sets this field to NIL.

rp
A pointer to the boundaries of the graphics world. If you set this parameter to NIL, the standard
dialog component uses the test image's boundary rectangle. If you don't specify a boundary rectangle
and there is no test image, the component does not create the graphics world.

flags
Contains flags (see below) that determine some of the memory characteristics of the new graphics
world. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

528 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

SCPositionDialog
Helps position a dialog box on the screen.

ComponentResult SCPositionDialog (
 ComponentInstance ci,
 short id,
 Point *where
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

id
The resource number of a 'DLOG' resource. The function positions the dialog box that corresponds
to this resource.

where
A pointer to a Point structure identifying the desired location of the upper-left corner of the dialog
box in global coordinates. This parameter allows you to indicate how you want to position the dialog
box on the screen.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertToMovieJr
VideoProcessing

Declared In
QuickTimeComponents.h

SCPositionRect
Positions a rectangle on the screen.

ComponentResult SCPositionRect (
 ComponentInstance ci,
 Rect *rp,
 Point *where
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

Functions 529
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

rp
A pointer to a Rect structure. When you call the function, this structure should contain the rectangle's
current global coordinates. The function adjusts the coordinates in the structure to reflect the
rectangle's new position.

where
A pointer to a Point structure identifying the desired location of the upper-left corner of the rectangle
in global coordinates. This parameter allows your application to position the rectangle on the screen.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
VideoProcessing

Declared In
QuickTimeComponents.h

SCRequestImageSettings
Displays the standard image dialog box to the user and shows default settings you have established.

ComponentResult SCRequestImageSettings (
 ComponentInstance ci
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to retrieve the user's preferences for compressing a single image; use
SCRequestSequenceSettings (page 531) when you are working with an image sequence. Both functions
manipulate the compression settings that the component stores for you.

The component derives the current settings when you may supply an image to the component from which
it can derive default settings. If you have not set any defaults, but you do supply a test image for the dialog,
the component examines the test image and derives appropriate default values based upon its characteristics.
If you have not set any defaults and do not supply a test image, the component uses its own default values.

530 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Special Considerations

You may modify the settings by using SCSetInfo (page 532). You may customize the dialog boxes by
specifying a modal-dialog hook function or a custom button. You may use the custom button to invoke an
ancillary dialog box that is specific to your application.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
qtstdcompr.win
SCAudioCompress
Std Compression Examples
WhackedTV

Declared In
QuickTimeComponents.h

SCRequestSequenceSettings
Displays the standard sequence dialog box to the user and shows default settings you have established.

ComponentResult SCRequestSequenceSettings (
 ComponentInstance ci
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use SCRequestSequenceSettings to retrieve the user's preferences for compressing an image sequence;
use SCRequestImageSettings (page 530) when you are working with a single image. Both functions
manipulate the compression settings that the component stores for you.

The component derives the current settings when you may supply an image to the component from which
it can derive default settings. If you have not set any defaults, but you do supply a test image for the dialog,
the component examines the test image and derives appropriate default values based upon its characteristics.
If you have not set any defaults and do not supply a test image, the component uses its own default values.

Special Considerations

You may modify the settings by using SCSetInfo (page 532). You may customize the dialog boxes by
specifying a modal-dialog hook function or a custom button. You may use the custom button to invoke an
ancillary dialog box that is specific to your application.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 531
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertToMovieJr
OpenGLCaptureToMovie
qtcompress
qtcompress.win
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

SCSetCompressFlags
Sets compression flags for a standard image-compression dialog component.

ComponentResult SCSetCompressFlags (
 ComponentInstance ci,
 long flags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

flags
Flags (see below) to set. See these constants:

scCompressFlagIgnoreIdenticalFrames

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCSetInfo
Modifies the standard dialog component's configuration information.

532 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCSetInfo (
 ComponentInstance ci,
 OSType infoType,
 void *info
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

infoType
A constant (see below) that specifies the type of information you want to set. See these constants:

scSpatialSettingsType

scTemporalSettingsType

scDataRateSettingsType

scColorTableType

scProgressProcType

scExtendedProcsType

scPreferenceFlagsType

scSettingsStateType

scSequenceIDType

scWindowPositionType

scCodecFlagsType

info
A pointer to a field that contains the new information. The infoType constant descriptions (see
below) include information about this field.

Return Value
See Error Codes. If the component cannot satisfy your request, it returns a result code of
scTypeNotFoundErr. It returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

SCSetSettingsFromAtomContainer
Sets the standard image-compression component's current configuration from data in a QT atom container.

Functions 533
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCSetSettingsFromAtomContainer (
 ComponentInstance ci,
 QTAtomContainer settings
);

Parameters
ci

Standard compression component instance.

settings
A QT atom container reference to the settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The settings QT atom container may contain atoms other than those expected by the particular component
type or may be missing certain atoms. The function will only use settings it understands.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

SCSetTestImagePictFile
Sets the dialog box's test image from a Picture structure that is stored in a picture file.

ComponentResult SCSetTestImagePictFile (
 ComponentInstance ci,
 short testFileRef,
 Rect *testRect,
 short testFlags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

534 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

testFileRef
Identifies the file that contains the new test image. Your application is responsible for opening this
file before calling this function. You must also close the file when you are done with it. You must clear
the image or close your connection to the standard image-compression dialog component before
you close the file. If the file contains a large image, the component may take some time to display
the standard image-compression dialog box. In this case, the component displays the watch cursor
while it loads the test image.

testRect
A pointer to a Rect structure. This rectangle specifies, in the coordinate system of the source image,
the area of interest or point of interest in the test image. The area of interest defines a portion of the
test image that is to be shown to the user in the dialog box. Use this parameter to direct the component
to a specific portion of the test image. The component uses the value of the testFlags parameter
to determine how it transforms large images before displaying them to the user.

testFlags
Constants (see below) that specify how the component is to display a test image that is larger than
the test image portion of the dialog box. If you set this parameter to 0, the component uses a default
method of its own choosing. In all cases, the component centers the area or point of interest in the
test image portion of the dialog box, and then displays some part of the test image. See these
constants:

scPreferCropping

scPreferScaling

scPreferScalingAndCropping

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Std Compression Examples

Declared In
QuickTimeComponents.h

SCSetTestImagePictHandle
Sets the dialog box's test image from a Picture structure that is stored in a handle.

Functions 535
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCSetTestImagePictHandle (
 ComponentInstance ci,
 PicHandle testPict,
 Rect *testRect,
 short testFlags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

testPict
Identifies a handle that contains the new test image. Your application is responsible for disposing of
this handle when you are done with it. You must clear the image or close your connection to the
standard image-compression dialog component before you dispose of this handle or close the
corresponding resource file. You must set this handle as nonpurgeable.

testRect
A pointer to a Rect structure. This structure specifies, in the coordinate system of the source image,
the area of interest or point of interest in the test image. The area of interest defines a portion of the
test image that is to be shown to the user in the dialog box. Use this parameter to direct the component
to a specific portion of the test image. The component uses the value of the testFlags parameter
to determine how it transforms this image before displaying it to the user. The component uses the
testFlags parameter only when the test image is larger than the test image portion of the dialog
box.

testFlags
Constants (see below) that specify how the component is to display a test image that is larger than
the test image portion of the dialog box. If you set this parameter to 0, the component uses a default
method of its own choosing. In all cases, the component centers the area or point of interest in the
test image portion of the dialog box, and then displays some part of the test image. See these
constants:

scPreferCropping

scPreferScaling

scPreferScalingAndCropping

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCSetTestImagePixMap
Sets the dialog box's test image from a Picture structure that is stored in a PixMap structure.

536 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult SCSetTestImagePixMap (
 ComponentInstance ci,
 PixMapHandle testPixMap,
 Rect *testRect,
 short testFlags
);

Parameters
ci

Identifies your application's connection to a standard image-compression dialog component. You
obtain this identifier from OpenDefaultComponent.

testPixMap
A handle to a PixMap structure that contains the new test image. Your application is responsible for
creating this structure before calling the function. You must also dispose of the structure when you
are done with it. You must clear the image or close your connection to the standard image-compression
dialog component before you dispose of the structure.

testRect
A pointer to a Rect structure. This rectangle specifies, in the coordinate system of the source image,
the area of interest or point of interest in the test image. The area of interest defines a portion of the
test image that is to be shown to the user in the dialog box. Use this parameter to direct the component
to a specific portion of the test image. The component uses the value of the testFlags parameter
to determine how it transforms large images before displaying them to the user.

testFlags
Constants (see below) that specify how the component is to display a test image that is larger than
the test image portion of the dialog box. If you set this parameter to 0, the component uses a default
method of its own choosing. In all cases, the component centers the area or point of interest in the
test image portion of the dialog box, and then displays some part of the test image. See these
constants:

scPreferCropping

scPreferScaling

scPreferScalingAndCropping

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
qtcompress
qtcompress.win
VideoProcessing

Declared In
QuickTimeComponents.h

Functions 537
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

TCFrameNumberToTimeCode
Converts a frame number into its corresponding timecode time value.

HandlerError TCFrameNumberToTimeCode (
 MediaHandler mh,
 long frameNumber,
 TimeCodeDef *tcdef,
 TimeCodeRecord *tcrec
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

frameNumber
The frame number that is to be converted.

tcdef
A pointer to the TimeCodeDef structure to use for the conversion.

tcrec
A pointer to the TimeCodeRecord structure that is to receive the time value.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCGetCurrentTimeCode
Retrieves the timecode and source identification information for the current movie time.

HandlerError TCGetCurrentTimeCode (
 MediaHandler mh,
 long *frameNum,
 TimeCodeDef *tcdef,
 TimeCodeRecord *tcrec,
 UserData *srcRefH
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

frameNum
A pointer to a field that is to receive the current frame number. Set this field to NIL if you don't want
to retrieve the frame number.

538 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

tcdef
A pointer to a TimeCodeDef structure. The media handler returns the movie's timecode definition
information. Set this parameter to NIL if you don't want this information.

tcrec
A pointer to a TimeCodeRecord structure. The media handler returns the current time value. Set this
parameter to NIL if you don't want this information.

srcRefH
A pointer to a field that is to receive a handle containing the source information as a UserDataRecord
structure. It is your responsibility to dispose of this structure when you are done with it. Set this field
to NIL if you don't want this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win

Declared In
QuickTimeComponents.h

TCGetDisplayOptions
Retrieves the text characteristics that apply to timecode information displayed in a movie.

HandlerError TCGetDisplayOptions (
 MediaHandler mh,
 TCTextOptionsPtr textOptions
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

textOptions
A pointer to a TCTextOptions structure. This structure will receive font and style information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode

Functions 539
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

qttimecode
qttimecode.win
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCGetSourceRef
Retrieves the source information from the timecode media sample reference.

HandlerError TCGetSourceRef (
 MediaHandler mh,
 TimeCodeDescriptionHandle tcdH,
 UserData *srefH
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

tcdH
Specifies a handle to a TimeCodeDescription structure that defines the media sample reference
for this operation.

srefH
Specifies a pointer to a handle that will receive the source information as a UserDataRecord structure.
It is your application's responsibility to dispose of this structure when you are done with it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TCGetTimeCodeAtTime
Returns a track's timecode information corresponding to a specific media time.

540 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

HandlerError TCGetTimeCodeAtTime (
 MediaHandler mh,
 TimeValue mediaTime,
 long *frameNum,
 TimeCodeDef *tcdef,
 TimeCodeRecord *tcdata,
 UserData *srcRefH
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

mediaTime
A time value for which you want to retrieve timecode information. This time value is expressed in the
media's time coordinate system.

frameNum
A pointer to a field that is to receive the current frame number. Set this field to NIL if you don't want
to retrieve the frame number.

tcdef
A pointer to a TimeCodeDef structure. The media handler returns the movie's timecode definition
information. Set this parameter to NIL if you don't want this information.

tcdata
A pointer to a TimeCodeRecord structure. The media handler returns the current time value. Set this
parameter to NIL if you don't want this information.

srcRefH
A pointer to a field that is to receive a handle containing the source information as a UserDataRecord
structure. It is your responsibility to dispose of this structure when you are done with it. Set this field
to NIL if you don't want this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCGetTimeCodeFlags
Retrieves the timecode control flags.

Functions 541
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

HandlerError TCGetTimeCodeFlags (
 MediaHandler mh,
 long *flags
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

flags
A pointer to a field that is to receive a control flag (see below). See these constants:

tcdfShowTimeCode

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win

Declared In
QuickTimeComponents.h

TCSetDisplayOptions
Sets the text characteristics that apply to timecode information displayed in a movie.

HandlerError TCSetDisplayOptions (
 MediaHandler mh,
 TCTextOptionsPtr textOptions
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

textOptions
A pointer to a TCTextOptions structure. This structure contains font and style information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

542 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win

Declared In
QuickTimeComponents.h

TCSetSourceRef
Changes the source information in the timecode media sample reference.

HandlerError TCSetSourceRef (
 MediaHandler mh,
 TimeCodeDescriptionHandle tcdH,
 UserData srefH
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

tcdH
Specifies a handle containing the timecode media sample reference that is to be updated.

srefH
Specifies a handle to the source information to be placed in the sample reference as a
UserDataRecord structure. It is your application's responsibility to dispose of this structure when
you are done with it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCSetTimeCodeFlags
Changes the flag that affects how the toolbox handles timecode information.

Functions 543
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

HandlerError TCSetTimeCodeFlags (
 MediaHandler mh,
 long flags,
 long flagsMask
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

flags
The new flag value. See these constants:

tcdfShowTimeCode

flagsMask
Specifies which of the flag values are to change. The media handler modifies only those flag values
that correspond to bits that are set to 1 in this parameter. Use the flag values from the flags
parameter. To turn off timecode display, set the tcdfShowTimeCode flag to 1 in the flagsMask
parameter and to 0 in the flags parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCTimeCodeToFrameNumber
Converts a timecode time value into its corresponding frame number.

HandlerError TCTimeCodeToFrameNumber (
 MediaHandler mh,
 TimeCodeDef *tcdef,
 TimeCodeRecord *tcrec,
 long *frameNumber
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

tcdef
A pointer to the TimeCodeDef structure to use for the conversion.

544 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

tcrec
A pointer to the TimeCodeRecord structure containing the time value to convert.

frameNumber
A pointer to a field that is to receive the frame number that corresponds to the time value in the
tcrec parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TCTimeCodeToString
Converts a time value into a text string (HH:MM:SS:FF).

HandlerError TCTimeCodeToString (
 MediaHandler mh,
 TimeCodeDef *tcdef,
 TimeCodeRecord *tcrec,
 StringPtr tcStr
);

Parameters
mh

The timecode media handler. You obtain this identifier by calling GetMediaHandler (page 1577).

tcdef
A pointer to the TimeCodeDef structure to use for the conversion.

tcrec
A pointer to the TimeCodeRecord structure to use for the conversion.

tcStr
A pointer to a text string that is to receive the converted time value.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If the timecode uses the dropframe technique, the separators are semicolons (;) rather than colons (:).

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 545
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win
TimeCode Media Handlers

Declared In
QuickTimeComponents.h

TextExportGetDisplayData
Retrieves text display information for the current sample in the specified text export component.

ComponentResult TextExportGetDisplayData (
 TextExportComponent ci,
 TextDisplayData *textDisplay
);

Parameters
ci

Specifies the text export component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

textDisplay
Contains a pointer to a TextDisplayData structure. On return, this structure contains the display
settings of the current text sample.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to retrieve the text display data structure for a text sample. The text display data structure
contains the formatting information for the text sample. When the text export component exports a text
sample, it uses the information in this structure to generate the appropriate text descriptors for the sample.
Likewise, when the text import component imports a text sample, it sets the appropriate fields in the text
display data structure based on the sample's text descriptors.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TextExportGetSettings
Retrieves the value of the text export option for the specified text export component.

546 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult TextExportGetSettings (
 TextExportComponent ci,
 long *setting
);

Parameters
ci

Specifies the text export component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

setting
Contains a pointer to a 32-bit integer. On return, this integer contains a constant (see below) that
represents the current value of the text export option. See these constants:

kMovieExportTextOnly

kMovieExportAbsoluteTime

kMovieExportRelativeTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TextExportGetTimeFraction
Retrieves the time scale the specified text export component uses to calculate time stamps.

ComponentResult TextExportGetTimeFraction (
 TextExportComponent ci,
 long *movieTimeFraction
);

Parameters
ci

Specifies the text export component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

movieTimeFraction
Contains a pointer to a 32-bit integer. On return, this integer contains the time scale used in the
fractional part of time stamps.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to retrieve the time scale used by the text export component to calculate the fractional
part of time stamps. You set a text component's time scale by specifying it in the Text Export Settings dialog
box or by calling TextExportSetTimeFraction (page 548).

Functions 547
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TextExportSetSettings
Sets the value of the text export option for the specified text export component.

ComponentResult TextExportSetSettings (
 TextExportComponent ci,
 long setting
);

Parameters
ci

Specifies the text export component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

setting
A constant (see below) that specifies the new value of the text export option. See these constants:

kMovieExportTextOnly

kMovieExportAbsoluteTime

kMovieExportRelativeTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TextExportSetTimeFraction
Sets the time scale the specified text export component uses to calculate time stamps.

548 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

ComponentResult TextExportSetTimeFraction (
 TextExportComponent ci,
 long movieTimeFraction
);

Parameters
ci

Specifies the text export component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

movieTimeFraction
Specifies the time scale used in the fractional part of time stamps. The value should be between 1
and 10000, inclusive.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to set the time scale used by the text export component to calculate the fractional part
of time stamps. You can also set a text component's time scale by specifying it in the text export settings
dialog box. You can retrieve a text component's time scale by calling TextExportGetTimeFraction (page
547).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TweenerDoTween
Performs a tween operation.

ComponentResult TweenerDoTween (
 TweenerComponent tc,
 TweenRecord *tr
);

Parameters
tc

The tween component for this operation.

tr
A pointer to the TweenRecord structure for the tween operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
QuickTime calls this function to interpolate the data used during a tween operation. The TweenRecord
structure contains complete information about the tween operation, including the start and end values for
the operation and a percentage that indicates the progress towards completion of the tween sample. This
function should use the information in the tween record to calculate the tweened value, and should call the
data function specified in the tween record, passing it the tweened value.

Functions 549
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TweenerInitialize
Initializes your tween component for a single tween operation.

ComponentResult TweenerInitialize (
 TweenerComponent tc,
 QTAtomContainer container,
 QTAtom tweenAtom,
 QTAtom dataAtom
);

Parameters
tc

The tween component for this operation.

container
The container that holds the atoms specified by the tweenAtom and dataAtom parameters.

tweenAtom
The atom that contains all parameters for defining this tween. This includes the data atom and any
special atoms, such as an atom of type 'qdrg', that may be necessary.

dataAtom
The atom that contains the values to be tweened. This atom is a child of the atom specified by the
tweenAtom parameter. This parameter is provided as a convenience; you can also call QT atom
container functions to locate the data atom in the container.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets up the tween component when it is first used. In your implementation of this function,
you can allocate storage and set up any structures that you need for the duration of a tween operation.
Although the container that holds the data atom is available during each call to TweenerDoTween (page
549), you can improve the performance of your tween component by extracting the data to be used by the
TweenerDoTween function in this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

550 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

TweenerReset
Cleans up when the tween operation is finished.

ComponentResult TweenerReset (
 TweenerComponent tc
);

Parameters
tc

The tween component for this operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function releases storage allocated by the tween component when the component is no longer being
used. It should release any storage allocated by the TweenerInitialize (page 550) function and close or
release any other resources used by the component. A tween component may receive a TweenerInitialize
call after being reset.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Callbacks

MovieExportGetDataProc
Defines a data source for an export operation.

typedef OSErr (*MovieExportGetDataProcPtr) (void *refCon, MovieExportGetDataParams
 *params);

If you name your function MyMovieExportGetDataProc, you would declare it this way:

OSErr MyMovieExportGetDataProc (
 void *refCon,
 MovieExportGetDataParams *params);

Parameters
refCon

Contains the value passed to MovieExportAddDataSource (page 466) in the refCon parameter

params
The sample request is made through a MovieExportGetDataParams structure.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Callbacks 551
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Discussion
This callback is passed to MovieExportAddDataSource (page 466) to define a new data source for an export
operation. The function is used by the exporting application to request source media data to be used in the
export operation. For example, in a video export operation, frames of video data (either compressed or
uncompressed) are provided. In a sound export operation, buffers of audio (either compressed or
uncompressed) are provided.

Special Considerations

The data pointed to by dataPtr must remain valid until the next call to this function. The
MovieExportGetDataProc callback is responsible for allocating and disposing of the memory associated
with this data pointer.

Declared In
QuickTimeComponents.h

MovieExportGetPropertyProc
Returns parameters that determine the appropriate format for movie export data.

typedef OSErr (*MovieExportGetPropertyProcPtr) (void *refcon, long trackID, OSType
 propertyType, void *propertyValue);

If you name your function MyMovieExportGetPropertyProc, you would declare it this way:

OSErr MyMovieExportGetPropertyProc (
 void *refcon,
 long trackID,
 OSType propertyType,
 void *propertyValue);

Parameters
refcon

Contains the value passed to MovieExportAddDataSource (page 466) in the refCon parameter.

trackID
Specifies the value returned from MovieExportAddDataSource (page 466).

propertyType
Contains a pointer to the location of the requested property information.

552 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

propertyValue
Specifies the property being requested (see below). See these constants:

scSoundSampleRateType

scSoundSampleSizeType

scSoundChannelCountType

scSoundCompressionType

movieExportWidth

movieExportHeight

movieExportVideoFilter

scSpatialSettingsType

scTemporalSettingsType

scDataRateSettingsType

movieExportDuration

Return Value
See Error Codes. Your callback should return noErr if there is no error. If this function doesn't have a
setting for a requested property, it should return an error.

Discussion
This function is passed to MovieExportAddDataSource (page 466) to define a new data source for an export
operation. For example, a video export operation may call this function to determine the dimensions of the
destination video track. The export component provides a default value for the property based on the source
data format. For example, if no values for video track width and height properties were provided by the
callback function, the dimensions of the source data would be used.

Declared In
QuickTimeComponents.h

SCModalFilterProc
Filter routine called when a user event occurs in a sequence compression modal dialog box.

typedef Boolean (*SCModalFilterProcPtr) (DialogPtr theDialog, EventRecord *theEvent,
 short *itemHit, long refcon);

If you name your function MySCModalFilterProc, you would declare it this way:

Boolean MySCModalFilterProc (
 DialogPtr theDialog,
 EventRecord *theEvent,
 short *itemHit,
 long refcon);

Parameters
theDialog

A pointer to a dialog box.

theEvent
A pointer to an EventRecord structure that defines a user event.

itemHit
A pointer to an item ID number in the dialog box.

Callbacks 553
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

refcon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
Return TRUE if the event was handled, FALSE otherwise.

Declared In
QuickTimeComponents.h

SCModalHookProc
Called whenever the user selects an item in the dialog box.

typedef short (*SCModalHookProcPtr) (DialogPtr theDialog, short itemHit, void
*params, long refcon);

If you name your function MySCModalHookProc, you would declare it this way:

short MySCModalHookProc (
 DialogPtr theDialog,
 short itemHit,
 void *params,
 long refcon);

Parameters
theDialog

A pointer to a dialog box.

itemHit
A pointer to an item ID number in the dialog box.

params
A pointer to your data area.

refcon
A reference constant that the client code supplies to your callback.

Return Value
Return TRUE if the event was handled, FALSE otherwise.

Discussion
You can use this callback to customize the operation of the standard image-compression dialog box. For
example, you might want to support a custom button that activates a secondary dialog box. Another possibility
would be to provide additional validation support when the user clicks OK.

Declared In
QuickTimeComponents.h

554 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Data Types

GraphicImageMovieImportComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance GraphicImageMovieImportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

HandlerError
Represents a type used by the Movie Components API.

typedef ComponentResult HandlerError;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieExportComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance MovieExportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieExportGetDataUPP
Represents a type used by the Movie Components API.

typedef STACK_UPP_TYPE(MovieExportGetDataProcPtr) MovieExportGetDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Data Types 555
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

MovieExportGetPropertyUPP
Represents a type used by the Movie Components API.

typedef STACK_UPP_TYPE(MovieExportGetPropertyProcPtr) MovieExportGetPropertyUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

MovieImportComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance MovieImportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

pnotComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance pnotComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCModalFilterUPP
Represents a type used by the Movie Components API.

typedef STACK_UPP_TYPE(SCModalFilterProcPtr) SCModalFilterUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCModalHookUPP
Represents a type used by the Movie Components API.

556 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

typedef STACK_UPP_TYPE(SCModalHookProcPtr) SCModalHookUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SCParams
Provides data for the SCGetCompressionExtended function.

struct SCParams {
 long flags;
 CodecType theCodecType;
 CodecComponent theCodec;
 CodecQ spatialQuality;
 CodecQ temporalQuality;
 short depth;
 Fixed frameRate;
 long keyFrameRate;
 long reserved1;
 long reserved2;
 };

Fields
flags

Discussion
Flags (see below). See these constants:

scGetCompression

scShowMotionSettings

scSettingsChangedItem

theCodecType

Discussion
A compressor type; see Codec Identifiers.

theCodec

Discussion
An instance of a compressor component, obtained by calling OpenComponent or OpenDefaultComponent.

spatialQuality

Discussion
Constants (see below) that determine image spatial quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Data Types 557
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

temporalQuality

Discussion
Constants (see below) that determine image temporal quality.

depth

Discussion
Image data depth.

frameRate

Discussion
The frame rate.

keyFrameRate

Discussion
The key frame rate.

reserved1

Discussion
Reserved.

reserved2

Discussion
Reserved.

Related Functions
SCGetCompressionExtended (page 525)

Declared In
QuickTimeComponents.h

TCTextOptions
Holds text font and style information.

struct TCTextOptions {
 short txFont;
 short txFace;
 short txSize;
 short pad;
 RGBColor foreColor;
 RGBColor backColor;
 };

Fields
txFont

Discussion
Specifies the number of the font.

txFace

Discussion
Specifies the font's style (bold, italic, and so on).

558 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

txSize

Discussion
Specifies the font's size.

pad

Discussion
Unused field to make structure long-word aligned.

foreColor

Discussion
Specifies the foreground color.

backColor

Discussion
Specifies the background color.

Related Functions
TCGetDisplayOptions (page 539)
TCSetDisplayOptions (page 542)

Declared In
QuickTimeComponents.h

TCTextOptionsPtr
Represents a type used by the Movie Components API.

typedef TCTextOptions * TCTextOptionsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TextDisplayData
Contains formatting information for a text sample.

Data Types 559
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

struct TextDisplayData {
 long displayFlags;
 long textJustification;
 RGBColor bgColor;
 Rect textBox;
 short beginHilite;
 short endHilite;
 RGBColor hiliteColor;
 Boolean doHiliteColor;
 SInt8 filler;
 TimeValue scrollDelayDur;
 Point dropShadowOffset;
 short dropShadowTransparency;
 };

Fields
displayFlags

Discussion
Contains flags (see below) that represent the values of text descriptors. See these constants:

dfDontDisplay

dfDontAutoScale

dfClipToTextBox

dfShrinkTextBoxToFit

dfScrollIn

dfScrollOut

dfHorizScroll

dfReverseScroll

textJustification

Discussion
Contains constants (see below) that specify the alignment of the text in the text box. Possible values are
teFlushDefault, teCenter, teFlushRight, and teFlushLeft. For more information on text alignment
and the text justification constants, see the "TextEdit" chapter of Inside Macintosh: Text. See these constants:

bgColor

Discussion
Specifies the background color of the rectangle specified by the textBox field. The background color is
specified as an RGB color value.

textBox

Discussion
Specifies the rectangle of the text box.

beginHilite

Discussion
Specifies the one-based index of the first character in the sample to highlight.

endHilite

Discussion
Specifies the one-based index of the last character in the sample to highlight.

560 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

doHiliteColor

Discussion
Specifies whether to use the color specified by the hiliteColor field for highlighting. If the value of this
field is TRUE, the highlight color is used for highlighting. If the value of this field is FALSE, reverse video is
used for highlighting.

filler

Discussion
Reserved.

scrollDelayDur

Discussion
Specifies a scroll delay. The scroll delay is specified as the number of units of delay in the text track's time
scale. For example, if the time scale is 600, a scroll delay of 600 causes the sample text to be delayed one
second. In order for this field to take effect, scrolling must be enabled.

dropShadowOffset

Discussion
Specifies an offset for the drop shadow. For example, if the point specified is (3,4), the drop shadow is offset
3 pixels to the right and 4 pixels down. In order for this field to take effect, drop shadowing must be enabled.

dropShadowTransparency

Discussion
Specifies the intensity of the drop shadow as a value between 0 and 255. In order for this field to take effect,
drop shadowing must be enabled.

Discussion
When the text export component exports a text sample, it uses the information in this structure to generate
the appropriate text descriptors for the sample. Likewise, when the text import component imports a text
sample, it sets the appropriate fields in this structure based on the sample's text descriptors.

Related Functions
TextExportGetDisplayData (page 546)

Declared In
QuickTimeComponents.h

TextExportComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance TextExportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TimeCodeDef
Contains timecode format information.

Data Types 561
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

struct TimeCodeDef {
 long flags;
 TimeScale fTimeScale;
 TimeValue frameDuration;
 UInt8 numFrames;
 UInt8 padding;
 };

Fields
flags

Discussion
Contains flags (see below) that provide timecode format information. See these constants:

tcDropFrame

tc24HourMax

tcNegTimesOK

tcCounter

fTimeScale

Discussion
Contains the time scale for interpreting the frameDuration field. This field indicates the number of time
units per second.

frameDuration

Discussion
Specifies how long each frame lasts, in the units defined by the fTimeScale field.

numFrames

Discussion
Indicates the number of frames stored per second. In the case of timecodes that are interpreted as counters,
this field indicates the number of frames stored per timer "tick."

padding

Discussion
Unused.

Related Functions
TCFrameNumberToTimeCode (page 538)
TCGetCurrentTimeCode (page 538)
TCGetTimeCodeAtTime (page 540)
TCTimeCodeToFrameNumber (page 544)
TCTimeCodeToString (page 545)

Declared In
QuickTimeComponents.h

TimeCodeDescriptionHandle
Represents a type used by the Movie Components API.

typedef TimeCodeDescriptionPtr * TimeCodeDescriptionHandle;

Availability
Available in Mac OS X v10.0 and later.

562 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

TimeCodeDescriptionPtr
Represents a type used by the Movie Components API.

typedef TimeCodeDescription * TimeCodeDescriptionPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TimeCodeRecord
Interprets time information as both a time value (HH:MM:SS:FF) and a frame count.

union TimeCodeRecord {
 TimeCodeTime t;
 TimeCodeCounter c;
 };

Fields
t

Discussion
The timecode value interpreted as time in a TimeCodeTime structure.

c

Discussion
The timecode value interpreted as a frame count in a TimeCodeCounter structure.

Discussion
When you use the timecode media handler to work with time values, the media handler uses TimeCodeRecord
structures to store the time values. These structures allows you to interpret the time information as either a
time value (HH:MM:SS:FF) or a counter value. Given a timecode definition, you can freely convert from frame
numbers to time values and from time values to frame numbers. For a time value of 00:00:12:15 (HH:MM:SS:FF),
you would obtain a frame number of 375 ((12*30) +15).

Related Functions
TCFrameNumberToTimeCode (page 538)
TCGetCurrentTimeCode (page 538)
TCGetTimeCodeAtTime (page 540)
TCTimeCodeToFrameNumber (page 544)
TCTimeCodeToString (page 545)

Declared In
QuickTimeComponents.h

Data Types 563
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

TweenerComponent
Represents a type used by the Movie Components API.

typedef ComponentInstance TweenerComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

TweenRecord
Passes information to your tween component's TweenDoTween method.

struct TweenRecord {
 long version;
 QTAtomContainer container;
 QTAtom tweenAtom;
 QTAtom dataAtom;
 Fixed percent;
 TweenerDataUPP dataProc;
 void * private1;
 void * private2;
 };

Fields
version

Discussion
The version number of this structure. This field is initialized to 0.

container

Discussion
The atom container that contains the tween data.

tweenAtom

Discussion
The atom for this tween entry's data in the container.

percent

Discussion
The percentage by which to change the data.

dataProc

Discussion
The procedure the tween component calls to send the tweened value to the receiving track.

private1

Discussion
Reserved.

private2

Discussion
Reserved.

564 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Related Functions
TweenerDataProc
TweenerDoTween (page 549)

Declared In
QuickTimeComponents.h

Constants

MIDIImportSetSettings Values
Constants passed to MIDIImportSetSettings.

enum {
 kMIDIImportSilenceBefore = 1 << 0,
 kMIDIImportSilenceAfter = 1 << 1,
 kMIDIImport20Playable = 1 << 2,
 kMIDIImportWantLyrics = 1 << 3
};

Declared In
QuickTimeComponents.h

TextExportSetSettings Values
Constants passed to TextExportSetSettings.

enum {
 kMovieExportTextOnly = 0,
 kMovieExportAbsoluteTime = 1,
 kMovieExportRelativeTime = 2
};

Declared In
QuickTimeComponents.h

movieExportDuration
Constants grouped with movieExportDuration.

Constants 565
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

enum {
 movieExportUseConfiguredSettings = 'ucfg', /* pointer to Boolean*/
 movieExportWidth = 'wdth', /* pointer to Fixed*/
 movieExportHeight = 'hegt', /* pointer to Fixed*/
 movieExportDuration = 'dura', /* pointer to TimeRecord*/
 movieExportVideoFilter = 'iflt', /* pointer to QTAtomContainer*/
 movieExportTimeScale = 'tmsc' /* pointer to TimeScale*/
};

Constants
movieExportWidth

A fixed integer that represents a video track's image width in pixels.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

movieExportHeight
A fixed integer that represents a video track's image height in pixels.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

movieExportDuration
The TimeRecord structure for the whole movie.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

movieExportVideoFilter
A pointer to a QTAtomContainer handle that references a video track's filter atom container.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

MovieImportDataRef Values
Constants passed to MovieImportDataRef.

enum {
 movieImportCreateTrack = 1,
 movieImportInParallel = 2,
 movieImportMustUseTrack = 4,
 movieImportWithIdle = 16
};
enum {
 movieImportResultUsedMultipleTracks = 8,
 movieImportResultNeedIdles = 32,
 movieImportResultComplete = 64
};

Constants
movieImportResultNeedIdles

Undocumented

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

566 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Declared In
QuickTimeComponents.h

Standard Compression Constants
Constants that represent constants for Standard Compression.

Constants 567
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

enum {
 /*
 * Indicates the client is ready to use the ICM compression session
 * API to perform compression operations. StdCompression disables
 * frame reordering and multi pass encoding if this flag is cleared.
 */
 scAllowEncodingWithCompressionSession = 1L << 8,
 /*
 * Indicates the client does not want the user to change the frame
 * reordering setting.
 */
 scDisableFrameReorderingItem = 1L << 9,
 /*
 * Indicates the client does not want the user to change the multi
 * pass encoding setting
 */
 scDisableMultiPassEncodingItem = 1L << 10
};
enum {
 /*
 * Specifies if frame reordering can occur in encoding.
 */
 scVideoAllowFrameReorderingType = 'bfra', /* pointer to Boolean*/
 /*
 * The settings to control multi pass encoding.
 */
 scVideoMultiPassEncodingSettingsType = 'mpes' /* pointer to
SCVideoMutiPassEncodingSettings struct*/
};
enum {
 scListEveryCodec = 1L << 1,
 scAllowZeroFrameRate = 1L << 2,
 scAllowZeroKeyFrameRate = 1L << 3,
 scShowBestDepth = 1L << 4,
 scUseMovableModal = 1L << 5,
 scDisableFrameRateItem = 1L << 6,
 scShowDataRateAsKilobits = 1L << 7
};
enum {
 scOKItem = 1,
 scCancelItem = 2,
 scCustomItem = 3
};
enum {
 scPositionRect = 2,
 scPositionDialog = 3,
 scSetTestImagePictHandle = 4,
 scSetTestImagePictFile = 5,
 scSetTestImagePixMap = 6,
 scGetBestDeviceRect = 7,
 scRequestImageSettings = 10,
 scCompressImage = 11,
 scCompressPicture = 12,
 scCompressPictureFile = 13,
 scRequestSequenceSettings = 14,
 scCompressSequenceBegin = 15,
 scCompressSequenceFrame = 16,
 scCompressSequenceEnd = 17,

568 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

 scDefaultPictHandleSettings = 18,
 scDefaultPictFileSettings = 19,
 scDefaultPixMapSettings = 20,
 scGetInfo = 21,
 scSetInfo = 22,
 scNewGWorld = 23
};
enum {
 scPreferCropping = 1 << 0,
 scPreferScaling = 1 << 1,
 scPreferScalingAndCropping = scPreferScaling | scPreferCropping,
 scDontDetermineSettingsFromTestImage = 1 << 2
};
enum {
 scSpatialSettingsType = 'sptl', /* pointer to SCSpatialSettings struct*/
 scTemporalSettingsType = 'tprl', /* pointer to SCTemporalSettings struct*/
 scDataRateSettingsType = 'drat', /* pointer to SCDataRateSettings struct*/
 scColorTableType = 'clut', /* pointer to CTabHandle*/
 scProgressProcType = 'prog', /* pointer to ProgressRecord struct*/
 scExtendedProcsType = 'xprc', /* pointer to SCExtendedProcs struct*/
 scPreferenceFlagsType = 'pref', /* pointer to long*/
 scSettingsStateType = 'ssta', /* pointer to Handle*/
 scSequenceIDType = 'sequ', /* pointer to ImageSequence*/
 scWindowPositionType = 'wndw', /* pointer to Point*/
 scCodecFlagsType = 'cflg', /* pointer to CodecFlags*/
 scCodecSettingsType = 'cdec', /* pointer to Handle*/
 scForceKeyValueType = 'ksim', /* pointer to long*/
 scCompressionListType = 'ctyl', /* pointer to OSType Handle*/
 scCodecManufacturerType = 'cmfr', /* pointer to OSType*/
 scAvailableCompressionListType = 'avai', /* pointer to OSType Handle*/
 scWindowOptionsType = 'shee', /* pointer to SCWindowSettings struct*/
 scSoundVBRCompressionOK = 'cvbr', /* pointer to Boolean*/
 scSoundSampleRateChangeOK = 'rcok', /* pointer to Boolean*/
 scSoundCompressionType = 'ssct', /* pointer to OSType*/
 scSoundSampleRateType = 'ssrt', /* pointer to UnsignedFixed*/
 scSoundInputSampleRateType = 'ssir', /* pointer to UnsignedFixed*/
 scSoundSampleSizeType = 'ssss', /* pointer to short*/
 scSoundChannelCountType = 'sscc' /* pointer to short*/
};
enum {
 scTestImageWidth = 80,
 scTestImageHeight = 80
};
enum {
 scUserCancelled = 1
};
enum {
 scWindowRefKindCarbon = 'carb' /* WindowRef*/
};

Constants
scVideoAllowFrameReorderingType

Pointer to Boolean.

Available in Mac OS X v10.3 and later.

Declared in QuickTimeComponents.h.

Constants 569
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

scSpatialSettingsType
A video track's SCSpatialSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scTemporalSettingsType
A video track's SCTemporalSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scDataRateSettingsType
A video track's SCDataRateSettings structure.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scCodecSettingsType
Pointer to Handle.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scForceKeyValueType
Pointer to long.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scCodecManufacturerType
Pointer to OSType.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scAvailableCompressionListType
Pointer to OSType Handle.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scWindowOptionsType
Pointer to SCWindowSettings struct.

Available in Mac OS X v10.3 and later.

Declared in QuickTimeComponents.h.

scSoundVBRCompressionOK
Pointer to Boolean.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scSoundSampleRateChangeOK
Pointer to Boolean.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

570 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

scSoundCompressionType
A sound track's compression type constant; see Codec Identifiers.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundSampleRateType
An UnsignedFixed value that represents a sound track's sampling rate.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundInputSampleRateType
Pointer to UnsignedFixed.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeComponents.h.

scSoundSampleSizeType
A short integer that represents a sound track's sample size.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scSoundChannelCountType
A short integer that represents a sound track's channel count.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

SCSetCompressFlags Values
Constants passed to SCSetCompressFlags.

enum {
 scCompressFlagIgnoreIdenticalFrames = 1
};

Declared In
QuickTimeComponents.h

SCParams Values
Constants passed to SCParams.

Constants 571
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

enum {
 scGetCompression = 1,
 scShowMotionSettings = 1L << 0,
 scSettingsChangedItem = -1
};

Constants
scGetCompression

Undocumented

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

scShowMotionSettings
Undocumented

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

TCSetTimeCodeFlags Values
Constants passed to TCSetTimeCodeFlags.

enum {
 tcdfShowTimeCode = 1 << 0
};

Declared In
QuickTimeComponents.h

TimeCodeDef Values
Constants passed to TimeCodeDef.

enum {
 tcDropFrame = 1 << 0,
 tc24HourMax = 1 << 1,
 tcNegTimesOK = 1 << 2,
 tcCounter = 1 << 3
};

Constants
tcDropFrame

Indicates that the timecode drops frames occasionally to stay in synchronization. Some timecodes
run at other than a whole number of frames per second. For example, NTSC video runs at 29.97 frames
per second. In order to resynchronize between the timecode rate and a 30 frames-per-second playback
rate, the timecode drops a frame at a predictable time (in much the same way that leap years keep
the calendar synchronized).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

572 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

tc24HourMax
Indicates that the timecode values return to 0 at 24 hours.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

tcNegTimesOK
Indicates that the timecode supports negative time values.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

Constants 573
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

574 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Component Creation Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in ImageCompression.h

Overview

QuickTime compression and decompression APIs help applications compress and decompress movie data.

Functions by Task

Aligning Windows

AlignScreenRect (page 587)
Aligns a specified rectangle to the strictest screen that the rectangle intersects.

AlignWindow (page 588)
Moves a specified window to the nearest optimal alignment position.

DragAlignedGrayRgn (page 629)
Drags a specified gray region along an optimal alignment grid.

DragAlignedWindow (page 630)
Drags the specified window along an optimal alignment grid.

Applying Matrix Transformations

TransformFixedPoints (page 734)
Transforms a set of fixed points through a specified matrix.

TransformFixedRect (page 734)
Transforms the upper-left and lower-right points of a rectangle through a matrix that is specified by
fixed points.

TransformPoints (page 735)
Transforms a set of QuickDraw points through a specified matrix.

TransformRect (page 736)
Transforms the upper-left and lower-right points of a rectangle through a specified matrix.

TransformRgn (page 737)
Applies a specified matrix to a region.

Overview 575
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference
for QuickTime

Changing Sequence-Compression Parameters

GetCSequenceMaxCompressionSize (page 658)
Determines the maximum size an image will be after compression for a given compression sequence.

GetCSequencePrevBuffer (page 659)
Determines the location of the previous image buffer allocated by the compressor.

SetCSequenceFlushProc (page 716)
Assigns a data-unloading function to a sequence.

SetCSequenceKeyFrameRate (page 718)
Adjusts the key frame rate for the current sequence.

SetCSequencePreferredPacketSize (page 718)
Sets the preferred packet size for a sequence.

SetCSequencePrev (page 719)
Allows the application to set the pixel map and boundary rectangle used by the previous frame in
temporal compression.

SetCSequenceQuality (page 720)
Adjusts the spatial or temporal quality for the current sequence.

Changing Sequence-Decompression Parameters

GetDSequenceImageBuffer (page 660)
Determines the location of the offscreen image buffer allocated by a decompressor.

GetDSequenceScreenBuffer (page 662)
Determines the location of the offscreen screen buffer allocated by a decompressor.

PtInDSequenceData (page 695)
Tests to see if a compressed image contains data at a a given point.

SetDSequenceAccuracy (page 721)
Adjusts the decompression accuracy for the current sequence.

SetDSequenceDataProc (page 722)
Assigns a data-loading function to a sequence.

SetDSequenceMask (page 724)
Assigns a clipping region to a sequence.

SetDSequenceMatrix (page 724)
Assigns a mapping matrix to a sequence.

SetDSequenceMatte (page 725)
Assigns a blend matte to a sequence.

SetDSequenceSrcRect (page 727)
Defines the portion of an image to decompress.

SetDSequenceTimeCode (page 728)
Sets the timecode value for a frame that is about to be decompressed.

SetDSequenceTransferMode (page 728)
Sets the mode used when drawing a decompressed image.

576 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Constraining Compressed Data

GetCSequenceDataRateParams (page 657)
Obtains the data rate parameters previously set with SetCSequenceDataRateParams.

SetCSequenceDataRateParams (page 715)
Communicates information to compressors that can constrain compressed data in a particular sequence
to a specific data rate.

Controlling Hardware Scaling

GDGetScale (page 649)
Returns the current scale of the given screen graphics device.

GDHasScale (page 649)
Returns the closest possible scaling that a particular screen device can be set to in a given pixel depth.

GDSetScale (page 650)
Sets a screen graphics device to a new scale.

Creating an Effect Sample Description

MakeImageDescriptionForEffect (page 689)
Returns an ImageDescription structure you can use to help create a sample description for an effect.

Creating File Previews

AddFilePreview (page 586)
Adds a preview to a file.

MakeFilePreview (page 688)
Creates a preview for a file.

Getting Information About Compressed Data

GetCompressedImageSize (page 653)
Determines the size, in bytes, of a compressed image.

GetCompressionTime (page 655)
Determines the estimated amount of time required to compress a given image.

GetMaxCompressionSize (page 670)
Determines the maximum size an image will be after compression.

GetSimilarity (page 673)
Compares a compressed image to a picture stored in a pixel map and returns a value indicating the
relative similarity of the two images.

Functions by Task 577
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Getting Information About Compressor Components

CodecManagerVersion (page 600)
Determines the version of the installed Image Compression Manager.

DisposeCodecNameList (page 628)
Disposes of the compressor name list structure you obtained by calling GetCodecNameList.

FindCodec (page 645)
Determines which of the installed compressors or decompressors has been chosen to field requests
made by using one of the special compressor identifiers.

GetCodecInfo (page 652)
Returns information about a single compressor component.

GetCodecNameList (page 652)
Retrieves a list of installed compressor components or types.

Image Compression Manager Utility Functions

ICMDecompressComplete (page 675)
Signals the completion of a decompression operation.

ICMShieldSequenceCursor (page 681)
Hides the cursor during decompression operations.

Image Transcoder Support

ImageTranscodeDisposeFrameData (page 685)
Disposes transcoded image data.

ImageTranscodeFrame (page 685)
Transcodes a frame of image data.

ImageTranscodeSequenceBegin (page 686)
Initiates an image transcoder sequence operation.

ImageTranscodeSequenceEnd (page 687)
Ends an image transcoder sequence operation.

Making Thumbnail Pictures

MakeThumbnailFromPicture (page 691)
Creates a thumbnail picture from a specified Picture structure.

MakeThumbnailFromPictureFile (page 692)
Creates a thumbnail picture from a specified picture file.

MakeThumbnailFromPixMap (page 693)
Creates a thumbnail picture from a specified PixMap structure.

578 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Managing Matrices

ConcatMatrix (page 616)
Concatenates two matrices, combining the transformations described by both matrices into a single
matrix.

CopyMatrix (page 618)
Copies the contents of one matrix into another matrix.

EqualMatrix (page 636)
Compares two matrices and returns a result that indicates whether the matrices are equal.

GetMatrixType (page 669)
Obtains information about a matrix.

InverseMatrix (page 687)
Creates a new matrix that is the inverse of a specified matrix.

MapMatrix (page 694)
Alters an existing matrix so that it defines a transformation from one rectangle to another.

RectMatrix (page 710)
Creates a matrix that performs the translate and scale operation described by the relationship between
two rectangles.

RotateMatrix (page 712)
Modifies the contents of a matrix so that it defines a rotation operation.

ScaleMatrix (page 713)
Modifies the contents of a matrix so that it defines a scaling operation.

SetIdentityMatrix (page 729)
Sets the contents of a matrix so that it performs no transformation.

SkewMatrix (page 731)
Modifies the contents of a matrix so that it defines a skew transformation.

TranslateMatrix (page 737)
Adds a translation value to a specified matrix.

Obtaining a Graphics Importer Instance

GetGraphicsImporterForDataRef (page 663)
Locates and opens a graphics importer component that can be used to draw the image from specified
data reference.

GetGraphicsImporterForDataRefWithFlags (page 664)
Locates and opens a graphics importer component for a data reference with flags that control the
search process.

GetGraphicsImporterForFile (page 665)
Locates and opens a graphics importer component that can be used to draw a specified file.

Functions by Task 579
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Working With Graphics Devices and Graphics Worlds

GetBestDeviceRect (page 651)
Selects the deepest of all available graphics devices, while treating 16-bit and 32-bit screens as having
equal depth.

NewImageGWorld (page 694)
Creates an offscreen graphics world.

Working With Image Descriptions

AddImageDescriptionExtension (page 586)
Adds an extension to an ImageDescription structure.

CountImageDescriptionExtensionType (page 618)
Counts the number of extensions of a given type in an ImageDescriptionHandle.

GetImageDescriptionExtension (page 668)
Returns a new handle with the data from a specified image description extension.

GetNextImageDescriptionExtensionType (page 672)
Retrieves an image description structure extension type.

QTGetPixelFormatDepthForImageDescription (page 696)
For a given pixel format, returns the depth value that should be used in image descriptions.

RemoveImageDescriptionExtension (page 711)
Removes a specified extension from an ImageDescription structure.

Working With Pictures and PICT Files

CompressPicture (page 607)
Compresses a single-frame image stored as a picture structure and places the result in another picture.

CompressPictureFile (page 609)
Compresses a single-frame image stored as a picture file and places the result in another picture file.

DrawPictureFile (page 633)
Draws an image from a specified picture file in the current graphics port.

DrawTrimmedPicture (page 634)
Draws an image that is stored as a picture into the current graphics port and trims that image to fit
a specified region.

DrawTrimmedPictureFile (page 635)
Draws an image that is stored as a picture file into the current graphics port and trims that image to
fit a specified region.

FCompressPicture (page 639)
Compresses a single-frame image stored as a picture structure and places the result in another picture,
with added control over the compression process.

FCompressPictureFile (page 641)
Compresses a single-frame image stored as a picture file and places the result in another picture file,
with added control over the compression process.

580 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

GetPictureFileHeader (page 673)
Extracts the picture frame and file header from a specified picture file.

Working With Pixel Maps

CompressImage (page 605)
Compresses a single-frame image that is currently stored as a pixel map structure.

ConvertImage (page 616)
Converts the format of a compressed image.

DecompressImage (page 619)
Decompresses a single-frame image into a pixel map structure.

FCompressImage (page 637)
Compresses a single-frame image that is currently stored as a pixel map structure, with added control
over the compression process.

FDecompressImage (page 643)
Decompresses a single-frame image into a pixel map structure, with added control over the
decompression process.

GetImageDescriptionCTable (page 667)
Gets the custom color table for an image.

SetImageDescriptionCTable (page 730)
Updates the custom ColorTable structure for an image.

TrimImage (page 738)
Adjusts a compressed image to the boundaries defined by a specified rectangle.

Working With Sequences

CDSequenceBusy (page 589)
Checks the status of an asynchronous compression or decompression operation.

CDSequenceChangedSourceData (page 589)
Notifies the compressor that the image source data has changed.

CDSequenceDisposeDataSource (page 590)
Disposes of a data source.

CDSequenceDisposeMemory (page 590)
Disposes of memory allocated by the codec.

CDSequenceEnd (page 591)
Indicates the end of processing for an image sequence.

CDSequenceEquivalentImageDescription (page 591)
Reports whether two image descriptions are the same.

CDSequenceFlush (page 593)
Stops a decompression sequence, aborting processing of any queued frames.

CDSequenceInvalidate (page 594)
Notifies the Image Compression Manager that the destination port for the given image decompression
sequence has been invalidated.

Functions by Task 581
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

CDSequenceNewDataSource (page 595)
Creates a new data source.

CDSequenceNewMemory (page 597)
Requests codec-allocated memory.

CDSequenceSetSourceData (page 598)
Sets data in a new frame to a specific data source.

CompressSequenceBegin (page 609)
Signals the beginning of the process of compressing a sequence of frames.

CompressSequenceFrame (page 612)
Compresses one of a sequence of frames.

DecompressSequenceBegin (page 621)
Obsolete. See DecompressSequenceBeginS.

DecompressSequenceBeginS (page 622)
Sends a sample image to a decompressor.

DecompressSequenceFrame (page 624)
Obsolete. See DecompressSequenceFrameS.

DecompressSequenceFrameS (page 625)
Queues a frame for decompression and specifies the size of the compressed data; new applications
should use DecompressSequenceFrameWhen.

DecompressSequenceFrameWhen (page 626)
Queues a frame for decompression and specifies the time at which decompression will begin.

SetSequenceProgressProc (page 731)
Installs a progress procedure for a sequence.

Working With the StdPix Function

GetCompressedPixMapInfo (page 654)
Retrieves information about a compressed image.

SetCompressedPixMapInfo (page 714)
Stores information about a compressed image for StdPix.

StdPix (page 732)
Extends the grafProcs field of the CGrafPort structure to support compressed data, mattes, matrices,
and pixel maps, letting you intercept image data in compressed form before it is decompressed and
displayed.

Working With Video Fields

ImageFieldSequenceBegin (page 682)
Initiates an image field sequence operation and specifies the input and output data format.

ImageFieldSequenceEnd (page 683)
Ends an image field sequence operation.

ImageFieldSequenceExtractCombine (page 683)
Performs field operations on video data.

582 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Supporting Functions

CDSequenceEquivalentImageDescriptionS (page 592)
Undocumented

CDSequenceGetDataSource (page 594)
Gets a data source for a decompression sequence.

CDSequenceSetSourceDataQueue (page 599)
Sets a data queue as the source for a decompression sequence.

CDSequenceSetTimeBase (page 599)
Sets a time base for a decompression sequence.

CompAdd (page 601)
Undocumented

CompCompare (page 601)
Undocumented

CompDiv (page 602)
Undocumented

CompFixMul (page 603)
Undocumented

CompMul (page 603)
Undocumented

CompMulDiv (page 604)
Undocumented

CompMulDivTrunc (page 604)
Undocumented

CompNeg (page 605)
Undocumented

CompShift (page 614)
Undocumented

CompSquareRoot (page 615)
Undocumented

CompSub (page 615)
Undocumented

FixExp2 (page 646)
Undocumented

FixLog2 (page 647)
Undocumented

FixMulDiv (page 647)
Undocumented

FixPow (page 648)
Undocumented

FracSinCos (page 648)
Undocumented

GetCSequenceFrameNumber (page 657)
Returns the current frame number of the specified sequence.

Functions by Task 583
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

GetCSequenceKeyFrameRate (page 658)
Determines the current key frame rate of a sequence.

GetDSequenceMatrix (page 661)
Gets the matrix that was specified for a decompression sequence by a call to SetDSequenceMatrix,
or that was set at DecompressSequenceBegin.

GetDSequenceNonScheduledDisplayDirection (page 661)
Returns the display direction for a decompress sequence.

GetDSequenceNonScheduledDisplayTime (page 662)
Gets the display time for a decompression sequence.

GetGraphicsImporterForFileWithFlags (page 666)
Locates and opens a graphics importer component for a file with flags that control the search process.

HitTestDSequenceData (page 674)
Undocumented

ICMDecompressCompleteS (page 676)
Undocumented

ICMGetPixelFormatInfo (page 677)
Retrieves pixel format information.

ICMSequenceGetChainMember (page 677)
Undocumented

ICMSequenceGetInfo (page 678)
Gets multiprocessing properties for compression and decompression sequences.

ICMSequenceLockBits (page 679)
Undocumented

ICMSequenceSetInfo (page 679)
Sets multiprocessing properties for compression and decompression sequences.

ICMSequenceUnlockBits (page 680)
Undocumented

ICMSetPixelFormatInfo (page 681)
Lets you define your own pixel format.

MakeImageDescriptionForPixMap (page 690)
Fills out an ImageDescription structure corresponding to a PixMap structure.

QTGetFileNameExtension (page 696)
Gets the extension to a file name.

QTGetPixelSize (page 697)
Returns the bits per pixel for a given pixel format.

QTGetPixMapHandleGammaLevel (page 698)
Retrieves the current PixMap extension's gamma level setting.

QTGetPixMapHandleRequestedGammaLevel (page 698)
Retrieves the current PixMap extension's requested gamma level setting.

QTGetPixMapHandleRowBytes (page 699)
Gets the rowBytes value for a pixel map accessed by a handle.

QTGetPixMapPtrGammaLevel (page 699)
Retrieves the current PixMap extension's gamma level setting.

584 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

QTGetPixMapPtrRequestedGammaLevel (page 700)
Retrieves the current PixMap extension's gamma level setting.

QTGetPixMapPtrRowBytes (page 700)
Gets the rowBytes value for a pixel map accessed by a pointer.

QTNewGWorld (page 701)
Creates an offscreen graphics world that may have a non-Macintosh pixel format.

QTNewGWorldFromPtr (page 703)
Wraps a graphics world and pixel map structure around an existing block of memory containing an
image.

QTSetPixMapHandleGammaLevel (page 704)
Sets the gamma level of a pixel map.

QTSetPixMapHandleRequestedGammaLevel (page 705)
Sets the requested gamma level of a pixel map.

QTSetPixMapHandleRowBytes (page 706)
Sets the rowBytes value for a pixel map accessed by a handle.

QTSetPixMapPtrGammaLevel (page 706)
Sets the gamma level of a pixel map.

QTSetPixMapPtrRequestedGammaLevel (page 707)
Sets the requested gamma level of a pixel map.

QTSetPixMapPtrRowBytes (page 708)
Sets the rowBytes value for a pixel map accessed by a pointer.

QTUpdateGWorld (page 708)
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world
with a non-Macintosh pixel format.

QuadToQuadMatrix (page 710)
Defines a matrix that maps between four input points and four output points.

ReplaceDSequenceImageDescription (page 712)
Undocumented

SetCSequenceFrameNumber (page 717)
Informs the compressor in use for the specified sequence that frames are being compressed out of
order.

SetDSequenceFlags (page 723)
Sets data loading flags.

SetDSequenceNonScheduledDisplayDirection (page 726)
Sets the display direction for a decompress sequence.

SetDSequenceNonScheduledDisplayTime (page 726)
Sets the display time for a decompression sequence.

UnsignedFixMulDiv (page 739)
Performs multiplications and divisions on unsigned fixed-point numbers.

Functions by Task 585
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Functions

AddFilePreview
Adds a preview to a file.

OSErr AddFilePreview (
 short resRefNum,
 OSType previewType,
 Handle previewData
);

Parameters
resRefNum

The resource file for this operation. You must have opened this resource file with write permission.
If there is a preview in the specified file, the Movie Toolbox replaces that preview with a new one.

previewType
The resource type to be assigned to the preview. This type should correspond to the type of data
stored in the preview. For example, if you have created a QuickDraw picture that you want to use as
a preview for a file, you should set the previewType parameter to 'PICT'.

previewData
A handle to the preview data. For example, if the preview data is a picture, you would provide a
picture handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must have created the preview data yourself. If the specified file already has a preview defined, the
AddFilePreview function replaces it with the new preview.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMusicToo

Declared In
ImageCompression.h

AddImageDescriptionExtension
Adds an extension to an ImageDescription structure.

586 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr AddImageDescriptionExtension (
 ImageDescriptionHandle desc,
 Handle extension,
 long idType
);

Parameters
desc

A handle to the ImageDescription structure to add the extension to.

extension
The handle containing the extension data.

idType
A four-byte signature identifying the type of data being added to the ImageDescription.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows the application to add custom data to an ImageDescriptionHandle. This data could
be specific to the compressor component referenced by the ImageDescription structure.

Special Considerations

The Image Compression Manager makes a copy of the data referred to by the extension parameter. Thus,
your application should dispose its copy of the data when it is no longer needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

AlignScreenRect
Aligns a specified rectangle to the strictest screen that the rectangle intersects.

void AlignScreenRect (
 Rect *rp,
 ICMAlignmentProcRecordPtr alignmentProc
);

Parameters
rp

A pointer to a rectangle defined in global screen coordinates.

alignmentProc
Points to your own alignment behavior function. Set this parameter to NIL to use the standard
behavior.

Discussion
For a specification of your alignment function, see ICMAlignmentProc.

Functions 587
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

AlignWindow
Moves a specified window to the nearest optimal alignment position.

void AlignWindow (
 WindowRef wp,
 Boolean front,
 const Rect *alignmentRect,
 ICMAlignmentProcRecordPtr alignmentProc
);

Parameters
wp

Points to the window to be aligned.

front
The frontmost window. If the front parameter is TRUE and the window specified in the wp parameter
isn't the active window, AlignWindow makes it the active window.

alignmentRect
A pointer to a rectangle in window coordinates that allows you to align the window to a rectangle
within the window. Set this parameter to NIL to align using the bounds of the window.

alignmentProc
Points to a function that allows you to provide your own alignment behavior. Set this parameter to
NIL to use the standard behavior.

Discussion
For a specification of your alignment function, see ICMAlignmentProc.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
MakeEffectMovie
MovieGWorlds
QTCarbonShell
SimpleVideoOut

Declared In
ImageCompression.h

588 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

CDSequenceBusy
Checks the status of an asynchronous compression or decompression operation.

OSErr CDSequenceBusy (
 ImageSequence seqID
);

Parameters
seqID

Contains the unique sequence identifier that was returned by DecompressSequenceBegin (page
621) or CompressSequenceBegin (page 609).

Return Value
If there is no asynchronous operation in progress, CDSequenceBusy returns a 0 result code. If there is an
asynchronous operation in progress, the result code is 1. Negative result codes indicate an error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceChangedSourceData
Notifies the compressor that the image source data has changed.

OSErr CDSequenceChangedSourceData (
 ImageSequenceDataSource sourceID
);

Parameters
sourceID

Contains the source identifier of the data source.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to indicate that the image has changed but the data pointer to that image has not changed.
For example, if the data pointer points to the base address of a PixMap structure, the image in the PixMap
can change, but the data pointer remains constant.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 589
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

CDSequenceDisposeDataSource
Disposes of a data source.

OSErr CDSequenceDisposeDataSource (
 ImageSequenceDataSource sourceID
);

Parameters
sourceID

The data source identifier that was returned by the CDSequenceNewDataSource (page 595) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to dispose of a data source created by the CDSequenceNewDataSource (page 595) function.
All data sources are automatically disposed when the sequence they are associated with is disposed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceDisposeMemory
Disposes of memory allocated by the codec.

OSErr CDSequenceDisposeMemory (
 ImageSequence seqID,
 Ptr data
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

data
Points to the previously allocated memory block.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to release memory allocated by the CDSequenceNewMemory (page 597) function.

Special Considerations

Do not call CDSequenceDisposeMemory at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

590 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceEnd
Indicates the end of processing for an image sequence.

OSErr CDSequenceEnd (
 ImageSequence seqID
);

Parameters
seqID

Contains the unique sequence identifier that was returned by DecompressSequenceBegin (page
621) or CompressSequenceBegin (page 609).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects
qteffects.win
SGDataProcSample
VideoProcessing

Declared In
ImageCompression.h

CDSequenceEquivalentImageDescription
Reports whether two image descriptions are the same.

OSErr CDSequenceEquivalentImageDescription (
 ImageSequence seqID,
 ImageDescriptionHandle newDesc,
 Boolean *equivalent
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

Functions 591
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

newDesc
A handle to the ImageDescription structure structure that describes the compressed image.

equivalent
A pointer to a Boolean value. If the ImageDescriptionHandle provided in the newDesc parameter
is equivalent to the ImageDescription structure currently in use by the image sequence, this value
is set to TRUE. If the ImageDescriptionHandle is not equivalent, and therefore a new image
sequence must be created to display an image using the new image description, this value is set to
FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows an application to ask whether two image descriptions are the same. If they are, the
decompressor does not have to create a new image decompression sequence to display those images.

Special Considerations

The Image Compression Manager can only implement part of this function by itself. There are some fields
in the ImageDescription structure that it knows are irrelevant to the decompressor. If the Image
Compression Manager determines that there are differences in fields that may be significant to the codec,
it calls the function ImageCodecIsImageDescriptionEquivalent to ask the codec.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
ImageCompression.h

CDSequenceEquivalentImageDescriptionS
Undocumented

OSErr CDSequenceEquivalentImageDescriptionS (
 ImageSequence seqID,
 ImageDescriptionHandle newDesc,
 Boolean *equivalent,
 Boolean *canSwitch
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

592 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

newDesc
A handle to the ImageDescription structure structure that describes the compressed image.

equivalent
A pointer to a Boolean value. If the ImageDescriptionHandle provided in the newDesc parameter
is equivalent to the ImageDescription structure currently in use by the image sequence, this value
is set to TRUE. If the ImageDescriptionHandle is not equivalent, and therefore a new image
sequence must be created to display an image using the new image description, this value is set to
FALSE.

canSwitch
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceFlush
Stops a decompression sequence, aborting processing of any queued frames.

OSErr CDSequenceFlush (
 ImageSequence seqID
);

Parameters
seqID

Contains the unique sequence identifier that was returned by DecompressSequenceBegin (page
621).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is used to tell a decompressor component to stop processing of any queued scheduled
asynchronous decompression. This is useful when several frames have been queued for decompression in
the future and the application needs to suspend playback of the sequence.

For any outstanding frames, your application's completion routine, passed to
DecompressSequenceFrameWhen (page 626), will be called with an error result of -1, indicating that the
frame was cancelled. If any frames are currently being decompressed and cannot be cancelled,
CDSequenceFlush waits until the frame has finished decompressing before returning.

Version Notes
Introduced in QuickTime 2.0.

Availability
Available in Mac OS X v10.0 and later.

Functions 593
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

CDSequenceGetDataSource
Gets a data source for a decompression sequence.

OSErr CDSequenceGetDataSource (
 ImageSequence seqID,
 ImageSequenceDataSource *sourceID,
 OSType sourceType,
 long sourceInputNumber
);

Parameters
seqID

The image sequence that this source is associated with.

sourceID
A pointer to the source reference identifying this source.

sourceType
A four-character code describing how the input will be used. This value is passed by
CDSequenceNewDataSource (page 595) when the source is created.

sourceInputNumber
A value passed by CDSequenceNewDataSource (page 595) when the source is created.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceInvalidate
Notifies the Image Compression Manager that the destination port for the given image decompression
sequence has been invalidated.

OSErr CDSequenceInvalidate (
 ImageSequence seqID,
 RgnHandle invalRgn
);

Parameters
seqID

Contains the unique sequence identifier that was returned by DecompressSequenceBegin (page
621).

594 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

invalRgn
A handle to the region specifying the invalid portion of the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to force the Image Compression Manager to redraw the screen bits on the next
decompression operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceNewDataSource
Creates a new data source.

OSErr CDSequenceNewDataSource (
 ImageSequence seqID,
 ImageSequenceDataSource *sourceID,
 OSType sourceType,
 long sourceInputNumber,
 Handle dataDescription,
 ICMConvertDataFormatUPP transferProc,
 void *refCon
);

Parameters
seqID

The unique sequence identifier that was returned by the DecompressSequenceBegin (page 621)
function.

sourceID
Returns the new data source identifier.

sourceType
A four-character code describing how the input will be used. This code is usually derived from the
information returned by the codec. For example, if a mask plane was passed, this field might contain
'mask'.

sourceInputNumber
More than one instance of a given source type may exist. The first occurrence should have a source
input number of 1, the second a source input number of 2, and so on.

dataDescription
A handle to a data structure describing the input data. For compressed image data, this is an
ImageDescriptionHandle.

Functions 595
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

transferProc
A routine that allows the application to transform the type of the input data to the kind of data
preferred by the codec. The client of the codec passes the source data in the form most convenient
for it. If the codec needs the data in another form, it can negotiate with the client or directly with the
Image Compression Manager to obtain the required data format.

refCon
A reference constant to be passed to the transfer procedure. Use this parameter to point to a data
structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns a sourceID parameter which must be passed to all other functions that reference the
source. All data sources are automatically disposed when the sequence they are associated with is disposed.

// CDSequenceNewDataSource coding example
// See "Discovering QuickTime," page 309
{
 ImageSequenceDataSource lSrc1 =0;
 // Store a description of the first GWorld in hImageDesc1
 nErr =MakeImageDescriptionForPixMap(GetGWorldPixMap(gWorld1),
 &hImageDesc1);
 // Create a source from the GWorld description.
 nErr =CDSequenceNewDataSource(gEffectSequenceID,
 &lSrc1,
 'srcA',
 1,
 (Handle)hImageDesc1,
 NIL,
 0);
 // Set the data for source srcA to be the pixMap of gWorld1
 CDSequenceSetSourceData(lSrc1,
 GetPixBaseAddr(GetGWorldPixMap(gWorld1)),
 (**hImageDesc1).dataSize);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
VideoProcessing
vrscript.win

Declared In
ImageCompression.h

596 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

CDSequenceNewMemory
Requests codec-allocated memory.

OSErr CDSequenceNewMemory (
 ImageSequence seqID,
 Ptr *data,
 Size dataSize,
 long dataUse,
 ICMMemoryDisposedUPP memoryGoneProc,
 void *refCon
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

data
Returns a pointer to the allocated memory.

dataSize
The requested size of the data buffer.

dataUse
A code (see below) that indicates how the memory is to be used. For example, the memory may be
used to store compressed image or mask plane data, or used as an offscreen image buffer. If there is
no benefit to storing a particular kind of data in codec memory, the codec should deny the request
for the memory allocation. See these constants:

memoryGoneProc
A pointer to a callback function that will be called before disposing of the memory allocated by a
codec, as described in ICMMemoryDisposedProc.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Because many hardware decompression boards contain dedicated on-board memory, significant performance
gains can be realized if this memory is used to store data before it is decompressed. When memory is allocated,
a callback function must be provided, as described in ICMMemoryDisposedProc. The decompressor can
dispose of all memory it has allocated at any time, but it calls the callback routine before disposing of the
memory. A callback procedure is required because memory on the hardware decompression board may be
limited. If the decompressor cannot deallocate memory as required, it is possible that an idle decompressor
instance may be holding a large amount of memory, denying those resources to the currently active
decompressor instance. When the callback procedure is called, the memory is still available. This allows any
pending reads into the block to be canceled before the block is disposed. The decompressor disposing the
memory must ensure that it is not disposing a block that it is currently using (that is, a block that contains
the currently decompressing frame). To dispose of the memory, use CDSequenceDisposeMemory (page
590).

Special Considerations

Decompressor memory must never be disposed at interrupt time.

Functions 597
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceSetSourceData
Sets data in a new frame to a specific data source.

OSErr CDSequenceSetSourceData (
 ImageSequenceDataSource sourceID,
 void *data,
 long dataSize
);

Parameters
sourceID

Contains the source identifier of the data source.

data
Points to the data. This pointer must contain a 32-bit clean address.

dataSize
The size of the data buffer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called to set data in a new frame to a specific source. For example, as a new frame of
compressed data arrives at a source, CDSequenceSetSourceData will be called.

// CDSequenceSetSourceData coding example
// See "Discovering QuickTime," page 309
{
 ImageSequenceDataSource lSrc1 =0;
 // Store a description of the first GWorld in hImageDesc1
 nErr =MakeImageDescriptionForPixMap(GetGWorldPixMap(gWorld1),
 &hImageDesc1);
 // Create a source from the GWorld description.
 nErr =CDSequenceNewDataSource(gEffectSequenceID,
 &lSrc1,
 'srcA',
 1,
 (Handle)hImageDesc1,
 NIL,
 0);
 // Set the data for source srcA to be the pixMap of gWorld1
 CDSequenceSetSourceData(lSrc1,
 GetPixBaseAddr(GetGWorldPixMap(gWorld1)),
 (**hImageDesc1).dataSize);
}

598 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
VideoProcessing
vrscript.win

Declared In
ImageCompression.h

CDSequenceSetSourceDataQueue
Sets a data queue as the source for a decompression sequence.

OSErr CDSequenceSetSourceDataQueue (
 ImageSequenceDataSource sourceID,
 QHdrPtr dataQueue
);

Parameters
sourceID

Contains the source identifier of the data source.

dataQueue
A pointer to a QHdr structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CDSequenceSetTimeBase
Sets a time base for a decompression sequence.

Functions 599
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr CDSequenceSetTimeBase (
 ImageSequence seqID,
 void *base
);

Parameters
seqID

A unique sequence identifier that was returned by CompressSequenceBegin (page 609).

base
A pointer to the time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When you run a visual effect outside a movie, you must designate a time base that will be used when the
effect is run. The following code illustrates this use of CDSequenceSetTimeBase:

// CDSequenceSetTimeBase coding example
// See "Discovering QuickTime," page 310
timeBase =NewTimeBase();
SetTimeBaseRate(timeBase, 0);
CDSequenceSetTimeBase(gEffectSequenceID, timeBase);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
VideoProcessing
vrscript.win

Declared In
ImageCompression.h

CodecManagerVersion
Determines the version of the installed Image Compression Manager.

OSErr CodecManagerVersion (
 long *version
);

Parameters
version

A pointer to a long integer that is to receive the version information. The Image Compression Manager
returns its version number into this location. The version number is a long integer value.

600 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the version information as a long integer value. Use this function to retrieve the version
number associated with the Image Compression Manager that is installed on a particular computer.

Special Considerations

The Image Compression Manager provides a number of functions that allow your application to obtain
information about the facilities available for image compression or about compressed images. Your application
may use some of these functions to select a specific compressor or decompressor for a given operation or
to determine how much memory to allocate to receive a decompressed image. In addition, your application
may use some of these functions to determine the capabilities of the components that are available on the
user's computer system. You can then condition the options your program makes available to the user based
on the user's system configuration.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompAdd
Undocumented

void CompAdd (
 wide *src,
 wide *dst
);

Parameters
src

Undocumented

dst
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompCompare
Undocumented

Functions 601
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

long CompCompare (
 const wide *a,
 const wide *minusb
);

Parameters
a

Undocumented

minusb
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompDiv
Undocumented

long CompDiv (
 wide *numerator,
 long denominator,
 long *remainder
);

Parameters
numerator

Undocumented

denominator
Undocumented

remainder
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

602 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

CompFixMul
Undocumented

void CompFixMul (
 wide *compSrc,
 Fixed fixSrc,
 wide *compDst
);

Parameters
compSrc

Undocumented

fixSrc
Undocumented

compDst
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompMul
Undocumented

void CompMul (
 long src1,
 long src2,
 wide *dst
);

Parameters
src1

Undocumented

src2
Undocumented

dst
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 603
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

CompMulDiv
Undocumented

void CompMulDiv (
 wide *co,
 long mul,
 long divisor
);

Parameters
co

Undocumented

mul
Undocumented

divisor
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompMulDivTrunc
Undocumented

void CompMulDivTrunc (
 wide *co,
 long mul,
 long divisor,
 long *remainder
);

Parameters
co

Undocumented

mul
Undocumented

divisor
Undocumented

remainder
Undocumented

604 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompNeg
Undocumented

void CompNeg (
 wide *dst
);

Parameters
dst

Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompressImage
Compresses a single-frame image that is currently stored as a pixel map structure.

OSErr CompressImage (
 PixMapHandle src,
 const Rect *srcRect,
 CodecQ quality,
 CodecType cType,
 ImageDescriptionHandle desc,
 Ptr data
);

Parameters
src

A handle to the image to be compressed. The image must be stored in a pixel map structure.

srcRect
A pointer to a rectangle defining the portion of the image to compress.

Functions 605
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

cType
A compressor type; see Codec Identifiers.

desc
A handle that is to receive a formatted ImageDescription structure. The Image Compression
Manager resizes this handle for the returned image description structure. Your application should
store this image description with the compressed image data.

data
Points to a location to receive the compressed image data. It is your program's responsibility to make
sure that this location can receive at least as much data as indicated by the
GetMaxCompressionSize (page 670) function. The Image Compression Manager places the actual
size of the compressed image into the dataSize field of the ImageDescription structure structure
referred to by the desc parameter. This pointer must contain a 32-bit clean address.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The following code sample illustrates the process of compressing and decompressing a pixel map.

// CompressImage coding example
// See "Discovering QuickTime," page 286
PicHandle GetQTCompressedPict (PixMapHandle hpmImage)
{
 long lMaxCompressedSize =0;
 Handle hCompressedData =NIL;
 Ptr pCompressedData;
 ImageDescriptionHandle hImageDesc =NIL;
 OSErr nErr;
 PicHandle hpicPicture =NIL;
 Rect rectImage =(**hpmImage).bounds;
 CodecType dwCodecType =kJPEGCodecType;
 CodecComponent codec =(CodecComponent)anyCodec;
 CodecQ dwSpatialQuality =codecNormalQuality;
 short nDepth =0; // let ICM choose depth
 nErr =GetMaxCompressionSize(hpmImage, &rectImage, nDepth,
 dwSpatialQuality,
 dwCodecType,
 (CompressorComponent)codec,
 &lMaxCompressedSize);
 if (nErr !=noErr)
 return NIL;

 hImageDesc =(ImageDescriptionHandle)NewHandle(4);
 hCompressedData =NewHandle(lMaxCompressedSize);
 if ((hCompressedData !=NIL) && (hImageDesc !=NIL)) {
 MoveHHi(hCompressedData);

606 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 HLock(hCompressedData);
 pCompressedData =StripAddress(*hCompressedData);

 nErr =CompressImage(hpmImage,
 &rectImage,
 dwSpatialQuality,
 dwCodecType,
 hImageDesc,
 pCompressedData);

 if (nErr ==noErr) {
 ClipRect(&rectImage);
 hpicPicture =OpenPicture(&rectImage);
 nErr =DecompressImage(pCompressedData,
 hImageDesc,
 hpmImage,
 &rectImage,
 &rectImage,
 srcCopy,
 NIL);
 ClosePicture();
 }
 if (theErr || (GetHandleSize((Handle)hpicPicture) ==
 sizeof(Picture))) {
 KillPicture(hpicPicture);
 hpicPicture =NIL;
 }
 }
 if (hImageDesc !=NIL)
 DisposeHandle((Handle)hImageDesc);
 if (hCompressedData !=NIL)
 DisposeHandle(hCompressedData);
 return hpicPicture;
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AddFrameToMovie
CocoaCreateMovie
Fiendishthngs
qteffects.win
ThreadsImportMovie

Declared In
ImageCompression.h

CompressPicture
Compresses a single-frame image stored as a picture structure and places the result in another picture.

Functions 607
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr CompressPicture (
 PicHandle srcPicture,
 PicHandle dstPicture,
 CodecQ quality,
 CodecType cType
);

Parameters
srcPicture

A handle to the source image, stored as a picture.

dstPicture
A handle to the destination for the compressed image. The compressor resizes this handle for the
result data.

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

cType
You must set this parameter to a valid compressor identifier; see Codec Identifiers. If the value
passed in is 0, or 'raw ', and the source picture is compressed, the destination picture is created as
an uncompressed picture and does not require QuickTime for its display.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function compresses only image data. Any other types of data in the picture, such as text, graphics
primitives, and previously compressed images, are not modified in any way and are passed through to the
destination picture. This function supports parameters governing image quality and compressor type. The
compressor infers the other compression parameters from the image data in the source picture.

Special Considerations

If a picture with multiple pixel maps and other graphical objects is passed, the pixel maps will be compressed
individually and the other graphic objects will not be affected. This function does not use the graphics port.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JPEG File Interchange Format

Declared In
ImageCompression.h

608 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

CompressPictureFile
Compresses a single-frame image stored as a picture file and places the result in another picture file.

OSErr CompressPictureFile (
 short srcRefNum,
 short dstRefNum,
 CodecQ quality,
 CodecType cType
);

Parameters
srcRefNum

A file reference number for the source 'PICT' file.

dstRefNum
A file reference number for the destination 'PICT' file. Note that the compressor overwrites the
contents of the file referred to by dstRefNum. You must open this file with write permission. The
destination file can be the same as the source file specified by the srcRefNum parameter.

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

cType
A compressor type. You must set this parameter to a valid compressor type constant; see Codec
Identifiers. If the value passed in is 0, or 'raw-', and the source picture is compressed, the
destination picture is created as an uncompressed picture and does not require QuickTime to be
displayed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function supports parameters governing image quality and compressor type. The compressor infers the
other compression parameters from the image data in the source picture file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompressSequenceBegin
Signals the beginning of the process of compressing a sequence of frames.

Functions 609
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr CompressSequenceBegin (
 ImageSequence *seqID,
 PixMapHandle src,
 PixMapHandle prev,
 const Rect *srcRect,
 const Rect *prevRect,
 short colorDepth,
 CodecType cType,
 CompressorComponent codec,
 CodecQ spatialQuality,
 CodecQ temporalQuality,
 long keyFrameRate,
 CTabHandle ctable,
 CodecFlags flags,
 ImageDescriptionHandle desc
);

Parameters
seqID

A pointer to a field to receive the unique identifier for this sequence. You must supply this identifier
to all subsequent Image Compression Manager functions that relate to this sequence.

src
A handle to a pixel map that will contain the image to be compressed. The image must be stored in
a pixel map structure.

prev
A handle to a pixel map that will contain a previous image. The compressor uses this buffer to store
a previous image against which the current image (stored in the pixel map referred to by the src
parameter) is compared when performing temporal compression. This pixel map must be created at
the same depth and with the same color table as the source image. The compressor manages the
contents of this pixel map based upon several considerations, such as the key frame rate and the
degree of difference between compared images. If you want the compressor to allocate this pixel
map or if you do not want to perform temporal compression (that is, you have set the value of the
temporalQuality parameter to 0), set this parameter to NIL.

srcRect
A pointer to a rectangle defining the portion of the image to compress. The compressor applies this
rectangle to the image stored in the buffer referred to by the src parameter.

prevRect
A pointer to a rectangle defining the portion of the previous image to use for temporal compression.
The compressor uses this portion of the previous image as the basis of comparison with the current
image. The compressor ignores this parameter if you have not provided a buffer for previous images.
This rectangle must be the same size as the source rectangle, which is specified with the srcRect
parameter.

colorDepth
The depth at which the sequence is likely to be viewed. Compressors may use this as an indication
of the color or grayscale resolution of the compressed images. If you set this parameter to 0, the
Image Compression Manager determines the appropriate value for the source image. Values of 1, 2,
4, 8, 16, 24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40
indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine
which depths are supported by a given compressor by examining the compressor information structure
returned by the GetCodecInfo (page 652) function.

cType
You must set this parameter to a valid compressor type constant. See Codec Identifiers.

610 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

codec
Specify a particular compressor by setting this parameter to its compressor identifier. Alternatively,
you may use a special identifier (see below). Specifying a component instance may be useful if you
have previously set some parameter on a specific instance of a codec field and want to make sure
that the specified instance is used for that operation. See these constants:

spatialQuality
A pointer to a field containing a constant (see below) that defines the desired compressed image
quality. You can change the value of this parameter for an active sequence by calling
SetCSequenceQuality (page 720). See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A pointer to a field containing a constant (see below) that defines the desired temporal quality. This
parameter governs the level of compression you desire with respect to information between successive
frames in the sequence. Set to 0 if you do not want temporal compression. You can change the value
of this parameter for an active sequence by calling SetCSequenceQuality (page 720).

keyFrameRate
Specifies the maximum number of frames allowed between key frames. The compressor determines
the optimum placement for key frames based upon the amount of redundancy between adjacent
images in the sequence. Consequently, the compressor may insert key frames more frequently than
you have requested. However, the compressor never places fewer key frames than is indicated by
the setting of the keyFrameRate parameter. The compressor ignores this parameter if you have not
requested temporal compression (that is, you have set the temporalQuality parameter to 0). If you
pass in 0 in this parameter, this indicates that there are no key frames in the sequence. If you pass in
any other number, it specifies the number of non-key frames between key frames. Set this parameter
to 1 to specify all key frames, to 2 to specify every other frame as a key frame, to 3 to specify every
third frame as a key frame, and so forth. Your application may change the key frame rate for an active
sequence by calling SetCSequenceKeyFrameRate (page 718).

ctable
A handle to a custom color lookup table. Your program may use this parameter to indicate a custom
color lookup table to be used with this image. If the value of the colorDepth parameter is less than
or equal to 8 and the custom color lookup table is different from that of the source pixel map (that
is, the ctSeed field values differ in the two pixel maps), the compressor remaps the colors of the
image to the custom colors. If you set the colorDepth parameter to 16, 24, or 32, the compressor
stores the custom color table with the compressed image. The compressor may use the table to
specify the best colors to use when displaying the image at lower bit depths. The compressor ignores
the ctable parameter when colorDepth is set to 33, 34, 36, or 40. If you set this parameter to NIL,
the compressor uses the color lookup table from the source pixel map.

Functions 611
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

flags
Contains flags (see below) that provide further control information. You must set either
codecFlagUpdatePrevious or codecFlagUpdatePreviousComp to 1. Set unused flags to 0. See
these constants:

codecFlagUpdatePrevious

codecFlagUpdatePreviousComp

codecFlagWasCompressed

desc
A handle that is to receive a formatted ImageDescription structure. The Image Compression
Manager resizes this handle for the returned image description structure. Your application should
store this image description with the compressed sequence. During the compression operation, the
Image Compression Manager and the compressor component update the contents of this image
description. Consequently, you should not store the image description until the sequence has been
completely processed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The Image Compression Manager prepares for a sequence-compression operation by reserving appropriate
system resources. Hence you must call CompressSequenceBegin before you call
CompressSequenceFrame (page 612).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

Declared In
ImageCompression.h

CompressSequenceFrame
Compresses one of a sequence of frames.

612 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr CompressSequenceFrame (
 ImageSequence seqID,
 PixMapHandle src,
 const Rect *srcRect,
 CodecFlags flags,
 Ptr data,
 long *dataSize,
 UInt8 *similarity,
 ICMCompletionProcRecordPtr asyncCompletionProc
);

Parameters
seqID

Unique sequence identifier that was returned by CompressSequenceBegin (page 609).

src
A handle to a pixel map that contains the image to be compressed. The image must be stored in a
pixel map structure.

srcRect
A pointer to a rectangle defining the portion of the image to compress. The compressor applies this
rectangle to the image stored in the buffer referred to by the src parameter.

flags
Specifies flags (see below) that provide further control information. You must set either
codecFlagUpdatePrevious or codecFlagUpdatePreviousComp to 1. Set unused flags to 0. See
these constants:

codecFlagUpdatePrevious

codecFlagWasCompressed

codecFlagUpdatePreviousComp

codecFlagForceKeyFrame

codecFlagLiveGrab

data
Points to a location to receive the compressed image data. It is your program's responsibility to make
sure that this location can receive at least as much data as indicated by the
GetMaxCompressionSize (page 670) function. The Image Compression Manager places the actual
size of the compressed image into the field referred to by the dataSize parameter. This pointer must
contain a 32-bit clean address.

dataSize
A pointer to a field that is to receive the size, in bytes, of the compressed image.

similarity
A pointer to a field that is to receive a similarity value. The CompressSequenceFrame function returns
a value that indicates the similarity of the current frame to the previous frame. A value of 0 indicates
that the current frame is a key frame in the sequence. A value of 255 indicates that the current frame
is identical to the previous frame. Values from 1 through 254 indicate relative similarity, ranging from
very different (1) to very similar (254).

asyncCompletionProc
Points to an ICMCompletionProc callback. The compressor calls your completion function when an
asynchronous compression operation is complete. You can cause the compression to be performed
asynchronously by specifying a completion function if the compressor supports asynchronous
compression.

Functions 613
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The Image Compression Manager prepares for a sequence-compression operation by reserving appropriate
system resources. Hence you must call CompressSequenceBegin (page 609) before you call
CompressSequenceFrame.

Special Considerations

If you specify asynchronous operation, you must not read the compressed data until the compressor indicates
that the operation is complete by calling your completion function. Set asyncCompletionProc to NIL to
specify synchronous compression. If you set asyncCompletionProc to -1, the operation is performed
asynchronously but the compressor does not call your completion function. If the asyncCompletionProc
parameter is not NIL, the following conditions are in effect: the pixels in the source image must stay valid
until the completion function is called with its codecCompletionSource flag, and the resulting compressed
data is not valid until it is called with its codecCompletionDest flag set.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

Declared In
ImageCompression.h

CompShift
Undocumented

void CompShift (
 wide *src,
 short shift
);

Parameters
src

Undocumented

shift
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

614 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

CompSquareRoot
Undocumented

unsigned long CompSquareRoot (
 const wide *src
);

Parameters
src

Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CompSub
Undocumented

void CompSub (
 wide *src,
 wide *dst
);

Parameters
src

Undocumented

dst
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Declared In
ImageCompression.h

Functions 615
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ConcatMatrix
Concatenates two matrices, combining the transformations described by both matrices into a single matrix.

void ConcatMatrix (
 const MatrixRecord *a,
 MatrixRecord *b
);

Parameters
a

A pointer to the source matrix.

b
A pointer to the destination matrix. The ConcatMatrix function performs a matrix multiplication
operation on the two matrices and leaves the result in the matrix specified by this parameter.

Discussion
This is a matrix multiplication operation, as a result of which [B] =[B] x [A]. Note that matrix multiplication is
not commutative.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode

Declared In
ImageCompression.h

ConvertImage
Converts the format of a compressed image.

OSErr ConvertImage (
 ImageDescriptionHandle srcDD,
 Ptr srcData,
 short colorDepth,
 CTabHandle ctable,
 CodecQ accuracy,
 CodecQ quality,
 CodecType cType,
 CodecComponent codec,
 ImageDescriptionHandle dstDD,
 Ptr dstData
);

Parameters
srcDD

A handle to the ImageDescription structure that describes the compressed image.

srcData
Points to the compressed image data. This pointer must contain a 32-bit clean address.

616 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

colorDepth
The depth at which the recompressed image is likely to be viewed. Decompressors may use this as
an indication of the color or grayscale resolution of the compressed image. If you set this parameter
to 0, the Image Compression Manager determines the appropriate value for the source image. Values
of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and
40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can
determine which depths are supported by a given compressor by examining the compressor
information structure returned by the GetCodecInfo (page 652) function.

ctable
A handle to a custom color lookup table. Your program may use this parameter to indicate a custom
color lookup table to be used with this image. If the value of the colorDepth parameter is less than
or equal to 8 and the custom color lookup table is different from that of the source pixel map (that
is, the ctSeed field values differ in the two pixel maps), the compressor remaps the colors of the
image to the custom colors. If you set the colorDepth parameter to 16, 24, or 32, the compressor
stores the custom color table with the compressed image. The compressor may use the table to
specify the best colors to use when displaying the image at lower bit depths. The compressor ignores
the ctable parameter when colorDepth is set to 33, 34, 36, or 40. If you set this parameter to NIL,
the compressor uses the color lookup table from the source ImageDescription structure.

accuracy
A constant (see below) that defines the accuracy desired in the decompressed image. Values for this
parameter are on the same scale as compression quality. For a good display of still images, you should
specify at least codecHighQuality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

quality
A constant (see below) that defines the desired compressed image quality.

cType
A compressor type; see Codec Identifiers.

codec
Specify a particular compressor by setting this parameter to its compressor identifier. Alternatively,
you may use a special constant (see below). Specifying a component instance may be useful if you
have previously set some parameter on a specific instance of a codec field and want to make sure
that the specified instance is used for that operation. See these constants:

dstDD
A handle that is to receive a formatted ImageDescription structure. The Image Compression
Manager resizes this handle for the returned ImageDescription structure. Your application should
store this image description with the compressed image data.

dstData
Points to a location to receive the compressed image data. It is your program's responsibility to make
sure that this location can receive at least as much data as indicated by
GetMaxCompressionSize (page 670). The Image Compression Manager places the actual size of the
compressed image into the dataSize field of the image description referred to by the dstDD
parameter. This pointer must contain a 32-bit-clean address.

Functions 617
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The action of this function is essentially equivalent to decompressing and recompressing the image. During
the decompression operation, the decompressor uses the srcDD, srcData, and accuracy parameters. During
the subsequent compression operation, the compressor uses the colorDepth, ctable, cType, codec,
quality, dstDD, and dstData parameters.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CopyMatrix
Copies the contents of one matrix into another matrix.

void CopyMatrix (
 const MatrixRecord *m1,
 MatrixRecord *m2
);

Parameters
m1

The source matrix for the copy operation.

m2
A pointer to the destination matrix for the copy operation. CopyMatrix copies the values from the
matrix specified by the m1 parameter into this matrix.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CountImageDescriptionExtensionType
Counts the number of extensions of a given type in an ImageDescriptionHandle.

618 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr CountImageDescriptionExtensionType (
 ImageDescriptionHandle desc,
 long idType,
 long *count
);

Parameters
desc

A handle to the ImageDescription structure with the extensions to be counted.

idType
Indicates the type of extension to be counted in the specified ImageDescription structure. Set the
value of this parameter to 0 to match any extension, and return a count of all of the extensions.

count
A pointer to an integer that indicates how many extensions of the given type are in the given
ImageDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When used withGetNextImageDescriptionExtensionType (page 672), this function allows the application
to determine the total set of extensions present in the ImageDescription structure designated by desc.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DecompressImage
Decompresses a single-frame image into a pixel map structure.

OSErr DecompressImage (
 Ptr data,
 ImageDescriptionHandle desc,
 PixMapHandle dst,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle mask
);

Parameters
data

Points to the compressed image data. This pointer must contain a 32-bit clean address.

desc
A handle to the ImageDescription structure that describes the compressed image.

Functions 619
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

dst
A handle to the pixel map where the decompressed image is to be displayed. Set the current graphics
port to the port that contains this pixel map.

srcRect
A pointer to a rectangle defining the portion of the image to decompress. This rectangle must lie
within the boundary rectangle of the compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height). If you want to decompress the entire source image, set
this parameter to NIL. If the parameter is NIL, the rectangle is set to the rectangle structure of the
ImageDescription structure.

dstRect
A pointer to the rectangle into which the decompressed image is to be loaded. The compressor scales
the source image to fit into this destination rectangle.

mode
The transfer mode for the operation, as listed in Graphics Transfer Modes.

mask
A handle to a clipping region in the destination coordinate system. If specified, the compressor applies
this mask to the destination image. If you do not want to mask bits in the destination, set this
parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Note that DecompressImage is invoked through the StdPix (page 732) function. The following code sample
illustrates the process of compressing and decompressing a pixel map.

// DecompressImage coding example
// See "Discovering QuickTime," page 286
PicHandle GetQTCompressedPict (PixMapHandle hpmImage)
{
 long lMaxCompressedSize =0;
 Handle hCompressedData =NIL;
 Ptr pCompressedData;
 ImageDescriptionHandle hImageDesc =NIL;
 OSErr nErr;
 PicHandle hpicPicture =NIL;
 Rect rectImage =(**hpmImage).bounds;
 CodecType dwCodecType =kJPEGCodecType;
 CodecComponent codec =(CodecComponent)anyCodec;
 CodecQ dwSpatialQuality =codecNormalQuality;
 short nDepth =0; // let ICM choose depth
 nErr =GetMaxCompressionSize(hpmImage, &rectImage, nDepth,
 dwSpatialQuality,
 dwCodecType,
 (CompressorComponent)codec,
 &lMaxCompressedSize);
 if (nErr !=noErr)
 return NIL;

 hImageDesc =(ImageDescriptionHandle)NewHandle(4);
 hCompressedData =NewHandle(lMaxCompressedSize);
 if ((hCompressedData !=NIL) && (hImageDesc !=NIL)) {
 MoveHHi(hCompressedData);
 HLock(hCompressedData);
 pCompressedData =StripAddress(*hCompressedData);

620 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 nErr =CompressImage(hpmImage,
 &rectImage,
 dwSpatialQuality,
 dwCodecType,
 hImageDesc,
 pCompressedData);

 if (nErr ==noErr) {
 ClipRect(&rectImage);
 hpicPicture =OpenPicture(&rectImage);
 nErr =DecompressImage(pCompressedData,
 hImageDesc,
 hpmImage,
 &rectImage,
 &rectImage,
 srcCopy,
 NIL);
 ClosePicture();
 }
 if (theErr || (GetHandleSize((Handle)hpicPicture) ==
 sizeof(Picture))) {
 KillPicture(hpicPicture);
 hpicPicture =NIL;
 }
 }
 if (hImageDesc !=NIL)
 DisposeHandle((Handle)hImageDesc);
 if (hCompressedData !=NIL)
 DisposeHandle(hCompressedData);
 return hpicPicture;
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorMatching
Desktop Sprites
FastDitherUsingQT
qteffects.win
qtwiredactions

Declared In
ImageCompression.h

DecompressSequenceBegin
Obsolete. See DecompressSequenceBeginS.

Functions 621
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr DecompressSequenceBegin (
 ImageSequence *seqID,
 ImageDescriptionHandle desc,
 CGrafPtr port,
 GDHandle gdh,
 const Rect *srcRect,
 MatrixRecordPtr matrix,
 short mode,
 RgnHandle mask,
 CodecFlags flags,
 CodecQ accuracy,
 DecompressorComponent codec
);

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa - SGDataProc
DelegateOnlyComponent
ImproveYourImage
SGDataProcSample
VideoProcessing

Declared In
ImageCompression.h

DecompressSequenceBeginS
Sends a sample image to a decompressor.

OSErr DecompressSequenceBeginS (
 ImageSequence *seqID,
 ImageDescriptionHandle desc,
 Ptr data,
 long dataSize,
 CGrafPtr port,
 GDHandle gdh,
 const Rect *srcRect,
 MatrixRecordPtr matrix,
 short mode,
 RgnHandle mask,
 CodecFlags flags,
 CodecQ accuracy,
 DecompressorComponent codec
);

Parameters
seqID

A pointer to a field to receive the unique identifier for the sequence you are creating. You should use
this identifier for subsequent calls relating to this decompression sequence.

desc
A handle to the ImageDescription structure that describes the compressed image.

622 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

data
Points to the compressed image data. This pointer must contain a 32-bit clean address. Ideally, you
should pass a pointer to the first frame of the compressed image data, which lets the Image
Compression Manager do a better job of preflighting the decompression sequence. If the image data
is not available at the time of this call, you can pass NIL for this parameter and 0 for dataSize. If
you pass NIL here, then your first call to DecompressSequenceFrameWhen (page 626) may require
more setup time.

dataSize
The size of the data buffer, or 0 if you passed NIL in the data parameter.

port
Points to the CGrafPort structure for the destination image.

gdh
A handle to the GDevice structure for the destination image. You can pass NIL if the GDevice is
implicit in the port selection (for example, if it is an offscreen graphics world).

srcRect
A pointer to a Rect structure that defines the portions of the image to decompress. Pass NIL if you
want to decompress the entire source image. You can call SetDSequenceSrcRect (page 727) to
change the source rectangle for an active decompression sequence.

matrix
Points to a MatrixRecord structure that specifies how to transform the image during decompression.
Pass NIL to use the identity matrix. Your application can change the matrix for an active sequence
by calling SetDSequenceMatrix (page 724).

mode
The transfer mode for the operation. See Graphics Transfer Modes. Your application can change
the transfer mode for an active sequence by calling SetDSequenceTransferMode (page 728).

mask
A handle to a clipping region in the destination coordinate system. If specified, the compressor applies
this mask to the destination image. If you do not want to mask bits in the destination, set this
parameter to NIL. Your application can change the clipping mask for an active sequence by calling
SetDSequenceMask (page 724).

flags
Buffer allocation flags (see below). See these constants:

codecFlagUseScreenBuffer

codecFlagUseImageBuffer

accuracy
A constant (see below) that defines the desired compression accuracy. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Functions 623
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

codec
A decompressor identifier. Specify a particular decompressor by setting this parameter to its identifier.
Alternatively, you may use a special identifier (see below). Specifying a component instance may be
useful if you have previously set some parameter on a specific instance of a codec field and want to
make sure that the specified instance is used for that operation. See these constants:

Return Value
See Error Codes. Returns codecWouldOffscreenErr if codecFlagDontUseImageBuffer is set and the
codec requires an offscreen buffer to decompress to the destination port. Returns noErr if there is no error.

Discussion
This function lets you pass a compressed sample so a codec can perform preflighting before the first
DecompressSequenceFrameWhen (page 626) call. To decompress a series of images, call it once to preflight
the decompressor, make calls to DecompressSequenceFrameWhen to decompress each image in the
sequence, then call CDSequenceEnd (page 591) when you are done.

Version Notes
Introduced in QuickTime 1.6.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
qteffects.win
qtshoweffect
VideoProcessing
vrscript.win

Declared In
ImageCompression.h

DecompressSequenceFrame
Obsolete. See DecompressSequenceFrameS.

OSErr DecompressSequenceFrame (
 ImageSequence seqID,
 Ptr data,
 CodecFlags inFlags,
 CodecFlags *outFlags,
 ICMCompletionProcRecordPtr asyncCompletionProc
);

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
ConvertToMovieJr
Inside Mac ICM Code
SGDataProcSample
VideoProcessing

624 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

DecompressSequenceFrameS
Queues a frame for decompression and specifies the size of the compressed data; new applications should
use DecompressSequenceFrameWhen.

OSErr DecompressSequenceFrameS (
 ImageSequence seqID,
 Ptr data,
 long dataSize,
 CodecFlags inFlags,
 CodecFlags *outFlags,
 ICMCompletionProcRecordPtr asyncCompletionProc
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

data
Points to the compressed image data. This pointer must contain a 32-bit clean address.

dataSize
The size of the data buffer.

inFlags
Contains flags (see below) that provide further control information. See these constants:

codecFlagNoScreenUpdate

codecFlagDontOffscreen

codecFlagOnlyScreenUpdate

outFlags
Contains status flags (see below). The decompressor updates these flags at the end of the
decompression operation. See these constants:

codecFlagUsedNewImageBuffer

codecFlagUsedImageBuffer

codecFlagDontUseNewImageBuffer

codecFlagInterlaceUpdate

codecFlagCatchUpDiff

asyncCompletionProc
Points to an ICMCompletionProcRecord structure. The compressor calls your completion function
when an asynchronous decompression operation is complete. You can cause the decompression to
be performed asynchronously by specifying a completion function. If you specify asynchronous
operation, you must not read the decompressed image until the decompressor indicates that the
operation is complete by calling your completion function. Set asyncCompletionProc to NIL to
specify synchronous decompression. If you set asyncCompletionProc to -1, the operation is
performed asynchronously but the decompressor does not call your completion function.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 625
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
This function accepts the same parameters as the DecompressSequenceFrame (page 624) function, with
the addition of the dataSize parameter.

Special Considerations

New applications should use DecompressSequenceFrameWhen.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa - SGDataProc
ImproveYourImage
MungSaver
SGDataProcSample
VideoProcessing

Declared In
ImageCompression.h

DecompressSequenceFrameWhen
Queues a frame for decompression and specifies the time at which decompression will begin.

OSErr DecompressSequenceFrameWhen (
 ImageSequence seqID,
 Ptr data,
 long dataSize,
 CodecFlags inFlags,
 CodecFlags *outFlags,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 const ICMFrameTimeRecord *frameTime
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

data
Points to the compressed image data. This pointer must contain a 32-bit clean address.

dataSize
The size of the data buffer.

inFlags
Contains flags (see below) that provide further control information. See these constants:

codecFlagNoScreenUpdate

codecFlagDontOffscreen

codecFlagOnlyScreenUpdate

626 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

outFlags
Contains status flags (see below). The decompressor updates these flags at the end of the
decompression operation. See these constants:

codecFlagUsedNewImageBuffer

codecFlagUsedImageBuffer

codecFlagDontUseNewImageBuffer

codecFlagInterlaceUpdate

codecFlagCatchUpDiff

asyncCompletionProc
Points to an ICMCompletionProcRecord structure. The compressor calls your completion function
when an asynchronous decompression operation is complete. You can cause the decompression to
be performed asynchronously by specifying a completion function. If you specify asynchronous
operation, you must not read the decompressed image until the decompressor indicates that the
operation is complete by calling your completion function. Set asyncCompletionProc to NIL to
specify synchronous decompression. If you set asyncCompletionProc to -1, the operation is
performed asynchronously but the decompressor does not call your completion function.

frameTime
Points to an ICMFrameTimeRecord structure, which contains the frame's time information, including
the time at which the frame should be displayed, its duration, and the movie's playback rate. This
parameter can be NIL, in which case the decompression operation will happen immediately.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The following code snippet shows this function being used to execute one frame of a visual effect.

// DecompressSequenceFrameWhen coding example
// See "Discovering QuickTime," page 310
// Decompress a single step of the effect sequence.
OSErr RunEffect(TimeValue lTime, int nNumberOfSteps)
{
 OSErr nErr =noErr;
 ICMFrameTimeRecord ftr;
 // Set the timebase time to the step of the sequence to be rendered
 SetTimeBaseValue(timeBase, lTime, nNumberOfSteps);
 ftr.value.lo =lTime;
 ftr.value.hi =0;
 ftr.scale =nNumberOfSteps;
 ftr.base =0;
 ftr.duration =nNumberOfSteps;
 ftr.rate =0;
 ftr.recordSize =sizeof(ftr);
 ftr.frameNumber =1;
 ftr.flags =icmFrameTimeHasVirtualStartTimeAndDuration;
 ftr.virtualStartTime.lo =0;
 ftr.virtualStartTime.hi =0;
 ftr.virtualDuration =nNumberOfSteps;
 HLock(hEffectDesc);
 DecompressSequenceFrameWhen(gEffectSequenceID,
 StripAddress(*hEffectDesc),
 GetHandleSize(hEffectDesc),
 0,
 0,

Functions 627
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 NIL,
 &ftr);
 HUnlock(hEffectDesc);
}

Special Considerations

If the current decompressor component does not support scheduled asynchronous decompression, the
Image Compression Manager returns an error code of codecCantWhenErr. In this case, the application will
need to reissue the request with the frameTime parameter set to NIL. If the decompressor cannot service
your request at a particular time (for example, if its queue is full), the Image Compression Manager returns
an error code of codecCantQueueErr. The best way to determine whether a decompressor component
supports this function is to call the function and test the result code. A decompressor's ability to honor the
request may change based on screen depth, clipping settings, and so on.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
VideoProcessing
vrscript.win

Declared In
ImageCompression.h

DisposeCodecNameList
Disposes of the compressor name list structure you obtained by calling GetCodecNameList.

OSErr DisposeCodecNameList (
 CodecNameSpecListPtr list
);

Parameters
list

Points to the compressor name list to be disposed of. You obtain the compressor list by calling
GetCodecNameList (page 652).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

628 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

DragAlignedGrayRgn
Drags a specified gray region along an optimal alignment grid.

long DragAlignedGrayRgn (
 RgnHandle theRgn,
 Point startPt,
 Rect *boundsRect,
 Rect *slopRect,
 short axis,
 UniversalProcPtr actionProc,
 Rect *alignmentRect,
 ICMAlignmentProcRecordPtr alignmentProc
);

Parameters
theRgn

A handle to the specified region for this operation. When the user holds down the mouse button,
DragAlignedGrayRgn pulls a gray outline of the region around following the movement of the
mouse until the mouse button is released.

startPt
The point where the mouse button was originally pressed in the local coordinates of the current
graphics port.

boundsRect
A pointer to the boundary rectangle of the current graphics port. The offset point follows the mouse
location except that DragAlignedGrayRgn never moves the offset point outside this rectangle. This
limits the travel of the region's outline, not the movements of the mouse.

slopRect
A pointer to the slop rectangle that completely encloses the boundary rectangle so that the user is
allowed some flexibility in moving the mouse.

axis
Allows you to constrain the region's motion to only one axis (see constants below). See these constants:

actionProc
Points to a function that defines some action to be performed repeatedly as long as the user holds
down the mouse button. The function should have no parameters. If the actionProc parameter is
NIL, DragAlignedGrayRgn simply retains control until the mouse button is released.

alignmentRect
A pointer to a rectangle within the bounds of the region specified in the parameter theRgn. Pass NIL
to align using the bounds of the parameter theRgn.

alignmentProc
A pointer to your alignment behavior function; see ICMAlignmentProc. Pass NIL to use the standard
behavior.

Return Value
The difference between the point where the mouse button was pressed and the offset point; that is, the
point in the region whose horizontal and vertical offsets from the upper-left corner of the region's enclosing
rectangle are the same as the offsets of the starting point when the user pressed the mouse button. The
vertical difference between the starting point and the offset point is stored in the high-order word of the
return value and the horizontal difference is stored in the low-order word.

Functions 629
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
This function limits the movement of the region defined by theRgn according to the constraints set by the
boundsRect and slopRect parameters. While the cursor is inside the boundsRect rectangle, the region's
outline follows it normally. If the mouse button is released while the cursor is within this rectangle, the return
value reflects the simple distance that the cursor moved in each dimension. When the cursor moves outside
the boundsRect rectangle, the offset point stops at the edge of the boundsRect rectangle. If the mouse
button is released while the cursor is outside the boundsRect rectangle but inside the slopRect rectangle,
the return value reflects only the difference between the starting point and the offset point, regardless of
how far outside of the boundsRect rectangle the cursor may have moved. (Note that part of the region can
fall outside the boundsRect rectangle, but not the offset point.) When the cursor moves outside the slopRect
rectangle, the region's outline disappears from the screen. DragAlignedGrayRgn continues to track the
cursor, however, and if the cursor moves back into the slopRect rectangle, the outline reappears. If the
mouse button is released while the cursor is anywhere inside the slopRect rectangle, the window is redrawn
in its new location, calculated from the value returned by DragAlignedGrayRgn If the mouse button is
released while the cursor is outside the slopRect rectangle, both words of the return value are set to 0x8000
and the window does not move from its original location.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

DragAlignedWindow
Drags the specified window along an optimal alignment grid.

void DragAlignedWindow (
 WindowRef wp,
 Point startPt,
 Rect *boundsRect,
 Rect *alignmentRect,
 ICMAlignmentProcRecordPtr alignmentProc
);

Parameters
wp

A window pointer to the window to be dragged.

startPt
A point that is equal to the point where the mouse button was pressed (in global coordinates, as
stored in the where field of the event structure). DragAlignedWindow pulls a gray outline of the
window around the screen, following the movements of the mouse until the button is released.

boundsRect
Points to the boundary rectangle in global coordinates. If the mouse button is released when the
mouse position is outside the limits of the boundary rectangle, DragAlignedWindow returns without
moving the window or making it the active window. For a document window, the boundary rectangle
typically is four pixels in from the menu bar and from the other edges of the screen, to ensure that
there won't be less than a four-pixel-square area of the title bar visible on the screen.

630 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

alignmentRect
Points to a rectangle in window coordinates that allows you to align the window to a rectangle within
the window. Set this parameter to NIL to align using the bounds of the window.

alignmentProc
A pointer to your alignment behavior function; see ICMAlignmentProc. Pass NIL to use the standard
behavior.

Discussion
The following code sample illustrates the use of DragAlignedWindow:

// DragAlignedWindow coding example
// See "Discovering QuickTime," page 265
Boolean IsQuickTimeInstalled (void)
{
 OSErr nErr;
 long lResult;
 nErr =Gestalt(gestaltQuickTime, &lResult);
 return (nErr ==noErr);
}
void MyInitialize (void)
{
 InitGraf(&qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(NIL);
 MaxApplZone();
 EnterMovies();
}
WindowRef MakeMyWindow (void)
{
 WindowRef pMacWnd;
 Rect rectWnd ={0, 0, 120, 160};
 Rect rectBest;
 // figure out the best monitor for the window
 GetBestDeviceRect(NIL, &rectBest);
 // put the window in the top left corner of that monitor
 OffsetRect(&rectWnd, rectBest.left + 10, rectBest.top + 50);
 // create the window
 pMacWnd =NewCWindow(NIL, &rectWnd, "\pGrabber",
 TRUE, noGrowDocProc, (WindowRef)-1,
 TRUE, 0);
 // set the port to the new window
 SetPort(pMacWnd);
 return pMacWnd;
}
main (void)
{
 WindowRef pMacWnd;
 SeqGrabComponent seqGrab;
 SGChannel sgchanVideo, sgchanSound;
 Boolean bDone =FALSE;
 OSErr nErr;
 MyInitialize();
 pMacWnd =MakeMyWindow();
 seqGrab =MakeMySequenceGrabber(pMacWnd);
 if (seqGrab ==NIL)

Functions 631
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 return;
 MakeMyGrabChannels(seqGrab, &sgchanVideo, &sgchanSound,
 &pMacWnd->
portRect, FALSE);
 nErr =SGStartPreview(seqGrab);
 while (!bDone) {
 ICMAlignmentProcRecord apr;
 short nPart;
 WindowRef pWhichWnd;
 EventRecord er;
 GetNextEvent(everyEvent, &er);
 switch (er.what) {
 case nullEvent: // give the sequence grabber time
 nErr =SGIdle(seqGrab);
 if (nErr !=noErr)
 bDone =TRUE;
 break;
 case updateEvt:
 if (er.message ==(long)pMacWnd) {
 // inform the sequence grabber of the update
 SGUpdate(seqGrab,((WindowPeek)
 pMacWnd)->
updateRgn);
 // and swallow the update event
 BeginUpdate(pMacWnd);
 EndUpdate(pMacWnd);
 }
 break;
 case mouseDown:
 nPart =FindWindow(er.where, &pWhichWnd);
 if (pWhichWnd !=pMacWnd)
 break;
 switch (nPart) {
 case inContent:
 // pause until mouse button is released
 SGPause(seqGrab, TRUE);
 while (StillDown())
 SGPause(seqGrab, FALSE);
 break;
 case inGoAway:
 bDone =TrackGoAway(pMacWnd, er.where);
 break;
 case inDrag:
 // pause when dragging window so video
 // doesn't draw in the wrong place
 SGPause(seqGrab, TRUE);
 SGGetAlignmentProc(seqGrab, &apr);
 DragAlignedWindow(pMacWnd,
 er.where,
 &screenBits.bounds,
 NIL, &alignProc);
 SGPause(seqGrab, FALSE);
 break;
 }
 break;
 }
 }
 // clean up

632 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 SGStop(seqGrab);
 CloseComponent(seqGrab);
 DisposeWindow(pMacWnd);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qtcontroller
qtwiredactions
SGDataProcSample

Declared In
ImageCompression.h

DrawPictureFile
Draws an image from a specified picture file in the current graphics port.

OSErr DrawPictureFile (
 short refNum,
 const Rect *frame,
 ICMProgressProcRecordPtr progressProc
);

Parameters
refNum

A file reference number for the source PICT file.

frame
A pointer to the rectangle into which the image is to be loaded. The compressor scales the source
image to fit into this destination rectangle.

progressProc
Points to an ICMProgressProc callback. During the operation, the draw function may occasionally
call a function you provide in order to report its progress; see ICMProgressProcRecord. If you have
not provided a progress function, set this parameter to NIL. If you pass a value of -1, QuickTime
provides a standard progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function draws the picture that it finds in the picture file specified by the refNum parameter within the
rectangle specified by the frame parameter. The Image Compression Manager performs any spooling that
may be necessary when reading the picture file. Specify a clipping region appropriate for your picture before
drawing it. If the clipping region is very large (as it is when a graphics port is initialized) and you want to
scale the picture, the clipping region can become invalid when DrawPictureFile scales the clipping region,

Functions 633
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

in which case your picture will not be drawn. On the other hand, if the graphics port specifies a small clipping
region, part of your drawing may be clipped when DrawPictureFile draws it. Setting a clipping region
equal to the port rectangle of the current graphics port always sets a valid clipping region.

Special Considerations

When it scales fonts, DrawPictureFile changes the size of the font instead of scaling the bits. However,
the widths used by bitmap fonts are not always linear. For example, the 12-point width isn't exactly 1/2 of
the 24-point width. This can cause lines of text to become slightly longer or shorter as the picture is scaled.
The easiest way to avoid such problems is to specify a destination rectangle that is the same size as the
bounding rectangle for the picture.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JPEG File Interchange Format

Declared In
ImageCompression.h

DrawTrimmedPicture
Draws an image that is stored as a picture into the current graphics port and trims that image to fit a specified
region.

OSErr DrawTrimmedPicture (
 PicHandle srcPicture,
 const Rect *frame,
 RgnHandle trimMask,
 short doDither,
 ICMProgressProcRecordPtr progressProc
);

Parameters
srcPicture

A handle to the source image, stored as a picture.

frame
A pointer to the rectangle into which the decompressed image is to be loaded.

trimMask
A handle to a clipping region in the destination coordinate system. The decompressor applies this
mask to the destination image and ignores any image data that fall outside the specified region. Set
this parameter to NIL if you do not want to clip the source image.

doDither
Indicates whether to dither the image. Use this parameter if you want the image to be dithered when
it is displayed on a lower-resolution screen (see below). See these constants:

defaultDither

forceDither

suppressDither

634 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

progressProc
A pointer to an ICMProgressProc callback. During the compression operation, the compressor may
occasionally call a function you provide in order to report its progress. If you have not provided a
progress function, set this parameter to NIL. If you pass a value of -1, QuickTime provides a standard
progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function works with compressed image data; the source data stays compressed. The function trims the
image to fit the specified clipping region. Note that if you just use a clip while making a picture, the data
(though not visible) is still stored in the picture.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawTextCodec

Declared In
ImageCompression.h

DrawTrimmedPictureFile
Draws an image that is stored as a picture file into the current graphics port and trims that image to fit a
specified region.

OSErr DrawTrimmedPictureFile (
 short srcRefnum,
 const Rect *frame,
 RgnHandle trimMask,
 short doDither,
 ICMProgressProcRecordPtr progressProc
);

Parameters
srcRefnum

A file reference number for the source PICT file.

frame
A pointer to the rectangle into which the decompressed image is to be loaded.

trimMask
A handle to a clipping region in the destination coordinate system. The decompressor applies this
mask to the destination image and ignores any image data that fall outside the specified region. Set
this parameter to NIL if you do not want to clip the source image. In this case, this function acts like
DrawPictureFile (page 633).

Functions 635
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

doDither
Indicates whether to dither the image. Use this parameter if you want the image to be dithered when
it is displayed on a lower-resolution screen (see below). See these constants:

defaultDither

forceDither

suppressDither

progressProc
A pointer to an ICMProgressProc callback. During the compression operation, the compressor may
occasionally call a function you provide in order to report its progress. If you have not provided a
progress function, set this parameter to NIL. If you pass a value of -1, QuickTime provides a standard
progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to save part of a picture, since the image data that is not within the trim region is
ignored and is not included in the destination picture file. All the remaining objects in the resulting object
are clipped.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawTextCodec

Declared In
ImageCompression.h

EqualMatrix
Compares two matrices and returns a result that indicates whether the matrices are equal.

Boolean EqualMatrix (
 const MatrixRecord *m1,
 const MatrixRecord *m2
);

Parameters
m1

A pointer to one matrix for the compare operation.

m2
A pointer to the other matrix for the compare operation.

Return Value
TRUE if the matrices are equal, FALSE otherwise.

Version Notes
Introduced in QuickTime 3 or earlier.

636 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qdmediahandler
qdmediahandler.win

Declared In
ImageCompression.h

FCompressImage
Compresses a single-frame image that is currently stored as a pixel map structure, with added control over
the compression process.

OSErr FCompressImage (
 PixMapHandle src,
 const Rect *srcRect,
 short colorDepth,
 CodecQ quality,
 CodecType cType,
 CompressorComponent codec,
 CTabHandle ctable,
 CodecFlags flags,
 long bufferSize,
 ICMFlushProcRecordPtr flushProc,
 ICMProgressProcRecordPtr progressProc,
 ImageDescriptionHandle desc,
 Ptr data
);

Parameters
src

A handle to the image to be compressed. The image must be stored in a pixel map structure.

srcRect
A pointer to a rectangle defining the portion of the image to compress.

colorDepth
The depth at which the image is likely to be viewed. Compressors may use this as an indication of
the color or grayscale resolution of the compressed image. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine which
depths are supported by a given compressor by examining the compressor information structure
returned by the GetCodecInfo (page 652) function.

Functions 637
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

cType
A compressor type. You must set this parameter to a valid compressor type constant.

codec
A compressor identifier. Specify a particular compressor by setting this parameter to its compressor
identifier. Alternatively, you may use a special identifier (see below). Specifying a component instance
may be useful if you have previously set some parameter on a specific instance of a codec field and
want to make sure that the specified instance is used for that operation. See these constants:

ctable
A handle to a custom color lookup table. Your program may use this parameter to indicate a custom
color lookup table to be used with this image. If the value of the colorDepth parameter is less than
or equal to 8 and the custom color lookup table is different from that of the source pixel map (that
is, the ctSeed field values differ in the two pixel maps), the compressor remaps the colors of the
image to the custom colors. If you set the colorDepth parameter to 16, 24, or 32, the compressor
stores the custom color table with the compressed image. The compressor may use the table to
specify the best colors to use when displaying the image at lower bit depths. The compressor ignores
the ctable parameter when colorDepth is set to 33, 34, 36, or 40. If you set this parameter to NIL,
the compressor uses the color lookup table from the source pixel map.

flags
Contains a flag (see below) that indicates whether or not the image was previously compressed. See
these constants:

codecFlagWasCompressed

bufferSize
The size of the buffer to be used by the data-unloading function specified by the flushProcparameter.
If you have not specified a data-unloading function, set this parameter to 0.

flushProc
Points to an ICMDataProc data-unloading callback. If there is not enough memory to store the
compressed image, the compressor calls a function you provide that unloads some of the compressed
data. If you have not provided a data-unloading callback, set this parameter to NIL. In this case, the
compressor writes the entire compressed image into the memory location specified by the data
parameter.

progressProc
Points to an ICMProgressProc progress callback. During the compression operation, the compressor
may occasionally call a function you provide in order to report its progress. If you have not provided
a progress callback, set this parameter to NIL. If you pass a value of -1, QuickTime provides a standard
progress function.

desc
A handle that is to receive a formatted ImageDescription structure. The Image Compression
Manager resizes this handle for the returned ImageDescription structure. Your application should
store this image description with the compressed image data.

638 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

data
Points to a location to receive the compressed image data. It is your program's responsibility to make
sure that this location can receive at least as much data as indicated by the
GetMaxCompressionSize (page 670) function. If there is not sufficient memory to store the
compressed image, you may choose to write the compressed data to mass storage during the
compression operation. Use the flushProc parameter to identify your data-unloading function to
the compressor. This pointer must contain a 32-bit clean address. The Image Compression Manager
places the actual size of the compressed image into the dataSize field of the ImageDescription
structure referenced by the desc parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function acts like CompressImage (page 605), but gives your application additional control over the
parameters that guide the compression operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
qtgraphimp.win
qtreadwritejpeg.win
vrmakepano
VRMakePano Library

Declared In
ImageCompression.h

FCompressPicture
Compresses a single-frame image stored as a picture structure and places the result in another picture, with
added control over the compression process.

OSErr FCompressPicture (
 PicHandle srcPicture,
 PicHandle dstPicture,
 short colorDepth,
 CTabHandle ctable,
 CodecQ quality,
 short doDither,
 short compressAgain,
 ICMProgressProcRecordPtr progressProc,
 CodecType cType,
 CompressorComponent codec
);

Parameters
srcPicture

A handle to the source image, stored as a picture.

Functions 639
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

dstPicture
A handle to the destination for the compressed image. The compressor resizes this handle for the
result data.

colorDepth
The depth at which the image is to be compressed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine which
depths are supported by a given compressor by examining the compressor information structure
returned by the GetCodecInfo (page 652) function.

ctable
A handle to a custom color lookup table. Your program may use this parameter to indicate a custom
color lookup table to be used with this image. If the value of the colorDepth parameter is less than
or equal to 8 and the custom color lookup table is different from that of the source pixel map (that
is, the ctSeed field values differ in the two pixel maps), the compressor remaps the colors of the
image to the custom colors. If you set the colorDepth parameter to 16, 24, or 32, the compressor
stores the custom color table with the compressed image. The compressor may use the table to
specify the best colors to use when displaying the image at lower bit depths. The compressor ignores
the ctable parameter when colorDepth is set to 33, 34, 36, or 40. If you set this parameter to NIL,
the compressor uses the color lookup table from the source pixel map.

quality
A constant that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

doDither
A constant (see below) that indicates whether to dither the image. Use this parameter to indicate
whether you want the image to be dithered when it is displayed on a lower-resolution screen. See
these constants:

defaultDither

forceDither

suppressDither

compressAgain
Indicates whether to recompress compressed image data in the picture. Use this parameter to
control whether any compressed image data that is in the source picture should be decompressed
and then recompressed using the current parameters. Set the value of this parameter to TRUE to
recompress such data. Set the value of the parameter to FALSE to leave the data as it is. Note that
recompressing the data may have undesirable side effects, including image quality degradation.

progressProc
Points to an ICMProgressProc callback. During the compression operation, the compressor may
occasionally call a function you provide in order to report its progress. If you have not provided a
progress callback, set this parameter to NIL. If you pass a value of -1, QuickTime provides a standard
progress function.

640 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

cType
A compressor type. You must set this parameter to a valid compressor type constant; see Codec
Identifiers. If the value passed in is 0, or 'raw ', the resulting picture is not compressed and
does not require QuickTime to be displayed.

codec
A compressor identifier. Specify a particular compressor by setting this parameter to its compressor
identifier. Alternatively, you may use a special identifier (see below). See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If a picture with multiple pixel maps and other graphical objects is passed, the pixel maps will be compressed
individually and the other graphic objects will not be affected. FCompressPicture compresses only image
data. Any other types of data in the picture, such as text, graphics primitives, and previously compressed
images, are not modified in any way and are passed through to the destination picture. This function supports
parameters governing image quality, compressor type, image depth, custom color tables, and dithering.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FCompressPictureFile
Compresses a single-frame image stored as a picture file and places the result in another picture file, with
added control over the compression process.

OSErr FCompressPictureFile (
 short srcRefNum,
 short dstRefNum,
 short colorDepth,
 CTabHandle ctable,
 CodecQ quality,
 short doDither,
 short compressAgain,
 ICMProgressProcRecordPtr progressProc,
 CodecType cType,
 CompressorComponent codec
);

Parameters
srcRefNum

A file reference number for the source PICT file.

dstRefNum
A file reference number for the destination PICT file. Note that the compressor overwrites the contents
of the file referred to by dstRefNum. You must open this file with write permissions. The destination
file may be the same as the source file specified by the srcRefNum parameter.

Functions 641
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

colorDepth
The depth at which the image is to be compressed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine which
depths are supported by a given compressor by examining the compressor capability structure
returned by the GetCodecInfo (page 652) function.

ctable
A handle to a custom color lookup table. Your program may use this parameter to indicate a custom
color lookup table to be used with this image. If the value of the colorDepth parameter is less than
or equal to 8 and the custom color lookup table is different from that of the source pixel map (that
is, the ctSeed field values differ in the two pixel maps), the compressor remaps the colors of the
image to the custom colors. If you set the colorDepth parameter to 16, 24, or 32, the compressor
stores the custom color table with the compressed image. The compressor may use the table to
specify the best colors to use when displaying the image at lower bit depths. The compressor ignores
the ctable parameter when colorDepth is set to 33, 34, 36, or 40. If you set this parameter to NIL,
the compressor uses the color lookup table from the source pixel map.

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

doDither
Indicates whether to dither the image. Use this parameter to indicate whether you want the image
to be dithered when it is displayed on a lower-resolution screen. The following constants are available:
See these constants:

defaultDither

forceDither

suppressDither

compressAgain
Indicates whether to recompress compressed image data in the picture. Use this parameter to
control whether any compressed image data that is in the source picture should be decompressed
and then recompressed using the current parameters. Set the value of this parameter to TRUE to
recompress such data. Set the value of this parameter to FALSE to leave the data as it is. Note that
recompressing the data may have undesirable side effects, including image quality degradation.

progressProc
Points to an ICMProgressProc callback. During the compression operation, the compressor may
occasionally call a function you provide in order to report its progress.

cType
A compressor type. You must set this parameter to a valid compressor type constant.

642 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

codec
A compressor identifier. Specify a particular compressor by setting this parameter to its compressor
identifier. Alternatively, you may use a special identifier (see below). See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function compresses only image data. Any other types of data in the file, such as text, graphics primitives,
and previously compressed images, are not modified in any way and are passed through to the destination
picture file. This function supports parameters governing image quality, compressor type, image depth,
custom color tables, and dithering.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FDecompressImage
Decompresses a single-frame image into a pixel map structure, with added control over the decompression
process.

OSErr FDecompressImage (
 Ptr data,
 ImageDescriptionHandle desc,
 PixMapHandle dst,
 const Rect *srcRect,
 MatrixRecordPtr matrix,
 short mode,
 RgnHandle mask,
 PixMapHandle matte,
 const Rect *matteRect,
 CodecQ accuracy,
 DecompressorComponent codec,
 long bufferSize,
 ICMDataProcRecordPtr dataProc,
 ICMProgressProcRecordPtr progressProc
);

Parameters
data

Points to the compressed image data. If the entire compressed image cannot be stored at this location,
your application may provide a data-loading function (see the discussion of the dataProc parameter
to this function). This pointer must contain a 32-bit clean address.

desc
A handle to the ImageDescription structure that describes the compressed image.

dst
A handle to the pixel map where the decompressed image is to be displayed. Set the current graphics
port to the port that contains this pixel map.

Functions 643
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

srcRect
A pointer to a rectangle defining the portion of the image to decompress. This rectangle must lie
within the boundary rectangle of the compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height). If you want to decompress the entire source image, set
this parameter to NIL. If the parameter is NIL, the rectangle is set to the rectangle structure of the
ImageDescription structure.

matrix
Points to a matrix structure that specifies how to transform the image during decompression. You
can use the matrix structure to translate or scale the image during decompression. If you do not want
to apply such effects, set the matrix parameter to NIL.

mode
The transfer mode for the operation; see Graphics Transfer Modes.

mask
A handle to a clipping region in the destination coordinate system. If specified, the decompressor
applies this mask to the destination image. If you do not want to mask bits in the destination, set
this parameter to NIL.

matte
A handle to a pixel map that contains a blend matte. You can use the blend matte to cause the
decompressed image to be blended into the destination pixel map. The matte can be defined at any
supported pixel depth; the matte depth need not correspond to the source or destination depths.
However, the matte must be in the coordinate system of the source image. If you do not want to
apply a blend matte, set this parameter to NIL.

matteRect
A pointer to a rectangle defining a portion of the blend matte to apply. If you do not want to use the
entire matte referred to by the matte parameter, use this parameter to specify a rectangle within
that matte. If specified, this rectangle must be the same size as the rectangle specified by the srcRect
parameter. If you want to use the entire matte, or if you are not providing a blend matte, set this
parameter to NIL.

accuracy
A constant (see below) that defines the desired compression accuracy. For a good display of still
images, you should specify at least codecHighQuality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

codec
A decompressor identifier. Specify a particular decompressor by setting this parameter to its identifier.
Alternatively, you may use a special identifier (see below). Specifying a component instance may be
useful if you have previously set some parameter on a specific instance of a codec field and want to
make sure that the specified instance is used for that operation. See these constants:

bufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If you have not specified a data-loading function, set this parameter to 0.

644 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

dataProc
Points to an ICMDataProc data-loading callback. If there is not enough memory to store the
compressed image, the compressor calls a function you provide that loads more compressed data. If
you have not provided a data-unloading callback, set this parameter to NIL. In this case, the compressor
expects that the entire compressed image is in the memory location specified by the data parameter.

progressProc
Points to an ICMProgressProc progress callback. During the compression operation, the compressor
may occasionally call a function you provide in order to report its progress. If you have not provided
a progress callback, set this parameter to NIL. If you pass a value of -1, QuickTime provides a standard
progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function gives your application greater control over the parameters that guide the decompression
operation. If you find that you do not need this level of control, use DecompressImage (page 619). Note that
this function is invoked through the StdPix (page 732) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JPEG File Interchange Format
qtreadwritejpeg
qtreadwritejpeg.win
VelEng Wavelet

Declared In
ImageCompression.h

FindCodec
Determines which of the installed compressors or decompressors has been chosen to field requests made
by using one of the special compressor identifiers.

OSErr FindCodec (
 CodecType cType,
 CodecComponent specCodec,
 CompressorComponent *compressor,
 DecompressorComponent *decompressor
);

Parameters
cType

You must set this parameter to a valid compressor type constant; see Codec Identifiers.

Functions 645
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

specCodec
A special codec identifier value (see below). See these constants:

compressor
A pointer to a field to receive the identifier for the compressor component. The Image Compression
Manager returns the identifier of the compressor that meets the special characteristics you specify in
the specCodec parameter. Note that this identifier may differ from the value of the field referred
to by the decompressor field. The Image Compression Manager sets this field to 0 if it cannot find
a suitable compressor component. Set this parameter to NIL if you do not want this information.

decompressor
A pointer to a field to receive the identifier for the decompressor component. The Image Compression
Manager returns the identifier of the decompressor that meets the special characteristics you specify
in the specCodec parameter. Note that this identifier may differ from the value of the field referred
to by the compressor field. The Image Compression Manager sets this field to 0 if it cannot find a
suitable decompressor component. Set this parameter to NIL if you do not want this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some Image Compression Manager functions allow you to specify a particular compressor component by
its identifier. For example, you may use the codec parameter to CompressSequenceBegin (page 609) to
specify a particular compressor to do the compression. The Image Compression Manager also supports
several special identifiers (see specCodec Constants, above) that allow you to exert some control over the
component for a given action without having to know its identifier.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FixExp2
Undocumented

Fixed FixExp2 (
 Fixed src
);

Parameters
src

A fixed integer.

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

646 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

FixLog2
Undocumented

Fixed FixLog2 (
 Fixed src
);

Parameters
src

A fixed integer.

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FixMulDiv
Undocumented

Fixed FixMulDiv (
 Fixed src,
 Fixed mul,
 Fixed divisor
);

Parameters
src

Undocumented

mul
Undocumented

divisor
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 647
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

FixPow
Undocumented

Fixed FixPow (
 Fixed base,
 Fixed exp
);

Parameters
base

Undocumented

exp
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FracSinCos
Undocumented

Fract FracSinCos (
 Fixed degree,
 Fract *cosOut
);

Parameters
degree

Undocumented

cosOut
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

648 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

GDGetScale
Returns the current scale of the given screen graphics device.

OSErr GDGetScale (
 GDHandle gdh,
 Fixed *scale,
 short *flags
);

Parameters
gdh

A handle to a screen graphics device.

scale
Points to a fixed-point field to hold the scale result.

flags
Points to a short integer that returns the status parameter flags for the video driver. Currently, 0 is
always returned in this field.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GDHasScale
Returns the closest possible scaling that a particular screen device can be set to in a given pixel depth.

OSErr GDHasScale (
 GDHandle gdh,
 short depth,
 Fixed *scale
);

Parameters
gdh

A handle to a screen graphics device.

depth
The pixel depth of the screen device.

Functions 649
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

scale
Points to a fixed-point scale value. On input, this field should be set to the desired scale value. On
output, this field will contain the closest scale available for the given depth. A scale of 0x10000 indicates
normal size, 0x20000 indicates double size, and so on.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns scaling information for a particular screen device for a requested depth. This function
allows you to query a screen device without actually changing it. For example, if you specify 0x20000 but
the screen device does not support it, GDHasScale returns noErr and a scale of 0x10000. Because this
function checks for a supported depth, your requested depth must be supported by the screen device.

Special Considerations

GDHasScale references the video driver through the graphics device structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GDSetScale
Sets a screen graphics device to a new scale.

OSErr GDSetScale (
 GDHandle gdh,
 Fixed scale,
 short flags
);

Parameters
gdh

A handle to a screen graphics device.

scale
A fixed-point scale value.

flags
Points to a short integer. It returns the status parameter flags for the video driver. Currently, 0 is
always returned in this field.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

650 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

GetBestDeviceRect
Selects the deepest of all available graphics devices, while treating 16-bit and 32-bit screens as having equal
depth.

OSErr GetBestDeviceRect (
 GDHandle *gdh,
 Rect *rp
);

Parameters
gdh

A pointer to the handle of the rectangle for the chosen device. If you do not need the information in
this parameter returned, specify NIL.

rp
A pointer to the rectangle that is adjusted for the height of the menu bar if the device is the main
device. If you do not need the information in this parameter returned, specify NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function does not center a rectangle on a device. Rather, it returns the rectangle for the best device. The
following code sample illustrates its use:

// GetBestDeviceRect coding example
// See "Discovering QuickTime," page 265
WindowRef MakeMyWindow (void)
{
 WindowRef pMacWnd;
 Rect rectWnd ={0, 0, 120, 160};
 Rect rectBest;
 // figure out the best monitor for the window
 GetBestDeviceRect(NIL, &rectBest);
 // put the window in the top left corner of that monitor
 OffsetRect(&rectWnd, rectBest.left + 10, rectBest.top + 50);
 // create the window
 pMacWnd =NewCWindow(NIL, &rectWnd, "\pGrabber",
 TRUE, noGrowDocProc, (WindowRef)-1, TRUE, 0);
 // set the port to the new window
 SetPort(pMacWnd);
 return pMacWnd;
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell

Functions 651
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

MovieBrowser
Sequence Grabbing
SGDataProcSample

Declared In
ImageCompression.h

GetCodecInfo
Returns information about a single compressor component.

ComponentResult ADD_IMAGECODEC_BASENAME() GetCodecInfo

Parameters
info

A pointer to a CodecInfo structure. GetCodecInfo returns detailed information about the appropriate
compressor component in this structure.

cType
Set this parameter to a valid compressor type constant; see Codec Identifiers. If you want
information about any compressor of the type specified by this parameter, set the codec parameter
to 0. The Image Compression Manager then returns information about the first compressor it finds
of the type you have specified.

codec
Set this parameter to the component identifier of the specific compressor for the request, or to 0 for
any compressor. Component identifiers are available in the CodecNameSpecList structure returned
by GetCodecNameList (page 652).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
ImageCompression.h

GetCodecNameList
Retrieves a list of installed compressor components or types.

652 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr GetCodecNameList (
 CodecNameSpecListPtr *list,
 short showAll
);

Parameters
list

A pointer to a field that is to receive a pointer to a CodecNameSpecList structure. The Image
Compression Manager creates the appropriate list and returns a pointer to that list in the field specified
by this parameter.

showAll
A short integer that controls the contents of the list. Set this parameter to 1 to receive a list of the
names of all installed compressor components; the returned list contains one entry for each installed
compressor. Set this parameter to 0 to receive a list of the types of installed compressor components;
the returned list contains one entry for each installed compressor type.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The CodecType data type defines a field in the CodecNameSpec structure that identifies the compression
method employed by a given compressor component. SeeCodec Identifiers. Apple Computer's Developer
Technical Support group assigns these values so that they remain unique. These values correspond, in turn,
to text strings that can identify the compression method to the user.

Special Considerations

GetCodecNameList creates the CodecNameSpecList structure in your application's current heap zone.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetCompressedImageSize
Determines the size, in bytes, of a compressed image.

ComponentResult ADD_IMAGECODEC_BASENAME() GetCompressedImageSize

Parameters
desc

A handle to the ImageDescription structure that defines the compressed image for the operation.

data
Points to the compressed image data. This pointer must contain a 32-bit clean address.

bufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If you have not specified a data-loading function, set this parameter to 0.

Functions 653
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

dataProc
Points to an ICMDataProc callback. If the data stream is not all in memory when your program calls
GetCompressedImageSize, the compressor calls a function you provide that loads more compressed
data. If you have not provided a data-loading callback, set this parameter to NIL. In this case, the
entire image must be in memory at the location specified by the data parameter.

dataSize
A pointer to a field that is to receive the size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Most applications do not need to use this function because compressed images have a corresponding
ImageDescription structure with a size field. You only need to use this function if you do not have an
image description structure associated with your data; for example, when you are taking a compressed image
out of a movie one frame at a time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetCompressedPixMapInfo
Retrieves information about a compressed image.

OSErr GetCompressedPixMapInfo (
 PixMapPtr pix,
 ImageDescriptionHandle *desc,
 Ptr *data,
 long *bufferSize,
 ICMDataProcRecord *dataProc,
 ICMProgressProcRecord *progressProc
);

Parameters
pix

Points to a structure that holds encoded compressed image data.

desc
A pointer to a field that is to receive a handle to the ImageDescription structure that defines the
compressed image. If you are not interested in this information, specify NIL in this parameter.

data
A pointer to a field that is to receive a pointer to the compressed image data. If the entire compressed
image cannot be stored at this location, you can define a data-loading function for this operation. If
you are not interested in this information, you may specify NIL in this parameter.

654 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

bufferSize
A pointer to a field that is to receive the size of the buffer to be used by the data-loading function
specified by the dataProc parameter. If there is no data-loading function defined for this operation,
this parameter is ignored. If you are not interested in this information, you may specify NIL in this
parameter.

dataProc
A pointer to an ICMDataProc callback. If there is not enough memory to store the compressed image,
the decompressor calls a function you provide that loads more compressed data. If there is no
data-loading function for this image, the function sets the dataProc field in the function structure
to NIL. If you are not interested in this information, specify NIL in this parameter.

progressProc
A pointer to an ICMProgressProc callback. During a decompression operation, the decompressor
may occasionally call a function you provide in order to report its progress. If there is no progress
function for this image, the function sets the progressProc field in the function structure to NIL. If
you pass a value of -1, QuickTime provides a standard progress function. If you are not interested in
progress information, specify NIL in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win
JPEG File Interchange Format
WiredSprites

Declared In
ImageCompression.h

GetCompressionTime
Determines the estimated amount of time required to compress a given image.

ComponentResult ADD_IMAGECODEC_BASENAME() GetCompressionTime

Parameters
src

A handle to the source image. The source image must be stored in a pixel map structure. The
compressor uses only the bit depth of this image to determine the compression time. You may set
this parameter to NIL if you are interested only in information about quality settings.

srcRect
A pointer to a rectangle defining the portion of the source image to compress. You may set this
parameter to NIL if you are interested only in information about quality settings.
GetCompressionTime then uses the bounds of the source pixel map.

Functions 655
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

colorDepth
The depth at which the image is to be compressed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine which
depths are supported by a given compressor by examining the compressor information structure
returned by the GetCodecInfo (page 652) function

cType
You must set this parameter to a valid compressor type constant; see Codec Identifiers.

codec
Specify a particular compressor by setting this parameter to its compressor identifier. Alternatively,
you may use a special identifier (see below). You can also specify a component instance. This may be
useful if you have previously set some parameter on a specific instance of a codec field and want to
make sure that the specified instance is used for that operation. See these constants:

spatialQuality
A pointer to a field containing a constant (see below) that defines the desired compressed image
quality. The Image Compression Manager sets this field to the closest actual quality that the compressor
can achieve. If you are not interested in this information, pass NIL in this parameter. See these
constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A pointer to a field containing a constant (see below) that defines the desired temporal quality. Use
this value only with images that are part of image sequences. The Image Compression Manager sets
this field to the closest actual quality that the compressor can achieve. If you are not interested in
this information, pass NIL in this parameter.

compressTime
A pointer to a field to receive the compression time in milliseconds. If the compressor cannot determine
the amount of time required to compress the image or if the compressor does not support this
function, this field is set to 0. If you are not interested in this information, pass NIL in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to verify that the quality settings you desire are supported by a given compressor
component. You specify the compression characteristics, including compression type and quality, along with
the image. The Image Compression Manager returns the maximum compression time for the specified image
and parameters. Note that some compressors may not support this function. If the component you specify
does not support this function, the Image Compression Manager returns a time value of 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

656 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
ImageCompression.h

GetCSequenceDataRateParams
Obtains the data rate parameters previously set with SetCSequenceDataRateParams.

OSErr GetCSequenceDataRateParams (
 ImageSequence seqID,
 DataRateParamsPtr params
);

Parameters
seqID

Contains the unique sequence identifier that was returned by CompressSequenceBegin (page 609).

params
Points to the data rate parameters structure associated with the sequence identifier specified in the
seqID parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetCSequenceFrameNumber
Returns the current frame number of the specified sequence.

OSErr GetCSequenceFrameNumber (
 ImageSequence seqID,
 long *frameNumber
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the CompressSequenceBegin (page
609) function.

Functions 657
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

frameNumber
A pointer to the current frame number of the sequence identified by the seqID parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetCSequenceKeyFrameRate
Determines the current key frame rate of a sequence.

OSErr GetCSequenceKeyFrameRate (
 ImageSequence seqID,
 long *keyFrameRate
);

Parameters
seqID

Contains the unique sequence identifier that was returned by CompressSequenceBegin (page 609).

keyFrameRate
A pointer to a long integer that specifies the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed sequence may be decompressed.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetCSequenceMaxCompressionSize
Determines the maximum size an image will be after compression for a given compression sequence.

658 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr GetCSequenceMaxCompressionSize (
 ImageSequence seqID,
 PixMapHandle src,
 long *size
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the CompressSequenceBegin (page
609) function.

src
A handle to the source PixMap structure. The compressor uses only the image's size and pixel depth
to determine the maximum size of the compressed image.

size
A pointer to a field to receive the maximum size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is similar to GetMaxCompressionSize (page 670), but operates on a compression sequence
instead of requiring the application to pass individual parameters about the source image.

Special Considerations

Before calling GetCSequenceMaxCompressionSize you must have already started a compression sequence
with CompressSequenceBegin (page 609)

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

Declared In
ImageCompression.h

GetCSequencePrevBuffer
Determines the location of the previous image buffer allocated by the compressor.

Functions 659
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr GetCSequencePrevBuffer (
 ImageSequence seqID,
 GWorldPtr *gworld
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the CompressSequenceBegin (page
609) function.

gworld
A pointer to a field to receive a pointer to the CGrafPort structure that describes the graphics world
for the image buffer. You should not dispose of this graphics world; the returned pointer refers to a
buffer that the Image Compression Manager is using. If the compressor has not allocated a buffer,
GetCSequencePrevBuffer returns an error result code.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Note that this function only returns information about buffers that were allocated by the compressor. You
cannot use this function to determine the location of a buffer you have provided.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetDSequenceImageBuffer
Determines the location of the offscreen image buffer allocated by a decompressor.

OSErr GetDSequenceImageBuffer (
 ImageSequence seqID,
 GWorldPtr *gworld
);

Parameters
seqID

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

gworld
A pointer to a field to receive a pointer to the CGrafPort structure describing the graphics world for
the image buffer. You should not dispose of this graphics world; the returned pointer refers to a buffer
that the Image Compression Manager is using. It is disposed of for you when the CDSequenceEnd (page
591) function is called. If the decompressor has not allocated a buffer, GetDSequenceImageBuffer
returns an error result code.

Return Value
See Error Codes. Returns noErr if there is no error.

660 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetDSequenceMatrix
Gets the matrix that was specified for a decompression sequence by a call to SetDSequenceMatrix, or that
was set at DecompressSequenceBegin.

OSErr GetDSequenceMatrix (
 ImageSequence seqID,
 MatrixRecordPtr matrix
);

Parameters
seqID

Contains the unique sequence identifier that was returned by DecompressSequenceBegin (page
621).

matrix
Points to a matrix structure that specifies how to transform the image during decompression

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetDSequenceNonScheduledDisplayDirection
Returns the display direction for a decompress sequence.

OSErr GetDSequenceNonScheduledDisplayDirection (
 ImageSequence sequence,
 Fixed *rate
);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

Functions 661
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

rate
A pointer to the display direction. Negative values represent backward display and positive values
represent forward display.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GetDSequenceNonScheduledDisplayTime
Gets the display time for a decompression sequence.

OSErr GetDSequenceNonScheduledDisplayTime (
 ImageSequence sequence,
 TimeValue64 *displayTime,
 TimeScale *displayTimeScale
);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

displayTime
A pointer to a variable to hold the display time.

displayTimeScale
A pointer to a variable to hold the display time scale.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GetDSequenceScreenBuffer
Determines the location of the offscreen screen buffer allocated by a decompressor.

662 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr GetDSequenceScreenBuffer (
 ImageSequence seqID,
 GWorldPtr *gworld
);

Parameters
seqID

The unique sequence identifier that was returned by the DecompressSequenceBegin (page 621)
function.

gworld
A pointer to a field to receive a pointer to the CGrafPort structure that describes the graphics world
for the screen buffer. You should not dispose of this graphics world; the returned pointer refers to a
buffer that the Image Compression Manager is using. It is disposed of for you when the
CDSequenceEnd (page 591) function is called. If the decompressor has not allocated a buffer,
GetDSequenceScreenBuffer returns an error result code.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetGraphicsImporterForDataRef
Locates and opens a graphics importer component that can be used to draw the image from specified data
reference.

OSErr GetGraphicsImporterForDataRef (
 Handle dataRef,
 OSType dataRefType,
 ComponentInstance *gi
);

Parameters
dataRef

The data reference to be drawn using a graphics importer component.

dataRefType
The type of data reference pointed to by the dataRef parameter; see Data References. For
alias-based data references, the dataRef handle contains an AliasRecord and dataRefType is set
to rAliasType.

gi
On return, contains a pointer to the ComponentInstance of the graphics importer. If no graphics
importer can be found, this parameter will be set to NIL. If GetGraphicsImporterForDataRef is
able to locate a graphics importer for the data reference, the returned graphics importer
ComponentInstance will already be set up to draw from the specified data reference to the current
port.

Functions 663
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function tries to locate a graphics importer component for the specified data reference by checking the
file extension (such as .GIF or .JPG), the Macintosh file type, and the MIME type of the file. The file extension
is retrieved from the data reference by using DataHGetFileName (page 783) to call the data handler associated
with the data reference. If a graphics importer cannot be found using the file's type, file extension, or MIME
type, GetGraphicsImporterForDataRef asks each graphics importer to validate the file, until it either
finds an importer that can handle the file or exhausts the list of possible importers. This validation attempt
can be quite time-consuming; to bypass it, call GetGraphicsImporterForDataRefWithFlags (page 664)
instead.

Special Considerations

The caller ofGetGraphicsImporterForDataRef is responsible for closing the returnedComponentInstance
using CloseComponent. You must call CloseComponent when you are finished with the importer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ComboBoxPrefs
Fiendishthngs
ImagesToQTMovie
TextNameTool
ThreadsImporter

Declared In
ImageCompression.h

GetGraphicsImporterForDataRefWithFlags
Locates and opens a graphics importer component for a data reference with flags that control the search
process.

OSErr GetGraphicsImporterForDataRefWithFlags (
 Handle dataRef,
 OSType dataRefType,
 ComponentInstance *gi,
 long flags
);

Parameters
dataRef

The data reference to be drawn using a graphics importer component.

dataRefType
The type of data reference pointed to by the dataRef parameter; see Data References. For
alias-based data references, the dataRef handle contains an AliasRecord and dataRefType is set
to rAliasType.

664 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

gi
On return, contains a pointer to the ComponentInstance of the graphics importer. If no graphics
importer can be found, this parameter will be set to NIL. If
GetGraphicsImporterForDataRefWithFlags is able to locate a graphics importer for the data
reference, the returned graphics importer ComponentInstance will already be set up to draw from
the specified data reference to the current port.

flags
Contains flags (see below) that control the graphics importer search process. See these constants:

kDontUseValidateToFindGraphicsImporter

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function tries to locate a graphics importer component for the specified data reference by checking the
file extension (such as .GIF or .JPG), the Macintosh file type, and the MIME type of the file. The file extension
is retrieved from the data reference by using DataHGetFileName (page 783) to call the data handler associated
with the data reference. If a graphics importer cannot be found using the file's type, file extension, or MIME
type, this function asks each graphics importer to validate the file, until it either finds an importer that can
handle the file or exhausts the list of possible importers. This validation attempt can be quite time-consuming;
to bypass it, pass kDontUseValidateToFindGraphicsImporter in the flags parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetGraphicsImporterForFile
Locates and opens a graphics importer component that can be used to draw a specified file.

OSErr GetGraphicsImporterForFile (
 const FSSpec *theFile,
 ComponentInstance *gi
);

Parameters
theFile

The file to be drawn using a graphics importer component.

gi
On return, contains a pointer to the ComponentInstance of the graphics importer. If no graphics
importer can be found for the specified file, the gi will be set to NIL. If
GetGraphicsImporterForFile is able to locate a graphics importer for the file, the returned
graphics importer ComponentInstancewill already be set up to draw the specified file to the current
port.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 665
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
This function first tries to locate a graphics importer component for the specified file based on its file type.
If it is unable to locate a graphics importer component based on the Macintosh file type, or the call is made
on a non-Macintosh file, GetGraphicsImporterForFile will try to locate a graphics importer component
based on the file extension (such as .JPG or .GIF). If a graphics importer cannot be found using the file's
type or extension, GetGraphicsImporterForFile asks each graphics importer to validate the file, until it
either finds an importer that can handle the file or exhausts the list of possible importers. This validation
attempt can be quite time-consuming. To bypass the validation attempt, call
GetGraphicsImporterForFileWithFlags (page 666) instead. The following code sample illustrates the
use of GetGraphicsImporterForFile:

// Get a graphics importer for the image file, determine the natural size
// of the image, and draw the image
// See "Discovering QuickTime," page 274
void drawFile(const FSSpec *fss, const Rect *boundsRect)
 {
 GraphicsImportComponent gi;
 GetGraphicsImporterForFile(fss, &gi);
 GraphicsImportSetBoundsRect(gi, boundsRect);
 GraphicsImportDraw(gi);
 CloseComponent(gi);
 }

Special Considerations

The caller of GetGraphicsImporterForFile is responsible for closing the returned ComponentInstance
using CloseComponent.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics.win
qtstreamsplicer.win
vrmakepano

Declared In
ImageCompression.h

GetGraphicsImporterForFileWithFlags
Locates and opens a graphics importer component for a file with flags that control the search process.

666 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr GetGraphicsImporterForFileWithFlags (
 const FSSpec *theFile,
 ComponentInstance *gi,
 long flags
);

Parameters
theFile

The file to be drawn using a graphics importer component.

gi
On return, contains a pointer to the ComponentInstance of the graphics importer. If no graphics
importer can be found for the specified file, the gi will be set to NIL. If
GetGraphicsImporterForFileWithFlags is able to locate a graphics importer for the file, the
returned graphics importer ComponentInstance will already be set up to draw the specified file to
the current port.

flags
Contains flags (see below) that control the graphics importer search process. See these constants:

kDontUseValidateToFindGraphicsImporter

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function first tries to locate a graphics importer component for the specified file based on its file type.
If it is unable to locate a graphics importer component based on the Macintosh file type, or the call is made
on a non-Macintosh file, GetGraphicsImporterForFile will try to locate a graphics importer component
based on the file extension (such as .JPG or .GIF). If a graphics importer cannot be found using the file's type
or extension, GetGraphicsImporterForFile asks each graphics importer to validate the file, until it either
finds an importer that can handle the file or exhausts the list of possible importers. This validation attempt
can be quite time-consuming. To bypass the validation attempt, pass
kDontUseValidateToFindGraphicsImporter in the flags parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GetImageDescriptionCTable
Gets the custom color table for an image.

OSErr GetImageDescriptionCTable (
 ImageDescriptionHandle desc,
 CTabHandle *ctable
);

Parameters
desc

A handle to the appropriate ImageDescription structure.

Functions 667
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ctable
A pointer to a field that is to receive a color table handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the color table for the image described by the ImageDescription structure that is
referred to by the desc parameter. The function correctly sizes the handle for the color table it returns.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GetImageDescriptionExtension
Returns a new handle with the data from a specified image description extension.

OSErr GetImageDescriptionExtension (
 ImageDescriptionHandle desc,
 Handle *extension,
 long idType,
 long index
);

Parameters
desc

A handle to the appropriate ImageDescription structure.

extension
A pointer to a field to receive a handle to the returned data. The GetImageDescriptionExtension
function returns the extended data for the image described by the ImageDescription structure
referred to by the desc parameter. The function correctly sizes the handle for the data it returns.

idType
Specifies the extension's type value. Use this parameter to determine the data type of the extension.
This parameter contains a four-character code, similar to an OSType field value.

index
The index of the extension to retrieve. This is a number between 1 and the count returned by
CountImageDescriptionExtensionType (page 618).

Return Value
See Error Codes. Returns noErr if there is no error.

668 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
This function allows the application to get a copy of a specified image description extension. Note that each
compressor type may have its own format for the extended data that is stored with an image. The extended
data is similar in concept to the user data that applications can associate with QuickTime movies. Once you
have added extended data to an image, you cannot delete it.

Special Considerations

The Image Compression Manager allocates a new handle and passes it back in the extension parameter.
Your application should dispose of the handle when it is no longer needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImproveYourImage

Declared In
ImageCompression.h

GetMatrixType
Obtains information about a matrix.

short GetMatrixType (
 const MatrixRecord *m
);

Parameters
m

Points to the MatrixRecord structure for this operation.

Return Value
A constant (see below) that defines the type of the matrix.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

Functions 669
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

GetMaxCompressionSize
Determines the maximum size an image will be after compression.

ComponentResult ADD_IMAGECODEC_BASENAME() GetMaxCompressionSize

Parameters
src

A handle to the source image. The source image must be stored in a pixel map structure. The
compressor uses only the image's size and pixel depth to determine the maximum size of the
compressed image.

srcRect
A pointer to a rectangle defining the portion of the source image that is to be compressed. You may
set this parameter to NIL if you are interested only in information about quality settings.
GetCompressionTime (page 655) then uses the bounds of the source pixel map.

colorDepth
The depth at which the image is to be compressed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images. Your program can determine which
depths are supported by a given compressor by examining the compressor information structure
returned by GetCodecInfo (page 652).

quality
A constant (see below) that defines the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

cType
You must set this parameter to a valid compressor type constant; see Codec Identifiers.

codec
A compressor identifier. Specify a particular compressor by setting this parameter to its compressor
identifier. Alternatively, you may use a special identifier (see below). You can also specify a component
instance. This may be useful if you have previously set some parameter on a specific instance of a
codec field and want to make sure that the specified instance is used for that operation. See these
constants:

size
A pointer to a field to receive the size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the maximum resulting size for the specified image and parameters. Your application
may then use this information to allocate memory for the compression operation. The following code sample
illustrates its use:

// GetMaxCompressionSize coding example

670 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

// See "Discovering QuickTime," page 286
PicHandle GetQTCompressedPict (PixMapHandle hpmImage)
{
 long lMaxCompressedSize =0;
 Handle hCompressedData =NIL;
 Ptr pCompressedData;
 ImageDescriptionHandle hImageDesc =NIL;
 OSErr nErr;
 PicHandle hpicPicture =NIL;
 Rect rectImage =(**hpmImage).bounds;
 CodecType dwCodecType =kJPEGCodecType;
 CodecComponent codec =(CodecComponent)anyCodec;
 CodecQ dwSpatialQuality =codecNormalQuality;
 short nDepth =0; // let ICM choose depth
 nErr =GetMaxCompressionSize(hpmImage, &rectImage, nDepth,
 dwSpatialQuality,
 dwCodecType,
 (CompressorComponent)codec,
 &lMaxCompressedSize);
 if (nErr !=noErr)
 return NIL;

 hImageDesc =(ImageDescriptionHandle)NewHandle(4);
 hCompressedData =NewHandle(lMaxCompressedSize);
 if ((hCompressedData !=NIL) && (hImageDesc !=NIL)) {
 MoveHHi(hCompressedData);
 HLock(hCompressedData);
 pCompressedData =StripAddress(*hCompressedData);

 nErr =CompressImage(hpmImage,
 &rectImage,
 dwSpatialQuality,
 dwCodecType,
 hImageDesc,
 pCompressedData);

 if (nErr ==noErr) {
 ClipRect(&rectImage);
 hpicPicture =OpenPicture(&rectImage);
 nErr =DecompressImage(pCompressedData,
 hImageDesc,
 hpmImage,
 &rectImage,
 &rectImage,
 srcCopy,
 NIL);
 ClosePicture();
 }
 if (theErr || (GetHandleSize((Handle)hpicPicture) ==
 sizeof(Picture))) {
 KillPicture(hpicPicture);
 hpicPicture =NIL;
 }
 }
 if (hImageDesc !=NIL)
 DisposeHandle((Handle)hImageDesc);
 if (hCompressedData !=NIL)
 DisposeHandle(hCompressedData);

Functions 671
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

 return hpicPicture;
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
Fiendishthngs
Inside Mac ICM Code
vrmakepano
VRMakePano Library

Declared In
ImageCompression.h

GetNextImageDescriptionExtensionType
Retrieves an image description structure extension type.

OSErr GetNextImageDescriptionExtensionType (
 ImageDescriptionHandle desc,
 long *idType
);

Parameters
desc

A handle to an ImageDescription structure.

idType
A pointer to an integer that indicates the type of the extension after which this function is to return
the next extension type. Point to a value of 0 to return the first type found.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows your application to search for all the types of extensions in an ImageDescription
structure. The idType parameter should be set to 0 to start the search. When no more extension types can
be found, the function will set this field to 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

672 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

GetPictureFileHeader
Extracts the picture frame and file header from a specified picture file.

OSErr GetPictureFileHeader (
 short refNum,
 Rect *frame,
 OpenCPicParams *header
);

Parameters
refNum

A file reference number for the source PICT file.

frame
A pointer to a rectangle that is to receive the picture frame rectangle of the picture file. This function
places the picFrame rectangle from the picture structure into the rectangle referred to by the frame
parameter. If you are not interested in this information, pass NIL in this parameter.

header
A pointer to an OpenCPicParams structure. The GetPictureFileHeader function places the header
from the specified picture file into this structure. If you are not interested in this information, pass
NIL in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your program can use the information returned in the header parameter to determine how to draw an
image without having to read the picture file.

Special Considerations

Note that this function always returns a version 2 header. If the source file is a version 1 PICT file, the
GetPictureFileHeader function converts the header into version 2 format before returning it to your
application. See Inside Macintosh: Imaging With QuickDraw for more information about picture headers.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawTextCodec

Declared In
ImageCompression.h

GetSimilarity
Compares a compressed image to a picture stored in a pixel map and returns a value indicating the relative
similarity of the two images.

Functions 673
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ComponentResult ADD_IMAGECODEC_BASENAME() GetSimilarity

Parameters
src

A handle to the noncompressed image. The image must be stored in a pixel map structure.

srcRect
A pointer to a rectangle defining the portion of the image to compare to the compressed image. This
rectangle should be the same size as the image described by the ImageDescription structure
specified by the desc parameter.

desc
A handle to the ImageDescription structure that defines the compressed image for the operation.

data
Points to the compressed image data. This pointer must contain a 32-bit clean address.

similarity
A pointer to a field that is to receive the similarity value. The compressor sets this field to reflect the
relative similarity of the two images. Valid values range from 0 (completely different) to 1.0 (identical).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

HitTestDSequenceData
Undocumented

OSErr HitTestDSequenceData (
 ImageSequence seqID,
 void *data,
 Size dataSize,
 Point where,
 long *hit,
 long hitFlags
);

Parameters
seqID

The unique sequence identifier that was returned by the DecompressSequenceBegin (page 621)
function.

data
A pointer to data.

dataSize
The size of the data.

674 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

where
A Point structure that defines the hit location.

hit
Undocumented

hitFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMDecompressComplete
Signals the completion of a decompression operation.

void ICMDecompressComplete (
 ImageSequence seqID,
 OSErr err,
 short flag,
 ICMCompletionProcRecordPtr completionRtn
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

err
Indicates whether the operation succeeded or failed. Set this parameter to 0 for successful operations.
For failed operations, set the error code appropriate for the failure. For canceled operations (for
example, when the ICM calls your component's ImageCodecFlush (page 891) function), set this
parameter to -1.

flag
Completion flags (see below). Note that you may set more than one of these flags to 1. See these
constants:

codecCompletionSource

codecCompletionDest

codecCompletionDontUnshield

completionRtn
A pointer to an ICMCompletionProcRecord structure. That structure identifies the application's
completion function and contains a reference constant associated with the frame. Your component
obtains this structure as part of the CodecDecompressParams structure provided by the Image
Compression Manager at the start of the decompression operation.

Functions 675
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
Your component must call this function at the end of decompression operations.

Special Considerations

Prior to QuickTime 2.0, decompressor components called the application's completion function directly. For
compatibility, that method is still supported except for scheduled asynchronous decompression operations,
which must use the ICMDecompressComplete call. Newer decompressors should always use
ICMDecompressComplete rather than calling the completion function directly, regardless of the type of
decompression operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMDecompressCompleteS
Undocumented

OSErr ICMDecompressCompleteS (
 ImageSequence seqID,
 OSErr err,
 short flag,
 ICMCompletionProcRecordPtr completionRtn
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

err
Indicates whether the operation succeeded or failed. See Error Codes.

flag
Undocumented

completionRtn
A pointer to an ICMCompletionProcRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

676 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ICMGetPixelFormatInfo
Retrieves pixel format information.

OSErr ICMGetPixelFormatInfo (
 OSType PixelFormat,
 ICMPixelFormatInfoPtr theInfo
);

Parameters
PixelFormat

A constant that identifies the format; see Pixel Formats.

theInfo
A pointer to your ICMPixelFormatInfo structure in which information is returned. You should
initialize the size field of this structure with sizeof (ICMPixelFormatInfo). The function will
not copy more than this number of bytes into the structure. On return, the size field contains the
actual size of the data structure. If this amount is greater the size you passed in, that means you didn't
retrieve all of the information.

Return Value
Returns cDepthErr if the pixel format is not valid. For other errors, see Error Codes. Returns noErr if
there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMSequenceGetChainMember
Undocumented

OSErr ICMSequenceGetChainMember (
 ImageSequence seqID,
 ImageSequence *retSeqID,
 long flags
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

retSeqID
Undocumented

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 677
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMSequenceGetInfo
Gets multiprocessing properties for compression and decompression sequences.

OSErr ICMSequenceGetInfo (
 ImageSequence seqID,
 OSType which,
 void *data
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

which
A constant (see below) that determines the property to be returned. See these constants:

kICMSequenceTaskWeight

kICMSequenceTaskName

data
The value of the property indicated by the which parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function determines if ICM clients have requested that multiprocessor tasks assisting compression and
decompression operations use specific task weights and task names.

Special Considerations

Apple's multiprocessing capability supports both co-operatively scheduled tasks and preemptively scheduled
tasks. The support for preemptively tasks allow applications to create symmetrically scheduled preemptive
tasks that can be run on a single processor machine, and will take full advantage of multiple processors when
they are installed.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

678 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ICMSequenceLockBits
Undocumented

OSErr ICMSequenceLockBits (
 ImageSequence seqID,
 PixMapPtr dst,
 long flags
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

dst
A pointer to a PixMap structure.

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMSequenceSetInfo
Sets multiprocessing properties for compression and decompression sequences.

OSErr ICMSequenceSetInfo (
 ImageSequence seqID,
 OSType which,
 void *data,
 Size dataSize
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

which
A constant (see below) that determines the property to be set. See these constants:

kICMSequenceTaskWeight

kICMSequenceTaskName

data
The value of the property to be set.

Functions 679
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

dataSize
The length in bytes of the data parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets ICM clients request that multiprocessor tasks assisting compression and decompression
operations use specific task weights and task names.

Special Considerations

Apple's multiprocessing capability supports both co-operatively scheduled tasks and preemptively scheduled
tasks. The support for preemptively tasks allow applications to create symmetrically scheduled preemptive
tasks that can be run on a single processor machine, and will take full advantage of multiple processors when
they are installed.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ICMSequenceUnlockBits
Undocumented

OSErr ICMSequenceUnlockBits (
 ImageSequence seqID,
 long flags
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

680 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

ICMSetPixelFormatInfo
Lets you define your own pixel format.

OSErr ICMSetPixelFormatInfo (
 OSType PixelFormat,
 ICMPixelFormatInfoPtr theInfo
);

Parameters
PixelFormat

A pixel format constant. See Pixel Formats.

theInfo
A pointer to an ICMPixelFormatInfo structure containing a definition of the new pixel format.

Return Value
Returns paramErr if the format is already defined. See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OpenGLCompositorLab
SoftVideoOutputComponent

Declared In
ImageCompression.h

ICMShieldSequenceCursor
Hides the cursor during decompression operations.

OSErr ICMShieldSequenceCursor (
 ImageSequence seqID
);

Parameters
seqID

The unique sequence identifier, assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621), for which to shield the cursor.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
For correct image display behavior, the cursor must be shielded (hidden) during decompression. By default,
the Image Compression Manager handles the cursor for you, hiding it at the beginning of a decompression
operation and revealing it at the end. With scheduled asynchronous decompression, however, the ICM cannot
do as precise a job of managing the cursor, because it does not know exactly when scheduled operations
actually begin and end. While the ICM can still manage the cursor, it must hide the cursor when each request
is queued, rather than when the request is serviced. This may result in the cursor remaining hidden for long
periods of time. To achieve better cursor behavior, you can choose to manage the cursor in your decompressor

Functions 681
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

component. If you so choose, you can use this function to hide the cursor; the ICM displays the cursor when
you call ICMDecompressComplete (page 675). In this manner, the cursor is hidden only when your component
is decompressing and displaying the frame.

Special Considerations

This function may be called at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageFieldSequenceBegin
Initiates an image field sequence operation and specifies the input and output data format.

OSErr ImageFieldSequenceBegin (
 ImageFieldSequence *ifs,
 ImageDescriptionHandle desc1,
 ImageDescriptionHandle desc2,
 ImageDescriptionHandle descOut
);

Parameters
ifs

On return, contains the unique sequence identifier assigned to the sequence.

desc1
An ImageDescription structure describing the format and characteristics of the data to be passed
to ImageFieldSequenceExtractCombine (page 683) through the data1 parameter.

desc2
An ImageDescription structure describing the format and characteristics of the data to be passed
to the ImageFieldSequenceExtractCombine function through the data2 parameter. Set to NIL
if the requested operation uses only one input frame.

descOut
The desired format of the resulting frames. Typically this is the same format specified by the desc1
and desc2 parameters.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to set up an image field sequence operation and specify the input and output data format.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

682 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

ImageFieldSequenceEnd
Ends an image field sequence operation.

OSErr ImageFieldSequenceEnd (
 ImageFieldSequence ifs
);

Parameters
ifs

The unique sequence identifier that was returned by the ImageFieldSequenceBegin (page 682)
function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must call this function to terminate an image field sequence operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageFieldSequenceExtractCombine
Performs field operations on video data.

OSErr ImageFieldSequenceExtractCombine (
 ImageFieldSequence ifs,
 long fieldFlags,
 void *data1,
 long dataSize1,
 void *data2,
 long dataSize2,
 void *outputData,
 long *outDataSize
);

Parameters
ifs

The unique sequence identifier that was returned by ImageFieldSequenceBegin (page 682).

Functions 683
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

fieldFlags
Flags (see below) that specify the operation to be performed. A correctly formed request will specify
two input fields, mapping one to the odd output field and the other to the even output field. See
these constants:

evenField1ToEvenFieldOut

evenField1ToOddFieldOut

oddField1ToEvenFieldOut

oddField1ToOddFieldOut

evenField2ToEvenFieldOut

evenField2ToOddFieldOut

oddField2ToEvenFieldOut

oddField2ToOddFieldOut

data1
A pointer to a buffer containing the data of input field one.

dataSize1
The size of the data1 buffer.

data2
A pointer to a buffer containing the data of input field two. Set to NIL if the requested operation
uses only one input frame.

dataSize2
The size of the data2 buffer. Set to 0 if the requested operation uses only one input frame.

outputData
A pointer to a buffer to receive the resulting frame. Use GetMaxCompressionSize (page 670) to
determine the amount of memory to allocate for this buffer.

outDataSize
On output this parameter returns the actual size of the data.

Return Value
Returns the codecUnimpErr result code if there is no codec present in the system that can perform the
requested operation. See Error Codes. Returns noErr if there is no error.

Discussion
This function provides a method for working directly with fields of interlaced video. You can use it to change
the field dominance of an image by reversing the two fields, or to create or remove the effects of the 3:2
pulldown commonly performed when transferring film to NTSC videotape. Because this function operates
directly on the compressed video data, it is faster than working with decompressed images. It also has the
added benefit of eliminating any image quality degradation that might result from lossy codecs.

This function accepts one or two compressed images as input and creates a single compressed image on
output. You specify the operation to be performed using the fieldFlags parameter.

Special Considerations

The Apple Component Video (YUV) and Motion JPEG codecs currently support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

684 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

ImageTranscodeDisposeFrameData
Disposes transcoded image data.

OSErr ImageTranscodeDisposeFrameData (
 ImageTranscodeSequence its,
 void *dstData
);

Parameters
its

The image transcoder sequence that was used to generate the transcoded data.

dstData
A pointer to the transcoded image data generated by the ImageTranscodeFrame (page 685) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When the transcoded image data returned by ImageTranscodeFrame (page 685) is no longer needed, use
this function to dispose of the data. Only the image transcoder that generated the data can properly dispose
of it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscodeFrame
Transcodes a frame of image data.

OSErr ImageTranscodeFrame (
 ImageTranscodeSequence its,
 void *srcData,
 long srcDataSize,
 void **dstData,
 long *dstDataSize
);

Parameters
its

The image transcoder sequence to use to perform the transcoding operation.

srcData
A pointer to the source data to transcode.

Functions 685
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

srcDataSize
The size of the compressed source image data in bytes.

dstData
On return, a pointer to the transcoded image data.

dstDataSize
On return, the size of the transcoded image data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
After creating the image transcoder sequence, using ImageTranscodeSequenceBegin (page 686), use this
function to transcode a frame of image data. The caller is responsible for disposing of the transcoded data
using ImageTranscodeDisposeFrameData (page 685).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscodeSequenceBegin
Initiates an image transcoder sequence operation.

OSErr ImageTranscodeSequenceBegin (
 ImageTranscodeSequence *its,
 ImageDescriptionHandle srcDesc,
 OSType destType,
 ImageDescriptionHandle *dstDesc,
 void *data,
 long dataSize
);

Parameters
its

The image transcoder sequence identifier. If the operation fails, the value pointed to is set to NIL.

srcDesc
The ImageDescription structure for the source compressed image data.

destType
The desired compression format into which to transcode the source data.

dstDesc
On return, an ImageDescription structure for the data which will be generated by the image
transcoding sequence.

data
A pointer to first frame of compressed data to transcode. Set to NIL of not available.

dataSize
The size of the compressed data, in bytes. Set to 0 if no data is provided.

686 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error. If no transcoder is available to perform the requested
transcoding operation, a cantFindHandler error is returned.

Discussion
This function begins an image transcoder sequence operation and returns the sequence identifier in the its
parameter. The caller is responsible for disposing of the ImageDescription structure that is returned in
the dstDesc parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscodeSequenceEnd
Ends an image transcoder sequence operation.

OSErr ImageTranscodeSequenceEnd (
 ImageTranscodeSequence its
);

Parameters
its

The identifier of the image transcoder sequence to dispose. It is safe to pass a value of 0 in this
parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must call this function to terminate an image transcoder sequence operation and dispose of the sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

InverseMatrix
Creates a new matrix that is the inverse of a specified matrix.

Functions 687
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Boolean InverseMatrix (
 const MatrixRecord *m,
 MatrixRecord *im
);

Parameters
m

A pointer to the source MatrixRecord structure for the operation.

im
A pointer to a MatrixRecord structure that is to receive the new matrix. The function updates this
structure so that it contains a matrix that is the inverse of that specified by the m parameter.

Return Value
A Boolean value of TRUE if InverseMatrix was able to create an inverse matrix, FALSE otherwise.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtactiontargets
qtactiontargets.win
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
ImageCompression.h

MakeFilePreview
Creates a preview for a file.

OSErr MakeFilePreview (
 short resRefNum,
 ICMProgressProcRecordPtr progress
);

Parameters
resRefNum

The resource file for this operation. You must have opened this resource file with write permission.
If there is a preview in the specified file, the Movie Toolbox replaces that preview with a new one.

progress
A pointer to an ICMProgressProcRecord structure. During the process of creating the preview, the
Movie Toolbox may occasionally call a function you provide in order to report its progress. You can
then use this information to keep the user informed.

Set this parameter to -1 to use the default progress function. If you specify a progress function, it
must comply with the interface defined for Image Compression Manager progress functions; see
"Image Compression Manager" in InsideMacintosh:QuickTime for more information. Set this parameter
to NIL to prevent the Movie Toolbox from calling a progress function.

688 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should create a preview whenever you save a movie. You specify the file by supplying a reference to its
resource file. You must have opened this resource file with write permission. If there is a preview in the
specified file, the Movie Toolbox replaces that preview with a new one.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
ImageCompression.h

MakeImageDescriptionForEffect
Returns an ImageDescription structure you can use to help create a sample description for an effect.

OSErr MakeImageDescriptionForEffect (
 OSType effectType,
 ImageDescriptionHandle *idh
);

Parameters
effectType

The four-character code identifying the type of effect to make an image description for. See Effects
Codes.

idh
The handle of an ImageDescription structure. On entry, this parameter normally points to an
ImageDescription structure whose contents are NIL. On return, the structure is correctly filled out
for the selected effect type.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
To create a sample description, you create and fill out a data structure of type ImageDescription. This
function simplifies this process. Only sample descriptions made with this function can be used in stacked
effects, where one effect track acts as a source for another.

The following sample code creates a sample description:.

// MakeImageDescriptionForEffect coding example
// Return a new image description with default and specified values.
ImageDescriptionHandle QTEffSeg_MakeSampleDescription (
 OSType theEffectType, short theWidth, short theHeight)
{
 ImageDescriptionHandle mySampleDesc =NIL;

Functions 689
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

#if USES_MAKE_IMAGE_DESC_FOR_EFFECT
 OSErr myErr =noErr;
 // create a new sample description
 myErr =MakeImageDescriptionForEffect(theEffectType, &mySampleDesc);
 if (myErr !=noErr)
 return(NIL);
#else
 // create a new sample description
 mySampleDesc =(ImageDescriptionHandle)
 NewHandleClear(sizeof(ImageDescription));
 if (mySampleDesc ==NIL)
 return(NIL);

 // fill in the fields of the sample description
 (**mySampleDesc).cType =theEffectType;
 (**mySampleDesc).idSize =sizeof(ImageDescription);
 (**mySampleDesc).hRes =72L << 16;
 (**mySampleDesc).vRes =72L << 16;
 (**mySampleDesc).frameCount =1;
 (**mySampleDesc).depth =0;
 (**mySampleDesc).clutID =-1;
#endif

 (**mySampleDesc).vendor =kAppleManufacturer;
 (**mySampleDesc).temporalQuality =codecNormalQuality;
 (**mySampleDesc).spatialQuality =codecNormalQuality;
 (**mySampleDesc).width =theWidth;
 (**mySampleDesc).height =theHeight;

 return(mySampleDesc);
}

Version Notes
Introduced in QuickTime 4. Image descriptions built using sample code from earlier versions of QuickTime
cannot be used when stacking effects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qtaddeffectseg.win
qteffects.win
qtshoweffect
samplemakeeffectmovie.win

Declared In
ImageCompression.h

MakeImageDescriptionForPixMap
Fills out an ImageDescription structure corresponding to a PixMap structure.

690 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr MakeImageDescriptionForPixMap (
 PixMapHandle pixmap,
 ImageDescriptionHandle *idh
);

Parameters
pixmap

A handle to a PixMap structure.

idh
The handle of an ImageDescription structure. On entry, this parameter normally points to an
ImageDescription structure whose contents are NIL. On return, the structure is correctly filled out
for the selected PixMap.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImproveYourImage
SGDataProcSample
VideoProcessing
vrscript
vrscript.win

Declared In
ImageCompression.h

MakeThumbnailFromPicture
Creates a thumbnail picture from a specified Picture structure.

OSErr MakeThumbnailFromPicture (
 PicHandle picture,
 short colorDepth,
 PicHandle thumbnail,
 ICMProgressProcRecordPtr progressProc
);

Parameters
picture

A handle to the image from which the thumbnail is to be extracted. The image must be stored in a
Picture structure.

colorDepth
The depth at which the image is likely to be viewed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images.

Functions 691
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

thumbnail
A handle to the destination Picture structure for the thumbnail image. The compressor resizes this
handle for the resulting data.

progressProc
A pointer to an ICMProgressProcRecord structure. During the operation, the Image Compression
Manager will occasionally call a function to report its progress. You can provide a function through
this structure. If you have not provided a progress function, set this parameter to NIL. If you pass a
value of -1, you obtain a standard progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
ImageCompression.h

MakeThumbnailFromPictureFile
Creates a thumbnail picture from a specified picture file.

OSErr MakeThumbnailFromPictureFile (
 short refNum,
 short colorDepth,
 PicHandle thumbnail,
 ICMProgressProcRecordPtr progressProc
);

Parameters
refNum

A file reference number for the PICT file from which the thumbnail is to be extracted.

colorDepth
The depth at which the image is likely to be viewed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images.

thumbnail
A handle to the destination picture structure for the thumbnail image. The compressor resizes this
handle for the resulting data.

progressProc
A pointer to an ICMProgressProcRecord structure. During the operation, the Image Compression
Manager will occasionally call a function to report its progress. You can provide a function through
this structure.

692 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

MakeThumbnailFromPixMap
Creates a thumbnail picture from a specified PixMap structure.

OSErr MakeThumbnailFromPixMap (
 PixMapHandle src,
 const Rect *srcRect,
 short colorDepth,
 PicHandle thumbnail,
 ICMProgressProcRecordPtr progressProc
);

Parameters
src

A handle to the image from which the thumbnail is to be extracted. The image must be stored in a
PixMap structure.

srcRect
A pointer to a Rect structure that defines the portion of the image to use for the thumbnail.

colorDepth
The depth at which the image is likely to be viewed. If you set this parameter to 0, the Image
Compression Manager determines the appropriate value for the source image. Values of 1, 2, 4, 8, 16,
24, and 32 indicate the number of bits per pixel for color images. Values of 34, 36, and 40 indicate
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale images.

thumbnail
A handle to the destination picture structure for the thumbnail image. The compressor resizes this
handle for the resulting data.

progressProc
A pointer to an ICMProgressProcRecord structure. During the operation, the Image Compression
Manager will occasionally call a function to report its progress. You can provide a function through
this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 693
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

MapMatrix
Alters an existing matrix so that it defines a transformation from one rectangle to another.

void MapMatrix (
 MatrixRecord *matrix,
 const Rect *fromRect,
 const Rect *toRect
);

Parameters
matrix

A pointer to a matrix structure. The MapMatrix function modifies this matrix so that it performs a
transformation in the rectangle specified by the toRect parameter that is analogous to the
transformation it currently performs in the rectangle specified by the fromRect parameter.

fromRect
A pointer to the source Rect structure.

toRect
A pointer to the destination Rect structure.

Discussion
MapMatrix affects only the scaling and translation attributes of the matrix.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
ImageCompression.h

NewImageGWorld
Creates an offscreen graphics world.

ComponentResult ADD_IMAGECODEC_BASENAME() NewImageGWorld

Parameters
gworld

A pointer to a graphic world created using the width, height, depth, and color table specified in the
ImageDescription structure pointed to in the idh parameter.

694 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

idh
A handle to an ImageDescription structure that contains information for the graphics world pointed
to by the gworld parameter.

flags
Graphics world creation flags (see below). The pixPurge, noNewDevice, useTempMem, keepLocal,
pixelsPurgeable, and pixelsLocked flags are commands to this function; the others are returned
by this function. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

PtInDSequenceData
Tests to see if a compressed image contains data at a a given point.

OSErr PtInDSequenceData (
 ImageSequence seqID,
 void *data,
 Size dataSize,
 Point where,
 Boolean *hit
);

Parameters
seqID

The unique sequence identifier that was returned by the DecompressSequenceBegin (page 621)
function.

data
Pointer to compressed data in the format specified by the desc param.

dataSize
Size of the compressed data referred to by the data param.

where
A QuickDraw Point structure of value (0,0), based at the top-left corner of the image.

hit
A pointer to a field to receive the Boolean indicating whether or not the image contained data at the
specified point. The Boolean will be set to TRUE if the point specified by the where parameter is
contained within the compressed image data specified by the data param, or FALSE if the specified
point falls within a blank portion of the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 695
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
PtInDSequenceData allows the application to perform hit testing on compressed data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTGetFileNameExtension
Gets the extension to a file name.

OSErr QTGetFileNameExtension (
 ConstStrFileNameParam fileName,
 OSType fileType,
 OSType *extension
);

Parameters
fileName

A file name string.

fileType
A file type; see File Types and Creators.

extension
A pointer to the file name extension string.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataexchange
qtdataexchange.win

Declared In
ImageCompression.h

QTGetPixelFormatDepthForImageDescription
For a given pixel format, returns the depth value that should be used in image descriptions.

696 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

short QTGetPixelFormatDepthForImageDescription (
 OSType PixelFormat
);

Parameters
PixelFormat

The image description's pixel format; see Pixel Formats.

Return Value
The pixel depth for that format.

Discussion
Given a pixel format, this function returns the corresponding depth value that should be used in image
descriptions. Such a value is not the literal number of bits per pixel, but the closest corresponding classic
QuickDraw depth. For any pixel format with an alpha channel, it is 32. For grayscale pixel formats of 8 or
more bits per pixel, it is 40. For color quantized to 5 or 6 bits per component, it is 16. For all other color pixel
formats, it is 24.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCompression.h

QTGetPixelSize
Returns the bits per pixel for a given pixel format.

short QTGetPixelSize (
 OSType PixelFormat
);

Parameters
PixelFormat

A constant that identifies the pixel format; see Pixel Formats. This function returns meaningful
information only for non-planar formats.

Return Value
The bits per pixel. Returns 0 if the format is unknown.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win
ElectricImageComponent
ElectricImageComponent.win
GreyscaleEffectSample

Functions 697
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

QTGetPixMapHandleGammaLevel
Retrieves the current PixMap extension's gamma level setting.

Fixed QTGetPixMapHandleGammaLevel (
 PixMapHandle pm
);

Parameters
pm

A handle to a PixMap structure that has a PixMapExtension structure.

Return Value
On return, the gamma level previously set (or the default level) for the pixel map referenced by the pm
parameter.

Discussion
A typical use for this function is to retrieve the gamma level of a pixel map after a codec decompresses it
into a PixMap structure.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTGetPixMapHandleRequestedGammaLevel
Retrieves the current PixMap extension's requested gamma level setting.

Fixed QTGetPixMapHandleRequestedGammaLevel (
 PixMapHandle pm
);

Parameters
pm

A handle to a PixMap structure that has a PixMapExtension structure.

Return Value
On return, the requested gamma level previously set (or the default level) for the pixel map referenced by
the pm parameter.

Discussion
A typical use for this function is to retrieve the gamma level of a pixel map after a codec decompresses it
into a PixMap structure. The requested gamma level is used to control what gamma conversion is attempted
during decompression. The requested gamma level may differ from the actual gamma level depending on
the compressed data and the capabilities of the codecs involved.

698 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTGetPixMapHandleRowBytes
Gets the rowBytes value for a pixel map accessed by a handle.

long QTGetPixMapHandleRowBytes (
 PixMapHandle pm
);

Parameters
pm

A handle to a PixMap structure.

Return Value
The rowBytes value.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

Declared In
ImageCompression.h

QTGetPixMapPtrGammaLevel
Retrieves the current PixMap extension's gamma level setting.

Fixed QTGetPixMapPtrGammaLevel (
 PixMapPtr pm
);

Parameters
pm

A pointer to a PixMap structure that has a PixMapExtension structure.

Functions 699
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
On return, the gamma level previously set (or the default level) for the pixel map pointed to by the pm
parameter.

Discussion
A typical use for this function is to retrieve the gamma level of a pixel map after a codec decompresses it
into a PixMap structure.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTGetPixMapPtrRequestedGammaLevel
Retrieves the current PixMap extension's gamma level setting.

Fixed QTGetPixMapPtrRequestedGammaLevel (
 PixMapPtr pm
);

Parameters
pm

A pointer to a PixMap structure that has a PixMapExtension structure.

Return Value
On return, the requested gamma level previously set (or the default level) for the pixel map pointed to by
the pm parameter.

Discussion
A typical use for this function is to retrieve the gamma level of a pixel map after a codec decompresses it
into a PixMap structure. The requested gamma level is used to control what gamma conversion is attempted
during decompression. The requested gamma level may differ from the actual gamma level depending on
the compressed data and the capabilities of the codecs involved

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTGetPixMapPtrRowBytes
Gets the rowBytes value for a pixel map accessed by a pointer.

700 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

long QTGetPixMapPtrRowBytes (
 PixMapPtr pm
);

Parameters
pm

A pointer to a PixMap structure.

Return Value
The rowBytes value.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win
GreyscaleEffectSample
SoftVideoOutputComponent
VideoProcessing

Declared In
ImageCompression.h

QTNewGWorld
Creates an offscreen graphics world that may have a non-Macintosh pixel format.

OSErr QTNewGWorld (
 GWorldPtr *offscreenGWorld,
 OSType PixelFormat,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On return, a pointer to the offscreen graphics world created by this routine.

PixelFormat
The new graphics world's pixel format; see Pixel Formats. This function won't work with planar
pixel formats; use QTNewGWorldFromPtr (page 703) instead. See the ICMPixelFormatInfo structure
for a discussion of planar and chunky formats.

Functions 701
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

boundsRect
A pointer to the boundary rectangle and port rectangle for the offscreen pixel map. This becomes
the boundary rectangle for the GDevice structure, if this function creates one. If you specify 0 in the
PixelFormat parameter, the function interprets the boundaries in global coordinates that it uses
to determine which screens intersect the rectangle. It then uses the pixel format, color table, and
GDevice structure from the screen with the greatest pixel depth from among all screens whose
boundary rectangles intersect this rectangle. Typically, your application supplies this parameter with
the port rectangle for the onscreen window into which your application will copy the pixel image
from this offscreen world.

cTable
A handle to a ColorTable structure. If you pass NIL in this parameter, the function uses the default
color table for the pixel format that you specify in the PixelFormat parameter. If you set the
PixelFormat parameter to 0, the function ignores the cTable parameter and instead copies and
uses the color table of the graphics device with the greatest pixel depth among all graphics devices
whose boundary rectangles intersect the rectangle that you specify in the boundsRect parameter.
If you use this function on a computer that supports only basic QuickDraw, you may specify only NIL
in this parameter.

aGDevice
A handle to a GDevice structure that is used only when you specify the noNewDevice flag in the
flags parameter, in which case the function attaches this structure to the new offscreen graphics
world. If you set the PixelFormat parameter to 0, or if you do not set the noNewDevice flag, the
function ignores this parameter, so you should set it to NIL. If you set the PixelFormat parameter
to 0, the function uses the GDevice structure for the graphics device with the greatest pixel depth
among all graphics devices whose boundary rectangles intersect the rectangle that you specify in
the boundsRect parameter. You should pass NIL in this parameter if the computer supports only
basic QuickDraw. Generally, your application should never create GDevice structures for offscreen
graphics worlds.

flags
Constants (see below) that identify options available to your application. You can set a combination
of these flags. If you don't wish to use any of them, pass 0 in this parameter. In this case the default
behavior is to create an offscreen graphics world where the base address for the offscreen pixel image
is unpurgeable, the graphics world uses an existing GDevice structure (if you pass 0 in the depth
parameter) or creates a new GDevice structure, it uses memory in your application heap, and it allows
graphics accelerators to cache the offscreen pixel image. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects
qteffects.win
qtwiredactions
VideoProcessing

702 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

QTNewGWorldFromPtr
Wraps a graphics world and pixel map structure around an existing block of memory containing an image.

OSErr QTNewGWorldFromPtr (
 GWorldPtr *gw,
 OSType pixelFormat,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags,
 void *baseAddr,
 long rowBytes
);

Parameters
gw

On entry, a pointer that isn't going to change during the lifetime of the allocated graphics world. On
return, this pointer references the offscreen graphics world created by this function.

pixelFormat
The new graphics world's pixel format; see Pixel Formats.

boundsRect
A pointer to the boundary rectangle and port rectangle for the offscreen pixel map. This becomes
the boundary rectangle for the GDevice structure, if this function creates one. If you specify 0 in the
pixelFormat parameter, the function interprets the boundaries in global coordinates that it uses
to determine which screens intersect the rectangle. It then uses the pixel format, color table, and
GDevice structure from the screen with the greatest pixel depth from among all screens whose
boundary rectangles intersect this rectangle. Typically, your application supplies this parameter with
the port rectangle for the onscreen window into which your application will copy the pixel image
from this offscreen world.

cTable
A handle to a ColorTable structure. If you pass NIL in this parameter, the function uses the default
color table for the pixel format that you specify in the pixelFormat parameter. If you set the
pixelFormat parameter to 0, the function ignores the cTable parameter and instead copies and
uses the color table of the graphics device with the greatest pixel depth among all graphics devices
whose boundary rectangles intersect the rectangle that you specify in the boundsRect parameter.
If you use this function on a computer that supports only basic QuickDraw, you may specify only NIL
in this parameter.

aGDevice
A handle to a GDevice structure that is used only when you specify the noNewDevice flag in the
flags parameter, in which case the function attaches this structure to the new offscreen graphics
world. If you set the pixelFormat parameter to 0, or if you do not set the noNewDevice flag, the
function ignores this parameter, so you should set it to NIL. If you set the pixelFormat parameter
to 0, the function uses the GDevice structure for the graphics device with the greatest pixel depth
among all graphics devices whose boundary rectangles intersect the rectangle that you specify in
the boundsRect parameter. You should pass NIL in this parameter if the computer supports only
basic QuickDraw. Generally, your application should never create GDevice structures for offscreen
graphics worlds.

Functions 703
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

flags
A constant (see below) that identifies an option available to your application. If you don't wish to use
this option, pass 0 in this parameter. In this case the default behavior is to create an offscreen graphics
world that uses an existing GDevice structure (if you pass 0 in the depth parameter) or creates a new
GDevice structure. Most constants used in creating a GWorld are irrelevant for this function, as its
purpose is to wrap a GWorld around an existing block of pixels rather than to define and create a
pixmap. See these constants:

baseAddr
The base address for the pixel data.

rowBytes
The total size of the pixel data divided by the height of the pixel map. In other words, the number of
bytes in one row of pixels or the number of bytes between vertically adjacent pixels.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function wraps a GWorld around an existing pixel map. Note that it does not copy the pixmap. A
subsequent call to DisposeGWorld will not dispose of the pixel map; it will only dispose of the GWorld
wrapper. It is the caller's responsibility to dispose of the pixel map.

You can use this call to allocate an offscreen graphics world using special memory (such as on a video card).
If you have an image in memory that belong to something else (a hardware screen buffer, a 3D card, or
another file format or program), you can use this function to wrap a graphics world around the image and
then use QuickTime calls on that graphics world to compress it, scale it, draw to it, and so on. If your new
graphics world has a planar pixel format, you must use this call instead of QTNewGWorld (page 701).

Special Considerations

Do not unlock the pixels of the allocated graphics world. If your original pixels are from another graphics
world then you must ensure that the source pixels are locked.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CTMClip
CTMDemo
OpenGLCompositorLab
OpenGLMovieQT
TextureRange

Declared In
ImageCompression.h

QTSetPixMapHandleGammaLevel
Sets the gamma level of a pixel map.

704 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr QTSetPixMapHandleGammaLevel (
 PixMapHandle pm,
 Fixed gammaLevel
);

Parameters
pm

A handle to a PixMap structure that has a PixMapExtension structure.

gammaLevel
The new gamma level.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function does not convert the contents of the PixMap structure. A typical usage would be to set the
gamma level of a pixel map before compressing it so that the codec knows if it needs to do additional gamma
correcting when compressing.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTSetPixMapHandleRequestedGammaLevel
Sets the requested gamma level of a pixel map.

OSErr QTSetPixMapHandleRequestedGammaLevel (
 PixMapHandle pm,
 Fixed requestedGammaLevel
);

Parameters
pm

A handle to a PixMap structure that has a PixMapExtension structure.

requestedGammaLevel
A specified gamma level or a constant (see below). See these constants:

kQTUsePlatformDefaultGammaLevel

kQTUseSourceGammaLevel

kQTCCIR601VideoGammaLevel

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 705
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
This function does not convert the contents of the PixMap structure. A typical usage would be to set the
requested gamma level of a pixel map before decompressing so that the codec knows what gamma correction
is necessary when decompressing into the PixMap structure. The resulting gamma level can then be found
by calling QTGetPixMapHandleGammaLevel (page 698).

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTSetPixMapHandleRowBytes
Sets the rowBytes value for a pixel map accessed by a handle.

OSErr QTSetPixMapHandleRowBytes (
 PixMapHandle pm,
 long rowBytes
);

Parameters
pm

A handle to a PixMap structure.

rowBytes
The rowBytes value to be set.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTSetPixMapPtrGammaLevel
Sets the gamma level of a pixel map.

OSErr QTSetPixMapPtrGammaLevel (
 PixMapPtr pm,
 Fixed gammaLevel
);

Parameters
pm

A pointer to a PixMap structure that has a PixMapExtension structure.

706 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

gammaLevel
The new gamma level.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function does not convert the contents of the PixMap structure. A typical usage would be to set the
gamma level of a pixel map before compressing it so that the codec knows if it needs to do additional gamma
correcting when compressing.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTSetPixMapPtrRequestedGammaLevel
Sets the requested gamma level of a pixel map.

OSErr QTSetPixMapPtrRequestedGammaLevel (
 PixMapPtr pm,
 Fixed requestedGammaLevel
);

Parameters
pm

A pointer to a PixMap structure that has a PixMapExtension structure.

requestedGammaLevel
A specified gamma level or a constant (see below). See these constants:

kQTUsePlatformDefaultGammaLevel

kQTUseSourceGammaLevel

kQTCCIR601VideoGammaLevel

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function does not convert the contents of the PixMap structure. A typical usage would be to set the
requested gamma level of a pixel map before decompressing so that the codec knows what gamma correction
is necessary when decompressing into the PixMap structure. The resulting gamma level can then be found
by calling QTGetPixMapPtrGammaLevel (page 699).

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Functions 707
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

QTSetPixMapPtrRowBytes
Sets the rowBytes value for a pixel map accessed by a pointer.

OSErr QTSetPixMapPtrRowBytes (
 PixMapPtr pm,
 long rowBytes
);

Parameters
pm

A pointer to a PixMap structure.

rowBytes
The rowBytes value to be set.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QTUpdateGWorld
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world with a
non-Macintosh pixel format.

GWorldFlags QTUpdateGWorld (
 GWorldPtr *offscreenGWorld,
 OSType PixelFormat,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On input, a pointer to an existing offscreen graphics world; upon completion, the pointer to the
updated offscreen graphics world.

PixelFormat
The updated graphics world's pixel format; see Pixel Formats.

708 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

boundsRect
A pointer to the boundary rectangle and port rectangle for the updated offscreen pixel map. This
becomes the boundary rectangle for the GDevice structure, if this function creates one. If you specify
0 in the PixelFormat parameter, the function interprets the boundaries in global coordinates that
it uses to determine which screens intersect the rectangle. It then uses the pixel format, color table,
and GDevice structure from the screen with the greatest pixel depth from among all screens whose
boundary rectangles intersect this rectangle. If the rectangle you specify in this parameter differs
from, but has the same size as, the previous boundary rectangle, the function realigns the pixel image
to the screen for optimum performance for CopyBits. Typically, your application supplies this
parameter with the port rectangle for the onscreen window into which your application will copy the
pixel image from this offscreen world.

cTable
A handle to a ColorTable structure for the updated graphics world. If you pass NIL in this parameter,
the function uses the default color table for the pixel format that you specify in the PixelFormat
parameter. If you set the PixelFormat parameter to 0, the function ignores the cTable parameter
and instead copies and uses the color table of the graphics device with the greatest pixel depth
among all graphics devices whose boundary rectangles intersect the rectangle that you specify in
the boundsRect parameter. If the color table that you specify in this parameter is different from the
previous color table, or if the color table associated with the GDevice structure that you specify in
the aGDevice parameter is different, the function maps the pixel values in the offscreen pixel map
to the new color table. If you use this function on a computer that supports only basic QuickDraw,
you may specify only NIL in this parameter.

aGDevice
A handle to a GDevice structure that is used only when you specify the noNewDevice flag in the
flags parameter, in which case the function attaches this structure to the new offscreen graphics
world. If you set the PixelFormat parameter to 0, or if you do not set the noNewDevice flag, the
function ignores this parameter, so you should set it to NIL. If you set the PixelFormat parameter
to 0, the function uses the GDevice structure for the graphics device with the greatest pixel depth
among all graphics devices whose boundary rectangles intersect the rectangle that you specify in
the boundsRect parameter. You should pass NIL in this parameter if the computer supports only
basic QuickDraw. Generally, your application should never create GDevice structures for offscreen
graphics worlds.

flags
Constants (see below) that identify options available to your application. You can set a combination
of these flags. If you don't wish to use any of them, pass 0 in this parameter. In this case the default
behavior is to create an offscreen graphics world where the base address for the offscreen pixel image
is unpurgeable, the graphics world uses an existing GDevice structure (if you pass 0 in the depth
parameter) or creates a new GDevice structure, it uses memory in your application heap, and it allows
graphics accelerators to cache the offscreen pixel image. See these constants:

Return Value
A constant (see below) that reports on the operation of this function.

Discussion
If the Memory Manager purged the base address for the offscreen pixel image, this function reallocates the
memory but the pixel image is lost. You must reconstruct it.

Special Considerations

This function may move or purge memory blocks in the application heap. Your application should not call
this function at interrupt time.

Functions 709
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

QuadToQuadMatrix
Defines a matrix that maps between four input points and four output points.

OSErr QuadToQuadMatrix (
 const Fixed *source,
 const Fixed *dest,
 MatrixRecord *map
);

Parameters
source

A pointer to four input FixedPoint points.

dest
A pointer to four output FixedPoint points.

map
A pointer to a MatrixRecord structure that maps the value passed in source to the value passed
in dest.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

RectMatrix
Creates a matrix that performs the translate and scale operation described by the relationship between two
rectangles.

710 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

void RectMatrix (
 MatrixRecord *matrix,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
matrix

A pointer to a MatrixRecord structure. This function updates the contents of this matrix so that the
matrix describes a transformation from points in the rectangle specified by the srcRect parameter
to points in the rectangle specified by the dstRect parameter. The previous contents of the matrix
are ignored.

srcRect
A pointer to the source Rect structure.

dstRect
A pointer to the destination Rect structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BrideOfMungGrab
JPEG File Interchange Format
SGDataProcSample
VideoProcessing

Declared In
ImageCompression.h

RemoveImageDescriptionExtension
Removes a specified extension from an ImageDescription structure.

OSErr RemoveImageDescriptionExtension (
 ImageDescriptionHandle desc,
 long idType,
 long index
);

Parameters
desc

A handle to an ImageDescription structure.

idType
The type of extension to remove.

index
The index of the extension to remove. This is a number between 1 and the count returned by
CountImageDescriptionExtensionType (page 618).

Functions 711
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows an application to remove a specified extension from an ImageDescription structure.
Note that any extensions that are present in the structure after the deleted extension will have their index
numbers renumbered.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ReplaceDSequenceImageDescription
Undocumented

OSErr ReplaceDSequenceImageDescription (
 ImageSequence seqID,
 ImageDescriptionHandle newDesc
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

newDesc
A handle to an ImageDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

RotateMatrix
Modifies the contents of a matrix so that it defines a rotation operation.

712 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

void RotateMatrix (
 MatrixRecord *m,
 Fixed degrees,
 Fixed aboutX,
 Fixed aboutY
);

Parameters
m

A pointer to a MatrixRecord structure.

degrees
The number of degrees of rotation.

aboutX
The x coordinate of the anchor point of rotation.

aboutY
The y coordinate of the anchor point of rotation.

Discussion
This function updates the contents of a matrix so that the matrix describes a rotation operation; that is, it
concatenates the rotation transformations onto whatever was initially in the matrix structure. You specify
the direction and amount of rotation with the degrees parameter. You specify the point of rotation with
the aboutX and aboutY parameters.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DropDraw
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win

Declared In
ImageCompression.h

ScaleMatrix
Modifies the contents of a matrix so that it defines a scaling operation.

Functions 713
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

void ScaleMatrix (
 MatrixRecord *m,
 Fixed scaleX,
 Fixed scaleY,
 Fixed aboutX,
 Fixed aboutY
);

Parameters
m

A pointer to a MatrixRecord structure. The ScaleMatrix function updates the contents of this
matrix so that the matrix describes a scaling operation; that is, it concatenates the respective
transformations onto whatever was initially in the matrix structure. You specify the magnitude of the
scaling operation with the scaleX and scaleY parameters. You specify the anchor point with the
aboutX and aboutY parameters.

scaleX
The scaling factor applied to x coordinates.

scaleY
The scaling factor applied to y coordinates.

aboutX
The x coordinate of the anchor point.

aboutY
The y coordinate of the anchor point.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CTMDemo
OpenGLMovieQT
qtgraphics
qtgraphics.win
TextureRange

Declared In
ImageCompression.h

SetCompressedPixMapInfo
Stores information about a compressed image for StdPix.

714 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr SetCompressedPixMapInfo (
 PixMapPtr pix,
 ImageDescriptionHandle desc,
 Ptr data,
 long bufferSize,
 ICMDataProcRecordPtr dataProc,
 ICMProgressProcRecordPtr progressProc
);

Parameters
pix

A pointer to a PixMap structure that holds compressed image data.

desc
A handle to the ImageDescription structure that defines the compressed image.

data
A pointer to the buffer for the compressed image data. If the entire compressed image cannot be
stored at this location, you may assign a data-loading function (see the dataProc parameter, below).
This pointer must contain a 32-bit clean address.

bufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If there is no data-loading function defined for this operation, set this parameter to 0.

dataProc
A pointer to an ICMDataProcRecord structure. If there is not enough memory to store the compressed
image, the decompressor calls an ICMDataProc callback that you provide, which loads more
compressed data. If you do not want to assign a data-loading function, set this parameter to NIL.

progressProc
A pointer to an ICMProgressProcRecord structure. During the decompression operation, the
decompressor may occasionally call an ICMProgressProc callback that you provide, in order to
report its progress. If you do not want to assign a progress function, set this parameter to NIL. If you
pass a value of -1, you obtain a standard progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetCSequenceDataRateParams
Communicates information to compressors that can constrain compressed data in a particular sequence to
a specific data rate.

Functions 715
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr SetCSequenceDataRateParams (
 ImageSequence seqID,
 DataRateParamsPtr params
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

params
A pointer to a DataRateParams structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetCSequenceFlushProc
Assigns a data-unloading function to a sequence.

OSErr SetCSequenceFlushProc (
 ImageSequence seqID,
 ICMFlushProcRecordPtr flushProc,
 long bufferSize
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

flushProc
A pointer to an ICMFlushProcRecord structure. If there is not enough memory to store the
compressed image, the compressor calls an ICMFlushProc callback that you provide, which unloads
some of the compressed data. If you have not provided such a data-unloading function, set this
parameter to NIL. In this case, the compressor writes the entire compressed image into the memory
location specified by the data parameter to CompressSequenceFrame (page 612).

bufferSize
The size of the buffer to be used by the data-unloading function specified by the flushProcparameter.
If you have not specified such a data-unloading function, set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

716 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
Data-unloading functions allow compressors to work with images that cannot fit in memory. During the
compression operation, the compressor calls the data-unloading function whenever it has accumulated a
specified amount of compressed data. Your data-unloading function then writes the compressed data to
some other device, freeing buffer space for more compressed data. The compressor starts using the
data-unloading function with the next image in the sequence.

Special Considerations

There is no parameter to the CompressSequenceBegin (page 609) function that allows you to assign a
data-unloading function to a sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetCSequenceFrameNumber
Informs the compressor in use for the specified sequence that frames are being compressed out of order.

OSErr SetCSequenceFrameNumber (
 ImageSequence seqID,
 long frameNumber
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

frameNumber
The frame number of the frame that is being compressed out of sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This information is necessary only for compressors that are sequence-sensitive.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 717
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

SetCSequenceKeyFrameRate
Adjusts the key frame rate for the current sequence.

OSErr SetCSequenceKeyFrameRate (
 ImageSequence seqID,
 long keyFrameRate
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

keyFrameRate
The maximum number of frames allowed between key frames. Set this parameter to 1 to specify all
key frames, to 2 to specify every other frame as a key frame, to 3 to specify every third frame as a key
frame, and so forth. The compressor determines the optimum placement for key frames based upon
the amount of redundancy between adjacent images in the sequence. Consequently, the compressor
may insert key frames more frequently than you have requested. However, the compressor will never
place fewer key frames than is indicated by this parameter. If you set this parameter to 0, the Image
Compression Manager only places key frames in the compressed sequence when you call
CompressSequenceFrame (page 612), setting the codecFlagForceKeyFrame flag in the flags
parameter. The compressor ignores this parameter if you have not requested temporal compression;
that is, you have passed 0 for the temporalQuality parameter of CompressSequenceBegin (page
609).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Key frames provide points from which a temporally compressed sequence may be decompressed. Use this
parameter to control the frequency at which the compressor places key frames into the compressed sequence.
The new key frame rate takes effect with the next image in the sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetCSequencePreferredPacketSize
Sets the preferred packet size for a sequence.

718 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr SetCSequencePreferredPacketSize (
 ImageSequence seqID,
 long preferredPacketSizeInBytes
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

preferredPacketSizeInBytes
The preferred packet size in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
This function was added in QuickTime 2.5 to support video conferencing applications by making each
transmitted packet an independently decodable chunk of data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetCSequencePrev
Allows the application to set the pixel map and boundary rectangle used by the previous frame in temporal
compression.

OSErr SetCSequencePrev (
 ImageSequence seqID,
 PixMapHandle prev,
 const Rect *prevRect
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

prev
A handle to the new previous image buffer. You must allocate this buffer using the same pixel depth
and ColorTable structure as the source image buffer that you specified with the src parameter
when you called CompressSequenceBegin (page 609). The compressor uses this buffer to store a
previous image against which the current image is compared when performing temporal compression.
The compressor manages the contents of this buffer based upon several considerations, such as the
key frame rate and the degree of difference between compared images. The current image is stored
in the buffer referred to by the src parameter to CompressSequenceBegin.

Functions 719
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

prevRect
A pointer to a Rect structure that defines the portion of the previous image to use for temporal
compression. The compressor uses this portion of the previous image as the basis of comparison with
the current image. This rectangle must be the same size as the source rectangle you specify with the
srcRect parameter to CompressSequenceBegin (page 609). To get the boundary of a source pixel
map, set this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When you start compressing a sequence, you may assign a previous frame buffer and rectangle with the
prev and prevRect parameters to CompressSequenceBegin (page 609). If you specified a NIL value for
the prev parameter, the compressor allocates an offscreen buffer for the previous frame. In either case you
may use this function to assign a new previous frame buffer.

Special Considerations

This is a very specialized function; your application should not need to call it under most circumstances.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

Declared In
ImageCompression.h

SetCSequenceQuality
Adjusts the spatial or temporal quality for the current sequence.

OSErr SetCSequenceQuality (
 ImageSequence seqID,
 CodecQ spatialQuality,
 CodecQ temporalQuality
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

720 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

spatialQuality
A constant (see below) that specifies the desired compressed image quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A constant (see below) that specifies the desired sequence temporal quality. This parameter governs
the level of compression you desire with respect to information between successive frames in the
sequence. Set this parameter to 0 to prevent the compressor from applying temporal compression
to the sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You originally set the default spatial and temporal quality values for a sequence with
CompressSequenceBegin (page 609). The new quality parameters take effect with the next frame in the
sequence.

Special Considerations

If you change the quality settings while processing an image sequence, you affect the maximum image size
that you may receive during sequence compression. Consequently, you should call
GetMaxCompressionSize (page 670) after you change the quality settings. If the maximum size has increased,
you should reallocate your image buffers to accommodate the larger image size.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceAccuracy
Adjusts the decompression accuracy for the current sequence.

OSErr SetDSequenceAccuracy (
 ImageSequence seqID,
 CodecQ accuracy
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

Functions 721
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

accuracy
A constant (see below) that specifies the accuracy desired in the decompressed image. See these
constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The accuracy parameter governs how precisely the decompressor decompresses the image data. Some
decompressors may choose to ignore some image data to improve decompression speed. A new accuracy
value takes effect with the next frame in the sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceDataProc
Assigns a data-loading function to a sequence.

OSErr SetDSequenceDataProc (
 ImageSequence seqID,
 ICMDataProcRecordPtr dataProc,
 long bufferSize
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

dataProc
A pointer to an ICMDataProcRecord structure. If the data stream is not all in memory when your
program calls DecompressSequenceFrame (page 624), the decompressor calls an ICMDataProc
callback that you provide, which loads more compressed data. If you have not provided such a
data-loading function, or if you want the decompressor to stop using your data-loading function, set
this parameter to NIL. In this case, the entire image must be in memory at the location specified by
the data parameter to DecompressSequenceFrame.

bufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If you have not specified a data-loading function, set this parameter to 0.

722 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Data-loading functions allow decompressors to work with images that cannot fit in memory. During the
decompression operation the decompressor calls the data-loading function whenever it has exhausted its
supply of compressed data.

Special Considerations

There is no parameter to the DecompressSequenceBegin (page 621) function that allows you to assign a
data-loading function to a sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceFlags
Sets data loading flags.

OSErr SetDSequenceFlags (
 ImageSequence seqID,
 long flags,
 long flagsMask
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

flags
Flags (see below) for data loading. See these constants:

codecDSequenceSingleField

flagsMask
Use this field to preserve the state of any flags you do not wish to alter. If a flag (see below) is set in
this field, and is not set in the flags parameter, it will not be changed from its current setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver

Functions 723
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

SetDSequenceMask
Assigns a clipping region to a sequence.

OSErr SetDSequenceMask (
 ImageSequence seqID,
 RgnHandle mask
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

mask
A handle to a clipping region in the destination coordinate system. If specified, the decompressor
applies this mask to the destination image. If you want to stop masking, set this parameter to NIL.
The new region takes effect with the next frame in the sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The decompressor draws only that portion of the decompressed image that lies within the specified clipping
region. You should not dispose of this region until the Image Compression Manager is finished with the
sequence, or until you set the mask either to NIL or to a different region by calling this function again.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceMatrix
Assigns a mapping matrix to a sequence.

OSErr SetDSequenceMatrix (
 ImageSequence seqID,
 MatrixRecordPtr matrix
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

724 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

matrix
A MatrixRecord structure that specifies how to transform the image during decompression. You
can use this structure to translate or scale the image during decompression. To set the matrix to
identity, pass NIL in this parameter. The new matrix takes effect with the next frame in the sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The decompressor uses the matrix to create special effects with the decompressed image, such as translating
or scaling the image.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceMatte
Assigns a blend matte to a sequence.

OSErr SetDSequenceMatte (
 ImageSequence seqID,
 PixMapHandle matte,
 const Rect *matteRect
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

matte
A handle to a PixMap structure that contains a blend matte. You can use the blend matte to cause
the decompressed image to be blended into the destination pixel map. The matte can be defined at
any supported pixel depth; the matte depth need not correspond to the source or destination depths.
However, the matte must be in the coordinate system of the source image. If you want to turn off
the blend matte, set this parameter to NIL.

matteRect
A pointer to a Rect structure that defines the boundary rectangle for the matte. The decompressor
uses only that portion of the matte that lies within the specified rectangle. This rectangle must be
the same size as the source rectangle you specify with SetDSequenceSrcRect (page 727) or with
the srcRect parameter to DecompressSequenceBegin (page 621). To use the matte's PixMap
structure bounds as the boundary rectangle, pass NIL in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 725
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Discussion
The decompressor uses the matte to blend the decompressed image into the destination pixel map. The
new matte and matte boundary rectangle take effect with the next frame in the sequence. You should not
dispose of the matte until the Image Compression Manager has finished with the sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceNonScheduledDisplayDirection
Sets the display direction for a decompress sequence.

OSErr SetDSequenceNonScheduledDisplayDirection (
 ImageSequence sequence,
 Fixed rate
);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

rate
The display direction to be set. Negative values represent backward display and positive values
represent forward display.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

SetDSequenceNonScheduledDisplayTime
Sets the display time for a decompression sequence.

726 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr SetDSequenceNonScheduledDisplayTime (
 ImageSequence sequence,
 TimeValue64 displayTime,
 TimeScale displayTimeScale,
 UInt32 flags
);

Parameters
sequence

Contains the unique sequence identifier that was returned by the DecompressSequenceBegin (page
621) function.

displayTime
The display time to be set.

displayTimeScale
The display time scale to be set.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

SetDSequenceSrcRect
Defines the portion of an image to decompress.

OSErr SetDSequenceSrcRect (
 ImageSequence seqID,
 const Rect *srcRect
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

srcRect
A pointer to a Rect structure that defines the portion of the image to decompress. This rectangle
must lie within the boundary rectangle of the compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height), where desc refers to the ImageDescription structure
you supply to DecompressSequenceBegin (page 621). If the srcRectparameter is NIL, the rectangle
is set to the Rect structure in the ImageDescription.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The decompressor acts on that portion of the compressed image that lies within this rectangle. A new source
rectangle takes effect with the next frame in the sequence.

Functions 727
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceTimeCode
Sets the timecode value for a frame that is about to be decompressed.

OSErr SetDSequenceTimeCode (
 ImageSequence seqID,
 void *timeCodeFormat,
 void *timeCodeTime
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

timeCodeFormat
A pointer to a TimeCodeDef structure. You provide the appropriate timecode definition information
for the next frame to be decompressed.

timeCodeTime
A pointer to a TimeCodeRecord structure. You provide the appropriate time value for the next frame
in the current sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
QuickTime's video media handler uses this function to set the timecode information for a movie. When a
movie that contains timecode information starts playing, the media handler calls this function as it processes
the movie's first frame. The Image Compression Manager passes the timecode information straight through
to the image decompressor component. That is, the Image Compression Manager does not make a copy of
any of this timecode information. As a result, you must make sure that the data referred to by the
timeCodeFormat and timeCodeTime parameters is valid until the next decompression operation completes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetDSequenceTransferMode
Sets the mode used when drawing a decompressed image.

728 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

OSErr SetDSequenceTransferMode (
 ImageSequence seqID,
 short mode,
 const RGBColor *opColor
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

mode
A constant (see below) that specifies the transfer mode to be used when drawing the decompressed
image. See also Graphics Transfer Modes. See these constants:

opColor
Contains a pointer to the color for use in addPin, subPin, blend, and transparent operations.
The Image Compression Manager passes this color to QuickDraw as appropriate. If NIL, the opcolor
is left unchanged.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
For any given sequence, the default opColor value is 50 percent gray and the default mode is ditherCopy.
The new mode takes effect with the next frame in the sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SetIdentityMatrix
Sets the contents of a matrix so that it performs no transformation.

void SetIdentityMatrix (
 MatrixRecord *matrix
);

Parameters
matrix

A pointer to a MatrixRecord structure. The function updates the contents of this matrix so that the
matrix describes the identity matrix.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 729
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtspritesplus.win
vrmovies
vrmovies.win

Declared In
ImageCompression.h

SetImageDescriptionCTable
Updates the custom ColorTable structure for an image.

OSErr SetImageDescriptionCTable (
 ImageDescriptionHandle desc,
 CTabHandle ctable
);

Parameters
desc

Contains a handle to the appropriate ImageDescription structure. The function updates the size
of the structure to accommodate the new ColorTable structure and removes the old color table, if
one is present.

ctable
A handle to the new ColorTable structure. The function loads this color table into the
ImageDescription structure referred to by the desc parameter. Set this parameter to NIL to remove
a ColorTable structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function does not change the image data, just the color table.

Special Considerations

This function is rarely used. Typically, you supply the color table when your application compresses an image,
and the Image Compression Manager stores the ColorTable structure with the image.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites

730 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

SetSequenceProgressProc
Installs a progress procedure for a sequence.

OSErr SetSequenceProgressProc (
 ImageSequence seqID,
 ICMProgressProcRecord *progressProc
);

Parameters
seqID

The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

progressProc
A pointer to an ICMProgressProcRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to set an ICMProgressProc callback for a compression or decompression sequence,
just as you can set a progress procedure when compressing or decompressing a still image.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

SkewMatrix
Modifies the contents of a matrix so that it defines a skew transformation.

Functions 731
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

void SkewMatrix (
 MatrixRecord *m,
 Fixed skewX,
 Fixed skewY,
 Fixed aboutX,
 Fixed aboutY
);

Parameters
m

A pointer to the matrix for this operation. The SkewMatrix function updates the contents of the
MatrixRecord structure so that it defines a skew operation; it concatenates the respective
transformations onto whatever was initially in the matrix structure. You specify the magnitude and
direction of the skew operation with the skewX and skewY parameters. You specify an anchor point
with the aboutX and aboutY parameters.

skewX
The skew value to be applied to x coordinates.

skewY
The skew value to be applied to y coordinates.

aboutX
The x coordinate of the anchor point.

aboutY
The y coordinate of the anchor point.

Discussion
A skew operation alters the display of an element along one dimension. For example, converting a rectangle
into a parallelogram is a skew operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

StdPix
Extends the grafProcs field of the CGrafPort structure to support compressed data, mattes, matrices, and
pixel maps, letting you intercept image data in compressed form before it is decompressed and displayed.

732 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

void StdPix (
 PixMapPtr src,
 const Rect *srcRect,
 MatrixRecordPtr matrix,
 short mode,
 RgnHandle mask,
 PixMapPtr matte,
 const Rect *matteRect,
 short flags
);

Parameters
src

Contains a pointer to a PixMap structure containing the image to draw. Use
GetCompressedPixMapInfo (page 654) to retrieve information about this structure.

srcRect
Points to a Rect structure that defines the portion of the image to display. This rectangle must lie
within the boundary rectangle of the compressed image or within the source image. If this parameter
is set to NIL, the entire image is displayed.

matrix
Contains a pointer to a MatrixRecord structure that specifies the mapping of the source rectangle
to the destination. It is a fixed-point, 3-by-3 matrix.

mode
Specifies the transfer mode for the operation; see Graphics Transfer Modes. Note that this
parameter also controls the accuracy of any decompression operation that may be required to display
the image. If bit 7 (0x80) of the mode parameter is set to 1, the StdPix function sets the decompression
accuracy to codecNormalQuality. If this bit is set to 0, the function sets the accuracy to
codecHighQuality.

mask
Contains a handle to a clipping region in the destination coordinate system. If specified, the compressor
applies this mask to the destination image. If there is no mask, this parameter is set to NIL.

matte
Points to a PixMap structure that contains a blend matte. The blend matte causes the decompressed
image to be blended into the destination pixel map. The matte can be defined at any supported pixel
depth; the matte depth need not correspond to the source or destination depths. However, the matte
must be in the coordinate system of the source image. If there is no matte, this parameter is set to
NIL

matteRect
Contains a pointer to a Rect structure that defines a portion of the blend matte to apply. This
parameter is set to NIL if there is no matte or if the entire matte is to be used.

flags
Contains control flags (see below). See these constants:

callOldBits

callStdBits

noDefaultOpcodes

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 733
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

TransformFixedPoints
Transforms a set of fixed points through a specified matrix.

OSErr TransformFixedPoints (
 const MatrixRecord *m,
 FixedPoint *fpt,
 long count
);

Parameters
m

A pointer to the transformation matrix for this operation.

fpt
A pointer to the first fixed point to be transformed.

count
The number of fixed points to be transformed. These points must be stored immediately following
the point specified by the fpt parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

TransformFixedRect
Transforms the upper-left and lower-right points of a rectangle through a matrix that is specified by fixed
points.

Boolean TransformFixedRect (
 const MatrixRecord *m,
 FixedRect *fr,
 FixedPoint *fpp
);

Parameters
m

A pointer to the matrix for this operation.

734 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

fr
A pointer to the FixedRect structure that defines the rectangle to be transformed.
TransformFixedRect returns the updated coordinates into the structure referred to by this
parameter. If the resulting rectangle has been rotated or skewed (that is, the transformation involves
operations other than scaling and translation), the function sets the returned Boolean value to FALSE
and returns the coordinates of the boundary box of the transformed rectangle. The function then
updates the points specified by the fpp parameter to contain the coordinates of the four corners of
the transformed rectangle.

fpp
A pointer to an array of four fixed points. The function returns the coordinates of the four corners of
the rectangle after the transformation operation. If you do not want this information, set this parameter
to NIL.

Return Value
If the resulting rectangle has been rotated or skewed (that is, the transformation involves operations other
than scaling and translation), the function returns FALSE, updates the rectangle specified by the fr parameter
to define the boundary box of the resulting rectangle, and places the coordinates of the corners of the
resulting rectangle in the points specified by the fpp parameter. If the transformed rectangle and its boundary
box are the same, the function returns TRUE.

Discussion
This function does not return any error codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

TransformPoints
Transforms a set of QuickDraw points through a specified matrix.

OSErr TransformPoints (
 const MatrixRecord *mp,
 Point *pt1,
 long count
);

Parameters
mp

A pointer to the transformation matrix for this operation.

pt1
A pointer to the first QuickDraw point to be transformed.

count
The number of QuickDraw points to be transformed. These points must be stored immediately
following the point specified by the pt1 parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 735
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

TransformRect
Transforms the upper-left and lower-right points of a rectangle through a specified matrix.

Boolean TransformRect (
 const MatrixRecord *m,
 Rect *r,
 FixedPoint *fpp
);

Parameters
m

The matrix for this operation.

r
A pointer to the Rect structure that defines the rectangle to be transformed. The function returns
the updated coordinates into the structure referred to by this parameter.

fpp
A pointer to an array of four fixed points. The TransformRect function returns the coordinates of
the four corners of the rectangle after the transformation operation. If you do not want this information,
set this parameter to NIL.

Return Value
If the resulting rectangle has been rotated or skewed (that is, the transformation involves operations other
than scaling and translation), the function returns FALSE, updates the rectangle specified by the r parameter
to define the boundary box of the resulting rectangle, and places the coordinates of the corners of the
resulting rectangle in the points specified by the fpp parameter. If the transformed rectangle and its boundary
box are the same, the function returns TRUE.

Discussion
This function does not return any error codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BurntTextSampleCode
DrawTextCodec
ExampleCodec
qdmediahandler.win

736 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

TransformRgn
Applies a specified matrix to a region.

OSErr TransformRgn (
 MatrixRecordPtr matrix,
 RgnHandle rgn
);

Parameters
matrix

Points to the matrix for this operation. The TransformRgn function currently supports only translation
and scaling operations.

rgn
A handle to the MacRegion structure to be transformed. The function transforms each point in the
region according to the specified matrix

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtskins
qtskins.win

Declared In
ImageCompression.h

TranslateMatrix
Adds a translation value to a specified matrix.

void TranslateMatrix (
 MatrixRecord *m,
 Fixed deltaH,
 Fixed deltaV
);

Parameters
m

A pointer to the MatrixRecord structure for this operation.

deltaH
The value to be added to the x coordinate translation value.

Functions 737
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

deltaV
The value to be added to the y coordinate translation value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GroupDrawing
ImageCompositing
qtgraphics
qtgraphics.win
qtspritesplus.win

Declared In
ImageCompression.h

TrimImage
Adjusts a compressed image to the boundaries defined by a specified rectangle.

ComponentResult ADD_IMAGECODEC_BASENAME() TrimImage

Parameters
desc

A handle to the ImageDescription structure that describes the compressed image. On return, the
compressor updates this structure to describe the resized image.

inData
A pointer to the compressed image data. This pointer must contain a 32-bit clean address. If the entire
compressed image cannot be stored at this location, your application may provide an ICMDataProc
callback through the dataProc parameter.

inBufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If you have not specified a data-loading function, this parameter is ignored.

dataProc
A pointer to an ICMDataProcRecord structure that references an ICMDataProc callback. If there is
not enough memory to store the compressed image, the compressor calls a function you provide
that loads more compressed data. If you have not provided such a data-loading function, set this
parameter to NIL. In this case, the compressor expects that the entire compressed image is in the
memory location specified by the inData parameter

outData
A pointer to a buffer to receive the trimmed image. The Image Compression Manager places the
actual size of the resulting image into the dataSize field of the ImageDescription structure
referred to by the desc parameter. This pointer must contain a 32-bit clean address. Your application
should create a destination buffer at least as large as the source image. If there is not sufficient memory
to store the compressed image, you may choose to write the compressed data to mass storage during
the compression operation, in which case you use the flushProc parameter to identify your
data-unloading function to the compressor.

738 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

outBufferSize
The size of the buffer to be used by the data-unloading function specified by the flushProcparameter.
If you have not specified a data-unloading function, this parameter is ignored.

flushProc
A pointer to an ICMFlushProcRecord structure that references an ICMFlushProc callback. If there
is not enough memory to store the compressed image, the compressor calls a function you provide
that unloads some of the compressed data. If you have not provided such a data-unloading function,
set this parameter to NIL. In this case, the compressor writes the entire compressed image into the
memory location specified by the data parameter

trimRect
A pointer to a Rect structure that defines the desired image dimensions. On return, the function
adjusts the rectangle values so that they refer to the same rectangle in the result image. This is
necessary whenever data is removed from the beginning or left side of the image.

progressProc
A pointer to an ICMProgressProcRecord structure that references an ICMProgressProc callback.
During the operation, the compressor may occasionally call a function you provide in order to report
its progress. If you have not provided such a progress function, set this parameter to NIL. If you pass
a value of -1, you obtain a standard progress function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

UnsignedFixMulDiv
Performs multiplications and divisions on unsigned fixed-point numbers.

Fixed UnsignedFixMulDiv (
 Fixed src,
 Fixed mul,
 Fixed divisor
);

Parameters
src

The value to be multiplied or divided.

mul
The multiplier to be applied to the value in the src parameter. Pass 0x00010000 if you do not want
to multiply.

divisor
The divisor to be applied to the value in the src parameter. Pass 0x00010000 if you do not want to
divide.

Functions 739
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Return Value
The fixed-point number that is the value of the src parameter, multiplied by the value in the mul parameter
and divided by the value in the divisor parameter. The function performs both operations before returning.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Callbacks

Data Types

CodecComponent
Represents a type used by the Compression and Decompression API.

typedef Component CodecComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

CodecNameSpecList
Contains a list of CodecNameSpec structures.

struct CodecNameSpecList {
 short count;
 CodecNameSpec list[1];
 };

Fields
count

Discussion
Indicates the number of compressor name structures contained in the list array that follows.

list

Discussion
Contains an array of compressor name structures. Each structure corresponds to one compressor component
or type that meets the selection criteria your application specifies when it calls GetCodecNameList (page
652).

740 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Related Functions
DisposeCodecNameList (page 628)
GetCodecNameList (page 652)

Declared In
ImageCompression.h

CodecNameSpecListPtr
Represents a type used by the Compression and Decompression API.

typedef CodecNameSpecList * CodecNameSpecListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ConstStrFileNameParam
Represents a type used by the Compression and Decompression API.

typedef ConstStr255Param ConstStrFileNameParam;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTypes.h

DataRateParams
Communicates information to compressors that can constrain compressed data to a specific data rate.

struct DataRateParams {
 long dataRate;
 long dataOverrun;
 long frameDuration;
 long keyFrameRate;
 CodecQ minSpatialQuality;
 CodecQ minTemporalQuality;
 };

Fields
dataRate

Discussion
Specifies the bytes per second to which the data rate must be constrained.

dataOverrun

Discussion
Indicates the current number of bytes above or below the desired data rate. A value of 0 means that the data
rate is being met exactly. If your application doesn't know the data overrun, it should set this field to 0.

Data Types 741
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

frameDuration

Discussion
Specifies the duration of the current frame in milliseconds.

keyFrameRate

Discussion
Indicates the frequency of key frames. This frequency is normally identical to the key frame rate passed to
the CompressSequenceBegin (page 609).

minSpatialQuality

Discussion
A constant (see below) that specifies the minimum spatial quality the compressor should use to meet the
requested data rate. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

minTemporalQuality

Discussion
A constant (see below) that specifies the minimum temporal quality the compressor should use to meet the
requested data rate.

Discussion
The CodecQ data type defines a field that identifies the quality characteristics of a given image or sequence.
Note that individual components may not implement all the quality levels shown here. In addition, components
may implement other quality levels in the range from codecMinQuality to codecMaxQuality. Relative
quality should scale within the defined value range. Values above codecLosslessQuality are reserved
for use by individual components.

Related Functions
GetCSequenceDataRateParams (page 657)
SetCSequenceDataRateParams (page 715)

Declared In
ImageCompression.h

DataRateParamsPtr
Represents a type used by the Compression and Decompression API.

typedef DataRateParams * DataRateParamsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

742 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

DecompressorComponent
Represents a type used by the Compression and Decompression API.

typedef Component DecompressorComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

FixedRect
Defines the size and location of a rectangle in fixed-point numbers.

struct FixedRect {
 Fixed left;
 Fixed top;
 Fixed right;
 Fixed bottom;
 };

Fields
left

Discussion
The x coordinate of the upper-left corner of the rectangle.

top

Discussion
The y coordinate of the upper-left corner of the rectangle.

right

Discussion
The x coordinate of the lower-right corner of the rectangle.

bottom

Discussion
The y coordinate of the lower-right corner of the rectangle.

Related Functions
TransformFixedRect (page 734)

Declared In
ImageCompression.h

Fract
Represents a type used by the Compression and Decompression API.

typedef long Fract;

Availability
Available in Mac OS X v10.0 and later.

Data Types 743
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
IOMacOSTypes.h

ICMPixelFormatInfo
Defines a pixel format.

struct ICMPixelFormatInfo {
 long size;
 unsigned long formatFlags;
 short bitsPerPixel[14];
 };

Fields
size

Discussion
The size of this structure. This quantity isn't necessarily equal to sizeof(ICMPixelFormatInfo) because
it is dependent on whether the pixel format is chunky or planar, and, if planar, the number of components
(see below).

formatFlags

Discussion
A constant (see below) indicating the pixel format. See these constants:

kICMPixelFormatIsPlanarMask

kICMPixelFormatIsIndexed

kICMPixelFormatIsSupportedByQD

bitsPerPixel

Discussion
An array that defines the number of bits for each component. The element bitsPerPixel[0] contains the
number of bits for the first component, bitsPerPixel[1] the number of bits for the second component,
etc. The meaning of this parameter depends on the format flag (see below).

Discussion
You can represent a format that has from 1 to 14 discrete components using this data structure. For ARGB,
there are 4 components. RGB without an alpha channel has 3 components. A component count of 15 is
reserved for future expansion.

Related Functions
ICMGetPixelFormatInfo (page 677)
ICMSetPixelFormatInfo (page 681)

Declared In
ImageCompression.h

ICMPixelFormatInfoPtr
Represents a type used by the Compression and Decompression API.

typedef ICMPixelFormatInfo * ICMPixelFormatInfoPtr;

Availability
Available in Mac OS X v10.0 and later.

744 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Declared In
ImageCompression.h

ImageFieldSequence
Represents a type used by the Compression and Decompression API.

typedef long ImageFieldSequence;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageSequenceDataSource
Represents a type used by the Compression and Decompression API.

typedef long ImageSequenceDataSource;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ImageTranscodeSequence
Represents a type used by the Compression and Decompression API.

typedef long ImageTranscodeSequence;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

OpenCPicParams
Specifies resolutions when creating images.

Data Types 745
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

struct OpenCPicParams {
 Rect srcRect;
 Fixed hRes;
 Fixed vRes;
 short version;
 short reserved1;
 long reserved2;
 };

Fields
srcRect

Discussion
The optimal bounding rectangle for the resolution indicated by the hRes and vRes fields. To display a picture
at a resolution other than that specified in the the hRes and vRes fields, your application should compute
an appropriate destination rectangle by scaling the image's width and height by the destination resolution
divided by the source resolution.

hRes

Discussion
The best horizontal resolution for the picture. A value of 0x0048000 specifies a horizontal resolution of 72
dpi.

vRes

Discussion
The best vertical resolution for the picture. A value of 0x0048000 specifies a vertical resolution of 72 dpi.

version

Discussion
Always set this field to -2.

reserved1

Discussion
Reserved; set to 0.

reserved2

Discussion
Reserved; set to 0.

Related Functions
GetPictureFileHeader (page 673)

Declared In
ImageCompression.h

QHdr
A Windows queue header structure.

746 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

struct QHdr {
 short qFlags;
 short pad;
 long MutexID;
 QElemPtr qHead;
 QElemPtr qTail;
 };

Fields
qFlags

Discussion
Undocumented

pad

Discussion
Unused.

MutexID

Discussion
Undocumented

qHead

Discussion
Undocumented

qTail

Discussion
Undocumented

Related Functions
CDSequenceSetSourceDataQueue (page 599)
Dequeue
Enqueue
InitializeQHdr
TerminateQHdr

Declared In
ImageCompression.h

QHdrPtr
Represents a type used by the Compression and Decompression API.

typedef QHdr * QHdrPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Data Types 747
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Constants

StdPix Values
Constants passed to StdPix.

enum {
 callStdBits = 1,
 callOldBits = 2,
 noDefaultOpcodes = 4
};

Declared In
ImageCompression.h

DSequence Flags
Constants that represent <codeVoice>DSequence</codeVoice> flags.

enum {
 codecDSequenceDisableOverlaySurface = (1L << 5),
 codecDSequenceSingleField = (1L << 6),
 codecDSequenceBidirectionalPrediction = (1L << 7),
 codecDSequenceFlushInsteadOfDirtying = (1L << 8),
 codecDSequenceEnableSubPixelPositioning = (1L << 9),
 codecDSequenceDeinterlaceFields = (1L << 10)
};

Declared In
ImageCompression.h

FCompressImage Values
Constants passed to FCompressImage.

748 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

enum {
 codecFlagUseImageBuffer = (1L << 0), /* decompress*/
 codecFlagUseScreenBuffer = (1L << 1), /* decompress*/
 codecFlagUpdatePrevious = (1L << 2), /* compress*/
 codecFlagNoScreenUpdate = (1L << 3), /* decompress*/
 codecFlagWasCompressed = (1L << 4), /* compress*/
 codecFlagDontOffscreen = (1L << 5), /* decompress*/
 codecFlagUpdatePreviousComp = (1L << 6), /* compress*/
 codecFlagForceKeyFrame = (1L << 7), /* compress*/
 codecFlagOnlyScreenUpdate = (1L << 8), /* decompress*/
 codecFlagLiveGrab = (1L << 9), /* compress*/
 codecFlagDiffFrame = (1L << 9), /* decompress*/
 codecFlagDontUseNewImageBuffer = (1L << 10), /* decompress*/
 codecFlagInterlaceUpdate = (1L << 11), /* decompress*/
 codecFlagCatchUpDiff = (1L << 12), /* decompress*/
 codecFlagSupportDisable = (1L << 13), /* decompress*/
 codecFlagReenable = (1L << 14) /* decompress*/
};

Constants
codecFlagUpdatePrevious

Controls whether your compressor updates the previous image during compression. This flag is only
used with sequences that are being temporally compressed. If this flag is set to 1, your compressor
should copy the current frame into the previous frame buffer at the end of the frame-compression
sequence. Use the source image.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagWasCompressed
Indicates to your compressor that the image to be compressed has been compressed before. This
information may be useful to compressors that can compensate for the image degradation that may
otherwise result from repeated compression and decompression of the same image. This flag is set
to 1 to indicate that the image was previously compressed. This flag is set to 0 if the image was not
previously compressed.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagUpdatePreviousComp
Controls whether your compressor updates the previous image buffer with the compressed image.
This flag is only used with temporal compression. If this flag is set to 1, your compressor should update
the previous frame buffer at the end of the frame-compression sequence, allowing your compressor
to perform frame differencing against the compression results. Use the image that results from the
compression operation. If this flag is set to 0, your compressor should not modify the previous frame
buffer during compression.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagLiveGrab
Indicates whether the current sequence results from grabbing live video. When working with live
video, your compressor should operate as quickly as possible and disable any additional processing,
such as compensation for previously compressed data. This flag is set to 1 when you are compressing
from a live video source.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Constants 749
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

codecFlagDiffFrame
Decompress.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

codecFlagSupportDisable
Decompress.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

Color Modes
Constants that represent color modes.

750 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

enum {
 defaultDither = 0,
 forceDither = 1,
 suppressDither = 2,
 useColorMatching = 4
};
enum {
 graphicsModeStraightAlpha = 256,
 graphicsModePreWhiteAlpha = 257,
 graphicsModePreBlackAlpha = 258,
 graphicsModeComposition = 259,
 graphicsModeStraightAlphaBlend = 260,
 graphicsModePreMulColorAlpha = 261,
 graphicsModePerComponentAlpha = 272
};
enum {
 kQTTIFFUserDataPrefix = 0x74690000, /* Added to some tag values in TIFF
 IFDs to generate user data codes. (0x7469 is 'ti'.) */
 /* For example, YCbCrPositioning is tag
0x0213, so its user data code is 0x74690213. */
 kQTTIFFExifUserDataPrefix = 0x65780000, /* Added to tag values in Exif IFDs
 to generate user data codes. (0x6578 is 'ex'.) */
 /* For example, DateTimeOriginal is tag
0x9003, so its user data code is 0x65789003. */
 kQTTIFFExifGPSUserDataPrefix = 0x67700000, /* Added to tag values in Exif GPS
IFDs to generate user data codes. (0x6770 is 'gp'.) */
 /* For example, GPSAltitude is tag 0x0006,
 so its user data code is 0x6770006. */
 kQTAlphaMode = 'almo', /* UInt32; eg, graphicsModeStraightAlpha
 or graphicsModePreBlackAlpha */
 kQTAlphaModePreMulColor = 'almp', /* RGBColor; used if kQTAlphaMode is
graphicsModePreMulColorAlpha */
 kUserDataIPTC = 'iptc'
};

Constants
kQTTIFFUserDataPrefix

Added to some tag values in TIFF IFDs to generate user data codes. (0x7469 is 'ti'.).

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

kQTTIFFExifUserDataPrefix
Added to tag values in Exif IFDs to generate user data codes. (0x6578 is 'ex'.).

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

kQTTIFFExifGPSUserDataPrefix
Added to tag values in Exif GPS IFDs to generate user data codes. (0x6770 is 'gp'.).

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

kQTAlphaMode
UInt32; for example, graphicsModeStraightAlpha or graphicsModePreBlackAlpha.

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

Constants 751
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

kQTAlphaModePreMulColor
RGBColor; used if kQTAlphaMode is graphicsModePreMulColorAlpha.

Available in Mac OS X v10.1 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

GetGraphicsImporterForFileWithFlags Values
Constants passed to GetGraphicsImporterForFileWithFlags.

enum {
 kDontUseValidateToFindGraphicsImporter = 1L << 0
};

Declared In
ImageCompression.h

QTSetPixMapPtrRequestedGammaLevel Values
Constants passed to QTSetPixMapPtrRequestedGammaLevel.

enum {
 kQTUsePlatformDefaultGammaLevel = 0, /* When decompressing into this PixMap,
gamma-correct to the platform's standard gamma. */
 kQTUseSourceGammaLevel = -1L, /* When decompressing into this PixMap,
don't perform gamma-correction. */
 kQTCCIR601VideoGammaLevel = 0x00023333 /* 2.2, standard television video
gamma.*/
};

Constants
kQTCCIR601VideoGammaLevel

Gamma 2.2, for ITU-R BT.601 based video.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

752 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Compression and Decompression Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeComponents.h

Overview

Data components allow applications to place various types of data into a QuickTime movie or extract data
from a movie in a specified format.

Functions by Task

Data Codec Functions

DataCodecBeginInterruptSafe (page 759)
Called before performing a compression or decompression operation during interrupt time.

DataCodecCompress (page 760)
Compresses data using the specified compressor component.

DataCodecDecompress (page 762)
Decompresses data using the specified compressor component.

DataCodecEndInterruptSafe (page 764)
Releases resources used by DataCodecBeginInterruptSafe.

Identifying Data References

DataHCompareDataRef (page 770)
Compares a supplied data reference against its current data reference and returns a Boolean value
indicating whether the data references are equivalent (that is, the two data references identify the
same container).

DataHGetDataRef (page 780)
Retrieves your component's current data reference.

DataHResolveDataRef (page 805)
Locates the container associated with a given data reference.

DataHSetDataRef (page 809)
Assigns a data reference to your data handler component.

Overview 753
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Managing Data Handler Components

DataHFlushCache (page 775)
Discards the contents of any cached read buffers.

DataHFlushData (page 775)
Forces any data in your component's write buffers to be written to the device that contains the current
data reference.

DataHPlaybackHints (page 798)
Provides additional information to your component that you may use to optimize the operation of
your data handler.

DataHTask (page 816)
Cedes processor time to your data handler.

Reading Movie Data

DataHCloseForRead (page 768)
Closes read-only access to its data reference.

DataHFinishData (page 774)
Completes or cancels one or more queued read requests.

DataHGetAvailableFileSize (page 776)
Returns the available file size for a data handler component.

DataHGetData (page 777)
Reads data from its current data reference, which is a synchronous read operation.

DataHGetFileSize (page 784)
Returns the size, in bytes, of the current data reference.

DataHGetScheduleAheadTime (page 794)
Reports how far in advance it prefers clients to issue read requests.

DataHOpenForRead (page 796)
Opens a data handler's current data reference for read-only access.

DataHScheduleData (page 806)
Reads data from its current data reference, which can be a synchronous read operation or an
asynchronous read operation.

Selecting a Data Handler

DataHCanUseDataRef (page 767)
Reports whether a data handler can access the data associated with a specified data reference.

DataHGetDeviceIndex (page 782)
Returns a value that identifies the device on which a data reference resides.

DataHGetVolumeList (page 795)
Returns a list of the volumes your component can access, along with flags indicating your component's
capabilities for each volume.

754 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Using Data References to Access Media

DataHDeleteFile (page 773)
Deletes a data handler's data storage file.

DataHGetInfo (page 788)
Retrieves information from a data handler.

DataHSetMovieUsageFlags (page 814)
Sets the way that a data handler appends data to its storage.

Working With The Idle Manager

DataHSetIdleManager (page 813)
Lets a data handler report its idling needs.

Writing Movie Data

DataHCloseForWrite (page 769)
Closes write-only access to its data reference.

DataHCreateFile (page 771)
Creates a new container that meets the specifications of the current data reference.

DataHGetFreeSpace (page 787)
Reports the number of bytes available on the device that contains the current data reference.

DataHGetPreferredBlockSize (page 793)
Reports the block size that it prefers to use when accessing the current data reference.

DataHOpenForWrite (page 797)
Opens your component's current data reference for write-only access.

DataHPreextend (page 801)
Allocates new space for the current data reference, enlarging the container.

DataHPutData (page 802)
Writes data to a component's current data reference.

DataHSetFileSize (page 811)
Sets the size, in bytes, of the current data reference.

DataHWrite (page 817)
Writes data to its current data reference.

Supporting Functions

DataCodecCompressPartial (page 761)
Undocumented

DataCodecDecompressPartial (page 763)
Undocumented

Functions by Task 755
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataCodecGetCompressBufferSize (page 765)
Returns the maximum possible size of the compressed data that will be returned using the specified
compressor component.

DataHAddMovie (page 766)
Assigns movie data to a data handler.

DataHAppend64 (page 766)
Appends data to the current data reference.

DataHCreateFileWithFlags (page 772)
Undocumented

DataHDoesBuffer (page 773)
Reports whether a data handler does buffer reads and writes.

DataHGetCacheSizeLimit (page 776)
Returns the cache size limit for a data handler component.

DataHGetDataAvailability (page 778)
Undocumented

DataHGetDataInBuffer (page 779)
Returns the information about the data in a data handler component's buffer.

DataHGetDataRate (page 779)
Undocumented

DataHGetDataRefAsType (page 780)
Retrieves a data handler component's current data reference of a given type.

DataHGetDataRefExtension (page 781)
Retrieves your component's current data reference extension data.

DataHGetDataRefWithAnchor (page 782)
Retrieves a data handler component's component's current data reference and anchor data reference.

DataHGetFileName (page 783)
Retrieves the name of the file supplying the current data reference for a data handler.

DataHGetFileSize64 (page 785)
Provides a 64-bit version of DataHGetFileSize.

DataHGetFileSizeAsync (page 785)
Returns the size of the current data reference, invoking a completion callback.

DataHGetFileTypeOrdering (page 786)
Returns the preferred ordering for file typing information.

DataHGetFreeSpace64 (page 787)
Provides a 64-bit version of DataHGetFreeSpace.

DataHGetInfoFlags (page 789)
Provides information about the operation of a data handler component.

DataHGetMacOSFileType (page 789)
Gets the Mac OS file type for a data handler's current data reference.

DataHGetMIMEType (page 790)
Gets the MIME type for a data handler's current data reference.

DataHGetMIMETypeAsync (page 790)
Performs asynchronous discovery of a HTTP/FTP connection's MIME type.

756 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHGetMovie (page 791)
Gets the movie for a data handler's current data reference.

DataHGetMovieWithFlags (page 792)
Gets the movie for a data handler's current data reference, allowing the flags that would be passed
to NewMovieFromDataRef to be passed to the handler.

DataHGetTemporaryDataRefCapabilities (page 794)
Undocumented

DataHIsStreamingDataHandler (page 796)
Determines if a data handler handles streaming data.

DataHPlaybackHints64 (page 799)
Provides a 64-bit version of DataHPlaybackHints.

DataHPollRead (page 800)
Undocumented

DataHPreextend64 (page 801)
Provides a 64-bit version of DataHPreextend.

DataHReadAsync (page 803)
Undocumented

DataHRenameFile (page 804)
Undocumented

DataHScheduleData64 (page 807)
Provides a 64-bit version of DataHScheduleData.

DataHSetCacheSizeLimit (page 808)
Sets the cache size limit for a data handler component.

DataHSetDataRefExtension (page 810)
Sets your component's current data reference extension data.

DataHSetDataRefWithAnchor (page 811)
Sets the data reference and anchor data reference for a data handler.

DataHSetFileSize64 (page 812)
Provides a 64-bit version of DataHSetFileSize.

DataHSetMacOSFileType (page 813)
Sets the Mac OS file type for a data handler's current data reference.

DataHSetTimeBase (page 814)
Sets the time base for a data handler component.

DataHSetTimeHints (page 815)
Undocumented

DataHUpdateMovie (page 816)
Updates the movie for a data handler's current data reference.

DataHUseTemporaryDataRef (page 817)
Undocumented

DataHWrite64 (page 819)
Provides a 64-bit version of DataHWrite.

DisposeCDataHandlerUPP (page 820)
Disposes of a CDataHandlerUPP pointer.

Functions by Task 757
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DisposeCharDataHandlerUPP (page 820)
Disposes of a CharDataHandlerUPP pointer.

DisposeCommentHandlerUPP (page 821)
Disposes of a CommentHandlerUPP pointer.

DisposeDataHCompletionUPP (page 821)
Disposes of a DataHCompletionUPP pointer.

DisposeEndDocumentHandlerUPP (page 822)
Disposes of an EndDocumentHandlerUPP pointer.

DisposeEndElementHandlerUPP (page 822)
Disposes of an EndElementHandlerUPP pointer.

DisposePreprocessInstructionHandlerUPP (page 822)
Disposes of a PreprocessInstructionHandlerUPP pointer.

DisposeStartDocumentHandlerUPP (page 823)
Disposes of a StartDocumentHandlerUPP pointer.

DisposeStartElementHandlerUPP (page 823)
Disposes of a StartElementHandlerUPP pointer.

DisposeVdigIntUPP (page 824)
Disposes of a VdigIntUPP pointer.

NewCDataHandlerUPP (page 824)
Allocates a Universal Procedure Pointer for the CDataHandlerProc callback.

NewCharDataHandlerUPP (page 825)
Undocumented

NewCommentHandlerUPP (page 825)
Undocumented

NewDataHCompletionUPP (page 825)
Allocates a Universal Procedure Pointer for the DataHCompletionProc callback.

NewEndDocumentHandlerUPP (page 826)
Undocumented

NewEndElementHandlerUPP (page 827)
Undocumented

NewPreprocessInstructionHandlerUPP (page 827)
Undocumented

NewStartDocumentHandlerUPP (page 827)
Undocumented

NewStartElementHandlerUPP (page 828)
Undocumented

NewVdigIntUPP (page 828)
Allocates a Universal Procedure Pointer for the VdigIntProc callback.

XMLParseAddAttribute (page 829)
Undocumented

XMLParseAddAttributeAndValue (page 830)
Undocumented

XMLParseAddAttributeValueKind (page 830)
Undocumented

758 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

XMLParseAddElement (page 831)
Undocumented

XMLParseAddMultipleAttributes (page 832)
Undocumented

XMLParseAddMultipleAttributesAndValues (page 833)
Undocumented

XMLParseAddNameSpace (page 833)
Undocumented

XMLParseDataRef (page 834)
Undocumented

XMLParseDisposeXMLDoc (page 835)
Undocumented

XMLParseFile (page 835)
Undocumented

XMLParseGetDetailedParseError (page 836)
Undocumented

XMLParseSetCDataHandler (page 836)
Undocumented

XMLParseSetCharDataHandler (page 837)
Undocumented

XMLParseSetCommentHandler (page 837)
Undocumented

XMLParseSetEndDocumentHandler (page 838)
Undocumented

XMLParseSetEndElementHandler (page 838)
Undocumented

XMLParseSetEventParseRefCon (page 839)
Undocumented

XMLParseSetOffsetAndLimit (page 839)
Undocumented

XMLParseSetPreprocessInstructionHandler (page 840)
Undocumented

XMLParseSetStartDocumentHandler (page 841)
Undocumented

XMLParseSetStartElementHandler (page 841)
Undocumented

Functions

DataCodecBeginInterruptSafe
Called before performing a compression or decompression operation during interrupt time.

Functions 759
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataCodecBeginInterruptSafe (
 DataCodecComponent dc,
 unsigned long maxSrcSize
);

Parameters
dc

The instance of a compressor or decompressor component for this request. Your software obtains
this reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

maxSrcSize
The maximum size of a block of data to be compressed or decompressed, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allocates any temporary buffers that are necessary to perform the operation during interrupt
time. To release the resources used to make the operation safe during interrupt time, call the
DataCodecEndInterruptSafe (page 764) function or close the instance of the compressor or decompressor
component.

Special Considerations

If the function returns an error, your software must not perform compression or decompression operations
during interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataCodecCompress
Compresses data using the specified compressor component.

ComponentResult DataCodecCompress (
 DataCodecComponent dc,
 void *srcData,
 UInt32 srcSize,
 void *dstData,
 UInt32 dstBufferSize,
 UInt32 *actualDstSize,
 UInt32 *decompressSlop
);

Parameters
dc

The compressor component to used.

srcData
A pointer to the data to be compressed.

760 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

srcSize
The size of the data to be compressed, in bytes.

dstData
A pointer to the buffer in which to store the compressed data.

dstBufferSize
The size of the buffer in which to store the compressed data, in bytes.

actualDstSize
The size of the compressed data that was created, in bytes.

decompressSlop
The number of bytes that should be added to the decompression buffer size if decompression occurs
in place.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before calling this function, you should call DataCodecGetCompressBufferSize (page 765) to obtain the
maximum possible size of the compressed data that will be returned. You can then use this value as the value
of the dstBufferSize parameter. Note that a buffer for compressed data that is the same size as the
uncompressed data may not be large enough: in some cases, the size of the compressed data can be larger
than the size of the decompressed data. When you compress data, you should store the size of data before
compression at the beginning of the file, immediately before the compressed data. This allows you to obtain
the size of the decompressed data and allocate the buffer for storing the decompressed data before calling
DataCodecDecompress (page 762).

Special Considerations

You can compress sprites by calling this function. If you do, you must include the uncompressed size of the
sample at the beginning of the sample, before the compressed data, and store the component subtype of
the data compressor used to compress the sprite in the decompressorType field of the sample's
SpriteDescription structure. You can also compress QuickDraw 3D media samples by calling this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
QuickTimeComponents.h

DataCodecCompressPartial
Undocumented

Functions 761
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataCodecCompressPartial (
 DataCodecComponent dc,
 void **next_in,
 unsigned long *avail_in,
 unsigned long *total_in,
 void **next_out,
 unsigned long *avail_out,
 unsigned long *total_out,
 Boolean tryToFinish,
 Boolean *didFinish
);

Parameters
dc

The compressor component to used.

next_in
Undocumented

avail_in
Undocumented

total_in
Undocumented

next_out
Undocumented

avail_out
Undocumented

total_out
Undocumented

tryToFinish
Undocumented

didFinish
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataCodecDecompress
Decompresses data using the specified compressor component.

762 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataCodecDecompress (
 DataCodecComponent dc,
 void *srcData,
 UInt32 srcSize,
 void *dstData,
 UInt32 dstBufferSize
);

Parameters
dc

The decompressor component to used.

srcData
A pointer to the data to be decompressed.

srcSize
The size of the data to be decompressed, in bytes.

dstData
A pointer to the buffer in which to store the decompressed data.

dstBufferSize
The size of the buffer in which to store the decompressed data, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before allocating the buffer in which to store decompressed data, you need to get the size of the decompressed
data. The size is normally stored at the beginning of the file, immediately before the compressed data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataCodecDecompressPartial
Undocumented

Functions 763
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataCodecDecompressPartial (
 DataCodecComponent dc,
 void **next_in,
 unsigned long *avail_in,
 unsigned long *total_in,
 void **next_out,
 unsigned long *avail_out,
 unsigned long *total_out,
 Boolean *didFinish
);

Parameters
dc

The decompressor component to used.

next_in
Undocumented

avail_in
Undocumented

total_in
Undocumented

next_out
Undocumented

avail_out
Undocumented

total_out
Undocumented

didFinish
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataCodecEndInterruptSafe
Releases resources used by DataCodecBeginInterruptSafe.

ComponentResult DataCodecEndInterruptSafe (
 DataCodecComponent dc
);

Parameters
dc

The instance of a compressor or decompressor component for this request.

764 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When your software has finished a compression or decompression operation that must be performed during
interrupt time, it can call this function to release any memory of other resources that were used by
DataCodecBeginInterruptSafe.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataCodecGetCompressBufferSize
Returns the maximum possible size of the compressed data that will be returned using the specified
compressor component.

ComponentResult DataCodecGetCompressBufferSize (
 DataCodecComponent dc,
 UInt32 srcSize,
 UInt32 *dstSize
);

Parameters
dc

The compressor component to used.

srcSize
The size in bytes of the data being compressed.

dstSize
A pointer to the maximum size of the compressed data that will be returned.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The actual size of the compressed data will likely be smaller than the size you initially have to allocate, so
after you compress the data you should shrink the compressed data handle down to the actual data size.
When compressing a movie, allocate an extra ten 32-bit integers of space to store the compressed movie
resource header information, as shown in the following code sample:

unsigned long compressedSize;
Handle compressedData;
DataCodecGetCompressBufferSize(dataCompressor, movieResourceSize,
&compressedSize);
compressedData =NewHandle(compressedSize + (10 * sizeof(UInt32)));

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 765
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
QuickTimeComponents.h

DataHAddMovie
Assigns movie data to a data handler.

ComponentResult DataHAddMovie (
 DataHandler dh,
 Movie theMovie,
 short *id
);

Parameters
dh

A data handler component.

theMovie
A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

id
A pointer to the field that specifies the resource containing the movie data that is to be added.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHAppend64
Appends data to the current data reference.

766 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHAppend64 (
 DataHandler dh,
 void *data,
 wide *fileOffset,
 unsigned long size
);

Parameters
dh

A data handler component.

data
A pointer to data to be appended.

fileOffset
A pointer to a 64-bit value that represents the offset in the file of data to be appended.

size
The size of the data to be appended.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHCanUseDataRef
Reports whether a data handler can access the data associated with a specified data reference.

ComponentResult DataHCanUseDataRef (
 DataHandler dh,
 Handle dataRef,
 long *useFlags
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

dataRef
The data reference. This parameter contains a handle to the information that identifies the container
in question.

Functions 767
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

useFlags
A pointer to a field of flags (see below) that your data handler component uses to indicate its ability
to access the container identified by the dataRef parameter. Set all appropriate flags to 1; set unused
flags to 0. For example, if your component supports networked multimedia servers using a special
set of protocols, your data handler should set the kDataHCanRead and kDataHCanSpecialRead
flags to 1 for any container that is on that server. In addition, if your component can write to the
server, set the kDataHCanWrite and kDataHCanSpecialWrite flags to 1 (perhaps along with
kDataHCanStreamingWrite). If your data handler cannot access the container, set the whole field
to 0. See these constants:

kDataHCanRead

kDataHSpecialRead

kDataHSpecialReadFile

kDataHCanWrite

kDataHSpecialWrite

kDataHCanStreamingWrite

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Apple's standard data handler sets both the kDataHCanRead and kDataHCanWrite flags to 1 for any data
reference it receives, indicating that it can read from and write to any volume.

Special Considerations

Your data handler may use any facilities necessary to determine whether it can access the container. Bear in
mind, though, that your component should try to be as quick about this determination as possible, in order
to minimize the chance that the delay will be noticed by the user.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHCloseForRead
Closes read-only access to its data reference.

ComponentResult DataHCloseForRead (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

768 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Discussion
Data handler components provide two basic read facilities: DataHGetData (page 777) function is a fully
synchronous read operation, while DataHScheduleData (page 806) is asynchronous. Applications provide
scheduling information when they call your component's DataHScheduleData function. When your
component processes the queued request, it calls the application's data-handler completion function. Before
any application can read data from a data reference, it must open read access to that reference by calling
your component's DataHOpenForRead (page 796) function. DataHCloseForRead (page 768) closes that
read access path.

Special Considerations

Note that a client program may close its connection to your component (by calling CloseComponent) without
closing the read path. If this happens, your component should close the data reference before closing the
connection.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImporter
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHCloseForWrite
Closes write-only access to its data reference.

ComponentResult DataHCloseForWrite (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Data handlers provide two distinct write facilities: DataHPutData (page 802) is a simple synchronous interface
that allows applications to append data to the end of a container, and DataHWrite is a more capable,
asynchronous write function that is suitable for movie capture operations. Before writing data to a data
reference, applications must call your component's DataHOpenForWrite (page 797) function to open a write
path to the container. DataHCloseForWrite closes that write path. As is the case with
DataHScheduleData (page 806), your component calls the application's data-handler completion function
when you are done with the write request.

Functions 769
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Special Considerations

A client program may close its connection to your component (by calling CloseComponent) without closing
the write path. If this happens, your component should close the data reference before closing the connection.
Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImporter
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHCompareDataRef
Compares a supplied data reference against its current data reference and returns a Boolean value indicating
whether the data references are equivalent (that is, the two data references identify the same container).

ComponentResult DataHCompareDataRef (
 DataHandler dh,
 Handle dataRef,
 Boolean *equal
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

dataRef
The data reference to be compared to your component's current data reference. Different types of
containers may require different types of data references. For example, a reference to a memory-based
movie may be a handle, while a reference to a file-based movie may be an alias. Apple's memory-based
data handler for the Macintosh uses handles (and has a subtype value of 'hndl'), while the HFS data
handler uses Alias Manager aliases (its subtype value is 'alis'). See Data References.

equal
A pointer to a Boolean. Your component should set that Boolean to TRUE if the two data references
identify the same container. Otherwise, set the Boolean to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

770 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Discussion
All data handler components use data references to identify and locate a movie's container.
DataHCompareDataRef asks your component to compare a data reference against the current data reference
and indicate whether the references are equivalent (that is, refer to the same container). Client programs can
correlate data references with data handlers by matching the component's subtype value with the data
reference type; the subtype value indicates the type of data reference the component supports. All data
handlers with the same subtype value must support the same data reference type.

Special Considerations

Note that your component cannot simply compare the bits in the two data references. For example, two
completely different aliases may refer to the same HFS file. Consequently, you need to completely resolve
the data reference in order to determine the file identified by the reference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHCreateFile
Creates a new container that meets the specifications of the current data reference.

ComponentResult DataHCreateFile (
 DataHandler dh,
 OSType creator,
 Boolean deleteExisting
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

creator
The creator type of the new container. If the client program sets this parameter to 0, your component
should choose a reasonable value (for example, 'TV0D', the creator type for Apple's movie player).

deleteExisting
Indicates whether to delete any existing data. If this parameter is set to TRUE and a container already
exists for the current data reference, your component should delete that data before creating the
new container. If this parameter is set to FALSE, your component should preserve any data that resides
in the container defined by the current data reference (if there is any).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Data handlers provide two distinct write facilities: DataHPutData (page 802) is a simple synchronous interface
that allows applications to append data to the end of a container, while DataHWrite is a more capable,
asynchronous write function that is suitable for movie capture operations. As is the case with
DataHScheduleData (page 806), your component calls the application's data-handler completion function
when you are done with the write request.

Functions 771
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

DataHCreateFileWithFlags
Undocumented

ComponentResult DataHCreateFileWithFlags (
 DataHandler dh,
 OSType creator,
 Boolean deleteExisting,
 UInt32 flags
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

creator
The creator type of the new container. If the client program sets this parameter to 0, your component
should choose a reasonable value (for example, 'TV0D', the creator type for Apple's movie player).

deleteExisting
Indicates whether to delete any existing data. If this parameter is set to TRUE and a container already
exists for the current data reference, your component should delete that data before creating the
new container. If this parameter is set to FALSE, your component should preserve any data that resides
in the container defined by the current data reference (if there is any).

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

772 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DataHDeleteFile
Deletes a data handler's data storage file.

ComponentResult DataHDeleteFile (
 DataHandler dh
);

Parameters
dh

A data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTExtractAndConvertToMovieFile

Declared In
QuickTimeComponents.h

DataHDoesBuffer
Reports whether a data handler does buffer reads and writes.

ComponentResult DataHDoesBuffer (
 DataHandler dh,
 Boolean *buffersReads,
 Boolean *buffersWrites
);

Parameters
dh

A data handler component.

buffersReads
A pointer to a Boolean that is returned true if the data handler component does buffer reads, false
otherwise.

buffersWrites
A pointer to a Boolean that is returned true if the data handler component does buffer writes, false
otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 773
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHFinishData
Completes or cancels one or more queued read requests.

ComponentResult DataHFinishData (
 DataHandler dh,
 Ptr PlaceToPutDataPtr,
 Boolean Cancel
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

PlaceToPutDataPtr
The location in memory that is to receive the data. The value of this parameter identifies the specific
read request to be completed. If this parameter is set to NIL, the call affects all pending read requests.

Cancel
Indicates whether the calling program wants to cancel the outstanding request. If this parameter is
set to TRUE, your data handler should cancel the request (or requests) identified by the
PlaceToPutDataPtr parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Client programs use DataHFinishData either to cancel outstanding read requests or to demand that the
requests be serviced immediately. Note that your component must call the client program's data-handler
completion function for each queued request, even though the client program called DataHFinishData.
Be sure to call the completion function for both canceled and completed read requests.

Special Considerations

Preroll operations are a special case of the immediate service request. The client program will have queued
one or more read requests with their scheduled time of delivery set infinitely far into the future. Your data
handler queues those requests until the client program calls DataHFinishData demanding that all
outstanding read requests be satisfied immediately.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

774 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHFlushCache
Discards the contents of any cached read buffers.

ComponentResult DataHFlushCache (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Note that this function does not invalidate any queued read requests (made by calling your component's
DataHScheduleData (page 806) function).

Special Considerations

Client programs may call this function if they have, in some way, changed the container associated with the
current data reference on their own. Under these circumstances, data your component may have read and
cached in anticipation of future read requests from the client may be invalid.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHFlushData
Forces any data in your component's write buffers to be written to the device that contains the current data
reference.

ComponentResult DataHFlushData (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is essentially analogous to the Mac OS File Manager's PBFlushFile function. The client program
may call this function after any write operation (either DataHPutData (page 802) or DataHWrite (page 817)).
Your component should do what is necessary to make sure that the data is written to the storage device that
contains the current data reference.

Functions 775
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetAvailableFileSize
Returns the available file size for a data handler component.

ComponentResult DataHGetAvailableFileSize (
 DataHandler dh,
 long *fileSize
);

Parameters
dh

A data handler component.

fileSize
A pointer to the file size.

Return Value
See Error Codes. Returns badComponentSelector if the data handler component does not support this
call. Returns noErr if there is no error.

Discussion
You can call this function during an asynchronous read operation, after calling DataHScheduleData (page
806).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetCacheSizeLimit
Returns the cache size limit for a data handler component.

ComponentResult DataHGetCacheSizeLimit (
 DataHandler dh,
 Size *cacheSizeLimit
);

Parameters
dh

A data handler component.

776 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

cacheSizeLimit
A pointer to the cache size limit.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetData
Reads data from its current data reference, which is a synchronous read operation.

ComponentResult DataHGetData (
 DataHandler dh,
 Handle h,
 long hOffset,
 long offset,
 long size
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

h
The handle to receive the data.

hOffset
Identifies the offset into the handle where your component should return the data.

offset
The offset in the data reference from which your component is to read.

size
The number of bytes to read.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Data handler components provide two basic read facilities. DataHGetData function is a fully synchronous
read operation, while DataHScheduleData (page 806) is asynchronous. (Applications provide scheduling
information when they call DataHScheduleData.) Before any application can read data from a data reference,
it must open read access to that reference by calling your component's DataHOpenForRead (page 796)
function. DataHCloseForRead (page 768) closes that read access path. When your component processes
the queued request, it calls the application's data-handler completion function.

Functions 777
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Special Considerations

Note that the Movie Toolbox may try to read data from a data reference without calling your component's
DataHOpenForRead (page 796) function. If this happens, your component should open the data reference
for read-only access, respond to the read request, and then leave the data reference open in anticipation of
later read requests.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataAvailability
Undocumented

ComponentResult DataHGetDataAvailability (
 DataHandler dh,
 long offset,
 long len,
 long *missing_offset,
 long *missing_len
);

Parameters
dh

A data handler component.

offset
Undocumented

len
Undocumented

missing_offset
Undocumented

missing_len
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

778 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHGetDataInBuffer
Returns the information about the data in a data handler component's buffer.

ComponentResult DataHGetDataInBuffer (
 DataHandler dh,
 long startOffset,
 long *size
);

Parameters
dh

A data handler component.

startOffset
The offset to the start of the data.

size
The size of the data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataRate
Undocumented

ComponentResult DataHGetDataRate (
 DataHandler dh,
 long flags,
 long *bytesPerSecond
);

Parameters
dh

A data handler component.

flags
Undocumented

bytesPerSecond
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Functions 779
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataRef
Retrieves your component's current data reference.

ComponentResult DataHGetDataRef (
 DataHandler dh,
 Handle *dataRef
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

dataRef
A pointer to a data reference handle. Your component should make a copy of its current data reference
in a handle and return that handle in this field. The client program is responsible for disposing of that
handle. Different types of containers may require different types of data references. For example, a
reference to a memory-based movie may be a handle, while a reference to a file-based movie may
be an alias. Apple's memory-based data handler for the Macintosh uses handles (and has a subtype
value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype value is 'alis').
See Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All data handler components use data references to identify and locate a movie's container. Client programs
can correlate data references with data handlers by matching the component's subtype value with the data
reference type; the subtype value indicates the type of data reference the component supports. All data
handlers with the same subtype value must support the same data reference type.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataRefAsType
Retrieves a data handler component's current data reference of a given type.

780 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHGetDataRefAsType (
 DataHandler dh,
 OSType requestedType,
 Handle *dataRef
);

Parameters
dh

A data handler component.

requestedType
The type of the data reference to retrieve; see Data References.

dataRef
A pointer to a data reference handle. Your component should make a copy of its current data reference
in a handle and return that handle in this field. The client program is responsible for disposing of that
handle. Different types of containers may require different types of data references. For example, a
reference to a memory-based movie may be a handle, while a reference to a file-based movie may
be an alias. Apple's memory-based data handler for the Macintosh uses handles (and has a subtype
value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype value is 'alis').
See Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataRefExtension
Retrieves your component's current data reference extension data.

ComponentResult DataHGetDataRefExtension (
 DataHandler dh,
 Handle *extension,
 OSType idType
);

Parameters
dh

A data handler component.

extension
A pointer to a handle to the extension data.

idType
A four-byte signature identifying the type of extension data.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 781
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDataRefWithAnchor
Retrieves a data handler component's component's current data reference and anchor data reference.

ComponentResult DataHGetDataRefWithAnchor (
 DataHandler dh,
 Handle anchorDataRef,
 OSType dataRefType,
 Handle *dataRef
);

Parameters
dh

A data handler component.

anchorDataRef
A handle to the anchor data reference.

dataRefType
The type of the data reference; see Data References.

dataRef
A pointer to a data reference handle. Your component should make a copy of its current data reference
in a handle and return that handle in this field. The client program is responsible for disposing of that
handle. Different types of containers may require different types of data references. For example, a
reference to a memory-based movie may be a handle, while a reference to a file-based movie may
be an alias. Apple's memory-based data handler for the Macintosh uses handles (and has a subtype
value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype value is 'alis').
See Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetDeviceIndex
Returns a value that identifies the device on which a data reference resides.

782 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHGetDeviceIndex (
 DataHandler dh,
 long *deviceIndex
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

deviceIndex
A pointer to a field that your data handler component uses to return a device identifier value. Your
component may use any identifier value that is appropriate (for example, Apple's HFS data handler
uses the volume reference number). The client program should do nothing with this value other than
compare it with other identifiers returned by your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some client programs may need to account for the fact that two or more data references reside on the same
device. For instance, this may affect storage-allocation requirements. This function allows such client programs
to obtain this information from your data handler.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetFileName
Retrieves the name of the file supplying the current data reference for a data handler.

ComponentResult DataHGetFileName (
 DataHandler dh,
 Str255 str
);

Parameters
dh

A data handler component.

str
The name of the file as a string.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 783
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DataHGetFileSize
Returns the size, in bytes, of the current data reference.

ComponentResult DataHGetFileSize (
 DataHandler dh,
 long *fileSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

fileSize
A pointer to a long integer. Your component returns the size of the container corresponding to the
current data reference, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is operationally equivalent to the Mac OS File Manager's GetEOF function. Before writing data
to a data reference, applications must call your component's DataHOpenForWrite (page 797) function to
open a write path to the container. DataHCloseForWrite (page 769) closes that write path. As is the case
with DataHScheduleData (page 806), your component calls the application's data-handler completion
function when you are done with the write request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent.win
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
QuickTimeComponents.h

784 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHGetFileSize64
Provides a 64-bit version of DataHGetFileSize.

ComponentResult DataHGetFileSize64 (
 DataHandler dh,
 wide *fileSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

fileSize
A pointer to a wide. Your component returns the size of the container corresponding to the current
data reference, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function andDataHGetFileSize (page 784) is that thefileSizeparameter
is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetFileSizeAsync
Returns the size of the current data reference, invoking a completion callback.

ComponentResult DataHGetFileSizeAsync (
 DataHandler dh,
 wide *fileSize,
 DataHCompletionUPP completionRtn,
 long refCon
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

fileSize
A pointer to a 64-bit value. Your component returns the size of the container corresponding to the
current data reference, in bytes.

completionRtn
A pointer to a data handler completion callback, described in DataHCompletionProc.

Functions 785
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetFileTypeOrdering
Returns the preferred ordering for file typing information.

ComponentResult DataHGetFileTypeOrdering (
 DataHandler dh,
 DataHFileTypeOrderingHandle *orderingListHandle
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

orderingListHandle
A pointer to a handle to a list of OSType values (see below). The list may contain only a subset of the
currently defined types (i.e., Mac OS file type, extension, MIME type) to limit the consideration to
reasonable types. See these constants:

kDataHFileTypeMacOSFileType

kDataHFileTypeExtension

kDataHFileTypeMIME

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If the data handler has not set the data reference, it can choose to return either an error or a reasonable
default ordering list.

Special Considerations

Before making a call to this function, the client should have opened the data handler and called
DataHSetDataRef (page 809) or DataHSetDataRefWithAnchor (page 811). This allows the data handler
to return a different ordering based on the particular file. This might allow for a data handler to vary its
ordering based on the location of the file. For example, on the Mac OS, it might use extensions only on foreign
volumes. For other volumes, it might use a Mac OS file type followed by a file extension.

Version Notes
Introduced in QuickTime 5.

786 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetFreeSpace
Reports the number of bytes available on the device that contains the current data reference.

ComponentResult DataHGetFreeSpace (
 DataHandler dh,
 unsigned long *freeSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

freeSize
A pointer to an unsigned long integer. Your component returns the number of bytes of free space
available on the device that contains the container referred to by the current data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before writing data to a data reference, applications must call your component's DataHOpenForWrite (page
797) function to open a write path to the container. DataHCloseForWrite (page 769) closes that write path.
As is the case with DataHScheduleData (page 806), your component calls the application's data-handler
completion function when you are done with the write request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetFreeSpace64
Provides a 64-bit version of DataHGetFreeSpace.

Functions 787
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHGetFreeSpace64 (
 DataHandler dh,
 wide *freeSize
);

Parameters
dh

A data handler component.

freeSize
A pointer to a 64-bit integer. Your component returns the number of bytes of free space available on
the device that contains the container referred to by the current data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function and DataHGetFreeSpace (page 787) is that the freeSize
parameter is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetInfo
Retrieves information from a data handler.

ComponentResult DataHGetInfo (
 DataHandler dh,
 OSType what,
 void *info
);

Parameters
dh

A data handler component.

what
A selector for the information requested. No selectors are currently defined.

info
A pointer to an area of memory in which to place the retrieved information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

788 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeComponents.h

DataHGetInfoFlags
Provides information about the operation of a data handler component.

ComponentResult DataHGetInfoFlags (
 DataHandler dh,
 UInt32 *flags
);

Parameters
dh

A data handler component.

flags
Flags (see below) that provide information about the data handler. See these constants:

kDataHInfoFlagNeverStreams

kDataHInfoFlagCanUpdateDataRefs

kDataHInfoFlagNeedsNetworkBandwidth

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

DataHGetMacOSFileType
Gets the Mac OS file type for a data handler's current data reference.

ComponentResult DataHGetMacOSFileType (
 DataHandler dh,
 OSType *fileType
);

Parameters
dh

A data handler component.

Functions 789
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

fileType
A pointer to a file type; see File Types and Creators.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHGetMIMEType
Gets the MIME type for a data handler's current data reference.

ComponentResult DataHGetMIMEType (
 DataHandler dh,
 Str255 mimeType
);

Parameters
dh

A data handler component.

mimeType
A MIME type string.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHGetMIMETypeAsync
Performs asynchronous discovery of a HTTP/FTP connection's MIME type.

790 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHGetMIMETypeAsync (
 DataHandler dh,
 Str255 mimeType,
 DataHCompletionUPP completionRtn,
 long refCon
);

Parameters
dh

A data handler component.

mimeType
The MIME type string when (and if) it becomes available.

completionRtn
A DataHCompletionProc callback that is called when either the data becomes available or there is
a failure. Failure can happen if there is a timeout or DataHFinishData (page 774) is called with a
cancel instruction. The mimeType parameter will not be updated until the complete routine executes.
If a completion routine is not specified, the call will return immediately.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
If the MIME type is known, this function updates mimeType and returns noErr. If the information is not
known yet, the error notEnoughDataErr is returned. This allows non-blocking calls to be made to this
function. If it returns another error, that indicates some other failure; see Error Codes.

Discussion
This function removes synchronous blocks from QuickTime's movie opening code.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetMovie
Gets the movie for a data handler's current data reference.

ComponentResult DataHGetMovie (
 DataHandler dh,
 Movie *theMovie,
 short *id
);

Parameters
dh

A data handler component.

Functions 791
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

theMovie
A movie identifier. This is the same as the identifier your application obtains from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

id
A pointer to the field that specifies the resource containing the movie data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetMovieWithFlags
Gets the movie for a data handler's current data reference, allowing the flags that would be passed to
NewMovieFromDataRef to be passed to the handler.

ComponentResult DataHGetMovieWithFlags (
 DataHandler dh,
 Movie *theMovie,
 short *id,
 short flags
);

Parameters
dh

A data handler component.

theMovie
A movie identifier. This is the same as the identifier your application obtains from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

id
A pointer to the field that specifies the resource containing the movie data.

flags
Flags (see below) that control movie characteristics. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Passing these flags lets you control whether or not the movie returned is active. Additionally, it allows async
movie loading to be more efficient.

792 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetPreferredBlockSize
Reports the block size that it prefers to use when accessing the current data reference.

ComponentResult DataHGetPreferredBlockSize (
 DataHandler dh,
 long *blockSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

blockSize
A pointer to a long integer. Your component returns the size of blocks (in bytes) it prefers to use when
accessing the current data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Different devices use different file system block sizes. This function allows your component to report its
preferred block size to the client program. Note that the client program is not required to use this block size
when making requests. Some clients may, however, try to accommodate your component's preference.
Applications may call your component's DataHGetPreferredBlockSize function in order to determine
how best to interact with your data handler. As is the case with DataHScheduleData (page 806), your
component calls the application's data-handler completion function when you are done with the write
request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 793
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHGetScheduleAheadTime
Reports how far in advance it prefers clients to issue read requests.

ComponentResult DataHGetScheduleAheadTime (
 DataHandler dh,
 long *millisecs
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

millisecs
A pointer to a long integer. Your component should set this field with a value indicating the number
of milliseconds you prefer to receive read requests in advance of the time when the data must be
delivered.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows your data handler to tell the client program how far in advance it should schedule its
read requests. By default, the Movie Toolbox issues scheduled read requests between 1 and 2 seconds before
it needs the data from those requests. For some data handlers, however, this may not be enough time. For
example, some data handlers may have to accommodate network delays when processing read requests.
Client programs that call DataHGetScheduleAheadTime may try to respect your component's preference.

Special Considerations

Note that not all client programs will call DataHGetScheduleAheadTime. Further, some clients may not be
able to accommodate your preferred time in all cases, even if they have asked for your component's preference.
As a result, your component should have a strategy for handling requests that don't provide enough advanced
scheduling time. For example, if your component receives a DataHScheduleData (page 806) request that
it cannot satisfy, it can fail the request with an appropriate error code.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHGetTemporaryDataRefCapabilities
Undocumented

ComponentResult DataHGetTemporaryDataRefCapabilities (
 DataHandler dh,
 long *outUnderstoodFlags
);

Parameters
dh

A data handler component.

794 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

outUnderstoodFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

DataHGetVolumeList
Returns a list of the volumes your component can access, along with flags indicating your component's
capabilities for each volume.

ComponentResult DataHGetVolumeList (
 DataHandler dh,
 DataHVolumeList *volumeList
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

volumeList
A pointer to a field that your data handler component uses to return a handle to a volume list. Your
component constructs the volume list by allocating a handle and filling it with a series of
DataHVolumeListRecord structures, one structure for each volume your component can access.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
To reduce the delay that may result from choosing an appropriate data handler for a volume, the Movie
Toolbox maintains a list of data handlers and the volumes they support. The Movie Toolbox uses
DataHGetVolumeList to build that list. Your data handler may use any facilities necessary to determine
whether it can access the volume, including opening a container on the volume. Your component should
set to 1 as many of the capability flags as are appropriate for each volume. Don't include records for volumes
your handler cannot support. For example, if your component supports networked multimedia servers using
a special set of protocols, your data handler should set the kDataHCanRead and kDataHCanSpecialRead
flags to 1 for any volume that is on that server. In addition, if your component can write to a volume on the
server, set the kDataHCanWrite and kDataHCanSpecialWrite flags to 1 (perhaps along with
kDataHCanStreamingWrite). However, your component should create entries only for those volumes that
support your protocols.

Functions 795
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Special Considerations

It is the calling program's responsibility to dispose of the handle returned by your component. The Movie
Toolbox tracks mounting and unmounting removable volumes, and keeps its volume list current. As a result,
the Movie Toolbox may call your component's DataHGetVolumeList function whenever a removable
volume is mounted. If your data handler does not process data that is stored in file system volumes, you
need not support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHIsStreamingDataHandler
Determines if a data handler handles streaming data.

ComponentResult DataHIsStreamingDataHandler (
 DataHandler dh,
 Boolean *yes
);

Parameters
dh

A data handler component.

yes
Pointer to a Boolean that returns TRUE if the data handler handles streaming data, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHOpenForRead
Opens a data handler's current data reference for read-only access.

796 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHOpenForRead (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
After setting your component's current data reference by calling DataHSetDataRef (page 809), client
programs call DataHOpenForRead to start reading from the data reference. Your component should open
the data reference for read-only access. If the data reference is already open or cannot be opened, return an
appropriate error code. As is the case with DataHScheduleData (page 806), your component calls the
application's data-handler completion function when you are done with the write request.

Special Considerations

Note that the Movie Toolbox may try to read data from a data reference without calling your component's
DataHOpenForRead function. If this happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open in anticipation of later read
requests.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent.win
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHOpenForWrite
Opens your component's current data reference for write-only access.

ComponentResult DataHOpenForWrite (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 797
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Discussion
After setting your component's current data reference by calling DataHSetDataRef (page 809), client
programs call DataHOpenForWrite to start writing to the data reference. Your component should open the
data reference for write-only access. If the data reference is already open or cannot be opened, return an
appropriate error code. As is the case with DataHScheduleData (page 806), your component calls the
application's data-handler completion function when you are done with the write request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent.win
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHPlaybackHints
Provides additional information to your component that you may use to optimize the operation of your data
handler.

ComponentResult DataHPlaybackHints (
 DataHandler dh,
 long flags,
 unsigned long minFileOffset,
 unsigned long maxFileOffset,
 long bytesPerSecond
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

flags
Reserved. Set this parameter to 0.

minFileOffset
Together with the maxFileOffset parameter, specifies the range of data the client program
anticipates using from the current data reference. This parameter specifies the offset of earliest byte
the program expects to use (that is, the minimum container offset value). If the client expects to access
bytes from the beginning of the container, it should set this parameter to 0.

798 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

maxFileOffset
The offset of the latest byte the program expects to use (that is, the maximum container offset value).
If the client expects to use bytes throughout the container, the client should set this parameter to -1.

bytesPerSecond
The rate in bytes per second at which your data handler must read data from the data reference in
order to keep up with the client program's anticipated needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Applications may call your handler's DataHPlaybackHints function to provide you with some guidelines
about how those applications plan to use the current data reference. Your component should be prepared
to have this function called more than once for a given data reference. For example, the Movie Toolbox calls
this function whenever a movie's playback rate changes. This is a handy way for your data handler to track
playback rate changes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHPlaybackHints64
Provides a 64-bit version of DataHPlaybackHints.

ComponentResult DataHPlaybackHints64 (
 DataHandler dh,
 long flags,
 const wide *minFileOffset,
 const wide *maxFileOffset,
 long bytesPerSecond
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

flags
Reserved. Set this parameter to 0.

minFileOffset
Together with the maxFileOffset parameter, specifies the range of data the client program
anticipates using from the current data reference. This parameter points to the offset of the earliest
byte the program expects to use (that is, the minimum container offset value). If the client expects
to access bytes from the beginning of the container, it should set this parameter to 0.

maxFileOffset
Pointer to the offset of the latest byte the program expects to use (that is, the maximum container
offset value). If the client expects to use bytes throughout the container, the client should set this
parameter to -1.

Functions 799
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

bytesPerSecond
The rate in bytes per second at which your data handler must read data from the data reference in
order to keep up with the client program's anticipated needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function and DataHPlaybackHints (page 798) is that the minFileOffset
parameter and maxFileOffset parameter are 64-bit integers instead of 32-bit integers.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHPollRead
Undocumented

ComponentResult DataHPollRead (
 DataHandler dh,
 void *dataPtr,
 UInt32 *dataSizeSoFar
);

Parameters
dh

A data handler component.

dataPtr
Undocumented

dataSizeSoFar
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

800 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHPreextend
Allocates new space for the current data reference, enlarging the container.

ComponentResult DataHPreextend (
 DataHandler dh,
 unsigned long maxToAdd,
 unsigned long *spaceAdded
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

maxToAdd
The amount of space to add to the current data reference, in bytes. If the client program sets this
parameter to 0, your component should add as much space as it can.

spaceAdded
A pointer to an unsigned long integer. Your component returns the number of bytes it was able to
add to the data reference, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function asks your component to make a container larger, analogous to the Mac OS File Manager's
PBAllocContig function. When it is called, your component should allocate contiguous free space. If there
is not sufficient contiguous free space to satisfy the request, your component should return a dskFulErr
error code. Client programs use this function in order to avoid incurring any space-allocation delay when
capturing movie data. As is the case with DataHScheduleData (page 806), your component calls the
application's data-handler completion function when you are done with the write request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHPreextend64
Provides a 64-bit version of DataHPreextend.

Functions 801
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHPreextend64 (
 DataHandler dh,
 const wide *maxToAdd,
 wide *spaceAdded
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

maxToAdd
The amount of space to add to the current data reference, in bytes. If the client program sets this
parameter to 0, your component should add as much space as it can.

spaceAdded
A pointer to a 64-bit integer. Your component returns the number of bytes it was able to add to the
data reference, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function andDataHPreextend (page 801) is that thespaceAddedparameter
is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHPutData
Writes data to a component's current data reference.

ComponentResult DataHPutData (
 DataHandler dh,
 Handle h,
 long hOffset,
 long *offset,
 long size
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

h
The handle that contains the data to be written to the data reference.

802 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

hOffset
Identifies the offset into the handle h to the data to be written.

offset
A pointer to a long integer. Your component returns the offset in the data reference at which your
component wrote the data.

size
The number of bytes to write.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function provides a high-level write interface. This is a synchronous write operation that only appends
data to the end of the current data reference. That is, the client program's execution is blocked until your
component returns control from this function, and the client cannot control where the data is written. As a
result, most movie-capture clients (for example, Apple's sequence grabber component) use DataHWrite (page
817) to write data when creating movies. As is the case with DataHScheduleData (page 806), your component
calls the application's data-handler completion function when you are done with the write request.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHReadAsync
Undocumented

ComponentResult DataHReadAsync (
 DataHandler dh,
 void *dataPtr,
 UInt32 dataSize,
 const wide *dataOffset,
 DataHCompletionUPP completion,
 long refCon
);

Parameters
dh

A data handler component.

dataPtr
Undocumented

dataSize
Undocumented

Functions 803
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

dataOffset
Undocumented

completion
A pointer to a data-handler completion callback, described in DataHCompletionProc.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImporter
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHRenameFile
Undocumented

ComponentResult DataHRenameFile (
 DataHandler dh,
 Handle newDataRef
);

Parameters
dh

A data handler component.

newDataRef
A handle to a new QuickTime data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

804 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHResolveDataRef
Locates the container associated with a given data reference.

ComponentResult DataHResolveDataRef (
 DataHandler dh,
 Handle theDataRef,
 Boolean *wasChanged,
 Boolean userInterfaceAllowed
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

theDataRef
The data reference to be resolved. Different types of containers may require different types of data
references. For example, a reference to a memory-based movie may be a handle, while a reference
to a file-based movie may be an alias. Apple's memory-based data handler for the Macintosh uses
handles (and has a subtype value of 'hndl'), while the HFS data handler uses Alias Manager aliases
(its subtype value is 'alis'). See Data References.

wasChanged
A pointer to a Boolean. Your component should set that Boolean to TRUE if, in locating the container,
your data handler updates any information in the data reference.

userInterfaceAllowed
Indicates whether your component may interact with the user when locating the container. If this
parameter is set to TRUE, your component may ask the user to help locate the container (for instance,
by presenting a Find File dialog box).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function permits your component to locate a data reference's container. This function is equivalent to
the Mac OS Alias Manager's ResolveAlias function. The client program asks your component to locate the
container that is associated with a given data reference. If your component determines that the data reference
needs to be updated with more accurate location information, it should put the new information in the
supplied data reference (and set the Boolean referred to by the wasChanged parameter to TRUE). Client
programs can correlate data references with data handlers by matching the component's subtype value with
the data reference type; the subtype value indicates the type of data reference the component supports.
All data handlers with the same subtype value must support the same data reference type.

Special Considerations

Client programs may call your data handler's DataHResolveDataRef function at any time. Typically, however,
the Movie Toolbox uses this function as part of its strategy for opening and reading a movie container. As
such, you can expect that the supplied data reference will identify a container that your component can
support.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 805
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DataHScheduleData
Reads data from its current data reference, which can be a synchronous read operation or an asynchronous
read operation.

ComponentResult DataHScheduleData (
 DataHandler dh,
 Ptr PlaceToPutDataPtr,
 long FileOffset,
 long DataSize,
 long RefCon,
 DataHSchedulePtr scheduleRec,
 DataHCompletionUPP CompletionRtn
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

PlaceToPutDataPtr
The location in memory that is to receive the data.

FileOffset
The offset in the data reference from which your component is to read.

DataSize
The number of bytes to read.

RefCon
A reference constant that your data handler component should provide to the data-handler completion
function specified with the CompletionRtn parameter.

scheduleRec
A pointer to a DataHScheduleRecord. If this parameter is set to NIL, then the client program is
requesting a synchronous read operation (that is, your data handler must return the data before
returning control to the client program). If this parameter is not set to NIL, it must contain the location
of a schedule record that has timing information for an asynchronous read request. Your data handler
should return control to the client program immediately, and then call the client's data-handler
completion function when the data is ready.

CompletionRtn
A pointer to a data handler completion function, described in DataHCompletionProc. The client
program must provide a completion routine for all asynchronous read requests (that is, all requests
that include a valid schedule record). For synchronous requests, client programs should set this
parameter to NIL. However, if the function is provided, your handler must call it, even after synchronous
requests. When your data handler finishes with the client program's read request, your component
must call this routine even if the request fails. Your component should pass the reference constant
that the client program provided with the RefCon parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

806 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Discussion
This function provides both a synchronous and an asynchronous read interface. Synchronous read operations
work like the DataHGetData (page 777) function; the data handler component returns control to the client
program only after it has serviced the read request. Asynchronous read operations allow client programs to
schedule read requests in the context of a specified QuickTime time base. Your data handler queues the
request and immediately returns control to the calling program. After your component actually reads the
data, it calls the client program's data-handler completion function. If your component cannot satisfy the
request (for example, the request requires data more quickly than you can deliver it), your component should
reject the request immediately, rather than queuing the request and then calling the client's data-handler
completion function.

typedef struct DataHScheduleRecord {
 TimeRecord timeNeededBy; /* schedule info */
 long extendedID; /* type of data */
 long extendedVers; /* reserved */
 Fixed priority; /* priority */
 } DataHScheduleRecord, *DataHSchedulePtr;

Special Considerations

Note that the Movie Toolbox may try to read data from a data reference without calling your component's
DataHOpenForRead (page 796) function. If this happens, your component should open the data reference
for read-only access, respond to the read request, and then leave the data reference open in anticipation of
later read requests.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

DataHScheduleData64
Provides a 64-bit version of DataHScheduleData.

ComponentResult DataHScheduleData64 (
 DataHandler dh,
 Ptr PlaceToPutDataPtr,
 const wide *FileOffset,
 long DataSize,
 long RefCon,
 DataHSchedulePtr scheduleRec,
 DataHCompletionUPP CompletionRtn
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Functions 807
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

PlaceToPutDataPtr
The location in memory that is to receive the data.

FileOffset
A pointer to the offset in the data reference from which your component is to read.

DataSize
The number of bytes to read.

RefCon
A reference constant that your data handler component should provide to the data-handler completion
function specified with the CompletionRtn parameter.

scheduleRec
A pointer to a DataHScheduleRecord. If this parameter is set to NIL, then the client program is
requesting a synchronous read operation (that is, your data handler must return the data before
returning control to the client program). If this parameter is not set to NIL, it must contain the location
of a schedule record that has timing information for an asynchronous read request. Your data handler
should return control to the client program immediately, and then call the client's data-handler
completion function when the data is ready.

CompletionRtn
A pointer to a data handler completion function, described in DataHCompletionProc. The client
program must provide a completion routine for all asynchronous read requests (that is, all requests
that include a valid schedule record). For synchronous requests, client programs should set this
parameter to NIL. However, if the function is provided, your handler must call it, even after synchronous
requests. When your data handler finishes with the client program's read request, your component
must call this routine even if the request fails. Your component should pass the reference constant
that the client program provided with the RefCon parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function and DataHScheduleData (page 806) is that the FileOffset
parameter is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSetCacheSizeLimit
Sets the cache size limit for a data handler component.

808 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHSetCacheSizeLimit (
 DataHandler dh,
 Size cacheSizeLimit
);

Parameters
dh

A data handler component.

cacheSizeLimit
A pointer to the cache size limit.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSetDataRef
Assigns a data reference to your data handler component.

ComponentResult DataHSetDataRef (
 DataHandler dh,
 Handle dataRef
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

dataRef
The data reference. This parameter contains a handle to the information that identifies the container
in question. Different types of containers may require different types of data references. For example,
a reference to a memory-based movie may be a handle, while a reference to a file-based movie may
be an alias. For example, Apple's memory-based data handler for the Macintosh uses handles (and
has a subtype value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype
value is 'alis'). The client program is responsible for disposing of the handle, so your component
must make a copy of it. See Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows your application to assign your data handler's current data reference. All data handler
components use data references to identify and locate a movie's container. Client programs can correlate
data references with data handlers by matching the component's subtype value with the data reference
type; the subtype value indicates the type of data reference the component supports. All data handlers with
the same subtype value must support the same data reference type.

Functions 809
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Special Considerations

Note that the type of data reference always corresponds to the type that your component supports, and that
you specify in the component subtype value of your data handler. As a result, the client program does not
provide a data reference type value (unlike the Movie Toolbox's data reference functions).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent.win
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHSetDataRefExtension
Sets your component's current data reference extension data.

ComponentResult DataHSetDataRefExtension (
 DataHandler dh,
 Handle extension,
 OSType idType
);

Parameters
dh

A data handler component.

extension
A handle to the extension data.

idType
A four-byte signature identifying the type of extension data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

810 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHSetDataRefWithAnchor
Sets the data reference and anchor data reference for a data handler.

ComponentResult DataHSetDataRefWithAnchor (
 DataHandler dh,
 Handle anchorDataRef,
 OSType dataRefType,
 Handle dataRef
);

Parameters
dh

A data handler component.

anchorDataRef
A handle to the anchor data reference.

dataRefType
The type of the data reference. Different types of containers may require different types of data
references. For example, a reference to a memory-based movie may be a handle, while a reference
to a file-based movie may be an alias. Apple's memory-based data handler for the Macintosh uses
handles (and has a subtype value of 'hndl'), while the HFS data handler uses Alias Manager aliases
(its subtype value is 'alis'). See Data References.

dataRef
A data reference handle. Your component should make a copy of its current data reference in a handle
and return that handle in this field. The client program is responsible for disposing of that handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSetFileSize
Sets the size, in bytes, of the current data reference.

ComponentResult DataHSetFileSize (
 DataHandler dh,
 long fileSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

fileSize
The new size of the container corresponding to the current data reference, in bytes.

Functions 811
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is operationally equivalent to the Mac OS File Manager's SetEOF function. If the client program
specifies a new size that is greater than the current size, your component should extend the container to
accommodate that new size. If the client program specifies a container size of 0, your component should
free all of the space occupied by the container.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSetFileSize64
Provides a 64-bit version of DataHSetFileSize.

ComponentResult DataHSetFileSize64 (
 DataHandler dh,
 const wide *fileSize
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

fileSize
A pointer to the new size of the container corresponding to the current data reference, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function andDataHSetFileSize (page 811) is that thefileSizeparameter
is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

812 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DataHSetIdleManager
Lets a data handler report its idling needs.

ComponentResult DataHSetIdleManager (
 DataHandler dh,
 IdleManager im
);

Parameters
dh

A data handler component.

im
A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine must be implemented by a data handler if the handler needs to report its idling requirements.
If you have a handler that supports scheduling reads in the future, you can schedule calls to DataHTask (page
816) via the data structure returned by this function.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

DataHSetMacOSFileType
Sets the Mac OS file type for a data handler's current data reference.

ComponentResult DataHSetMacOSFileType (
 DataHandler dh,
 OSType fileType
);

Parameters
dh

A data handler component.

fileType
A file type; see File Types and Creators.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 813
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
QuickTimeComponents.h

DataHSetMovieUsageFlags
Sets the way that a data handler appends data to its storage.

ComponentResult DataHSetMovieUsageFlags (
 DataHandler dh,
 long flags
);

Parameters
dh

A data handler component.

flags
Constants (see below) that control data appending. See these constants:

kDataHMovieUsageDoAppendMDAT

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

DataHSetTimeBase
Sets the time base for a data handler component.

ComponentResult DataHSetTimeBase (
 DataHandler dh,
 TimeBase tb
);

Parameters
dh

A data handler component.

814 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

tb
A pointer to a TimeBaseRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSetTimeHints
Undocumented

ComponentResult DataHSetTimeHints (
 DataHandler dh,
 long flags,
 long bandwidthPriority,
 TimeScale scale,
 TimeValue minTime,
 TimeValue maxTime
);

Parameters
dh

A data handler component.

flags
Undocumented

bandwidthPriority
Undocumented

scale
Undocumented

minTime
Undocumented

maxTime
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 815
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHTask
Cedes processor time to your data handler.

ComponentResult DataHTask (
 DataHandler dh
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is essentially analogous to the Movie Toolbox's MoviesTask (page 257) function. Client programs
call this function in order to give your data handler component time to do its work. Because client programs
will call this function frequently, and especially so during movie playback or capture, your data handler should
return control quickly to the client program.

Special Considerations

Applications should call this function often so that your handler has enough time to do its work.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtdataref.win

Declared In
QuickTimeComponents.h

DataHUpdateMovie
Updates the movie for a data handler's current data reference.

ComponentResult DataHUpdateMovie (
 DataHandler dh,
 Movie theMovie,
 short id
);

Parameters
dh

A data handler component.

theMovie
A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

816 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

id
Specifies the resource containing the movie data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHUseTemporaryDataRef
Undocumented

ComponentResult DataHUseTemporaryDataRef (
 DataHandler dh,
 long inFlags
);

Parameters
dh

A data handler component.

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

DataHWrite
Writes data to its current data reference.

Functions 817
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult DataHWrite (
 DataHandler dh,
 Ptr data,
 long offset,
 long size,
 DataHCompletionUPP completion,
 long refCon
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

data
Specifies a pointer to the data to be written. Client programs should lock the memory area holding
this data, allowing your component's DataHWrite function to move memory.

offset
The offset (in bytes) to the location in the current data reference at which to write the data.

size
The number of bytes to write.

completion
A pointer to a data-handler completion function, described in DataHCompletionProc. The client
program must provide a completion routine for all asynchronous write requests. For synchronous
requests, client programs should set this parameter to NIL. When your data handler finishes with the
client program's write request, your component must call this routine even if the request fails. Your
component should pass the reference constant that the client program provided with the refCon
parameter.

refCon
A reference constant that your data handler component should provide to the data-handler completion
function specified with the completion parameter. For synchronous operations, client programs
should set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function provides both a synchronous and an asynchronous write interface. Synchronous write operations
work like the DataHPutData (page 802) function; the data handler component returns control to the client
program only after it has serviced the write request. Asynchronous write operations allow client programs
to queue write requests. Your data handler queues the request and immediately returns control to the calling
program. After your component actually writes the data, it calls the client program's data-handler completion
function.

Special Considerations

Note that some data handlers may not support write operations. For example, some shared devices, such as
a CD-ROM "jukebox," may be read-only devices. As a result, it is very important that your data handler correctly
report its write capabilities to client programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

818 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
QuickTimeComponents.h

DataHWrite64
Provides a 64-bit version of DataHWrite.

ComponentResult DataHWrite64 (
 DataHandler dh,
 Ptr data,
 const wide *offset,
 long size,
 DataHCompletionUPP completion,
 long refCon
);

Parameters
dh

Identifies the calling program's connection to your data handler component.

data
Specifies a pointer to the data to be written. Client programs should lock the memory area holding
this data, allowing your component's DataHWrite function to move memory.

offset
A pointer to the offset (in bytes) of the location in the current data reference at which to write the
data.

size
The number of bytes to write.

completion
A pointer to a data-handler completion function, described in DataHCompletionProc. The client
program must provide a completion routine for all asynchronous write requests. For synchronous
requests, client programs should set this parameter to NIL. When your data handler finishes with the
client program's write request, your component must call this routine even if the request fails. Your
component should pass the reference constant that the client program provided with the refCon
parameter.

refCon
A reference constant that your data handler component should provide to the data-handler completion
function specified with the completion parameter. For synchronous operations, client programs
should set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 819
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Discussion
The only difference between this function and DataHWrite (page 817) is that the offset parameter is a
64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeCDataHandlerUPP
Disposes of a CDataHandlerUPP pointer.

void DisposeCDataHandlerUPP (
 CDataHandlerUPP userUPP
);

Parameters
userUPP

A CDataHandlerUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

DisposeCharDataHandlerUPP
Disposes of a CharDataHandlerUPP pointer.

void DisposeCharDataHandlerUPP (
 CharDataHandlerUPP userUPP
);

Parameters
userUPP

A CharDataHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

820 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DisposeCommentHandlerUPP
Disposes of a CommentHandlerUPP pointer.

void DisposeCommentHandlerUPP (
 CommentHandlerUPP userUPP
);

Parameters
userUPP

A CommentHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeDataHCompletionUPP
Disposes of a DataHCompletionUPP pointer.

void DisposeDataHCompletionUPP (
 DataHCompletionUPP userUPP
);

Parameters
userUPP

A DataHCompletionUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImporter
ThreadsImportMovie

Functions 821
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DisposeEndDocumentHandlerUPP
Disposes of an EndDocumentHandlerUPP pointer.

void DisposeEndDocumentHandlerUPP (
 EndDocumentHandlerUPP userUPP
);

Parameters
userUPP

An EndDocumentHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeEndElementHandlerUPP
Disposes of an EndElementHandlerUPP pointer.

void DisposeEndElementHandlerUPP (
 EndElementHandlerUPP userUPP
);

Parameters
userUPP

An EndElementHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposePreprocessInstructionHandlerUPP
Disposes of a PreprocessInstructionHandlerUPP pointer.

822 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

void DisposePreprocessInstructionHandlerUPP (
 PreprocessInstructionHandlerUPP userUPP
);

Parameters
userUPP

A PreprocessInstructionHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeStartDocumentHandlerUPP
Disposes of a StartDocumentHandlerUPP pointer.

void DisposeStartDocumentHandlerUPP (
 StartDocumentHandlerUPP userUPP
);

Parameters
userUPP

A StartDocumentHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeStartElementHandlerUPP
Disposes of a StartElementHandlerUPP pointer.

void DisposeStartElementHandlerUPP (
 StartElementHandlerUPP userUPP
);

Parameters
userUPP

A StartElementHandlerUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Functions 823
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Declared In
QuickTimeComponents.h

DisposeVdigIntUPP
Disposes of a VdigIntUPP pointer.

void DisposeVdigIntUPP (
 VdigIntUPP userUPP
);

Parameters
userUPP

A VdigIntUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewCDataHandlerUPP
Allocates a Universal Procedure Pointer for the CDataHandlerProc callback.

CDataHandlerUPP NewCDataHandlerUPP (
 CDataHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

824 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

NewCharDataHandlerUPP
Undocumented

CharDataHandlerUPP NewCharDataHandlerUPP (
 CharDataHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewCommentHandlerUPP
Undocumented

CommentHandlerUPP NewCommentHandlerUPP (
 CommentHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewDataHCompletionUPP
Allocates a Universal Procedure Pointer for the DataHCompletionProc callback.

Functions 825
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHCompletionUPP NewDataHCompletionUPP (
 DataHCompletionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewDataHCompletionProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImporter
ThreadsImportMovie

Declared In
QuickTimeComponents.h

NewEndDocumentHandlerUPP
Undocumented

EndDocumentHandlerUPP NewEndDocumentHandlerUPP (
 EndDocumentHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

826 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

NewEndElementHandlerUPP
Undocumented

EndElementHandlerUPP NewEndElementHandlerUPP (
 EndElementHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewPreprocessInstructionHandlerUPP
Undocumented

PreprocessInstructionHandlerUPP NewPreprocessInstructionHandlerUPP (
 PreprocessInstructionHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewStartDocumentHandlerUPP
Undocumented

Functions 827
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

StartDocumentHandlerUPP NewStartDocumentHandlerUPP (
 StartDocumentHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewStartElementHandlerUPP
Undocumented

StartElementHandlerUPP NewStartElementHandlerUPP (
 StartElementHandler userRoutine
);

Parameters
userRoutine

Undocumented

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewVdigIntUPP
Allocates a Universal Procedure Pointer for the VdigIntProc callback.

VdigIntUPP NewVdigIntUPP (
 VdigIntProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

828 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewVdigIntProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseAddAttribute
Undocumented

ComponentResult XMLParseAddAttribute (
 ComponentInstance aParser,
 UInt32 elementID,
 UInt32 nameSpaceID,
 char *attributeName,
 UInt32 *attributeID
);

Parameters
aParser

Undocumented

elementID
Undocumented

nameSpaceID
Undocumented

attributeName
Undocumented

attributeID
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 829
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

XMLParseAddAttributeAndValue
Undocumented

ComponentResult XMLParseAddAttributeAndValue (
 ComponentInstance aParser,
 UInt32 elementID,
 UInt32 nameSpaceID,
 char *attributeName,
 UInt32 *attributeID,
 UInt32 attributeValueKind,
 void *attributeValueKindInfo
);

Parameters
aParser

Undocumented

elementID
Undocumented

nameSpaceID
Undocumented

attributeName
Undocumented

attributeID
Undocumented

attributeValueKind
Undocumented

attributeValueKindInfo
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseAddAttributeValueKind
Undocumented

830 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseAddAttributeValueKind (
 ComponentInstance aParser,
 UInt32 elementID,
 UInt32 attributeID,
 UInt32 attributeValueKind,
 void *attributeValueKindInfo
);

Parameters
aParser

Undocumented

elementID
Undocumented

attributeID
Undocumented

attributeValueKind
Undocumented

attributeValueKindInfo
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseAddElement
Undocumented

ComponentResult XMLParseAddElement (
 ComponentInstance aParser,
 char *elementName,
 UInt32 nameSpaceID,
 UInt32 *elementID,
 long elementFlags
);

Parameters
aParser

Undocumented

elementName
Undocumented

nameSpaceID
Undocumented

Functions 831
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

elementID
Undocumented

elementFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseAddMultipleAttributes
Undocumented

ComponentResult XMLParseAddMultipleAttributes (
 ComponentInstance aParser,
 UInt32 elementID,
 UInt32 *nameSpaceIDs,
 char *attributeNames,
 UInt32 *attributeIDs
);

Parameters
aParser

Undocumented

elementID
Undocumented

nameSpaceIDs
Undocumented

attributeNames
Undocumented

attributeIDs
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

832 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

XMLParseAddMultipleAttributesAndValues
Undocumented

ComponentResult XMLParseAddMultipleAttributesAndValues (
 ComponentInstance aParser,
 UInt32 elementID,
 UInt32 *nameSpaceIDs,
 char *attributeNames,
 UInt32 *attributeIDs,
 UInt32 *attributeValueKinds,
 void **attributeValueKindInfos
);

Parameters
aParser

Undocumented

elementID
Undocumented

nameSpaceIDs
Undocumented

attributeNames
Undocumented

attributeIDs
Undocumented

attributeValueKinds
Undocumented

attributeValueKindInfos
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseAddNameSpace
Undocumented

Functions 833
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseAddNameSpace (
 ComponentInstance aParser,
 char *nameSpaceURL,
 UInt32 *nameSpaceID
);

Parameters
aParser

Undocumented

nameSpaceURL
Undocumented

nameSpaceID
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseDataRef
Undocumented

ComponentResult XMLParseDataRef (
 ComponentInstance aParser,
 Handle dataRef,
 OSType dataRefType,
 long parseFlags,
 XMLDoc *document
);

Parameters
aParser

Undocumented

dataRef
Undocumented

dataRefType
Undocumented

parseFlags
Undocumented

document
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

834 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseDisposeXMLDoc
Undocumented

ComponentResult XMLParseDisposeXMLDoc (
 ComponentInstance aParser,
 XMLDoc document
);

Parameters
aParser

Undocumented

document
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseFile
Undocumented

ComponentResult XMLParseFile (
 ComponentInstance aParser,
 ConstFSSpecPtr fileSpec,
 long parseFlags,
 XMLDoc *document
);

Parameters
aParser

Undocumented

fileSpec
Undocumented

Functions 835
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

parseFlags
Undocumented

document
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseGetDetailedParseError
Undocumented

ComponentResult XMLParseGetDetailedParseError (
 ComponentInstance aParser,
 long *errorLine,
 StringPtr errDesc
);

Parameters
aParser

Undocumented

errorLine
Undocumented

errDesc
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetCDataHandler
Undocumented

836 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseSetCDataHandler (
 ComponentInstance aParser,
 CDataHandlerUPP cdata
);

Parameters
aParser

Undocumented

cdata
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

XMLParseSetCharDataHandler
Undocumented

ComponentResult XMLParseSetCharDataHandler (
 ComponentInstance aParser,
 CharDataHandlerUPP charData
);

Parameters
aParser

Undocumented

charData
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetCommentHandler
Undocumented

Functions 837
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseSetCommentHandler (
 ComponentInstance aParser,
 CommentHandlerUPP comment
);

Parameters
aParser

Undocumented

comment
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetEndDocumentHandler
Undocumented

ComponentResult XMLParseSetEndDocumentHandler (
 ComponentInstance aParser,
 EndDocumentHandlerUPP endDocument
);

Parameters
aParser

Undocumented

endDocument
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetEndElementHandler
Undocumented

838 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseSetEndElementHandler (
 ComponentInstance aParser,
 EndElementHandlerUPP endElement
);

Parameters
aParser

Undocumented

endElement
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetEventParseRefCon
Undocumented

ComponentResult XMLParseSetEventParseRefCon (
 ComponentInstance aParser,
 long refcon
);

Parameters
aParser

Undocumented

refcon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetOffsetAndLimit
Undocumented

Functions 839
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

ComponentResult XMLParseSetOffsetAndLimit (
 ComponentInstance aParser,
 UInt32 offset,
 UInt32 limit
);

Parameters
aParser

Undocumented

offset
Undocumented

limit
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetPreprocessInstructionHandler
Undocumented

ComponentResult XMLParseSetPreprocessInstructionHandler (
 ComponentInstance aParser,
 PreprocessInstructionHandlerUPP preprocessInstruction
);

Parameters
aParser

Undocumented

preprocessInstruction
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

840 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

XMLParseSetStartDocumentHandler
Undocumented

ComponentResult XMLParseSetStartDocumentHandler (
 ComponentInstance aParser,
 StartDocumentHandlerUPP startDocument
);

Parameters
aParser

Undocumented

startDocument
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLParseSetStartElementHandler
Undocumented

ComponentResult XMLParseSetStartElementHandler (
 ComponentInstance aParser,
 StartElementHandlerUPP startElement
);

Parameters
aParser

Undocumented

startElement
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 841
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Callbacks

DataHCompletionProc
Called upon completion of a read or write operation.

typedef void (*DataHCompletionProcPtr) (Ptr request, long refcon, OSErr err);

If you name your function MyDataHCompletionProc, you would declare it this way:

void MyDataHCompletionProc (
 Ptr request,
 long refcon,
 OSErr err);

Parameters
request

Specifies a pointer to the data that was associated with the read request DataHScheduleData (page
806) or write request DataHWrite (page 817). The client program uses this pointer to determine which
request has completed.

refcon
A reference constant that the client program supplied to your data handler component when it made
the original request.

err
Indicates the success or failure of the operation. If the operation succeeded, set this parameter to 0.
Otherwise, specify an appropriate error code.

Discussion
Data handler completion functions are guaranteed to be called at non-interrupt time. This means that you
can safely call functions that are not interrupt-safe, such as DataHScheduleData (page 806), from within a
completion function.

Declared In
QuickTimeComponents.h

Data Types

ConstFSSpecPtr
Represents a type used by the Data Components API.

typedef const FSSpec * ConstFSSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

842 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataCodecComponent
Represents a type used by the Data Components API.

typedef ComponentInstance DataCodecComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHCompletionUPP
Represents a type used by the Data Components API.

typedef STACK_UPP_TYPE(DataHCompletionProcPtr) DataHCompletionUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHFileTypeOrderingHandle
Represents a type used by the Data Components API.

typedef DataHFileTypeOrderingPtr * DataHFileTypeOrderingHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHFileTypeOrderingPtr
Represents a type used by the Data Components API.

typedef OSType * DataHFileTypeOrderingPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHSchedulePtr
Represents a type used by the Data Components API.

Data Types 843
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

typedef DataHScheduleRecord * DataHSchedulePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHScheduleRecord
Provides scheduling information for scheduled reads.

struct DataHScheduleRecord {
 TimeRecord timeNeededBy;
 long extendedID;
 long extendedVers;
 Fixed priority;
 };

Fields
timeNeededBy

Discussion
Specifies the time at which your data handler must deliver the requested data to the calling program. This
time value is relative to the time base that is contained in this time record. During pre-roll operations, the
Movie Toolbox may use special values in certain time record fields. The time record fields in question are the
scale and value fields. By correctly interpreting the values of these fields, your data handler can queue up
the pre-roll read requests in the most efficient way for its device.

extendedID

Discussion
A constant (see below) that indicates the type of data that follows in the remainder of the structure. See
these constants:

kDataHExtendedSchedule

extendedVers

Discussion
Reserved. This field should always be set to 0.

priority

Discussion
Indicates the relative importance of the data request. Client programs assign a value of 100.0 to data requests
the must be delivered. Lower values indicate relatively less critical data. If your data handler must accommodate
bandwidth limitations when delivering data, your component may use this value as an indication of which
requests can be dropped with the least impact on the client program. As an example, consider using priorities
in a frame-differenced movie. Key frames might have priority values of 100.0, indicating that they are essential
to proper playback. As you move through the frames following a key frame, each successive frame might
have a lower priority value. Once you drop a frame, you must drop all successive frames of equal or lower
priority until you reach another key frame, because each of these frames would rely on the dropped one for
some image data.

Discussion
There are two types of preroll read operations. The first type is a required read; that is, the Movie Toolbox
requires that the read operation be satisfied before the movie starts playing. The second type is an optional
read. If your data handler can satisfy the read operation as part of the pre-roll operation, it should do so.

844 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Otherwise, your data handler may satisfy the request at a specified time while the movie is playing. The Movie
Toolbox indicates that a preroll read request is required by setting the scale field of the time record to -1.
This literally means that the request is scheduled for a time that is infinitely far into the future. Your data
handler should collect all such read requests, order them most efficiently for your device, and process them
when the Movie Toolbox calls your component's DataHFinishData (page 774) function. For optional preroll
read requests, the Movie Toolbox sets the scale field properly, but negates the contents of the value
field. Your data handler has the option of delivering the data for this request with the required data, if that
can be done efficiently. Otherwise, your data handler may deliver the data at its schedule time. You determine
the scheduled time by negating the contents of the value field (that is, multiplying by -1).

Declared In
QuickTimeComponents.h

DataHVolumeList
Represents a type used by the Data Components API.

typedef DataHVolumeListPtr * DataHVolumeList;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DataHVolumeListPtr
Represents a type used by the Data Components API.

typedef DataHVolumeListRecord * DataHVolumeListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

XMLDoc
Represents a type used by the Data Components API.

typedef XMLDocRecord * XMLDoc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Data Types 845
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

XMLDocRecord
Undocumented

struct XMLDocRecord {
 void * xmlDataStorage;
 XMLElement rootElement;
 };

Fields
xmlDataStorage

Discussion
Undocumented

rootElement

Discussion
Undocumented

Declared In
QuickTimeComponents.h

Constants

kDataHCanRead
Constants grouped with kDataHCanRead.

enum {
 kDataHCanRead = 1L << 0,
 kDataHSpecialRead = 1L << 1,
 kDataHSpecialReadFile = 1L << 2,
 kDataHCanWrite = 1L << 3,
 kDataHSpecialWrite = 1 << 4,
 kDataHSpecialWriteFile = 1 << 5,
 kDataHCanStreamingWrite = 1 << 6,
 kDataHMustCheckDataRef = 1 << 7
};

Constants
kDataHCanRead

Indicates that your data handler can read from the volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHSpecialRead
Indicates that your data handler can read from the volume using a specialized method. For example,
your data handler might support access to networked multimedia servers using a special protocol.
In that case, your component would set this flag to 1 whenever the volume resides on a supported
server.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

846 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

kDataHSpecialReadFile
Reserved for use by Apple.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHCanWrite
Indicates that your data handler can write data to the volume. In particular, use this flag to indicate
that your data handler's DataHPutData (page 802) function will work with this volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHSpecialWrite
Indicates that your data handler can write to the volume using a specialized method. As with the
kDataHSpecialRead flag, your data handler would use this flag to indicate that your component
can access the volume using specialized support (for example, special network protocols).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

kDataHCanStreamingWrite
Indicates that your data handler can support the special write functions for capturing movie data
when writing to this volume.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

DataHScheduleRecord Values
Constants passed to DataHScheduleRecord.

enum {
 kDataHExtendedSchedule = 'xtnd'
};

Declared In
QuickTimeComponents.h

DataHGetFileTypeOrdering Values
Constants passed to DataHGetFileTypeOrdering.

enum {
 kDataHFileTypeMacOSFileType = 'ftyp',
 kDataHFileTypeExtension = 'fext',
 kDataHFileTypeMIME = 'mime'
};

Declared In
QuickTimeComponents.h

Constants 847
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

DataHGetInfoFlags Values
Constants passed to DataHGetInfoFlags.

enum {
 kDataHInfoFlagNeverStreams = 1 << 0, /* set if this data handler doesn't
stream*/
 kDataHInfoFlagCanUpdateDataRefs = 1 << 1, /* set if this data handler might update
 data reference*/
 kDataHInfoFlagNeedsNetworkBandwidth = 1 << 2 /* set if this data handler may need
 to occupy the network*/
};

Declared In
QuickTimeComponents.h

DataHSetMovieUsageFlags Values
Constants passed to DataHSetMovieUsageFlags.

enum {
 kDataHMovieUsageDoAppendMDAT = 1L << 0 /* if set, datahandler should append wide
 and mdat atoms in append call*/
};

Declared In
QuickTimeComponents.h

848 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Data Components Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in ImageCodec.h

Overview

An image codec (or image compressor component) is a code resource that provides QuickTime with
compression or decompression services for image data.

Functions by Task

Base Image Decompressor Functions

ImageCodecBeginBand (page 869)
Called before drawing a band or frame; it allows your image decompressor component to save
information about a band before decompressing it.

ImageCodecDisposeMemory (page 876)
Disposes codec-allocated memory.

ImageCodecDITLEvent (page 877)
Lets an image codec component receive and process dialog events.

ImageCodecDITLInstall (page 878)
Installs added items in an image codec settings dialog box before the dialog box is displayed to the
user.

ImageCodecDITLItem (page 878)
Receives and processes mouse clicks in the image codec settings dialog box.

ImageCodecDITLRemove (page 879)
Removes a panel from the image codec settings dialog box.

ImageCodecDITLValidateInput (page 880)
Validates the contents of the user dialog box for an image codec component.

ImageCodecDrawBand (page 880)
Decompresses a band or frame.

ImageCodecEndBand (page 888)
Notifies your image decompressor component that decompression of a band has finished or that it
was terminated by the Image Compression Manager.

Overview 849
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecExtractAndCombineFields (page 889)
Performs field operations on video data.

ImageCodecFlush (page 891)
Empties an image decompressor component's input queue of pending scheduled frames.

ImageCodecGetDITLForSize (page 897)
Returns the size of various dialog item lists.

ImageCodecGetMaxCompressionSizeWithSources (page 899)
Notifies your codec when an application calls GetCSequenceMaxCompressionSize.

ImageCodecGetSettings (page 901)
Returns the codec settings chosen by the user.

ImageCodecHitTestData (page 904)
Notifies your codec when the application calls PtInDSequenceData.

ImageCodecInitialize (page 906)
Called before making any other all calls to your component.

ImageCodecIsImageDescriptionEquivalent (page 906)
Compares image descriptions.

ImageCodecMergeFloatingImageOntoWindow (page 908)
Draws the current contents of a floating image.

ImageCodecNewImageBufferMemory (page 909)
Asks a codec to allocate memory for an offscreen buffer of non-RGB pixels.

ImageCodecNewMemory (page 911)
Requests codec-allocated memory.

ImageCodecPreflight (page 913)
Called before decompressing an image, in response to an ImageCodecPreDecompress call from the
Image Compression Manager.

ImageCodecQueueStarting (page 916)
Called by the base image decompressor before decompressing the frames in the queue if your image
decompressor component supports asynchronous scheduled decompression.

ImageCodecQueueStopping (page 916)
Notifies your component that the frames in the queue have been decompressed, if your image
decompressor component supports asynchronous scheduled decompression.

ImageCodecRemoveFloatingImage (page 917)
Hides an image codec's floating image without having to close the component.

ImageCodecRequestSettings (page 919)
Displays a dialog box containing codec-specific compression settings.

ImageCodecSetSettings (page 920)
Sets the settings of an optional image codec dialog box.

ImageCodecSetTimeCode (page 922)
Sets the timecode for the next frame that is to be decompressed.

ImageCodecSourceChanged (page 922)
Notifies your codec that one of the data sources has changed when an application calls
CDSequenceSetSourceData or CDSequenceChangedSourceData.

850 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Low-Level Effects Functions

ImageCodecCreateStandardParameterDialog (page 873)
Creates a parameters dialog box for a specified effect.

ImageCodecDismissStandardParameterDialog (page 875)
Retrieves values from a standard parameter dialog box created by the low-level
ImageCodecCreateStandardParameterDialog function, then closes the dialog box.

ImageCodecGetParameterList (page 900)
Returns a parameter description atom container for a specified effect component instance.

ImageCodecIsStandardParameterDialogEvent (page 907)
Processes events related to a standard parameters dialog box created by
ImageCodecCreateStandardParameterDialog.

ImageCodecStandardParameterDialogDoAction (page 923)
Allows you to control the behavior of a standard parameter dialog box created by
ImageCodecCreateStandardParameterDialog.

Vector Codec Component Functions

CurveAddAtomToVectorStream (page 854)
Adds an atom to a vector data stream.

CurveAddPathAtomToVectorStream (page 855)
Adds a path to a vector data stream.

CurveAddZeroAtomToVectorStream (page 856)
Adds a kCurveEndAtom to a vector data stream; this atom marks the end of the vector data stream,

CurveCountPointsInPath (page 856)
Counts the points along either one of a path's contours or all of its contours.

CurveCreateVectorStream (page 857)
Creates a new, empty vector data stream.

CurveGetAtomDataFromVectorStream (page 858)
Finds the first atom of a specified type within a vector data stream and get its data.

CurveGetLength (page 859)
Calculates the length of one of a path's contours or the sum of the lengths of all of its contours.

CurveGetNearestPathPoint (page 859)
Finds the closest point on a path to a specified point.

CurveGetPathPoint (page 860)
Obtains a point from a path and to find out if the point is on the curve.

CurveInsertPointIntoPath (page 861)
Adds a new point to a path.

CurveLengthToPoint (page 862)
Obtains the point at a specified distance along a curve.

CurveNewPath (page 863)
Creates a new path.

CurvePathPointToLength (page 864)
Obtains the length of a path between specified starting and ending distances that is nearest a point.

Functions by Task 851
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

CurveSetPathPoint (page 865)
Changes the location of a point in a path.

Supporting Functions

DisposeImageCodecDrawBandCompleteUPP (page 866)
Disposes of an ImageCodecDrawBandCompleteUPP pointer.

DisposeImageCodecMPDrawBandUPP (page 866)
Disposes of an ImageCodecMPDrawBandUPP pointer.

DisposeImageCodecTimeTriggerUPP (page 867)
Disposes of an ImageCodecTimeTriggerUPP pointer.

ImageCodecBandCompress (page 867)
Asks your component to compress an image or a band of an image.

ImageCodecBandDecompress (page 868)
Asks your component to decompress a frame.

ImageCodecBeginPass (page 870)
Notifies the compressor that it should operate in multipass mode and use the given multipass storage.

ImageCodecBusy (page 871)
Lets your component report whether it is performing an asynchronous operation.

ImageCodecCancelTrigger (page 872)
Cancels an image codec's ImageCodecTimeTriggerProc callback.

ImageCodecCompleteFrame (page 872)
Directs the compressor to finish with a queued source frame, either emitting or dropping it.

ImageCodecDecodeBand (page 874)
Returns an ImageSubCodecDecompressRecord structure for an image codec component.

ImageCodecDisposeImageGWorld (page 876)
Disposes of an image graphics world associated with an image codec.

ImageCodecDroppingFrame (page 881)
Undocumented

ImageCodecEffectBegin (page 882)
Undocumented

ImageCodecEffectCancel (page 882)
Undocumented

ImageCodecEffectConvertEffectSourceToFormat (page 883)
Undocumented

ImageCodecEffectDisposeSMPTEFrame (page 884)
Undocumented

ImageCodecEffectGetSpeed (page 884)
Undocumented

ImageCodecEffectPrepareSMPTEFrame (page 885)
Undocumented

ImageCodecEffectRenderFrame (page 885)
Undocumented

852 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecEffectRenderSMPTEFrame (page 886)
Undocumented

ImageCodecEffectSetup (page 887)
Undocumented

ImageCodecEncodeFrame (page 888)
Presents the compressor with a frame to encode.

ImageCodecFlushFrame (page 892)
Undocumented

ImageCodecGetBaseMPWorkFunction (page 892)
Gets an image codec's ComponentMPWorkFunctionProc callback.

ImageCodecGetCodecInfo (page 893)
Notifies your codec whenever an application calls GetCodecInfo.

ImageCodecGetCompressedImageSize (page 894)
Notifies your codec whenever an application calls GetCompressedImageSize.

ImageCodecGetCompressionTime (page 895)
Notifies your codec whenever an application calls GetCompressionTime.

ImageCodecGetDecompressLatency (page 896)
Retrieves the video latency value from a specified video codec.

ImageCodecGetMaxCompressionSize (page 898)
Notifies your codec whenever an application calls GetMaxCompressionSize.

ImageCodecGetParameterListHandle (page 901)
Returns a handle to a Mac OS resource of type 'atms'.

ImageCodecGetSettingsAsText (page 902)
Undocumented

ImageCodecGetSimilarity (page 902)
Notifies your codec when an application calls GetSimilarity.

ImageCodecGetSourceDataGammaLevel (page 903)
Returns the native gamma of compressed data, if any.

ImageCodecHitTestDataWithFlags (page 905)
Undocumented

ImageCodecNewImageGWorld (page 910)
Undocumented

ImageCodecPreCompress (page 912)
Notifies your component before compressing an image or a band of an image.

ImageCodecPreDecompress (page 912)
Notifies your component before decompressing an image or sequence of frames.

ImageCodecPrepareToCompressFrames (page 914)
Prepares the compressor to receive frames.

ImageCodecProcessBetweenPasses (page 915)
Provides the compressor with an opportunity to perform processing between passes.

ImageCodecRequestGammaLevel (page 918)
Asks an image codec to convert from source to destination gamma levels.

ImageCodecScheduleFrame (page 920)
Undocumented

Functions by Task 853
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecSetTimeBase (page 921)
Sets the time base for an image codec component.

ImageCodecTrimImage (page 925)
Notifies your component whenever an application calls TrimImage.

ImageCodecValidateParameters (page 926)
Validates effect parameters.

NewImageCodecDrawBandCompleteUPP (page 927)
Allocates a Universal Procedure Pointer for an ImageCodecDrawBandCompleteProc callback.

NewImageCodecMPDrawBandUPP (page 927)
Allocates a Universal Procedure Pointer for the ImageCodecMPDrawBandProc callback.

NewImageCodecTimeTriggerUPP (page 928)
Allocates a Universal Procedure Pointer for the ImageCodecTimeTriggerProc callback.

QTPhotoDefineHuffmanTable (page 928)
Defines a Huffman table.

QTPhotoDefineQuantizationTable (page 929)
Specifies a custom quantization table.

QTPhotoSetRestartInterval (page 930)
Specifies the restart interval to use in future JPEG compression operations.

QTPhotoSetSampling (page 931)
Specifies the chrominance downsampling ratio to use in future JPEG compression operations.

Functions

CurveAddAtomToVectorStream
Adds an atom to a vector data stream.

ComponentResult CurveAddAtomToVectorStream (
 ComponentInstance effect,
 OSType atomType,
 Size atomSize,
 void *pAtomData,
 Handle vectorStream
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

atomType
The type of atom to add to the vector data stream.

atomSize
The size of the data for the atom.

pAtomData
A pointer to the data for the atom.

854 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

vectorStream
A handle to the vector data stream to which to add the atom.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adds the atom to the end of the specified vector data stream and resizes the vector data stream
handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurveAddPathAtomToVectorStream
Adds a path to a vector data stream.

ComponentResult CurveAddPathAtomToVectorStream (
 ComponentInstance effect,
 Handle pathData,
 Handle vectorStream
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

pathData
A handle to the data for the path.

vectorStream
A handle to the vector data stream to which to add the path.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adds the path to the end of the specified vector data stream and resizes the vector data stream
handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 855
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurveAddZeroAtomToVectorStream
Adds a kCurveEndAtom to a vector data stream; this atom marks the end of the vector data stream,

ComponentResult CurveAddZeroAtomToVectorStream (
 ComponentInstance effect,
 Handle vectorStream
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

vectorStream
A handle to the vector data stream to which to add the kCurveEndAtom atom.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adds a kCurveEndAtom atom to the end of the specified vector data stream and resizes the
vector data stream handle. The kCurveEndAtom atom is required at the end of a vector data stream, and
there may be only one kCurveEndAtom atom in the stream.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurveCountPointsInPath
Counts the points along either one of a path's contours or all of its contours.

856 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveCountPointsInPath (
 ComponentInstance effect,
 gxPaths *aPath,
 unsigned long contourIndex,
 unsigned long *pCount
);

Parameters
effect

The instance of the QuickTime vector codec component for the request.

aPath
A pointer to the path.

contourIndex
The index of the contour to be counted.

pCount
A pointer to a field that is to receive the number of points in the contour or path.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveCreateVectorStream
Creates a new, empty vector data stream.

ComponentResult CurveCreateVectorStream (
 ComponentInstance effect,
 Handle *pStream
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

pStream
A pointer to the handle that is to receive the newly created vector data stream.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller is responsible for disposing of the stream when finished with it. This can be done by calling
DisposeHandle.

Functions 857
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurveGetAtomDataFromVectorStream
Finds the first atom of a specified type within a vector data stream and get its data.

ComponentResult CurveGetAtomDataFromVectorStream (
 ComponentInstance effect,
 Handle vectorStream,
 long atomType,
 long *dataSize,
 Ptr *dataPtr
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

vectorStream
A handle to the vector data stream from which to get the atom.

atomType
The type of atom to find.

dataSize
A pointer to a field that is to receive the size of the atom's data.

dataPtr
A pointer to a pointer to a field that is to receive the atom's data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before calling this function, your software must lock the handle for the vector data stream (with Macintosh,
by calling HLock). This prevents the handle from being moved, which could invalidate the pointer to the
atom data before your software gets the data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

858 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Declared In
ImageCodec.h

CurveGetLength
Calculates the length of one of a path's contours or the sum of the lengths of all of its contours.

ComponentResult CurveGetLength (
 ComponentInstance effect,
 gxPaths *target,
 long index,
 wide *wideLength
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

target
A pointer to the path.

index
Contains the index of the contour whose length is to be calculated or, if the value is 0, specifies to
calculate the lengths of all of the path's contours and return the sum of the lengths.

wideLength
A pointer to a field that is to receive the length.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveGetNearestPathPoint
Finds the closest point on a path to a specified point.

Functions 859
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveGetNearestPathPoint (
 ComponentInstance effect,
 gxPaths *aPath,
 FixedPoint *thePoint,
 unsigned long *contourIndex,
 unsigned long *pointIndex,
 Fixed *theDelta
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

aPath
A pointer to the path.

thePoint
A pointer to a point for which to find the closest point on the path.

contourIndex
A pointer to a field that is to receive the index of the contour that contains the closest point.

pointIndex
A pointer to a field that is to receive the index of the closest point.

theDelta
A pointer to a field that is to receive the distance between the specified point and the closest point
in the contour to it.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
In programs where users directly manipulate curves, you can use this function to determine the closest
control point to a given point.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveGetPathPoint
Obtains a point from a path and to find out if the point is on the curve.

860 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveGetPathPoint (
 ComponentInstance effect,
 gxPaths *aPath,
 unsigned long contourIndex,
 unsigned long pointIndex,
 gxPoint *thePoint,
 Boolean *ptIsOnPath
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

aPath
A pointer to the path.

contourIndex
The index of the contour from which to get the point.

pointIndex
The index of the point to get.

thePoint
A pointer to a field that is to receive the point.

ptIsOnPath
A pointer to a field that is to receive a Boolean value that, if TRUE, specifies that the point is on the
curve.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets programs get a single point from a path without walking the path data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveInsertPointIntoPath
Adds a new point to a path.

Functions 861
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveInsertPointIntoPath (
 ComponentInstance effect,
 gxPoint *aPoint,
 Handle thePath,
 unsigned long contourIndex,
 unsigned long pointIndex,
 Boolean ptIsOnPath
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

aPoint
A pointer to the point to add to the path.

thePath
A handle to the path to which to add the point.

contourIndex
The index of the path contour to which to add the point.

pointIndex
The index of the point to add.

ptIsOnPath
If TRUE, specifies that the new point is to be on the path.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is best for adding a single point to a path rather than large numbers of points.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurveLengthToPoint
Obtains the point at a specified distance along a curve.

862 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveLengthToPoint (
 ComponentInstance effect,
 gxPaths *target,
 long index,
 Fixed length,
 FixedPoint *location,
 FixedPoint *tangent
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

target
A pointer to the path.

index
The index of the path contour from which to get the point.

length
The distance along the curve at which to find the point.

location
A pointer to a field that is to receive the point.

tangent
A pointer to a field that is to receive a point that is tangent to the point at the specified distance.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is useful for converting a value to a point, such as when creating an animation that follows a
curve.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveNewPath
Creates a new path.

Functions 863
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult CurveNewPath (
 ComponentInstance effect,
 Handle *pPath
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

pPath
A pointer to a handle that is to receive the new path.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The path created by this function contains one contour and no points. The caller must dispose of the handle
when it is finished with it (with Macintosh, by calling DisposeHandle).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtvectors
qtvectors.win

Declared In
ImageCodec.h

CurvePathPointToLength
Obtains the length of a path between specified starting and ending distances that is nearest a point.

ComponentResult CurvePathPointToLength (
 ComponentInstance ci,
 gxPaths *aPath,
 Fixed startDist,
 Fixed endDist,
 FixedPoint *thePoint,
 Fixed *pLength
);

Parameters
ci

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

aPath
A pointer to the path.

864 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

startDist
The distance along the path at which to start measuring the path's length.

endDist
The distance along the path at which to stop measuring the path's length.

thePoint
A pointer to a point; the function measures the path closest to this point.

pLength
A pointer to a field that is to receive the length of the specified part of the path.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to test if the user has clicked on the specified portion of the curve.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CurveSetPathPoint
Changes the location of a point in a path.

ComponentResult CurveSetPathPoint (
 ComponentInstance effect,
 gxPaths *aPath,
 unsigned long contourIndex,
 unsigned long pointIndex,
 gxPoint *thePoint,
 Boolean ptIsOnPath
);

Parameters
effect

The instance of the QuickTime vector codec component for the request. Your software obtains this
reference when calling the Component Manager's OpenComponent or OpenDefaultComponent
function.

aPath
A pointer to the path.

contourIndex
The index of the path contour that contains the point to change.

pointIndex
The index of the point to change.

thePoint
A pointer to the new value for the point.

Functions 865
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ptIsOnPath
If TRUE, specifies that the new point is to be on the path.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function edits an existing point location within a path. The function that you call to send the interpolated
value to the receiving track is defined as a universal procedure in systems that support the Macintosh Code
Fragment Manager (CFM) or is defined as a data procedure for non-CFM systems. With Macintosh, the
TweenerDataUPP function pointer specifies the function the tween component calls with the value generated
by the tween operation. A tween component calls this function from its implementation of the
TweenerDoTween (page 549) function. You call this function by invoking the function specified in the tween
record's dataProc field.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

DisposeImageCodecDrawBandCompleteUPP
Disposes of an ImageCodecDrawBandCompleteUPP pointer.

void DisposeImageCodecDrawBandCompleteUPP (
 ImageCodecDrawBandCompleteUPP userUPP
);

Parameters
userUPP

An ImageCodecDrawBandCompleteUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

DisposeImageCodecMPDrawBandUPP
Disposes of an ImageCodecMPDrawBandUPP pointer.

866 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

void DisposeImageCodecMPDrawBandUPP (
 ImageCodecMPDrawBandUPP userUPP
);

Parameters
userUPP

An ImageCodecMPDrawBandUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win
OpenGLCompositorLab
SoftVideoOutputComponent

Declared In
ImageCodec.h

DisposeImageCodecTimeTriggerUPP
Disposes of an ImageCodecTimeTriggerUPP pointer.

void DisposeImageCodecTimeTriggerUPP (
 ImageCodecTimeTriggerUPP userUPP
);

Parameters
userUPP

An ImageCodecTimeTriggerUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecBandCompress
Asks your component to compress an image or a band of an image.

Functions 867
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecBandCompress (
 ComponentInstance ci,
 CodecCompressParams *params
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

params
A pointer to a CodecCompressParams structure. The Image Compression Manager places the
appropriate parameter information in that structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The image being compressed may be part of a sequence.

Special Considerations

Only compressors receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecBandDecompress
Asks your component to decompress a frame.

ComponentResult ImageCodecBandDecompress (
 ComponentInstance ci,
 CodecDecompressParams *params
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

params
A pointer to a CodecDecompressParams structure. The Image Compression Manager places the
appropriate parameter information in that structure.

Return Value
See Error Codes. Returns noErr if there is no error.

868 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
For scheduled asynchronous decompression operations, the Image Compression Manager supplies a reference
to an ICMFrameTimeRecord structure in this function's CodecDecompressParams structure parameter.
The ICMFrameTimeRecord structure contains time information governing the scheduled decompression
operation, including the time at which the frame must be displayed. For synchronous or immediate
asynchronous decompress operations, the frame time is set to NIL.

When your component has finished the decompression operation, it must call the completion function. In
the past, for asynchronous operations, your component called that function directly. For scheduled
asynchronous decompression operations, your component should call ICMDecompressComplete (page
675).

If your component sets the codecCanAsyncWhen flag in predecompress but cannot support scheduled
asynchronous decompression for a given frame, it must return an error code of codecCantWhenErr. If your
component's queue is full, it should return an error code of codecCantQueueErr. Only decompressors
receive these requests.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecBeginBand
Called before drawing a band or frame; it allows your image decompressor component to save information
about a band before decompressing it.

ComponentResult ImageCodecBeginBand (
 ComponentInstance ci,
 CodecDecompressParams *params,
 ImageSubCodecDecompressRecord *drp,
 long flags
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

params
A pointer to a CodecDecompressParams structure.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

flags
Currently unused; set to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 869
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
Your image decompressor component receives the address of the destination pixel map in the baseAddr
field of the drp parameter. This address includes an adjustment for the offset. Note that if the bit depth of
the pixel map is less than 8, your image decompressor component must adjust for the bit offset.

The codecData field of the drp parameter contains a pointer to the compressed video data. The
userDecompressRecord field of the drp parameter contains a pointer to storage for the decompression
operation. The storage is allocated by the base image decompressor after it calls the
ImageCodecInitialize (page 906) function. The size of the storage is determined by the
decompressRecordSize field of the ImageSubCodecDecompressCapabilities structure that is returned
by ImageCodecInitialize (page 906). Your image decompressor component should use this storage to
store any additional information needed about the frame in order to decompress it.

Changes your image decompressor component makes to the ImageSubCodecDecompressRecord or
CodecDecompressParams structures are preserved by the base image decompressor. For example, if your
component does not need to decompress all of the data, it can change the pointer to the data to be
decompressed that is stored in the codecData field of the ImageSubCodecDecompressRecord structure.

Special Considerations

Your component must implement this function. Also, the base image decompressor never calls
ImageCodecBeginBand at interrupt time. If your component supports asynchronous scheduled
decompression, it may receive more than one ImageCodecBeginBand call before receiving an
ImageCodecDrawBand (page 880) call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecBeginPass
Notifies the compressor that it should operate in multipass mode and use the given multipass storage.

ComponentResult ImageCodecBeginPass (
 ComponentInstance ci,
 ICMCompressionPassModeFlags passModeFlags,
 UInt32 flags,
 ICMMultiPassStorageRef multiPassStorage
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

870 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

passModeFlags
Indicates how the compressor should operate in this pass. If the
kICMCompressionPassMode_WriteToMultiPassStorage flag is set, the compressor may gather
information of interest and store it in multiPassStorage. If the
kICMCompressionPassMode_ReadFromMultiPassStorage flag is set, the compressor may retrieve
information from multiPassStorage. If the kICMCompressionPassMode_OutputEncodedFrames
flag is set, the compressor must encode or drop every frame by calling
ICMCompressorSessionDropFrame or ICMCompressorSessionEmitEncodedFrame. If that flag
is not set, the compressor should not call these routines.

flags
Reserved. Ignore this parameter.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

Return Value
An error code, or noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecBusy
Lets your component report whether it is performing an asynchronous operation.

ComponentResult ImageCodecBusy (
 ComponentInstance ci,
 ImageSequence seq
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

seq
The unique sequence identifier assigned by CompressSequenceBegin (page 609) or
DecompressSequenceBegin (page 621).

Return Value
Your component should return a result code value of 1 if an asynchronous operation is in progress; it should
return a result code value of 0 if the component is not performing an asynchronous operation. You can
indicate an error by returning a negative result code. See Error Codes.

Special Considerations

Both compressors and decompressors may receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 871
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecCancelTrigger
Cancels an image codec's ImageCodecTimeTriggerProc callback.

ComponentResult ImageCodecCancelTrigger (
 ComponentInstance ci
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecCompleteFrame
Directs the compressor to finish with a queued source frame, either emitting or dropping it.

ComponentResult ImageCodecCompleteFrame (
 ComponentInstance ci,
 ICMCompressorSourceFrameRef sourceFrame,
 UInt32 flags
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

sourceFrame
The source frame that must be completed.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

872 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
This frame does not necessarily need to be the first or only source frame emitted or dropped during this call,
but the compressor must call either ICMCompressorSessionDropFrame or
ICMCompressorSessionEmitEncodedFramewith this frame before returning. The ICM will call this function
to force frames to be encoded for the following reasons: (a) the maximum frame delay count or maximum
frame delay time in the compressionSessionOptions does not permit frames to be queued; (b) the client
has called ICMCompressionSessionCompleteFrames (page 34).

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecCreateStandardParameterDialog
Creates a parameters dialog box for a specified effect.

ComponentResult ImageCodecCreateStandardParameterDialog (
 ComponentInstance ci,
 QTAtomContainer parameterDescription,
 QTAtomContainer parameters,
 QTParameterDialogOptions dialogOptions,
 DialogPtr existingDialog,
 short existingUserItem,
 QTParameterDialog *createdDialog
);

Parameters
ci

An effects component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent. The dialog box that is created will allow the user to specify the parameters
of this effect.

parameterDescription
The parameter description atom container for this effect. You can obtain a valid parameter description
by calling ImageCodecGetParameterList (page 900). A parameter is optionally tweenable if defined
as kAtomInterpolateIsOptional in its parameter description atom.

parameters
The atom container that will receive the user's chosen parameter values once the dialog has been
dismissed.

dialogOptions
Controls how parameters containing tween data are presented in the created dialog box. If
dialogOptions contains 0, two values are collected for each parameter that can be tweened, and
the usual tweening operation will be performed for the duration of the effect being controlled. For
other values,. See these constants:

pdOptionsCollectOneValue

pdOptionsAllowOptionalInterpolations

existingDialog
An existing dialog box that will have the controls from the standard parameters dialog box added to
it. Set this parameter to NIL if you want this function to create a stand-alone dialog box.

Functions 873
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

existingUserItem
The number of the user item in the existing dialog box that should be replaced with controls from
the standard parameter dialog box. You should only pass a value to this parameter if the
existingDialog parameter is not NIL.

createdDialog
On return, a reference to the dialog created and displayed by the function. This reference is required
by several other low-level effects functions. It will contain a valid dialog identifier even if you requested
that the controls from the standard parameter dialog box be incorporated into an existing dialog
box.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This is a low-level function that can be used to create a standard parameter dialog box for a specified effect,
allowing the user to set the parameter values for the effect. You can optionally request that the controls from
the dialog box be included within a dialog box of the calling application. The following sample code shows
how to create a standard parameter dialog box and add effects controls:

// ImageCodecCreateStandardParameterDialog coding example
// See "Discovering QuickTime," page 303
pMovableModalDialog =GetNewDialog(kExtraDialogID, NIL, (WindowRef)-1);
if (pMovableModalDialog !=NIL) {
 ImageCodecCreateStandardParameterDialog(
 compInstance,
 qtacParameterDescription,
 qtacEffectSample,
 pdOptionsModelDialogBox,
 pMovableModalDialog,
 kExtraUserItemID,
 &lCreatedDialogID);
 ShowWindow(pMovableModalDialog);
 SelectWindow(pMovableModalDialog);
 SetPort(pMovableModalDialog);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtshoweffect
qtshoweffect.win

Declared In
ImageCodec.h

ImageCodecDecodeBand
Returns an ImageSubCodecDecompressRecord structure for an image codec component.

874 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecDecodeBand (
 ComponentInstance ci,
 ImageSubCodecDecompressRecord *drp,
 unsigned long flags
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

flags
Not used; set to 0.

Return Value
An error code, or noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecDismissStandardParameterDialog
Retrieves values from a standard parameter dialog box created by the low-level
ImageCodecCreateStandardParameterDialog function, then closes the dialog box.

ComponentResult ImageCodecDismissStandardParameterDialog (
 ComponentInstance ci,
 QTParameterDialog createdDialog
);

Parameters
ci

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent. This must be the instance passed to
ImageCodecCreateStandardParameterDialog (page 873) to create the dialog box.

createdDialog
A reference to the dialog box created by the call to ImageCodecCreateStandardParameterDialog.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function should be called after the ImageCodecIsStandardParameterDialogEvent (page 907)
function returns codecParameterDialogConfirm or userCanceledErr, which indicate that the user has
dismissed the dialog box. The function dismisses the dialog box, deallocating any memory allocated during
the call to ImageCodecCreateStandardParameterDialog (page 873).

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 875
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtshoweffect
qtshoweffect.win

Declared In
ImageCodec.h

ImageCodecDisposeImageGWorld
Disposes of an image graphics world associated with an image codec.

ComponentResult ImageCodecDisposeImageGWorld (
 ComponentInstance ci,
 GWorldPtr theGW
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

theGW
A pointer to a CGrafPort structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecDisposeMemory
Disposes codec-allocated memory.

ComponentResult ImageCodecDisposeMemory (
 ComponentInstance ci,
 Ptr data
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

data
A pointer to the previously allocated memory block.

876 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component receives the ImageCodecDisposeMemory request whenever an application calls
CDSequenceDisposeMemory (page 590).

Special Considerations

When a codec instance is closed, it must ensure that all blocks allocated by that instance are disposed and
call ICMMemoryDisposedProc.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecDITLEvent
Lets an image codec component receive and process dialog events.

ComponentResult ImageCodecDITLEvent (
 ComponentInstance ci,
 DialogRef d,
 short itemOffset,
 const EventRecord *theEvent,
 short *itemHit,
 Boolean *handled
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

d
A dialog reference identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

theEvent
A pointer to an EventRecord structure. This structure contains information identifying the nature
of the event.

itemHit
A pointer to a field that is to receive the item number in cases where your component handles the
event. The number returned is an absolute, not a relative number, so it must be offset by the
itemOffset parameter handled.

handled
A pointer to a Boolean value. Set this Boolean value to TRUE if you handle the event; set it to FALSE
if you do not.

Functions 877
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecDITLInstall
Installs added items in an image codec settings dialog box before the dialog box is displayed to the user.

ComponentResult ImageCodecDITLInstall (
 ComponentInstance ci,
 DialogRef d,
 short itemOffset
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

d
A pointer to the dialog box to be installed.

itemOffset
The offset to your image codec's first dialog item.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecDITLItem
Receives and processes mouse clicks in the image codec settings dialog box.

878 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecDITLItem (
 ComponentInstance ci,
 DialogRef d,
 short itemOffset,
 short itemNum
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

d
A dialog reference identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

itemNum
The item number of the dialog item selected by the user. The sequence grabber provides an absolute
item number. It is your responsibility to adjust this value to account for the offset to your panel's first
item in the dialog box.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
An image codec component calls this function whenever the user clicks an item in the settings dialog box.
Your component may then perform whatever processing is appropriate, depending upon the item number.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecDITLRemove
Removes a panel from the image codec settings dialog box.

ComponentResult ImageCodecDITLRemove (
 ComponentInstance ci,
 DialogRef d,
 short itemOffset
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

d
A dialog pointer identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

Functions 879
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
An image codec component calls this function just before removing your items from the settings dialog box.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecDITLValidateInput
Validates the contents of the user dialog box for an image codec component.

ComponentResult ImageCodecDITLValidateInput (
 ComponentInstance ci,
 Boolean *ok
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

ok
A pointer to a Boolean value. Set this value to TRUE if the settings are OK; otherwise, set it to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The image codec calls this function when the user clicks the OK button. If the user clicks the Cancel button,
the image codec does not call this function. You indicate whether the settings are acceptable by setting the
Boolean value pointed to by the ok parameter. If you set this value to FALSE, the sequence grabber component
ignores the OK button in the dialog box.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecDrawBand
Decompresses a band or frame.

880 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecDrawBand (
 ComponentInstance ci,
 ImageSubCodecDecompressRecord *drp
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When the base image decompressor calls your image decompressor component's ImageCodecDrawBand
function, your component must perform the decompression specified by the fields of the
ImageSubCodecDecompressRecord structure. The structure includes any changes your component made
to it when performing the ImageCodecBeginBand (page 869) function. If your component supports
asynchronous scheduled decompression, it may receive more than one ImageCodecBeginBand call before
receiving an ImageCodecDrawBand call.

Special Considerations

Your component must implement this function. If the ImageSubCodecDecompressRecord structure specifies
a progress function or data-loading function, the base image decompressor never calls this function at
interrupt time. If not, the base image decompressor may call this function at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecDroppingFrame
Undocumented

ComponentResult ImageCodecDroppingFrame (
 ComponentInstance ci,
 const ImageSubCodecDecompressRecord *drp
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

Functions 881
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectBegin
Undocumented

ComponentResult ImageCodecEffectBegin (
 ComponentInstance effect,
 CodecDecompressParams *p,
 EffectsFrameParamsPtr ePtr
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

p
A pointer to a CodecDecompressParams structure.

ePtr
A pointer to a EffectsFrameParams structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectCancel
Undocumented

882 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecEffectCancel (
 ComponentInstance effect,
 EffectsFrameParamsPtr p
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

p
A pointer to a EffectsFrameParams structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectConvertEffectSourceToFormat
Undocumented

ComponentResult ImageCodecEffectConvertEffectSourceToFormat (
 ComponentInstance effect,
 EffectSourcePtr sourceToConvert,
 ImageDescriptionHandle requestedDesc
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

sourceToConvert
Undocumented

requestedDesc
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect

Functions 883
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Dimmer2Effect.win
GreyscaleEffectSample

Declared In
ImageCodec.h

ImageCodecEffectDisposeSMPTEFrame
Undocumented

ComponentResult ImageCodecEffectDisposeSMPTEFrame (
 ComponentInstance effect,
 SMPTEFrameReference frameRef
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

frameRef
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectGetSpeed
Undocumented

ComponentResult ImageCodecEffectGetSpeed (
 ComponentInstance effect,
 QTAtomContainer parameters,
 Fixed *pFPS
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

parameters
Undocumented

pFPS
Undocumented

884 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectPrepareSMPTEFrame
Undocumented

ComponentResult ImageCodecEffectPrepareSMPTEFrame (
 ComponentInstance effect,
 PixMapPtr destPixMap,
 SMPTEFrameReference *returnValue
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

destPixMap
Undocumented

returnValue
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectRenderFrame
Undocumented

Functions 885
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecEffectRenderFrame (
 ComponentInstance effect,
 EffectsFrameParamsPtr p
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

p
A pointer to an EffectsFrameParams structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectRenderSMPTEFrame
Undocumented

ComponentResult ImageCodecEffectRenderSMPTEFrame (
 ComponentInstance effect,
 PixMapPtr destPixMap,
 SMPTEFrameReference frameRef,
 Fixed effectPercentageEven,
 Fixed effectPercentageOdd,
 Rect *pSourceRect,
 MatrixRecord *matrixP,
 SMPTEWipeType effectNumber,
 long xRepeat,
 long yRepeat,
 SMPTEFlags flags,
 Fixed penWidth,
 long strokeValue
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

destPixMap
Undocumented

frameRef
Undocumented

886 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

effectPercentageEven
Undocumented

effectPercentageOdd
Undocumented

pSourceRect
Undocumented

pMatrix
Undocumented

effectNumber
Undocumented

xRepeat
Undocumented

yRepeat
Undocumented

flags
Undocumented

penWidth
Undocumented

strokeValue
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEffectSetup
Undocumented

ComponentResult ImageCodecEffectSetup (
 ComponentInstance effect,
 CodecDecompressParams *p
);

Parameters
effect

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

p
A pointer to a CodecDecompressParams structure.

Functions 887
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecEncodeFrame
Presents the compressor with a frame to encode.

ComponentResult ImageCodecEncodeFrame (
 ComponentInstance ci,
 ICMCompressorSourceFrameRef sourceFrame,
 UInt32 flags
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

sourceFrame
The source frame to encode.

flags
Reserved; ignore.

Return Value
An error code, or noErr if there is no error.

Discussion
The compressor may encode the frame immediately or queue it for later encoding. If the compressor queues
the frame for later decode, it must retain it (by calling ICMCompressorSourceFrameRetain) and release
it when it is done with it (by calling ICMCompressorSourceFrameRelease). Pixel buffers are guaranteed
to conform to the pixel buffer attributes returned by ImageCodecPrepareToCompressFrames. During
multipass encoding, if the compressor requested the kICMCompressionPassMode_NoSourceFrames flag,
the source frame pixel buffers may be NULL. (Note: this replaces ImageCodecBandCompress (page 867).)

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecEndBand
Notifies your image decompressor component that decompression of a band has finished or that it was
terminated by the Image Compression Manager.

888 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecEndBand (
 ComponentInstance ci,
 ImageSubCodecDecompressRecord *drp,
 OSErr result,
 long flags
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

result
A result code.

flags
Currently unused; set to 0.

Return Value
Returns noErr if the band or frame was drawn successfully. If it is any other value, the band or frame was
not drawn. See Error Codes.

Discussion
Your image decompressor component is not required to implement this function. After your image
decompressor component handles a call to this function, it can perform any tasks that are required when
decompression is finished, such as disposing of data structures that are no longer needed. Because this
function can be called at interrupt time, your component cannot use it to dispose of data structures; this
must occur after handling the function.

Special Considerations

The base image decompressor may call ImageCodecEndBand at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecExtractAndCombineFields
Performs field operations on video data.

Functions 889
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecExtractAndCombineFields (
 ComponentInstance ci,
 long fieldFlags,
 void *data1,
 long dataSize1,
 ImageDescriptionHandle desc1,
 void *data2,
 long dataSize2,
 ImageDescriptionHandle desc2,
 void *outputData,
 long *outDataSize,
 ImageDescriptionHandle descOut
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

fieldFlags
Flags (see below) that specify the operation to be performed. A correctly formed request will specify
two input fields, mapping one to the odd output field and the other to the even output field. See
these constants:

evenField1ToEvenFieldOut

evenField1ToOddFieldOut

oddField1ToEvenFieldOut

oddField1ToOddFieldOut

evenField2ToEvenFieldOut

evenField2ToOddFieldOut

oddField2ToEvenFieldOut

oddField2ToOddFieldOut

data1
A pointer to a buffer containing the compressed image data for the first input field.

dataSize1
The size of the data1 buffer.

desc1
An ImageDescription structure describing the format and characteristics of the data in the data1
buffer.

data2
A pointer to a buffer containing the compressed image data for the second input field. Set to NIL if
the requested operation uses only one input frame.

dataSize2
The size of the data2 buffer. Set to 0 if the requested operation uses only one input frame.

desc2
An ImageDescription structure describing the format and characteristics of the data in the data2
buffer. Set to NIL if the requested operation uses only one input frame.

outputData
A pointer to a buffer to receive the resulting frame.

890 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

outDataSize
On output this parameter returns the actual size of the new compressed image data.

descOut
The desired format of the resulting frames. Typically this is the same format specified by the desc1
and desc2 parameters.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows fields from two separate images, compressed in the same format, to be combined into
a new compressed frame. Typically the operation results in an image of identical quality to the source images.
Fields of a single image may also be duplicated or reversed by this function. The component selector for this
function is:

kImageCodecExtractAndCombineFieldsSelect =0x0015

Special Considerations

This codec routine implements the functionality of the ImageFieldSequenceExtractCombine (page 683)
function. If your codec is capable of separately compressing both fields of a video frame, you should incorporate
support for this function. Your codec must ensure that it understands the image formats specified by desc1
and desc2 parameters, as these may not be the same as the codec's native image format. The image format
specified by the descOut parameter will be the same as the codec's native image format.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecFlush
Empties an image decompressor component's input queue of pending scheduled frames.

ComponentResult ImageCodecFlush (
 ComponentInstance ci
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component receives the ImageCodecFlush function whenever the Image Compression Manager needs
to cancel the display of all scheduled frames. Your decompressor should empty its queue of scheduled
asynchronous decompression requests. For each request, your component must call

Functions 891
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ICMDecompressComplete (page 675). Be sure to set the err parameter to -1, indicating that the request
was canceled. Also, you must set both the codecCompletionSource and codecCompletionDest flags to
1.

Special Considerations

Your component's ImageCodecFlush function may be called at interrupt time. Only decompressor
components that support scheduled asynchronous decompression receive this call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecFlushFrame
Undocumented

ComponentResult ImageCodecFlushFrame (
 ComponentInstance ci,
 UInt32 flags
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetBaseMPWorkFunction
Gets an image codec's ComponentMPWorkFunctionProc callback.

892 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecGetBaseMPWorkFunction (
 ComponentInstance ci,
 ComponentMPWorkFunctionUPP *workFunction,
 void **refCon,
 ImageCodecMPDrawBandUPP drawProc,
 void *drawProcRefCon
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

workFunction
On return, a pointer to a ComponentMPWorkFunctionProc callback.

refCon
On return, a handle to the reference constant that is passed to the ComponentMPWorkFunctionProc
callback.

drawProc
An ImageCodecMPDrawBandProc callback.

drawProcRefCon
A pointer to a reference constant that is passed to your ImageCodecMPDrawBandProc callback. Use
this parameter to point to a data structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win
SoftVideoOutputComponent

Declared In
ImageCodec.h

ImageCodecGetCodecInfo
Notifies your codec whenever an application calls GetCodecInfo.

Functions 893
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecGetCodecInfo (
 ComponentInstance ci,
 CodecInfo *info
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

info
A pointer to a CodecInfo structure to update. Your component should report its capabilities by
formatting the structure in the location specified by this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Both compressors and decompressors may receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetCompressedImageSize
Notifies your codec whenever an application calls GetCompressedImageSize.

ComponentResult ImageCodecGetCompressedImageSize (
 ComponentInstance ci,
 ImageDescriptionHandle desc,
 Ptr data,
 long bufferSize,
 ICMDataProcRecordPtr dataProc,
 long *dataSize
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

desc
A handle to the ImageDescription structure that defines the compressed image for the operation.

data
A pointer to the compressed image data.

bufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If the application did not specify a data-loading function this parameter is NIL.

894 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

dataProc
A pointer to an ICMDataProcRecord structure. If the data stream is not all in memory when the
application calls GetCompressedImageSize (page 653), your component may call an application
function that loads more compressed data.

dataSize
A pointer to a field that is to receive the size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

Only decompressors receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetCompressionTime
Notifies your codec whenever an application calls GetCompressionTime.

ComponentResult ImageCodecGetCompressionTime (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 short depth,
 CodecQ *spatialQuality,
 CodecQ *temporalQuality,
 unsigned long *time
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

src
A handle to the source image. The source image is stored in a PixMap structure. Applications may
use the time information you return for more than one image. Consequently, your compressor should
not consider the contents of the image when determining the maximum compression time. Rather,
you should consider only the quality level, pixel depth, and image size. This parameter may also be
set to NIL. In this case the application has not supplied a source image; your component should use
the other parameters to determine the characteristics of the image to be compressed.

srcRect
A pointer to a Rect structure that defines the portion of the source image to compress.

Functions 895
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

depth
The depth at which the image is to be compressed. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the
number of bits per pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images.

spatialQuality
A pointer to a field containing the desired compressed image quality (see below). The compressor
sets this field to the closest actual quality that it can achieve. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A pointer to a field containing the desired sequence temporal quality (see below). The compressor
sets this field to the closest actual quality that it can achieve.

time
A pointer to a field to receive the compression time, in milliseconds. If your component cannot
determine the amount of time required to compress the image, set this field to 0. Check to see if the
value of this field is NIL and, if so, do not write to location 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetDecompressLatency
Retrieves the video latency value from a specified video codec.

ComponentResult ImageCodecGetDecompressLatency (
 ComponentInstance ci,
 TimeRecord *latency
);

Parameters
ci

A video codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

latency
Pointer to a TimeRecord structure containing the latency time required for that codec.

Return Value
See Error Codes. Returns noErr if there is no error.

896 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetDITLForSize
Returns the size of various dialog item lists.

ComponentResult ImageCodecGetDITLForSize (
 ComponentInstance ci,
 Handle *ditl,
 Point *requestedSize
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

ditl
A pointer to a handle provided by the sequence grabber component. Your panel component returns
the dialog item list in this handle. Your component should resize this handle as appropriate. The
sequence grabber component will dispose of this handle after retrieving the item list, so make sure
that the item list is not stored in a resource.

requestedSize
The size of the panel in pixels, or constants (see below). Two special values, kSGSmallestDITLSize
and kSGLargestDITLSize, request the smallest or largest size of the list. The sequence grabber will
interpolate the panel elements between the two sizes if just the constants are returned. A codec must
at a minimum support kSGSmallestDITLSize if it implements this call. See these constants:

kSGSmallestDITLSize

kSGLargestDITLSize

Return Value
The codec returns badComponentSelector for sizes it does not implement and noErr if there is no error.
See Error Codes.

Discussion
This function allows an image codec to return dialog item lists of various size in pixels. Once you have created
the area, you can use other image codec calls to handle the dialog items managed by your panel component.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

Functions 897
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecGetMaxCompressionSize
Notifies your codec whenever an application calls GetMaxCompressionSize.

ComponentResult ImageCodecGetMaxCompressionSize (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 short depth,
 CodecQ quality,
 long *size
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

src
A handle to the source image. The source image is stored in a PixMap structure. Applications use the
size information you return to allocate buffers that may be used for more than one image.
Consequently, your compressor should not consider the contents of the image when determining
the maximum compressed size. Rather, you should consider only the quality level, pixel depth, and
image size. This parameter may also be set to NIL. In this case the application has not supplied a
source image; your component should use the other parameters to determine the characteristics of
the image to be compressed.

srcRect
A pointer to a Rect structure that defines the portion of the source image to compress.

depth
The depth at which the image is to be compressed. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the
number of bits per pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images.

quality
The desired compressed image quality (see below). See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

size
A pointer to a field to receive the maximum size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller uses this function to determine the maximum size the data will become for a given parameter.
Your component returns a long integer indicating the maximum number of bytes of compressed data that
results from compressing the specified image.

Special Considerations

Only compressors receive this request.

898 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetMaxCompressionSizeWithSources
Notifies your codec when an application calls GetCSequenceMaxCompressionSize.

ComponentResult ImageCodecGetMaxCompressionSizeWithSources (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 short depth,
 CodecQ quality,
 CDSequenceDataSourcePtr sourceData,
 long *size
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

src
A handle to the source image. The source image is stored in a PixMap structure. Applications use the
size information you return to allocate buffers for more than one image. Consequently, your compressor
should not consider the contents of the image when determining the maximum compressed size.
Rather, you should consider only the quality level, pixel depth, and image size. This parameter may
also be set to NIL. In this case the application has not supplied a source image; your component
should use the other parameters to determine the characteristics of the image to be compressed.

srcRect
A pointer to a Rect structure that defines the portion of the source image to compress.

depth
The depth at which the image is to be compressed. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the
number of bits per pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images.

quality
The desired compression image quality.

sourceData
A pointer to a CDSequenceDataSource structure, which contains a linked list of all data sources.
Because each data source contains a link to the next data source, a codec can access all data sources
from this structure.

size
A pointer to a field to receive the maximum size, in bytes, of the compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 899
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
The caller uses this function to determine the maximum size the data will be compressed to for a given image
and set of data sources.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetParameterList
Returns a parameter description atom container for a specified effect component instance.

ComponentResult ImageCodecGetParameterList (
 ComponentInstance ci,
 QTAtomContainer *parameterDescription
);

Parameters
ci

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

parameterDescription
The returned atom container for this component instance.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the parameter description for the effect specified by the component instance ci, as a
handle containing an 'atms' resource of ID 1. The handle should be detached if it has been read in from a
resource. Each parameter of the effect is described in the parameter description, with details of its name,
type, legal values and hints about how a user interface to the parameter should be constructed.

Special Considerations

The calling application is responsible for disposing of the QT atom container returned in
parameterDescription. The application should do this by calling QTDisposeAtomContainer (page 1427)
once it has finished using the parameter description.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs
qtshoweffect
qtshoweffect.win

900 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Declared In
ImageCodec.h

ImageCodecGetParameterListHandle
Returns a handle to a Mac OS resource of type 'atms'.

ComponentResult ImageCodecGetParameterListHandle (
 ComponentInstance ci,
 Handle *parameterDescriptionHandle
);

Parameters
ci

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

parameterDescriptionHandle
A pointer to a handle to a Mac OS resource of type 'atms'.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The purpose of this function is to build a QT atom container in response to a call to
ImageCodecGetParameterList (page 900). The handle should be detached if it has been read in from a
resource. The caller is responsible for disposing of the handle.

Special Considerations

The implementation of this function in the Base Effect component reads in and detaches a Component Public
Resource of type 'atms' and ID 1.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetSettings
Returns the codec settings chosen by the user.

ComponentResult ImageCodecGetSettings (
 ComponentInstance ci,
 Handle settings
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

Functions 901
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

settings
A handle that the codec should resize and fill in with the current internal settings. If there are no
current internal settings, resize it to 0. Don't dispose of this handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
ImageCodecGetSettings returns the codec's current internal settings. If there are no current settings or
the settings are the same as the defaults, the codec can set the handle to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer QCTV

Declared In
ImageCodec.h

ImageCodecGetSettingsAsText
Undocumented

ComponentResult ImageCodecGetSettingsAsText (
 ComponentInstance ci,
 Handle *text
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

text
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetSimilarity
Notifies your codec when an application calls GetSimilarity.

902 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecGetSimilarity (
 ComponentInstance ci,
 PixMapHandle src,
 const Rect *srcRect,
 ImageDescriptionHandle desc,
 Ptr data,
 Fixed *similarity
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

src
A handle to the noncompressed image. The image is stored in a PixMap structure.

srcRect
A pointer to a Rect structure that defines the portion of the image to compare to the compressed
image.

desc
A handle to the ImageDescription structure that defines the compressed image for the operation.

data
A pointer to the compressed image data.

similarity
A pointer to a field that is to receive the similarity value. Your component sets this field to reflect the
relative similarity of the two images. Valid values range from 0 (key frame) to 1 (identical).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Only decompressors receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecGetSourceDataGammaLevel
Returns the native gamma of compressed data, if any.

Functions 903
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecGetSourceDataGammaLevel (
 ComponentInstance ci,
 Fixed *sourceDataGammaLevel
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

sourceDataGammaLevel
On return, the native gamma level of the compressed data. If the value is 0, it is the default gamma
level of the platform.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The ICM uses the information returned by this function to determine what gamma correction is necessary.
For example, the Apple DV Codec returns 2.2.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecHitTestData
Notifies your codec when the application calls PtInDSequenceData.

ComponentResult ImageCodecHitTestData (
 ComponentInstance ci,
 ImageDescriptionHandle desc,
 void *data,
 Size dataSize,
 Point where,
 Boolean *hit
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

desc
An ImageDescriptionHandle for the image data pointed to by the data parameter.

data
Pointer to compressed data in the format specified by the desc parameter.

dataSize
Size of the compressed data referred to by the data parameter.

904 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

where
A QuickDraw Point structure (0,0) based at the top-left corner of the image.

hit
A pointer to a Boolean value. The value should be set to TRUE if the point specified by the where
parameter is contained within the compressed image data specified by the data parameter, or FALSE
if the specified point falls within a blank portion of the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
ImageCodecHitTestData allows the calling application to perform hit testing on compressed data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecHitTestDataWithFlags
Undocumented

ComponentResult ImageCodecHitTestDataWithFlags (
 ComponentInstance ci,
 ImageDescriptionHandle desc,
 void *data,
 Size dataSize,
 Point where,
 long *hit,
 long hitFlags
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

desc
A handle to an ImageDescription structure for the image data pointed to by the data parameter.

data
Pointer to compressed data in the format specified by the desc parameter.

dataSize
Size of the compressed data referred to by the data parameter.

where
A QuickDraw Point structure (0,0) based at the top-left corner of the image.

hit
A pointer to a Boolean. The Boolean should be set to TRUE if the point specified by the where
parameter is contained within the compressed image data specified by the data parameter.

Functions 905
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

hitFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecInitialize
Called before making any other all calls to your component.

ComponentResult ImageCodecInitialize (
 ComponentInstance ci,
 ImageSubCodecDecompressCapabilities *cap
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

cap
On return, an ImageSubCodecDecompressCapabilities structure that contains the capabilities
of the image decompressor component. This structure contains two fields. The canAsync field specifies
whether your component can support asynchronous decompression operations. The
decompressRecordSize field specifies the size of the decompression record structure for your
component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component must implement this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecIsImageDescriptionEquivalent
Compares image descriptions.

906 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecIsImageDescriptionEquivalent (
 ComponentInstance ci,
 ImageDescriptionHandle newDesc,
 Boolean *equivalent
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

newDesc
A handle to the ImageDescription structure that describes the compressed image.

equivalent
A pointer to a Boolean value. If the structure provided in the newDesc parameter is equivalent to the
ImageDescription structure currently in use by the image sequence, this value is set to TRUE. If
they are not equivalent, and therefore a new image sequence must be created to display an image
using the new ImageDescription structure, this value is set to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component receives this call whenever an application calls
CDSequenceEquivalentImageDescription (page 591). Implementing this function can significantly
improve playback of edited video sequences using your codec. For example, if two sequences are compressed
at different quality levels and are edited together they will have different image descriptions because their
quality values will be different. This will force QuickTime to use two separate decompressor instances to
display the images. By implementing this function your decompressor can tell QuickTime that differences in
quality levels don't require separate decompressors. This saves memory and time, thus improving performance.

Special Considerations

The current ImageDescription structure is not passed in this function because the Image Compression
Manager assumes the codec has already made copies of all relevant data fields from the current
ImageDescription structure during the ImageCodecPreDecompress (page 912) call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecIsStandardParameterDialogEvent
Processes events related to a standard parameters dialog box created by
ImageCodecCreateStandardParameterDialog.

Functions 907
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecIsStandardParameterDialogEvent (
 ComponentInstance ci,
 EventRecord *pEvent,
 QTParameterDialog createdDialog
);

Parameters
ci

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent. This must be the instance that was passed to
ImageCodecCreateStandardParameterDialog (page 873) to create the dialog box.

pEvent
A pointer to an EventRecord structure.

createdDialog
A reference to the dialog box created by the call to
ImageCodecCreateStandardParameterDialog (page 873).

Return Value
If the error code returned is featureUnsupported, your application should process the event in the normal
way. If it is noErr, the event was processed. If this function returns any other value, an error occurred. See
Error Codes.

Discussion
This function returns an error code that indicates whether the event pointed to by pEvent was processed
or not. After you call ImageCodecCreateStandardParameterDialog (page 873) to create a standard
parameter dialog box, you must pass every non-null event to this function. It processes events related to the
standard parameter dialog box, passing other events to your application for processing.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtshoweffect
qtshoweffect.win

Declared In
ImageCodec.h

ImageCodecMergeFloatingImageOntoWindow
Draws the current contents of a floating image.

ComponentResult ImageCodecMergeFloatingImageOntoWindow (
 ComponentInstance ci,
 UInt32 flags
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

908 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

flags
Currently not implemented.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some hardware acceleration transfer codecs create a floating image in front of the window; when this is
deactivated or hidden, whatever was previously drawn in that section of the window reappears. Such transfer
codecs should implement this function, which draws the current contents of the floating image onto the
window below, so that the floating image may be deactivated or hidden without the image changing.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecNewImageBufferMemory
Asks a codec to allocate memory for an offscreen buffer of non-RGB pixels.

ComponentResult ImageCodecNewImageBufferMemory (
 ComponentInstance ci,
 CodecDecompressParams *params,
 long flags,
 ICMMemoryDisposedUPP memoryGoneProc,
 void *refCon
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

params
A pointer to a decompression parameters structure.

flags
Currently, this parameter is always set to 0.

memoryGoneProc
A pointer to an ICMMemoryDisposedProc callback that will be called before disposing of the memory
allocated by the codec.

refCon
A reference constant that is passed to your ICMMemoryDisposedProc callback. Use this parameter
to point to a data structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 909
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
This call is used to support a codec decompressing into a non-RGB buffer. The transfer codec is responsible
for defining the offscreen buffer and transferring the image from the offscreen buffer to the destination.
Your component receives this call whenever another codec has requested a non-RGB offscreen buffer of the
type of your component's subtype.

Special Considerations

The Image Compression Manager does not currently track memory allocations. When a compressor or
decompressor component instance is closed, it must ensure that all blocks allocated by that instance are
disposed of and call the ICMMemoryDisposedProc callback.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecNewImageGWorld
Undocumented

ComponentResult ImageCodecNewImageGWorld (
 ComponentInstance ci,
 CodecDecompressParams *params,
 GWorldPtr *newGW,
 long flags
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

params
A pointer to a CodecDecompressParams structure.

newGW
A pointer to a pointer to a CGrafPort structure.

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

910 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecNewMemory
Requests codec-allocated memory.

ComponentResult ImageCodecNewMemory (
 ComponentInstance ci,
 Ptr *data,
 Size dataSize,
 long dataUse,
 ICMMemoryDisposedUPP memoryGoneProc,
 void *refCon
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

data
Returns a pointer to the allocated memory.

dataSize
The desired size of the data buffer.

dataUse
A constant (see below) that indicates how the memory is to be used. For example, the memory may
be used to store compressed data before it's displayed, mask plane data, or decompressed data. If
there is no benefit to storing a particular kind of data in codec memory, the codec should refuse the
request for the memory allocation. See these constants:

memoryGoneProc
A pointer to an ICMMemoryDisposedProc callback that will be called before disposing of the memory
allocated by a codec.

refCon
A reference constant value that your codec must pass to the memoryGoneProc callback. Use this
parameter to point to a data structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error. If your codec does not currently have free memory for
compression frame data, but will soon, you can return codecNoMemoryPleaseWaitErr to indicate this fact.

Discussion
Some hardware codecs may have on-board memory that can be used to store compressed and/or
decompressed data. This function makes this memory available for use by clients of the codec. Some software
codecs may be able to optimize their performance by having more control over memory allocation. This
function makes such control available. Your component receives this call whenever an application calls
CDSequenceNewMemory (page 597).

Special Considerations

The Image Compression Manager does not currently track memory allocations. When a compressor or
decompressor component instance is closed, it must ensure that all blocks allocated by that instance are
disposed and call the ICMMemoryDisposedProc callback.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 911
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecPreCompress
Notifies your component before compressing an image or a band of an image.

ComponentResult ImageCodecPreCompress (
 ComponentInstance ci,
 CodecCompressParams *params
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

params
A pointer to a CodecCompressParams structure. The Image Compression Manager places the
appropriate parameter information in that structure.

Return Value
See Error Codes. Your component should return a result code of codecConditionErr if it cannot field
the compression request. Return noErr if there is no error.

Discussion
Your component receives this call before compressing an image or a band of an image. The Image Compression
Manager also calls this function when processing a sequence. In that case, the Image Compression Manager
calls this function whenever the parameters governing the sequence operation have changed substantially.
Your component indicates whether it can perform the requested compression operation.

Special Considerations

Only compressors receive this call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecPreDecompress
Notifies your component before decompressing an image or sequence of frames.

912 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecPreDecompress (
 ComponentInstance ci,
 CodecDecompressParams *params
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

params
A pointer to a CodecDecompressParams structure. The Image Compression Manager places the
appropriate parameter information in that structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your decompressor component supports scheduled asynchronous decompression operations, be sure to
set the codecCanAsyncWhen flag to 1 in the flags field of your component's CodecCapabilities structure.
If you set codecCanAsyncWhen, you must also set codecCanAsync. Codecs that support scheduled
asynchronous decompression are strongly advised to also set the codecCanShieldCursor flag.

If your decompressor component uses a secondary hardware buffer for its images, be sure to set the
codecHasVolatileBuffer flag to 1 in the flags field of your component's CodecCapabilities structure.
If your decompressor component is used solely as a transfer codec and uses the
ImageCodecNewImageBufferMemory (page 909) function to create an offscreen buffer that is really onscreen,
your codec will need to set the codecImageBufferIsOnScreen flag to 1.

Special Considerations

Only decompressors receive this request.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecPreflight
Called before decompressing an image, in response to an ImageCodecPreDecompress call from the Image
Compression Manager.

ComponentResult ImageCodecPreflight (
 ComponentInstance ci,
 CodecDecompressParams *params
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

Functions 913
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

params
A pointer to a CodecDecompressParams structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your codec responds to this call by returning information about its capabilities in a CodecCapabilities
structure. The Image Compression Manager creates the decompression parameters structure, and your image
decompressor component is required only to provide values for the wantedDestinationPixelSize and
wantedDestinationPixelTypes fields of the structure. Your image decompressor component can also
modify other fields if necessary. For example, if it can scale images, it must set the
codecCapabilityCanScale flag in the capabilities field of the structure.

Special Considerations

Your component must implement this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecPrepareToCompressFrames
Prepares the compressor to receive frames.

ComponentResult ImageCodecPrepareToCompressFrames (
 ComponentInstance ci,
 ICMCompressorSessionRef session,
 ICMCompressionSessionOptionsRef compressionSessionOptions,
 ImageDescriptionHandle imageDescription,
 void *reserved,
 CFDictionaryRef *compressorPixelBufferAttributesOut
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

session
The compressor session reference. The compressor should store this in its globals; it will need it when
calling the ICM back (for example, to call ICMEncodedFrameCreateMutable and
ICMCompressorSessionEmitEncodedFrame). This is not a CF type. Do not call CFRetain or
CFRelease on it.

compressionSessionOptions
The session options from the client. The compressor should retain this and use the settings to guide
compression.

imageDescription
The image description. The compressor may add image description extensions.

914 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

reserved
Reserved for future use. Ignore this parameter.

compressorPixelBufferAttributesOut
The compressor should create a pixel buffer attributes dictionary and set
compressorPixelBufferAttributesOut to it. The ICM will release it.

Return Value
An error code, or noErr if there is no error.

Discussion
The compressor should record session and retain compressionSessionOptions for use in later calls. The
compressor may modify imageDescription at this point. The compressor should create and return pixel
buffer attributes, which the ICM will release. (Note: this replaces ImageCodecPreCompress (page 912).)

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecProcessBetweenPasses
Provides the compressor with an opportunity to perform processing between passes.

ComponentResult ImageCodecProcessBetweenPasses (
 ComponentInstance ci,
 ICMMultiPassStorageRef multiPassStorage,
 Boolean *interpassProcessingDoneOut,
 ICMCompressionPassModeFlags *requestedNextPassModeFlagsOut
);

Parameters
ci

A component instance that identifies a connection to an image codec component.

multiPassStorage
The multipass storage object that the compressor should use to store and retrieve information between
passes.

interpassProcessingDoneOut
Points to a Boolean. Set this to FALSE if you want your ImageCodecProcessBetweenPasses function
to be called again to perform more processing, TRUE if not.

requestedNextPassModeFlagsOut
Set *requestedNextPassModeFlagsOut to indicate the type of pass that should be performed
next: To recommend a repeated analysis pass, set it to
kICMCompressionPassMode_ReadFromMultiPassStorage|
kICMCompressionPassMode_WriteToMultiPassStorage. To recommend a final encoding pass,
set it to kICMCompressionPassMode_ReadFromMultiPassStorage |
kICMCompressionPassMode_OutputEncodedFrames. If source frame buffers are not necessary
for the recommended pass (for example, because all the required data has been copied into multipass
storage), set kICMCompressionPassMode_NoSourceFrames.

Return Value
An error code, or noErr if there is no error.

Functions 915
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
This function will be called repeatedly until it returns TRUE in *interpassProcessingDoneOut. The
compressor may read and write to multiPassStorage. The compressor should indicate which type of pass
it would prefer to perform next by setting *requestedNextPassTypeOut.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCodec.h

ImageCodecQueueStarting
Called by the base image decompressor before decompressing the frames in the queue if your image
decompressor component supports asynchronous scheduled decompression.

ComponentResult ImageCodecQueueStarting (
 ComponentInstance ci
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component is not required to implement this function. It can perform any tasks at this time, such as
locking data structures.

Special Considerations

The base image decompressor never calls this function at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecQueueStopping
Notifies your component that the frames in the queue have been decompressed, if your image decompressor
component supports asynchronous scheduled decompression.

916 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecQueueStopping (
 ComponentInstance ci
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
After your image decompressor component handles a call to this function, it can perform any tasks that are
required when decompression of the frames is finished, such as disposing of data structures that are no
longer needed.

Special Considerations

Your component is not required to implement this function. This function is never called at interrupt time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecRemoveFloatingImage
Hides an image codec's floating image without having to close the component.

ComponentResult ImageCodecRemoveFloatingImage (
 ComponentInstance ci,
 UInt32 flags
);

Parameters
ci

The component instance that identifies your connection to an image codec component.

flags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some hardware acceleration transfer codecs create a floating image in front of the window; when this is
deactivated or hidden, whatever was previously drawn in that section of the window reappears. Such transfer
codecs should implement this function, so the Image Compression Manager can ask it to hide the floating
image without having to close the component. The floating image should be shown again on the next call
to ImageCodecDrawBand (page 880).

Functions 917
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCodec.h

ImageCodecRequestGammaLevel
Asks an image codec to convert from source to destination gamma levels.

ComponentResult ImageCodecRequestGammaLevel (
 ComponentInstance ci,
 Fixed srcGammaLevel,
 Fixed dstGammaLevel,
 long *codecCanMatch
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

srcGammaLevel
The gamma level to convert from.

dstGammaLevel
The gamma level to convert to.

codecCanMatch
Pointer to a value that indicates if the conversion from srcGammaLevel to dstGammaLevel is
supported.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function tells the codec what the gamma of the source buffer and destination pixel map are so that the
codec can try to convert between the two gammas when decompressing. Proper gamma conversion is
accomplished by normalizing source data to black and white points to 0 to 1 and raising the result by the
ratio of the srcGammaLevel divided by dstGammaLevel. The most accurate correction is done in RGB space,
but a visual approximation can be done by raising the luma component alone.

Special Considerations

This function can be called several times as the ICM sets up a gamma conversion chain. The last value takes
precedent for future scheduled frames. It may also be called while frames are already scheduled, indicating
that conditions have changed. The new request is effective on frames that are scheduled after the call is
made. Frames previously scheduled should continue to use the previously requested gamma conversion
values.

Version Notes
Introduced in QuickTime 5.

918 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecRequestSettings
Displays a dialog box containing codec-specific compression settings.

ComponentResult ImageCodecRequestSettings (
 ComponentInstance ci,
 Handle settings,
 Rect *rp,
 ModalFilterUPP filterProc
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

settings
A handle of data specific to the codec. If the handle is empty, the codec should use its default settings.

rp
A pointer to a Rect structure giving the coordinates of the standard compression dialog box in global
screen coordinates. The codec can use this to position its dialog box in the same area of the screen.

filterProc
A pointer to a ModalFilterProc callback that the codec must either pass to the Mac OS ModalDialog
function or call at the beginning of the codec dialog process. This callback gives the calling application
and standard compression dialog box a chance to process update events.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The ImageCodecRequestSettings function allows the display of a dialog box of additional compression
settings specific to the codec. These settings are stored in a settings handle. The codec can store any data
in any format it wants in the settings handle and resize it accordingly. It should store some type of tag or
version information that it can use to verify that the data belongs to the codec. The codec should not dispose
of the handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

Functions 919
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecScheduleFrame
Undocumented

ComponentResult ImageCodecScheduleFrame (
 ComponentInstance ci,
 const ImageSubCodecDecompressRecord *drp,
 ImageCodecTimeTriggerUPP triggerProc,
 void *triggerProcRefCon
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

drp
A pointer to an ImageSubCodecDecompressRecord structure.

triggerProc
An ImageCodecTimeTriggerProc callback.

triggerProcRefCon
A reference constant that is passed to your ImageCodecTimeTriggerProc callback. Use this
parameter to point to a data structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecSetSettings
Sets the settings of an optional image codec dialog box.

ComponentResult ImageCodecSetSettings (
 ComponentInstance ci,
 Handle settings
);

Parameters
ci

An image compressor component instance. Your software obtains this reference from OpenComponent
or OpenDefaultComponent.

920 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

settings
A handle to internal settings originally returned by either ImageCodecRequestSettings (page 919)
or ImageCodecGetSettings (page 901). The codec should set its internal settings to match those
of the settings handle. Because the codec does not own the handle, it should not dispose of it and
should copy only its contents, not the handle itself. If the settings handle passed is empty, the codec
should sets its internal settings to a default state.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows a codec to return its private settings. Set the codec's internal settings to the state specified
in the settings handle. The codec should always check the validity of the contents of the handle so that
invalid settings are not used.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecSetTimeBase
Sets the time base for an image codec component.

ComponentResult ImageCodecSetTimeBase (
 ComponentInstance ci,
 void *base
);

Parameters
ci

An image codec component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

base
A pointer to the time base for this operation. Your application obtains this time base identifier from
NewTimeBase (page 261).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

Functions 921
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageCodecSetTimeCode
Sets the timecode for the next frame that is to be decompressed.

ComponentResult ImageCodecSetTimeCode (
 ComponentInstance ci,
 void *timeCodeFormat,
 void *timeCodeTime
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

timeCodeFormat
A pointer to a TimeCodeDef structure. This structure contains the timecode definition information
for the next frame to be decompressed.

timeCodeTime
A pointer to a TimeCodeRecord structure. This structure contains the time value for the next frame
in the current sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component receives this call whenever an application calls SetDSequenceTimeCode (page 728). That
function allows an application to set the timecode for a frame that is to be decompressed. The timecode
information you receive applies to the next frame to be decompressed and is provided to the decompressor
by ImageCodecBandDecompress (page 868).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecSourceChanged
Notifies your codec that one of the data sources has changed when an application calls
CDSequenceSetSourceData or CDSequenceChangedSourceData.

922 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecSourceChanged (
 ComponentInstance ci,
 UInt32 majorSourceChangeSeed,
 UInt32 minorSourceChangeSeed,
 CDSequenceDataSourcePtr sourceData,
 long *flagsOut
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

majorSourceChangeSeed
An integer value that is incremented each time a data source is added or removed. This provides an
easy way for a codec to know when it needs to redetermine which data source inputs are available.

minorSourceChangeSeed
An integer value that is incremented each time a data source is added or removed, or the data
contained in any of the data sources changes. This provides a way for a codec to know if the data
available to it has changed.

sourceData
A pointer to a CDSequenceDataSource structure. This structure contains a linked list of all data
sources. Because each data source contains a link to the next data source, a codec can access all data
sources from this structure.

flagsOut
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecStandardParameterDialogDoAction
Allows you to control the behavior of a standard parameter dialog box created by
ImageCodecCreateStandardParameterDialog.

Functions 923
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult ImageCodecStandardParameterDialogDoAction (
 ComponentInstance ci,
 QTParameterDialog createdDialog,
 long action,
 void *params
);

Parameters
ci

An effect component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent. This must be the same instance as was passed to
ImageCodecCreateStandardParameterDialog (page 873) to create the dialog box.

createdDialog
A reference to the dialog box created by the call to ImageCodecCreateStandardParameterDialog.

action
The action selector (see below), which determines which of the available actions you want the function
to perform. See these constants:

pdActionConfirmDialog

pdActionSetAppleMenu

pdActionSetEditMenu

pdActionGetDialogValues

pdActionSetPreviewUserItem

pdActionSetPreviewPicture

pdActionSetColorPickerEventProc

pdActionSetDialogTitle

pdActionGetSubPanelMenu

pdActionActivateSubPanel

pdActionConductStopAlert

params
The (optional) parameter to the action. The type passed in this parameter depends on the value of
the action parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to change the default behavior of the standard parameter dialog box, and provides
a mechanism for your application to communicate with controls that were incorporated into an application
dialog box. It also allows you to retrieve parameter values from the dialog box at any time. You specify which
function will be performed by passing an action selector in the action parameter and, optionally, a single
parameter in the params parameter. Some of the actions you can specify through this function are only
appropriate if you have incorporated standard parameter dialog box controls within a dialog box created by
your application.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

924 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Related Sample Code
qtshoweffect
qtshoweffect.win

Declared In
ImageCodec.h

ImageCodecTrimImage
Notifies your component whenever an application calls TrimImage.

ComponentResult ImageCodecTrimImage (
 ComponentInstance ci,
 ImageDescriptionHandle Desc,
 Ptr inData,
 long inBufferSize,
 ICMDataProcRecordPtr dataProc,
 Ptr outData,
 long outBufferSize,
 ICMFlushProcRecordPtr flushProc,
 Rect *trimRect,
 ICMProgressProcRecordPtr progressProc
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

Desc
A handle to the ImageDescription structure that describes the compressed image. Your component
updates this structure to refer to the resized image.

inData
A pointer to the compressed image data. If the entire compressed image cannot be stored at this
location, the application may provide a data-loading function; see the description of the dataProc
parameter to this function for details. This is a 32-bit clean address.

inBufferSize
The size of the buffer to be used by the data-loading function specified by the dataProc parameter.
If the application did not specify a data-loading function, this parameter is NIL.

dataProc
A pointer to an ICMDataProcRecord structure. If the application did not provide a data-loading
function, this parameter is NIL. In this case, the entire image must be in memory at the location
specified by the inData parameter. If the data stream is not all in memory when the application calls
GetCompressedImageSize (page 653), your component may call an application function that loads
more compressed data.

outData
A pointer to a buffer to receive the trimmed image. If there is not sufficient memory to store the
compressed image, the application may choose to write the compressed data to mass storage during
the compression operation. The flushProc parameter identifies the data-unloading function. This
is a 32-bit clean address.

Functions 925
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

outBufferSize
The size of the buffer to be used by the data-unloading function specified by the flushProcparameter.
If the application did not specify a data-unloading function, this parameter is NIL.

flushProc
A pointer to an ICMFlushProcRecord structure. If the application did not provide a data-unloading
function, this parameter is NIL. In this case, your component writes the entire compressed image
into the memory location specified by the outData parameter. If there is not enough memory to
store the compressed image, your component may call an application function that unloads some
of the compressed data.

trimRect
A pointer to a Rect structure that defines the desired image dimensions. Your component adjusts
the structure's values so that they refer to the same rectangle in the resulting image. This is necessary
whenever data is removed from the beginning of the image.

progressProc
A pointer to an ICMProgressProcRecord structure. During the operation, your component should
occasionally call an application function to report its progress. If the application did not provide a
progress function, this parameter is NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecValidateParameters
Validates effect parameters.

ComponentResult ImageCodecValidateParameters (
 ComponentInstance ci,
 QTAtomContainer parameters,
 QTParameterValidationOptions validationFlags,
 StringPtr errorString
);

Parameters
ci

An image decompressor component instance. Your software obtains this reference from
OpenComponent or OpenDefaultComponent.

parameters
The atom container containing the effect parameters to be validated.

validationFlags
Constants (see below) that control validation. See these constants:

kParameterValidationNoFlags

kParameterValidationFinalValidation

926 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

errorString
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

NewImageCodecDrawBandCompleteUPP
Allocates a Universal Procedure Pointer for an ImageCodecDrawBandCompleteProc callback.

ImageCodecDrawBandCompleteUPP NewImageCodecDrawBandCompleteUPP (
 ImageCodecDrawBandCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

NewImageCodecMPDrawBandUPP
Allocates a Universal Procedure Pointer for the ImageCodecMPDrawBandProc callback.

ImageCodecMPDrawBandUPP NewImageCodecMPDrawBandUPP (
 ImageCodecMPDrawBandProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Functions 927
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewImageCodecMPDrawBandProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win
SoftVideoOutputComponent

Declared In
ImageCodec.h

NewImageCodecTimeTriggerUPP
Allocates a Universal Procedure Pointer for the ImageCodecTimeTriggerProc callback.

ImageCodecTimeTriggerUPP NewImageCodecTimeTriggerUPP (
 ImageCodecTimeTriggerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewImageCodecTimeTriggerProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

QTPhotoDefineHuffmanTable
Defines a Huffman table.

928 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult QTPhotoDefineHuffmanTable (
 ComponentInstance codec,
 short componentNumber,
 Boolean isDC,
 unsigned char *lengthCounts,
 unsigned char *values
);

Parameters
codec

Identifies your connection to the image compressor component.

componentNumber
Specifies a color component. If 0, the luminance Huffman table is set. If 1, the chrominance Huffman
table is set.

isDC
If TRUE, the DC Huffman table is set. If FALSE, the AC Huffman table is set.

lengthCounts
A pointer to an array of 16 length counts.

values
A pointer to an array of Huffman values.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets you define a Huffman table to be used in future JPEG compression operations. Normally
the JPEG image compressor components use the default Huffman tables as specified in sections K.3 through
K.6 of the JPEG specification. You can use this function to override the default tables.

Special Considerations

This call is supported only by the Photo JPEG and Motion JPEG compressors. Only advanced programmers
will need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

QTPhotoDefineQuantizationTable
Specifies a custom quantization table.

Functions 929
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ComponentResult QTPhotoDefineQuantizationTable (
 ComponentInstance codec,
 short componentNumber,
 unsigned char *table
);

Parameters
codec

Identifies your connection to the image compressor component.

componentNumber
If 0, the luminance quantization table is set. If 1, the chrominance quantization table is set.

table
A pointer to an array of 64 quantization values.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By default, the JPEG compressors select quantization tables based on quality settings. This function lets you
override these tables with tables of your own choice.

Special Considerations

This call is only supported by the Photo JPEG and Motion JPEG compressors. Only advanced programmers
will need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

QTPhotoSetRestartInterval
Specifies the restart interval to use in future JPEG compression operations.

ComponentResult QTPhotoSetRestartInterval (
 ComponentInstance codec,
 unsigned short restartInterval
);

Parameters
codec

Identifies your connection to the image compressor component.

restartInterval
The new restart interval. Pass 0 to tell the compressor not to insert restart markers in the data stream.

Return Value
See Error Codes. Returns noErr if there is no error.

930 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
By default, the JPEG compressor components do not insert restart markers in the compressed data stream
unless the "optimize for streaming" setting is selected.

Special Considerations

This call is supported only by the Photo JPEG and Motion JPEG compressors. Only advanced programmers
will need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

QTPhotoSetSampling
Specifies the chrominance downsampling ratio to use in future JPEG compression operations.

ComponentResult QTPhotoSetSampling (
 ComponentInstance codec,
 short yH,
 short yV,
 short cbH,
 short cbV,
 short crH,
 short crV
);

Parameters
codec

Identifies your connection to the image compressor component.

yH
The number of horizontal luminance blocks to put in each macroblock.

yV
The number of vertical luminance blocks to put in each macroblock.

cbH
The number of horizontal chroma blue blocks to put in each macroblock.

cbV
The number of vertical chroma blue blocks to put in each macroblock.

crH
The number of horizontal chroma red blocks to put in each macroblock.

crV
The number of vertical chroma red blocks to put in each macroblock.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 931
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Discussion
By default, the Photo JPEG compressor uses 4:1:1 chroma downsampling and the Motion JPEG compressors
use 4:2:2 chroma downsampling for most quality settings. For codecLosslessQuality, both compressors
disable chroma downsampling. Currently the only supported downsampling ratios are none (pass 1,1,1,1,1,1),
4:2:2 (pass 2,1,1,1,1,1) and 4:1:1 (pass 2,2,1,1,1,1).

Special Considerations

This call is supported only by the Photo JPEG and Motion JPEG compressors. Only advanced programmers
will need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

Callbacks

ComponentMPWorkFunctionProc
Undocumented

typedef ComponentResult (*ComponentMPWorkFunctionProcPtr) (void *globalRefCon,
ComponentMPWorkFunctionHeaderRecordPtr header);

If you name your function MyComponentMPWorkFunctionProc, you would declare it this way:

ComponentResult MyComponentMPWorkFunctionProc (
 void *globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header);

Parameters
globalRefCon

Undocumented

header
Pointer to a ComponentMPWorkFunctionHeaderRecord structure.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
ImageCodec.h

ImageCodecMPDrawBandProc
Undocumented

932 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

typedef ComponentResult (*ImageCodecMPDrawBandProcPtr) (void *refcon,
ImageSubCodecDecompressRecord *drp);

If you name your function MyImageCodecMPDrawBandProc, you would declare it this way:

ComponentResult MyImageCodecMPDrawBandProc (
 void *refcon,
 ImageSubCodecDecompressRecord *drp);

Parameters
refcon

Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

drp
Pointer to an ImageSubCodecDecompressRecord structure.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
ImageCodec.h

ImageCodecTimeTriggerProc
Undocumented

typedef void (*ImageCodecTimeTriggerProcPtr) (void *refcon);

If you name your function MyImageCodecTimeTriggerProc, you would declare it this way:

void MyImageCodecTimeTriggerProc (
 void *refcon);

Parameters
refcon

Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

Declared In
ImageCodec.h

Data Types

CDSequenceDataSource
Contains a linked list of all data sources for a decompression sequence.

Data Types 933
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

struct CDSequenceDataSource {
 long recordSize;
 void * next;
 ImageSequence seqID;
 ImageSequenceDataSource sourceID;
 OSType sourceType;
 long sourceInputNumber;
 void * dataPtr;
 Handle dataDescription;
 long changeSeed;
 ICMConvertDataFormatUPP transferProc;
 void * transferRefcon;
 long dataSize;
 QHdrPtr dataQueue;
 void * originalDataPtr;
 long originalDataSize;
 Handle originalDataDescription;
 long originalDataDescriptionSeed;
 };

Fields
recordSize

Discussion
The size of this structure.

next

Discussion
A pointer to the next source entry. If it is NIL, there are no more entries.

seqID

Discussion
The image sequence that this source is associated with.

sourceID

Discussion
The source reference identifying this source.

sourceType

Discussion
A four-character code describing how the input will be used. This value is passed to this parameter by
CDSequenceNewDataSource (page 595) when the source is created.

sourceInputNumber

Discussion
A value is passed to this parameter by CDSequenceNewDataSource when the source is created.

dataPtr

Discussion
A pointer to the actual source data.

dataDescription

Discussion
A handle to a data structure describing the data format. This is often a handle to an ImageDescription
structure.

934 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

changeSeed

Discussion
An integer that is incremented each time the dataPtr field changes or that data that the dataPtr field
points to changes. By remembering the value of this field and comparing to the value the next time the
decompressor or compressor component is called, the component can determine if new data is present.

transferProc

Discussion
Reserved.

transferRefcon

Discussion
Reserved.

dataSize

Discussion
The size of the data pointed to by the dataPtr field.

dataQueue

Discussion
A pointer to a QHdr structure that contains a queue of CDSequenceDataSourceQueueEntry structures.

originalDataPtr

Discussion
The original value of dataPtr.

originalDataSize

Discussion
The original value of dataSize.

originalDataDescription

Discussion
The original value of dataDescription.

originalDataDescriptionSeed

Discussion
The original value of changeSeed.

Discussion
Because each data source is associated with a link to the next data source, a codec can access all data sources
using this structure.

Version Notes
Fields from dataQueue onward were introduced in QuickTime 3.

Related Functions
ImageCodecGetMaxCompressionSizeWithSources (page 899)
ImageCodecSourceChanged (page 922)

Declared In
ImageCodec.h

Data Types 935
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

CDSequenceDataSourcePtr
Represents a type used by the Image Codec API.

typedef CDSequenceDataSource * CDSequenceDataSourcePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

CodecCompressParams
Contains parameters that govern a compression operation.

struct CodecCompressParams {
 ImageSequence sequenceID;
 ImageDescriptionHandle imageDescription;
 Ptr data;
 long bufferSize;
 long frameNumber;
 long startLine;
 long stopLine;
 long conditionFlags;
 CodecFlags callerFlags;
 CodecCapabilities * capabilities;
 ICMProgressProcRecord progressProcRecord;
 ICMCompletionProcRecord completionProcRecord;
 ICMFlushProcRecord flushProcRecord;
 PixMap srcPixMap;
 PixMap prevPixMap;
 CodecQ spatialQuality;
 CodecQ temporalQuality;
 Fixed similarity;
 DataRateParamsPtr dataRateParams;
 long reserved;
 UInt16 majorSourceChangeSeed;
 UInt16 minorSourceChangeSeed;
 CDSequenceDataSourcePtr sourceData;
 long preferredPacketSizeInBytes;
 long requestedBufferWidth;
 long requestedBufferHeight;
 OSType wantedSourcePixelType;
 long compressedDataSize;
 UInt32 taskWeight;
 OSType taskName;
 };

Fields
sequenceID

Discussion
Contains a unique sequence identifier. If the image to be compressed is part of a sequence, this field contains
the sequence identifier that was assigned by CompressSequenceBegin (page 609). If the image is not part
of a sequence, this field is set to 0.

936 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

imageDescription

Discussion
Contains a handle to the image description structure that describes the image to be compressed.

data

Discussion
Points to a location to receive the compressed image data. This is a 32-bit clean address. If there is not
sufficient memory to store the compressed image, the application may choose to write the compressed data
to mass storage during the compression operation. The flushProcRecord field identifies the data-unloading
function that the application provides for this purpose. This field is used only by
ImageCodecBandCompress (page 867).

bufferSize

Discussion
Contains the size of the buffer specified by the data field. Your component sets the value of the bufferSize
field to the number of bytes of compressed data written into the buffer. Your component should not return
more data than the buffer can hold; it should return a nonzero result code instead. This field is used only by
ImageCodecBandCompress (page 867).

frameNumber

Discussion
Contains a frame identifier. Indicates the relative frame number within the sequence. The Image Compression
Manager increments this value for each frame in the sequence. This field is used only by
ImageCodecBandCompress (page 867).

startLine

Discussion
Contains the starting line for the band. This field indicates the starting line number for the band to be
compressed. The line number refers to the pixel row in the image, starting from the top of the image. The
first row is row number 0. This field is used only by ImageCodecBandCompress (page 867).

stopLine

Discussion
Contains the ending line for the band. This field indicates the ending line number for the band to be
compressed. The line number refers to the pixel row in the image, starting from the top of the image. The
first row in the image is row number 0. The image band includes the row specified by this field. So, to define
a band that contains one row of pixels at the top of an image, you set the startLine field to 0 and the
stopLine field to 1.

conditionFlags

Discussion
Contains flags (see below) that identify the condition under which your component has been called. This
field is used only by ImageCodecBandCompress (page 867). In addition, these fields contain information
about actions taken by your component. See these constants:

codecConditionFirstBand

codecConditionLastBand

codecConditionCodecChangedMask

Data Types 937
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

callerFlags

Discussion
Flags that provide further control information. This field is used only by ImageCodecBandCompress (page
867). See these constants:

codecFlagUpdatePrevious

codecFlagWasCompressed

codecFlagUpdatePreviousComp

codecFlagLiveGrab

capabilities

Discussion
Points to a compressor capability structure. The Image Compression Manager uses this field to determine
the capabilities of your compressor component. This field is used only by ImageCodecPreCompress (page
912).

progressProcRecord

Discussion
Contains an ICMProgressProcRecord structure. During the compression operation, your compressor may
occasionally call a function that the application provides in order to report your progress. This field contains
a structure that identifies the progress function. If the progressProc field in this structure is set to NIL, the
application has not supplied a progress function. This field is used only by ImageCodecBandCompress (page
867).

completionProcRecord

Discussion
Contains an ICMCompletionProcRecord structure. This structure governs whether you perform the
compression asynchronously. If the completionProc field in this structure is set to NIL, perform the
compression synchronously. If this field is not NIL, it specifies an application completion function. Perform
the compression asynchronously and call that completion function when your component is finished. If the
completionProc field in this structure has a value of -1, perform the operation asynchronously but do not
call the application's completion function. This field is used only by ImageCodecBandCompress (page 867).

flushProcRecord

Discussion
Contains an ICMFlushProcRecord structure. If there is not enough memory to store the compressed image,
the application may provide a function that unloads some of the compressed data. This field contains a
structure that identifies that data-unloading function. If the application did not provide a data-unloading
function, the flushProc field in this structure is set to NIL. In this case, your component writes the entire
compressed image into the memory location specified by the data field. The data-unloading function
structure is used only by ImageCodecBandCompress (page 867).

srcPixMap

Discussion
Points to the image to be compressed. The image must be stored in a pixel map structure. The contents of
this pixel map differ from a standard pixel map in two ways. First, the rowBytes field is a full 16-bit value;
the high-order bit is not necessarily set to 1. Second, the baseAddr field must contain a 32-bit clean address.
This field is used only by ImageCodecBandCompress (page 867).

938 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

prevPixMap

Discussion
Points to a pixel map containing the previous image. If the image to be compressed is part of a sequence
that is being temporally compressed, this field defines the previous image for temporal compression. Your
component should then use this previous image as the basis of comparison for the image to be compressed.
If the temporalQuality field is set to 0, do not perform temporal compression. If the
codecFlagUpdatePrevious flag or the codecFlagUpdatePreviousComp flag in the flags field is set
to 1, update the previous image at the end of the compression operation. The contents of this pixel map
differ from a standard pixel map in two ways. First, the rowBytes field is a full 16-bit value; the high-order
bit is not necessarily set to 1. Second, the baseAddr field must contain a 32-bit clean address. This field is
used only by ImageCodecBandCompress (page 867).

spatialQuality

Discussion
Specifies the desired compressed image quality. This field is used only by ImageCodecBandCompress (page
867).

temporalQuality

Discussion
Specifies the desired sequence temporal quality. This field governs the level of compression the application
desires with respect to information in successive frames in the sequence. If this field is set to 0, do not perform
temporal compression on this frame. This field is used only by ImageCodecBandCompress (page 867).

similarity

Discussion
Indicates the relative similarity between the frame just compressed and the previous frame when performing
temporal compression. Fixed-point value, ranges from 0 (0x00000000), indicating a key frame, to 255
(0x00FF0000), indicating an identical frame that can be discarded without damage. If bad video would result
from discarding a frame, the compressor should limit similarity to 254 (0x00FE0000). The Image Compression
Manager may request a compressor to recompress a frame as a key frame if its similarity to its predecessor
is very low (a value of 1 or 2, for example). The Image Compression Manager will not do this if the
codecFlagLiveGrab flag is set, or if an asynchronous completion proc is supplied. This field is used only by
ImageCodecBandCompress (page 867).

dataRateParams

Discussion
Points to the parameters used when performing data rate constraint.

reserved

Discussion
Reserved.

majorSourceChangeSeed

Discussion
Contains an integer value that is incremented each time a data source is added or removed. This provides a
fast way for a codec to know when it needs to redetermine which data source inputs are available.

minorSourceChangeSeed

Discussion
Contains an integer value that is incremented each time a data source is added or removed, or the data
contained in any of the data sources changes. This provides a way for a codec to know if the data available
to it has changed.

Data Types 939
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

sourceData

Discussion
Contains a pointer to a CDSequenceDataSource structure. This structure contains a linked list of all data
sources. Because each data source contains a link to the next data source, a codec can access all data sources
from this field.

preferredPacketSizeInBytes

Discussion
Specifies the preferred packet size for data.

requestedBufferWidth

Discussion
Specifies the the width of the image buffer to use, in pixels. For this value to be used, the
codecWantsSpecialScaling flag in the CodecCapabilities structure must be set.

requestedBufferHeight

Discussion
Specifies the the height of the image buffer to use, in pixels. For this value to be used, the
codecWantsSpecialScaling flag in the CodecCapabilities structure must be set.

wantedSourcePixelType

Discussion
Undocumented

compressedDataSize

Discussion
The size of the compressed image, in bytes. If this field is nonzero, it overrides the dataSize field of the
ImageDescription structure. This provides a safer way for asynchronous compressors to return the size of
the compressed frame data, because the dataSize field of ImageDescription may be referenced by an
unlocked handle.

taskWeight

Discussion
The preferred weight for multiprocessing tasks implementing this operation. You should assign a value by
means of the Mac OS function MPSetTaskWeight.

taskName

Discussion
The preferred type for multiprocessing tasks implementing this operation. You should assign a value by
means of the Mac OS function MPSetTaskType.

Discussion
Compressor components accept the parameters that govern a compression operation in the form of the
CodecCompressParams structure. This structure is used by ImageCodecBandCompress (page 867) and
ImageCodecPreCompress (page 912).

Version Notes
Some of the fields in CodecCompressParams were added for various versions of QuickTime starting with
version 2.1. See comments in the C interface file for details.

Related Functions
ImageCodecBandCompress (page 867)
ImageCodecPreCompress (page 912)

940 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Declared In
ImageCodec.h

CodecDecompressParams
The basic parameter block that is passed to a decompressor.

Data Types 941
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

struct CodecDecompressParams {
 ImageSequence sequenceID;
 ImageDescriptionHandle imageDescription;
 Ptr data;
 long bufferSize;
 long frameNumber;
 long startLine;
 long stopLine;
 long conditionFlags;
 CodecFlags callerFlags;
 CodecCapabilities * capabilities;
 ICMProgressProcRecord progressProcRecord;
 ICMCompletionProcRecord completionProcRecord;
 ICMDataProcRecord dataProcRecord;
 CGrafPtr port;
 PixMap dstPixMap;
 BitMapPtr maskBits;
 PixMapPtr mattePixMap;
 Rect srcRect;
 MatrixRecord * matrix;
 CodecQ accuracy;
 short transferMode;
 ICMFrameTimePtr frameTime;
 long reserved[1];
 SInt8 matrixFlags;
 SInt8 matrixType;
 Rect dstRect;
 UInt16 majorSourceChangeSeed;
 UInt16 minorSourceChangeSeed;
 CDSequenceDataSourcePtr sourceData;
 RgnHandle maskRegion;
 OSType ** wantedDestinationPixelTypes;
 long screenFloodMethod;
 long screenFloodValue;
 short preferredOffscreenPixelSize;
 ICMFrameTimeInfoPtr syncFrameTime;
 Boolean needUpdateOnTimeChange;
 Boolean enableBlackLining;
 Boolean needUpdateOnSourceChange;
 Boolean pad;
 long unused;
 CGrafPtr finalDestinationPort;
 long requestedBufferWidth;
 long requestedBufferHeight;
 Rect displayableAreaOfRequestedBuffer;
 Boolean requestedSingleField;
 Boolean needUpdateOnNextIdle;
 Boolean pad2[2];
 fixed bufferGammaLevel;
 UInt32 taskWeight;
 OSType taskName;
 };

Fields

942 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

sequenceID

Discussion
Contains the unique sequence identifier. If the image to be decompressed is part of a sequence, this field
contains the sequence identifier that was assigned by DecompressSequenceBegin (page 621). If the image
is not part of a sequence, this field is set to 0.

imageDescription

Discussion
Contains a handle to the ImageDescription that describes the image to be decompressed.

data

Discussion
Points to the compressed image data. This must be a 32-bit clean address. The bufferSize field indicates
the size of this data buffer. If the entire compressed image does not fit in memory, the application should
provide a data-loading function, identified by the dataProc field of the data-loading function structure
stored in the dataProcRecord field. This field is used only by ImageCodecBandDecompress (page 868).

bufferSize

Discussion
Specifies the size of the image data buffer. This field is used only by ImageCodecBandDecompress (page
868).

frameNumber

Discussion
Contains a frame identifier. Indicates the relative frame number within the sequence. The Image Compression
Manager increments this value for each frame in the sequence. This field is used only by
ImageCodecBandDecompress (page 868).

startLine

Discussion
Specifies the starting line for the band. The line number refers to the pixel row in the image, starting from
the top of the image. The first row in the image is row number 0. This field is used only by
ImageCodecBandDecompress (page 868).

stopLine

Discussion
Specifies the ending line for the band. The line number refers to the pixel row in the image, starting from
the top of the image. The first row is row number 0. The image band includes the row specified by this field.
So, to define a band that contains one row of pixels at the top of an image, you set the startLine field to
0 and the stopLine field to 1. This field is used only by ImageCodecBandDecompress (page 868).

Data Types 943
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

conditionFlags

Discussion
Contains flags (see below) that identify the condition under which your component has been called (in order
to save the component some work). The flags in this field are passed to the component by
ImageCodecBandCompress (page 867) and ImageCodecPreDecompress (page 912) when conditions
change, to save it some work. In addition, these fields contain information about actions taken by your
component. See these constants:

codecConditionFirstBand

codecConditionLastBand

codecConditionFirstFrame

codecConditionNewDepth

codecConditionNewTransform

codecConditionNewSrcRect

codecConditionNewMatte

codecConditionNewTransferMode

codecConditionNewClut

codecConditionNewAccuracy

codecConditionNewDestination

codecConditionCodecChangedMask

codecConditionFirstScreen

codecConditionDoCursor

codecConditionCatchUpDiff

codecConditionMaskMayBeChanged

codecConditionToBuffer

callerFlags

Discussion
Contains flags (see below) that provide further control information. This field is used only by
ImageCodecBandCompress (page 867). See these constants:

codecFlagUpdatePrevious

codecFlagWasCompressed

codecFlagUpdatePreviousComp

codecFlagLiveGrab

capabilities

Discussion
Points to a CodecCapabilities structure. The Image Compression Manager uses this parameter to determine
the capabilities of your decompressor component. This field is used only by
ImageCodecPreDecompress (page 912).

progressProcRecord

Discussion
Contains a ICMProgressProcRecord structure. During the decompression operation, your decompressor
may occasionally call a function that the application provides in order to report your progress. This field
contains a structure that identifies the progress function. If the progressProc field of this structure is set
to NIL, the application did not provide a progress function. This field is used only by
ImageCodecBandDecompress (page 868).

944 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

completionProcRecord

Discussion
Contains an ICMCompletionProcRecord structure. This field governs whether you perform the
decompression asynchronously. If the completionProc field in this structure is set to NIL, perform the
decompression synchronously. If this field is not NIL, it specifies an application completion function. Perform
the decompression asynchronously and call that completion function when your component is finished. If
this field has a value of -1, perform the operation asynchronously but do not call the application's completion
function. This field is used only by ImageCodecBandDecompress (page 868).

dataProcRecord

Discussion
Contains an ICMDataProcRecord structure. If the data stream is not all in memory, your component may
call an application function that loads more compressed data. This field contains a structure that identifies
that data-loading function. If the application did not provide a data-loading function, the dataProc field in
this structure is set to NIL. In this case, the entire image must be in memory at the location specified by the
data field. This field is used only by ImageCodecBandDecompress (page 868).

port

Discussion
Points to the color graphics port that receives the decompressed image.

dstPixMap

Discussion
Points to the pixel map where the decompressed image is to be displayed. The GDevice global variable is
set to the destination graphics device. The contents of this pixel map differ from a standard pixel map in two
ways. First, the rowBytes field is a full 16-bit value; the high-order bit is not necessarily set to 1. Second, the
baseAddr field must contain a 32-bit clean address.

maskBits

Discussion
Contains an update mask. If your component can mask result data, use this mask to indicate which pixels in
the destination pixel map to update. Your component indicates whether it can mask with the codecCanMask
flag in the flags field of the CodecCapabilities structure referred to by the capabilities field. This
field is updated in response to the ImageCodecPreDecompress (page 912) request. If the mask has not
changed since the last ImageCodecBandDecompress request, the codecConditionCodecChangedMask
flag in the conditionFlags field is set to 0. This field is used only by ImageCodecBandDecompress (page
868).

mattePixMap

Discussion
Points to a pixel map that contains a blend matte. The matte can be defined at any supported pixel depth;
the matte depth need not correspond to the source or destination depths. The matte must be in the coordinate
system of the source image. If the application does not want to apply a blend matte, this field is set to NIL.
The contents of this pixel map differ from a standard pixel map in two ways. First, the rowBytes field is a
full 16-bit value; the high-order bit is not necessarily set to 1. Second, the baseAddr field must contain a
32-bit clean address. This field is used only by ImageCodecBandDecompress (page 868).

srcRect

Discussion
Points to a rectangle defining the portion of the image to decompress. This rectangle must lie within the
boundary rectangle of the compressed image, which is defined by the width and height fields of the image
description structure referred to by the imageDescription field.

Data Types 945
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

matrix

Discussion
Points to a matrix structure that specifies how to transform the image during decompression.

accuracy

Discussion
Constant (see below) that specifies the accuracy desired in the decompressed image. Values for this parameter
are on the same scale as compression quality; see CompressImage (page 605). See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

transferMode

Discussion
Specifies the QuickDraw transfer mode for the operation; see Graphics Transfer Modes.

frameTime

Discussion
Contains a pointer to an ICMFrameTimeRecord structure. This structure contains a frame's time information
for scheduled asynchronous decompression operations.

matrixFlags

Discussion
Flag (see below) specifying the transformation matrix. Set to 0 for no transformation. See these constants:

matrixFlagScale2x

matrixFlagScale1x

matrixFlagScaleHalf

matrixType

Discussion
Contains the type of the transformation matrix, as returned by GetMatrixType (page 669).

dstRect

Discussion
The destination rectangle. It is the result of transforming the source rectangle (the srcRect parameter) by
the transformation matrix (the matrix parameter).

majorSourceChangeSeed

Discussion
Contains an integer value that is incremented each time a data source is added or removed. This provides a
fast way for a codec to know when it needs to redetermine which data source inputs are available.

minorSourceChangeSeed

Discussion
Contains an integer value that is incremented each time a data source is added or removed, or the data
contained in any of the data sources changes. This provides a way for a codec to know if the data available
to it has changed.

946 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

sourceData

Discussion
Contains a pointer to a CDSequenceDataSource structure. This structure contains a linked list of all data
sources. Because each data source contains a link to the next data source, a codec can access all data sources
from this field.

maskRegion

Discussion
If the maskRegion field is not NIL, it contains a QuickDraw region that is equivalent to the bit map contained
in the maskBits field. For some codecs, using the QuickDraw region may be more convenient than the mask
bit map.

wantedDestinationPixelTypes

Discussion
Filled in by the codec during the execution of ImageCodecPreDecompress (page 912). Contains a handle
to a zero-terminated list of non-RGB pixels that the codec can decompress to. Leave set to NIL if the codec
does not support non-RGB pixel spaces. The ICM copies this data structure, so it is up to the codec to dispose
of it later. Since the predecompress call can be called often, it is suggested that codecs allocate this handle
during the Open function and dispose of it during the Close function.

screenFloodMethod

Discussion
A constant (see below) for codecs that require key-color flooding. See these constants:

kScreenFloodMethodNone

kScreenFloodMethodKeyColor

kScreenFloodMethodAlpha

screenFloodValue

Discussion
If screenFloodMethod is kScreenFloodMethodKeyColor, contains the index of the color that should be
used to flood the image area on screen when a refresh occurs. This is valid for both indexed and direct screen
devices (e.g., for devices with 16 bit depth, it should contain the 5-5-5 RGB value). If screenFloodMethod
is kScreenFloodMethodAlpha, contains the value that the alpha channel should be flooded with.

preferredOffscreenPixelSize

Discussion
Should be filled in ImageCodecPreDecompress (page 912) with the preferred depth of an offscreen buffer
should the ICM have to create one. It is not guaranteed that an offscreen buffer will actually be of this depth.
A codec should still be sure to specify what depths it can decompress to by using the capabilities field.
A codec might use this field if if was capable of decompressing to several depths, but was faster decompressing
to a particular depth.

syncFrameTime

Discussion
A pointer to an ICMFrameTimeInfo structure. This structure contains timing information about the display
of the frame.

needUpdateOnTimeChange

Discussion
Undocumented

Data Types 947
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

enableBlackLining

Discussion
If TRUE, indicates that the client has requested blacklining (displaying every other line of the image). Blacklining
increases the speed of movie playback while decreasing the image quality.

needUpdateOnSourceChange

Discussion
Undocumented

pad

Discussion
Unused.

unused

Discussion
Unused.

finalDestinationPort

Discussion
Undocumented

requestedBufferWidth

Discussion
Specifies the width of the image buffer to use, in pixels. For this value to be used, the
codecWantsSpecialScaling flag in CodecCapabilities must be set.

requestedBufferHeight

Discussion
Specifies the height of the image buffer to use, in pixels. For this value to be used, the
codecWantsSpecialScaling flag in CodecCapabilities must be set.

displayableAreaOfRequestedBuffer

Discussion
This field can be used to prevent parts of the requested buffer from being displayed. When the
codecWantsSpecialScaling flag is set, this rectangle can be filled in to indicate what portion of the
requested buffer's width and height should be used. The buffer rectangle created by the requested buffer
is always based at (0,0), so this coordinate system is also used by displayableAreaOfRequestedBuffer.
If this field is not filled in, a default value of (0,0,0,0) is used, and the entire buffer is displayed. Use this field
if you are experiencing edge problems with FlashPix images.

requestedSingleField

Discussion
Undocumented

needUpdateOnNextIdle

Discussion
Undocumented

pad2

Discussion
Unused.

948 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

bufferGammaLevel

Discussion
The gamma level of the data buffer.

taskWeight

Discussion
The preferred weight for multiprocessing tasks implementing this operation. You should assign a value by
means of the Mac OS function MPSetTaskWeight.

taskName

Discussion
The preferred type for multiprocessing tasks implementing this operation. You should assign a value by
means of the Mac OS function MPSetTaskType.

Discussion
The Image Compression Manager creates the decompression parameters structure, and your image
decompressor component is required only to provide values for the wantedDestinationPixelSize and
wantedDestinationPixelTypes fields of the structure. Your image decompressor component can also
modify other fields if necessary. For example, if it can scale images, it must set the
codecCapabilityCanScale flag in the capabilities field of the structure.

Version Notes
Some of the fields in CodecDecompressParams were added for various versions of QuickTime starting with
version 2.1. See comments in the C interface file for details.

Related Functions
ImageCodecBandDecompress (page 868)
ImageCodecBeginBand (page 869)
ImageCodecEffectBegin (page 882)
ImageCodecEffectSetup (page 887)
ImageCodecNewImageBufferMemory (page 909)
ImageCodecNewImageGWorld (page 910)
ImageCodecPreDecompress (page 912)
ImageCodecPreflight (page 913)

Declared In
ImageCodec.h

ComponentMPWorkFunctionUPP
Represents a type used by the Image Codec API.

typedef STACK_UPP_TYPE(ComponentMPWorkFunctionProcPtr) ComponentMPWorkFunctionUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

EffectsFrameParams
Contains information about the current frame of a video effect.

Data Types 949
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

struct EffectsFrameParams {
 ICMFrameTimeRecord frameTime;
 long effectDuration;
 Boolean doAsync;
 unsigned char pad[3];
 EffectSourcePtr source;
 void * refCon;
 };

Fields
frameTime

Discussion
Timing data for the current frame. This structure includes information such as the total number of frames
being rendered in this sequence, and the current frame number.

effectDuration

Discussion
The duration of a single effect frame.

doAsync

Discussion
This field contains TRUE if the effect can process asynchronously.

pad

Discussion
Unused.

source

Discussion
A pointer to the input sources; see the EffectSource structure.

refCon

Discussion
A pointer to storage for this instantiation of the effect.

Related Functions
ImageCodecEffectBegin (page 882)
ImageCodecEffectCancel (page 882)
ImageCodecEffectRenderFrame (page 885)

Declared In
ImageCodec.h

EffectsFrameParamsPtr
Represents a type used by the Image Codec API.

typedef EffectsFrameParams * EffectsFrameParamsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

950 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

EffectSource
Provides data for the EffectsFrameParams structure.

struct EffectSource {
 long effectType;
 Ptr data;
 SourceData source;
 EffectSourcePtr next;

Fields
effectType

Discussion
The type of the effect or a default effect type constant (see below). Enter kEffectRawSource if the source
is raw image compression manager data. See these constants:

kEffectRawSource

kEffectGenericType

data

Discussion
A pointer to the track data for the effect.

source

Discussion
The source itself.

next

Discussion
A pointer to the next source in the input chain.

lastTranslatedFrameTime

Discussion
The start frame time of last converted frame; this value may be -1.

lastFrameDuration

Discussion
The duration of the last converted frame; this value may be 0.

lastFrameTimeScale

Discussion
The time scale of this source frame; this field has meaning only if the lastTranslatedFrameTime and
lastFrameDuration fields are valid.

Related Functions
ImageCodecEffectConvertEffectSourceToFormat (page 883)

Declared In
ImageCodec.h

EffectSourcePtr
Represents a type used by the Image Codec API.

Data Types 951
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

typedef EffectSource * EffectSourcePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

gxPaths
Encapsulates a multiple-path geometry.

struct gxPaths {
 long contours;
 gxPath contour[1];
 };

Fields
contours

Discussion
The number of path contours.

contour

Discussion
The path contours; see gxPath.

Discussion
The contours field indicates the total number of contours (in other words, the total number of separate paths),
and the contour field is an array that contains the path geometries. Since a gxPaths structure is of variable
length and every element in it is of type long, you can define a path geometry as an array of long integer
values.

Related Functions
CurveCountPointsInPath (page 856)
CurveGetLength (page 859)
CurveGetNearestPathPoint (page 859)
CurveGetPathPoint (page 860)
CurveLengthToPoint (page 862)
CurvePathPointToLength (page 864)
CurveSetPathPoint (page 865)

Declared In
ImageCodec.h

gxPoint
Defines a point in vector graphics.

952 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

struct gxPoint {
 Fixed x;
 Fixed y;
 };

Fields
x

Discussion
A horizontal distance. Greater values of the x field indicate distances further to the right.

y

Discussion
A vertical distance. Greater values of the y field indicate distances further down.

Discussion
The location of the origin depends on the context where you use the point; for example, it might be the
upper-left corner of a view port. Notice that the x and y fields are of type Fixed. QuickDraw GX allows you
to specify fractional coordinate positions.

Related Functions
CurveGetPathPoint (page 860)
CurveInsertPointIntoPath (page 861)
CurveSetPathPoint (page 865)

Declared In
ImageCodec.h

ImageCodecMPDrawBandUPP
Represents a type used by the Image Codec API.

typedef STACK_UPP_TYPE(ImageCodecMPDrawBandProcPtr) ImageCodecMPDrawBandUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

ImageCodecTimeTriggerUPP
Represents a type used by the Image Codec API.

typedef STACK_UPP_TYPE(ImageCodecTimeTriggerProcPtr) ImageCodecTimeTriggerUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

Data Types 953
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

ImageSubCodecDecompressCapabilities
Returned by an image decompressor component in response to ImageCodecInitialize.

struct ImageSubCodecDecompressCapabilities {
 long recordSize;
 long decompressRecordSize;
 Boolean canAsync;
 UInt8 pad0;

Fields
recordSize

Discussion
The size of this structure in bytes.

decompressRecordSize

Discussion
The size of the ImageSubCodecDecompressRecord structure that your image decompressor component
requires. This structure is used to pass information from ImageCodecBeginBand (page 869) to
ImageCodecDrawBand (page 880) and ImageCodecEndBand (page 888).

canAsync

Discussion
Specifies whether your image decompressor component can perform asynchronous scheduled decompression.
This should be TRUE unless your image decompressor component calls functions that cannot be called during
interrupt time.

pad0

Discussion
Unused.

Discussion
The first function call that your image decompressor component receives from the base image decompressor
is always a call to ImageCodecInitialize (page 906). In response to this call, your image decompressor
component returns an ImageSubCodecDecompressCapabilities structure that specifies its capabilities.

Related Functions
ImageCodecInitialize (page 906)

Declared In
ImageCodec.h

ImageSubCodecDecompressRecord
Contains information needed for decompressing a frame.

954 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

struct ImageSubCodecDecompressRecord {
 Ptr baseAddr;
 long rowBytes;
 Ptr codecData;
 ICMProgressProcRecord progressProcRecord;
 ICMDataProcRecord dataProcRecord;
 void * userDecompressRecord;
 UInt8 frameType;
 UInt8 pad[3];
 long priv[2];
 };

Fields
baseAddr

Discussion
The address of the destination pixel map, which includes adjustment for the offset. Note that if the bit depth
of the pixel map is less than 8, your image decompressor component must adjust for the bit offset.

rowBytes

Discussion
The offset in bytes from one row of the destination pixel map to the next. The value of the rowBytes field
must be less than 0x4000.

codecData

Discussion
A pointer to the data to be decompressed.

progressProcRecord

Discussion
An ICMProgressProcRecord structure that specifies a progress function. This function reports on the
progress of a decompression operation. If there is no progress function, the Image Compression Manager
sets the progressProc field in the ICMProgressProcRecord structure to NIL.

dataProcRecord

Discussion
An ICMDataProcRecord structure that specifies a data-loading function. If the data to be decompressed is
not all in memory, your component can call this function to load more data. If there is no data-loading
function, the Image Compression Manager sets the dataProc field in the ICMDataProcRecord structure
to NIL, and the entire image must be in memory at the location specified by the codecData field of the
ImageSubCodecDecompressRecord structure.

userDecompressRecord

Discussion
A pointer to storage for the decompression operation. The storage is allocated by the base image decompressor
after it calls ImageCodecInitialize (page 906). The size of the storage is determined by the
decompressRecordSize field of the ImageSubCodecDecompressCapabilities structure that is returned
by ImageCodecInitialize. Your image decompressor component should use this storage to store any
additional information needed about the frame in order to decompress it.

Data Types 955
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

frameType

Discussion
A constant (see below) that indicates the frame type. See these constants:

kCodecFrameTypeUnknown

kCodecFrameTypeKey

kCodecFrameTypeDifference

kCodecFrameTypeDroppableDifference

pad

Discussion
Unused.

priv

Discussion
Private to QuickTime; do not use.

Related Functions
ImageCodecBeginBand (page 869)
ImageCodecDrawBand (page 880)
ImageCodecEndBand (page 888)
ImageCodecMPDrawBandProc

Declared In
ImageCodec.h

QTParameterValidationOptions
Represents a type used by the Image Codec API.

typedef long QTParameterValidationOptions;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

SMPTEFlags
Represents a type used by the Image Codec API.

typedef long SMPTEFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

956 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

SMPTEFrameReference
Represents a type used by the Image Codec API.

typedef long SMPTEFrameReference;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

SMPTEWipeType
Represents a type used by the Image Codec API.

typedef unsigned long SMPTEWipeType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.h

Constants

Codec Properties
Constants that represent the properties of codecs.

Constants 957
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

enum {
 /* The minimum data size for spooling in
or out data */
 codecMinimumDataSize = 32768L
};
enum {
 codecConditionFirstBand = 1L << 0,
 codecConditionLastBand = 1L << 1,
 codecConditionFirstFrame = 1L << 2,
 codecConditionNewDepth = 1L << 3,
 codecConditionNewTransform = 1L << 4,
 codecConditionNewSrcRect = 1L << 5,
 codecConditionNewMask = 1L << 6,
 codecConditionNewMatte = 1L << 7,
 codecConditionNewTransferMode = 1L << 8,
 codecConditionNewClut = 1L << 9,
 codecConditionNewAccuracy = 1L << 10,
 codecConditionNewDestination = 1L << 11,
 codecConditionFirstScreen = 1L << 12,
 codecConditionDoCursor = 1L << 13,
 codecConditionCatchUpDiff = 1L << 14,
 codecConditionMaskMayBeChanged = 1L << 15,
 codecConditionToBuffer = 1L << 16,
 codecConditionCodecChangedMask = 1L << 31
};
enum {
 codecInfoResourceType = 'cdci', /* codec info resource type */
 codecInterfaceVersion = 2 /* high word returned in component GetVersion
 */
};
enum {
 codecSuggestedBufferSentinel = 'sent' /* codec public resource containing
suggested data pattern to put past end of data buffer */
};
enum {
 codecUsesOverlaySurface = 1L << 0, /* codec uses overlay surface */
 codecImageBufferIsOverlaySurface = 1L << 1, /* codec image buffer is overlay
surface, the bits in the buffer are on the screen */
 codecSrcMustBeImageBuffer = 1L << 2, /* codec can only source data from an
image buffer */
 codecImageBufferIsInAGPMemory = 1L << 4, /* codec image buffer is in AGP space,
 byte writes are OK */
 codecImageBufferIsInPCIMemory = 1L << 5, /* codec image buffer is across a PCI
bus; byte writes are bad */
 codecImageBufferMemoryFlagsValid = 1L << 6, /* set by
ImageCodecNewImageBufferMemory/NewImageGWorld to indicate that it set the AGP/PCI
 flags (supported in QuickTime 6.0 and later) */
 codecDrawsHigherQualityScaled = 1L << 7, /* codec will draw higher-quality image
 if it performs scaling (eg, wipe effect with border) */
 codecSupportsOutOfOrderDisplayTimes = 1L << 8, /* codec supports frames queued
in one order for display in a different order, eg, IPB content */
 codecSupportsScheduledBackwardsPlaybackWithDifferenceFrames = 1L << 9 /* codec
can use additional buffers to minimise redecoding during backwards playback */
};

Constants

958 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

codecConditionFirstBand
An input flag that indicates if this is the first band in the frame. If this flag is set to 1, then your
component is being called for the first time for the current frame.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionLastBand
An input flag that indicates if this is the last band in the frame. If this flag is set to 1, then your
component is being called for the last time for the current frame. If the codecConditionFirstBand
flag is also set to 1, this is the only time the Image Compression Manager is calling your component
for the current frame.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionFirstFrame
An input flag that indicates that this is the first frame to be decompressed for this image sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewDepth
An input flag that indicates that the depth of the destination has changed for this image sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewTransform
An input flag that indicates that the transformation matrix has changed for this sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewSrcRect
An input flag that indicates that the source rectangle has changed for this sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewMatte
An input flag that indicates that the matte pixel map has changed for this sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewTransferMode
An input flag that indicates that the transfer mode has changed for this sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewClut
An input flag that indicates that the color lookup table has changed for this sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Constants 959
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

codecConditionNewAccuracy
An input flag that indicates to the component that the accuracy parameter has changed for this
sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionNewDestination
An input flag that indicates to the component that the destination pixel map has changed for this
sequence.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionFirstScreen
Indicates when the codec is decompressing an image to the first of multiple screens. That is, if the
decompressed image crosses multiple screens, then the codec can look at this flag to determine if
this is the first time an image is being decompressed for each of the screens to which it is being
decompressed. A codec that depends on the maskBits field of this structure being a valid RgnHandle
on ImageCodecPreDecompress (page 912) needs to know that in this case it is not able to clip images
since the region handle is only passed for the first of the screens; clipping would be incorrect for the
subsequent screen for that image.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionDoCursor
Set to 1 if the decompressor component should shield and unshield the cursor for the current
decompression operation. This flag should be set only if the codec has indicated its ability to handle
cursor shielding by setting the codecCanShieldCursor flag in the capabilities field during
ImageCodecPreDecompress (page 912).

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionCatchUpDiff
Indicates if the current frame is a "catch-up" frame. Set this flag to 1 if the current frame is a catch-up
frame. Note that you must also set the codecFlagCatchUpDiff flag to 1. This may be useful to
decompressors that can drop frames when playback is falling behind.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionMaskMayBeChanged
The Image Compression Manager has always included support for decompressors that could provide
a bit mask of pixels that were actually drawn when a particular frame was decompressed. If a
decompressor can provide a bit mask of pixels that changed, the Image Compression Manager transfers
to the screen only the pixels that actually changed. QuickTime 2.1 extended this capability by adding
this new condition flag. The decompressor should write back the mask only if this flag is set. This flag
is used only by ImageCodecFlush (page 891).

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecConditionToBuffer
Set to 1 if the current decompression operation is decompressing into an offscreen buffer.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

960 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

codecConditionCodecChangedMask
An output flag that indicates that the component has changed the mask bits. If your image
decompressor component can mask decompressed images and if some of the image pixels should
not be written to the screen, set to 0 the corresponding bits in the mask defined by the maskBits
field in the decompression parameter structure. In addition, set this flag to 1. Otherwise, set this flag
to 0.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecInfoResourceType
Codec info resource type.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecInterfaceVersion
High word returned in component GetVersion.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecSuggestedBufferSentinel
Codec public resource containing suggested data pattern to put past end of data buffer.

Available in Mac OS X v10.2 and later.

Declared in ImageCodec.h.

codecUsesOverlaySurface
Undocumented

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecImageBufferIsOverlaySurface
Indicates that the codec's image buffer is an overlay surface; the bits in the buffer appear on the
screen.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecSrcMustBeImageBuffer
Indicates that the codec can accept source data only from an image buffer.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecImageBufferIsInAGPMemory
Indicates that the codec's image buffer resides in AGP address space and accepts byte writes.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

codecImageBufferIsInPCIMemory
Codec image buffer is across a PCI bus; byte writes are bad.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Constants 961
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

codecImageBufferMemoryFlagsValid
Set by ImageCodecNewImageBufferMemory (page 909) or NewImageGWorld (page 694) to indicate
that the codecImageBufferIsInAGPMemory and codecImageBufferIsInPCIPMemory flags have
been set correctly.

Available in Mac OS X v10.2 and later.

Declared in ImageCodec.h.

codecDrawsHigherQualityScaled
Indicates that the codec will draw a higher quality image if it performs scaling; for example, while
drawing a wipe effect with a border.

Available in Mac OS X v10.2 and later.

Declared in ImageCodec.h.

codecSupportsOutOfOrderDisplayTimes
Codec supports frames queued in one order for display in a different order, for example IPB content.

Available in Mac OS X v10.3 and later.

Declared in ImageCodec.h.

Declared In
ImageCodec.h

ImageSubCodecDecompressRecord Values
Constants passed to ImageSubCodecDecompressRecord.

enum {
 kCodecFrameTypeUnknown = 0,
 kCodecFrameTypeKey = 1,
 kCodecFrameTypeDifference = 2,
 kCodecFrameTypeDroppableDifference = 3
};

Constants
kCodecFrameTypeUnknown

The frame type is unknown.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

kCodecFrameTypeKey
This is a key frame.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

kCodecFrameTypeDifference
This is a difference frame.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Declared In
ImageCodec.h

962 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

EffectSource Values
Constants passed to EffectSource.

enum {
 kEffectRawSource = 0, /* the source is raw image data*/
 kEffectGenericType = 'geff' /* generic effect for combining others*/
};

Constants
kEffectRawSource

The source is raw Image Compression Manager data.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Declared In
ImageCodec.h

ImageCodecValidateParameters Values
Constants passed to ImageCodecValidateParameters.

enum {
 kParameterValidationNoFlags = 0x00000000,
 kParameterValidationFinalValidation = 0x00000001
};

Declared In
ImageCodec.h

CodecDecompressParams Values
Constants passed to CodecDecompressParams.

enum {
 kScreenFloodMethodNone = 0,
 kScreenFloodMethodKeyColor = 1,
 kScreenFloodMethodAlpha = 2
};
enum {
 matrixFlagScale2x = 1L << 7,
 matrixFlagScale1x = 1L << 6,
 matrixFlagScaleHalf = 1L << 5
};

Constants
kScreenFloodMethodNone

No method; value is 0.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Constants 963
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

kScreenFloodMethodKeyColor
Key color method; value is 1.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

kScreenFloodMethodAlpha
Alpha channel method; value is 2.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

matrixFlagScale2x
Double-scale; value is 1L<<7.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

matrixFlagScale1x
Single-scale; value is 1L<<6.

Available in Mac OS X v10.0 and later.

Declared in ImageCodec.h.

Declared In
ImageCodec.h

964 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Image Codec Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in ImageCompression.h

Overview

Image importers and exporters manage the import and export of graphic images, such as JPEG, TIFF,
Photoshop, and PNG. Movie data exchange components support the import and export of other multimedia
formats, such as AIFF, WAVE, AVI, MPEG-1, MIDI, MPEG-4, 3GPP, MP3, MPEG-2, H.263, and OpenDML. QuickTime
can open any format file for which it has an importer and create any for which it has an exporter.

Functions by Task

Accessing a Graphics Exporter's Input Image

GraphicsExportDrawInputImage (page 978)
Draws a rectangular portion of the input image in a graphics export operation.

GraphicsExportGetInputImageDepth (page 989)
Returns the depth of the input image for a graphics export operation.

GraphicsExportGetInputImageDescription (page 989)
Returns an image description describing the input image in a graphics export operation.

GraphicsExportGetInputImageDimensions (page 990)
Returns the dimensions of the input image in a graphics export operation.

Accessing Graphics Exporter Settings

GraphicsExportGetColorSyncProfile (page 979)
Gets the current value of the ColorSync profile for a graphics export operation.

GraphicsExportGetCompressionMethod (page 980)
Returns the compression method for a graphics export operation.

GraphicsExportGetCompressionQuality (page 980)
Returns the compression quality value for a graphics export operation.

GraphicsExportGetDepth (page 982)
Returns the current depth setting for a graphics export operation.

Overview 965
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetDontRecompress (page 983)
Determines whether the original compressed data for a graphics export operation will not be
decompressed and recompressed, but be copied through to the output file.

GraphicsExportGetInterlaceStyle (page 994)
Returns the interlace style in a graphics export operation.

GraphicsExportGetMetaData (page 994)
Returns the current user data setting in a graphics export operation.

GraphicsExportGetResolution (page 1000)
Determines the resolution of a graphics exporter component.

GraphicsExportGetTargetDataSize (page 1001)
Returns the current desired maximum data size for a graphics export operation.

GraphicsExportSetColorSyncProfile (page 1006)
Sets the ColorSync profile to embed in the image file for a graphics export operation.

GraphicsExportSetCompressionMethod (page 1006)
Defines the compression method to use in a graphics export operation.

GraphicsExportSetCompressionQuality (page 1007)
Defines the compression quality for a graphics export operation.

GraphicsExportSetDepth (page 1008)
Defines the depth to use in a graphics export operation.

GraphicsExportSetDontRecompress (page 1008)
Requests that the original compressed data for a graphics export operation not be decompressed
and recompressed, but be copied through to the output file.

GraphicsExportSetInterlaceStyle (page 1018)
Defines the interlace style for a graphics export operation.

GraphicsExportSetMetaData (page 1018)
Defines supplemental data for a graphics export operation, such as copyright text.

GraphicsExportSetResolution (page 1023)
Defines the resolution to store in the image file for a graphics export operation.

GraphicsExportSetTargetDataSize (page 1025)
Defines a desired maximum data size for a graphics export operation and asks for a quality that does
not exceed that size.

Drawing Imported Images

GraphicsImportDraw (page 1030)
Draws an imported image.

GraphicsImportGetGWorld (page 1050)
Returns the current graphics port and device for drawing an imported image.

GraphicsImportSetGWorld (page 1072)
Sets the graphics port and device for drawing an imported image.

966 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Finding Out About Graphics Export Image Formats

GraphicsExportGetDefaultFileNameExtension (page 981)
Returns the suggested file name extension for a graphics export operation.

GraphicsExportGetDefaultFileTypeAndCreator (page 982)
Returns the suggested file type and creator for a graphics export operation.

GraphicsExportGetMIMETypeList (page 995)
Returns MIME types and other information about the graphics format in a graphics export operation.

Getting and Setting Progress Procs

GraphicsExportGetProgressProc (page 999)
Returns the current progress function for a graphics export operation.

GraphicsExportSetProgressProc (page 1023)
Installs a progress function in a graphics export operation.

Getting Image Characteristics

GraphicsImportDoesDrawAllPixels (page 1027)
Asks whether the graphics importer expects to draw every pixel.

GraphicsImportGetImageDescription (page 1052)
Returns image description information for an imported image.

GraphicsImportGetMetaData (page 1054)
Extracts user data from an imported image file.

GraphicsImportGetNaturalBounds (page 1055)
Returns the bounding rectangle of an imported image.

GraphicsImportValidate (page 1078)
Validates image data for a data reference to an imported image.

Getting MIME Types

GraphicsImportGetMIMETypeList (page 1055)
Returns a list of MIME types supported by the graphics importer component.

Internal Graphics Export Routines

GraphicsExportCanTranscode (page 974)
Asks whether the current graphics export operation should be performed by transcoding.

GraphicsExportCanUseCompressor (page 975)
Asks whether to use a compressor in a graphics export operation.

GraphicsExportDoStandaloneExport (page 976)
Performs a standalone graphics export operation.

Functions by Task 967
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportDoTranscode (page 977)
Performs a graphics export operation by transcoding.

GraphicsExportDoUseCompressor (page 977)
Performs a graphics export operation with compression.

Managing Graphics Importers

GraphicsImportGetColorSyncProfile (page 1037)
Returns a ColorSync profile for an imported image, if one is embedded in the image file.

GraphicsImportGetDataOffsetAndSize (page 1039)
Returns the offset and size of the compressed image data within an imported image file.

GraphicsImportGetDataOffsetAndSize64 (page 1040)
Provides a 64-bit version of GraphicsImportGetDataOffsetAndSize.

GraphicsImportGetDataReferenceOffsetAndLimit (page 1041)
Returns the data reference starting offset and data size limit for an imported image.

GraphicsImportGetDataReferenceOffsetAndLimit64 (page 1042)
Provides a 64-bit version of GraphicsImportGetDataReferenceOffsetAndLimit.

GraphicsImportGetDefaultClip (page 1043)
Returns the default clipping region for an imported image, if one is stored there.

GraphicsImportGetDefaultGraphicsMode (page 1044)
Returns the default graphics mode for an imported image, if one is stored there.

GraphicsImportGetDefaultMatrix (page 1045)
Returns the default matrix for an imported image, if one is stored there.

GraphicsImportGetDefaultSourceRect (page 1045)
Returns the default source rectangle for an imported image, if one is stored there.

GraphicsImportGetDestRect (page 1046)
Returns the destination rectangle for an imported image.

GraphicsImportGetFlags (page 1049)
Returns the current flags of a graphics importer component.

GraphicsImportGetImageCount (page 1051)
Returns the number of images in an imported image file.

GraphicsImportGetImageIndex (page 1053)
Returns the current image index for an imported image.

GraphicsImportReadData (page 1059)
Reads imported image data.

GraphicsImportReadData64 (page 1060)
Provides a 64-bit version of GraphicsImportReadData.

GraphicsImportSetDataReferenceOffsetAndLimit (page 1068)
Specifies the data reference starting offset and data size limit for an imported image.

GraphicsImportSetDataReferenceOffsetAndLimit64 (page 1069)
Provides a 64-bit version of GraphicsImportSetDataReferenceOffsetAndLimit.

GraphicsImportSetDestRect (page 1070)
Sets the destination rectangle for a graphics import operation.

968 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSetFlags (page 1071)
Sets the flags for a graphics importer component.

GraphicsImportSetImageIndex (page 1073)
Specifies the image index for an imported image.

GraphicsImportSetImageIndexToThumbnail (page 1074)
Looks for a graphics subimage that contains a thumbnail.

Obtaining Graphics Exporter Settings

GraphicsExportGetSettingsAsAtomContainer (page 1000)
Retrieves the current settings from a graphics exporter component.

GraphicsExportGetSettingsAsText (page 1001)
Retrieves the current settings from the graphics export component in a user-readable format.

GraphicsExportRequestSettings (page 1005)
Displays a dialog for the user to configure graphics exporter settings, if applicable.

GraphicsExportSetSettingsFromAtomContainer (page 1024)
Sets the graphics exporter component's current configuration to match the settings in a passed atom
container.

Reading Graphics Exporter Input Data

GraphicsExportGetInputDataSize (page 986)
Returns the number of bytes of original image data that can be read in a graphics export operation.

GraphicsExportMayExporterReadInputData (page 1002)
Asks whether the image source for a graphics export operation is in a form that the exporter can read.

GraphicsExportReadInputData (page 1003)
Reads the original image data in a graphics export operation.

Restricting the Range of an Input Image's Source

GraphicsExportGetInputOffsetAndLimit (page 991)
Retrieves the current input offset and limit in a graphics export operation.

GraphicsExportSetInputOffsetAndLimit (page 1015)
Specifies the portion of an input data reference, file, handle or pointer that a graphics exporter is
permitted to read.

Saving Image Files

GraphicsImportDoExportImageFileDialog (page 1028)
Presents a dialog box letting the user save an imported image in a foreign file format.

GraphicsImportExportImageFile (page 1031)
Saves an imported image in a foreign file format.

Functions by Task 969
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportGetAsPicture (page 1034)
Creates a QuickDraw picture handle to an imported image.

GraphicsImportGetExportImageTypeList (page 1047)
Returns information about available export formats for a graphics importer.

GraphicsImportGetExportSettingsAsAtomContainer (page 1048)
Retrieves settings for image files exported by the graphics importer.

GraphicsImportSaveAsPicture (page 1060)
Creates a QuickDraw picture file for an imported image.

GraphicsImportSaveAsQuickTimeImageFile (page 1062)
Creates a QuickTime Image file of an imported image.

GraphicsImportSetExportSettingsFromAtomContainer (page 1070)
Determines settings for the export of imported image files.

Setting Drawing Parameters

GraphicsImportGetBoundsRect (page 1035)
Returns the bounding rectangle for drawing an imported image.

GraphicsImportGetClip (page 1036)
Returns the current clipping region for an imported image.

GraphicsImportGetGraphicsMode (page 1050)
Returns the graphics transfer mode for an imported image.

GraphicsImportGetMatrix (page 1053)
Returns the transformation matrix to be used for drawing an imported image.

GraphicsImportGetProgressProc (page 1057)
Returns the current progress function for a graphics import operation.

GraphicsImportGetQuality (page 1057)
Returns the image quality value for an imported image.

GraphicsImportGetSourceRect (page 1058)
Returns the current source rectangle for an imported image.

GraphicsImportSetBoundsRect (page 1063)
Defines the rectangle in which to draw an imported image.

GraphicsImportSetClip (page 1064)
Defines the clipping region for drawing an imported image.

GraphicsImportSetGraphicsMode (page 1072)
Sets the graphics transfer mode for an imported image.

GraphicsImportSetMatrix (page 1075)
Defines the transformation matrix to use for drawing an imported image.

GraphicsImportSetProgressProc (page 1076)
Installs a progress procedure to call while drawing an imported image.

GraphicsImportSetQuality (page 1077)
Sets the image quality value for an imported image.

GraphicsImportSetSourceRect (page 1078)
Sets the source rectangle to use for an imported image.

970 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Specifying a Graphics Import Data Source

GraphicsImportGetDataFile (page 1037)
Returns the file containing the graphics data for an imported image.

GraphicsImportGetDataHandle (page 1038)
Returns a handle to imported graphics data.

GraphicsImportGetDataReference (page 1040)
Returns a data reference to imported graphics data.

GraphicsImportSetDataFile (page 1065)
Specifies the file that contains imported graphics data.

GraphicsImportSetDataHandle (page 1066)
Specifies the handle that references imported graphics data.

GraphicsImportSetDataReference (page 1067)
Specifies the data reference for imported graphics data.

Specifying Destinations for Output Images

GraphicsExportGetOutputDataReference (page 995)
Gets the output data reference handle in a graphics export operation.

GraphicsExportGetOutputFile (page 996)
Returns the current output file for a graphics export operation.

GraphicsExportGetOutputFileTypeAndCreator (page 997)
Gets the type and creator codes for the output file in a graphics export operation.

GraphicsExportGetOutputHandle (page 997)
Returns the current output handle for a graphics export operation.

GraphicsExportGetOutputOffsetAndMaxSize (page 998)
Returns the output starting offset and maximum size limit for a graphics export operation.

GraphicsExportSetOutputDataReference (page 1019)
Returns the current output data reference for a graphics export operation.

GraphicsExportSetOutputFile (page 1020)
Defines the output file for a graphics export operation.

GraphicsExportSetOutputFileTypeAndCreator (page 1020)
Sets the file type and creator codes for the output file of a graphics export operation.

GraphicsExportSetOutputHandle (page 1021)
Sets a handle to the output of a graphics export operation.

GraphicsExportSetOutputOffsetAndMaxSize (page 1022)
Specifies the output starting offset and maximum size limit for a graphics export operation.

Specifying Sources for Graphics Exporter Input Images

GraphicsExportGetInputDataReference (page 985)
Returns the current input data reference for a graphics export operation.

Functions by Task 971
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetInputFile (page 986)
Returns the current input file for a graphics export operation.

GraphicsExportGetInputGraphicsImporter (page 987)
Returns the current input graphics importer instance for a graphics export operation.

GraphicsExportGetInputGWorld (page 988)
Returns the current input graphics world for a graphics export operation.

GraphicsExportGetInputHandle (page 988)
Returns the current input handle for a graphics export operation.

GraphicsExportGetInputPicture (page 991)
Returns the current input picture in a graphics export operation.

GraphicsExportGetInputPixmap (page 992)
Returns the current input pixmap in a graphics export operation.

GraphicsExportGetInputPtr (page 993)
Returns the current input pointer in a graphics export operation.

GraphicsExportSetInputDataReference (page 1011)
Specifies that the source image for a graphics export operation is a compressed image stored in a
data reference.

GraphicsExportSetInputFile (page 1011)
Specifies that the source image for a graphics export operation is a compressed image stored in a
file.

GraphicsExportSetInputGraphicsImporter (page 1012)
Specifies that the source image for a graphics export operation is to be drawn by a graphics importer
instance.

GraphicsExportSetInputGWorld (page 1013)
Specifies that the source image for a graphics export operation is a graphics world.

GraphicsExportSetInputHandle (page 1014)
Specifies that the source image for a graphics export operation is a compressed image referenced by
a handle.

GraphicsExportSetInputPicture (page 1015)
Specifies that the source image for a graphics export operation is a picture.

GraphicsExportSetInputPixmap (page 1016)
Specifies that the source image for a graphics export operation is a pixmap.

GraphicsExportSetInputPtr (page 1017)
Specifies that the source image for a graphics export operation is a compressed image stored at a
fixed address in memory.

Working With Exif Files

GraphicsExportGetExifEnabled (page 983)
Returns the graphics exporter's current Exif export setting.

GraphicsExportGetThumbnailEnabled (page 1002)
Returns the current thumbnail creation setting for the graphics exporter when exporting Exif files.

GraphicsExportSetExifEnabled (page 1009)
Determines whether or not the graphics exporter component should create Exif files.

972 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportSetThumbnailEnabled (page 1025)
Determines whether or not the graphics exporter component should create an embedded thumbnail
inside an exported Exif file.

Writing Graphics Exporter Output Data

GraphicsExportGetOutputMark (page 998)
Returns the current file position for a graphics export operation.

GraphicsExportReadOutputData (page 1004)
Reads output image data in a graphics export operation.

GraphicsExportSetOutputMark (page 1021)
Seeks to the specified file position in a graphics export operation.

GraphicsExportWriteOutputData (page 1026)
Writes output image data in a graphics export operation.

Supporting Functions

GraphicsExportDoExport (page 975)
Performs a graphics export operation.

GraphicsExportGetInputCGBitmapContext (page 984)
Retrieves the CGBitmapContext that the graphics exporter is using as its input image.

GraphicsExportGetInputCGImage (page 984)
Determines which Core Graphics CGImage is the source for a graphics export operation.

GraphicsExportSetInputCGBitmapContext (page 1010)
Sets the CGBitmapContext that the graphics exporter will use as its input image.

GraphicsExportSetInputCGImage (page 1010)
Specifies a Core Graphics CGImage as the source for a graphics export operation.

GraphicsImportCreateCGImage (page 1027)
Imports an image as a Core Graphics CGImage.

GraphicsImportDoExportImageFileToDataRefDialog (page 1029)
Presents a dialog box that lets the user save an imported image in a foreign file format.

GraphicsImportExportImageFileToDataRef (page 1033)
Saves an imported image in a foreign file format.

GraphicsImportGetAliasedDataReference (page 1033)
Deprecated.

GraphicsImportGetBaseDataOffsetAndSize64 (page 1035)
Undocumented

GraphicsImportGetDestinationColorSyncProfileRef (page 1046)
Retrieves a ColorSync profile from a graphics importer component.

GraphicsImportGetGenericColorSyncProfile (page 1049)
Retrieves the generic colorsync profile for a graphics importer component.

GraphicsImportGetOverrideSourceColorSyncProfileRef (page 1056)
Retrieves the override ColorSync profile for a graphics importer component.

Functions by Task 973
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSaveAsPictureToDataRef (page 1061)
Creates a storage location that contains a QuickDraw picture for an imported image.

GraphicsImportSaveAsQuickTimeImageFileToDataRef (page 1063)
Creates a storage location that contains a QuickTime image of an imported image.

GraphicsImportSetDestinationColorSyncProfileRef (page 1069)
Sets the ColorSync profile for a graphics importer component.

GraphicsImportSetOverrideSourceColorSyncProfileRef (page 1075)
Sets the override ColorSync profile for a graphics importer component.

GraphicsImportWillUseColorMatching (page 1079)
Asks whether GraphicsImportDraw will use color matching if called with the current importer settings.

Functions

GraphicsExportCanTranscode
Asks whether the current graphics export operation should be performed by transcoding.

ComponentResult GraphicsExportCanTranscode (
 GraphicsExportComponent ci,
 Boolean *canTranscode
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

canTranscode
Points to a Boolean to receive the answer. TRUE means that the current export operation should be
performed by transcoding, FALSE that it should not.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Graphics exporters may be able to transcode from some inputs and not from others. For instance, the JPEG
graphics exporter is able to transcode compressed JPEG streams, but not other kinds of compressed data.
The base graphics exporter makes this call to the format-specific graphics exporter to ask whether the current
export operation should be done by transcoding. If the format-specific exporter replies that it should, the
base exporter calls GraphicsExportDoTranscode (page 977) to do so. If the answer is no, then the
format-specific exporter will not be able to transcode.

Special Considerations

This function is used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call it. Format-specific exporters may delegate this call, in which case
the base graphics exporter's implementation gives a reply of FALSE.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

974 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportCanUseCompressor
Asks whether to use a compressor in a graphics export operation.

ComponentResult GraphicsExportCanUseCompressor (
 GraphicsExportComponent ci,
 Boolean *canUseCompressor,
 void *codecSettingsAtomContainerPtr
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

canUseCompressor
A Boolean variable to receive the answer.

codecSettingsAtomContainerPtr
A pointer to a QTAtomContainer variable. If the canUseCompressor parameter returns TRUE, the
format-specific exporter should create a new QuickTime atom container with information about the
compression operation and return it here.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The base graphics exporter makes this call of the format-specific graphics exporter to ask whether the current
export operation should be done by using an image compressor. If the answer is TRUE, the format-specific
exporter must also create and return an atom container. This atom container must contain a big-endian
'vide' atom with at least a child atom of type 'sptl' containing a SCSpatialSettings record specifying
which compressor to use, the depth, and the spatial quality.

Special Considerations

This function is used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call it. Format-specific exporters may delegate this call, in which case
the base graphics exporter's implementation gives a reply of FALSE.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportDoExport
Performs a graphics export operation.

Functions 975
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportDoExport (
 GraphicsExportComponent ci,
 unsigned long *actualSizeWritten
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

actualSizeWritten
Points to a variable to receive the number of bytes written. If you are not interested in this information,
pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before calling this function , you must specify an input image, using one of the GraphicsExportSetInput...
functions, and a destination for the output image file, using one of the GraphicsExportSetOutput...
functions.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics.win
TextNameTool
ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportDoStandaloneExport
Performs a standalone graphics export operation.

ComponentResult GraphicsExportDoStandaloneExport (
 GraphicsExportComponent ci
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If both GraphicsExportCanTranscode (page 974) and GraphicsExportCanUseCompressor (page 975)
reply FALSE, the base graphics exporter makes this call of the format-specific exporter to perform the export.

976 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Special Considerations

This function is used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportDoTranscode
Performs a graphics export operation by transcoding.

ComponentResult GraphicsExportDoTranscode (
 GraphicsExportComponent ci
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The base graphics exporter makes this call of the format-specific graphics exporter to perform a transcoding
export. This function should call GraphicsExportGetInputDataSize (page 986) and
GraphicsExportReadInputData (page 1003) to measure and read the input image data, and
GraphicsExportWriteOutputData (page 1026) to write the output image file.

Special Considerations

This function is used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportDoUseCompressor
Performs a graphics export operation with compression.

Functions 977
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportDoUseCompressor (
 GraphicsExportComponent ci,
 void *codecSettingsAtomContainer,
 ImageDescriptionHandle *outDesc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

codecSettingsAtomContainer
An atom container returned by GraphicsExportCanUseCompressor (page 975).

outDesc
Points to an image description handle to receive an ImageDescription structure describing the
compressed image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The base graphics exporter makes this call to perform a compressing export.

Special Considerations

This function is used for internal communication between the base and format-specific graphics exporter.
Applications will not usually need to call it. Format-specific exporters will normally delegate this call, unless
they implement export to a container format like PICT or QuickTime Image. In that case, they will wrap the
base exporter's implementation in one that forms the container about the compressed data.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportDrawInputImage
Draws a rectangular portion of the input image in a graphics export operation.

ComponentResult GraphicsExportDrawInputImage (
 GraphicsExportComponent ci,
 CGrafPtr gw,
 GDHandle gd,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

gw
A pointer to an offscreen graphics world, color graphics port, or basic graphics port.

978 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

gd
A handle to a GDevice record. If you pass a pointer to an offscreen graphics world in the gw parameter,
set this parameter to NIL because GraphicsExportDrawInputImage ignores this parameter and
sets the current device to the device attached to the offscreen graphics world.

srcRect
Specifies a portion of the input image.

dstRect
Specifies where in the drawing environment to draw that portion of the input image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The gw and gd parameters specify a drawing environment such as you might pass to
GraphicsExportSetInputGWorld (page 1013). The srcRect and dstRect boundaries need not be the
same width and height; you can use this function to scale the srcRect image portion. This would be useful,
for example, if you were writing a graphics exporter for a multiple-resolution format.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
ImageCompression.h

GraphicsExportGetColorSyncProfile
Gets the current value of the ColorSync profile for a graphics export operation.

ComponentResult GraphicsExportGetColorSyncProfile (
 GraphicsExportComponent ci,
 Handle *colorSyncProfile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

colorSyncProfile
Points to a variable to receive the ColorSync profile as a newly allocated handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

The caller is responsible for disposing of the returned handle.

Version Notes
Introduced in QuickTime 4.

Functions 979
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetCompressionMethod
Returns the compression method for a graphics export operation.

ComponentResult GraphicsExportGetCompressionMethod (
 GraphicsExportComponent ci,
 long *compressionMethod
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

compressionMethod
Points to a value to receive the compression method.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetCompressionQuality
Returns the compression quality value for a graphics export operation.

ComponentResult GraphicsExportGetCompressionQuality (
 GraphicsExportComponent ci,
 CodecQ *spatialQuality
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

980 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

spatialQuality
Points to a variable to receive a quality constant (see below). See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetDefaultFileNameExtension
Returns the suggested file name extension for a graphics export operation.

ComponentResult GraphicsExportGetDefaultFileNameExtension (
 GraphicsExportComponent ci,
 OSType *fileNameExtension
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

fileNameExtension
Points to a location to receive the file name extension.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
File name extensions are returned as upper-case big-endian four-character codes. For example, the extension
.png would be returned as 'PNG ' (0x504E4720).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsExporter

Declared In
ImageCompression.h

Functions 981
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetDefaultFileTypeAndCreator
Returns the suggested file type and creator for a graphics export operation.

ComponentResult GraphicsExportGetDefaultFileTypeAndCreator (
 GraphicsExportComponent ci,
 OSType *fileType,
 OSType *fileCreator
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

fileType
Points to a location to receive the suggested file type for the image file format. If you don't need this
information, pass NIL.

fileCreator
Points to a location to receive the suggested file creator for the new image file format. If you don't
need this information, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function, along with GraphicsExportGetDefaultFileNameExtension (page 981) and
GraphicsExportGetMIMETypeList (page 995), returns information about the image format supported by
a graphics exporter. Format-specific exporters must implement all three of these calls.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetDepth
Returns the current depth setting for a graphics export operation.

ComponentResult GraphicsExportGetDepth (
 GraphicsExportComponent ci,
 long *depth
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

depth
Points to a variable to receive the depth.

Return Value
See Error Codes. Returns noErr if there is no error.

982 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetDontRecompress
Determines whether the original compressed data for a graphics export operation will not be decompressed
and recompressed, but be copied through to the output file.

ComponentResult GraphicsExportGetDontRecompress (
 GraphicsExportComponent ci,
 Boolean *dontRecompress
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dontRecompress
Points to a Boolean to receive the recompression setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Even though it is not decompressed and recompressed, graphics data may be modified when it is copied
through.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetExifEnabled
Returns the graphics exporter's current Exif export setting.

ComponentResult GraphicsExportGetExifEnabled (
 GraphicsExportComponent ci,
 Boolean *exifEnabled
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component. This
function is supported only by the TIFF and JPEG graphics exporters.

Functions 983
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

exifEnabled
Pass a pointer to a variable that will be set to TRUE if Exif export is enabled.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.1 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputCGBitmapContext
Retrieves the CGBitmapContext that the graphics exporter is using as its input image.

ComponentResult GraphicsExportGetInputCGBitmapContext (
 GraphicsExportComponent ci,
 CGContextRef *bitmapContextRefOut
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

bitmapContextRef
A reference to the Core Graphics context.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputCGImage
Determines which Core Graphics CGImage is the source for a graphics export operation.

ComponentResult GraphicsExportGetInputCGImage (
 GraphicsExportComponent ci,
 CGImageRef *imageRefOut
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

984 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

imageRef
A reference to a Core Graphics image.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputDataReference
Returns the current input data reference for a graphics export operation.

ComponentResult GraphicsExportGetInputDataReference (
 GraphicsExportComponent ci,
 Handle *dataRef,
 OSType *dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataRef
Points to a variable to receive the data reference handle.

dataRefType
Points to a variable to receive the data reference type.

Return Value
See Error Codes. If the current source is not a data reference, the function returns paramErr. The function
returns noErr if there is no error.

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Special Considerations

The caller is responsible for disposing of the returned data reference handle.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 985
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportGetInputDataSize
Returns the number of bytes of original image data that can be read in a graphics export operation.

ComponentResult GraphicsExportGetInputDataSize (
 GraphicsExportComponent ci,
 unsigned long *size
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

size
Points to a variable to receive the size in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is used by format-specific graphics exporters when transcoding. Applications will not normally
need to call this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputFile
Returns the current input file for a graphics export operation.

ComponentResult GraphicsExportGetInputFile (
 GraphicsExportComponent ci,
 FSSpec *theFile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

theFile
A pointer to the file specification of the file containing the graphics data.

Return Value
See Error Codes. Returns noErr if there is no error. If the current source is not a file, the function returns
paramErr.

986 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputGraphicsImporter
Returns the current input graphics importer instance for a graphics export operation.

ComponentResult GraphicsExportGetInputGraphicsImporter (
 GraphicsExportComponent ci,
 GraphicsImportComponent *grip
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

grip
Points to a variable to receive the source graphics importer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must get the source of a graphics export operation. The source can be a QuickTime graphics importer
component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a piece of compressed
data described by an ImageDescription structure. Compressed data can be in a file, handle, pointer, or
other data reference. The application must make sure that the source is not disposed of before the graphics
exporter instance is closed or given a new source. All of the get and set functions for these sources are
implemented by the base graphics exporter; format-specific importers should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 987
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetInputGWorld
Returns the current input graphics world for a graphics export operation.

ComponentResult GraphicsExportGetInputGWorld (
 GraphicsExportComponent ci,
 GWorldPtr *gworld
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

gworld
Points to a variable to receive the source graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputHandle
Returns the current input handle for a graphics export operation.

ComponentResult GraphicsExportGetInputHandle (
 GraphicsExportComponent ci,
 Handle *h
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

h
A pointer to receive the handle.

Return Value
See Error Codes. Returns noErr if there is no error. If the current source is not a handle, the function
returns paramErr.

988 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputImageDepth
Returns the depth of the input image for a graphics export operation.

ComponentResult GraphicsExportGetInputImageDepth (
 GraphicsExportComponent ci,
 long *inputDepth
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

inputDepth
Points to a variable to receive the input image depth.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputImageDescription
Returns an image description describing the input image in a graphics export operation.

Functions 989
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportGetInputImageDescription (
 GraphicsExportComponent ci,
 ImageDescriptionHandle *desc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

desc
Points to a variable to receive a handle to an ImageDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns an ImageDescription structure containing information such as the format of the
compressed data, its bit depth, natural bounds, and resolution.

Special Considerations

The caller is responsible for disposing of the returned image description handle.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
ImageCompression.h

GraphicsExportGetInputImageDimensions
Returns the dimensions of the input image in a graphics export operation.

ComponentResult GraphicsExportGetInputImageDimensions (
 GraphicsExportComponent ci,
 Rect *dimensions
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dimensions
Points to a rectangle to receive the dimensions of the input image.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

990 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
ImageCompression.h

GraphicsExportGetInputOffsetAndLimit
Retrieves the current input offset and limit in a graphics export operation.

ComponentResult GraphicsExportGetInputOffsetAndLimit (
 GraphicsExportComponent ci,
 unsigned long *offset,
 unsigned long *limit
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

offset
Points to a variable to receive the offset. If you don't need this information, pass NIL.

limit
Points to a variable to receive the limit. If you don't need this information, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is only applicable when the input is a data reference, file, handle or pointer.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputPicture
Returns the current input picture in a graphics export operation.

Functions 991
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportGetInputPicture (
 GraphicsExportComponent ci,
 PicHandle *picture
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

picture
Points to a variable to receive the source picture.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputPixmap
Returns the current input pixmap in a graphics export operation.

ComponentResult GraphicsExportGetInputPixmap (
 GraphicsExportComponent ci,
 PixMapHandle *pixmap
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

pixmap
Points to a variable to receive the source PixMap structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of

992 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetInputPtr
Returns the current input pointer in a graphics export operation.

ComponentResult GraphicsExportGetInputPtr (
 GraphicsExportComponent ci,
 Ptr *p,
 unsigned long *size
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

p
A pointer to receive a pointer containing the graphics data.

size
A pointer to a value describing the size of the image data in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to get the source of a graphics export operation. The source can be a QuickTime
graphics importer component instance, a QuickDraw Picture, a graphics world, a PixMap structure, or a
piece of compressed data described by an ImageDescription structure. Compressed data can be in a file,
handle, pointer, or other data reference. The application must make sure that the source is not disposed of
before the graphics exporter instance is closed or given a new source. All of the get and set functions for
these sources are implemented by the base graphics exporter; format-specific importers should delegate all
of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 993
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetInterlaceStyle
Returns the interlace style in a graphics export operation.

ComponentResult GraphicsExportGetInterlaceStyle (
 GraphicsExportComponent ci,
 unsigned long *interlaceStyle
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

interlaceStyle
Points to a variable to receive the interlace style. Valid values and interpretations are defined by
individual exporters. In QuickTime 4, the PNG graphics exporter supports the interlaceStyle
settings shown below See these constants:

kQTPNGInterlaceNone

kQTPNGInterlaceAdam7

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetMetaData
Returns the current user data setting in a graphics export operation.

ComponentResult GraphicsExportGetMetaData (
 GraphicsExportComponent ci,
 void *userData
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

userData
A pointer to a UserDataRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4. In QuickTime 4, none of the supplied graphics exporters support setting user
data.

994 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetMIMETypeList
Returns MIME types and other information about the graphics format in a graphics export operation.

ComponentResult GraphicsExportGetMIMETypeList (
 GraphicsExportComponent ci,
 void *qtAtomContainerPtr
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

qtAtomContainerPtr
Receives a newly-created QuickTime atom container that contains information about the graphics
format.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates and returns a QuickTime atom container that contains the format's name, as a string
in an atom of type 'desc' (kMimeInfoDescriptionTag), and optionally the MIME type as a string in an
atom of type 'mime'[atom] (kMimeInfoMimeTypeTag).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportGetOutputDataReference
Gets the output data reference handle in a graphics export operation.

Functions 995
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportGetOutputDataReference (
 GraphicsExportComponent ci,
 Handle *dataRef,
 OSType *dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataRef
Points to a variable to receive the data reference handle.

dataRefType
Points to a variable to receive a constant that identifies the data reference type. See Data
References.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

The caller is responsible for disposing of the returned data reference handle.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetOutputFile
Returns the current output file for a graphics export operation.

ComponentResult GraphicsExportGetOutputFile (
 GraphicsExportComponent ci,
 FSSpec *theFile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

theFile
Points to a variable to receive the FSSpec.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

996 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportGetOutputFileTypeAndCreator
Gets the type and creator codes for the output file in a graphics export operation.

ComponentResult GraphicsExportGetOutputFileTypeAndCreator (
 GraphicsExportComponent ci,
 OSType *fileType,
 OSType *fileCreator
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

fileType
Receives the file type for the new image file. See File Types and Creators.

fileCreator
Receives the file creator for the new image file. See File Types and Creators.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetOutputHandle
Returns the current output handle for a graphics export operation.

ComponentResult GraphicsExportGetOutputHandle (
 GraphicsExportComponent ci,
 Handle *h
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

h
Points to a variable to receive the handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 997
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetOutputMark
Returns the current file position for a graphics export operation.

ComponentResult GraphicsExportGetOutputMark (
 GraphicsExportComponent ci,
 unsigned long *mark
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

mark
Receives the current file position, as a byte offset from the beginning of the output data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

Not all output data types support the current file position feature.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetOutputOffsetAndMaxSize
Returns the output starting offset and maximum size limit for a graphics export operation.

ComponentResult GraphicsExportGetOutputOffsetAndMaxSize (
 GraphicsExportComponent ci,
 unsigned long *offset,
 unsigned long *maxSize,
 Boolean *truncateFile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

offset
On return, a value describing the byte offset of the image data from the beginning of the data
reference. If you are not interested in this information, you may pass NIL.

998 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

maxSize
On return, a value describing the maximum size limit. If you are not interested in this information,
you may pass NIL.

truncateFile
A Boolean value; TRUE means to truncate the file, FALSE means not.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetProgressProc
Returns the current progress function for a graphics export operation.

ComponentResult GraphicsExportGetProgressProc (
 GraphicsExportComponent ci,
 ICMProgressProcRecordPtr progressProc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

progressProc
A pointer to an ICMProgressProc callback.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By default, graphics export components have no progress functions.

Special Considerations

This function is always implemented by the base graphics exporter.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

Functions 999
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportGetResolution
Determines the resolution of a graphics exporter component.

ComponentResult GraphicsExportGetResolution (
 GraphicsExportComponent ci,
 Fixed *horizontalResolution,
 Fixed *verticalResolution
);

Parameters
ci

A component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

horizontalResolution
Points to a variable to receive the horizontal resolution.

verticalResolution
Points to a variable to receive the vertical resolution.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetSettingsAsAtomContainer
Retrieves the current settings from a graphics exporter component.

ComponentResult GraphicsExportGetSettingsAsAtomContainer (
 GraphicsExportComponent ci,
 void *qtAtomContainerPtr
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

qtAtomContainerPtr
Points to a variable to receive a new QuickTime atom container containing the current graphics
exporter component settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

The caller is responsible for disposing of the returned atom container.

Version Notes
Introduced in QuickTime 4.

1000 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
ImageCompression.h

GraphicsExportGetSettingsAsText
Retrieves the current settings from the graphics export component in a user-readable format.

ComponentResult GraphicsExportGetSettingsAsText (
 GraphicsExportComponent ci,
 Handle *theText
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

theText
Points to a variable to receive a newly-allocated handle containing text.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

The caller is responsible for disposing of the returned handle.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetTargetDataSize
Returns the current desired maximum data size for a graphics export operation.

ComponentResult GraphicsExportGetTargetDataSize (
 GraphicsExportComponent ci,
 unsigned long *targetDataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

targetDataSize
Points to a variable to receive the desired maximum data size in bytes.

Functions 1001
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportGetThumbnailEnabled
Returns the current thumbnail creation setting for the graphics exporter when exporting Exif files.

ComponentResult GraphicsExportGetThumbnailEnabled (
 GraphicsExportComponent ci,
 Boolean *thumbnailEnabled,
 long *maxThumbnailWidth,
 long *maxThumbnailHeight
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component. This
function is supported only by the TIFF and JPEG graphics exporters.

thumbnailEnabled
Points to a variable to receive the current thumbnail setting. Pass NIL if you do not want to receive
this information.

maxThumbnailWidth
Points to a variable to receive the current maximum thumbnail width. Pass NIL if you do not want
to receive this information.

maxThumbnailHeight
Points to a variable to receive the current maximum thumbnail height. Pass NIL if you do not want
to receive this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.1 and later.

Declared In
ImageCompression.h

GraphicsExportMayExporterReadInputData
Asks whether the image source for a graphics export operation is in a form that the exporter can read.

1002 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportMayExporterReadInputData (
 GraphicsExportComponent ci,
 Boolean *mayReadInputData
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

mayReadInputData
Points to a Boolean; TRUE means that the image source is in a form that the exporter can read, FALSE
means it is not.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some kinds of image source, such as files and handles, form a stream of bytes that can be read directly.
Others, such as pictures and pixmaps, do not. Format-specific graphics exporters usually cannot transcode
if they cannot read the original data, so those exporters which implement
GraphicsExportCanTranscode (page 974) will usually first call
GraphicsExportMayExporterReadInputData.

Special Considerations

This function is used by format-specific graphics exporters when transcoding. Applications will not normally
need to call this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportReadInputData
Reads the original image data in a graphics export operation.

ComponentResult GraphicsExportReadInputData (
 GraphicsExportComponent ci,
 void *dataPtr,
 unsigned long dataOffset,
 unsigned long dataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataPtr
A pointer to a memory block to receive the data.

Functions 1003
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

dataOffset
The offset of the image data within the source image data. The function begins reading image data
from this offset.

dataSize
The number of bytes of image data to read.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function communicates with the appropriate data handler to retrieve image data.

Special Considerations

This function is used by format-specific graphics exporters when transcoding. Applications will not normally
need to call this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportReadOutputData
Reads output image data in a graphics export operation.

ComponentResult GraphicsExportReadOutputData (
 GraphicsExportComponent ci,
 void *dataPtr,
 unsigned long dataOffset,
 unsigned long dataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataPtr
A pointer to a memory block to receive the data.

dataOffset
The offset of the image data within the data reference. The function begins reading image data from
this offset.

dataSize
The number of bytes of image data to read.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

Not all output data types support this function.

1004 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportRequestSettings
Displays a dialog for the user to configure graphics exporter settings, if applicable.

ComponentResult GraphicsExportRequestSettings (
 GraphicsExportComponent ci,
 ModalFilterYDUPP filterProc,
 void *yourDataProc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

filterProc
A ModalFilterYDProc callback. If you don't need one, pass NIL.

yourDataProc
An extra parameter that will be passed to the ModalFilterProc callback when it is called. If you
don't need one, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some graphics exporters don't support settings dialogs, and so don't implement this call. To find out whether
a graphics exporter implements this call, you can use this code:

CallComponentCanDo(myGraphicsExporter,
 kGraphicsExportRequestSettingsSelect);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

Functions 1005
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsExportSetColorSyncProfile
Sets the ColorSync profile to embed in the image file for a graphics export operation.

ComponentResult GraphicsExportSetColorSyncProfile (
 GraphicsExportComponent ci,
 Handle colorSyncProfile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

colorSyncProfile
A handle to the ColorSync profile.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
ColorSync profiles allow image files to describe their native colorspace in a self-contained manner. They can
be stored in atoms of type 'iicc'.

Version Notes
Introduced in QuickTime 4. Starting with QuickTime 4, the JPEG, PNG, PICT, QuickTime Image and TIFF graphics
exporters support embedded ColorSync profiles.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetCompressionMethod
Defines the compression method to use in a graphics export operation.

ComponentResult GraphicsExportSetCompressionMethod (
 GraphicsExportComponent ci,
 long compressionMethod
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

compressionMethod
A value (see below) describing the compression algorithm to be used by the graphics exporter. See
these constants:

kQTTIFFCompression_None

kQTTIFFCompression_PackBits

Return Value
See Error Codes. Returns noErr if there is no error.

1006 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
In QuickTime 4, the TIFF graphics exporter supports the compressionMethod settings
kQTTIFFCompression_None and kQTTIFFCompression_PackBits. Some image formats, such as TIFF,
support several compression methods.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetCompressionQuality
Defines the compression quality for a graphics export operation.

ComponentResult GraphicsExportSetCompressionQuality (
 GraphicsExportComponent ci,
 CodecQ spatialQuality
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

spatialQuality
A constant (see below) that defines the currently specified quality value. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This setting is only supported by lossy compression methods.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Carbon GLSnapshot
qtgraphics
qtgraphics.win
TextNameTool

Functions 1007
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportSetDepth
Defines the depth to use in a graphics export operation.

ComponentResult GraphicsExportSetDepth (
 GraphicsExportComponent ci,
 long depth
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

depth
A value describing the depth of the image data. Some image file formats support more than one pixel
depth.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The BMP, JPEG, Photoshop, PNG, PICT, QuickTime Image, TGA and TIFF graphics exporters support the depth
setting. Some image file formats support more than one pixel depth.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
TextNameTool

Declared In
ImageCompression.h

GraphicsExportSetDontRecompress
Requests that the original compressed data for a graphics export operation not be decompressed and
recompressed, but be copied through to the output file.

1008 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetDontRecompress (
 GraphicsExportComponent ci,
 Boolean dontRecompress
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dontRecompress
If TRUE, requests not to recompress the image data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Even though it is not decompressed and recompressed, graphics data may be modified when it is copied
through.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetExifEnabled
Determines whether or not the graphics exporter component should create Exif files.

ComponentResult GraphicsExportSetExifEnabled (
 GraphicsExportComponent ci,
 Boolean enableExif
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component. This
function is supported only by the TIFF and JPEG graphics exporters.

enableExif
Pass TRUE to enable Exif file creation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Turning on Exif export disables incompatible settings, such as grayscale JPEG and compressed TIFF, and
enables export of Exif metadata.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.1 and later.

Functions 1009
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportSetInputCGBitmapContext
Sets the CGBitmapContext that the graphics exporter will use as its input image.

ComponentResult GraphicsExportSetInputCGBitmapContext (
 GraphicsExportComponent ci,
 CGContextRef bitmapContextRef
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

bitmapContextRef
A reference to the Core Graphics context.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputCGImage
Specifies a Core Graphics CGImage as the source for a graphics export operation.

ComponentResult GraphicsExportSetInputCGImage (
 GraphicsExportComponent ci,
 CGImageRef imageRef
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

imageRef
A reference to a CG image.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

1010 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportSetInputDataReference
Specifies that the source image for a graphics export operation is a compressed image stored in a data
reference.

ComponentResult GraphicsExportSetInputDataReference (
 GraphicsExportComponent ci,
 Handle dataRef,
 OSType dataRefType,
 ImageDescriptionHandle desc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataRef
A QuickTime data reference. See Data References.

dataRefType
The type of the data reference; see Data References.

desc
A handle to an ImageDescription structure, describing the compressed data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputFile
Specifies that the source image for a graphics export operation is a compressed image stored in a file.

Functions 1011
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetInputFile (
 GraphicsExportComponent ci,
 const FSSpec *theFile,
 ImageDescriptionHandle desc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

theFile
A pointer to the FSSpec structure for the file containing the graphics data.

desc
A handle to an ImageDescription structure that describes the compressed data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputGraphicsImporter
Specifies that the source image for a graphics export operation is to be drawn by a graphics importer instance.

ComponentResult GraphicsExportSetInputGraphicsImporter (
 GraphicsExportComponent ci,
 GraphicsImportComponent grip
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

grip
The source graphics importer component instance.

Return Value
See Error Codes. Returns noErr if there is no error.

1012 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Special Considerations

It is the caller's responsibility to dispose of the graphics importer.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtgraphics
qtgraphics.win
ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportSetInputGWorld
Specifies that the source image for a graphics export operation is a graphics world.

ComponentResult GraphicsExportSetInputGWorld (
 GraphicsExportComponent ci,
 GWorldPtr gworld
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

gworld
The source graphics world. It must be a real graphics world; you may not pass an ordinary color
GrafPort.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Functions 1013
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Special Considerations

The graphics exporter will never dispose the graphics world.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Carbon GLSnapshot
Graphic Import-Export
ImproveYourImage
TextNameTool

Declared In
ImageCompression.h

GraphicsExportSetInputHandle
Specifies that the source image for a graphics export operation is a compressed image referenced by a handle.

ComponentResult GraphicsExportSetInputHandle (
 GraphicsExportComponent ci,
 Handle h,
 ImageDescriptionHandle desc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

h
A handle to graphics data.

desc
A handle to an ImageDescription structure that describes the compressed data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1014 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportSetInputOffsetAndLimit
Specifies the portion of an input data reference, file, handle or pointer that a graphics exporter is permitted
to read.

ComponentResult GraphicsExportSetInputOffsetAndLimit (
 GraphicsExportComponent ci,
 unsigned long offset,
 unsigned long limit
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

offset
The byte offset of the input image data from the beginning of the data reference.

limit
The offset of the byte following the last byte of the input image data. (If you don't need to apply any
limit, pass (unsigned long)-1.) Both the offset parameter and the limit parameter values are
relative to the start of the compressed data. GraphicsExportGetInputDataSize (page 986) and
GraphicsExportReadInputData (page 1003) take the offset and limit values into account
automatically.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine would be useful if, for example, the source was a JPEG image embedded within a larger file.

Special Considerations

This function is only applicable when the input is a data reference, file, handle, or pointer.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputPicture
Specifies that the source image for a graphics export operation is a picture.

Functions 1015
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetInputPicture (
 GraphicsExportComponent ci,
 PicHandle picture
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

picture
A handle to the source picture.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputPixmap
Specifies that the source image for a graphics export operation is a pixmap.

ComponentResult GraphicsExportSetInputPixmap (
 GraphicsExportComponent ci,
 PixMapHandle pixmap
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

pixmap
The source PixMap structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed

1016 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Special Considerations

It is the caller's responsibility to dispose of the pixmap.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInputPtr
Specifies that the source image for a graphics export operation is a compressed image stored at a fixed
address in memory.

ComponentResult GraphicsExportSetInputPtr (
 GraphicsExportComponent ci,
 Ptr p,
 unsigned long size,
 ImageDescriptionHandle desc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

p
A pointer to a value the image.

size
A value describing the size of the image data in bytes.

desc
A handle to an ImageDescription structure that describes the compressed data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to specify a source before you call GraphicsExportDoExport (page 975). The
source can be a QuickTime graphics importer component instance, a QuickDraw Picture, a graphics world,
a PixMap structure, or a piece of compressed data described by an ImageDescription structure. Compressed
data can be in a file, handle, pointer, or other data reference. The application must make sure that the source
is not disposed of before the graphics exporter instance is closed or given a new source. All of the get and
set functions for these sources are implemented by the base graphics exporter; format-specific importers
should delegate all of them.

Version Notes
Introduced in QuickTime 4.

Functions 1017
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetInterlaceStyle
Defines the interlace style for a graphics export operation.

ComponentResult GraphicsExportSetInterlaceStyle (
 GraphicsExportComponent ci,
 unsigned long interlaceStyle
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

interlaceStyle
The new interlace style to use. Valid values and interpretations are defined by individual exporters.
In QuickTime 4, the PNG graphics exporter supports the interlaceStyle settings shown below.
See these constants:

kQTPNGInterlaceNone

kQTPNGInterlaceAdam7

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A common use for this function is in the PNG and GIF formats, which rearrange data so that low-resolution
images can be displayed from incomplete data streams.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetMetaData
Defines supplemental data for a graphics export operation, such as copyright text.

1018 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetMetaData (
 GraphicsExportComponent ci,
 void *userData
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

userData
A pointer to user data. The value you pass should have the type userData, which is a pointer to a
UserDataRecord.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

In QuickTime 4, none of the supplied graphics exporters support setting user data.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetOutputDataReference
Returns the current output data reference for a graphics export operation.

ComponentResult GraphicsExportSetOutputDataReference (
 GraphicsExportComponent ci,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataRef
A QuickTime data reference.

dataRefType
The type of the data reference; see Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1019
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportSetOutputFile
Defines the output file for a graphics export operation.

ComponentResult GraphicsExportSetOutputFile (
 GraphicsExportComponent ci,
 const FSSpec *theFile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

theFile
an FSSpec structure that identifies the file.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win
ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportSetOutputFileTypeAndCreator
Sets the file type and creator codes for the output file of a graphics export operation.

ComponentResult GraphicsExportSetOutputFileTypeAndCreator (
 GraphicsExportComponent ci,
 OSType fileType,
 OSType fileCreator
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

fileType
The file type for the new image file, such as 'JPEG'. See File Types and Creators.

1020 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

fileCreator
The file creator for the new image file. This parameter may be 0, in which case a default file creator
for this file type is used. See File Types and Creators.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetOutputHandle
Sets a handle to the output of a graphics export operation.

ComponentResult GraphicsExportSetOutputHandle (
 GraphicsExportComponent ci,
 Handle h
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

h
The output handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextNameTool

Declared In
ImageCompression.h

GraphicsExportSetOutputMark
Seeks to the specified file position in a graphics export operation.

Functions 1021
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetOutputMark (
 GraphicsExportComponent ci,
 unsigned long mark
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

mark
The new file position, specified as a byte offset from the beginning of the output data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetOutputOffsetAndMaxSize
Specifies the output starting offset and maximum size limit for a graphics export operation.

ComponentResult GraphicsExportSetOutputOffsetAndMaxSize (
 GraphicsExportComponent ci,
 unsigned long offset,
 unsigned long maxSize,
 Boolean truncateFile
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

offset
The byte offset of the image data from the beginning of the data reference.

maxSize
A value describing the maximum size limit.

truncateFile
A Boolean value; TRUE means to truncate the file.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1022 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsExportSetProgressProc
Installs a progress function in a graphics export operation.

ComponentResult GraphicsExportSetProgressProc (
 GraphicsExportComponent ci,
 ICMProgressProcRecordPtr progressProc
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

progressProc
Points to an ICMProgressProc callback. If you pass a value of -1, QuickTime provides a standard
progress function. If you want to remove the existing progress function, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is always implemented by the base graphics exporter.

Special Considerations

If your progress function does any drawing, you should take care to set a safe graphics state before doing
so, and to restore the graphics state afterwards. In particular, the current graphics device may be an offscreen
device.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsExporter

Declared In
ImageCompression.h

GraphicsExportSetResolution
Defines the resolution to store in the image file for a graphics export operation.

Functions 1023
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsExportSetResolution (
 GraphicsExportComponent ci,
 Fixed horizontalResolution,
 Fixed verticalResolution
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

horizontalResolution
A value describing the horizontal resolution of the image, where the upper byte is dots per inch. The
value 0x00480000 represents 72.0 dpi.

verticalResolution
A value describing the vertical resolution of the image, where the upper byte is dots per inch. The
value 0x00480000 represents 72.0 dpi.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetSettingsFromAtomContainer
Sets the graphics exporter component's current configuration to match the settings in a passed atom container.

ComponentResult GraphicsExportSetSettingsFromAtomContainer (
 GraphicsExportComponent ci,
 void *qtAtomContainer
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

qtAtomContainer
A pointer to a QuickTime atom container that contains settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The settings atom container may contain atoms other than those expected by the graphics exporter
component or may be missing certain atoms. This function will use only the settings it understands.

Version Notes
Introduced in QuickTime 4.

1024 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetTargetDataSize
Defines a desired maximum data size for a graphics export operation and asks for a quality that does not
exceed that size.

ComponentResult GraphicsExportSetTargetDataSize (
 GraphicsExportComponent ci,
 unsigned long targetDataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

targetDataSize
A value that describes the maximum size of the image data in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsExportSetThumbnailEnabled
Determines whether or not the graphics exporter component should create an embedded thumbnail inside
an exported Exif file.

ComponentResult GraphicsExportSetThumbnailEnabled (
 GraphicsExportComponent ci,
 Boolean enableThumbnail,
 long maxThumbnailWidth,
 long maxThumbnailHeight
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component. This
function is currently supported only by the TIFF and JPEG graphics exporters.

enableThumbnail
Pass TRUE to turn thumbnail creation on; otherwise pass FALSE.

Functions 1025
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

maxThumbnailWidth
The maximum width for created thumbnails.

maxThumbnailHeight
The maximum height for created thumbnails. If one maximum dimension is 0, only the other will be
used. If both maximum dimensions are 0, the graphics exporter will decide for itself. The graphics
exporter will not change the aspect ratio of the Exif image when creating the thumbnail, nor will it
create a thumbnail larger than the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The JPEG graphics exporter can create thumbnails only when writing Exif files.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.1 and later.

Declared In
ImageCompression.h

GraphicsExportWriteOutputData
Writes output image data in a graphics export operation.

ComponentResult GraphicsExportWriteOutputData (
 GraphicsExportComponent ci,
 const void *dataPtr,
 unsigned long dataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

dataPtr
A pointer to a memory block containing the data.

dataSize
The number of bytes of image data to write.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is used by format-specific graphics exporters to write output data.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1026 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
ImageCompression.h

GraphicsImportCreateCGImage
Imports an image as a Core Graphics CGImage.

ComponentResult GraphicsImportCreateCGImage (
 GraphicsImportComponent ci,
 CGImageRef *imageRefOut,
 UInt32 flags
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

imageRefOut
A reference to the CG image to be created.

flags
A flag (see below) that determines the settings to use.
kGraphicsImportCreateCGImageUsingCurrentSettings Use the current settings. See these
constants:

kGraphicsImportCreateCGImageUsingCurrentSettings

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportDoesDrawAllPixels
Asks whether the graphics importer expects to draw every pixel.

ComponentResult GraphicsImportDoesDrawAllPixels (
 GraphicsImportComponent ci,
 short *drawsAllPixels
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Functions 1027
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

drawsAllPixels
A pointer to a value (see below) that describes the predicted drawing behavior. See these constants:

graphicsImporterDrawsAllPixels

graphicsImporterDoesntDrawAllPixels

graphicsImporterDontKnowIfDrawAllPixels

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some image file formats permit non-rectangular images or images with transparent regions. When such an
image is drawn, not every pixel in the boundary rectangle will be changed.
GraphicsImportDoesDrawAllPixels lets you try to find out whether this will be the case. For instance,
you might choose to erase the area behind the image before drawing. If the graphics import component
supports this function, drawsAllPixels will contain one of the constants shown above on return.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportDoExportImageFileDialog
Presents a dialog box letting the user save an imported image in a foreign file format.

ComponentResult GraphicsImportDoExportImageFileDialog (
 GraphicsImportComponent ci,
 const FSSpec *inDefaultSpec,
 StringPtr prompt,
 ModalFilterYDUPP filterProc,
 OSType *outExportedType,
 FSSpec *outExportedSpec,
 ScriptCode *outScriptTag
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

inDefaultSpec
A pointer to an FSSpec that suggests a default name for the file. If you don't want to suggest a default
name, pass NIL.

prompt
A pointer to a prompt string that appears in the standard put dialog box; it may be NIL, in which
case a default string is used.

1028 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

filterProc
A modal filter function to be passed to the Mac OS function CustomPutFile; see Inside Macintosh:
Files for more information. If you don't need to filter events, pass NIL.

outExportedType
A pointer to a variable that will receive the type of the export file that was chosen by the user. If you
don't want this information, pass NIL. See File Types and Creators.

outExportedSpec
A pointer to a variable that will receive the FSSpec of the file that was written. If you don't want this
information, pass NIL.

outScriptTag
A pointer to a variable that will receive the script system in which the exported file name is to be
displayed. See Localization Codes. If you don't want this information, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function presents the user with an extended Standard File dialog box that allows the image currently
in use by the graphics import component to be exported to a file, in a format of the user's choice.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtgraphics
qtgraphics.win
QTGraphicsImport
qtgraphimp
qtgraphimp.win

Declared In
ImageCompression.h

GraphicsImportDoExportImageFileToDataRefDialog
Presents a dialog box that lets the user save an imported image in a foreign file format.

Functions 1029
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportDoExportImageFileToDataRefDialog (
 GraphicsImportComponent ci,
 Handle inDataRef,
 OSType inDataRefType,
 CFStringRef prompt,
 ModalFilterYDUPP filterProc,
 OSType *outExportedType,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

inDefaultDataRef
A data reference that specifies the default export location.

inDefaultDataRefType
The type of the data reference that specifies the default export location.

prompt
A reference to a CFString that contains the prompt text string for the dialog.

filterProc
A modal filter function; see ModalFilterYDProc in the QuickTime API Reference.

outExportedType
A pointer to an OSType entity where the type of the exported file will be returned.

outExportedDataRef
A pointer to an handle where the data reference to the exported file will be returned.

outExportedDataRefType
A pointer to an OSType entity where the type of the data reference that points to the exported file
will be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function presents a file dialog that lets the user to specify a file to which the exported data goes and a
format into which image data is exported. By using data references, a long file name or Unicode file name
can be used as a default file name as well as the name of the file into which the export data goes. This function
is equivalent to GraphicsImportDoExportImageFileDialog.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportDraw
Draws an imported image.

1030 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportDraw (
 GraphicsImportComponent ci
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function draws the image currently in use by the graphics import component to the graphics port and
device specified by GraphicsImportSetGWorld (page 1072). GraphicsImportDraw takes into account all
settings previously specified for the image, such as the source rectangle, transformation matrix, clipping
region, graphics mode, and image quality.

Special Considerations

The base graphics importer's drawing function uses the results of
GraphicsImportGetImageDescription (page 1052) andGraphicsImportGetDataOffsetAndSize (page
1039) to create a decompression sequence, which it uses to draw the image. Subsequent draw operations with
the same connection may reuse the decompression sequence. Other graphics importers may override this
behavior.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win
vrmakepano

Declared In
ImageCompression.h

GraphicsImportExportImageFile
Saves an imported image in a foreign file format.

Functions 1031
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportExportImageFile (
 GraphicsImportComponent ci,
 OSType fileType,
 OSType fileCreator,
 const FSSpec *fss,
 ScriptCode scriptTag
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

fileType
The file type for the new image file, such as 'JPEG'. See File Types and Creators.

fileCreator
The file creator for the new image file. See File Types and Creators. You may pass 0, in which
case a default file creator for this file type is used.

fss
A pointer to the FSSpec structure that identifies the file that is to receive the exported image.

scriptTag
The script system in which the file name is to be displayed; see Localization Codes. If you have
established the name and location of the file using one of the Standard File Package functions, use
the script code returned in the reply record (reply.sfScript). Otherwise, specify the system script
by setting the scriptTag parameter to the value smSystemScript. See Inside Macintosh: Files for
more information about script specifications.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates a new file containing the image currently in use by the graphics import component.
The new file is compressed in a format corresponding to the provided file type. If a non-identity matrix has
been applied to the graphics import component, this matrix is applied to the image before export. Since
most image formats don't support nonzero top-left coordinates, the matrix is temporarily adjusted to ensure
that the exported image's bounds have top-left coordinates at (0,0). If the matrix does not map the graphics
import component's source rectangle to a rectangle, there will be extra white space left around the image.

Special Considerations

Graphics import components can save data in several formats, including QuickDraw pictures and QuickTime
Image files. This capability is only needed by applications that perform file format translation. Applications
that only wish to draw the image can use GraphicsImportDraw (page 1030).

Version Notes
In QuickTime 3, the supported export file types are kQTFileTypePicture, kQTFileTypeQuickTimeImage,
kQTFileTypeBMP, kQTFileTypeJPEG, and kQTFileTypePhotoShop. QuickTime 4 uses graphics exporter
components to implement image export.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtgraphics
qtgraphics.win
qtgraphimp

1032 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

qtgraphimp.win

Declared In
ImageCompression.h

GraphicsImportExportImageFileToDataRef
Saves an imported image in a foreign file format.

ComponentResult GraphicsImportExportImageFileToDataRef (
 GraphicsImportComponent ci,
 OSType fileType,
 OSType fileCreator,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

fileType
The Mac OS file type for the new file, which determines the file format.

fileCreator
The creator type of the new file.

dataRef
A data reference that specifies a storage location to which the image is to be exported.

dataRefType
The type of the data reference.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function exports the imported image as a foreign file format specified by fileType. The exported data
will be saved into a storage location specified by a data reference. You can use data reference functions to
create a data reference for a file that has long or Unicode file name. This function is equivalent to
GraphicsImportExportImageFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportGetAliasedDataReference
Deprecated.

Functions 1033
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetAliasedDataReference (
 GraphicsImportComponent ci,
 Handle *dataRef,
 OSType *dataRefType
);

Version Notes
This function is listed for historical purposes only. It may be unsupported or removed in future versions of
QuickTime.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetAsPicture
Creates a QuickDraw picture handle to an imported image.

ComponentResult GraphicsImportGetAsPicture (
 GraphicsImportComponent ci,
 PicHandle *picture
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

picture
Points to a handle to a Picture structure that is to receive the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates a new QuickDraw picture handle containing the image currently in use by the graphics
import component. If possible, the image will remain in the compressed format. For example, if the image
is from a JFIF file, the picture will contain compressed JPEG data. It is the responsibility of the caller to dispose
of the picture handle.

Special Considerations

Graphics import components can save data in several formats, including QuickDraw pictures and QuickTime
Image files. This capability is only needed by applications that perform file format translation. Applications
that only wish to draw the image can use GraphicsImportDraw (page 1030).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

1034 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

qtskins
qtskins.win
SampleDS

Declared In
ImageCompression.h

GraphicsImportGetBaseDataOffsetAndSize64
Undocumented

ComponentResult GraphicsImportGetBaseDataOffsetAndSize64 (
 GraphicsImportComponent ci,
 wide *offset,
 wide *size
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
Undocumented

size
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.1 and later.

Declared In
ImageCompression.h

GraphicsImportGetBoundsRect
Returns the bounding rectangle for drawing an imported image.

ComponentResult GraphicsImportGetBoundsRect (
 GraphicsImportComponent ci,
 Rect *bounds
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

bounds
A pointer to a Rect structure describing the bounding rectangle that has been defined for the image.

Functions 1035
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This is a convenience function. It is implemented by calling GraphicsImportGetMatrix (page 1053) and
GraphicsImportGetNaturalBounds (page 1055) and using the results to calculate the drawing rectangle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtgraphics
qtgraphics.win
vrmakepano

Declared In
ImageCompression.h

GraphicsImportGetClip
Returns the current clipping region for an imported image.

ComponentResult GraphicsImportGetClip (
 GraphicsImportComponent ci,
 RgnHandle *clipRgn
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

clipRgn
A handle to the MacRegion structure that has been defined as the clipping region for the image.
Returns NIL if there is no clipping region.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller must dispose of the returned region handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

1036 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportGetColorSyncProfile
Returns a ColorSync profile for an imported image, if one is embedded in the image file.

ComponentResult GraphicsImportGetColorSyncProfile (
 GraphicsImportComponent ci,
 Handle *profile
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

profile
A pointer to receive a handle containing a ColorSync profile, or NIL if the image file does not contain
one.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some graphics importers don't implement this function. The caller is responsible for disposing of the returned
handle.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
QTtoCG

Declared In
ImageCompression.h

GraphicsImportGetDataFile
Returns the file containing the graphics data for an imported image.

ComponentResult GraphicsImportGetDataFile (
 GraphicsImportComponent ci,
 FSSpec *theFile
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

theFile
A pointer in which to return the FSSpec structure of the file containing the graphics data.

Return Value
See Error Codes. Returns noErr if there is no error. If the data source is not a file, the function returns
paramErr.

Functions 1037
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
Use this function to get the file system specification record for the file where the imported graphics data
resides.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportGetDataFile, these functions include GraphicsImportSetDataFile (page 1065),
GraphicsImportSetDataHandle (page 1066), GraphicsImportGetDataHandle (page 1038),
GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDataHandle
Returns a handle to imported graphics data.

ComponentResult GraphicsImportGetDataHandle (
 GraphicsImportComponent ci,
 Handle *h
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

h
A pointer in which to return a handle to the graphics data.

Return Value
See Error Codes. Returns noErr if there is no error. If the data source is not a handle, the function returns
paramErr.

Discussion
You use this function to get the handle that the graphics data resides in. The handle belongs to the component
instance. You shouldn't dispose of it.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportGetDataHandle, these functions include GraphicsImportSetDataFile (page 1065),

1038 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSetDataHandle (page 1066), GraphicsImportGetDataFile (page 1037),
GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDataOffsetAndSize
Returns the offset and size of the compressed image data within an imported image file.

ComponentResult GraphicsImportGetDataOffsetAndSize (
 GraphicsImportComponent ci,
 unsigned long *offset,
 unsigned long *size
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
A pointer to a value describing the byte offset of the image data from the beginning of the data
source.

size
A pointer to a value describing the size of the image data in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the offset and size of the actual image data within the data source. By default, the offset
returned is 0 and the size returned is the size of the file. However, some graphics import components will
override this function to skip over unneeded information at the beginning or end of the file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent

Functions 1039
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ElectricImageComponent.win

Declared In
ImageCompression.h

GraphicsImportGetDataOffsetAndSize64
Provides a 64-bit version of GraphicsImportGetDataOffsetAndSize.

ComponentResult GraphicsImportGetDataOffsetAndSize64 (
 GraphicsImportComponent ci,
 wide *offset,
 wide *size
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
A pointer to a value describing the byte offset of the image data.

size
A pointer to the size of the data, in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Format-specific importers may delegate this function, in which case the base importer's implementation will
call the 32-bit equivalent, GraphicsImportGetDataOffsetAndSize (page 1039). If neither function is
implemented by the format-specific importer, then both functions will return an offset of 0 and the full size
of the data reference, taking into account any data reference offset and limit.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDataReference
Returns a data reference to imported graphics data.

1040 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetDataReference (
 GraphicsImportComponent ci,
 Handle *dataRef,
 OSType *dataReType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A pointer in which to return a QuickTime data reference. If you don't want this information, pass NIL.

dataReType
A pointer to receive the type of the data reference; see Data References. If you don't want this
information, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You use this function to get the data reference that the graphics data resides in. The
GraphicsImportGetDataHandle (page 1038) andGraphicsImportGetDataFile (page 1037) functions call
GraphicsImportGetDataReference and then manipulate the result accordingly. The caller should dispose
of the returned dataRef.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportGetDataReference, these functions includeGraphicsImportSetDataFile (page 1065),
GraphicsImportSetDataHandle (page 1066), GraphicsImportGetDataFile (page 1037),
GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDataReferenceOffsetAndLimit
Returns the data reference starting offset and data size limit for an imported image.

Functions 1041
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetDataReferenceOffsetAndLimit (
 GraphicsImportComponent ci,
 unsigned long *offset,
 unsigned long *limit
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
A pointer to a value specifying the byte offset of the image data from the beginning of the data
reference.

limit
The offset of the byte following the last byte of the image data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the values set by the GraphicsImportSetDataReferenceOffsetAndLimit (page
1068) function. By default, the offset is 0 and the limit is MaxInt (2^32 - 1).

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportGetDataReferenceOffsetAndLimit, these functions include
GraphicsImportSetDataFile (page 1065), GraphicsImportSetDataHandle (page 1066),
GraphicsImportGetDataFile (page 1037), GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReference (page 1040). These functions allow the data source to be a file, a handle,
or a QuickTime data reference. You only need to use these functions if you open the graphics importer
component directly. You don't need to call them if you use one of the GetGraphicsImporter... functions
such as GetGraphicsImporterForDataRef (page 663). The GetGraphicsImporter... functions
automatically open the graphics importer component and set its data source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDataReferenceOffsetAndLimit64
Provides a 64-bit version of GraphicsImportGetDataReferenceOffsetAndLimit.

1042 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetDataReferenceOffsetAndLimit64 (
 GraphicsImportComponent ci,
 wide *offset,
 wide *limit
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
A pointer to receive a value specifying the offset of the byte data following the last byte of the image
data.

limit
A pointer to the data limit.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The only difference between this function andGraphicsImportGetDataReferenceOffsetAndLimit (page
1041) is that the offset parameter and the limit parameter are 64-bit integers instead of 32-bit integers.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetDefaultClip
Returns the default clipping region for an imported image, if one is stored there.

ComponentResult GraphicsImportGetDefaultClip (
 GraphicsImportComponent ci,
 RgnHandle *defaultRgn
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

defaultRgn
A pointer to a handle to a MacRegion structure to receive the default clipping region.

Return Value
See Error Codes. Returns noErr if there is no error. Returns badComponentSelector if there is no clipping
region.

Functions 1043
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Special Considerations

Most graphics importers don't implement this function. The caller is responsible for disposing of the returned
region.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportGetDefaultGraphicsMode
Returns the default graphics mode for an imported image, if one is stored there.

ComponentResult GraphicsImportGetDefaultGraphicsMode (
 GraphicsImportComponent ci,
 long *defaultGraphicsMode,
 RGBColor *defaultOpColor
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

defaultGraphicsMode
A pointer to receive the graphics mode; see Graphics Transfer Modes.

defaultOpColor
A pointer to receive a color; see Color Constants.

Return Value
See Error Codes. Returns noErr if there is no error. If this function returns badComponentSelector, you
should assume a mode of ditherCopy.

Special Considerations

Most graphics importers don't implement this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

1044 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsImportGetDefaultMatrix
Returns the default matrix for an imported image, if one is stored there.

ComponentResult GraphicsImportGetDefaultMatrix (
 GraphicsImportComponent ci,
 MatrixRecord *defaultMatrix
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

defaultMatrix
Receives a matrix record.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If this function returns badComponentSelector, you should assume an identity matrix.

Special Considerations

Most graphics importers don't implement this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportGetDefaultSourceRect
Returns the default source rectangle for an imported image, if one is stored there.

ComponentResult GraphicsImportGetDefaultSourceRect (
 GraphicsImportComponent ci,
 Rect *defaultSourceRect
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Functions 1045
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

defaultSourceRect
Pointer to receive a Rect structure that describes the default source rectangle.

Return Value
See Error Codes. Returns noErr if there is no error. If this function returns badComponentSelector, the
source rectangle is equal to the image's natural bounds.

Special Considerations

Most graphics importers don't implement this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportGetDestinationColorSyncProfileRef
Retrieves a ColorSync profile from a graphics importer component.

ComponentResult GraphicsImportGetDestinationColorSyncProfileRef (
 GraphicsImportComponent ci,
 CMProfileRef *destinationProfileRef
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

destinationProfileRef
On return, a pointer to an opaque struct containing a ColorSync profile.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportGetDestRect
Returns the destination rectangle for an imported image.

1046 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetDestRect (
 GraphicsImportComponent ci,
 Rect *destRect
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

destRect
A pointer to receive a Rect structure that describes the destination rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If the source rectangle is equal to the natural bounds, this function is equivalent to
GraphicsImportGetBoundsRect (page 1035).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetExportImageTypeList
Returns information about available export formats for a graphics importer.

ComponentResult GraphicsImportGetExportImageTypeList (
 GraphicsImportComponent ci,
 void *qtAtomContainerPtr
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

qtAtomContainerPtr
A pointer to a QuickTime atom container that is to receive the type list.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates and returns a QuickTime atom container of type 'expo' containing information about
the file types that can be exported by the graphics import component. For each file type, the atom container
contains the following child atoms: 'ftyp', the exported file type; 'mime'[atom], the MIME type for this
format (optional); 'ext ', the suggested file extension for this format; and 'desc', a human-readable name
for this format. The 'ftyp' atom contains an OSType; the other atoms contain nonterminated strings.

Special Considerations

It is the responsibility of the caller to dispose of the 'expo' atom container.

Functions 1047
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Version Notes
In QuickTime 3, the supported export file types are kQTFileTypePicture, kQTFileTypeQuickTimeImage,
kQTFileTypeBMP, kQTFileTypeJPEG, and kQTFileTypePhotoShop. In QuickTime 4, the generic graphics
importer builds this atom container from the values returned by the installed graphics exporter components.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtgraphimp
qtgraphimp.win

Declared In
ImageCompression.h

GraphicsImportGetExportSettingsAsAtomContainer
Retrieves settings for image files exported by the graphics importer.

ComponentResult GraphicsImportGetExportSettingsAsAtomContainer (
 GraphicsImportComponent ci,
 void *qtAtomContainerPtr
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

qtAtomContainerPtr
A pointer to a QuickTime atom container that is to receive the settings information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates and returns a new QuickTime atom container which holds information about how
images will be saved by GraphicsImportExportImageFile (page 1031).

Special Considerations

It is the responsibility of the caller to dispose of this atom container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
ImageCompression.h

1048 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportGetFlags
Returns the current flags of a graphics importer component.

ComponentResult GraphicsImportGetFlags (
 GraphicsImportComponent ci,
 long *flags
);

Parameters
ci

The component instance that identifies your connection to a graphics importer component.

flags
Pointer to a long integer to receive the current flags (see below). See these constants:

kGraphicsImporterDontDoGammaCorrection

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorMatching

Declared In
ImageCompression.h

GraphicsImportGetGenericColorSyncProfile
Retrieves the generic colorsync profile for a graphics importer component.

ComponentResult GraphicsImportGetGenericColorSyncProfile (
 GraphicsImportComponent ci,
 OSType pixelFormat,
 void *reservedSetToNULL,
 UInt32 flags,
 Handle *genericColorSyncProfileOut
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

pixelFormat
See Pixel Formats in the QuickTime API Reference.

reservedSetToNULL
Pass NIL.

flags
Currently not used.

Functions 1049
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

genericColorSyncProfileOut
A handle to the the generic colorsync profile for the graphics importer.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportGetGraphicsMode
Returns the graphics transfer mode for an imported image.

ComponentResult GraphicsImportGetGraphicsMode (
 GraphicsImportComponent ci,
 long *graphicsMode,
 RGBColor *opColor
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

graphicsMode
A pointer to a long integer; see Graphics Transfer Modes. The function returns the QuickDraw
graphics transfer mode setting for the image. Set to NIL if you are not interested in this information.

opColor
A pointer to an RGBColor structure. The function returns the color currently specified for blend and
transparent operations. Set to NIL if you are not interested in this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to find out the current graphics transfer mode and color to use for blending and transparent
operations. The default graphics mode is ditherCopy and the default opColor is 50% gray.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetGWorld
Returns the current graphics port and device for drawing an imported image.

1050 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetGWorld (
 GraphicsImportComponent ci,
 CGrafPtr *port,
 GDHandle *gd
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

port
Returns a pointer to the CGrafPort structure for the current destination graphics port. Set to NIL if
you are not interested in this information.

gd
Returns a pointer to the GDevice structure for the destination graphics device. Set to NIL if you are
not interested in this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the graphics port and device that will be used to draw the image. The graphics world
is initialized to the current port and device when the graphics importer component is opened.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetImageCount
Returns the number of images in an imported image file.

ComponentResult GraphicsImportGetImageCount (
 GraphicsImportComponent ci,
 unsigned long *imageCount
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

imageCount
Points to a variable to receive the number of images.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Most image file formats don't support multiple images. Of the image formats supported by QuickTime 4,
however, TIFF files can support multiple images, Photoshop files can contain multiple layers and FlashPix
files can contain multiple resolutions. The base graphics importer returns a count of 1.

Functions 1051
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Special Considerations

Format-specific importers for multiple-image formats should override this function; other importers should
delegate it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
qtgraphics
qtgraphics.win
qtmultiimage
qtmultiimage.win

Declared In
ImageCompression.h

GraphicsImportGetImageDescription
Returns image description information for an imported image.

ComponentResult GraphicsImportGetImageDescription (
 GraphicsImportComponent ci,
 ImageDescriptionHandle *desc
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

desc
Points to a handle to an ImageDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns an ImageDescription structure containing information such as the format of the
compressed data, its bit depth, natural bounds, and resolution.

Special Considerations

The caller is responsible for disposing of the returned image description handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CTMDemo

1052 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Graphic Import-Export
ImagesToQTMovie
ImproveYourImage
TextureRange

Declared In
ImageCompression.h

GraphicsImportGetImageIndex
Returns the current image index for an imported image.

ComponentResult GraphicsImportGetImageIndex (
 GraphicsImportComponent ci,
 unsigned long *imageIndex
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

imageIndex
Points to a variable to receive the image index. Image indexes are one-based; 0 is considered a special
index by some importers, and treated the same as 1 by others. The default image index is 1.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The base graphics importer implements this function. Format-specific importers should delegate it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetMatrix
Returns the transformation matrix to be used for drawing an imported image.

ComponentResult GraphicsImportGetMatrix (
 GraphicsImportComponent ci,
 MatrixRecord *matrix
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Functions 1053
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

matrix
A pointer to a MatrixRecord structure that defines the transformation matrix that applies to the
image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The transformation matrix is initialized to the identity matrix when the graphics import component is
instantiated.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win

Declared In
ImageCompression.h

GraphicsImportGetMetaData
Extracts user data from an imported image file.

ComponentResult GraphicsImportGetMetaData (
 GraphicsImportComponent ci,
 void *userData
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

userData
A pointer to a UserDataRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You may create a new user data structure by calling NewUserData (page 1415). Alternatively, you can obtain
a pointer to an existing one by calling GetMovieUserData (page 225), GetTrackUserData (page 1617) or
GetMediaUserData (page 1595). If the user data passed to GraphicsImportGetMetaData belongs to a
movie, track or media, then whatever user data is extracted will be added to that movie, track or media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1054 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportGetMIMETypeList
Returns a list of MIME types supported by the graphics importer component.

ComponentResult GraphicsImportGetMIMETypeList (
 GraphicsImportComponent ci,
 void *qtAtomContainerPtr
);

Parameters
ci

Specifies an instance of a graphics importer component.

qtAtomContainerPtr
A pointer to an atom container that holds a series of atom triplets for each MIME type, including an
atom of type 'mime'[atom] that contains a list of MIME types supported by the graphics import
component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your graphics import component can support MIME types that correspond to graphics formats it supports.
To make a list of these MIME types available to applications or other software, it must implement
GraphicsImportGetMIMETypeList. To indicate that your graphics import component supports this
function, set the hasMovieImportMIMEList flag in the componentFlags field of your component's
ComponentDescription structure.

Special Considerations

This function does not access any file-specific information.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetNaturalBounds
Returns the bounding rectangle of an imported image.

Functions 1055
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportGetNaturalBounds (
 GraphicsImportComponent ci,
 Rect *naturalBounds
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

naturalBounds
A pointer to a Rect structure that describes the size of the bounding rectangle for the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to determine the native size of the image associated with a graphics importer component.
The natural bounds are always zero-based. This is a convenience function that simply calls
GraphicsImportGetImageDescription (page 1052) and extracts the width and height fields.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DelegateOnlyComponent
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win

Declared In
ImageCompression.h

GraphicsImportGetOverrideSourceColorSyncProfileRef
Retrieves the override ColorSync profile for a graphics importer component.

ComponentResult GraphicsImportGetOverrideSourceColorSyncProfileRef (
 GraphicsImportComponent ci,
 CMProfileRef *outOverrideSourceProfileRef
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

outOverrideSourceProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

1056 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportGetProgressProc
Returns the current progress function for a graphics import operation.

ComponentResult GraphicsImportGetProgressProc (
 GraphicsImportComponent ci,
 ICMProgressProcRecordPtr progressProc
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

progressProc
A pointer to an ICMProgressProc callback.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By default, graphics import components have no progress functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetQuality
Returns the image quality value for an imported image.

ComponentResult GraphicsImportGetQuality (
 GraphicsImportComponent ci,
 CodecQ *quality
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Functions 1057
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

quality
A pointer to a constant (see below) that defines the currently specified quality value. See these
constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The quality value indicates how precisely the decompressor will decompress the image data. Some
decompressors may choose to ignore some image data to improve decompression speed.

Version Notes
With QuickTime 3 the default quality is codecHighQuality.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportGetSourceRect
Returns the current source rectangle for an imported image.

ComponentResult GraphicsImportGetSourceRect (
 GraphicsImportComponent ci,
 Rect *sourceRect
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

sourceRect
A pointer to a Rect structure that defines the source rectangle currently specified for the image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns the current source rectangle, as specified by GraphicsImportSetSourceRect (page
1078). The default source rectangle is the image's natural bounds.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1058 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Related Sample Code
CarbonQTGraphicImport

Declared In
ImageCompression.h

GraphicsImportReadData
Reads imported image data.

ComponentResult GraphicsImportReadData (
 GraphicsImportComponent ci,
 void *dataPtr,
 unsigned long dataOffset,
 unsigned long dataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataPtr
A pointer to a memory block to receive the data.

dataOffset
The offset of the image data within the data reference. The function begins reading image data from
this offset.

dataSize
The number of bytes of image data to read.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function communicates with the appropriate data handler to retrieve image data. Typically, only
developers of graphics importer components will need to use this function. This function should always be
used to retrieve data from the data source, rather than reading the data directly. This function automatically
honors any offset and limit values set with GraphicsImportSetDataReferenceOffsetAndLimit (page
1068). For instance, if the offset is set to 100 and GraphicsImportReadData is called to read bytes from
dataOffset 5, it will return bytes starting at actual offset 105.

Special Considerations

This function is used by format-specific graphics import components to read data from the data source. It is
implemented by the base graphics importer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Functions 1059
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsImportReadData64
Provides a 64-bit version of GraphicsImportReadData.

ComponentResult GraphicsImportReadData64 (
 GraphicsImportComponent ci,
 void *dataPtr,
 const wide *dataOffset,
 unsigned long dataSize
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataPtr
A pointer to a memory block to receive the data.

dataOffset
A pointer to the offset of the image data within the data reference.

dataSize
The number of bytes of image data to read.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is a 64-bit analog of GraphicsImportReadData (page 1059). Format-specific importers may
call either version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSaveAsPicture
Creates a QuickDraw picture file for an imported image.

ComponentResult GraphicsImportSaveAsPicture (
 GraphicsImportComponent ci,
 const FSSpec *fss,
 ScriptCode scriptTag
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

1060 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

fss
A pointer to an FSSpec structure that defines the file to receive the image.

scriptTag
The script system in which the file name is to be displayed; see Localization Codes. If you have
established the name and location of the file using one of the Standard File Package functions, use
the script code returned in the reply record (reply.sfScript). Otherwise, specify the system script
by setting the scriptTag parameter to the value smSystemScript. See Inside Macintosh: Files for
more information about script specifications.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates a new QuickDraw picture file containing the image currently in use by the graphics
import component. If possible, the image will remain in the compressed format. For example, if the image
is from a JFIF file, the picture will contain compressed JPEG data. Applications that only wish to draw the
image can use GraphicsImportDraw (page 1030).

Special Considerations

Graphics import components can save data in several formats, including QuickDraw pictures and QuickTime
Image files. This capability is only needed by applications that perform file format translation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSaveAsPictureToDataRef
Creates a storage location that contains a QuickDraw picture for an imported image.

ComponentResult GraphicsImportSaveAsPictureToDataRef (
 GraphicsImportComponent ci,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location to which the picture is to be saved.

dataRefType
The type of the data reference.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Functions 1061
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
This function saves the imported image as a QuickDraw picture into a storage location specified through a
data reference. You can use Data Reference Utilities to create a data reference for a file that has long or
Unicode file name. This function is equivalent to GraphicsImporterSaveAsPictureFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportSaveAsQuickTimeImageFile
Creates a QuickTime Image file of an imported image.

ComponentResult GraphicsImportSaveAsQuickTimeImageFile (
 GraphicsImportComponent ci,
 const FSSpec *fss,
 ScriptCode scriptTag
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

fss
A pointer to the FSSpec that defines the file to receive the image.

scriptTag
The script system in which the file name is to be displayed; see Localization Codes. If you have
established the name and location of the file using one of the Standard File Package functions, use
the script code returned in the reply record (reply.sfScript). Otherwise, specify the system script
by setting the scriptTag parameter to the value smSystemScript. See Inside Macintosh: Files for
more information about script specifications.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function creates a new QuickTime Image file containing the image currently in use by the graphics
import component. If possible, the image remains in the compressed format. For example, if the image is
from a JFIF file, the QuickTime Image file will contain compressed JPEG data.

Special Considerations

Graphics import components can save data in several formats, including QuickDraw pictures and QuickTime
Image files. This capability is only needed by applications that perform file format translation. Applications
that only wish to draw the image can use the GraphicsImportDraw (page 1030) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1062 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsImportSaveAsQuickTimeImageFileToDataRef
Creates a storage location that contains a QuickTime image of an imported image.

ComponentResult GraphicsImportSaveAsQuickTimeImageFileToDataRef (
 GraphicsImportComponent ci,
 Handle dataRef,
 OSType dataRefType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location to which the picture is to be saved.

dataRefType
The type of the data reference.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function saves the imported image as a QuickTime image into a storage location specified through a
data reference. You can use data reference functions to create a data reference for a file that has long or
Unicode file name. This function is equivalent to GraphicsImportSaveAsQuickTimeImageFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportSetBoundsRect
Defines the rectangle in which to draw an imported image.

ComponentResult GraphicsImportSetBoundsRect (
 GraphicsImportComponent ci,
 const Rect *bounds
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Functions 1063
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

bounds
A pointer to a Rect structure that describes the bounding rectangle into which the image will be
drawn.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You use this function to define the rectangle into which the graphics image should be drawn. The function
creates a transformation matrix to map the image's natural bounds to the specified bounds and then calls
GraphicsImportSetMatrix (page 1075).

Special Considerations

Because this function affects the transformation matrix, you should use GraphicsImportSetMatrix (page
1075) instead of this function if you also need to specify more complex transformations of the matrix.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
qtstreamsplicer.win
ThreadsImporter
vrmakepano
VRMakePano Library

Declared In
ImageCompression.h

GraphicsImportSetClip
Defines the clipping region for drawing an imported image.

ComponentResult GraphicsImportSetClip (
 GraphicsImportComponent ci,
 RgnHandle clipRgn
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

clipRgn
A handle to a MacRegion structure that defines the clipping region in the destination coordinate
system. Set to NIL to disable clipping. The graphics import component makes a copy of this region.

Return Value
See Error Codes. Returns noErr if there is no error.

1064 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Discussion
Because all drawing operations ignore the port clipping region, you must use this function to clip an image.
The graphics importer component draws only that portion of the image that lies within the specified clipping
region.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DropDraw
QTGraphicsImport

Declared In
ImageCompression.h

GraphicsImportSetDataFile
Specifies the file that contains imported graphics data.

ComponentResult GraphicsImportSetDataFile (
 GraphicsImportComponent ci,
 const FSSpec *theFile
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

theFile
A pointer to an FSSpec structure that defines the file containing the graphics data. The returned file
will be opened for read access.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportSetDataFile, these functions include GraphicsImportGetDataFile (page 1037),
GraphicsImportSetDataHandle (page 1066), GraphicsImportGetDataHandle (page 1038),
GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1065
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSetDataHandle
Specifies the handle that references imported graphics data.

ComponentResult GraphicsImportSetDataHandle (
 GraphicsImportComponent ci,
 Handle h
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

h
Specifies a handle containing graphics data. The format of the data in the handle is the same as that
found in a file.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The graphics importer component doesn't make a copy of this data. Therefore, you must not dispose this
handle until the graphics importer has been closed.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportSetDataHandle, these functions include GraphicsImportGetDataFile (page 1037),
GraphicsImportSetDataFile (page 1065), GraphicsImportGetDataHandle (page 1038),
GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataReferenceOffsetAndLimit (page 1068), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
qtdataref
qtgraphimp.win

1066 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

qtmakemovie
ThreadsImportMovie

Declared In
ImageCompression.h

GraphicsImportSetDataReference
Specifies the data reference for imported graphics data.

ComponentResult GraphicsImportSetDataReference (
 GraphicsImportComponent ci,
 Handle dataRef,
 OSType dataReType
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A handle to a QuickTime data reference.

dataReType
The data reference type. See Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Applications typically don't use this function. The GraphicsImportSetDataFile (page 1065) and
GraphicsImportSetDataHandle (page 1066) functions both call this function, with the appropriate data
reference and data reference type. This function makes a copy of the passed data reference, so it is safe to
dispose of the handle immediately after the call.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportSetDataReference, these functions includeGraphicsImportGetDataFile (page 1037),
GraphicsImportSetDataHandle (page 1066), GraphicsImportGetDataHandle (page 1038),
GraphicsImportSetDataFile (page 1065),GraphicsImportSetDataReferenceOffsetAndLimit (page
1068), andGraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data
source to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open
the graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1067
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Declared In
ImageCompression.h

GraphicsImportSetDataReferenceOffsetAndLimit
Specifies the data reference starting offset and data size limit for an imported image.

ComponentResult GraphicsImportSetDataReferenceOffsetAndLimit (
 GraphicsImportComponent ci,
 unsigned long offset,
 unsigned long limit
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

offset
The byte offset of the image data from the beginning of the data reference.

limit
A pointer to a value specifying the offset of the byte following the last byte of the image data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A data reference typically refers to an entire file. However, there are times when the data being referenced
is embedded in a larger file. In these cases, it is necessary to indicate where the data begins in the data
reference and where it ends. This function lets you specify the starting offset and ending offset. All requests
to read data are then relative to the specified offset, and are pinned to the data size, so the graphics import
component cannot accidentally read outside the end (or beginning) of the segment.

Special Considerations

Graphics importer components use QuickTime data handler components to obtain their data. Applications,
however, will use graphics importer functions rather than directly calling a data handler. Besides
GraphicsImportSetDataReferenceOffsetAndLimit, these functions include
GraphicsImportGetDataFile (page 1037), GraphicsImportSetDataHandle (page 1066),
GraphicsImportGetDataHandle (page 1038), GraphicsImportSetDataReference (page 1067),
GraphicsImportSetDataFile (page 1065), and
GraphicsImportGetDataReferenceOffsetAndLimit (page 1041). These functions allow the data source
to be a file, a handle, or a QuickTime data reference. You only need to use these functions if you open the
graphics importer component directly. You don't need to call them if you use one of the
GetGraphicsImporter... functions such as GetGraphicsImporterForDataRef (page 663). The
GetGraphicsImporter... functions automatically open the graphics importer component and set its data
source.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

1068 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSetDataReferenceOffsetAndLimit64
Provides a 64-bit version of GraphicsImportSetDataReferenceOffsetAndLimit.

ComponentResult GraphicsImportSetDataReferenceOffsetAndLimit64 (
 GraphicsImportComponent ci,
 const wide *offset,
 const wide *limit
);

Parameters
ci

A component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

offset
A pointer to a value specifying the byte offset of the image data from the beginning of the data
source.

limit
A pointer to a value specifying the offset of the byte following the last byte of the image data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is a 64-bit analog of GraphicsImportSetDataReferenceOffsetAndLimit (page 1068).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSetDestinationColorSyncProfileRef
Sets the ColorSync profile for a graphics importer component.

ComponentResult GraphicsImportSetDestinationColorSyncProfileRef (
 GraphicsImportComponent ci,
 CMProfileRef newDestinationProfileRef
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

newDestinationProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Functions 1069
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportSetDestRect
Sets the destination rectangle for a graphics import operation.

ComponentResult GraphicsImportSetDestRect (
 GraphicsImportComponent ci,
 const Rect *destRect
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

destRect
Points to a Rect structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to define the rectangle into which the extracted source rectangle should be drawn. This
function creates a transformation matrix to map the source rectangle to the specified destination rectangle
and then calls the GraphicsImportSetMatrix (page 1075) function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSetExportSettingsFromAtomContainer
Determines settings for the export of imported image files.

ComponentResult GraphicsImportSetExportSettingsFromAtomContainer (
 GraphicsImportComponent ci,
 void *qtAtomContainer
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

qtAtomContainer
A pointer to a QuickTime atom container that holds new settings information.

1070 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function extracts export settings from a QuickTime atom container. These settings configure how images
will be saved by GraphicsImportExportImageFile (page 1031).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportSetFlags
Sets the flags for a graphics importer component.

ComponentResult GraphicsImportSetFlags (
 GraphicsImportComponent ci,
 long flags
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

flags
The new flags (see below) to use. See these constants:

kGraphicsImporterDontDoGammaCorrection

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorMatching
DropDraw
ImproveYourImage
SampleDS

Declared In
ImageCompression.h

Functions 1071
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSetGraphicsMode
Sets the graphics transfer mode for an imported image.

ComponentResult GraphicsImportSetGraphicsMode (
 GraphicsImportComponent ci,
 long graphicsMode,
 const RGBColor *opColor
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

graphicsMode
The graphics transfer mode to use for drawing the image; see Graphics Transfer Modes.

opColor
A pointer to an RGBColor structure that describes the color to use for blending and transparent
operations.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to specify the graphics transfer mode and color to use for blending and transparent
operations.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
ImageCompression.h

GraphicsImportSetGWorld
Sets the graphics port and device for drawing an imported image.

ComponentResult GraphicsImportSetGWorld (
 GraphicsImportComponent ci,
 CGrafPtr port,
 GDHandle gd
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

1072 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

port
A pointer to the CGrafPort structure that defines the destination graphics port or graphics world.
Set to NIL to use the current port.

gd
A handled to the GDevice structure that defines the destination graphics device. Set to NIL to use
the current device. If the port parameter specifies a graphics world, set this parameter to NIL to use
that graphics world's device.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The graphics world is initialized to the current port and device when the graphics importer component is
opened. Use this function to select another port or device.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics.win
qtstreamsplicer.win
vrmakepano

Declared In
ImageCompression.h

GraphicsImportSetImageIndex
Specifies the image index for an imported image.

ComponentResult GraphicsImportSetImageIndex (
 GraphicsImportComponent ci,
 unsigned long imageIndex
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

imageIndex
The image index. Image indexes are one-based; 0 is considered a special index by some importers,
and treated the same as 1 by others. The default image index is 1.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The base graphics importer ensures that the image index is no greater than the image count returned by
GraphicsImportGetImageCount (page 1051).

Functions 1073
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Special Considerations

The base graphics importer implements this function. Format-specific importers should delegate it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage
qtgraphics.win
qtmultiimage
qtmultiimage.win

Declared In
ImageCompression.h

GraphicsImportSetImageIndexToThumbnail
Looks for a graphics subimage that contains a thumbnail.

ComponentResult GraphicsImportSetImageIndexToThumbnail (
 GraphicsImportComponent ci
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

Return Value
See Error Codes. If the function does not find a thumbnail, it returns noThumbnailFoundErr. It returns
noErr if there is no error.

Discussion
This function looks for a subimage that contains a thumbnail. If the function finds one, it sets the image index
to that subimage. The base graphics importer's implementation of SetImageIndexToThumbnail works by
looking for the first image index that returns a kQTIndexedImageType metadata item containing the
kQTIndexedImageIsThumbnail tag. Format-specific graphics importers may override this process with
more efficient algorithms.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ImageCompression.h

1074 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

GraphicsImportSetMatrix
Defines the transformation matrix to use for drawing an imported image.

ComponentResult GraphicsImportSetMatrix (
 GraphicsImportComponent ci,
 const MatrixRecord *matrix
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

matrix
A pointer to a matrix structure that specifies how to transform the image during decompression. For
example, you can use a transformation matrix to scale or rotate the image. To set the matrix to identity,
pass NIL in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function establishes the transformation matrix to be applied to an image, which determines where and
how it will be drawn.

Special Considerations

This function affects the bounding rectangle defined for the image. You can specify where an image will be
drawn by setting either a transformation matrix or a bounding rectangle, but it is usually more convenient
for applications to set a bounding rectangle using theGraphicsImportSetBoundsRect (page 1063) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DropDraw
Graphic Import-Export
ImproveYourImage
qtgraphics
qtgraphics.win

Declared In
ImageCompression.h

GraphicsImportSetOverrideSourceColorSyncProfileRef
Sets the override ColorSync profile for a graphics importer component.

Functions 1075
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

ComponentResult GraphicsImportSetOverrideSourceColorSyncProfileRef (
 GraphicsImportComponent ci,
 CMProfileRef newOverrideSourceProfileRef
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

newOverrideSourceProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

GraphicsImportSetProgressProc
Installs a progress procedure to call while drawing an imported image.

ComponentResult GraphicsImportSetProgressProc (
 GraphicsImportComponent ci,
 ICMProgressProcRecordPtr progressProc
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

progressProc
Points to an ICMProgressProc callback. If you pass a value of -1, QuickTime provides a standard
progress function. If you want to remove the existing progress function, pass NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets a progress function that will be installed in the image decompression sequence used to
draw the image.

Special Considerations

If your progress function does any drawing, you should take care to set a safe graphics state before doing
so, and to restore the graphics state afterwards. In particular, the current graphics device may be an offscreen
device.

Version Notes
Introduced in QuickTime 3 or earlier.

1076 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataexchange
qtdataexchange.win
ThreadsExporter
ThreadsImporter

Declared In
ImageCompression.h

GraphicsImportSetQuality
Sets the image quality value for an imported image.

ComponentResult GraphicsImportSetQuality (
 GraphicsImportComponent ci,
 CodecQ quality
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

quality
Contains a constant (see below) that defines the desired image quality for decompression. Values for
this parameter are on the same scale as compression quality. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The quality parameter controls how precisely the decompressor decompresses the image data. Some
decompressors may choose to ignore some image data to improve decompression speed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CTMClip
CTMDemo
TexturePerformanceDemo

Functions 1077
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

TextureRange
ThreadsImporter

Declared In
ImageCompression.h

GraphicsImportSetSourceRect
Sets the source rectangle to use for an imported image.

ComponentResult GraphicsImportSetSourceRect (
 GraphicsImportComponent ci,
 const Rect *sourceRect
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

sourceRect
A pointer to a Rect structure defining the portion of the image to decompress. This rectangle must
lie within the boundary rectangle of the source image. Set to NIL to use the entire image.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function provides a way to use only a portion of the source image.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
DropDraw

Declared In
ImageCompression.h

GraphicsImportValidate
Validates image data for a data reference to an imported image.

ComponentResult GraphicsImportValidate (
 GraphicsImportComponent ci,
 Boolean *valid
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

1078 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

valid
Pointer to a Boolean value. On return, this parameter is set to TRUE if the the graphics importer
component can draw the data reference. If the graphics importer component cannot draw the data
reference, this parameter is set to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error. Not all graphics importer components implement this
function. A component that does not implement the function will return the badComponentSelector result
code. This does not indicate that the file is valid or invalid.

Discussion
This function allows a graphics importer component to determine if its current data reference contains valid
image data. For example, a JFIF graphics importer component might check for the presence of a JFIF marker
at the start of the data stream. This function is provided for applications to use to determine what type of
image data a particular file may contain. Sometimes a file may not have the correct file type or file extension.
In this case, the application will not know which graphics importer component to use. By iterating through
all graphics importer components and calling GraphicsImportValidate for each one, it may be possible
to locate a graphics importer component that can draw the specified file.

Special Considerations

GraphicsImportValidate does not perform an exhaustive check on the file. It is possible for
GraphicsImportValidate to claim a data reference is valid but for GraphicsImportDraw (page 1030) to
return an error due to bad data. Format-specific importers that implement the GraphicsImportValidate
call should have the canMovieImportValidateFile bit set in the flags field of their
ComponentDescription structures.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportWillUseColorMatching
Asks whether GraphicsImportDraw will use color matching if called with the current importer settings.

ComponentResult GraphicsImportWillUseColorMatching (
 GraphicsImportComponent ci,
 Boolean *outWillMatch
);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

outWillMatch
On return, a pointer to a Boolean set to TRUE if the graphics importer will use color matching, FALSE
otherwise.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Functions 1079
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
ImageCompression.h

Callbacks

ModalFilterYDProc
Determines how the Dialog Manager filters events.

typedef Boolean (*ModalFilterYDProcPtr) (DialogPtr theDialog, EventRecord *theEvent,
 short *itemHit, void *yourDataPtr);

If you name your function MyModalFilterYDProc, you would declare it this way:

Boolean MyModalFilterYDProc (
 DialogPtr theDialog,
 EventRecord *theEvent,
 short *itemHit,
 void *yourDataPtr);

Parameters
theDialog

A pointer to the dialog record.

theEvent
A pointer to the event record.

itemHit
The item number.

yourDataPtr
A pointer to the data received from your application, if any.

Return Value
Your ModalFilterProc callback returns a Boolean value that reports whether it handled the event. If your
function returns a value of FALSE, QuickTime processes the event through its own filters. If your function
returns a value of TRUE, QuickTime returns with no further action.

Discussion
TheModalFilterProc callback used with custom file dialogs requires the additionalyourDataPtrparameter.

Declared In
ImageCompression.h

1080 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Data Types

GraphicsExportComponent
Represents a type used by the Graphics Import and Export API.

typedef ComponentInstance GraphicsExportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

GraphicsImportComponent
Represents a type used by the Graphics Import and Export API.

typedef ComponentInstance GraphicsImportComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.h

ModalFilterYDUPP
Represents a type used by the Graphics Import and Export API.

typedef STACK_UPP_TYPE(ModalFilterYDProcPtr) ModalFilterYDUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Constants

GraphicsImportDoesDrawAllPixels Values
Constants passed to GraphicsImportDoesDrawAllPixels.

Data Types 1081
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

enum {
 graphicsImporterDrawsAllPixels = 0,
 graphicsImporterDoesntDrawAllPixels = 1,
 graphicsImporterDontKnowIfDrawAllPixels = 2
};

Declared In
ImageCompression.h

Graphics Importer Flags
Constants that represent the flags of graphics importers.

enum {
 graphicsImporterIsBaseImporter = 1L << 0,
 graphicsImporterCanValidateFile = 1L << 9,
 graphicsImporterSubTypeIsFileExtension = 1L << 12,
 graphicsImporterHasMIMEList = 1L << 14,
 graphicsImporterUsesImageDecompressor = 1L << 23
};
enum {
 kGraphicsImporterDontDoGammaCorrection = 1L << 0,
 kGraphicsImporterTrustResolutionFromFile = 1L << 1,
 kGraphicsImporterEnableSubPixelPositioning = 1L << 2,
 kGraphicsImporterDontUseColorMatching = 1L << 3 /* set this flag (*before* calling
 GraphicsImportGetColorSyncProfile) if you do matching yourself */
};

Declared In
ImageCompression.h

GraphicsImportCreateCGImage Values
Constants passed to GraphicsImportCreateCGImage.

enum {
 kGraphicsImportCreateCGImageUsingCurrentSettings = 1L << 0
};

Declared In
ImageCompression.h

PNG Properties
Constants that represent the properties of PNGs.

1082 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

enum {
 kQTPNGFilterPreference = 'pngf', /* UInt32*/
 kQTPNGFilterBestForColorType = 'bflt',
 kQTPNGFilterNone = 0,
 kQTPNGFilterSub = 1,
 kQTPNGFilterUp = 2,
 kQTPNGFilterAverage = 3,
 kQTPNGFilterPaeth = 4,
 kQTPNGFilterAdaptivePerRow = 'aflt',
 kQTPNGInterlaceStyle = 'ilac', /* UInt32*/
 kQTPNGInterlaceNone = 0,
 kQTPNGInterlaceAdam7 = 1
};

Constants
kQTPNGFilterPreference

UInt32.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kQTPNGInterlaceStyle
UInt32.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

TIFF Properties
Constants that represent the properties of TIFFs.

Constants 1083
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

enum {
 kQTTIFFCompressionMethod = 'tifc', /* UInt32*/
 kQTTIFFCompression_None = 1,
 kQTTIFFCompression_PackBits = 32773L,
 kQTTIFFLittleEndian = 'tife' /* UInt8 (boolean)*/
};
enum {
 kQTTIFFUserDataModelPixelScale = 0x7469830E, /* 3 DOUBLEs */
 kQTTIFFUserDataModelTransformation = 0x746985D8, /* 16 DOUBLEs */
 kQTTIFFUserDataModelTiepoint = 0x74698482, /* n DOUBLEs */
 kQTTIFFUserDataGeoKeyDirectory = 0x746987AF, /* n SHORTs */
 kQTTIFFUserDataGeoDoubleParams = 0x746987B0, /* n DOUBLEs */
 kQTTIFFUserDataGeoAsciiParams = 0x746987B1, /* n ASCIIs */
 kQTTIFFUserDataIntergraphMatrix = 0x74698480 /* 16 or 17 DOUBLEs */
};
enum {
 kQTTIFFUserDataOrientation = 0x74690112, /* 1 SHORT */
 kQTTIFFUserDataTransferFunction = 0x7469012D, /* n SHORTs */
 kQTTIFFUserDataWhitePoint = 0x7469013E, /* 2 RATIONALs */
 kQTTIFFUserDataPrimaryChromaticities = 0x7469013F, /* 6 RATIONALs */
 kQTTIFFUserDataTransferRange = 0x74690156, /* 6 SHORTs */
 kQTTIFFUserDataYCbCrPositioning = 0x74690213, /* 1 SHORT */
 kQTTIFFUserDataReferenceBlackWhite = 0x74690214 /* n LONGs */
};

Constants
kQTTIFFCompressionMethod

UInt32.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kQTTIFFCompression_PackBits
PackBits compression. This value is 32773L

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kQTTIFFLittleEndian
UInt8 (Boolean).

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataModelPixelScale
3 DOUBLEs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataModelTransformation
16 DOUBLEs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataModelTiepoint
N DOUBLEs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

1084 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

kQTTIFFUserDataGeoKeyDirectory
N SHORTs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataGeoDoubleParams
N DOUBLEs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataGeoAsciiParams
N ASCIIs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataIntergraphMatrix
16 or 17 DOUBLEs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataOrientation
1 SHORT.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataTransferFunction
N SHORTs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataWhitePoint
2 RATIONALs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataPrimaryChromaticities
6 RATIONALs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataTransferRange
6 SHORTs.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

kQTTIFFUserDataYCbCrPositioning
1 SHORT.

Available in Mac OS X v10.2 and later.

Declared in ImageCompression.h.

Declared In
ImageCompression.h

Constants 1085
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

1086 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Import and Export Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in MediaHandlers.h

Overview

QuickTime media handler components interpret and manipulate media types, such as sound, video, music,
text, timecodes, and tweens.

Functions by Task

General Data Management

MediaCompare (page 1094)
Lets a media handler determine whether the Movie Toolbox should allow one track to be pasted into
another.

MediaGetMediaInfo (page 1105)
Lets a derived media handler obtain the private data stored in its media.

MediaGetName (page 1106)
Returns the name of the media type.

MediaGetNextStepTime (page 1108)
Searches for the next forward or backward step time from the given media time.

MediaGetOffscreenBufferSize (page 1108)
Determines the dimensions of the offscreen buffer.

MediaGetSampleDataPointer (page 1111)
Allows a derived media handler to obtain a pointer to the sample data for a particular sample number,
the size of that sample, and the index of the sample description associated with that sample.

MediaGetVideoParam (page 1118)
Retrieves the value of the brightness, contrast, hue, sharpness, saturation, black level, or white level
of a video image.

MediaGSetActiveSegment (page 1120)
Informs your derived media handlers of the current active segment.

MediaHasCharacteristic (page 1122)
Called by Movie Toolbox with a specified characteristic to allow tracks to be identified by various
attributes.

Overview 1087
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaInvalidateRegion (page 1128)
Updates the invalidated display region the next time MediaIdle is called.

MediaPreroll (page 1132)
Prepares a media handler for playback.

MediaPutMediaInfo (page 1133)
Lets a derived media handler store proprietary information in its media.

MediaReleaseSampleDataPointer (page 1136)
Balances calls to MediaGetSampleDataPointer to release allocated memory.

MediaSampleDescriptionChanged (page 1138)
Informs a media handler that SetMediaSampleDescription has been called for a specified sample
description.

MediaSetActive (page 1140)
Enables and disables media.

MediaSetHints (page 1146)
Implements the appropriate behavior for the various media hints such as scrub mode and high-quality
mode.

MediaSetMediaTimeScale (page 1147)
Informs a media handler that its media's time scale has been changed.

MediaSetMovieTimeScale (page 1148)
Informs a media handler that the movie's time scale has been changed.

MediaSetNonPrimarySourceData (page 1149)
Allows a media handler to support receiving media data from other media handlers.

MediaSetRate (page 1152)
Sets a media's playback rate.

MediaSetTrackInputMapReference (page 1157)
Provides a derived media handler with an updated input map.

MediaSetVideoParam (page 1159)
Lets you dynamically adjust the brightness, contrast, hue, sharpness, saturation, black level, and white
level of a video image.

MediaTrackEdited (page 1161)
Informs a derived media handler about edits to its track.

MediaTrackPropertyAtomChanged (page 1162)
Notifies the derived media handler whenever its media property atom has changed.

MediaTrackReferencesChanged (page 1162)
Notifies the derived media handler whenever the track references in the movie change.

Managing Graphics Data

MediaGetDrawingRgn (page 1101)
Specifies a portion of the screen that must be redrawn, defined in the movie's display coordinate
system.

MediaGetNextBoundsChange (page 1107)
Determines when a media causes a spatial change to a movie.

1088 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaGetSrcRgn (page 1115)
Specifies an irregular destination display region to the Movie Toolbox.

MediaGetTrackOpaque (page 1116)
Determines whether a media is transparent or opaque when displayed.

MediaSetClip (page 1141)
Specifies changes to a derived media handler's clipping region.

MediaSetDimensions (page 1142)
Informs a media handler when its media's spatial dimensions change.

MediaSetGWorld (page 1144)
Lets a derived media handler learn about changes to its media's graphic environment.

MediaSetMatrix (page 1147)
Tells a media handler about changes to either the movie matrix or the track matrix.

Managing Media Chunks

MediaEmptyAllPurgeableChunks (page 1097)
Force QuickTime to empty all purgeable media chunks in this application.

MediaGetChunkManagementFlags (page 1100)
Returns the current settings of the media chunk management flags.

MediaGetPurgeableChunkMemoryAllowance (page 1110)
Returns the current purgeable chunk memory allowance.

MediaSetChunkManagementFlags (page 1141)
Sets application-global flags that control media chunk management.

MediaSetPurgeableChunkMemoryAllowance (page 1152)
Sets the maximum amount of memory that QuickTime will allow purgeable chunks to occupy.

Managing Your Media Handler Component

MediaGGetStatus (page 1120)
Reports error conditions to the Movie Toolbox.

MediaIdle (page 1125)
Provides processing time to a derived media handler during movie playback.

MediaInitialize (page 1127)
Prepares a derived media handler component to provide access to its media.

Sound Media Handler Functions

MediaGetSoundBalance (page 1111)
Obtains the right/left sound balance of a track.

MediaSetSoundBalance (page 1154)
Sets the right/left sound balance of a track.

Functions by Task 1089
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Supporting Keyboard Focus

MediaNavigateTargetRefCon (page 1131)
Locates the object for keyboard focus.

MediaRefConGetProperty (page 1135)
Returns the current media handler state based on the property type.

MediaRefConSetProperty (page 1136)
Sets a new media handler state based on the property type.

Video Media Handler Functions

MediaGetGraphicsMode (page 1104)
Obtains the graphics mode and blend color values currently in use by any media handler.

MediaSetGraphicsMode (page 1143)
Sets the graphics mode and blend color of any media handler.

Working With The Idle Manager

MediaGGetIdleManager (page 1119)
Retrieves an Idle Manager object from a derived media handler.

MediaGSetIdleManager (page 1121)
Lets a derived media handler report its idling needs.

Supporting Functions

CallComponentExecuteWiredAction (page 1093)
Undocumented

DisposePrePrerollCompleteUPP (page 1093)
Disposes of a PrePrerollCompleteUPP pointer.

MediaChangedNonPrimarySource (page 1094)
Informs a media handler of a change in the source of media data from another media handler.

MediaCurrentMediaQueuedData (page 1095)
Retrieves the timing of the current media in queued data.

MediaDisposeTargetRefCon (page 1096)
Disposes any resources allocated as part of calling MediaHitTestForTargetRefCon.

MediaDoIdleActions (page 1096)
Forces a media handler to perform its idle-time actions.

MediaEmptySampleCache (page 1097)
Deletes any sample data that the media handler has cached.

MediaEnterEmptyEdit (page 1098)
Undocumented

MediaFlushNonPrimarySourceData (page 1098)
Flushes data that a media handler gets from another media handler.

1090 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaForceUpdate (page 1099)
Forces a media update.

MediaGetActionsForQTEvent (page 1099)
Returns an event handler for your media handler.

MediaGetClock (page 1101)
Gets the clock component associated with a media.

MediaGetEffectiveSoundBalance (page 1102)
Gets the effective sound balance setting of a media handler.

MediaGetEffectiveVolume (page 1102)
Gets the effective volume setting for a media handler.

MediaGetErrorString (page 1103)
Undocumented

MediaGetInvalidRegion (page 1104)
Gets the invalid region for a media handler's current display.

MediaGetMediaLoadState (page 1105)
Queried by GetMovieLoadState to help determine a movie's load state.

MediaGetPublicInfo (page 1109)
Undocumented

MediaGetSoundBassAndTreble (page 1112)
Gets the bass and treble settings for a media handler.

MediaGetSoundEqualizerBandLevels (page 1113)
Gets the sound equalizer band levels for a media handler.

MediaGetSoundEqualizerBands (page 1113)
Gets the sound equalizer settings for a media handler.

MediaGetSoundLevelMeterInfo (page 1114)
Gets the right and left sound level meter values for a media handler.

MediaGetSoundLevelMeteringEnabled (page 1114)
Determines if a media handler's sound level metering capability is enabled.

MediaGetSoundOutputComponent (page 1115)
Gets the sound output component associated with a media handler.

MediaGetURLLink (page 1117)
Undocumented

MediaGetUserPreferredCodecs (page 1118)
Retrieves the list of components last passed to the media handler by a call to
MediaSetUserPreferredCodecs.

MediaGSetVolume (page 1122)
Specifies changes to the sound volume setting.

MediaHitTestForTargetRefCon (page 1123)
Locates an object for hit testing.

MediaHitTestTargetRefCon (page 1124)
Detects if the mouse click and its release are in the same location and within the object.

MediaMakeMediaTimeTable (page 1129)
Called by the base media handler to create a media time table.

Functions by Task 1091
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaMCIsPlayerEvent (page 1130)
Undocumented

MediaPrePrerollBegin (page 1131)
Undocumented

MediaPrePrerollCancel (page 1132)
Cancels a media handler pre-preroll operation that was started by MediaPrePrerollBegin.

MediaQueueNonPrimarySourceData (page 1134)
Undocumented

MediaResolveTargetRefCon (page 1137)
Undocumented

MediaSampleDescriptionB2N (page 1138)
Undocumented

MediaSampleDescriptionN2B (page 1139)
Undocumented

MediaSetActionsCallback (page 1139)
Sets an ActionsProc callback for a media handler.

MediaSetDoMCActionCallback (page 1143)
Sets a DoMCActionProc callback for a media handler.

MediaSetHandlerCapabilities (page 1145)
Lets a derived media handler report its capabilities to the base media handler.

MediaSetPublicInfo (page 1151)
Undocumented

MediaSetScreenLock (page 1153)
Locks the display screen for a media handler.

MediaSetSoundBassAndTreble (page 1154)
Sets the bass and treble controls for a media handler.

MediaSetSoundEqualizerBands (page 1155)
Sets sound equalizer bands for a media handler.

MediaSetSoundLevelMeteringEnabled (page 1156)
Enables or disables sound level metering for a media handler.

MediaSetSoundLocalizationData (page 1156)
Supports 3D sound capabilities in a media handler that plays sound.

MediaSetSoundOutputComponent (page 1157)
Sets the sound output component for a media handler.

MediaSetUserPreferredCodecs (page 1158)
Requests that a media handler favor specified codec components when selecting components with
which to play media.

MediaTargetRefConsEqual (page 1160)
Undocumented

MediaTimeBaseChanged (page 1161)
Undocumented

MediaVideoOutputChanged (page 1163)
Undocumented

1092 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

NewPrePrerollCompleteUPP (page 1163)
Allocates a Universal Procedure Pointer for the PrePrerollCompleteProc callback.

Functions

CallComponentExecuteWiredAction
Undocumented

ComponentResult CallComponentExecuteWiredAction (
 ComponentInstance ci,
 QTAtomContainer actionContainer,
 QTAtom actionAtom,
 QTCustomActionTargetPtr target,
 QTEventRecordPtr event
);

Parameters
ci

A component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

actionContainer
A QT atom container that contains the action atom.

actionAtom
The action atom for this wired action.

target
A pointer to a QTCustomActionTargetRecord structure.

event
A pointer to a QTEventRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

DisposePrePrerollCompleteUPP
Disposes of a PrePrerollCompleteUPP pointer.

Functions 1093
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

void DisposePrePrerollCompleteUPP (
 PrePrerollCompleteUPP userUPP
);

Parameters
userUPP

A PrePrerollCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.3 and later.

Declared In
MediaHandlers.h

MediaChangedNonPrimarySource
Informs a media handler of a change in the source of media data from another media handler.

ComponentResult MediaChangedNonPrimarySource (
 MediaHandler mh,
 long inputIndex
);

Parameters
mh

A reference to a media handler. You can obtain this reference from GetMediaHandler (page 1577).

inputIndex
The ID of the entry in the media's input map to which the changed data corresponds.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaCompare
Lets a media handler determine whether the Movie Toolbox should allow one track to be pasted into another.

1094 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaCompare (
 MediaHandler mh,
 Boolean *isOK,
 Media srcMedia,
 ComponentInstance srcMediaComponent
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

isOK
A pointer to a Boolean value. Your media handler must set this value to TRUE if the source media and
the media associated with the media handler have equivalent media settings, so that pasting the two
together would cause no media information loss.

srcMedia
The source media for this operation.

srcMediaComponent
The source media component for this operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaCurrentMediaQueuedData
Retrieves the timing of the current media in queued data.

ComponentResult MediaCurrentMediaQueuedData (
 MediaHandler mh,
 long *milliSecs
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

milliSecs
A pointer to the number of milliseconds to the current data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1095
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaDisposeTargetRefCon
Disposes any resources allocated as part of calling MediaHitTestForTargetRefCon.

ComponentResult MediaDisposeTargetRefCon (
 MediaHandler mh,
 long targetRefCon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

targetRefCon
A reference constant set by the media handler in a call to MediaHitTestForTargetRefCon (page
1123).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaDoIdleActions
Forces a media handler to perform its idle-time actions.

ComponentResult MediaDoIdleActions (
 MediaHandler mh
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1096 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Related Sample Code
SurfaceVertexProgram

Declared In
MediaHandlers.h

MediaEmptyAllPurgeableChunks
Force QuickTime to empty all purgeable media chunks in this application.

ComponentResult MediaEmptyAllPurgeableChunks (
 MediaHandler mh
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaEmptySampleCache
Deletes any sample data that the media handler has cached.

ComponentResult MediaEmptySampleCache (
 MediaHandler mh,
 long sampleNum,
 long sampleCount
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

sampleNum
The ID of the first sample to delete.

sampleCount
The number of samples to delete. Passing -1 means delete sampleNum and all samples after it.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This is an optional media handler function. Most developers will not need to call it.

Functions 1097
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaEnterEmptyEdit
Undocumented

ComponentResult MediaEnterEmptyEdit (
 MediaHandler mh
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaFlushNonPrimarySourceData
Flushes data that a media handler gets from another media handler.

ComponentResult MediaFlushNonPrimarySourceData (
 MediaHandler mh,
 long inputIndex
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

inputIndex
The ID of the entry in the media's input map to which the flushed data corresponds.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

1098 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaForceUpdate
Forces a media update.

ComponentResult MediaForceUpdate (
 MediaHandler mh,
 long forceUpdateFlags
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

forceUpdateFlags
Flags (see below) that define the update to be forced. See these constants:

forceUpdateRedraw

forceUpdateNewBuffer

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetActionsForQTEvent
Returns an event handler for your media handler.

ComponentResult MediaGetActionsForQTEvent (
 MediaHandler mh,
 QTEventRecordPtr event,
 long targetRefCon,
 QTAtomContainer *container,
 QTAtom *atom
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

event
A pointer to a QTEventRecord structure.

Functions 1099
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

targetRefCon
A reference constant set by the media handler in MediaHitTestForTargetRefCon (page 1123).

container
An atom container that you can pass back to the standard controller used for implementing sprite
actions.

atom
An atom you can pass back to the standard controller used for implementing sprite actions.

Return Value
See Error Codes. Returns qtEventWasHandledErr if the event was handled by the media handler. Returns
noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetChunkManagementFlags
Returns the current settings of the media chunk management flags.

ComponentResult MediaGetChunkManagementFlags (
 MediaHandler mh,
 UInt32 *flags
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

flags
A pointer to the constants (see below) that were set by a previous call to
MediaSetChunkManagementFlags (page 1141). See these constants:

kEmptyPurgableChunksOverAllowance

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Do not call this function under QuickTime 5. It could cause a crash.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

1100 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaGetClock
Gets the clock component associated with a media.

ComponentResult MediaGetClock (
 MediaHandler mh,
 ComponentInstance *clock
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

clock
A pointer to a clock component.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetDrawingRgn
Specifies a portion of the screen that must be redrawn, defined in the movie's display coordinate system.

ComponentResult MediaGetDrawingRgn (
 MediaHandler mh,
 RgnHandle *partialRgn
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

partialRgn
A pointer to a handle to a MacRegion structure that defines the screen region to be redrawn, using
the movie's display coordinate system. Note that your component is responsible for disposing of this
region once drawing is complete. Since the base media handler will use this region during redrawing,
it is best to dispose of it when your component is closed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The Movie Toolbox calls this function in order to determine what part of the screen needs to be redrawn. By
default, theMovie Toolbox redraws the entire region that belongs to your component. If your component
determines that only a portion of the screen has changed, and has indicated this to the toolbox by setting

Functions 1101
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

the mPartialDraw flag to 1 in the flagsOut parameter of the MediaIdle (page 1125) function, the toolbox
calls your component's MediaGetDrawingRgn (page 1101) function. Your component returns a region that
defines the changed portion of the track's display region.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetEffectiveSoundBalance
Gets the effective sound balance setting of a media handler.

ComponentResult MediaGetEffectiveSoundBalance (
 MediaHandler mh,
 short *balance
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

balance
A pointer to an integer. The Movie Toolbox returns the current balance setting of the media handler
as a 16-bit, fixed-point value. The high-order 8 bits contain the integer part of the value; the low-order
8 bits contain the fractional part. Valid balance values range from -1.0 to 1.0. Negative values emphasize
the left sound channel, and positive values emphasize the right sound channel; a value of 0 specifies
neutral balance.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetEffectiveVolume
Gets the effective volume setting for a media handler.

1102 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGetEffectiveVolume (
 MediaHandler mh,
 short *volume
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

volume
The media's current volume setting. This value is represented as a 16-bit, fixed-point number. The
high-order 8 bits contain the integer portion; the low-order 8 bits contain the fractional part. Volume
values range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the
volume setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetErrorString
Undocumented

ComponentResult MediaGetErrorString (
 MediaHandler mh,
 ComponentResult theError,
 Str255 errorString
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

theError
An error identifier; see Error Codes.

errorString
A text string that describes the error.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1103
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Declared In
MediaHandlers.h

MediaGetGraphicsMode
Obtains the graphics mode and blend color values currently in use by any media handler.

ComponentResult MediaGetGraphicsMode (
 MediaHandler mh,
 long *mode,
 RGBColor *opColor
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

mode
A pointer to a long integer. The media handler returns the graphics mode currently in use by the
media handler; see Graphics Transfer Modes.

opColor
A pointer to an RGBColor structure. The Movie Toolbox returns the color currently in use by the
media handler. This is the blend value for blends and the transparent color for transparent operations.
The toolbox supplies this value to QuickDraw when you draw in addPin, subPin, blend,
transparent, or graphicsModeStraightAlphaBlend mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetInvalidRegion
Gets the invalid region for a media handler's current display.

ComponentResult MediaGetInvalidRegion (
 MediaHandler mh,
 RgnHandle rgn
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

rgn
A handle to a MacRegion structure that defines an invalid region.

1104 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetMediaInfo
Lets a derived media handler obtain the private data stored in its media.

ComponentResult MediaGetMediaInfo (
 MediaHandler mh,
 Handle h
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

h
A handle to storage containing your media handler's proprietary information. Your media handler
creates this private data when the Movie Toolbox calls your MediaPutMediaInfo (page 1133) function.
Do not dispose of this handle; it is owned by the Movie Toolbox.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you store private data in your media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetMediaLoadState
Queried by GetMovieLoadState to help determine a movie's load state.

Functions 1105
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGetMediaLoadState (
 MediaHandler mh,
 long *mediaLoadState
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

mediaLoadState
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
GetMovieLoadState (page 1358) queries any idling importers associated with a movie, checks if the movie
is fast starting, and queries media handlers. The minimum load state of all of these is then considered to be
the load state of the movie.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetName
Returns the name of the media type.

ComponentResult MediaGetName (
 MediaHandler mh,
 Str255 name,
 long requestedLanguage,
 long *actualLanguage
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

name
The name of the media type; for example, the video media handler returns the string 'video'.

requestedLanguage
The language in which you want the name returned; see Localization Codes.

actualLanguage
A pointer to the actual language in which the name is returned; see Localization Codes

Return Value
See Error Codes. Returns noErr if there is no error.

1106 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
MediaHandlers.h

MediaGetNextBoundsChange
Determines when a media causes a spatial change to a movie.

ComponentResult MediaGetNextBoundsChange (
 MediaHandler mh,
 TimeValue *when
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

when
A pointer to a movie time value, which your media handler must set. Be sure to use the movie's time
base. Use the current effective rate to determine the direction your media is playing. Set this value
to -1 if there are no more changes in the specified direction.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you change the shape of your media's spatial
representation during playback. The Movie Toolbox calls this function only if you have set the
handlerHasSpatial flag to 1 in the flags parameter of MediaSetHandlerCapabilities (page 1145).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

Functions 1107
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaGetNextStepTime
Searches for the next forward or backward step time from the given media time.

ComponentResult MediaGetNextStepTime (
 MediaHandler mh,
 short flags,
 TimeValue mediaTimeIn,
 TimeValue *mediaTimeOut,
 Fixed rate
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

flags
Flags (see below) that specify search parameters. See these constants:

nextTimeStep

mediaTimeIn
A time value that establishes the starting point for the search. This time value is in the media's time
scale.

mediaTimeOut
The step time (the time of the next frame) calculated by the media handler. The media handler should
return the first time value it finds that meets the search criteria specified in the flags parameter.
This time value is in the media's time scale.

rate
The search direction. Negative values search backward from the starting point specified in the
mediaTimeIn parameter. Other values cause a forward search.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows a derived media handler to return the next step time from the specified media time. The
mechanism in QuickTime used for stepping backwards and forwards a frame at a time are the interesting
time calls:GetMovieNextInterestingTime (page 1359),GetTrackNextInterestingTime (page 1373), and
GetMediaNextInterestingTime (page 1346).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetOffscreenBufferSize
Determines the dimensions of the offscreen buffer.

1108 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGetOffscreenBufferSize (
 MediaHandler mh,
 Rect *bounds,
 short depth,
 CTabHandle ctab
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

bounds
A Rect structure that defines the boundaries of your offscreen buffer.

depth
The depth of the offscreen.

ctab
A handle to the ColorTable structure associated with the offscreen buffer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before the base media handler allocates an offscreen buffer for your derived media handler, it calls this
function. The depth and color table used for the buffer are also passed. When this function is called, the
bounds parameter specifies the size that the base media handler intends to use for your offscreen buffer.
You can modify this as appropriate before returning. This capability is useful if your media handler can draw
only at particular sizes. It is also useful for implementing antialiased drawing; you can request a buffer that
is larger than your destination area and have the base media handler scale the image down for you.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetPublicInfo
Undocumented

ComponentResult MediaGetPublicInfo (
 MediaHandler mh,
 OSType infoSelector,
 void *infoDataPtr,
 Size *ioDataSize
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Functions 1109
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

infoSelector
Undocumented

infoDataPtr
Undocumented

ioDataSize
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtskins
qtskins.win

Declared In
MediaHandlers.h

MediaGetPurgeableChunkMemoryAllowance
Returns the current purgeable chunk memory allowance.

ComponentResult MediaGetPurgeableChunkMemoryAllowance (
 MediaHandler mh,
 Size *allowance
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

allowance
A pointer to the allowance in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

1110 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaGetSampleDataPointer
Allows a derived media handler to obtain a pointer to the sample data for a particular sample number, the
size of that sample, and the index of the sample description associated with that sample.

ComponentResult MediaGetSampleDataPointer (
 MediaHandler mh,
 long sampleNum,
 Ptr *dataPtr,
 long *dataSize,
 long *sampleDescIndex
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

sampleNum
The number of the sample that is to be loaded.

dataPtr
A pointer to a pointer to receive the address of the loaded sample data.

dataSize
A pointer to a field that is to receive the size, in bytes, of the sample.

sampleDescIndex
A pointer to a long integer. This function returns an index value to the sample description that
corresponds to the returned sample data. If you do not want this information, set the parameter to
NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns a pointer to the data for a particular sample number from a movie data file. It provides
access to the base media handler's caching services for sample data. It is a service provided by the base media
handler for its clients.

Special Considerations

Each call to this function must be balanced by a call to MediaReleaseSampleDataPointer (page 1136) or
the memory will not be released. This function generally provides better overall performance than
GetMediaSample (page 1583).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundBalance
Obtains the right/left sound balance of a track.

Functions 1111
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGetSoundBalance (
 MediaHandler mh,
 short *balance
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

balance
On return, a pointer to the balance setting for the media handler's track. The balance setting is a
signed 16-bit integer that controls the relative volume of the left and right sound channels. A value
of 0 sets the balance to neutral. Positive values shift the balance to the right channel, negative values
to the left channel. The valid range is 127 (right channel only) to -128 (left channel only).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to get the audio balance on a per-track basis. It works with both mono and stereo sources.
The actual volume of the audio is not changed by this setting, only its relative distribution. This function
operates on sound tracks, music tracks, and Flash tracks containing audio. It may operate on other audio
track types as well; if the the chosen media handler does not support this function, it returns
badComponentSelector. To obtain the media handler for a track, call GetTrackMedia (page 1612) and then
GetMediaHandler (page 1577).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundBassAndTreble
Gets the bass and treble settings for a media handler.

ComponentResult MediaGetSoundBassAndTreble (
 MediaHandler mh,
 short *bass,
 short *treble
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

bass
Undocumented

treble
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

1112 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundEqualizerBandLevels
Gets the sound equalizer band levels for a media handler.

ComponentResult MediaGetSoundEqualizerBandLevels (
 MediaHandler mh,
 UInt8 *bandLevels
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

bandLevels
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
sndequalizer
SurfaceVertexProgram

Declared In
MediaHandlers.h

MediaGetSoundEqualizerBands
Gets the sound equalizer settings for a media handler.

ComponentResult MediaGetSoundEqualizerBands (
 MediaHandler mh,
 MediaEQSpectrumBandsRecordPtr spectrumInfo
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Functions 1113
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

spectrumInfo
A pointer to a MediaEQSpectrumBandsRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundLevelMeterInfo
Gets the right and left sound level meter values for a media handler.

ComponentResult MediaGetSoundLevelMeterInfo (
 MediaHandler mh,
 LevelMeterInfoPtr levelInfo
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

levelInfo
A pointer to a LevelMeterInfo structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundLevelMeteringEnabled
Determines if a media handler's sound level metering capability is enabled.

ComponentResult MediaGetSoundLevelMeteringEnabled (
 MediaHandler mh,
 Boolean *enabled
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

1114 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

enabled
A pointer to a Boolean; it is TRUE if sound level metering is enabled, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSoundOutputComponent
Gets the sound output component associated with a media handler.

ComponentResult MediaGetSoundOutputComponent (
 MediaHandler mh,
 Component *outputComponent
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

outputComponent
An instance of a sound output component.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetSrcRgn
Specifies an irregular destination display region to the Movie Toolbox.

Functions 1115
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGetSrcRgn (
 MediaHandler mh,
 RgnHandle rgn,
 TimeValue atMediaTime
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

rgn
A handle to a MacRegion structure. When the Movie Toolbox calls your function, this region is
initialized to the track's boundary rectangle, which is defined by the width and height fields in the
GetMovieCompleteParams structure that you obtain when the Movie Toolbox calls your
MediaInitialize (page 1127) function. Your media handler may then alter this region as appropriate,
so that it corresponds to the boundaries of your media's display image. Note that this region is in the
track's coordinate system, not the movie's. Do not dispose of this region; it is owned by the Movie
Toolbox.

atMediaTime
The time value at which the Movie Toolbox wants to know what the source region is.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if your media does not completely fill the track
rectangle during playback. The Movie Toolbox calls this function only if you have set the handlerHasSpatial
flag to 1 in the flags parameter of the MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetTrackOpaque
Determines whether a media is transparent or opaque when displayed.

ComponentResult MediaGetTrackOpaque (
 MediaHandler mh,
 Boolean *trackIsOpaque
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

1116 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

trackIsOpaque
A pointer to a Boolean value. Your media handler must set this value to TRUE if your media is
semitransparent (that is, you draw in blend mode); otherwise, leave the flag unchanged.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if your media is semitransparent when displayed
or if you handle display transfer modes. The Movie Toolbox calls this function only if you have set the
handlerHasSpatial or handlerCanTransferMode flag to 1 in the flags parameter of the
MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetURLLink
Undocumented

ComponentResult MediaGetURLLink (
 MediaHandler mh,
 Point displayWhere,
 Handle *urlLink
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

displayWhere
Undocumented

urlLink
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

Functions 1117
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaGetUserPreferredCodecs
Retrieves the list of components last passed to the media handler by a call to MediaSetUserPreferredCodecs.

ComponentResult MediaGetUserPreferredCodecs (
 MediaHandler mh,
 CodecComponentHandle *userPreferredCodecs
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

userPreferredCodecs
A pointer to a handle containing component identifiers. If the media handler currently has a preferred
component list, it will copy that list into a new handle and store the new handle in this variable. If
the media handler does not currently have a preferred component list, it will store NIL in this variable.
The caller must dispose of this handle.

Return Value
See Error Codes. Returns badComponentSelector if the media handler component does not support
this call. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGetVideoParam
Retrieves the value of the brightness, contrast, hue, sharpness, saturation, black level, or white level of a video
image.

ComponentResult MediaGetVideoParam (
 MediaHandler mh,
 long whichParam,
 unsigned short *value
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

1118 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

whichParam
A constant (see below) that specifies the video parameter whose value you want to retrieve. See these
constants:

kMediaVideoParamBrightness

kMediaVideoParamContrast

kMediaVideoParamHue

kMediaVideoParamSharpness

kMediaVideoParamSaturation

kMediaVideoParamBlackLevel

kMediaVideoParamWhiteLevel

value
The actual value of the requested video parameter. The meaning of the values vary depending on
the implementation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function and MediaSetVideoParam (page 1159) are currently used by the MPEG media handler.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGGetIdleManager
Retrieves an Idle Manager object from a derived media handler.

ComponentResult MediaGGetIdleManager (
 MediaHandler mh,
 IdleManager *pim
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

pim
A pointer to a pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You can
get the pointer this parameter points to by calling QTIdleManagerOpen (page 273).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine must be implemented by a derived media handler if the handler needs to report its idling
requirements.

Functions 1119
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaGGetStatus
Reports error conditions to the Movie Toolbox.

ComponentResult MediaGGetStatus (
 MediaHandler mh,
 ComponentResult *statusErr
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

statusErr
A pointer to a component result field. If you have error information that you would like to report to
the Movie Toolbox, place an appropriate result code into the field referred to by this pointer. See
Error Codes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you anticipate that you may encounter an error
when playing your media. Because these errors may include such conditions as low memory or missing
hardware, you should only rarely create a derived media handler that does not support this function. If your
media handler does not support this function, the base media handler always sets the returned result code
to noErr.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGSetActiveSegment
Informs your derived media handlers of the current active segment.

1120 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaGSetActiveSegment (
 MediaHandler mh,
 TimeValue activeStart,
 TimeValue activeDuration
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

activeStart
The starting time of the active segment to play. This time value is expressed in your movie's time
scale.

activeDuration
A time value that specifies the duration of the active segment. This value is expressed in the movie's
time scale.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Using SetMovieActiveSegment (page 285), an application can limit the time segment of the movie that
will be used for play back. Derived media handlers are given the values for the active segment when this
function is called by the Movie Toolbox. Active segment information is usually only needed by media handlers
that perform their own scheduling.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaGSetIdleManager
Lets a derived media handler report its idling needs.

ComponentResult MediaGSetIdleManager (
 MediaHandler mh,
 IdleManager im
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

im
A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1121
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
This routine must be implemented by a derived media handler if the handler needs to retrieve and report
its idling requirements.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaGSetVolume
Specifies changes to the sound volume setting.

ComponentResult MediaGSetVolume (
 MediaHandler mh,
 short volume
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

volume
The media's current volume setting. This value is represented as a 16-bit, fixed-point number. The
high-order 8 bits contain the integer portion; the low-order 8 bits contain the fractional part. Volume
values range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the
volume setting. The Movie Toolbox scales your media's volume in light of the track's and movie's
volume settings, but it does not take into account the system speaker volume setting. This value is
appropriate for use with the Sound Manager.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if it can play sounds.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaHasCharacteristic
Called by Movie Toolbox with a specified characteristic to allow tracks to be identified by various attributes.

1122 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaHasCharacteristic (
 MediaHandler mh,
 OSType characteristic,
 Boolean *hasIt
);

Parameters
mh

The Movie Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

characteristic
A constant that specifies the attribute of a track. Examples of characteristics that are currently defined
are the constants VisualMediaCharacteristic and AudioMediaCharacteristic.

hasIt
A pointer to a Boolean value that specifies whether the track has the attribute specified in the
characteristic parameter. Set this value to TRUE if the attribute applies to your media handler; otherwise,
set this value to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should implement this function for any media handler that has characteristics in addition to spatial ones.
If you have set the handlerHasSpatial capabilities flag, the base media handler automatically handles
the VisualMediaCharacteristic constant for you.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
MediaHandlers.h

MediaHitTestForTargetRefCon
Locates an object for hit testing.

ComponentResult MediaHitTestForTargetRefCon (
 MediaHandler mh,
 long flags,
 Point loc,
 long *targetRefCon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Functions 1123
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

flags
Flags (see below) that define the hit. The mHitTestImage and mHitTestInvisible flags are set
by the Standard Controller before this call is made. See these constants:

mHitTestBounds

mHitTestImage

mHitTestInvisible

mHitTestIsClick

loc
The location of the mouse.

targetRefCon
Returns a reference constant representing an object you're interested in. If this reference constant is
not 0, your media handler will receive calls to MediaGetActionsForQTEvent (page 1099).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaHitTestTargetRefCon
Detects if the mouse click and its release are in the same location and within the object.

ComponentResult MediaHitTestTargetRefCon (
 MediaHandler mh,
 long targetRefCon,
 long flags,
 Point loc,
 Boolean *wasHit
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

targetRefCon
A reference constant set by the media handler in a call to MediaHitTestForTargetRefCon (page
1123).

flags
Flags (see below) that define the hit. See these constants:

mHitTestBounds

mHitTestImage

mHitTestInvisible

mHitTestIsClick

1124 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

loc
The location of the mouse.

wasHit
A pointer to a Boolean; it is TRUE if there was a hit, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called after MediaGetActionsForQTEvent (page 1099) if a reference constant was set in
MediaHitTestForTargetRefCon (page 1123).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaIdle
Provides processing time to a derived media handler during movie playback.

ComponentResult MediaIdle (
 MediaHandler mh,
 TimeValue atMediaTime,
 long flagsIn,
 long *flagsOut,
 const TimeRecord *movieTime
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

atMediaTime
The current time, in your media's time base. You can use this value to obtain the appropriate samples
and sample descriptions from your media (using the Movie Toolbox's GetMediaSample (page 1583)
function). Your media handler may then work with the sample data and descriptions as appropriate.

Functions 1125
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

flagsIn
Contains flags (see below) that indicate what the Movie Toolbox wants your media handler to do.
These flags are applicable only to media handlers that perform their own scheduling. The toolbox
may use none, or it may set one or more flag to 1. Your handler should examine the flagsIn parameter
each time the Movie Toolbox calls its MediaIdle function. The flags in this parameter indicate the
actions that your handler may perform. In addition, when you return from your MediaIdle function,
you should report what you did using the flagsOut parameter. You tell the base media handler that
you perform your own scheduling by setting the handlerNoScheduler flag to 1 in the flags
parameter of the MediaSetHandlerCapabilities (page 1145) function. See these constants:

mMustDraw

mAtEnd

mPartialDraw

mPreflightDraw

flagsOut
Flags (see below) that are contained in a pointer to a long integer that your media handler uses to
indicate to the Movie Toolbox what the handler did. You must always set the values of these flags
appropriately. See these constants:

mDidDraw

mNeedsToDraw

movieTime
A pointer to the movie time value corresponding to the atMediaTime parameter. Note that this may
differ from the current value returned by GetMovieTime (page 223).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
From time to time, your derived media handler component may determine that only a portion of the available
drawing area needs to be redrawn. You can signal that condition to the base media handler component by
setting the mPartialDraw flag to 1 in the flags your component returns to the Movie Toolbox from your
MediaIdle function. You return these flags using the flagsOut parameter. Whenever you set this flag to
1, the Movie Toolbox calls your component'sMediaGetDrawingRgn (page 1101) function in order to determine
the portion of the image that needs to be redrawn.

As an example, consider a full-screen animation. Only rarely is the entire image in motion. Typically, only a
small portion of the screen image moves. By using partial redrawing, you can significantly improve the
playback performance of such a movie.

Your derived media handler should support this function if you need to do work during movie playback. If
you set the handlerNoIdle flag to 1 in the flags parameter of MediaSetHandlerCapabilities (page
1145), the Movie Toolbox does not call your MediaIdle function. If you encounter an error, save the result
code. The Movie Toolbox polls you for status information using MediaGGetStatus (page 1120).

Special Considerations

If your media handler changes any of the settings of the movie's graphics port or graphics world, be sure to
restore the original settings before you exit. In addition, note that you may be drawing into a black-and-white
graphics port. Finally, be aware that the Movie Toolbox also uses this function to obtain data for QuickDraw
pictures. Therefore, if your media handler does not use QuickDraw when drawing to the screen, be sure to
examine the picSave field in the graphics port so that you can detect when the Movie Toolbox wants to
save an image. Your media handler is then responsible for performing the appropriate display processing.

1126 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaInitialize
Prepares a derived media handler component to provide access to its media.

ComponentResult MediaInitialize (
 MediaHandler mh,
 GetMovieCompleteParams *gmc
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

gmc
A pointer to a GetMovieCompleteParams structure. You can obtain information about the current
media from this structure. You should copy any values you need to save into your derived media
handler's local data area. Because this data structure is owned by the Movie Toolbox, you do not need
to worry about disposing of any of the data in it.

Return Value
See Error Codes. Returns noErr if there is no error. If you return an error, the Movie Toolbox disables the
track that uses your media. In cases where your media has just been created, the Movie Toolbox immediately
disposes of your media.

Discussion
This function gives your media handler an opportunity to get ready to support the Movie Toolbox. As part
of these preparations, your derived media handler should report its capabilities to the base media handler
by calling MediaSetHandlerCapabilities (page 1145). You may choose to examine the data in the
GetMovieCompleteParams structure; you may also save values from this structure. If you save references
to structures (such as the matte pixel map), do not dispose of the memory associated with these structures.
The Movie Toolbox owns these structures.

Note that the Movie Toolbox may call other functions supported by your media handler before it calls your
MediaInitialize function. In particular, it may call your MediaGetMediaInfo (page 1105) and
MediaPutMediaInfo (page 1133) functions. However, before the Movie Toolbox tries to do anything with
the data in your media, it will call your MediaInitialize function. The Movie Toolbox loads the movie's
data using functions that are supported by the base media handler; your media handler does not have to
support those functions.

Special Considerations

All derived media handlers should support this function. In addition, if your media handler saves values from
the GetMovieCompleteParams structure that may change, be sure to support the corresponding functions
that allow the Movie Toolbox to report changes to your media handler. For example, if your handler saves
the movie time scale from the movieScale field, you should also support the
MediaSetMovieTimeScale (page 1148) function.

Functions 1127
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SurfaceVertexProgram

Declared In
MediaHandlers.h

MediaInvalidateRegion
Updates the invalidated display region the next time MediaIdle is called.

ComponentResult MediaInvalidateRegion (
 MediaHandler mh,
 RgnHandle invalRgn
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

invalRgn
A handle to a region that has been invalidated. Your media handler should not dispose or modify this
region. The invalRgn parameter is never NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called by the Movie Toolbox when UpdateMovie (page 347) or
InvalidateMovieRegion (page 241) is called with a region that intersects your media's track. Derived media
handlers need to implement MediaInvalidateRegion only if they can perform efficient updates on a
portion of their display area.

If a media handler implements this function, it is responsible for ensuring that the appropriate areas of the
screen are updated on the next call to MediaIdle (page 1125). If a media handler does not implement this
function, the base media handler sets the mMustDraw flag the next time MediaIdle is called.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

1128 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaMakeMediaTimeTable
Called by the base media handler to create a media time table.

ComponentResult MediaMakeMediaTimeTable (
 MediaHandler mh,
 long **offsets,
 TimeValue startTime,
 TimeValue endTime,
 TimeValue timeIncrement,
 short firstDataRefIndex,
 short lastDataRefIndex,
 long *retDataRefSkew
);

Parameters
mh

The media handler to create the time table. You can obtain this reference from
GetMediaHandler (page 1577).

offsets
A handle to an unlocked relocatable memory block that is allocated by an application or other software
when it calls QTMovieNeedsTimeTable (page 1450), GetMaxLoadedTimeInMovie (page 1342),
MakeTrackTimeTable (page 1382), orMakeMediaTimeTable (page 1380). Your derived media handler
returns the time table for the media in this block. Your media handler has to resize the handle.

startTime
The first point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

endTime
The last point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

timeIncrement
The resolution of the time table. The values in a time table are for a points in the media, and these
points are separated by the amount of time specified by this parameter. The time value is expressed
in the media's time coordinate system.

firstDataRefIndex
The first in the range of data reference indexes you are querying.

lastDataRefIndex
The last in the range of data reference indexes you are querying.

retDataRefSkew
A pointer to the number of entries, i.e., the number of entries in the offset table per data reference.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The Movie Toolbox calls your derived media handler's MediaMakeMediaTimeTable function whenever an
application or other software calls the Toolbox's QTMovieNeedsTimeTable (page 1450),
GetMaxLoadedTimeInMovie (page 1342),MakeTrackTimeTable (page 1382), orMakeMediaTimeTable (page
1380) function. When an application or other software calls one of these functions, it allocates an unlocked
relocatable memory block for the time table to be returned and passes a handle to it in the offsets parameter.
Your derived media handler must resize the block to accommodate the time table it returns.

Functions 1129
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

The time table your derived media handler returns is a two-dimensional array of long integers that is organized
so that each row in the table contains values for one data reference. The first column in the table contains
values for the time in the media specified by the startTime parameter, and each subsequent column
contains values for the point in the media that is later by the value specified by the timeIncrement parameter.
Each long integer value in the table specifies the offset, in bytes, from the beginning of the data reference
for that point in the media.

Special Considerations

The number of columns in the table returned by your derived media handler must be equal to (endTime
- startTime) / timeIncrement, rounded up. It must also return the offset to the next row of the time
table, in long integers, in the retdataRefSkew parameter. Because of alignment issues, this value is not
always equal to (endTime - startTime) / timeIncrement rounded up.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaMCIsPlayerEvent
Undocumented

ComponentResult MediaMCIsPlayerEvent (
 MediaHandler mh,
 const EventRecord *e,
 Boolean *handledIt
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

e
A pointer to an EventRecord structure.

handledIt
A pointer to a Boolean; it is TRUE if the event was handled, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

1130 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaNavigateTargetRefCon
Locates the object for keyboard focus.

ComponentResult MediaNavigateTargetRefCon (
 MediaHandler mh,
 long navigation,
 long *refCon
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

navigation
Flags (see below) that define the direction of navigation. These flags are set by the standard controller,
which follows the user's interaction with the tab key, shift key, and mouse. See these constants:

kRefConNavigationNext

kRefConNavigationPrevious

refCon
Returns a reference constant representing an object you're interested in. If this reference constant is
not 0, your media handler will receive calls to MediaRefConSetProperty (page 1136) and
MediaRefConGetProperty (page 1135).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaPrePrerollBegin
Undocumented

ComponentResult MediaPrePrerollBegin (
 MediaHandler mh,
 TimeValue time,
 Fixed rate,
 PrePrerollCompleteUPP completeProc,
 void *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

time
Undocumented

Functions 1131
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

rate
Undocumented

completeProc
A PrePrerollCompleteProc callback.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaPrePrerollCancel
Cancels a media handler pre-preroll operation that was started by MediaPrePrerollBegin.

ComponentResult MediaPrePrerollCancel (
 MediaHandler mh,
 void *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

refcon
The reference constant that was passed to your PrePrerollCompleteProc callback.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaPreroll
Prepares a media handler for playback.

1132 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaPreroll (
 MediaHandler mh,
 TimeValue time,
 Fixed rate
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

time
The starting time of the media segment to play. This time value is expressed in your movie's time
scale.

rate
The rate at which the Movie Toolbox expects to play the media. This is a 32-bit, fixed-point number.
Positive values indicate forward rates; negative values correspond to reverse rates.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaPutMediaInfo
Lets a derived media handler store proprietary information in its media.

ComponentResult MediaPutMediaInfo (
 MediaHandler mh,
 Handle h
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

h
A handle to storage into which your media handler may place its proprietary information. You
determine the format and content of the data that you store in this handle. Your media handler must
resize the handle as appropriate before you exit this function. Do not dispose of this handle; it is
owned by the Movie Toolbox. The Movie Toolbox uses the base media handler to write this data to
your media.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1133
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
Whenever the Movie Toolbox opens your media, it provides this private data to your media handler by calling
your MediaGetMediaInfo (page 1105) function. Note that the Movie Toolbox may call this function before
it calls your MediaInitialize (page 1127) function. Your derived media handler should support this function
if you need to store private data in your media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaQueueNonPrimarySourceData
Undocumented

ComponentResult MediaQueueNonPrimarySourceData (
 MediaHandler mh,
 long inputIndex,
 long dataDescriptionSeed,
 Handle dataDescription,
 void *data,
 long dataSize,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 const ICMFrameTimeRecord *frameTime,
 ICMConvertDataFormatUPP transferProc,
 void *refCon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

inputIndex
The ID of the entry in the media's input map to which the queued data corresponds.

dataDescriptionSeed
Undocumented

dataDescription
Undocumented

data
Undocumented

dataSize
Undocumented

asyncCompletionProc
A pointer to an ICMCompletionProcRecord structure.

frameTime
A pointer to an ICMFrameTimeRecord structure.

1134 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

transferProc
Undocumented

refCon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaRefConGetProperty
Returns the current media handler state based on the property type.

ComponentResult MediaRefConGetProperty (
 MediaHandler mh,
 long refCon,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

refCon
The reference constant set by the media handler in MediaNavigateTargetRefCon (page 1131).

propertyType
The property type sent from the standard controller. Property type values are listed below. See these
constants:

kRefConPropertyCanHaveFocus

kRefConPropertyHasFocus

propertyValue
A pointer to the value that was assigned. Its size is based on the property type.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine is called with the reference constant set in MediaNavigateTargetRefCon (page 1131) to get
the current media handler state for a given property type.

Version Notes
Introduced in QuickTime 6.

Functions 1135
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaRefConSetProperty
Sets a new media handler state based on the property type.

ComponentResult MediaRefConSetProperty (
 MediaHandler mh,
 long refCon,
 long propertyType,
 void *propertyValue
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

refCon
The reference constant set by the media handler in MediaNavigateTargetRefCon (page 1131).

propertyType
The property type sent from the standard controller. Property type values are listed below. See these
constants:

kRefConPropertyCanHaveFocus

kRefConPropertyHasFocus

propertyValue
A pointer to the value to assign. Its size is based on the property type.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called with the reference constant that was set by MediaNavigateTargetRefCon (page
1131) to set a new media handler state for a given property type.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaReleaseSampleDataPointer
Balances calls to MediaGetSampleDataPointer to release allocated memory.

1136 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaReleaseSampleDataPointer (
 MediaHandler mh,
 long sampleNum
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

sampleNum
The number of the sample that is to be released.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function should be used only by derived media handlers.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaResolveTargetRefCon
Undocumented

ComponentResult MediaResolveTargetRefCon (
 MediaHandler mh,
 QTAtomContainer container,
 QTAtom atom,
 long *targetRefCon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

container
Undocumented

atom
Undocumented

targetRefCon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 1137
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSampleDescriptionB2N
Undocumented

ComponentResult MediaSampleDescriptionB2N (
 MediaHandler mh,
 SampleDescriptionHandle sampleDescriptionH
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

sampleDescriptionH
A handle to a SampleDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSampleDescriptionChanged
Informs a media handler that SetMediaSampleDescription has been called for a specified sample description.

ComponentResult MediaSampleDescriptionChanged (
 MediaHandler mh,
 long index
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

index
The index of the sample description that has been changed.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

1138 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSampleDescriptionN2B
Undocumented

ComponentResult MediaSampleDescriptionN2B (
 MediaHandler mh,
 SampleDescriptionHandle sampleDescriptionH
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

sampleDescriptionH
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetActionsCallback
Sets an ActionsProc callback for a media handler.

ComponentResult MediaSetActionsCallback (
 MediaHandler mh,
 ActionsUPP actionsCallbackProc,
 void *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

actionsCallbackProc
A Universal Procedure Pointer to an ActionsProc callback.

refcon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your function needs.

Functions 1139
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetActive
Enables and disables media.

ComponentResult MediaSetActive (
 MediaHandler mh,
 Boolean enableMedia
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

enableMedia
A Boolean value that indicates whether your media is enabled or disabled. If this parameter is set to
TRUE, your media is enabled; if the parameter is FALSE, your media is disabled.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you perform your own scheduling or if your media
handler uses significant amounts of temporary storage. If you are doing your own scheduling (that is, you
have set the handlerNoScheduler flag to 1 in the flags parameter of the
MediaSetHandlerCapabilities (page 1145) function), your media handler needs to keep account of the
media's active state so that you can properly respond to Movie Toolbox requests. When your media is disabled,
you may choose to dispose of temporary storage you have allocated, so that the storage is available to other
programs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SurfaceVertexProgram

Declared In
MediaHandlers.h

1140 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaSetChunkManagementFlags
Sets application-global flags that control media chunk management.

ComponentResult MediaSetChunkManagementFlags (
 MediaHandler mh,
 UInt32 flags,
 UInt32 flagsMask
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

flags
Constants (see below) that determine chunk management. See these constants:

kEmptyPurgableChunksOverAllowance

flagsMask
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaSetClip
Specifies changes to a derived media handler's clipping region.

ComponentResult MediaSetClip (
 MediaHandler mh,
 RgnHandle theClip
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

theClip
A handle to your media's clipping region. Your media handler is responsible for disposing of this
region when you are done with it. Note that this region is defined in the movie's coordinate system.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1141
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
Your derived media handler should support this function if you draw during playback. The Movie Toolbox
calls this function only if you have set the handlerHasSpatial and handlerCanClip flags to 1 in the
flags parameter of the MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetDimensions
Informs a media handler when its media's spatial dimensions change.

ComponentResult MediaSetDimensions (
 MediaHandler mh,
 Fixed width,
 Fixed height
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

width
The width, in pixels, of the track rectangle. This field, along with the height field, specifies a rectangle
that surrounds the image that is displayed when the current media is played. This value corresponds
to the x coordinate of the lower-right corner of the rectangle and is expressed as a fixed-point number.

height
The height, in pixels, of the track rectangle. This value corresponds to the y coordinate of the lower-right
corner of the rectangle and is expressed as a fixed-point number.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You obtain the initial dimension information from the width and height fields of the
GetMovieCompleteParams structure that the Movie Toolbox provides to your MediaInitialize (page
1127) function. Your derived media handler should support this function if you draw during playback.

Special Considerations

The Movie Toolbox calls this function only if you have set the handlerHasSpatial flag to 1 in the flags
parameter of the MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1142 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Declared In
MediaHandlers.h

MediaSetDoMCActionCallback
Sets a DoMCActionProc callback for a media handler.

ComponentResult MediaSetDoMCActionCallback (
 MediaHandler mh,
 DoMCActionUPP doMCActionCallbackProc,
 void *refcon
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

doMCActionCallbackProc
A Universal Procedure Pointer to a DoMCActionProc callback.

refcon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetGraphicsMode
Sets the graphics mode and blend color of any media handler.

ComponentResult MediaSetGraphicsMode (
 MediaHandler mh,
 long mode,
 const RGBColor *opColor
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

mode
The graphics mode of the media handler; see Graphics Transfer Modes.

Functions 1143
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

opColor
A pointer to the color for use in blending and transparent operations. The media handler passes this
color to QuickDraw as appropriate when you draw in addPin, subPin, blend, transparent, or
graphicsModeStraightAlphaBlend mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtactiontargets
qtactiontargets.win
vrmovies
vrmovies.win
vrscript.win

Declared In
MediaHandlers.h

MediaSetGWorld
Lets a derived media handler learn about changes to its media's graphic environment.

ComponentResult MediaSetGWorld (
 MediaHandler mh,
 CGrafPtr aPort,
 GDHandle aGD
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

aPort
A pointer to the new graphics port. Note that this may be either a color or a black-and-white port.

aGD
A handle to the new graphics device.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you perform specialized graphics processing or
if you are using the Image Compression Manager to decompress your media. Note that when the Movie
Toolbox calls your MediaIdle (page 1125) function, it supplies you with information about the current graphics
environment. Consequently, you do not need to support the MediaSetGWorld function in order to draw

1144 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

during playback. However, if your media data is compressed and you are using the Image Compression
Manager to decompress sequences, you may need to provide updated graphics environment information
before playback.

You obtain the initial graphics environment information from the moviePort and movieGD fields of the
GetMovieCompleteParams structure that the Movie Toolbox provides to your MediaInitialize (page
1127) function. The Movie Toolbox calls this function only if you have set the handlerHasSpatial flag to 1
in the flags parameter of the MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetHandlerCapabilities
Lets a derived media handler report its capabilities to the base media handler.

ComponentResult MediaSetHandlerCapabilities (
 MediaHandler mh,
 long flags,
 long flagsMask
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

flags
Flags (see below) that specify the capabilities of your derived media handler. This parameter contains
a number of flags, each of which corresponds to a particular feature. You may work with more than
one flag at a time. Be sure to set unused flags to 0. See these constants:

handlerHasSpatial

handlerCanClip

handlerCanMatte

handlerCanTransferMode

handlerNeedsBuffer

handlerNoIdle

handlerNoScheduler

handlerWantsTime

handlerCGrafPortOnly

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the base media handler to consider, you must set the
corresponding bit in the flagsMask parameter to 1. Set unused flags to 0. This allows you to work
with a single flag without altering the settings of other flags.

Functions 1145
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your media handler may call this function at any time. In general, you should call it from your
MediaInitialize (page 1127) function , so that you report your capabilities to the base media handler before
the Movie Toolbox starts working with your media. You may call this function again later, in response to
changing conditions. For example, if your media handler receives a matrix that it cannot accommodate from
the MediaSetMatrix (page 1147) function, you can allow the base media handler to handle your drawing by
calling this function and setting the handlerNeedsBuffer flag in both the flags parameter and the
flagsMask parameter to 1.

Special Considerations

Note that this function is provided by the base media handler; your media handler does not support this
function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
qdmediahandler
qdmediahandler.win

Declared In
MediaHandlers.h

MediaSetHints
Implements the appropriate behavior for the various media hints such as scrub mode and high-quality mode.

ComponentResult MediaSetHints (
 MediaHandler mh,
 long hints
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

hints
All hint bits that currently apply to the given media.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When an application callsSetMoviePlayHints (page 1485) orSetMediaPlayHints (page 1475), your media
handler's MediaSetHints routine is called.

1146 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetMatrix
Tells a media handler about changes to either the movie matrix or the track matrix.

ComponentResult MediaSetMatrix (
 MediaHandler mh,
 MatrixRecord *trackMovieMatrix
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

trackMovieMatrix
A pointer to the matrix that transforms your media's pixels into the movie's coordinate system. The
Movie Toolbox obtains this matrix by concatenating the track matrix and the movie matrix. You should
use this matrix whenever you are displaying graphical data from your media.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You obtain the initial matrix from the trackMovieMatrix field of the GetMovieCompleteParams structure
that the Movie Toolbox provides to your MediaInitialize (page 1127) function. Your derived media handler
should support this function if you draw during playback.

Special Considerations

The Movie Toolbox calls this function only if you have set the handlerHasSpatial flag to 1 in the flags
parameter of the MediaSetHandlerCapabilities (page 1145) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetMediaTimeScale
Informs a media handler that its media's time scale has been changed.

Functions 1147
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaSetMediaTimeScale (
 MediaHandler mh,
 TimeScale newTimeScale
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

newTimeScale
Specifies your media's new time scale.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You obtain the initial media time scale information from the mediaScale field of the
GetMovieCompleteParams structure that the Movie Toolbox provides to your MediaInitialize (page
1127) function.

Special Considerations

Your derived media handler should support this function if your media handler stores time information that
pertains to its media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetMovieTimeScale
Informs a media handler that the movie's time scale has been changed.

ComponentResult MediaSetMovieTimeScale (
 MediaHandler mh,
 TimeScale newTimeScale
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

newTimeScale
The movie's new time scale.

Return Value
See Error Codes. Returns noErr if there is no error.

1148 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
You obtain the initial movie time scale information from the movieScale field of the
GetMovieCompleteParams structure that the Movie Toolbox provides to your MediaInitialize (page
1127) function.

Special Considerations

Your derived media handler should support this function if your media handler stores time information in
the movie's time coordinate system.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetNonPrimarySourceData
Allows a media handler to support receiving media data from other media handlers.

ComponentResult MediaSetNonPrimarySourceData (
 MediaHandler mh,
 long inputIndex,
 long dataDescriptionSeed,
 Handle dataDescription,
 void *data,
 long dataSize,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 ICMConvertDataFormatUPP transferProc,
 void *refCon
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

inputIndex
This value is the ID of the entry in the media's input map to which the data provided by the call
corresponds.

dataDescriptionSeed
This value is changed each time the dataDescription has changed. This allows for a quick check
by the media handler to see if the dataDescription has changed.

dataDescription
A handle to a data structure describing the input data.

data
A pointer to the input data. This pointer must contain a 32-bit address.

dataSize
The size of the sample in bytes.

Functions 1149
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

asyncCompletionProc
A pointer to a ICMCompletionProcRecord structure. If asyncCompletionProc is set to NIL, the
data pointer will be valid only for the duration of this call. If asyncCompletionProc is not NIL, it
contains an ICMCompletionProcRecord structure that must be called when your media handler is
done with the provided data pointer.

transferProc
A routine that allows the application to transform the type of the input data to the kind of data
preferred by the codec. The client of the codec passes the source data in the form most convenient
for it. If the codec needs the data in another form, it can negotiate with the caller or directly with the
Image Compression Manager to obtain the required data format.

refCon
A reference constant, defined as a void pointer. Your application specifies the value of this reference
constant in the function structure you pass to the media handler.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
There are two tasks required to support modifier tracks in a derived media handler: sending and receiving.
The base media handler takes care of sending data for all its clients. Therefore, authors of derived media
handlers do not usually need to implement sending data support.

Receiving data is a more complex situation. The base media handler takes care of input types that it
understands. The base media handler supports the following types of data: If a media handler wants to
support receiving other types of data it must implement MediaSetNonPrimarySourceData.
MediaSetNonPrimarySourceData is called by modified tracks to supply the current data for each input.
All unrecognized input types should be delegated to the base media handler so that they can be handled.

The following is a basic shell implementation of a derived media handler's MediaSetNonPrimarySourceData
function. Note that your derived media handler must delegate all input types it does not handle to the base
media handler:

// MySetNonPrimarySourceData coding example
kTrackModifierTypeMatrix
kTrackModifierTypeGraphicsMode
kTrackModifierTypeClip
kTrackModifierTypeVolume
kTrackModifierTypeBalance
pascal ComponentResult MySetNonPrimarySourceData(MyGlobals store,
 long inputIndex, long dataDescriptionSeed, Handle dataDescription,
 void *data, long dataSize,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 UniversalProcPtr transferProc, void *refCon)
{
ComponentResult err =noErr;
QTAtom inputAtom;
QTAtom typesAtom;
long inputType;
// determine what kind of input this is
inputAtom =QTFindChildByID(store->
inputMap,
 kParentAtomIsContainer, kTrackModifierInput, inputIndex, NIL);
if (!inputAtom) {
 err =cannotFindAtomErr;
 goto bail;
}

1150 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

 typesAtom =QTFindChildByID(store->
inputMap, inputAtom,
 kTrackModifierType, 1, NIL);
err =QTCopyAtomDataToPtr(store->
inputMap, typesAtom, FALSE,
 sizeof(inputType), &inputType, NIL);
if (err) goto bail;
switch(inputType) {
 case kMyInputType:
 if (data ==NIL) {
 // no data, reset to default value
 }
 else {
 // use this data
 // when done, notify caller we're done with this data
 if (asyncCompletionProc)
 CallICMCompletionProc(
 asyncCompletionProc->
completionProc,
 noErr, codecCompletionSource | codecCompletionDest,
 asyncCompletionProc->
completionRefCon);
 }
 break;

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetPublicInfo
Undocumented

ComponentResult MediaSetPublicInfo (
 MediaHandler mh,
 OSType infoSelector,
 void *infoDataPtr,
 Size dataSize
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

infoSelector
Undocumented

infoDataPtr
Undocumented

Functions 1151
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

dataSize
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtskins
qtskins.win

Declared In
MediaHandlers.h

MediaSetPurgeableChunkMemoryAllowance
Sets the maximum amount of memory that QuickTime will allow purgeable chunks to occupy.

ComponentResult MediaSetPurgeableChunkMemoryAllowance (
 MediaHandler mh,
 Size allowance
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

allowance
The number of bytes allowed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This is an application-global setting.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MediaHandlers.h

MediaSetRate
Sets a media's playback rate.

1152 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaSetRate (
 MediaHandler mh,
 Fixed rate
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

rate
A 32-bit, fixed-point number that indicates your media's new effective playback rate. This effective
rate accounts for any master time bases that may be in use with the current movie. Positive values
represent forward rates and negative values indicate reverse rates.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You obtain the initial rate information from the effectiveRate field of the GetMovieCompleteParams
structure that the Movie Toolbox provides to your MediaInitialize (page 1127) function. Your derived
media handler should support this function if you perform your own scheduling; that is, you have set the
handlerNoScheduler flag to 1 in the flags parameter of MediaSetHandlerCapabilities (page 1145).
Your media handler can use this function to determine when your media is playing, and the direction and
rate of playback. This information can help you prepare for playback more efficiently.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetScreenLock
Locks the display screen for a media handler.

ComponentResult MediaSetScreenLock (
 MediaHandler mh,
 Boolean lockIt
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

lockIt
Pass TRUE to lock the screen, FALSE to unlock it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 1153
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetSoundBalance
Sets the right/left sound balance of a track.

ComponentResult MediaSetSoundBalance (
 MediaHandler mh,
 short balance
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

balance
The new balance setting for the media handler's track. The balance setting is a signed 16-bit integer
that controls the relative volume of the left and right sound channels. A value of 0 sets the balance
to neutral. Positive values shift the balance to the right channel, negative values to the left channel.
The valid range is 127 (right channel only) to -128 (left channel only).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to alter the audio balance on a per-track basis. It works with both mono and stereo sources.
The actual volume of the audio is not changed by this setting, only its relative distribution. This function
operates on sound tracks, music tracks, and Flash tracks containing audio. It may operate on other audio
track types as well; if the the chosen media handler does not support this function, it returns
badComponentSelector. To obtain the media handler for a track, call GetTrackMedia (page 1612) and then
GetMediaHandler (page 1577).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
MediaHandlers.h

MediaSetSoundBassAndTreble
Sets the bass and treble controls for a media handler.

1154 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaSetSoundBassAndTreble (
 MediaHandler mh,
 short bass,
 short treble
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

bass
Undocumented

treble
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetSoundEqualizerBands
Sets sound equalizer bands for a media handler.

ComponentResult MediaSetSoundEqualizerBands (
 MediaHandler mh,
 MediaEQSpectrumBandsRecordPtr spectrumInfo
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

spectrumInfo
A pointer to a MediaEQSpectrumBandsRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
sndequalizer
SurfaceVertexProgram

Functions 1155
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Declared In
MediaHandlers.h

MediaSetSoundLevelMeteringEnabled
Enables or disables sound level metering for a media handler.

ComponentResult MediaSetSoundLevelMeteringEnabled (
 MediaHandler mh,
 Boolean enable
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

enable
Pass TRUE to enable sound level metering, FALSE to disable it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SurfaceVertexProgram

Declared In
MediaHandlers.h

MediaSetSoundLocalizationData
Supports 3D sound capabilities in a media handler that plays sound.

ComponentResult MediaSetSoundLocalizationData (
 MediaHandler mh,
 Handle data
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

data
The data passed to your media handler, in the format of a Macintosh Sound Sprockets
SSpLocalizationData structure.

Return Value
See Error Codes. Returns noErr if there is no error.

1156 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
This routine is passed a handle containing the new SSpLocalizationData structure to use. If the handle
is NIL, it indicates that no 3D sound effects should be used. If you implement this routine, and return noErr
as the result, it is assumed that your media handle assumes responsibility for disposing of the data handle
passed. If the implementation of this routine returns an error, the caller will dispose of the handle. The reason
for this behavior is to minimize the copying of the settings handle, making it easier for developers to implement
this function. This function is called regardless of whether the 3D sound settings were set on the track using
SetTrackSoundLocalizationSettings (page 1655) or via a modifier track mechanism.

Special Considerations

If you are creating a media handler that plays sound and wish to support 3D sound capabilities, you need
to implement this routine.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetSoundOutputComponent
Sets the sound output component for a media handler.

ComponentResult MediaSetSoundOutputComponent (
 MediaHandler mh,
 Component outputComponent
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

outputComponent
An instance of a sound output component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetTrackInputMapReference
Provides a derived media handler with an updated input map.

Functions 1157
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

ComponentResult MediaSetTrackInputMapReference (
 MediaHandler mh,
 QTAtomContainer inputMap
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

inputMap
The media input map for this operation. Do not modify or dispose of the input map provided.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When an application modifies the media input map, this function provides the derived media handler with
the updated input map. When this function is called, the media handler should store the updated input map
and recheck the types of all inputs, if it is caching this information. The input map reference passed to this
function should not be disposed of or modified by the media handler.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetUserPreferredCodecs
Requests that a media handler favor specified codec components when selecting components with which
to play media.

ComponentResult MediaSetUserPreferredCodecs (
 MediaHandler mh,
 CodecComponentHandle userPreferredCodecs
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

userPreferredCodecs
A handle containing component identifiers. The media handler component will make its own copy
of this handle. The components should be specified in order from most preferred to least preferred.
Pass NIL to invalidate the standing request without substituting another.

Return Value
See Error Codes. Returns badComponentSelector if the media handler component does not support
this call. Returns noErr if there is no error.

1158 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Discussion
This method does not guarantee that the specified components will be used; other factors may take
precedence. Components that are preferred may not be used if they can't be part of the chain required to
play the media; for example, if they don't handle the pixel format or the video output.

Here is an example of code that uses this function:

CodecComponentHandle userPreferredCodecs =nil;
ComponentDescription cd ={ decompressorComponentType,
 myPreferredCodecType,
 myPreferredCodecManufacturer,
 0,
 0 };
CodecComponent c =FindNextComponent(0, &cd);
MediaHandler myMedia;
OSErr err;
PtrToHand(&c, (Handle*)&userPreferredCodecs, sizeof(c));
myMedia =GetMediaHandler(GetTrackMedia(track));
err =MediaSetUserPreferredCodecs(myMedia, userPreferredCodecs);
DisposeHandle((Handle)userPreferredCodecs);

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaSetVideoParam
Lets you dynamically adjust the brightness, contrast, hue, sharpness, saturation, black level, and white level
of a video image.

ComponentResult MediaSetVideoParam (
 MediaHandler mh,
 long whichParam,
 unsigned short *value
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Functions 1159
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

whichParam
A constant (see below) that specifies the video parameter you want to adjust. See these constants:

kMediaVideoParamBrightness

kMediaVideoParamContrast

kMediaVideoParamHue

kMediaVideoParamSharpness

kMediaVideoParamSaturation

kMediaVideoParamBlackLevel

kMediaVideoParamWhiteLevel

value
The actual value of the video parameter. The meaning of the values vary depending on the
implementation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaTargetRefConsEqual
Undocumented

ComponentResult MediaTargetRefConsEqual (
 MediaHandler mh,
 long firstRefCon,
 long secondRefCon,
 Boolean *equal
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

firstRefCon
Undocumented

secondRefCon
Undocumented

equal
A pointer to a Boolean; it is TRUE if firstRefCon and secondRefCon are equal, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

1160 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaTimeBaseChanged
Undocumented

ComponentResult MediaTimeBaseChanged (
 MediaHandler mh
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Return Value
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaTrackEdited
Informs a derived media handler about edits to its track.

ComponentResult MediaTrackEdited (
 MediaHandler mh
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your derived media handler should support this function if you are caching location information about track
edits, or if you are using any time values in the movie's time base. Whenever the Movie Toolbox calls this
function, your media handler should recalculate this type of information.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1161
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaTrackPropertyAtomChanged
Notifies the derived media handler whenever its media property atom has changed.

ComponentResult MediaTrackPropertyAtomChanged (
 MediaHandler mh
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
MediaTrackPropertyAtomChanged is called whenever SetMediaPropertyAtom (page 1476) is called. If
the media handler uses information from the property atom, it should rebuild the information at this time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaTrackReferencesChanged
Notifies the derived media handler whenever the track references in the movie change.

ComponentResult MediaTrackReferencesChanged (
 MediaHandler mh
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When an application creates, modifies, or deletes a track reference, the media handler's
MediaTrackReferencesChanged function is called. When this function is called, a media handler should
rebuild all information about track references and reset its values for all media inputs to their default values.

1162 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

MediaVideoOutputChanged
Undocumented

ComponentResult MediaVideoOutputChanged (
 MediaHandler mh,
 ComponentInstance vout
);

Parameters
mh

The Toolbox's connection to your derived media handler. You can obtain this reference from
GetMediaHandler (page 1577).

vout
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

NewPrePrerollCompleteUPP
Allocates a Universal Procedure Pointer for the PrePrerollCompleteProc callback.

PrePrerollCompleteUPP NewPrePrerollCompleteUPP (
 PrePrerollCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Functions 1163
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Version Notes
Introduced in QuickTime 4.1. Replaces NewPrePrerollCompleteProc.

Availability
Available in Mac OS X v10.3 and later.

Declared In
MediaHandlers.h

Callbacks

PrePrerollCompleteProc
Undocumented

typedef void (*PrePrerollCompleteProcPtr) (MediaHandler mh, OSErr err, void *refcon);

If you name your function MyPrePrerollCompleteProc, you would declare it this way:

void MyPrePrerollCompleteProc (
 MediaHandler mh,
 OSErr err,
 void *refcon);

Parameters
mh

A media handler.

err
An error code; see Error Codes.

refcon
Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

Declared In
MediaHandlers.h

Data Types

GetMovieCompleteParams
Defines the layout of the complete movie parameter structure used by MediaInitialize.

1164 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

struct GetMovieCompleteParams {
 short version;
 Movie theMovie;
 Track theTrack;
 Media theMedia;
 TimeScale movieScale;
 TimeScale mediaScale;
 TimeValue movieDuration;
 TimeValue trackDuration;
 TimeValue mediaDuration;
 Fixed effectiveRate;
 TimeBase timeBase;
 short volume;
 Fixed width;
 Fixed height;
 MatrixRecord trackMovieMatrix;
 CGrafPtr moviePort;
 GDHandle movieGD;
 PixMapHandle trackMatte;
 QTAtomContainer inputMap;
 };

Fields
version

Discussion
Specifies the version of this structure. This field is always set to 1.

theMovie

Discussion
Identifies the movie that contains the current media's track. This movie identifier is supplied by the Movie
Toolbox. Your component may use this identifier to obtain information about the movie that is using your
media.

theTrack

Discussion
Identifies the track that contains the current media. This track identifier is supplied by the Movie Toolbox.
Your component may use this identifier to obtain information about the track that contains your media. For
example, you might call GetTrackNextInterestingTime (page 1373) to examine the track's edit list.

theMedia

Discussion
Identifies the current media. This media identifier is supplied by the Movie Toolbox. Your derived media
handler can use this identifier to read samples or sample descriptions from the current media, using
GetMediaSample (page 1583) and GetMediaSampleDescription (page 1587).

movieScale

Discussion
Specifies the time scale of the movie that contains the current media's track. If the Movie Toolbox changes
the movie's time scale, the toolbox calls your derived media handler's MediaSetMovieTimeScale (page
1148) function.

mediaScale

Discussion
Specifies the time scale of the current media. If the Movie Toolbox changes your media's time scale, the
toolbox calls your derived media handler's MediaSetMediaTimeScale (page 1147) function.

Data Types 1165
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

movieDuration

Discussion
Contains the movie's duration. This value is expressed in the movie's time scale.

trackDuration

Discussion
Contains the track's duration. This value is expressed in the movie's time scale.

mediaDuration

Discussion
Contains the media's duration. This value is expressed in the media's time scale.

effectiveRate

Discussion
Contains the media's effective rate. This rate ties the media's time scale to the passage of absolute time, and
does not necessarily correspond to the movie's rate. This value takes into account any master time bases
that may be serving the media's time base. The value of this field indicates the number of time units (in the
media's time scale) that pass each second. This rate is represented as a 32-bit, fixed-point number. The
high-order 16 bits contain the integer portion, and the low-order 16 bits contain the fractional portion. The
rate is negative when time is moving backward for the media. Whenever the Movie Toolbox changes your
media's effective rate, it calls your derived media handler's MediaSetRate (page 1152) function.

timeBase

Discussion
Identifies the media's time base.

volume

Discussion
Contains the media's current volume setting. This value is represented as a 16-bit, fixed-point number. The
high-order 8 bits contain the integer portion; the low-order 8 bits contain the fractional part. Volume values
range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the volume setting.
If QuickTime changes your media's volume, it calls your derived media handler's MediaGSetVolume (page
1122) function.

width

Discussion
Indicates the width, in pixels, of the track rectangle. This field, along with the height field, specifies a rectangle
that surrounds the image that is displayed when the current media is played. This value corresponds to the
x coordinate of the lower-right corner of the rectangle and is expressed as a fixed-point number. If the Movie
Toolbox modifies this rectangle, the toolbox calls your derived media handler's MediaSetDimensions (page
1142) function. Note that your media need not present only a rectangular image. The Movie Toolbox can use
a clipping region to cause your media's image to be displayed in a region of arbitrary shape, and it can use
a matte to control the image's transparency. The toolbox calls your derived media handler's
MediaSetClip (page 1141) function whenever it changes your media's clipping region. The trackMatte
field in this structure specifies a matte region.

height

Discussion
Indicates the height, in pixels, of the track rectangle. This value corresponds to the y coordinate of the
lower-right corner of the rectangle and is expressed as a fixed-point number.

1166 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

trackMovieMatrix

Discussion
Specifies the matrix that transforms your media's pixels into the movie's coordinate system. The Movie
Toolbox obtains this matrix by concatenating the track matrix and the movie matrix. You should use this
matrix whenever you are displaying graphical data from your media. Whenever the Movie Toolbox modifies
this matrix, it calls your derived media handler's MediaSetMatrix (page 1147) function.

moviePort

Discussion
Indicates the movie's graphics port. Whenever the Movie Toolbox changes the movie's graphics world, it
calls your derived media handler's MediaSetGWorld (page 1144) function.

movieGD

Discussion
Specifies the movie's graphics device. Whenever the Movie Toolbox changes the movie's graphics world, it
calls your derived media handler's MediaSetGWorld (page 1144) function.

trackMatte

Discussion
Identifies the matte region assigned to the track that uses your media. This field contains a handle to a pixel
map that contains a blend matte. Your component is not responsible for disposing of this matte. If there is
no matte, this field is set to NIL.

inputMap

Discussion
A reference to the media's input map. The media input map should not be modified or disposed.

Related Functions
MediaInitialize (page 1127)

Declared In
MediaHandlers.h

LevelMeterInfo
Contains sound level meter readings.

struct LevelMeterInfo {
 short numChannels;
 UInt8 leftMeter;
 UInt8 rightMeter;
 };

Fields
numChannels

Discussion
Contains 1 for mono or 2 for stereo source.

leftMeter

Discussion
Left meter level, 0-255 range.

Data Types 1167
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

rightMeter

Discussion
Right meter level, 0-255 range.

Related Functions
MediaGetSoundLevelMeterInfo (page 1114)

Declared In
MediaHandlers.h

LevelMeterInfoPtr
Represents a type used by the Media Handler API.

typedef LevelMeterInfo * LevelMeterInfoPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Sound.h

MediaEQSpectrumBandsRecord
Provides data for MediaGetSoundEqualizerBands and MediaSetSoundEqualizerBands.

struct MediaEQSpectrumBandsRecord {
 short count;
 UnsignedFixedPtr frequency;
 };

Fields
count

Discussion
Number of frequencies in this structure.

frequency

Discussion
Pointer to array of frequencies.

Related Functions
MediaGetSoundEqualizerBands (page 1113)
MediaSetSoundEqualizerBands (page 1155)

Declared In
MediaHandlers.h

MediaEQSpectrumBandsRecordPtr
Represents a type used by the Media Handler API.

1168 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

typedef MediaEQSpectrumBandsRecord * MediaEQSpectrumBandsRecordPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

PrePrerollCompleteUPP
Represents a type used by the Media Handler API.

typedef STACK_UPP_TYPE(PrePrerollCompleteProcPtr) PrePrerollCompleteUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

QTCustomActionTargetPtr
Represents a type used by the Media Handler API.

typedef QTCustomActionTargetRecord * QTCustomActionTargetPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MediaHandlers.h

QTCustomActionTargetRecord
Defines a target for CallComponentExecuteWiredAction.

struct QTCustomActionTargetRecord {
 Movie movie;
 DoMCActionUPP doMCActionCallbackProc;
 long callBackRefcon;
 Track track;
 long trackObjectRefCon;
 Track defaultTrack;
 long defaultObjectRefCon;
 long reserved1;
 long reserved2;
 };

Fields
movie

Discussion
A movie identifier obtained from such functions as NewMovie (page 259), NewMovieFromFile (page 1398),
and NewMovieFromHandle (page 1400).

Data Types 1169
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

doMCActionCallbackProc

Discussion
A Universal Procedure Pointer that accesses a DoMCActionProc callback.

callBackRefcon

Discussion
A reference constant to be passed to the DoMCActionProc callback. Use this value to point to a data structure
containing any information the callback needs.

track

Discussion
A track identifier obtained from such functions as NewMovieTrack (page 1628) and GetMovieTrack (page
1601).

trackObjectRefCon

Discussion
Undocumented

defaultTrack

Discussion
The identifier of a default track, obtained from such functions as NewMovieTrack (page 1628) and
GetMovieTrack (page 1601).

defaultObjectRefCon

Discussion
Undocumented

reserved1

Discussion
Reserved.

reserved2

Discussion
Reserved.

Declared In
MediaHandlers.h

Constants

MediaForceUpdate Values
Constants passed to MediaForceUpdate.

enum {
 forceUpdateRedraw = 1 << 0,
 forceUpdateNewBuffer = 1 << 1
};

Declared In
MediaHandlers.h

1170 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Data Handler Flags
Constants that represent data handler flags.

enum {
 handlerHasSpatial = 1 << 0,
 handlerCanClip = 1 << 1,
 handlerCanMatte = 1 << 2,
 handlerCanTransferMode = 1 << 3,
 handlerNeedsBuffer = 1 << 4,
 handlerNoIdle = 1 << 5,
 handlerNoScheduler = 1 << 6,
 handlerWantsTime = 1 << 7,
 handlerCGrafPortOnly = 1 << 8,
 handlerCanSend = 1 << 9,
 handlerCanHandleComplexMatrix = 1 << 10,
 handlerWantsDestinationPixels = 1 << 11,
 handlerCanSendImageData = 1 << 12,
 handlerCanPicSave = 1 << 13
};

Declared In
MediaHandlers.h

MediaSetChunkManagementFlags Values
Constants passed to MediaSetChunkManagementFlags.

enum {
 kEmptyPurgableChunksOverAllowance = 1
};

Declared In
MediaHandlers.h

MediaSetVideoParam Values
Constants passed to MediaSetVideoParam.

enum {
 kMediaVideoParamBrightness = 1,
 kMediaVideoParamContrast = 2,
 kMediaVideoParamHue = 3,
 kMediaVideoParamSharpness = 4,
 kMediaVideoParamSaturation = 5,
 kMediaVideoParamBlackLevel = 6,
 kMediaVideoParamWhiteLevel = 7
};

Declared In
MediaHandlers.h

Constants 1171
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaNavigateTargetRefCon Values
Constants passed to MediaNavigateTargetRefCon.

enum {
 kRefConNavigationNext = 0,
 kRefConNavigationPrevious = 1
};

Declared In
MediaHandlers.h

MediaRefConSetProperty Values
Constants passed to MediaRefConSetProperty.

enum {
 kRefConPropertyCanHaveFocus = 1, /* Boolean */
 kRefConPropertyHasFocus = 2 /* Boolean */
};

Declared In
MediaHandlers.h

Media Task Flags
Constants that represent flags for media tasks.

enum {
 mDidDraw = 1 << 0,
 mNeedsToDraw = 1 << 2,
 mDrawAgain = 1 << 3,
 mPartialDraw = 1 << 4,
 mWantIdleActions = 1 << 5
};
enum {
 mMustDraw = 1 << 3,
 mAtEnd = 1 << 4,
 mPreflightDraw = 1 << 5,
 mSyncDrawing = 1 << 6,
 mPrecompositeOnly = 1 << 9,
 mSoundOnly = 1 << 10,
 mDoIdleActionsBeforeDraws = 1 << 11,
 mDisableIdleActions = 1 << 12
};
enum {
 mOpaque = 1L << 0,
 mInvisible = 1L << 1
};

Declared In
MediaHandlers.h

1172 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

MediaHitTestTargetRefCon Values
Constants passed to MediaHitTestTargetRefCon.

enum {
 mHitTestBounds = 1L << 0, /* point must only be within
targetRefCon's bounding box */
 mHitTestImage = 1L << 1, /* point must be within the shape of
the targetRefCon's image */
 mHitTestInvisible = 1L << 2, /* invisible targetRefCon's may be hit
 tested */
 mHitTestIsClick = 1L << 3 /* for codecs that want mouse events */
};

Declared In
MediaHandlers.h

Constants 1173
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

1174 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Media Types and Media Handlers Reference

Framework: Frameworks/QuickTime.framework

Declared in Movies.h, HIMovieView.h

Overview

Movie controllers provide a user interface for playing and editing movies, eliminating much of the complexity
of working with movies. Movie controllers are implemented in QuickTime as components. This allows
customized controllers to be plugged in to QuickTime for use by your application.

Functions by Task

Associating Movies With Controllers

MCGetIndMovie (page 1198)
Lets your application to retrieve the movie reference for a movie that is associated with a movie
controller.

MCNewAttachedController (page 1207)
Associates a specified movie with a movie controller.

MCSetMovie (page 1218)
Associates a movie with a specified movie controller.

Customizing Event Processing

MCActivate (page 1184)
Lets a controller respond to activate, deactivate, suspend, and resume events.

MCClick (page 1187)
Lets a controller respond when the user clicks in a movie controller window.

MCDraw (page 1190)
Responds to an update event.

MCIdle (page 1202)
Performs idle processing for a movie controller.

MCKey (page 1206)
Handles keyboard events for a movie controller.

Overview 1175
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Editing Movies With a Controller

MCClear (page 1187)
Removes the current movie selection from the movie associated with a specified controller.

MCCopy (page 1188)
Returns a copy of the current movie selection from the movie associated with a specified controller.

MCCut (page 1189)
Returns a copy of the current movie selection from the movie associated with a specified controller
and then removes the current movie selection from the source movie.

MCEnableEditing (page 1192)
Enables and disables editing for a movie controller.

MCGetMenuString (page 1199)
Retrieves the text string for a movie controller menu command.

MCIsEditingEnabled (page 1204)
Determines whether editing is currently enabled for a movie controller.

MCPaste (page 1208)
Inserts a specified movie at the current movie time in the movie associated with a specified controller.

MCSetUpEditMenu (page 1219)
Correctly highlights and names the items in your application's Edit menu.

MCUndo (page 1221)
Lets your application discard the effects of the most recent edit operation.

Getting and Setting Movie Controller Time

MCGetCurrentTime (page 1196)
Obtains the time value represented by the indicator on the movie controller's slider.

MCSetDuration (page 1217)
Lets your application set a controller's duration in the case where a controller does not have a movie
associated with it.

Handling Movie Events

MCGetControllerInfo (page 1195)
Determines the current status of a movie controller and its associated movie, for menu highlighting.

MCIsPlayerEvent (page 1204)
Handles all events for a movie controller.

MCPtInController (page 1209)
Reports whether a point is in the control area of a movie.

Managing Controller Attributes

MCDrawBadge (page 1191)
Displays a controller's badge.

1176 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

MCGetClip (page 1193)
Obtains information describing a movie controller's clipping regions.

MCGetControllerBoundsRect (page 1193)
Returns a movie controller's boundary rectangle.

MCGetControllerBoundsRgn (page 1194)
Returns the actual region occupied by the controller and its movie.

MCGetControllerPort (page 1196)
Returns a movie controller's color graphics port.

MCGetVisible (page 1200)
Returns a value that indicates whether or not a movie controller is visible.

MCGetWindowRgn (page 1201)
Determines the window region that is actually in use by a controller and its movie.

MCIsControllerAttached (page 1203)
Returns a value that indicates whether a movie controller is attached to its movie.

MCPositionController (page 1208)
Controls the position of a movie and its controller on the computer display.

MCSetClip (page 1213)
Lets you set a movie controller's clipping region.

MCSetControllerAttached (page 1214)
Lets your application control whether a movie controller is attached to its movie or detached from
it.

MCSetControllerBoundsRect (page 1215)
Lets you change the position and size of a movie controller.

MCSetControllerPort (page 1216)
Lets your application set the graphics port for a movie controller.

MCSetVisible (page 1220)
Lets your application control the visibility of a movie controller.

Movie Controller Action Functions

MCDoAction (page 1190)
Invokes a movie controller component and makes it perform a specified action.

MCMovieChanged (page 1206)
Informs a movie controller component that your application has used the Movie Toolbox to change
the characteristics of its associated movie.

MCSetActionFilterWithRefCon (page 1212)
Establishes an action filter function for a movie controller.

Working With The Idle Manager

MCSetIdleManager (page 1218)
Lets a movie controller component report its idling needs.

Functions by Task 1177
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Supporting Functions

DisposeMCActionFilterUPP (page 1179)
Disposes of a MCActionFilterUPP pointer.

DisposeMCActionFilterWithRefConUPP (page 1179)
Disposes of a MCActionFilterWithRefConUPP pointer.

HIMovieViewChangeAttributes (page 1180)
Changes the views attributes.

HIMovieViewCreate (page 1180)
Creates an HIMovieView object.

HIMovieViewGetAttributes (page 1181)
Returns the view's current attributes.

HIMovieViewGetControllerBarSize (page 1181)
Returns the size of the visible movie controller bar.

HIMovieViewGetMovie (page 1182)
Returns the view's current movie.

HIMovieViewGetMovieController (page 1182)
Returns the view's current movie controller.

HIMovieViewPause (page 1183)
Pauses the view's current movie.

HIMovieViewPlay (page 1183)
Plays the view's current movie.

HIMovieViewSetMovie (page 1184)
Sets the view's current movie.

MCAddMovieSegment (page 1185)
Undocumented

MCAdjustCursor (page 1186)
Undocumented

MCGetDoActionsProc (page 1197)
Retrieves the DoMCActionProc callback attached to a movie controller.

MCGetInterfaceElement (page 1198)
Gets the interface element of a specified type for a movie controller.

MCInvalidate (page 1202)
Invalidates a region of a movie controller's display.

MCRemoveAllMovies (page 1210)
Removes all movies associated with a controller.

MCRemoveAMovie (page 1211)
Removes one movie from a multi-movie controller.

MCRemoveMovie (page 1211)
Removes a movie from a movie controller.

MCSetActionFilter (page 1212)
Sets the MCActionFilterProc callback for a movie controller.

MCSetControllerCapabilities (page 1215)
Undocumented

1178 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

MCTrimMovieSegment (page 1220)
Undocumented

NewMCActionFilterUPP (page 1222)
Allocates a Universal Procedure Pointer for the MCActionFilterProc callback.

NewMCActionFilterWithRefConUPP (page 1222)
Allocates a Universal Procedure Pointer for the MCActionFilterWithRefConProc callback.

Functions

DisposeMCActionFilterUPP
Disposes of a MCActionFilterUPP pointer.

void DisposeMCActionFilterUPP (
 MCActionFilterUPP userUPP
);

Parameters
userUPP

A MCActionFilterUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMCActionFilterWithRefConUPP
Disposes of a MCActionFilterWithRefConUPP pointer.

void DisposeMCActionFilterWithRefConUPP (
 MCActionFilterWithRefConUPP userUPP
);

Parameters
userUPP

A MCActionFilterWithRefConUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Functions 1179
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitMovieShuffler

Declared In
Movies.h

HIMovieViewChangeAttributes
Changes the views attributes.

OSStatus HIMovieViewChangeAttributes (
 HIViewRef inView,
 OptionBits inAttributesToSet,
 OptionBits inAttributesToClear
);

Parameters
inView

The HIMovieView.

inAttributesToSet
Attributes to set.

inAttributesToClear
Attributes to clear.

Return Value
An error code. Returns noErr if there is no error.

Discussion
Setting an attribute takes precedence over clearing the attribute.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SimpleHIMovieViewPlayer

Declared In
HIMovieView.h

HIMovieViewCreate
Creates an HIMovieView object.

1180 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

OSStatus HIMovieViewCreate (
 Movie inMovie,
 OptionBits inAttributes,
 HIViewRef *outMovieView
);

Parameters
inMovie

Initial movie to view; may be NULL.

inAttributes
Initial HIMovieView attributes.

outMovieView
Points to variable to receive new HIMovieView.

Return Value
Undocumented.

Discussion
If successful, the created view will have a single retain count.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewGetAttributes
Returns the view's current attributes.

OptionBits HIMovieViewGetAttributes (
 HIViewRef inView
);

Parameters
inView

The HIMovieView.

Return Value
Undocumented.

Discussion
The view's current attributes are returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewGetControllerBarSize
Returns the size of the visible movie controller bar.

Functions 1181
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

HISize HIMovieViewGetControllerBarSize (
 HIViewRef inView
);

Parameters
inView

The HIMovieView.

Return Value
Undocumented.

Discussion
The size of the visible movie controller bar is returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SimpleHIMovieViewPlayer

Declared In
HIMovieView.h

HIMovieViewGetMovie
Returns the view's current movie.

Movie HIMovieViewGetMovie (
 HIViewRef inView
);

Parameters
inView

The HIMovieView.

Return Value
Undocumented.

Discussion
The view's current movie is returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewGetMovieController
Returns the view's current movie controller.

1182 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

MovieController HIMovieViewGetMovieController (
 HIViewRef inView
);

Parameters
inView

The HIMovieView.

Return Value
Undocumented.

Discussion
The view's current movie controller is returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewPause
Pauses the view's current movie.

OSStatus HIMovieViewPause (
 HIViewRef movieView
);

Parameters
movieView

The movie view.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This is a convenience routine to pause the view's current movie. If the movie is already paused, this function
does nothing.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewPlay
Plays the view's current movie.

Functions 1183
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

OSStatus HIMovieViewPlay (
 HIViewRef movieView
);

Parameters
movieView

The movie view.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This is a convenience routine to play the view's current movie. If the movie is already playing, this function
does nothing.

Availability
Available in Mac OS X v10.3 and later.

Declared In
HIMovieView.h

HIMovieViewSetMovie
Sets the view's current movie.

OSStatus HIMovieViewSetMovie (
 HIViewRef inView,
 Movie inMovie
);

Parameters
inView

The HIMovieView.

inMovie
The new movie to display.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine sets the view's current movie.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SimpleHIMovieViewPlayer

Declared In
HIMovieView.h

MCActivate
Lets a controller respond to activate, deactivate, suspend, and resume events.

1184 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCActivate (
 MovieController mc,
 WindowRef w,
 Boolean activate
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

w
A pointer to the window in which the event has occurred.

activate
The nature of the event. Set this parameter to TRUE for activate and resume events. Set it to FALSE
for deactivate and suspend events.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
qtbigscreen
qtbigscreen.win
QTCarbonShell

Declared In
Movies.h

MCAddMovieSegment
Undocumented

ComponentResult MCAddMovieSegment (
 MovieController mc,
 Movie srcMovie,
 Boolean scaled
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Functions 1185
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

srcMovie
The source movie. Your application obtains this movie identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), or NewMovieFromHandle (page 1400).

scaled
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCAdjustCursor
Undocumented

ComponentResult MCAdjustCursor (
 MovieController mc,
 WindowRef w,
 Point where,
 long modifiers
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

w
A pointer to the window in which the cursor is located.

where
The location of the cursor. This value is expressed in the local coordinates of the window specified
by the w parameter.

modifiers
The cursor form (see below). See these constants:

kQTCursorOpenHand

kQTCursorClosedHand

kQTCursorPointingHand

kQTCursorRightArrow

kQTCursorLeftArrow

kQTCursorDownArrow

kQTCursorUpArrow

kQTCursorIBeam

1186 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCClear
Removes the current movie selection from the movie associated with a specified controller.

ComponentResult MCClear (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win
qtgraphics.win
vrbackbuffer.win

Declared In
Movies.h

MCClick
Lets a controller respond when the user clicks in a movie controller window.

Functions 1187
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCClick (
 MovieController mc,
 WindowRef w,
 Point where,
 long when,
 long modifiers
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

w
A pointer to the window in which the event has occurred.

where
The location of the click. This value is expressed in the local coordinates of the window specified by
the w parameter. Your application must convert this value from the global coordinates returned in
the EventRecord structure.

when
Indicates when the user pressed the mouse button. You obtain this value from the EventRecord
structure.

modifiers
Specifies modifier flags for the event. You obtain this value from the EventRecord structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Movies.h

MCCopy
Returns a copy of the current movie selection from the movie associated with a specified controller.

Movie MCCopy (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

1188 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Return Value
A copy of the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win
qtgraphics.win
vrbackbuffer.win

Declared In
Movies.h

MCCut
Returns a copy of the current movie selection from the movie associated with a specified controller and then
removes the current movie selection from the source movie.

Movie MCCut (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
A copy of the current movie selection.

Discussion
Your application is responsible for the returned movie. MCCut returns a movie containing the current selection
from the movie associated with the specified controller. If the user has not made a selection, the returned
movie reference is set to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win
qtgraphics.win
vrbackbuffer.win

Functions 1189
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCDoAction
Invokes a movie controller component and makes it perform a specified action.

ComponentResult MCDoAction (
 MovieController mc,
 short action,
 void *params
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

action
The action to be taken. See Movie Controller Actions.

params
A pointer to the parameter data appropriate to the action. See Movie Controller Actions for
information about the parameters required for each supported action.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtcontroller
qtcontroller.win
qtinfo
qtstreamsplicer.win

Declared In
Movies.h

MCDraw
Responds to an update event.

1190 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCDraw (
 MovieController mc,
 WindowRef w
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

w
A pointer to the window in which the update event has occurred.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
QTCarbonShell
SimpleVideoOut

Declared In
Movies.h

MCDrawBadge
Displays a controller's badge.

ComponentResult MCDrawBadge (
 MovieController mc,
 RgnHandle movieRgn,
 RgnHandle *badgeRgn
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

movieRgn
The boundary region of the controller's movie.

badgeRgn
A pointer to a region that is to receive information about the location of the badge. The movie
controller returns the region where the badge is displayed. If you are not interested in this information,
you may set this parameter to NIL. Your application must dispose of this handle.

Functions 1191
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function places the badge in an appropriate location based on the location of the controller's movie.
MCDrawBadge can be useful in circumstances where you are using a movie controller component but do
not want to incur the overhead of having the QuickTime movie in memory all the time. This function allows
you to display the badge without having to display the movie. In addition, you can use the badge region to
perform mouse-down event testing.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCEnableEditing
Enables and disables editing for a movie controller.

ComponentResult MCEnableEditing (
 MovieController mc,
 Boolean enabled
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

enabled
Specifies whether to enable or disable editing for the controller. Set this parameter to TRUE to
enable editing; set it to FALSE to disable editing.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Once editing is enabled for a controller, the user may edit the movie associated with the controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win

1192 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

MCGetClip
Obtains information describing a movie controller's clipping regions.

ComponentResult MCGetClip (
 MovieController mc,
 RgnHandle *theClip,
 RgnHandle *movieClip
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

theClip
A pointer to a field that is to receive a handle to the clipping region of the entire movie controller.
You must dispose of this region when you are done with it. If you are not interested in this information,
set this parameter to NIL.

movieClip
A pointer to a field that is to receive a handle to the clipping region of the controller's movie. You
must dispose of this region when you are done with it. If you are not interested in this information,
set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCGetControllerBoundsRect
Returns a movie controller's boundary rectangle.

Functions 1193
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCGetControllerBoundsRect (
 MovieController mc,
 Rect *bounds
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

bounds
A pointer to a Rect structure that is to receive the coordinates of the movie controller's boundary
rectangle. If there is insufficient screen space to display the controller, the function may return an
empty structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
vrscript
vrscript.win

Declared In
Movies.h

MCGetControllerBoundsRgn
Returns the actual region occupied by the controller and its movie.

RgnHandle MCGetControllerBoundsRgn (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
A handle to a MacRegion structure that reflects the size, shape, and location of the controller. Your application
must dispose of this structure.

1194 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Discussion
As with MCGetControllerBoundsRect (page 1193), this function returns a region even if the controller is
hidden. Some movie controllers may not be rectangular in shape. If the movie is not attached to its controller,
the boundary region encloses only the control portion of the controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Movies.h

MCGetControllerInfo
Determines the current status of a movie controller and its associated movie, for menu highlighting.

ComponentResult MCGetControllerInfo (
 MovieController mc,
 long *someFlags
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

someFlags
A pointer to flags (see below) that specify the current status and capabilities of the controller. More
than one flag may be set to 1. See these constants:

mcInfoUndoAvailable

mcInfoCutAvailable

mcInfoCopyAvailable

mcInfoPasteAvailable

mcInfoClearAvailable

mcInfoHasSound

mcInfoIsPlaying

mcInfoIsLooping

mcInfoIsInPalindrome

mcInfoEditingEnabled

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can use the information returned by this function to control your application's menu highlighting.

Functions 1195
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
qteffects.win
qtgraphics.win

Declared In
Movies.h

MCGetControllerPort
Returns a movie controller's color graphics port.

CGrafPtr MCGetControllerPort (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
A pointer to the movie controller's CGrafPort structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
mdiplayer.win
MovieGWorlds

Declared In
Movies.h

MCGetCurrentTime
Obtains the time value represented by the indicator on the movie controller's slider.

1196 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

TimeValue MCGetCurrentTime (
 MovieController mc,
 TimeScale *scale
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

scale
A pointer to a field that is to receive the time scale for the controller.

Return Value
A time value containing the time shown by the indicator on the movie controller's slider.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCGetDoActionsProc
Retrieves the DoMCActionProc callback attached to a movie controller.

ComponentResult MCGetDoActionsProc (
 MovieController mc,
 DoMCActionUPP *doMCActionProc,
 long *doMCActionRefCon
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

doMCActionProc
A pointer to a DoMCActionProc callback.

doMCActionRefCon
A reference constant that is passed to your callback. This parameter may point to a data structure
containing information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1197
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCGetIndMovie
Lets your application to retrieve the movie reference for a movie that is associated with a movie controller.

Movie MCGetIndMovie (
 MovieController mc,
 short index
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

index
Index for the movie. When set to 0, this call duplicates the action of the previous call to this function.

Return Value
The movie identifier for the movie that is assigned to the specified controller, or NIL if there is no movie
assigned to the controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCGetInterfaceElement
Gets the interface element of a specified type for a movie controller.

ComponentResult MCGetInterfaceElement (
 MovieController mc,
 MCInterfaceElement whichElement,
 void *element
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

1198 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

whichElement
A constant (see below) that identifies the interface element type. See these constants:

kMCIEEnabledButtonPicture

kMCIEDisabledButtonPicture

kMCIEDepressedButtonPicture

kMCIEEnabledSizeBoxPicture

kMCIEDisabledSizeBoxPicture

kMCIEEnabledUnavailableButtonPicture

kMCIEDisabledUnavailableButtonPicture

kMCIESoundSlider

kMCIESoundThumb

element
A pointer to the element type.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCGetMenuString
Retrieves the text string for a movie controller menu command.

ComponentResult MCGetMenuString (
 MovieController mc,
 long modifiers,
 short item,
 Str255 aString
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

modifiers
The current modifiers from the mouse-down or key-down event to which you are responding.

Functions 1199
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

item
One of the movie controller Edit menu constants (see below). See these constants:

mcMenuUndo

mcMenuCut

mcMenuCopy

mcMenuPaste

mcMenuClear

aString
On entry, pass a string of type Str255; on exit, this string is set to the text of the menu item specified
by the item parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
MCGetMenuString is used by MCSetUpEditMenu (page 1219).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcontroller
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

MCGetVisible
Returns a value that indicates whether or not a movie controller is visible.

ComponentResult MCGetVisible (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
If the controller is visible, the function result is set to 1. If the controller is not showing, the function result is
set to 0. You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

1200 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
vrscript
vrscript.win

Declared In
Movies.h

MCGetWindowRgn
Determines the window region that is actually in use by a controller and its movie.

RgnHandle MCGetWindowRgn (
 MovieController mc,
 WindowRef w
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

w
A pointer to the window in which the movie controller and its movie are displayed, if the control
portion of the controller is attached to the movie. If the controller is detached and in a separate
window from the movie, specify one of the windows.

Return Value
A handle to the MacRegion structure for the window that is actually in use. Your application must dispose
of this structure.

Discussion
The region returned by this function contains only the visible portions of the controller and its movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell
MCComponent
MovieBrowser
MovieGWorlds
vrscript.win

Functions 1201
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCIdle
Performs idle processing for a movie controller.

ComponentResult MCIdle (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
MovieBrowser
qtshellCEvents.win
vrscript.win

Declared In
Movies.h

MCInvalidate
Invalidates a region of a movie controller's display.

ComponentResult MCInvalidate (
 MovieController mc,
 WindowRef w,
 RgnHandle invalidRgn
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

1202 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

w
A pointer to the window in which the movie controller and its movie are displayed, if the control
portion of the controller is attached to the movie. If the controller is detached and in a separate
window from the movie, specify one of the windows.

invalidRgn
A handle to a MacRegion structure that defines a region to invalidate.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
vrscript
vrscript.win

Declared In
Movies.h

MCIsControllerAttached
Returns a value that indicates whether a movie controller is attached to its movie.

ComponentResult MCIsControllerAttached (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
If the controller is attached, the returned value is set to 1. If the controller is not attached, the returned value
is set to 0. You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
qtcontroller

Functions 1203
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

qtcontroller.win

Declared In
Movies.h

MCIsEditingEnabled
Determines whether editing is currently enabled for a movie controller.

long MCIsEditingEnabled (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
Returns 1 if editing is enabled; set to 0 if editing is disabled or if the controller component does not support
editing.

Discussion
Once editing is enabled for a controller, the user may edit the movie associated with the controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCIsPlayerEvent
Handles all events for a movie controller.

ComponentResult ADD_MEDIA_BASENAME() MCIsPlayerEvent

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

e
A pointer to the current EventRecord structure.

Return Value
A long integer indicating whether the movie controller component handled the event. The component sets
this long integer to 1 if it handled the event. Your application should then skip the rest of its event loop and
wait for the next event. The return value is 0 otherwise. Your application must then handle the event as part
of its normal event processing.

1204 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Discussion
The movie controller component does everything necessary to support the movie controller and its associated
movie. For example, the component calls MoviesTask (page 257) for each movie. The movie controller
component also handles suspend and resume events. It treats suspend events as deactivate requests and
resume events as activate requests.

The following sample code shows how to convert Windows messages to Macintosh events and then pass
those events to the QuickTime movie controller, using this function:

// MCIsPlayerEvent coding example
// See "Discovering QuickTime," page 240
MovieController mc; // Movie controller for movie
LRESULT CALLBACK WndProc
 (HWND hwnd, // Handle to window
 UINT iMsg, // Message type
 WPARAM wParam, // Message-dependent parameter
 LPARAM lParam) // Message-dependent parameter
{
 MSG msg; // Windows message structure
 EventRecord er; // Macintosh event record
 DWORD dwPos; // Mouse coordinates of message
 msg.hwnd =hwnd; // Window handle
 msg.message =iMsg; // Message type
 msg.wParam =wParam; // Word-length parameter
 msg.lParam =lParam; // Long-word parameter

 msg.time =GetMessageTime(); // Get time of message
 dwPos =GetMessagePos(); // Get mouse position
 msg.pt.x =LOWORD(dwPos); // Extract x coordinate
 msg.pt.y =HIWORD(dwPos); // Extract y coordinate

 WinEventToMacEvent(&msg, &er); // Convert to event
 MCIsPlayerEvent(mc, &er); // Pass event to QuickTime

 switch (iMsg) { // Dispatch on message type

 . . . // Handle message according to type

 } // end switch (iMsg)

} // end WndProc

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qtbigscreen
qtcontroller
qtwiredactions

Functions 1205
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCKey
Handles keyboard events for a movie controller.

ComponentResult MCKey (
 MovieController mc,
 SInt8 key,
 long modifiers
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

key
The keystroke. You obtain this value from the event structure.

modifiers
Modifier flags for the event. You obtain this value from the EventRecord structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCMovieChanged
Informs a movie controller component that your application has used the Movie Toolbox to change the
characteristics of its associated movie.

ComponentResult MCMovieChanged (
 MovieController mc,
 Movie m
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

m
The movie that has been changed.

1206 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win
qttext
qttext.win
SimpleVideoOut

Declared In
Movies.h

MCNewAttachedController
Associates a specified movie with a movie controller.

ComponentResult MCNewAttachedController (
 MovieController mc,
 Movie theMovie,
 WindowRef w,
 Point where
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

theMovie
The movie to be associated with the movie controller.

w
A pointer to the window in which the movie is to be displayed. The movie controller component sets
the movie's graphics world to match this window. If you set the w parameter to NIL, the component
uses the current window.

where
The upper-left corner of the movie within the window specified by the w parameter. The movie
controller component uses the movie's boundary Rect structure to determine the size of the movie.
GetMovieBox (page 207) returns this structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1207
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCPaste
Inserts a specified movie at the current movie time in the movie associated with a specified controller.

ComponentResult MCPaste (
 MovieController mc,
 Movie srcMovie
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

srcMovie
The movie to be inserted into the current selection in the movie associated with the movie controller
specified by the mc parameter. If you set this parameter to NIL, the movie controller component
retrieves the source movie from the scrap.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win
qtgraphics.win
vrbackbuffer.win

Declared In
Movies.h

MCPositionController
Controls the position of a movie and its controller on the computer display.

1208 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCPositionController (
 MovieController mc,
 const Rect *movieRect,
 const Rect *controllerRect,
 long someFlags
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

movieRect
A pointer to a Rect structure that specifies the coordinates of the movie's boundary Rect structure.

controllerRect
A pointer to a Rect structure that specifies the coordinates of the controller's boundary Rect structure.
The movie controller component always centers the control portion of the controller inside this
rectangle. The movie controller component only uses this parameter when the control portion of the
controller is detached from the movie. If you are working with an attached controller, you can set this
parameter to NIL.

someFlags
Flags (see below) that control how the movie is drawn. If you set these flags to 0, the movie controller
component centers the movie in the rectangle specified by movieRect and scales the movie to fit
in that rectangle. See these constants:

mcTopLeftMovie

mcScaleMovieToFit

mcPositionDontInvalidate

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

MCPtInController
Reports whether a point is in the control area of a movie.

Functions 1209
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCPtInController (
 MovieController mc,
 Point thePt,
 Boolean *inController
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

thePt
The point to be checked. This point must be passed in local coordinates to the controller's window.
This point is checked only against the movie controller's controls, not the movie itself.

inController
Returns true if the point is in the controller; false if it is not.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
While you could always determine if a point is contained in a movie, using PtInMovie (page 1634), the
MCPtInController function allows you to determine if a point is in the control area of a movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCRemoveAllMovies
Removes all movies associated with a controller.

ComponentResult MCRemoveAllMovies (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1210 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCRemoveAMovie
Removes one movie from a multi-movie controller.

ComponentResult MCRemoveAMovie (
 MovieController mc,
 Movie m
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

m
The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), or NewMovieFromHandle (page 1400).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCRemoveMovie
Removes a movie from a movie controller.

ComponentResult MCRemoveMovie (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1211
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCSetActionFilter
Sets the MCActionFilterProc callback for a movie controller.

ComponentResult MCSetActionFilter (
 MovieController mc,
 MCActionFilterUPP blob
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

blob
A Universal Procedure Pointer to an MCActionFilterProc callback.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCSetActionFilterWithRefCon
Establishes an action filter function for a movie controller.

ComponentResult MCSetActionFilterWithRefCon (
 MovieController mc,
 MCActionFilterWithRefConUPP blob,
 long refCon
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

blob
A pointer to your MCActionFilterWithRefConProc callback. Set this parameter to NIL to remove
an existing callback.

1212 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

refCon
A reference constant value. The movie controller component passes this reference constant to your
action filter callback each time it calls it. Use this parameter to point to a data structure containing
any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The movie controller component calls your action filter function each time the component receives an action
for its movie controller. Your filter function is then free to handle the action or to refer it back to the movie
controller component. If you refer it back to the movie controller component, the component handles the
action.

If your filter function handles an action, you can handle the action in any way you desire. For example, your
filter function could change the operation of movie controller buttons. More commonly, applications use
the action filter function to monitor actions of the controller. For instance, your filter function might enable
you to find out when the user clicks the play button, so that your application can enable appropriate menu
selections. Alternatively, you can use the filter function to detect when the user resizes the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
QTKitMovieShuffler
vrbackbuffer.win

Declared In
Movies.h

MCSetClip
Lets you set a movie controller's clipping region.

ComponentResult MCSetClip (
 MovieController mc,
 RgnHandle theClip,
 RgnHandle movieClip
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Functions 1213
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

theClip
A handle to a region that defines the controller's clipping region. This clipping region affects the
entire movie controller and its movie, including the controller's badge and associated controls. Set
this parameter to NIL to clear the controller's clipping region.

movieClip
A handle to a region that defines the clipping region of the controller's movie. This clipping region
affects only the movie and the badge, not the movie controller. Set this parameter to NIL to clear
the movie clipping region.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCSetControllerAttached
Lets your application control whether a movie controller is attached to its movie or detached from it.

ComponentResult MCSetControllerAttached (
 MovieController mc,
 Boolean attach
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

attach
The action for this function. Set the attach parameter to TRUE to cause the controller to be attached
to its movie. Set this parameter to FALSE to detach the controller from its movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
qtskins.win

1214 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

SimpleVideoOut

Declared In
Movies.h

MCSetControllerBoundsRect
Lets you change the position and size of a movie controller.

ComponentResult MCSetControllerBoundsRect (
 MovieController mc,
 const Rect *bounds
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

bounds
A pointer to a Rect structure that contains the new boundary Rect structure for the movie controller.

Return Value
See Error Codes. Returns a value of controllerBoundsNotExact if the boundary rectangle has been
changed but does not correspond to the rectangle you specified. In this case, the new boundary rectangle
is always smaller than the requested rectangle. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
qtbigscreen

Declared In
Movies.h

MCSetControllerCapabilities
Undocumented

Functions 1215
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCSetControllerCapabilities (
 MovieController mc,
 long flags,
 long flagsMask
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

flags
Undocumented

flagsMask
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

MCSetControllerPort
Lets your application set the graphics port for a movie controller.

ComponentResult MCSetControllerPort (
 MovieController mc,
 CGrafPtr gp
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

gp
A pointer to the new graphics port for the movie controller. Set this parameter to NIL to use the
current graphics port.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Movie controller components use MCSetControllerPort each time you create a new movie controller.
Hence, your component must be set to a valid port before creating a new movie controller. You can use this
function to place a movie and its associated movie controller in different graphics ports. If you are using an

1216 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

attached controller, both the controller and the movie's graphics ports are changed. If you are using a
detached controller, this function changes only the graphics port of the control portion of the controller.
You must useSetMovieGWorld (page 290) followed byMCMovieChanged (page 1206) to change other portions.

pascal ComponentResult MCSetControllerPort (MovieController mc,
 CGrafPtr gp);

Special Considerations

The movie controller component may use the foreground and background colors from the graphics port at
the time this function is called to colorize the movie controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
qtbigscreen
QTCarbonShell
SimpleVideoOut
vrscript.win

Declared In
Movies.h

MCSetDuration
Lets your application set a controller's duration in the case where a controller does not have a movie associated
with it.

ComponentResult MCSetDuration (
 MovieController mc,
 TimeValue duration
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

duration
The new duration for the movie. This duration value must be in the controller's time scale.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1217
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCSetIdleManager
Lets a movie controller component report its idling needs.

ComponentResult MCSetIdleManager (
 MovieController mc,
 IdleManager im
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

im
A pointer to an opaque data structure that belongs to the Mac OS Idle Manager. You get this pointer
by calling QTIdleManagerOpen (page 273).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

MCSetMovie
Associates a movie with a specified movie controller.

ComponentResult MCSetMovie (
 MovieController mc,
 Movie theMovie,
 WindowRef movieWindow,
 Point where
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

theMovie
The movie to be associated with the movie controller. Set this value to NIL to remove the movie from
the controller.

1218 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

movieWindow
The window in which the movie is to be displayed. The movie controller component sets the movie's
graphics world to match this window. If you set the w parameter to NIL, the component uses the
current window.

where
The upper-left corner of the movie within the window specified by the movieWindow parameter. The
movie controller component uses the movie's boundary Rect structure to determine the size of the
movie. GetMovieBox (page 207) returns this structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieBrowser

Declared In
Movies.h

MCSetUpEditMenu
Correctly highlights and names the items in your application's Edit menu.

ComponentResult MCSetUpEditMenu (
 MovieController mc,
 long modifiers,
 MenuRef mh
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

modifiers
The current modifiers from the mouse-down or key-down event to which you are responding.

mh
A menu handler for your current Edit menu. The first six items in your Edit menu should be the standard
editing commands: Undo, a blank line, Cut, Copy, Paste, and Clear.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1219
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Related Sample Code
qtcontroller
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

MCSetVisible
Lets your application control the visibility of a movie controller.

ComponentResult MCSetVisible (
 MovieController mc,
 Boolean visible
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

visible
Set to TRUE to cause the controller to be visible, or FALSE to make the controller invisible.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtbigscreen
qtbigscreen.win
QTCarbonShell
watchme

Declared In
Movies.h

MCTrimMovieSegment
Undocumented

1220 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

ComponentResult MCTrimMovieSegment (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCUndo
Lets your application discard the effects of the most recent edit operation.

ComponentResult MCUndo (
 MovieController mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
mfc.win
qteffects.win
qtgraphics.win
vrbackbuffer.win

Declared In
Movies.h

Functions 1221
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

NewMCActionFilterUPP
Allocates a Universal Procedure Pointer for the MCActionFilterProc callback.

MCActionFilterUPP NewMCActionFilterUPP (
 MCActionFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMCActionFilterProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMCActionFilterWithRefConUPP
Allocates a Universal Procedure Pointer for the MCActionFilterWithRefConProc callback.

MCActionFilterWithRefConUPP NewMCActionFilterWithRefConUPP (
 MCActionFilterWithRefConProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMCActionFilterWithRefConProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcontroller
qteffects.win
qtgraphics.win
qtwiredactions

1222 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

vrbackbuffer.win

Declared In
Movies.h

Callbacks

MCActionFilterProc
Responds to movie controller actions.

typedef Boolean (*MCActionFilterProcPtr) (MovieController mc, short *action, void
 *params);

If you name your function MyMCActionFilterProc, you would declare it this way:

Boolean MyMCActionFilterProc (
 MovieController mc,
 short *action,
 void *params);

Parameters
mc

Specifies the movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

action
A movie controller action. For a list of actions, see Chapter 2 of InsideMacintosh:QuickTimeComponents.

params
A pointer to a structure, such as QTStatusStringRecord or ResolvedQTEventSpec, that passes
information to the callback. See Movies.h.

Return Value
Undocumented

Discussion
Movie controller components allow your application to field movie controller actions. You define an
MCActionFilterProc in your application and assign it to a controller by calling the
MCSetActionFilterWithRefCon function.

Declared In
Movies.h, HIMovieView.h

MCActionFilterWithRefConProc
Responds to movie controller actions with a reference constant.

typedef Boolean (*MCActionFilterWithRefConProcPtr) (MovieController mc, short
action, void *params, long refCon);

If you name your function MyMCActionFilterWithRefConProc, you would declare it this way:

Callbacks 1223
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Boolean MyMCActionFilterWithRefConProc (
 MovieController mc,
 short action,
 void *params,
 long refCon);

Parameters
mc

Specifies the movie controller for the operation. You obtain this identifier from OpenComponent or
OpenDefaultComponent, or from NewMovieController (page 1392).

action
A movie controller action. For a list of actions, see Chapter 2 of InsideMacintosh:QuickTimeComponents.

params
A pointer to a structure, such as QTStatusStringRecord, that passes information to the callback.
See Movies.h.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
Undocumented

Declared In
Movies.h, HIMovieView.h

Data Types

MCActionFilterUPP
Represents a type used by the Movie Controller API.

typedef STACK_UPP_TYPE(MCActionFilterProcPtr) MCActionFilterUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MCActionFilterWithRefConUPP
Represents a type used by the Movie Controller API.

typedef STACK_UPP_TYPE(MCActionFilterWithRefConProcPtr) MCActionFilterWithRefConUPP;

Availability
Available in Mac OS X v10.0 and later.

1224 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Declared In
Movies.h

MCInterfaceElement
Represents a type used by the Movie Controller API.

typedef unsigned long MCInterfaceElement;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

OptionBits
Represents a type used by the Movie Controller API.

typedef UInt32 OptionBits;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSTypes.h

Constants

Movie Controller Options
Constants that represent options for movie controllers.

Constants 1225
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

enum {
 kMCIEEnabledButtonPicture = 1,
 kMCIEDisabledButtonPicture = 2,
 kMCIEDepressedButtonPicture = 3,
 kMCIEEnabledSizeBoxPicture = 4,
 kMCIEDisabledSizeBoxPicture = 5,
 kMCIEEnabledUnavailableButtonPicture = 6,
 kMCIEDisabledUnavailableButtonPicture = 7,
 kMCIESoundSlider = 128,
 kMCIESoundThumb = 129,
 kMCIEColorTable = 256,
 kMCIEIsFlatAppearance = 257,
 kMCIEDoButtonIconsDropOnDepress = 258
};
enum {
 mcFlagSuppressMovieFrame = 1 << 0,
 mcFlagSuppressStepButtons = 1 << 1,
 mcFlagSuppressSpeakerButton = 1 << 2,
 mcFlagsUseWindowPalette = 1 << 3,
 mcFlagsDontInvalidate = 1 << 4,
 mcFlagsUseCustomButton = 1 << 5
};
enum {
 mcInfoUndoAvailable = 1 << 0,
 mcInfoCutAvailable = 1 << 1,
 mcInfoCopyAvailable = 1 << 2,
 mcInfoPasteAvailable = 1 << 3,
 mcInfoClearAvailable = 1 << 4,
 mcInfoHasSound = 1 << 5,
 mcInfoIsPlaying = 1 << 6,
 mcInfoIsLooping = 1 << 7,
 mcInfoIsInPalindrome = 1 << 8,
 mcInfoEditingEnabled = 1 << 9,
 mcInfoMovieIsInteractive = 1 << 10
};

Constants
kMCIESoundThumb

The indicator on the sound slider.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

mcFlagSuppressMovieFrame
If this flag is set to 1, the controller does not display a frame around the movie. By default, this flag
is set to 0.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

mcFlagSuppressStepButtons
If this flag is set to 1, the controller does not display the step buttons. By default, this flag is set to 0.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

1226 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

mcFlagSuppressSpeakerButton
If this flag is set to 1, the controller does not display the speaker button. By default, this flag is set to
0.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

mcFlagsUseWindowPalette
If this flag is set to 1, the movie controller does not manage the window palette. This ensures that a
movie's colors are reproduced as accurately as possible. This flag is particularly useful for movies with
custom color tables. By default, this flag is set to 0.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h, HIMovieView.h

MCAdjustCursor Values
Constants passed to MCAdjustCursor.

enum {
 kQTCursorOpenHand = -19183,
 kQTCursorClosedHand = -19182,
 kQTCursorPointingHand = -19181,
 kQTCursorRightArrow = -19180,
 kQTCursorLeftArrow = -19179,
 kQTCursorDownArrow = -19178,
 kQTCursorUpArrow = -19177,
 kQTCursorIBeam = -19176
};

Declared In
Movies.h, HIMovieView.h

MCGetMenuString Values
Constants passed to MCGetMenuString.

enum {
 mcMenuUndo = 1,
 mcMenuCut = 3,
 mcMenuCopy = 4,
 mcMenuPaste = 5,
 mcMenuClear = 6
};

Declared In
Movies.h, HIMovieView.h

MCPositionController Values
Constants passed to MCPositionController.

Constants 1227
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

enum {
 mcPositionDontInvalidate = 1 << 5
};

Declared In
Movies.h, HIMovieView.h

1228 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Movie Controller Reference

Framework: Frameworks/QuickTime.framework

Declared in Movies.h

Overview

QuickTime movies and movie tracks have properties that an application can manage, including embedded
metadata and sample tables that determine what, how, and when the movie will present its data.

Functions by Task

Working With QuickTime Metadata

QTCopyMediaMetaData (page 1239)
Retains a media's metadata object and returns it.

QTCopyMovieMetaData (page 1239)
Retains a movie's metadata object and returns it.

QTCopyTrackMetaData (page 1240)
Retains a track's metadata object and returns it.

QTMetaDataAddItem (page 1244)
Adds an inline metadata item to the metadata storage format.

QTMetaDataGetItemProperty (page 1246)
Returns a property of a metadata item.

QTMetaDataGetItemPropertyInfo (page 1247)
Returns information about a property of a metadata item.

QTMetaDataGetItemValue (page 1248)
Returns the value of a metadata item from an item identifier.

QTMetaDataGetNextItem (page 1248)
Returns the next metadata item corresponding to a specified key.

QTMetaDataGetProperty (page 1250)
Returns a property of a metadata object.

QTMetaDataGetPropertyInfo (page 1250)
Returns information about a property of a metadata object.

QTMetaDataRelease (page 1251)
Decrements the retain count of a metadata object.

Overview 1229
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTMetaDataRemoveItem (page 1252)
Removes a metadata item from a storage format.

QTMetaDataRemoveItemsWithKey (page 1252)
Removes metadata items with a specific key from the storage format.

QTMetaDataRetain (page 1253)
Increments the retain count of a metadata object.

QTMetaDataSetItem (page 1254)
Sets the value of the metadata item from the item identifier.

QTMetaDataSetItemProperty (page 1254)
Sets a property of a metadata item.

QTMetaDataSetProperty (page 1255)
Sets a property of a metadata object.

Working With QuickTime Sample Tables

QTSampleTableAddSampleDescription (page 1257)
Adds a sample description to a sample table, returning a sample description ID that can be used to
refer to it.

QTSampleTableAddSampleReferences (page 1258)
Adds sample references to a sample table.

QTSampleTableCopySampleDescription (page 1259)
Retrieves a sample description from a sample table.

QTSampleTableCreateMutable (page 1260)
Creates a new, empty sample table.

QTSampleTableCreateMutableCopy (page 1261)
Copies a sample table.

QTSampleTableGetDataOffset (page 1261)
Returns the data offset of a sample.

QTSampleTableGetDataSizePerSample (page 1262)
Returns the data size of a sample.

QTSampleTableGetDecodeDuration (page 1262)
Returns the decode duration of a sample.

QTSampleTableGetDisplayOffset (page 1263)
Returns the offset from decode time to display time of a sample.

QTSampleTableGetNextAttributeChange (page 1263)
Finds the next sample number at which one or more of a set of given sample attributes change.

QTSampleTableGetNumberOfSamples (page 1265)
Returns the number of samples in a sample table.

QTSampleTableGetProperty (page 1265)
Returns the value of a specific sample table property.

QTSampleTableGetPropertyInfo (page 1266)
Returns information about the properties of a sample table.

QTSampleTableGetSampleDescriptionID (page 1268)
Returns the sample description ID of a sample.

1230 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTSampleTableGetSampleFlags (page 1268)
Returns the media sample flags of a sample.

QTSampleTableGetTimeScale (page 1269)
Returns the timescale of a sample table.

QTSampleTableGetTypeID (page 1269)
Returns the CFTypeID value for the current sample table.

QTSampleTableRelease (page 1269)
Decrements the retain count of a sample table.

QTSampleTableReplaceRange (page 1270)
Replaces a range of samples in a sample table with a range of samples from another sample table.

QTSampleTableRetain (page 1271)
Increments the retain count of a sample table.

QTSampleTableSetProperty (page 1271)
Sets the value of a specific sample table property.

QTSampleTableSetTimeScale (page 1272)
Changes the timescale of a sample table.

Supporting Functions

DisposeQTTrackPropertyListenerUPP (page 1233)
Disposes a track property listener UPP.

InvokeQTTrackPropertyListenerUPP (page 1233)
Invokes the specified property listener of a track.

MusicMediaGetIndexedTunePlayer (page 1233)
Undocumented

NewQTTrackPropertyListenerUPP (page 1235)
Creates a new callback to monitor a track property.

QTAddMoviePropertyListener (page 1235)
Installs a callback to monitor a movie property.

QTAddTrackPropertyListener (page 1236)
Installs a callback to monitor a track property.

QTGetMovieProperty (page 1241)
Returns the value of a specific movie property.

QTGetMoviePropertyInfo (page 1241)
Returns information about the properties of a movie.

QTGetTrackProperty (page 1242)
Returns the value of a specific track property.

QTGetTrackPropertyInfo (page 1243)
Returns information about the properties of a track.

QTRemoveMoviePropertyListener (page 1256)
Removes a movie property monitoring callback.

QTRemoveTrackPropertyListener (page 1257)
Removes a track property monitoring callback

Functions by Task 1231
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTSetMovieProperty (page 1274)
Sets the value of a specific movie property.

QTSetTrackProperty (page 1275)
Sets the value of a specific track property.

DisposeQTBandwidthNotificationUPP (page 1232) Deprecated in Mac OS X v10.4
Disposes of a QTBandwidthNotificationUPP pointer.

NewQTBandwidthNotificationUPP (page 1234) Deprecated in Mac OS X v10.4
Allocates a Universal Procedure Pointer for the QTBandwidthNotificationProc callback.

QTBandwidthRelease (page 1236) Deprecated in Mac OS X v10.4
Undocumented

QTBandwidthRequest (page 1237) Deprecated in Mac OS X v10.4
Undocumented

QTBandwidthRequestForTimeBase (page 1238) Deprecated in Mac OS X v10.4
Undocumented

QTScheduledBandwidthRelease (page 1273) Deprecated in Mac OS X v10.4
Undocumented

QTScheduledBandwidthRequest (page 1273) Deprecated in Mac OS X v10.4
Undocumented

Functions

DisposeQTBandwidthNotificationUPP
Disposes of a QTBandwidthNotificationUPP pointer. (Deprecated in Mac OS X v10.4.)

void DisposeQTBandwidthNotificationUPP (
 QTBandwidthNotificationUPP userUPP
);

Parameters
userUPP

A QTBandwidthNotificationUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

1232 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

DisposeQTTrackPropertyListenerUPP
Disposes a track property listener UPP.

void DisposeQTTrackPropertyListenerUPP (
 QTTrackPropertyListenerUPP userUPP
);

Parameters
userUPP

A QTTrackPropertyListenerUPP pointer. See Universal Procedure Pointers in the QuickTime API
Reference for more information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

InvokeQTTrackPropertyListenerUPP
Invokes the specified property listener of a track.

void InvokeQTTrackPropertyListenerUPP (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 void *inUserData,
 QTTrackPropertyListenerUPP userUPP
);

Parameters
inTrack

The track of this operation.

inPropClass
A property class.

inPropID
A property ID.

inUserData
A pointer to user data that will be passed to the callback.

userUPP
A QTTrackPropertyListenerUPP pointer.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

MusicMediaGetIndexedTunePlayer
Undocumented

Functions 1233
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

ComponentResult MusicMediaGetIndexedTunePlayer (
 ComponentInstance ti,
 long sampleDescIndex,
 ComponentInstance *tp
);

Parameters
ti

Undocumented

sampleDescIndex
Undocumented

tp
A pointer to a tune player component instance.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewQTBandwidthNotificationUPP
Allocates a Universal Procedure Pointer for the QTBandwidthNotificationProc callback. (Deprecated in Mac
OS X v10.4.)

QTBandwidthNotificationUPP NewQTBandwidthNotificationUPP (
 QTBandwidthNotificationProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTBandwidthNotificationProc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

1234 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

NewQTTrackPropertyListenerUPP
Creates a new callback to monitor a track property.

QTTrackPropertyListenerUPP NewQTTrackPropertyListenerUPP (
 QTTrackPropertyListenerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a QTTrackPropertyListenerProcPtr callback.

Return Value
A new UPP; see Universal Procedure Pointers in the QuickTime API Reference.

Discussion
This routine creates a new callback to monitor a track property.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTAddMoviePropertyListener
Installs a callback to monitor a movie property.

OSErr QTAddMoviePropertyListener (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTMoviePropertyListenerUPP inListenerProc,
 void *inUserData
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTMoviePropertyListenerProc callback.

inUserData
A pointer to user data that will be passed to the callback.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Functions 1235
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTAddTrackPropertyListener
Installs a callback to monitor a track property.

OSErr QTAddTrackPropertyListener (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTTrackPropertyListenerUPP inListenerProc,
 void *inUserData
);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTTrackPropertyListenerProc callback.

inUserData
A pointer to user data that will be passed to the callback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine installs a callback to monitor a track property.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTBandwidthRelease
Undocumented (Deprecated in Mac OS X v10.4.)

1236 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSErr QTBandwidthRelease (
 QTBandwidthReference bwRef,
 long flags
);

Parameters
bwRef

Undocumented

flags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

QTBandwidthRequest
Undocumented (Deprecated in Mac OS X v10.4.)

OSErr QTBandwidthRequest (
 long priority,
 QTBandwidthNotificationUPP callback,
 const void *refcon,
 QTBandwidthReference *bwRef,
 long flags
);

Parameters
priority

Undocumented

callback
A QTBandwidthNotificationProc callback.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

bwRef
Undocumented

flags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1237
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

QTBandwidthRequestForTimeBase
Undocumented (Deprecated in Mac OS X v10.4.)

OSErr QTBandwidthRequestForTimeBase (
 TimeBase tb,
 long priority,
 QTBandwidthNotificationUPP callback,
 const void *refcon,
 QTBandwidthReference *bwRef,
 long flags
);

Parameters
tb

A time base. Your application obtains this time base identifier from NewTimeBase (page 261).

priority
Undocumented

callback
A QTBandwidthNotificationProc callback.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

bwRef
Undocumented

flags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

1238 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTCopyMediaMetaData
Retains a media's metadata object and returns it.

OSStatus QTCopyMediaMetaData (
 Media inMedia,
 QTMetaDataRef *outMetaData
);

Parameters
inMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

outMetaData
A pointer to an opaque metadata object wrapper associated with the media passed in inMedia.

Return Value
Returns invalidMedia if the media passed in inMedia is invalid, or noErr if there is no error.

Discussion
This function returns the metadata object associated with a media. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease (page 1251) when
you are done. Because the media can be disposed of at any time, the QTMetaDataRef may be valid when
the media no longer exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr
error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetadataEditor

Declared In
Movies.h

QTCopyMovieMetaData
Retains a movie's metadata object and returns it.

OSStatus QTCopyMovieMetaData (
 Movie inMovie,
 QTMetaDataRef *outMetaData
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

outMetaData
A pointer to an opaque metadata object wrapper associated with the movie passed in inMovie.

Return Value
Returns invalidMovie if the movie passed in inMovie is invalid, or noErr if there is no error.

Functions 1239
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Discussion
This function returns the metadata object associated with a movie. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease (page 1251) when
you are done. Because the movie can be disposed of at any time, the QTMetaDataRef may be valid when
the movie no longer exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr
error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetaData
QTMetadataEditor

Declared In
Movies.h

QTCopyTrackMetaData
Retains a track's metadata object and returns it.

OSStatus QTCopyTrackMetaData (
 Track inTrack,
 QTMetaDataRef *outMetaData
);

Parameters
inTrack

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

outMetaData
A pointer to an opaque metadata object wrapper associated with the track passed in inTrack.

Return Value
Returns invalidMedia if the track passed in inTrack is invalid, or noErr if there is no error.

Discussion
This function returns the metadata object associated with a track. The object has retain/release semantics.
It has already been retained before returning, but you should call QTMetaDataRelease (page 1251) when
you are done. Because the track can be disposed of at any time, the QTMetaDataRef may be valid when the
track no longer exists. In this case, the function will fail with a kQTMetaDataInvalidMetaDataErr error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetadataEditor

Declared In
Movies.h

1240 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTGetMovieProperty
Returns the value of a specific movie property.

OSErr QTGetMovieProperty (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTGetMoviePropertyInfo
Returns information about the properties of a movie.

Functions 1241
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSErr QTGetMoviePropertyInfo (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

outPropType
A pointer to memory allocated to hold the property type on return.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTGetTrackProperty
Returns the value of a specific track property.

1242 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSErr QTGetTrackProperty (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns the value of a specific track property.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTGetTrackPropertyInfo
Returns information about the properties of a track.

Functions 1243
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSErr QTGetTrackPropertyInfo (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

outPropType
A pointer to memory allocated to hold the property type on return.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine returns information about the properties of a track.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTMetaDataAddItem
Adds an inline metadata item to the metadata storage format.

1244 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTMetaDataAddItem (
 QTMetaDataRef inMetaData,
 QTMetaDataStorageFormat inMetaDataFormat,
 QTMetaDataKeyFormat inKeyFormat,
 const UInt8 *inKeyPtr,
 ByteCount inKeySize,
 const UInt8 *inValuePtr,
 ByteCount inValueSize,
 UInt32 inDataType,
 QTMetaDataItem *outItem
);

Parameters
inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You cannot pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

inValuePtr
A pointer to the value to be added. This can be NULL if inValueSize is 0.

inValueSize
The size of inValuePtr in bytes. Pass 0 if you want to add an item with no value.

inDataType
A data type from the following list: kQTMetaDataTypeBinary = 0, kQTMetaDataTypeUTF8 = 1,
kQTMetaDataTypeUTF16BE = 2, kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE = 21, kQTMetaDataTypeUnsignedIntegerBE = 22,
kQTMetaDataTypeFloat32BE = 23, kQTMetaDataTypeFloat64BE = 24With
kQTMetaDataTypeSignedIntegerBE and kQTMetaDataTypeUnsignedIntegerBE, the size of
the integer is determined by the value size.

outItem
On return, a pointer to an opaque, unique UInt64 identifier of the newly added item. Your application
can use this to identify the metadata item within a metadata object for other metadata functions.
You may pass NULL if you are not interested in the identifier of the newly added item. This identifier
does not need to be disposed of.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key or its format is invalid, or noErr if there is no error. See Metadata
Error Codes.

Functions 1245
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Discussion
The data type of the metadata item is assumed to be binary.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetadataEditor

Declared In
Movies.h

QTMetaDataGetItemProperty
Returns a property of a metadata item.

OSStatus QTMetaDataGetItemProperty (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application obtains
this item identifier from such functions as QTMetaDataAddItem (page 1244) and
QTMetaDataGetNextItem (page 1248).

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

inPropValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the item's property value.

outPropValueSizeUsed
On return, the actual size of buffer space used.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the property being asked about, buffersTooSmall if the allocated buffer is too
small to hold the property, or noErr if there is no error. See Metadata Error Codes.

Availability
Available in Mac OS X v10.3 and later.

1246 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Related Sample Code
QTMetaData
QTMetadataEditor

Declared In
Movies.h

QTMetaDataGetItemPropertyInfo
Returns information about a property of a metadata item.

OSStatus QTMetaDataGetItemPropertyInfo (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropFlags
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application obtains
this item identifier from such functions as QTMetaDataAddItem (page 1244) and
QTMetaDataGetNextItem (page 1248).

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the item's property.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the item property being asked about, or noErr if there is no error. See Metadata
Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetaData
QTMetadataEditor

Functions 1247
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Declared In
Movies.h

QTMetaDataGetItemValue
Returns the value of a metadata item from an item identifier.

OSStatus QTMetaDataGetItemValue (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem,
 UInt8 *outValuePtr,
 ByteCount inValueSize,
 ByteCount *outActualSize
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application can
obtain this item identifier from such functions as QTMetaDataAddItem (page 1244).

outValuePtr
A pointer to the first value of the item. You may pass NULL in this parameter if you just want to find
out the size of the buffer needed.

inValueSize
The number of bytes in the outValuePtr buffer. You may pass 0 if you just want to find out the size
of the buffer needed.

outActualSize
The actual size of the value if this parameter is not NULL.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See Metadata
Error Codes.

Discussion
You can use this function to get the value of a metadata item that has a known item identifier.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetaData

Declared In
Movies.h

QTMetaDataGetNextItem
Returns the next metadata item corresponding to a specified key.

1248 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTMetaDataGetNextItem (
 QTMetaDataRef inMetaData,
 QTMetaDataStorageFormat inMetaDataFormat,
 QTMetaDataItem inCurrentItem,
 QTMetaDataKeyFormat inKeyFormat,
 const UInt8 *inKeyPtr,
 ByteCount inKeySize,
 QTMetaDataItem *outNextItem
);

Parameters
inMetaData

The metadata object for this operation.

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. Pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inCurrentItem
The opaque, unique UInt64 identifier of the current metadata item to start the search. Your application
obtains this item identifier from such functions as QTMetaDataAddItem (page 1244).

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be fetched next. You may pass NULL in this parameter if you are
not interested in any specific key.

inKeySize
The size of the key in bytes.

outNextItem
The ID of the next metadata item after the item specified by inCurrentItem that has the specified
key.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid,kQTMetaDataInvalidStorageFormatErr
if the metatada storage format is invalid, kQTMetaDataInvalidKeyErr if the key or its format is invalid,
kQTMetaDataNoMoreItemErr if the last item has been fetched, or noErr if there is no error. See Metadata
Error Codes.

Discussion
If the item designated by inCurrentItem is kQTMetaDataItemUninitialized, the function returns the
first item with the specified key in the storage format. If it refers to a valid item in the storage format, the
function will return the next item with the key after the item designated by inCurrentItem.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetaData
QTMetadataEditor

Functions 1249
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Declared In
Movies.h

QTMetaDataGetProperty
Returns a property of a metadata object.

OSStatus QTMetaDataGetProperty (
 QTMetaDataRef inMetaData,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

inPropValueSize
Size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
On return, the actual size of buffer space used.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being asked about,
buffersTooSmall if the allocated buffer is too small to hold the property, or noErr if there is no error. See
Metadata Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTMetaDataGetPropertyInfo
Returns information about a property of a metadata object.

1250 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTMetaDataGetPropertyInfo (
 QTMetaDataRef inMetaData,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropFlags
);

Parameters
inMetaData

The metadata object for this operation.

inPropClass
The class of the property being asked about.

inPropID
The ID of the property being asked about.

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the property.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being asked about, or noErr
if there is no error. See Metadata Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTMetaDataRelease
Decrements the retain count of a metadata object.

void QTMetaDataRelease (
 QTMetaDataRef inMetaData
);

Discussion
This function releases a metadata object by decrementing its reference count. When the count becomes 0
the memory allocated to the object is freed and the object is destroyed. If you retain a metadata object you
are responsible for releasing it when you no longer need it.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetaData
QTMetadataEditor

Functions 1251
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Declared In
Movies.h

QTMetaDataRemoveItem
Removes a metadata item from a storage format.

OSStatus QTMetaDataRemoveItem (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application obtains
this item identifier from such functions as QTMetaDataAddItem (page 1244) and
QTMetaDataGetNextItem (page 1248).

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See Metadata
Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTMetadataEditor

Declared In
Movies.h

QTMetaDataRemoveItemsWithKey
Removes metadata items with a specific key from the storage format.

OSStatus QTMetaDataRemoveItemsWithKey (
 QTMetaDataRef inMetaData,
 QTMetaDataStorageFormat inMetaDataFormat,
 QTMetaDataKeyFormat inKeyFormat,
 const UInt8 *inKeyPtr,
 ByteCount inKeySize
);

Parameters
inMetaData

The metadata object for this operation.

1252 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

inMetaDataFormat
The metadata storage format used by the object passed in inMetaData. The format may be UserData
storage, iTunes metadata storage, or QuickTime metadata storage. Not all objects will include all
forms of storage, and other storage formats may appear in the future. You can pass
kQTMetaDataStorageFormatWildcard to target all storage formats.

inKeyFormat
The format of the key.

inKeyPtr
A pointer to the key of the item to be removed. You may pass NULL in this parameter if you want to
remove all items.

inKeySize
The size of the key in bytes.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidStorageFormatErr if the metatada storage format is invalid,
kQTMetaDataInvalidKeyErr if the key or its format is invalid, or noErr if there is no error. See Metadata
Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTMetaDataRetain
Increments the retain count of a metadata object.

QTMetaDataRef QTMetaDataRetain (
 QTMetaDataRef inMetaData
);

Parameters
inMetaData

A metadata object that you want to retain.

Return Value
If successful, returns a metadata object that is the same as that passed in inMetaData.

Discussion
This function retains a metadata object by incrementing its reference count. You should retain every metadata
object when you receive it from elsewhere and you want it to persist. If you retain a metadata object you
are responsible for releasing it by calling QTMetaDataRelease (page 1251).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

Functions 1253
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTMetaDataSetItem
Sets the value of the metadata item from the item identifier.

OSStatus QTMetaDataSetItem (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem,
 UInt8 *inValuePtr,
 ByteCount inValueSize,
 UInt32 inDataType
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application obtains
this item identifier from such functions as QTMetaDataAddItem (page 1244) and
QTMetaDataGetNextItem (page 1248).

inValuePtr
A pointer to the value to be set. This can be NULL if inValueSize is 0.

inValueSize
The size of inValuePtr in bytes. Pass 0 if you want to set an item with no value.

inDataType
A data type from the following list: kQTMetaDataTypeBinary = 0, kQTMetaDataTypeUTF8 = 1,
kQTMetaDataTypeUTF16BE = 2, kQTMetaDataTypeMacEncodedText = 3,
kQTMetaDataTypeSignedIntegerBE = 21, kQTMetaDataTypeUnsignedIntegerBE = 22,
kQTMetaDataTypeFloat32BE = 23, kQTMetaDataTypeFloat64BE = 24With
kQTMetaDataTypeSignedIntegerBE and kQTMetaDataTypeUnsignedIntegerBE, the size of
the integer is determined by the value size.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, or noErr if there is no error. See Metadata
Error Codes.

Discussion
You can use this function to set the value of the metadata item with a given item identifier. You can set an
item with an empty value by passing 0 in inValueSize.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTMetaDataSetItemProperty
Sets a property of a metadata item.

1254 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTMetaDataSetItemProperty (
 QTMetaDataRef inMetaData,
 QTMetaDataItem inItem,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
inMetaData

The metadata object for this operation.

inItem
The opaque, unique UInt64 identifier of the metadata item for this operation. Your application obtains
this item identifier from such functions as QTMetaDataAddItem (page 1244) and
QTMetaDataGetNextItem (page 1248).

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
Size of the buffer containing the property value being set.

inPropValueAddress
A pointer to the buffer containing the item property value being set.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
kQTMetaDataInvalidItemErr if the metatada item ID is invalid, errPropNotSupported if the metatada
object does not support the property being set, qtReadOnlyErr if the property being set is read-only, or
noErr if there is no error. See Metadata Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTMetaDataSetProperty
Sets a property of a metadata object.

OSStatus QTMetaDataSetProperty (
 QTMetaDataRef inMetaData,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
inMetaData

The metadata object for this operation.

Functions 1255
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

inPropClass
The class of the property being set.

inPropID
The ID of the property being set.

inPropValueSize
Size of the buffer containing the property value being set.

inPropValueAddress
A pointer to the buffer containing the property value being set.

Return Value
Returns kQTMetaDataInvalidMetaDataErr if the metadata object or its reference is invalid,
errPropNotSupported if the metatada object does not support the property being set, qtReadOnlyErr
if the property being set is read-only, or noErr if there is no error. See Metadata Error Codes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTRemoveMoviePropertyListener
Removes a movie property monitoring callback.

OSErr QTRemoveMoviePropertyListener (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTMoviePropertyListenerUPP inListenerProc,
 void *inUserData
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTMoviePropertyListenerProc callback.

inUserData
User data to be passed to the callback.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

1256 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTRemoveTrackPropertyListener
Removes a track property monitoring callback

OSErr QTRemoveTrackPropertyListener (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTTrackPropertyListenerUPP inListenerProc,
 void *inUserData
);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTTrackPropertyListenerProc callback.

inUserData
User data to be passed to the callback.

Return Value
An error code. Returns noErr if there is no error.

Discussion
This routine removes a track property monitoring callback.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTSampleTableAddSampleDescription
Adds a sample description to a sample table, returning a sample description ID that can be used to refer to
it.

Functions 1257
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTSampleTableAddSampleDescription (
 QTMutableSampleTableRef sampleTable,
 SampleDescriptionHandle sampleDescriptionH,
 long mediaSampleDescriptionIndex,
 QTSampleDescriptionID *sampleDescriptionIDOut
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleDescriptionH
A handle to a SampleDescription structure. QuickTime will make its own copy of this handle.

mediaSampleDescriptionIndex
The sample description index of this sample description in a media. Pass 0 for sample descriptions
you add to sample tables, to indicate that this was not retrieved from a media.

sampleDescriptionIDOut
A pointer to a variable to receive a sample description ID.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use the returned sample description ID when adding samples to the sample table.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableAddSampleReferences
Adds sample references to a sample table.

OSStatus QTSampleTableAddSampleReferences (
 QTMutableSampleTableRef sampleTable,
 SInt64 dataOffset,
 ByteCount dataSizePerSample,
 TimeValue64 decodeDurationPerSample,
 TimeValue64 displayOffset,
 SInt64 numberOfSamples,
 MediaSampleFlags sampleFlags,
 QTSampleDescriptionID sampleDescriptionID,
 SInt64 *newSampleNumOut
);

Parameters
sampleTable

A reference to an opaque sample table object.

dataOffset
A 64-bit signed integer that specifies the offset at which the first sample begins.

1258 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

dataSizePerSample
The number of bytes of data per sample. You must pass the data size per sample, not the total size
of all the samples as with some other APIs.

decodeDurationPerSample
A 64-bit time value that specifies the decode duration of each sample.

displayOffset
A 64-bit time value that specifies the offset from decode time to display time of each sample. If the
decode times and display times are the same, pass 0.

numberOfSamples
A 64-bit signed integer, which must be greater than 0, that specifies the number of samples.

sampleFlags
Flags that indicate the sync status of all samples: mediaSampleNotSync If set to 1, indicates that the
sample to be added is not a sync sample. Set this flag to 0 if the sample is a sync sample.
mediaSampleShadowSync If set to 1, the sample is a shadow sync sample. See these constants:

mediaSampleNotSync

mediaSampleShadowSync

sampleDescriptionID
The ID of a sample description that has been added to the sample table with
QTSampleTableAddSampleDescription (page 1257).

newSampleNumOut
A 64-bit signed integer that points to a variable to receive the sample number of the first sample that
was added. Pass NULL if you don't want this information.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableCopySampleDescription
Retrieves a sample description from a sample table.

OSStatus QTSampleTableCopySampleDescription (
 QTSampleTableRef sampleTable,
 QTSampleDescriptionID sampleDescriptionID,
 long *mediaSampleDescriptionIndexOut,
 SampleDescriptionHandle *sampleDescriptionHOut
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleDescriptionID
The sample description ID.

Functions 1259
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

mediaSampleDescriptionIndexOut
A pointer to a variable to receive a media sample description index. If the sample description came
from a media, this is the index that could be passed to GetMediaSampleDescription (page 1587)
to retrieve the same sample description handle. The index will be 0 if the sample description did not
come directly from a media. Pass NULL if you do not want to receive this information.

sampleDescriptionHOut
A pointer to a variable to receive a newly allocated sample description handle. Pass NULL if you do
not want one. The caller is responsible for disposing the returned sample description handle using
DisposeHandle.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableCreateMutable
Creates a new, empty sample table.

OSStatus QTSampleTableCreateMutable (
 CFAllocatorRef allocator,
 TimeScale timescale,
 void *hints,
 QTMutableSampleTableRef *newSampleTable
);

Parameters
allocator

The allocator to use for the new sample table.

timescale
A long integer that represents the timescale to use for durations and display offsets.

hints
Reserved; pass NULL.

newSampleTable
A pointer to a variable that receives a new reference to an opaque sample table object.

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if the time scale is not positive
or newSampleTable is NULL, or noErr if there is no error.

Discussion
The newly created sample table contains no sample references. When sample references are added, their
durations and display offsets are interpreted according to the sample table's current timescale.

Availability
Available in Mac OS X v10.3 and later.

1260 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Declared In
Movies.h

QTSampleTableCreateMutableCopy
Copies a sample table.

OSStatus QTSampleTableCreateMutableCopy (
 CFAllocatorRef allocator,
 QTSampleTableRef sampleTable,
 void *hints,
 QTMutableSampleTableRef *newSampleTable
);

Parameters
allocator

The allocator to use for the new sample table.

sampleTable
A reference to an opaque sample table object to copy.

hints
Reserved; set to NULL.

newSampleTable
A pointer to a variable that receives a reference to an opaque sample table object.

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if the time scale is not positive
or newSampleTable is NULL, or noErr if there is no error.

Discussion
All the sample references and sample descriptions in the sample table are copied.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableGetDataOffset
Returns the data offset of a sample.

SInt64 QTSampleTableGetDataOffset (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents a sample number. The first sample's number is 1.

Functions 1261
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Return Value
A 64-bit signed integer that represents the offset to the sample. Returns 0 if sampleTable is NULL or if the
sample number is out of range.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableGetDataSizePerSample
Returns the data size of a sample.

ByteCount QTSampleTableGetDataSizePerSample (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample's number is 1.

Return Value
The size of the sample in bytes. Returns 0 if sampleTable is NULL or if the sample number is out of range.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetDecodeDuration
Returns the decode duration of a sample.

TimeValue64 QTSampleTableGetDecodeDuration (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample's number is 1.

1262 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Return Value
A 64-bit time value that represents the decode duration of the sample. Returns 0 if sampleTable is NULL
or if the sample number is out of range.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetDisplayOffset
Returns the offset from decode time to display time of a sample.

TimeValue64 QTSampleTableGetDisplayOffset (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample's number is 1.

Return Value
A 64-bit time value that represents the offset from decode time to display time of the sample. Returns 0 if
sampleTable is NULL or if the sample number is out of range.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetNextAttributeChange
Finds the next sample number at which one or more of a set of given sample attributes change.

Functions 1263
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTSampleTableGetNextAttributeChange (
 QTSampleTableRef sampleTable,
 SInt64 startSampleNum,
 QTSampleTableAttribute attributeMask,
 SInt64 *sampleNumOut
);

Parameters
sampleTable

A reference to an opaque sample table object.

startSampleNum
A 64-bit signed integer that contains the sample number to start searching from.

attributeMask
An unsigned 32-bit integer that contains flags indicating which kinds of attribute changes to search
for: kQTSampleTableAttribute_DiscontiguousData = 1L << 0 Set this flag to find the first
sample number num such that samples num-1 and num are not adjacent; that is, dataOffset of
num-1 + dataSize of num-1 != dataOffset of num.
kQTSampleTableAttribute_DataSizePerSampleChange = 1L << 1 Set this flag to find the first
sample with data size per sample different from that of the starting sample.
kQTSampleTableAttribute_DecodeDurationChange = 1L << 2 Set this flag to find the first
sample with decode duration different from that of the starting sample.
kQTSampleTableAttribute_DisplayOffsetChange= 1L << 3 Set this flag to find the first sample
with display offset different from that of the starting sample.
kQTSampleTableAttribute_SampleDescriptionIDChange = 1L << 4 Set this flag to find the
first sample with sample description ID different from that of the starting sample.
kQTSampleTableAttribute_SampleFlagsChange = 1L << 5 Set this flag to find the first sample
with any media sample flags different from those of the starting sample.
kQTSampleTableAnyAttributeChange= 0 If no flags are set, find the first sample with any attribute
different from the starting sample. See these constants:

kQTSampleTableAttribute_DiscontiguousData

kQTSampleTableAttribute_DataSizePerSampleChange

kQTSampleTableAttribute_DecodeDurationChange

kQTSampleTableAttribute_DisplayOffsetChange

kQTSampleTableAttribute_SampleDescriptionIDChange

kQTSampleTableAttribute_SampleFlagsChange

kQTSampleTableAnyAttributeChange

sampleNumOut
A 64-bit signed integer that points to a variable to receive the next sample number after
startSampleNum at which any of the requested attributes change. If no attribute changes are found,
this variable is set to 0.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

1264 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTSampleTableGetNumberOfSamples
Returns the number of samples in a sample table.

SInt64 QTSampleTableGetNumberOfSamples (
 QTSampleTableRef sampleTable
);

Parameters
sampleTable

A reference to an opaque sample table object.

Return Value
A 64-bit signed integer that contains the number of samples, or 0 if sampleTable is NULL.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetProperty
Returns the value of a specific sample table property.

OSStatus QTSampleTableGetProperty (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
sampleTable

A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class: kQTPropertyClass_SampleTable =
'qtst' Property of a sample table. See these constants:

kQTPropertyClass_SampleTable

Functions 1265
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

inPropID
Pass one of these constants to define the property ID:
kQTSampleTablePropertyID_TotalDecodeDuration = 'tded' The total decode duration of all
samples in the sample table. Read-only. kQTSampleTablePropertyID_MinDisplayOffset =
'<ddd' The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset= '>ddd' The greatest display offset in the table.
Positive offsets are greater than negative offsets. Read-only.
kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis' The least display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only.
kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis' The greatest display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only. See these
constants:

kQTSampleTablePropertyID_TotalDecodeDuration

kQTSampleTablePropertyID_MinDisplayOffset

kQTSampleTablePropertyID_MaxDisplayOffset

kQTSampleTablePropertyID_MinRelativeDisplayTime

kQTSampleTablePropertyID_MaxRelativeDisplayTime

inPropValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
On return, the actual size of the property value written to the buffer.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetPropertyInfo
Returns information about the properties of a sample table.

1266 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSStatus QTSampleTableGetPropertyInfo (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
sampleTable

A reference to an opaque sample table object.

inPropClass
Pass the following constant to define the property class: kQTPropertyClass_SampleTable =
'qtst' Property of a sample table. See these constants:

kQTPropertyClass_SampleTable

inPropID
Pass one of these constants to define the property ID:
kQTSampleTablePropertyID_TotalDecodeDuration = 'tded' The total decode duration of all
samples in the sample table. Read-only. kQTSampleTablePropertyID_MinDisplayOffset =
'<ddd' The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset= '>ddd' The greatest display offset in the table.
Positive offsets are greater than negative offsets. Read-only.
kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis' The least display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only.
kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis' The greatest display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only. See these
constants:

kQTSampleTablePropertyID_TotalDecodeDuration

kQTSampleTablePropertyID_MinDisplayOffset

kQTSampleTablePropertyID_MaxDisplayOffset

kQTSampleTablePropertyID_MinRelativeDisplayTime

kQTSampleTablePropertyID_MaxRelativeDisplayTime

outPropType
A pointer to memory allocated to hold the property type on return: Pass NULL if you do not want
this information.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return. Pass NULL if you do
not want this information.

outPropertyFlags
A pointer to memory allocated to hold property flags on return. Pass NULL if you do not want this
information.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

Functions 1267
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

QTSampleTableGetSampleDescriptionID
Returns the sample description ID of a sample.

QTSampleDescriptionID QTSampleTableGetSampleDescriptionID (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample's number is 1.

Return Value
The sample's sample description ID. Returns 0 if sampleTable is NULL or if the sample number is out of
range.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableGetSampleFlags
Returns the media sample flags of a sample.

MediaSampleFlags QTSampleTableGetSampleFlags (
 QTSampleTableRef sampleTable,
 SInt64 sampleNum
);

Parameters
sampleTable

A reference to an opaque sample table object.

sampleNum
A 64-bit signed integer that represents the sample number. The first sample's number is 1.

Return Value
A constant that describes characteristics of the sample (see below). Returns 0 if sampleTable is NULL or if
the sample number is out of range.

Discussion
This function can return one or more of the following constants:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

1268 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Declared In
Movies.h

QTSampleTableGetTimeScale
Returns the timescale of a sample table.

TimeScale QTSampleTableGetTimeScale (
 QTSampleTableRef sampleTable
);

Parameters
sampleTable

A reference to an opaque sample table object.

Return Value
A long integer that represents the sample's time scale, or 0 if sampleTable is NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableGetTypeID
Returns the CFTypeID value for the current sample table.

CFTypeID QTSampleTableGetTypeID (
 void
);

Return Value
A CFTypeID value.

Discussion
You could use this to test whether a CFTypeRef that was extracted from a CF container such as a CFArray
is a QTSampleTableRef.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableRelease
Decrements the retain count of a sample table.

Functions 1269
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

void QTSampleTableRelease (
 QTSampleTableRef sampleTable
);

Parameters
sampleTable

A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Discussion
If the retain count decreases to zero, the sample table is disposed.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

QTSampleTableReplaceRange
Replaces a range of samples in a sample table with a range of samples from another sample table.

OSStatus QTSampleTableReplaceRange (
 QTMutableSampleTableRef destSampleTable,
 SInt64 destStartingSampleNum,
 SInt64 destSampleCount,
 QTSampleTableRef sourceSampleTable,
 SInt64 sourceStartingSampleNum,
 SInt64 sourceSampleCount
);

Parameters
destSampleTable

A reference to an opaque sample table object to be modified.

destStartingSampleNum
A 64-bit signed integer that represents the first sample number in destSampleTable to be replaced
or deleted, or the sample number at which samples should be inserted.

destSampleCount
A 64-bit signed integer that represents the number of samples to be removed from destSampleTable.
Pass 0 to insert samples without removing samples.

sourceSampleTable
A reference to an opaque sample table object from which samples should be copied, or NULL to
delete samples.

sourceStartingSampleNum
A 64-bit signed integer that represents the first sample number to be copied. This parameter is ignored
when deleting samples.

sourceSampleCount
A 64-bit signed integer that represents the number of samples which should be copied. Pass 0 to
delete samples.

1270 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Return Value
An error code. Returns noErr if there is no error.

Discussion
This function removes destSampleCount samples from destSampleTable starting with
destStartingSampleNum, and then inserts sourceSampleCount samples from sourceSampleTable
starting with sourceStartingSampleNum where the removed samples were. Sample descriptions will be
copied if necessary and new sample description IDs defined. This function can also be used to delete a range
of samples, or to insert samples without removing any.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableRetain
Increments the retain count of a sample table.

QTSampleTableRef QTSampleTableRetain (
 QTSampleTableRef sampleTable
);

Parameters
sampleTable

A reference to an opaque sample table object. If you pass NULL in this parameter, nothing happens.

Return Value
A pointer to the OpaqueQTSampleTable structure that is returned for your convenience, or NULL if the
function fails.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableSetProperty
Sets the value of a specific sample table property.

OSStatus QTSampleTableSetProperty (
 QTSampleTableRef sampleTable,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
sampleTable

A reference to an opaque sample table object.

Functions 1271
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

inPropClass
Pass the following constant to define the property class: kQTPropertyClass_SampleTable =
'qtst' Property of a sample table. See these constants:

kQTPropertyClass_SampleTable

inPropID
Pass one of these constants to define the property ID:
kQTSampleTablePropertyID_TotalDecodeDuration = 'tded' The total decode duration of all
samples in the sample table. Read-only. kQTSampleTablePropertyID_MinDisplayOffset =
'<ddd' The least display offset in the table. Negative offsets are less than positive offsets. Read-only.
kQTSampleTablePropertyID_MaxDisplayOffset= '>ddd' The greatest display offset in the table.
Positive offsets are greater than negative offsets. Read-only.
kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis' The least display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only.
kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis' The greatest display time of all
samples in the table, relative to the decode time of the first sample in the table. Read-only. See these
constants:

kQTSampleTablePropertyID_TotalDecodeDuration

kQTSampleTablePropertyID_MinDisplayOffset

kQTSampleTablePropertyID_MaxDisplayOffset

kQTSampleTablePropertyID_MinRelativeDisplayTime

kQTSampleTablePropertyID_MaxRelativeDisplayTime

inPropValueSize
Pass the size of the property value.

inPropValueAddress
Pass a const void pointer to the property value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTSampleTableSetTimeScale
Changes the timescale of a sample table.

OSStatus QTSampleTableSetTimeScale (
 QTMutableSampleTableRef sampleTable,
 TimeScale newTimeScale
);

Parameters
sampleTable

A reference to an opaque sample table object.

newTimeScale
A long integer whose value is the time scale to be set.

1272 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Return Value
An error code. Returns paramErr if the time scale is not positive or sampleTable is NULL, or noErr if there
is no error.

Discussion
The durations and display offsets of all the sample references in the sample table are scaled from the old
timescale to the new timescale. No durations are scaled to a value less than 1. Display offsets are adjusted
to avoid display time collisions.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTScheduledBandwidthRelease
Undocumented (Deprecated in Mac OS X v10.4.)

OSErr QTScheduledBandwidthRelease (
 QTScheduledBandwidthReference sbwRef,
 long flags
);

Parameters
sbwRef

A pointer to an opaque data structure.

flags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

QTScheduledBandwidthRequest
Undocumented (Deprecated in Mac OS X v10.4.)

Functions 1273
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

OSErr QTScheduledBandwidthRequest (
 QTScheduledBandwidthPtr scheduleRec,
 QTBandwidthNotificationUPP notificationCallback,
 void *refcon,
 QTScheduledBandwidthReference *sbwRef,
 long flags
);

Parameters
scheduleRec

A pointer to a QTScheduledBandwidthRecord structure.

notificationCallback
A Universal Procedure Pointer that accesses a QTBandwidthNotificationProc callback.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

sbwRef
A pointer to an opaque data structure.

flags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Movies.h

QTSetMovieProperty
Sets the value of a specific movie property.

OSErr QTSetMovieProperty (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

1274 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the property value.

inPropValueAddress
A pointer to the the property value.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

QTSetTrackProperty
Sets the value of a specific track property.

OSErr QTSetTrackProperty (
 Track inTrack,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
inTrack

The track for this operation.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the property value.

inPropValueAddress
A pointer to the the property value.

Return Value
An error code. Returns noErr if there is no error.

Functions 1275
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Discussion
This routine sets the value of a specific track property.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
Movies.h

Callbacks

QTBandwidthNotificationProc
Undocumented

typedef OSErr (*QTBandwidthNotificationProcPtr) (long flags, void *reserved, void
 *refcon);

If you name your function MyQTBandwidthNotificationProc, you would declare it this way:

OSErr MyQTBandwidthNotificationProc (
 long flags,
 void *reserved,
 void *refcon);

Parameters
flags

Undocumented

reserved
Reserved.

refcon
Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

Data Types

QTBandwidthNotificationUPP
Represents a type used by the Movie Properties API.

1276 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

typedef STACK_UPP_TYPE(QTBandwidthNotificationProcPtr) QTBandwidthNotificationUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTBandwidthReference
Represents a type used by the Movie Properties API.

typedef struct OpaqueQTBandwidthReference * QTBandwidthReference;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTScheduledBandwidthPtr
Represents a type used by the Movie Properties API.

typedef QTScheduledBandwidthRecord * QTScheduledBandwidthPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTScheduledBandwidthRecord
Provides information to the QTScheduledBandwidthRequest function.

struct QTScheduledBandwidthRecord {
 long recordSize;
 long priority;
 long dataRate;
 CompTimeValue startTime;
 CompTimeValue duration;
 TimeScale scale;
 TimeBase base;
 };

Fields
recordSize

Discussion
The number of bytes in this structure.

Data Types 1277
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

priority

Discussion
Undocumented

dataRate

Discussion
The data rate.

startTime

Discussion
The bandwidth usage start time.

duration

Discussion
Duration of bandwidth usage, or 0 if unknown.

scale

Discussion
The timescale of the duration field.

base

Discussion
The time base.

Declared In
Movies.h

QTScheduledBandwidthReference
Represents a type used by the Movie Properties API.

typedef struct OpaqueQTScheduledBandwidthReference * QTScheduledBandwidthReference;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Constants

kQTPropertyClass_SampleTable
Constants grouped with kQTPropertyClass_SampleTable.

1278 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

enum {
 /*
 * Property class for sample tables.
 */
 kQTPropertyClass_SampleTable = 'qtst',
 /*
 * The total decode duration of all samples in the sample table.
 * Read-only.
 */
 kQTSampleTablePropertyID_TotalDecodeDuration = 'tded', /* TimeValue64, Read */
 /*
 * The least display offset in the table. (-50 is a lesser offset
 * than 20.) Read-only.
 */
 kQTSampleTablePropertyID_MinDisplayOffset = '<ddd', /* TimeValue64, Read */
 /*
 * The greatest display offset in the table. (20 is a greater offset
 * than -50.) Read-only.
 */
 kQTSampleTablePropertyID_MaxDisplayOffset = '>ddd', /* TimeValue64, Read */
 /*
 * The least display time of all samples in the table, relative to
 * the decode time of the first sample in the table. Read-only.
 */
 kQTSampleTablePropertyID_MinRelativeDisplayTime = '<dis', /* TimeValue64, Read
*/
 /*
 * The greatest display time of all samples in the table, relative to
 * the decode time of the first sample in the table. Read-only.
 */
 kQTSampleTablePropertyID_MaxRelativeDisplayTime = '>dis' /* TimeValue64, Read */
};

Declared In
Movies.h

QTSampleTableGetNextAttributeChange Values
Constants passed to QTSampleTableGetNextAttributeChange.

Constants 1279
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

enum {
 /*
 * Set this flag to find first num such that samples num-1 and num
 * are not adjacent, ie, dataOffset of num-1 + dataSize of num-1 !=
 * dataOffset of num
 */
 kQTSampleTableAttribute_DiscontiguousData = 1L << 0,
 /*
 * Set this flag to find the first sample with data size per sample
 * different from that of the starting sample.
 */
 kQTSampleTableAttribute_DataSizePerSampleChange = 1L << 1,
 /*
 * Set this flag to find the first sample with decode duration
 * different from that of the starting sample.
 */
 kQTSampleTableAttribute_DecodeDurationChange = 1L << 2,
 /*
 * Set this flag to find the first sample with display offset
 * different from that of the starting sample.
 */
 kQTSampleTableAttribute_DisplayOffsetChange = 1L << 3,
 /*
 * Set this flag to find the first sample with sample description ID
 * different from that of the starting sample.
 */
 kQTSampleTableAttribute_SampleDescriptionIDChange = 1L << 4,
 /*
 * Set this flag to find the first sample with any media sample flags
 * different from those of the starting sample.
 */
 kQTSampleTableAttribute_SampleFlagsChange = 1L << 5,
 /*
 * If no flags are set, find the first sample with any attribute
 * different from the starting sample.
 */
 kQTSampleTableAnyAttributeChange = 0
};

Declared In
Movies.h

QTSampleTableGetSampleFlags Values
Constants passed to QTSampleTableGetSampleFlags.

1280 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

enum {
 mediaSampleNotSync = 1 << 0, /* sample is not a sync sample (eg. is
frame differenced */
 mediaSampleShadowSync = 1 << 1, /* sample is a shadow sync */
 mediaSampleDroppable = 1 << 27, /* sample is not required to be decoded
 for later samples to be decoded properly */
 mediaSamplePartialSync = 1 << 16, /* sample is a partial sync (e.g., I
frame after open GOP) */
 mediaSampleHasRedundantCoding = 1 << 24, /* sample is known to contain redundant
 coding */
 mediaSampleHasNoRedundantCoding = 1 << 25, /* sample is known not to contain
redundant coding */
 mediaSampleIsDependedOnByOthers = 1 << 26, /* one or more other samples depend
upon the decode of this sample */
 mediaSampleIsNotDependedOnByOthers = 1 << 27, /* synonym for mediaSampleDroppable
 */
 mediaSampleDependsOnOthers = 1 << 28, /* sample's decode depends upon decode
 of other samples */
 mediaSampleDoesNotDependOnOthers = 1 << 29, /* sample's decode does not depend
upon decode of other samples */
 mediaSampleEarlierDisplayTimesAllowed = 1 << 30 /* samples later in decode order
 may have earlier display times */
};

Constants
mediaSampleNotSync

Returned for frame-differenced video sample data.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

Constants 1281
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

1282 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

QuickTime Movie Properties Reference

Framework: Frameworks/QuickTime.framework

Declared in Movies.h

Overview

The QuickTime Movie Toolkit helps your application construct movies, including determining what types of
media to present, where movie data are located, when and how to present each data sample, and how to
layer, arrange, and composite multiple movie elements.

Functions by Task

Associating Movies With Controllers

DisposeMovieController (page 1324)
Disposes of a movie controller.

NewMovieController (page 1392)
Locates a movie controller component and assigns a movie to that controller.

Audio Conversion and Extraction

MovieAudioExtractionBegin (page 1383)
Begins a movie audio extraction session.

MovieAudioExtractionEnd (page 1384)
Ends a movie audio extraction session.

MovieAudioExtractionFillBuffer (page 1384)
Extracts audio from a movie.

MovieAudioExtractionGetProperty (page 1385)
Gets a property of a movie audio extraction session.

MovieAudioExtractionGetPropertyInfo (page 1386)
Gets information about a property of a movie audio extraction session.

MovieAudioExtractionSetProperty (page 1387)
Sets a property of a movie audio extraction session.

Overview 1283
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Copying Existing Atoms

QTCopyAtom (page 1421)
Copies an atom and its children to a new atom container.

QTInsertChildren (page 1447)
Inserts a container of atoms as children of the specified parent atom.

QTReplaceAtom (page 1463)
Replaces the contents of an atom and its children with a different atom and its children.

QTSwapAtoms (page 1469)
Swaps the contents of two atoms in an atom container.

Creating and Disposing of Atom Containers

QTDisposeAtomContainer (page 1427)
Disposes of an atom container.

QTNewAtomContainer (page 1451)
Creates a new atom container.

Creating and Manipulating Sprites

DisposeSprite (page 1331)
Disposes of a sprite.

GetSpriteProperty (page 1370)
Retrieves the value of a specified sprite property.

InvalidateSprite (page 1379)
Invalidates the portion of a sprite's sprite world that is occupied by a sprite.

NewSprite (page 1410)
Creates a new sprite in a specified sprite world.

SetSpriteProperty (page 1491)
Sets the specified property of a sprite.

SpriteHitTest (page 1500)
Determines whether a location in a sprite's display coordinate system intersects the sprite.

Creating New Atoms

QTInsertChild (page 1446)
Creates a new child atom of the specified parent atom.

Enhancing Movie Playback Performance

GetTrackLoadSettings (page 1372)
Retrieves a track's preload information.

1284 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

SetMediaPlayHints (page 1475)
Provides information to the Movie Toolbox that can influence playback of a single media.

SetMoviePlayHints (page 1485)
Provides information to the Movie Toolbox that can influence movie playback.

SetTrackLoadSettings (page 1497)
Specifies a portion of a track that is to be loaded into memory whenever it is played.

Error Functions

QTAddMovieError (page 1420)
Adds orthogonal errors to a movie's list of errors.

Finding and Adding Samples

GetMediaNextInterestingDecodeTime (page 1344)
Searches for decode times of interest in a media.

GetMediaNextInterestingDisplayTime (page 1345)
Searches for display times of interest in a media.

Finding Interesting Times

GetMediaNextInterestingTime (page 1346)
Searches for times of interest in a media.

GetMovieNextInterestingTime (page 1359)
Searches for times of interest in a movie's enabled tracks.

GetTrackNextInterestingTime (page 1373)
Searches for times of interest in a track.

High-Level Download Control

GetMaxLoadedTimeInMovie (page 1342)
When a movie is being progressively downloaded, returns the duration of the part of a movie that
has already been downloaded.

QTMovieNeedsTimeTable (page 1450)
Returns whether a movie is being progressively downloaded.

High-Level Effects Functions

QTCreateStandardParameterDialog (page 1424)
Creates a dialog box that allows the user to choose an effect from the list of effects passed to the
function.

QTDismissStandardParameterDialog (page 1426)
Closes a standard parameter dialog box that was created using QTCreateStandardParameterDialog.

Functions by Task 1285
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTGetEffectsList (page 1441)
Returns a QT atom container holding a list of the currently installed effects components.

QTGetEffectsListExtended (page 1442)
Provides for more advanced filtering of effects to be placed into the effect list.

QTGetEffectSpeed (page 1443)
Returns the speed of the effect, expressed in frames per second.

QTIsStandardParameterDialogEvent (page 1448)
Determines if a Macintosh event is processed by a standard parameter dialog box created by
QTCreateStandardParameterDialog.

QTStandardParameterDialogDoAction (page 1467)
Lets you change some of the default behaviors of the standard parameter dialog box.

High-Level Movie Editing Functions

NewMovieFromScrap (page 1402)
Creates a movie from the contents of the scrap.

PutMovieOnScrap (page 1418)
Places a movie into the Macintosh scrap.

Low-Level Download Control

MakeMediaTimeTable (page 1380)
Returns a time table for the specified media.

MakeTrackTimeTable (page 1382)
Returns a time table for a specified track in a movie.

Metering Sound Level and Frequency

GetMovieAudioFrequencyLevels (page 1351)
Returns the current frequency meter levels of a movie mix.

GetMovieAudioFrequencyMeteringBandFrequencies (page 1351)
Returns the chosen middle frequency for each band in the configured frequency metering of a
particular movie mix.

GetMovieAudioFrequencyMeteringNumBands (page 1352)
Returns the number of frequency bands being metered for a movie's specified audio mix.

GetMovieAudioVolumeMeteringEnabled (page 1355)
Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

SetMovieAudioFrequencyMeteringNumBands (page 1479)
Configures frequency metering for a particular audio mix in a movie.

SetMovieAudioVolumeMeteringEnabled (page 1481)
Enables or disables volume metering of a particular audio mix of a movie.

1286 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Modifying Atoms

QTSetAtomData (page 1465)
Changes the data of a leaf atom.

QTSetAtomID (page 1467)
Changes the ID of an atom.

Movie Functions

CloseMovieFile (page 1311)
Closes an open movie file.

CreateMovieFile (page 1316)
Creates a movie file, creates an empty movie which references the file, and opens the movie file with
write permission.

DeleteMovieFile (page 1320)
Deletes a movie file.

NewMovieForDataRefFromHandle (page 1394)
Creates a movie from a public movie handle, converting internal references to external references.

NewMovieFromDataRef (page 1397)
Creates a movie from any device with a corresponding data handler.

NewMovieFromFile (page 1398)
Creates a new movie in memory from a movie file or from any type of file for which QuickTime provides
an import component (AIFF, JPEG, MPEG-4, etc).

NewMovieFromHandle (page 1400)
Creates a movie in memory from a movie resource or a handle you obtained from PutMovieIntoHandle.

NewMovieFromUserProc (page 1404)
Creates a movie from data that you provide.

OpenMovieFile (page 1416)
Opens a specified movie file.

Movie Posters and Movie Previews

GetPosterBox (page 1367)
Obtains a poster's boundary rectangle.

SetPosterBox (page 1490)
Sets a poster's boundary rectangle.

Movies and Your Event Loop

DisposeQTNextTaskNeededSoonerCallbackUPP (page 1331)
Disposes of a QTNextTaskNeededSoonerCallbackUPP pointer.

GetMovieStatus (page 1363)
Searches for errors in all the enabled tracks of the movie and returns information about errors that
are encountered during the processing associated with the MoviesTask function.

Functions by Task 1287
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetTrackStatus (page 1375)
Returns the value of the last error the media encountered while playing a specified track.

NewQTNextTaskNeededSoonerCallbackUPP (page 1409)
Allocates a Universal Procedure Pointer for the QTNextTaskNeededSoonerCallbackProc callback.

Registering and Unregistering Access Keys

QTRegisterAccessKey (page 1461)
Registers an access key.

QTUnregisterAccessKey (page 1470)
Removes a previously registered access key.

Removing Atoms From an Atom Container

QTRemoveAtom (page 1461)
Removes an atom and its children from the specified atom container.

QTRemoveChildren (page 1462)
Removes all the children of an atom from the specified atom container.

Retrieving Access Keys

QTGetAccessKeys (page 1432)
Returns all the application and system access keys of a specified access key type.

Retrieving Atoms and Atom Data

QTCopyAtomDataToHandle (page 1421)
Copies the specified leaf atom's data to a handle.

QTCopyAtomDataToPtr (page 1422)
Copies the specified leaf atom's data to a buffer.

QTCountChildrenOfType (page 1424)
Returns the number of atoms of a given type in the child list of the specified parent atom.

QTFindChildByID (page 1430)
Retrieves an atom by ID from the child list of the specified parent atom.

QTFindChildByIndex (page 1431)
Retrieves an atom by index from the child list of the specified parent atom.

QTGetAtomDataPtr (page 1433)
Retrieves a pointer to the atom data for a specified leaf atom.

QTGetAtomTypeAndID (page 1435)
Retrieves an atom's type and ID.

QTGetNextChildType (page 1445)
Returns the next atom type in the child list of the specified parent atom.

1288 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTLockContainer (page 1449)
Locks an atom container in memory.

QTNextChildAnyType (page 1460)
Returns the next atom in the child list of the specified parent atom.

QTUnlockContainer (page 1469)
Unlocks an atom container in memory.

Saving Movies

AddMovieResource (page 1299)
Adds a movie resource to a specified resource file.

AddMovieToStorage (page 1301)
Adds a movie to a storage container that was created by CreateMovieStorage.

ClearMovieChanged (page 1310)
Sets the movie changed flag to indicate that the movie has not been changed.

CloseMovieStorage (page 1312)
Closes an open movie storage container.

CreateMovieStorage (page 1318)
Creates an empty storage location to hold a movie and opens a data handler to the stored movie
with write permission.

DeleteMovieStorage (page 1321)
Deletes a movie storage container.

FlattenMovie (page 1336)
Creates a new movie file containing a specified movie.

FlattenMovieData (page 1338)
Creates a new movie and a file that contains all the movie data.

FlattenMovieDataToDataRef (page 1340)
Performs a flattening operation to a movie at a storage location.

HasMovieChanged (page 1378)
Determines whether a movie has changed and needs to be saved.

NewMovieFromDataFork (page 1395)
Retrieves a movie that is stored anywhere in the data fork of a specified Macintosh file.

NewMovieFromStorageOffset (page 1402)
Creates a new movie based on the offset to data in a storage container.

RemoveMovieResource (page 1471)
Removes a movie resource from a specified movie file.

UpdateMovieInStorage (page 1503)
Updates a movie at a storage location.

UpdateMovieResource (page 1503)
Replaces the contents of a movie resource in a specified movie file.

Functions by Task 1289
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Setting Sound Parameters

GetMovieAudioBalance (page 1350)
Returns the balance value for the audio mix of a movie currently playing.

GetMovieAudioGain (page 1353)
Returns the gain value for the audio mix of a movie currently playing.

GetTrackAudioGain (page 1370)
Returns the gain value for the audio mix of a track currently playing.

GetTrackAudioMute (page 1371)
Returns the mute value for the audio mix of a track currently playing.

SetMovieAudioBalance (page 1478)
Sets the balance level for the mixed audio output of a movie.

SetMovieAudioGain (page 1480)
Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the
movie's playback.

SetMovieAudioMute (page 1480)
Sets the mute value for the audio mix of a movie currently playing.

SetTrackAudioGain (page 1496)
Sets the audio gain level for the audio output of a track, altering the perceived volume of the track's
playback.

SetTrackAudioMute (page 1496)
Mutes or unmutes the audio output of a track.

Tween Component Requirements

QTDoTweenPtr (page 1429)
Runs a tween component and returns values in a pointer rather than a handle.

Using the Full Screen

BeginFullScreen (page 1305)
Begins full-screen mode for a specified graphics device.

EndFullScreen (page 1335)
Ends full-screen mode for a graphics device.

Working With Alternate Tracks

SetMovieLanguage (page 1484)
Specifies a movie's localized language or region code.

1290 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Working With Data References

AddMediaDataRef (page 1298)
Adds a data reference to a media.

GetMediaDataRef (page 1342)
Returns a copy of a specified data reference.

GetMediaDataRefCount (page 1344)
Determines the number of data references in a media.

Working With Media Handler Properties

GetMediaPropertyAtom (page 1348)
Retrieves the property atom container of a media handler.

SetMediaPropertyAtom (page 1476)
Sets the property atom container of a media handler.

Working With Movie Restrictions

QTCreateUUID (page 1426)
Creates a 128-bit universal unique ID number.

QTEqualUUIDs (page 1430)
Compares two 128-bit ID numbers.

QTGetMovieRestrictions (page 1444)
Returns the restrictions, if any, for a given movie.

QTGetSupportedRestrictions (page 1445)
Reports the movie restrictions enforced by the currently running version of QuickTime.

QTRestrictionsGetIndClass (page 1463)
Reports the class of a movie restriction.

QTRestrictionsGetInfo (page 1464)
Reports information about the restrictions in a specified restriction set.

QTRestrictionsGetItem (page 1465)
Retrieves specific movie restrictions.

Working With Movie Spatial Characteristics

GetMovieColorTable (page 1356)
Retrieves a movie's color table.

GetMovieSegmentDisplayBoundsRgn (page 1362)
Determines a movie's display boundary region for a specified segment.

GetTrackSegmentDisplayBoundsRgn (page 1374)
Determines the region a track occupies in a movie's graphics world during a specified segment.

SetMovieColorTable (page 1482)
Associates a ColorTable structure with a movie.

Functions by Task 1291
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Working With Progress and Cover Functions

GetMovieCoverProcs (page 1356)
Retrieves the cover functions that you set with the SetMovieCoverProcs function.

SetMovieCoverProcs (page 1482)
Sets the callbacks invoked when a movie is covered or uncovered.

SetMovieProgressProc (page 1486)
Attaches a progress function to a movie.

Working With Sprite Worlds

DisposeAllSprites (page 1322)
Disposes of all sprites associated with a sprite world.

DisposeSpriteWorld (page 1332)
Disposes of a sprite world.

InvalidateSpriteWorld (page 1380)
Invalidates a rectangular area of a sprite world.

NewSpriteWorld (page 1411)
Creates a new sprite world.

SetSpriteWorldClip (page 1493)
Sets a sprite world's clip shape to the specified region.

SetSpriteWorldMatrix (page 1495)
Sets a sprite world's matrix to the specified matrix.

SpriteWorldHitTest (page 1501)
Determines whether any sprites are at a specified location in a sprite world.

SpriteWorldIdle (page 1502)
Allows a sprite world to update its invalid areas.

Working With User Data

AddUserData (page 1302)
Adds an item to a user data list.

AddUserDataText (page 1303)
Places language-tagged text into an item in a user data list.

CopyMediaUserData (page 1312)
Copies a source media's user data into a destination media's user data.

CopyMovieUserData (page 1313)
Copies a source movie's user data into a destination movie's user data.

CopyTrackUserData (page 1314)
Copies a source track's user data into a destination track's user data.

CopyUserData (page 1314)
Copies metadata items from the source user data container to the destination user data container.

1292 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

CountUserDataType (page 1315)
Determines the number of items of a given type in a user data list.

DisposeUserData (page 1335)
Disposes of a user data structure created by NewUserData.

GetNextUserDataType (page 1366)
Retrieves the next user data type in a specified user data list.

GetUserData (page 1375)
Returns a specified user data item.

GetUserDataItem (page 1376)
Returns a specified user data item.

GetUserDataText (page 1377)
Retrieves language-tagged text from an item in a user data list.

NewUserData (page 1415)
Creates a new user data structure.

NewUserDataFromHandle (page 1415)
Creates a new user data structure from a handle.

PutUserDataIntoHandle (page 1419)
Returns a handle to a user data structure.

RemoveUserData (page 1472)
Removes an item from a user data list.

RemoveUserDataText (page 1473)
Removes language-tagged text from an item in a user data list.

SetUserDataItem (page 1498)
Sets an item in a user data list.

Supporting Functions

AddMovieExecuteWiredActionsProc (page 1298)
Lets you add a callback to a movie to execute wired actions.

AddSoundDescriptionExtension (page 1302)
Adds an extension to a SoundDescription structure.

AttachMovieToCurrentThread (page 1304)
Attaches a movie to the current thread.

CanQuickTimeOpenDataRef (page 1307)
Determines whether referenced data can be opened using a graphics importer or opened in place
as a movie.

CanQuickTimeOpenFile (page 1309)
Determines whether a file can be opened using a graphics importer or opened in place as a movie.

CreateShortcutMovieFile (page 1319)
Creates a movie file that just contains a reference to another movie.

DetachMovieFromCurrentThread (page 1321)
Detaches a movie from the current thread.

DisposeActionsUPP (page 1322)
Disposes of an ActionsUPP pointer.

Functions by Task 1293
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

DisposeDoMCActionUPP (page 1323)
Disposes of a DoMCActionUPP pointer.

DisposeGetMovieUPP (page 1323)
Disposes of a GetMovieUPP pointer.

DisposeMovieDrawingCompleteUPP (page 1326)
Disposes of a MovieDrawingCompleteUPP pointer.

DisposeMovieExecuteWiredActionsUPP (page 1327)
Disposes of a MovieExecuteWiredActionsUPP pointer.

DisposeMoviePrePrerollCompleteUPP (page 1327)
Disposes of a MoviePrePrerollCompleteUPP pointer.

DisposeMoviePreviewCallOutUPP (page 1328)
Disposes of a MoviePreviewCallOutUPP pointer.

DisposeMovieProgressUPP (page 1328)
Disposes of a MovieProgressUPP pointer.

DisposeMovieRgnCoverUPP (page 1329)
Disposes of a MovieRgnCoverUPP pointer.

DisposeMoviesErrorUPP (page 1329)
Disposes of a MoviesErrorUPP pointer.

DisposeQTCallBackUPP (page 1330)
Disposes of a QTCallBackUPP pointer.

DisposeQTEffectListFilterUPP (page 1330)
Disposes of a QTEffectListFilterUPP pointer.

DisposeQTSyncTaskUPP (page 1331)
Disposes of a QTSyncTaskUPP pointer.

DisposeTextMediaUPP (page 1333)
Disposes of a TextMediaUPP pointer.

DisposeTrackTransferUPP (page 1334)
Disposes of a TrackTransferUPP pointer.

DisposeTweenerDataUPP (page 1334)
Disposes of a TweenerDataUPP pointer.

GetMediaPlayHints (page 1348)
Undocumented

GetMovieAnchorDataRef (page 1349)
Retrieves a movie's anchor data reference and type.

GetMovieAudioMute (page 1353)
Returns the mute value for the audio mix of a movie currently playing.

GetMovieAudioVolumeLevels (page 1354)
Returns the current volume meter levels of a movie.

GetMovieDefaultDataRef (page 1357)
Gets a movie's default data reference.

GetMovieLoadState (page 1358)
Returns a value that indicates the state of a movie's loading process.

GetMovieProgressProc (page 1361)
Gets the MovieProgressProc callback attached to a movie.

1294 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMoviePropertyAtom (page 1361)
Gets a movie's property atom.

GetMovieThreadAttachState (page 1363)
Determines whether a given movie is attached to a thread.

GetMovieVisualBrightness (page 1364)
Returns the brightness adjustment for the movie.

GetMovieVisualContrast (page 1364)
Returns the contrast adjustment for the movie.

GetMovieVisualHue (page 1365)
Returns the hue adjustment for the movie.

GetMovieVisualSaturation (page 1366)
Returns the color saturation adjustment for the movie.

GetQuickTimePreference (page 1368)
Retrieves a particular preference from the QuickTime preferences.

GetSoundDescriptionExtension (page 1369)
Gets the current extension to a SoundDescription structure.

MovieExecuteWiredActions (page 1388)
Undocumented

MovieSearchText (page 1389)
Searches for text in a movie.

NewActionsUPP (page 1390)
Allocates a Universal Procedure Pointer for ActionsProc.

NewDoMCActionUPP (page 1391)
Allocates a Universal Procedure Pointer for the DoMCActionProc callback.

NewGetMovieUPP (page 1391)
Allocates a Universal Procedure Pointer for the GetMovieProc callback.

NewMovieDrawingCompleteUPP (page 1393)
Allocates a Universal Procedure Pointer for the MovieDrawingCompleteProc callback.

NewMovieExecuteWiredActionsUPP (page 1393)
Allocates a Universal Procedure Pointer for the MovieExecuteWiredActionsProc callback.

NewMovieFromDataFork64 (page 1396)
Provides a 64-bit version of NewMovieFromDataFork.

NewMoviePrePrerollCompleteUPP (page 1405)
Allocates a Universal Procedure Pointer for the MoviePrePrerollCompleteProc callback.

NewMoviePreviewCallOutUPP (page 1406)
Allocates a Universal Procedure Pointer for the MoviePreviewCallOutProc callback.

NewMovieProgressUPP (page 1406)
Allocates a Universal Procedure Pointer for the MovieProgressProc callback.

NewMovieRgnCoverUPP (page 1407)
Allocates a Universal Procedure Pointer for the MovieRgnCoverProc callback.

NewMoviesErrorUPP (page 1408)
Allocates a Universal Procedure Pointer for the MoviesErrorProc callback.

NewQTCallBackUPP (page 1408)
Allocates a Universal Procedure Pointer for the QTCallBackProc callback.

Functions by Task 1295
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

NewQTEffectListFilterUPP (page 1409)
Allocates a Universal Procedure Pointer for the QTEffectListFilterProc callback.

NewQTSyncTaskUPP (page 1410)
Allocates a Universal Procedure Pointer for the QTSyncTaskProc callback.

NewTextMediaUPP (page 1413)
Allocates a Universal Procedure Pointer for the TextMediaProc callback.

NewTrackTransferUPP (page 1414)
Allocates a Universal Procedure Pointer for the TrackTransferProc callback.

NewTweenerDataUPP (page 1414)
Allocates a Universal Procedure Pointer for the TweenerDataProc callback.

OpenMovieStorage (page 1417)
Opens a data handler for movie storage.

QTDisposeTween (page 1428)
Disposes of a tween component instance.

QTDoTween (page 1428)
Runs a tween component.

QTGetAtomParent (page 1434)
Gets the parent of a QT atom.

QTGetDataHandlerDirectoryDataReference (page 1436)
Returns a new data reference to the parent directory of the storage location associated with a data
handler instance.

QTGetDataHandlerFullPathCFString (page 1436)
Returns the full pathname of the storage location associated with a data handler.

QTGetDataHandlerTargetNameCFString (page 1437)
Returns the name of the storage location associated with a data handler.

QTGetDataReferenceDirectoryDataReference (page 1438)
Returns a new data reference for a parent directory.

QTGetDataReferenceFullPathCFString (page 1438)
Returns the full pathname of the target of the data reference as a CFString.

QTGetDataReferenceTargetNameCFString (page 1439)
Returns the name of the target of a data reference as a CFString.

QTGetDataRefMaxFileOffset (page 1440)
Undocumented

QTNewAlias (page 1451)
Creates a Mac OS alias to a file.

QTNewDataReferenceFromCFURL (page 1452)
Creates a URL data reference from a CFURL.

QTNewDataReferenceFromFSRef (page 1453)
Creates an alias data reference from a file specification.

QTNewDataReferenceFromFSRefCFString (page 1454)
Creates an alias data reference from a file reference pointing to a directory and a file name.

QTNewDataReferenceFromFSSpec (page 1455)
Creates an alias data reference from a file specification of type FSSpec.

1296 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTNewDataReferenceFromFullPathCFString (page 1456)
Creates an alias data reference from a CFString that represents the full pathname of a file.

QTNewDataReferenceFromURLCFString (page 1457)
Creates a URL data reference from a CFString that represents a URL string.

QTNewDataReferenceWithDirectoryCFString (page 1458)
Creates an alias data reference from another alias data reference pointing to the parent directory and
a CFString that contains the file name.

QTNewTween (page 1459)
Undocumented

RemoveMovieExecuteWiredActionsProc (page 1471)
Removes a MovieExecuteWiredActionsProc callback from a movie.

RemoveSoundDescriptionExtension (page 1472)
Removes an extension from a SoundDescription structure.

SetMediaDataRef (page 1474)
Changes the file that the specified media identifies as the location for its data storage.

SetMediaDataRefAttributes (page 1475)
Sets a data reference's attributes.

SetMovieAnchorDataRef (page 1478)
Sets a movie's anchor data reference and type.

SetMovieDefaultDataRef (page 1484)
Sets a movie's default data reference and type.

SetMoviePropertyAtom (page 1487)
Sets a movie's property atom.

SetMovieVisualBrightness (page 1487)
Sets the brightness adjustment for the movie.

SetMovieVisualContrast (page 1488)
Sets the contrast adjustment for the movie.

SetMovieVisualHue (page 1489)
Sets the hue adjustment for the movie.

SetMovieVisualSaturation (page 1489)
Sets the color saturation adjustment for the movie.

SetQuickTimePreference (page 1491)
Sets a particular preference in the QuickTime preferences.

SetSpriteWorldFlags (page 1494)
Sets flags that govern the behavior of a sprite world.

SetSpriteWorldGraphicsMode (page 1494)
Sets the graphics transfer mode for a sprite world.

ShowMovieInformation (page 1499)
Displays a movie's information.

Functions by Task 1297
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Functions

AddMediaDataRef
Adds a data reference to a media.

OSErr AddMediaDataRef (
 Media theMedia,
 short *index,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
A pointer to a short integer. The Movie Toolbox returns the index value that is assigned to the new
data reference. Your application can use this index to identify the reference to other Movie Toolbox
functions, such as GetMediaDataRef (page 1342). If the Movie Toolbox cannot add the data reference
to the media, it sets the returned index value to 0.

dataRef
The data reference. This parameter contains a handle to the information that identifies the file that
contains this media's data. The type of information stored in that handle depends upon the value of
the dataRefType parameter.

dataRefType
The type of data reference. If the data reference is an alias, you must set this parameter to rAliasType.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

AddMovieExecuteWiredActionsProc
Lets you add a callback to a movie to execute wired actions.

1298 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr AddMovieExecuteWiredActionsProc (
 Movie theMovie,
 MovieExecuteWiredActionsUPP proc,
 void *refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

proc
A callback function, as described in MovieExecuteWiredActionsProc.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AddMovieResource
Adds a movie resource to a specified resource file.

OSErr AddMovieResource (
 Movie theMovie,
 short resRefNum,
 short *resId,
 ConstStr255Param resName
);

Parameters
theMovie

The movie you wish to add to the movie file. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

resRefNum
Identifies the movie file to which the resource is to be added. Your application obtains this value from
the OpenMovieFile (page 1416) function.

Functions 1299
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

resId
A pointer to a field that contains the resource ID number for the new resource. If the field referred to
by resId is set to 0, the Movie Toolbox assigns a unique resource ID number to the new resource. The
toolbox then returns the movie's resource ID number in the field referred to by the resId parameter.
AddMovieResource assigns resource ID numbers sequentially, starting at 128. If resId is set to NIL,
the Movie Toolbox assigns a unique resource ID number to the new resource and does not return
that resource's ID value. Set resId to movieInDataForkResID to add the new resource to the movie
file's data fork (see below). See these constants:

movieInDataForkResID

resName
Points to a character string that contains the name of the movie resource. If you set resName to NIL,
the toolbox creates an unnamed resource.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function adds the movie to the file, effectively saving any changes you have made to the movie. To use
this function with single-fork movie files, pass movieInDataForkResID as the resId parameter. After
updating the movie file, AddMovieResource clears the movie changed flag, indicating that the movie has
not been changed.

// AddMovieResource coding example
// See "Discovering QuickTime," page 243
void CreateMyCoolMovie (void)
{
 StandardFileReply sfr;
 Movie movie =NIL;
 FSSpec fss;
 short nFileRefNum =0;
 short nResID =movieInDataForkResID;
 StandardPutFile("\pEnter movie file name:", "\puntitled.mov", &sfr);
 if (!sfr.sfGood)
 return;
 CreateMovieFile(&sfr.sfFile,
 FOUR_CHAR_CODE('TVOD'),
 smCurrentScript,
 createMovieFileDeleteCurFile |
 createMovieFileDontCreateResFile,
 &nFileRefNum,
 &movie);
 CreateMyVideoTrack(movie); // See next section
 CreateMySoundTrack(movie); // See next section
 AddMovieResource(movie, nFileRefNum, &nResID, NIL);
 if (nFileRefNum !=0)
 CloseMovieFile(nFileRefNum);
 DisposeMovie(movie);
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by AddMovieToStorage (page 1301).

Availability
Available in Mac OS X v10.0 and later.

1300 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
qteffects
qteffects.win
qtwiredactions
vrmakepano
vrmakepano.win

Declared In
Movies.h

AddMovieToStorage
Adds a movie to a storage container that was created by CreateMovieStorage.

OSErr AddMovieToStorage (
 Movie theMovie,
 DataHandler dh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dh
The data handler component that was returned by CreateMovieStorage (page 1318).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function calls PutMovieIntoStorage (page 268) internally. If you are writing a custom data handler,
make sure it implements DataHGetDataRef (page 780). Also implement DataHScheduleData64 (page 807)
and DataHGetFileSize64 (page 785), or DataHScheduleData (page 806) and DataHGetFileSize (page
784) if the data handler does not support 64-bit file offsets, plus DataHWrite64 (page 819), or
DataHWrite (page 817) if it does not support 64-bit offsets.

Version Notes
Introduced in QuickTime 6. Supersedes AddMovieResource (page 1299).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
QTExtractAndConvertToMovieFile
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

Functions 1301
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

AddSoundDescriptionExtension
Adds an extension to a SoundDescription structure.

OSErr AddSoundDescriptionExtension (
 SoundDescriptionHandle desc,
 Handle extension,
 OSType idType
);

Parameters
desc

A handle to the SoundDescription structure to add the extension to.

extension
The handle containing the extension data.

idType
A four-byte signature identifying the type of data being added to the SoundDescription.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Two extensions are defined to the SoundDescription record. The first is the slope, intercept, minClip,
and maxClip parameters for audio, represented as an atom of type 'flap'. The second extension is the
ability to store data specific to a given audio codec, using a SoundDescriptionV1 structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioconverter
audioconverter.win
ConvertMovieSndTrack
soundconverter
soundconverter.win

Declared In
Movies.h

AddUserData
Adds an item to a user data list.

1302 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr AddUserData (
 UserData theUserData,
 Handle data,
 OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this item reference by calling GetMovieUserData (page
225), GetTrackUserData (page 1617), or GetMediaUserData (page 1595).

data
A handle to the data to be added to the user data list.

udType
The type that is to be assigned to the new item.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the user data list, the data to be added, and the data's type value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
qtactiontargets
qtactiontargets.win

Declared In
Movies.h

AddUserDataText
Places language-tagged text into an item in a user data list.

OSErr AddUserDataText (
 UserData theUserData,
 Handle data,
 OSType udType,
 long index,
 short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData (page
225), GetTrackUserData (page 1617), or GetMediaUserData (page 1595).

Functions 1303
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

data
A handle to the data to be added to the user data list.

udType
The type that is to be assigned to the new item.

index
The item to which the text is to be added. This parameter must specify an item in the user data list
identified by theUserData.

itlRegionTag
The region code of the text to be added. If there is already text with this region code in the item, the
function replaces the existing text with the data specified by the data parameter. See InsideMacintosh:
Text for more information about language and region codes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the user data list and item, the data to be added, the data's type value, and the language code
of the data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtinfo
qtinfo.win
qttimecode
qttimecode.win

Declared In
Movies.h

AttachMovieToCurrentThread
Attaches a movie to the current thread.

OSErr AttachMovieToCurrentThread (
 Movie m
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

1304 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

BeginFullScreen
Begins full-screen mode for a specified graphics device.

OSErr BeginFullScreen (
 Ptr *restoreState,
 GDHandle whichGD,
 short *desiredWidth,
 short *desiredHeight,
 WindowRef *newWindow,
 RGBColor *eraseColor,
 long flags
);

Parameters
restoreState

On exit, a pointer to a block of private state data that contains information on how to return from
full-screen mode. This value is passed to EndFullScreen (page 1335) to enable it to return the monitor
to its previous state.

whichGD
A handle to the graphics device to put into full-screen mode. Set this parameter to NIL to select the
main screen.

desiredWidth
On entry, a pointer to a short integer that contains the desired width, in pixels, of the images to be
displayed. On exit, that short integer is set to the actual number of pixels that can be displayed
horizontally. Set this parameter to 0 to leave the width of the display unchanged.

desiredHeight
On entry, a pointer to a short integer that contains the desired height, in pixels, of the images to be
displayed. On exit, that short integer is set to the actual number of pixels that can be displayed
vertically. Set this parameter to 0 to leave the height of the display unchanged.

newWindow
On entry, a window-creation value. If this parameter is NIL, no window is created for you. If this
parameter has any other value, BeginFullScreen creates a new window that is large enough to fill
the entire screen and returns a pointer to that window in this parameter. You should not dispose of
that window yourself; instead, EndFullScreen (page 1335) will do so.

Functions 1305
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

eraseColor
The color to use when erasing the full-screen window created by BeginFullScreen if newWindow
is not NIL on entry. If this parameter is NIL, BeginFullScreen uses black when initially erasing the
window's content area.

flags
A set of bit flags (see below) that control certain aspects of the full-screen mode. See these constants:

fullScreenHideCursor

fullScreenAllowEvents

fullScreenDontChangeMenuBar

fullScreenPreflightSize

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function returns, in the restoreState parameter, a pointer to a block of private state information that
indicates how to return from full-screen mode. You pass that pointer as a parameter to the
EndFullScreen (page 1335) function. The following sample code contains functions that illustrate how to
play a QuickTime movie full screen. It prompts the user for a movie, opens that movie, configures it to play
full screen, associates a movie controller, and lets the controller handle events. Your application would call
QTFullScreen_EventLoopAction in its event loop (on the Mac OS) or when it gets idle events (on Windows).

enum {
 fullScreenHideCursor =1L << 0,
 fullScreenAllowEvents =1L << 1,
 fullScreenDontChangeMenuBar =1L << 2,
 fullScreenPreflightSize =1L << 3
};
// QTFullScreen_PlayOnFullScreen
// Prompt the user for a movie and play it full screen.
OSErr QTFullScreen_PlayOnFullScreen (void)
{
 FSSpec myFSSpec;
 Movie myMovie =NIL;
 short myRefNum =0;
 SFTypeList myTypeList ={MovieFileType, 0, 0, 0};
 StandardFileReply myReply;
 long myFlags =fullScreenDontChangeMenuBar
 | fullScreenAllowEvents;
 OSErr myErr =noErr;

 StandardGetFilePreview(NIL, 1, myTypeList, &myReply);
 if (!myReply.sfGood)
 goto bail;

 // make an FSSpec record
 FSMakeFSSpec(myReply.sfFile.vRefNum, myReply.sfFile.parID,
 myReply.sfFile.name, &myFSSpec);
 myErr =OpenMovieFile(&myFSSpec, &myRefNum, fsRdPerm);
 if (myErr !=noErr)
 goto bail;
 // now fetch the first movie from the file
 myErr =NewMovieFromFile(&myMovie, myRefNum, NIL, NIL,
 newMovieActive, NIL);

1306 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 if (myErr !=noErr)
 goto bail;

 CloseMovieFile(myRefNum);
 // set up for full-screen display
 myErr =BeginFullScreen(&gRestoreState, NIL, 0, 0,
 &gFullScreenWindow, NIL, myFlags);
#if TARGET_OS_WIN32
 // on Windows, set a window procedure for the new window
 // and associate a port with that window
 QTMLSetWindowWndProc(gFullScreenWindow, QTFullScreen_HandleMessages);
 CreatePortAssociation(GetPortNativeWindow(gFullScreenWindow), NIL, 0L);
#endif
 SetMovieGWorld(myMovie, (CGrafPtr)gFullScreenWindow,
 GetGWorldDevice((CGrafPtr)gFullScreenWindow));
 SetMovieBox(myMovie, &gFullScreenWindow->
portRect);
 // create the movie controller
 gMC =NewMovieController(myMovie, &gFullScreenWindow->
portRect, 0);

Version Notes
The Macintosh human interface guidelines suggest that the menu bar must always be present, and that
information must always appear in windows. However, many multimedia applications have chosen to change
the look and feel of the interface based on their needs. The number of details to keep track of when doing
this continues to increase. To help solve this problem, QuickTime 2.1 added functions to put a graphics device
into full screen mode. The key elements to displaying full screen movies are the calls BeginFullScreen
and EndFullScreen, introduced in QuickTime 2.5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
QTCarbonShell
qtfullscreen
qtfullscreen.win

Declared In
Movies.h

CanQuickTimeOpenDataRef
Determines whether referenced data can be opened using a graphics importer or opened in place as a movie.

Functions 1307
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr CanQuickTimeOpenDataRef (
 Handle dataRef,
 OSType dataRefType,
 Boolean *outCanOpenWithGraphicsImporter,
 Boolean *outCanOpenAsMovie,
 Boolean *outPreferGraphicsImporter,
 UInt32 inFlags
);

Parameters
dataRef

A handle to the referenced data.

dataRefType
The type of data reference pointed to by dataRef; see Data References.

outCanOpenWithGraphicsImporter
Points to a Boolean that will be set to TRUE if the file can be opened using a graphics importer and
FALSE otherwise. If you do not want this information, pass NIL.

outCanOpenAsMovie
Points to a Boolean that will be set to TRUE if the file can be opened as a movie and FALSE otherwise.
If you do not want this information, pass NIL.

outPreferGraphicsImporter
Points to a boolean which will be set to true if the file can be opened using a graphics importer and
opened as a movie, but, other factors being equal, QuickTime prefers a graphics importer. For example,
QuickTime recommends using a graphics importer for single-frame GIF files and opening as a movie
for multiple-frame GIF files. If you do not want this information, pass NIL. Passing a valid pointer
disables the kQTDontUseDataToFindImporter and
kQTDontLookForMovieImporterIfGraphicsImporterFound flags, if set.

inFlags
Flags (see below) that modify search behavior. Pass 0 for default behavior. See these constants:

kQTDontUseDataToFindImporter

kQTDontLookForMovieImporterIfGraphicsImporterFound

kQTAllowOpeningStillImagesAsMovies

kQTAllowImportersThatWouldCreateNewFile

kQTAllowAggressiveImporters

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function determines whether QuickTime can open a given area of data. You should pass NIL in parameters
that do not interest you, since that will allow QuickTime to perform a faster determination.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonCoreImage101
QTCarbonShell

1308 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

CanQuickTimeOpenFile
Determines whether a file can be opened using a graphics importer or opened in place as a movie.

OSErr CanQuickTimeOpenFile (
 FSSpecPtr fileSpec,
 OSType fileType,
 OSType fileNameExtension,
 Boolean *outCanOpenWithGraphicsImporter,
 Boolean *outCanOpenAsMovie,
 Boolean *outPreferGraphicsImporter,
 UInt32 inFlags
);

Parameters
fileSpec

Points to an FSSpec structure that identifies a file. To ask about a particular file type or file name
suffix in general, pass NIL.

fileType
Contains the file type if already known, or 0 if not known. If fileSpec is provided and fileType is
0, QuickTime will determine the file type. If you pass NIL in fileSpec and 0 in fileNameExtension,
you must pass a file type here.

fileNameExtension
Contains the file name suffix if already known, or 0 if not known. The file name suffix should be
encoded as an uppercase four character code with trailing spaces; for instance, the suffix ".png" should
be encoded as 'PNG ', or 0x504E4720. If fileSpec is provided and fileNameExtension is 0,
QuickTime will examine fileSpec to determine the file name suffix. If you pass NIL in fileSpec
and 0 in fileType, you must pass a file name suffix here.

outCanOpenWithGraphicsImporter
Points to a Boolean that will be set to TRUE if the file can be opened using a graphics importer and
FALSE otherwise. If you do not want this information, pass NIL.

outCanOpenAsMovie
Points to a Boolean that will be set to TRUE if the file can be opened as a movie and FALSE otherwise.
If you do not want this information, pass NIL.

outPreferGraphicsImporter
Points to a boolean which will be set to true if the file can be opened using a graphics importer and
opened as a movie, but, other factors being equal, QuickTime prefers a graphics importer. For example,
QuickTime recommends using a graphics importer for single-frame GIF files and opening as a movie
for multiple-frame GIF files. If you do not want this information, pass NIL. Passing a valid pointer
disables the kQTDontUseDataToFindImporter and
kQTDontLookForMovieImporterIfGraphicsImporterFound flags, if set.

Functions 1309
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

inFlags
Flags (see below) that modify search behavior. Pass 0 for default behavior. See these constants:

kQTDontUseDataToFindImporter

kQTDontLookForMovieImporterIfGraphicsImporterFound

kQTAllowOpeningStillImagesAsMovies

kQTAllowImportersThatWouldCreateNewFile

kQTAllowAggressiveImporters

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function determines whether QuickTime can open a given file or, in general, files of a given type. You
should pass NIL in parameters that do not interest you, since that will allow QuickTime to perform a faster
determination.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickTimeMovieControl
SetCustomIcon
SimpleVideoOut

Declared In
Movies.h

ClearMovieChanged
Sets the movie changed flag to indicate that the movie has not been changed.

void ClearMovieChanged (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1310 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

CloseMovieFile
Closes an open movie file.

OSErr CloseMovieFile (
 short resRefNum
);

Parameters
resRefNum

The movie file to close. Your application obtains this reference number from OpenMovieFile (page
1416).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following code shows a typical use of CloseMovieFile.

// CloseMovieFile coding example
// See "Discovering QuickTime," page 50
void OpenMovie (HWND hwnd, char *szFileName)
{
 short nFileRefNum =0;
 FSSpec fss;
 // Convert path to FSSpec
 NativePathNameToFSSpec(szFileName, &fss, 0);
 // Set graphics port
 SetGWorld((CGrafPtr)GetNativeWindowPort(hwnd), NIL);
 OpenMovieFile(&fss, &nFileRefNum, fsRdPerm); // Open movie file
 NewMovieFromFile(&movie, nFileRefNum, NIL, // Get movie from file
 NIL, newMovieActive, NIL);
 CloseMovieFile(nFileRefNum); // Close movie file
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by CloseMovieStorage (page 1312).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
VRMakePano Library
vrmakepano.win
vrscript.win

Declared In
Movies.h

Functions 1311
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

CloseMovieStorage
Closes an open movie storage container.

OSErr CloseMovieStorage (
 DataHandler dh
);

Parameters
dh

The data handler component that was returned by a previous call to CreateMovieStorage (page
1318).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6. Supersedes CloseMovieFile (page 1311).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTCarbonShell
QTExtractAndConvertToMovieFile
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

CopyMediaUserData
Copies a source media's user data into a destination media's user data.

OSErr CopyMediaUserData (
 Media srcMedia,
 Media dstMedia,
 OSType copyRule
);

Parameters
srcMedia

The source media for this operation. Your application obtains this media identifier from such functions
as NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

dstMedia
The destination media for this operation. Your application obtains this media identifier from such
functions as NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

1312 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Using this function is equivalent to making the following call:

CopyUserData(GetMediaUserData(srcMedia), GetMediaUserData(dstMedia),
 copyRule);

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyMovieUserData
Copies a source movie's user data into a destination movie's user data.

OSErr CopyMovieUserData (
 Movie srcMovie,
 Movie dstMovie,
 OSType copyRule
);

Parameters
srcMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dstMovie
The destination movie for this operation. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Using this function is equivalent to making the following call:

Functions 1313
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

CopyUserData(GetMovieUserData(srcMovie), GetMovieUserData(dstMovie),
 copyRule);

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyTrackUserData
Copies a source track's user data into a destination track's user data.

OSErr CopyTrackUserData (
 Track srcTrack,
 Track dstTrack,
 OSType copyRule
);

Parameters
srcTrack

The source track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

dstTrack
The destination track for this operation. Your application obtains this track identifier from such
functions as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CopyUserData
Copies metadata items from the source user data container to the destination user data container.

1314 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr CopyUserData (
 UserData srcUserData,
 UserData dstUserData,
 OSType copyRule
);

Parameters
srcUserData

The source user data list for this operation. You obtain this list reference by calling
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595).

dstUserData
The destination user data list for this operation. You obtain this list reference by calling
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595).

copyRule
A constant (see below) that defines how the copying is done. See these constants:

kQTCopyUserDataReplace

kQTCopyUserDataMerge

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The function detects if the source and destination containers already have the same content and does nothing
in that case.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

CountUserDataType
Determines the number of items of a given type in a user data list.

short CountUserDataType (
 UserData theUserData,
 OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595)
functions.

udType
The type. The Movie Toolbox determines the number of items of this type in the user data list.

Functions 1315
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
The number of items of the given type in the user data list.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qteffects.win

Declared In
Movies.h

CreateMovieFile
Creates a movie file, creates an empty movie which references the file, and opens the movie file with write
permission.

OSErr CreateMovieFile (
 const FSSpec *fileSpec,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags,
 short *resRefNum,
 Movie *newmovie
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Use the Script Manager constant smSystemScript
to use the system script; use the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Controls movie file creation flags (see below). See these constants:

createMovieFileDontCreateResFile

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

newMovieActive

1316 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

resRefNum
A pointer to a field that is to receive the file reference number for the opened movie file. Your
application must use this value when calling other Movie Toolbox functions that work with movie
files. If you set this parameter to NIL, the Movie Toolbox creates the movie file but does not open
the file.

newmovie
A pointer to a field that is to receive the identifier of the new movie. CreateMovieFile returns the
identifier of the new movie. If the function could not create a new movie, it sets this returned value
to NIL. If you set this parameter to NIL, the Movie Toolbox does not create a movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following code snippet shows how CreateMovieFile may be used to create and open a QuickTime
movie file.

// CreateMovieFile coding example
// See "Discovering QuickTime," page 243
void CreateMyCoolMovie (void)
{
 StandardFileReply sfr;
 Movie movie =NIL;
 FSSpec fss;
 short nFileRefNum =0;
 short nResID =movieInDataForkResID;
 StandardPutFile("\pEnter movie file name:", "\puntitled.mov", &sfr);
 if (!sfr.sfGood)
 return;
 CreateMovieFile(&sfr.sfFile,
 FOUR_CHAR_CODE('TVOD'),
 smCurrentScript,
 createMovieFileDeleteCurFile |
 createMovieFileDontCreateResFile,
 &nFileRefNum,
 &movie);
 CreateMyVideoTrack(movie); // See "Discovering QuickTime," page 244
 CreateMySoundTrack(movie); // See "Discovering QuickTime," page 250
 AddMovieResource(movie, nFileRefNum, &nResID, NIL);
 if (nFileRefNum !=0)
 CloseMovieFile(nFileRefNum);
 DisposeMovie(movie);
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by CreateMovieStorage (page 1318).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library

Functions 1317
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

vrmakepano.win

Declared In
Movies.h

CreateMovieStorage
Creates an empty storage location to hold a movie and opens a data handler to the stored movie with write
permission.

OSErr CreateMovieStorage (
 Handle dataRef,
 OSType dataRefType,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags,
 DataHandler *outDataHandler,
 Movie *newmovie
);

Parameters
dataRef

A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

creator
The creator type of the new container (for example, 'TV0D', the creator type for Apple's movie
player).

scriptTag
Constants (see below) that specify the script for the new container. See these constants:

createMovieFileFlags
Constants (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

newMovieActive

outDataHandler
A pointer to a field that is to receive the data handler for the opened movie container. Your application
must use this value when calling other Movie Toolbox functions. If you pass NIL, the Movie Toolbox
creates the movie container but does not open it.

newmovie
A pointer to a field that is to receive the returned identifier of the new movie. If the function could
not create a new movie, it sets this returned value to NIL. If you pass NIL, the Movie Toolbox does
not create a movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

1318 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
If you are writing a custom data handler, make sure it supports DataHGetDataRef (page 780). It must also
support DataHWrite64 (page 819), or DataHWrite (page 817) if 64-bit offsets are not supported.

Version Notes
Introduced in QuickTime 6. Supersedes CreateMovieFile (page 1316).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
QTKitCreateMovie
Quartz Composer QCTV
SCAudioCompress

Declared In
Movies.h

CreateShortcutMovieFile
Creates a movie file that just contains a reference to another movie.

OSErr CreateShortcutMovieFile (
 const FSSpec *fileSpec,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags,
 Handle targetDataRef,
 OSType targetDataRefType
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Use the Script Manager constant smSystemScript
to use the system script; use the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Contains movie file creation flags (see below). See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

Functions 1319
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

targetDataRef
A handle to the data referred to by the movie that this function creates.

targetDataRefType
The type of the data referred to by the movie that this function creates; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtshortcut
qtshortcut.win

Declared In
Movies.h

DeleteMovieFile
Deletes a movie file.

OSErr DeleteMovieFile (
 const FSSpec *fileSpec
);

Parameters
fileSpec

A pointer to the file system specification for the movie file to be deleted.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by DeleteMovieStorage (page 1321).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtstreamsplicer.win
Sequence Grabbing
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

1320 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

DeleteMovieStorage
Deletes a movie storage container.

OSErr DeleteMovieStorage (
 Handle dataRef,
 OSType dataRefType
);

Parameters
dataRef

A handle to a QuickTime data reference that identifies the movie storage to be deleted.

dataRefType
The data reference type. See Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you are writing a custom data handler that supports this call, make sure that it implements
DataHDeleteFile (page 773).

Version Notes
Introduced in QuickTime 6. Supersedes DeleteMovieFile (page 1320).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

DetachMovieFromCurrentThread
Detaches a movie from the current thread.

OSErr DetachMovieFromCurrentThread (
 Movie m
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF

Functions 1321
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
Movies.h

DisposeActionsUPP
Disposes of an ActionsUPP pointer.

void DisposeActionsUPP (
 ActionsUPP userUPP
);

Parameters
userUPP

An ActionsUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeAllSprites
Disposes of all sprites associated with a sprite world.

void DisposeAllSprites (
 SpriteWorld theSpriteWorld
);

Parameters
theSpriteWorld

The sprite world for this operation.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
This function calls DisposeSprite (page 1331) for each sprite associated with the sprite world.

Version Notes
Introduced in QuickTime 3 or earlier.

1322 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeDoMCActionUPP
Disposes of a DoMCActionUPP pointer.

void DisposeDoMCActionUPP (
 DoMCActionUPP userUPP
);

Parameters
userUPP

A DoMCActionUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeGetMovieUPP
Disposes of a GetMovieUPP pointer.

void DisposeGetMovieUPP (
 GetMovieUPP userUPP
);

Parameters
userUPP

A GetMovieUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1323
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

DisposeMovieController
Disposes of a movie controller.

void DisposeMovieController (
 ComponentInstance mc
);

Parameters
mc

The movie controller for the operation. You obtain this identifier from the Component Manager's
OpenComponent or OpenDefaultComponent function, or from the NewMovieController (page
1392) function.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
This function is implemented by the Movie Toolbox, not by movie controller components. If you are creating
your own movie controller component, you do not have to support this function. The following code snippet
illustrates its use:

// DisposeMovieController coding example
// See "Discovering QuickTime," page 221
// Resource identifiers
#define IDM_OPEN 101
char szMovieFile[MAX_PATH]; // Name of movie file
Movie movie; // Movie object
MovieController mc; // Movie controller
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 ...
 ...
 InitializeQTML(0); // Initialize QuickTime
 EnterMovies(); // Initialize Toolbox
 ...
 // Main message loop
 ...
 ExitMovies(); // Terminate Toolbox
 TerminateQTML(); // Terminate QuickTime
} // end WinMain
//
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 MSG msg;
 EventRecord er;

 . . . // Fill in contents of MSG
structure

 WinEventToMacEvent(&msg, &er); // Convert message to a QT
 event
 MCIsPlayerEvent(mc, (const EventRecord *)&er); // Pass event to movie
controller

 switch (iMsg) {

1324 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 case WM_CREATE:
 CreatePortAssociation(hwnd, NIL, 0L); // Register window with QT
 break;
 case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_OPEN:
 MyCloseMovie(); // Close previous movie, if
 any

 if (MyGetFile(szMovieFile)) // Get file name from
user
 MyOpenMovie(hwnd, szMovieFile); // Open the movie
 break;
 . . .
 default:
 return DefWindowProc(hwnd, iMsg, wParam, lParam);
 } // end switch (LOWORD(wParam))
 break;
 case WM_CLOSE:
 DestroyPortAssociation(GetNativeWindowPort(hwnd)); // Unregister
window
 break;
 . . .
 default:
 return DefWindowProc(hwnd, iMsg, wParam, lParam);

 } // end switch (iMsg)

 return 0;
} // end WndProc
//
BOOL MyGetFile (char *lpszMovieFile)
{
 OPENFILENAME ofn;

 // Fill in contents of OPENFILENAME structure
 ...
 ...

 if (GetOpenFileName(&ofn)) // Let user select file
 return TRUE;
 else
 return FALSE;
} // end MyGetFile
//
void MyOpenMovie (HWND hwnd, char szFileName[255])
{
 short nFileRefNum =0;
 FSSpec fss;
 SetGWorld((CGrafPtr)GetNativeWindowPort(hwnd), NIL); // Set graphics port
 NativePathNameToFSSpec(szFileName, &fss, 0); // Convert pathname and make
 FSSpec
 OpenMovieFile(&fss, &nFileRefNum, fsRdPerm); // Open movie file
 NewMovieFromFile(&movie, nFileRefNum, NIL, // Get movie from file
 NIL, newMovieActive, NIL);
 CloseMovieFile(nFileRefNum); // Close movie file

 mc =NewMovieController(movie, ...); // Make movie controller

Functions 1325
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 ...
 ...

} // end MyOpenMovie
//
void MyCloseMovie (void)
{
 if (mc) // Destroy movie controller, if
 any
 DisposeMovieController(mc);

 if (movie) // Destroy movie object, if any
 DisposeMovie(movie);
} // end MyCloseMovie

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
qtstreamsplicer.win
vrscript
vrscript.win

Declared In
Movies.h

DisposeMovieDrawingCompleteUPP
Disposes of a MovieDrawingCompleteUPP pointer.

void DisposeMovieDrawingCompleteUPP (
 MovieDrawingCompleteUPP userUPP
);

Parameters
userUPP

A MovieDrawingCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample

1326 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

ASCIIMoviePlayerSample for Windows
OpenGLMovieQT
VideoProcessing

Declared In
Movies.h

DisposeMovieExecuteWiredActionsUPP
Disposes of a MovieExecuteWiredActionsUPP pointer.

void DisposeMovieExecuteWiredActionsUPP (
 MovieExecuteWiredActionsUPP userUPP
);

Parameters
userUPP

A MovieExecuteWiredActionsUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMoviePrePrerollCompleteUPP
Disposes of a MoviePrePrerollCompleteUPP pointer.

void DisposeMoviePrePrerollCompleteUPP (
 MoviePrePrerollCompleteUPP userUPP
);

Parameters
userUPP

A MoviePrePrerollCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Functions 1327
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
vrscript
vrscript.win

Declared In
Movies.h

DisposeMoviePreviewCallOutUPP
Disposes of a MoviePreviewCallOutUPP pointer.

void DisposeMoviePreviewCallOutUPP (
 MoviePreviewCallOutUPP userUPP
);

Parameters
userUPP

A MoviePreviewCallOutUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMovieProgressUPP
Disposes of a MovieProgressUPP pointer.

void DisposeMovieProgressUPP (
 MovieProgressUPP userUPP
);

Parameters
userUPP

A MovieProgressUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

1328 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
BackgroundExporter
qtdataexchange
qtdataexchange.win

Declared In
Movies.h

DisposeMovieRgnCoverUPP
Disposes of a MovieRgnCoverUPP pointer.

void DisposeMovieRgnCoverUPP (
 MovieRgnCoverUPP userUPP
);

Parameters
userUPP

A MovieRgnCoverUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMoviesErrorUPP
Disposes of a MoviesErrorUPP pointer.

void DisposeMoviesErrorUPP (
 MoviesErrorUPP userUPP
);

Parameters
userUPP

A MoviesErrorUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Functions 1329
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

DisposeQTCallBackUPP
Disposes of a QTCallBackUPP pointer.

void DisposeQTCallBackUPP (
 QTCallBackUPP userUPP
);

Parameters
userUPP

A QTCallBackUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win

Declared In
Movies.h

DisposeQTEffectListFilterUPP
Disposes of a QTEffectListFilterUPP pointer.

void DisposeQTEffectListFilterUPP (
 QTEffectListFilterUPP userUPP
);

Parameters
userUPP

A QTEffectListFilterUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

1330 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

DisposeQTNextTaskNeededSoonerCallbackUPP
Disposes of a QTNextTaskNeededSoonerCallbackUPP pointer.

void DisposeQTNextTaskNeededSoonerCallbackUPP (
 QTNextTaskNeededSoonerCallbackUPP userUPP
);

Parameters
userUPP

A QTNextTaskNeededSoonerCallbackUPP pointer. See Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

DisposeQTSyncTaskUPP
Disposes of a QTSyncTaskUPP pointer.

void DisposeQTSyncTaskUPP (
 QTSyncTaskUPP userUPP
);

Parameters
userUPP

A QTSyncTaskUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeSprite
Disposes of a sprite.

Functions 1331
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void DisposeSprite (
 Sprite theSprite
);

Parameters
theSprite

The sprite to be disposed of.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
You call this function to dispose of a sprite created by NewSprite (page 1410). The image description handle
and image data pointer associated with the sprite are not disposed of by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

DisposeSpriteWorld
Disposes of a sprite world.

void DisposeSpriteWorld (
 SpriteWorld theSpriteWorld
);

Parameters
theSpriteWorld

The sprite world to dispose of. It is safe to pass NIL to this function.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
You call this function to dispose of a sprite world created by NewSpriteWorld (page 1411). This function also
disposes of all of the sprites associated with the sprite world. This function does not dispose of the graphics
worlds associated with the sprite world. Here is an example of using it:

// DisposeSpriteWorld coding example
// See "Discovering QuickTime," page 347
#define kNumSprites 4
#define kNumSpaceShipImages 24
SpriteWorld gSpriteWorld =NIL;

1332 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Sprite gSprites[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
ImageDescriptionHandle gImageDescriptions[kNumSpaceShipImages];
void MyDisposeEverything (void)
{
 short nIndex;
 // dispose of the sprite world and associated graphics world
 if (gSpriteWorld)
 DisposeSpriteWorld(gSpriteWorld);

 // dispose of each sprite's image data
 for (nIndex =0; nIndex < kNumSprites; nIndex++) {
 if (gCompressedPictures[nIndex])
 DisposeHandle(gCompressedPictures[nIndex]);
 if (gImageDescriptions[nIndex])
 DisposeHandle((Handle)gImageDescriptions[nIndex]);
 }
 DisposeGWorld(spritePlane);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

DisposeTextMediaUPP
Disposes of a TextMediaUPP pointer.

void DisposeTextMediaUPP (
 TextMediaUPP userUPP
);

Parameters
userUPP

A TextMediaUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Functions 1333
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

DisposeTrackTransferUPP
Disposes of a TrackTransferUPP pointer.

void DisposeTrackTransferUPP (
 TrackTransferUPP userUPP
);

Parameters
userUPP

A TrackTransferUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeTweenerDataUPP
Disposes of a TweenerDataUPP pointer.

void DisposeTweenerDataUPP (
 TweenerDataUPP userUPP
);

Parameters
userUPP

A TweenerDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

1334 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

DisposeUserData
Disposes of a user data structure created by NewUserData.

OSErr DisposeUserData (
 UserData theUserData
);

Parameters
theUserData

The user data structure that is to be disposed of. It is acceptable but unnecessary to pass NIL in this
parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
QTKitTimeCode
qttimecode
qttimecode.win
WhackedTV

Declared In
Movies.h

EndFullScreen
Ends full-screen mode for a graphics device.

OSErr EndFullScreen (
 Ptr fullState,
 long flags
);

Parameters
fullState

The pointer to private state information returned by a previous call to BeginFullScreen (page 1305).

flags
Reserved. Set this parameter to NIL.

Functions 1335
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function restores the graphics device and other settings to the state specified by the private state
information pointed to by the fullState parameter. The resulting state is that that was in effect prior to
the immediately previous call to BeginFullScreen (page 1305). The following code illustrates its use:

OSErr QTFullScreen_RestoreScreen (void)
{
 OSErr myErr =noErr;

#if TARGET_OS_WIN32
 DestroyPortAssociation((CGrafPtr)gFullScreenWindow);
#endif
 DisposeMovieController(gMC);
 myErr =EndFullScreen(gRestoreState, 0L);

 return(myErr);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FullScreen
qtbigscreen
QTCarbonShell
qtfullscreen
qtfullscreen.win

Declared In
Movies.h

FlattenMovie
Creates a new movie file containing a specified movie.

1336 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void FlattenMovie (
 Movie theMovie,
 long movieFlattenFlags,
 const FSSpec *theFile,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags,
 short *resId,
 ConstStr255Param resName
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

movieFlattenFlags
Contains flags (see below) that control the process of adding movie data to the new movie file. Set
unused flags to 0. See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

theFile
A pointer to the file system specification for the movie file to be created.

creator
The creator value for the new file.

scriptTag
The script in which the movie file should be created. Set this parameter to the Script Manager constant
smSystemScript to use the system script; set it to smCurrentScript to use the current script. See
Inside Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Contains flags (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

resId
A pointer to a field that contains the resource ID number for the new resource. If the field referred to
by the resId parameter is set to 0, the Movie Toolbox assigns a unique resource ID number to the
new resource. The toolbox then returns the movie's resource ID number in the field referred to by
the resId parameter. The Movie Toolbox assigns resource ID numbers sequentially, starting at 128.
If the resId parameter is set to NIL, the Movie Toolbox assigns a unique resource ID number to the
new resource and does not return that resource's ID value.

resName
Points to a character string with the name of the movie resource. If you set the resName parameter
to NIL, the toolbox creates an unnamed resource.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Functions 1337
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
The file created by FlattenMovie also contains all the data for the movie; that is, the Movie Toolbox resolves
any data references and includes the corresponding movie data in the new movie file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AddFrameToMovie
mfc.win
MovieGWorlds
simpleeditsdi.win
simpleplayersdi.win

Declared In
Movies.h

FlattenMovieData
Creates a new movie and a file that contains all the movie data.

Movie FlattenMovieData (
 Movie theMovie,
 long movieFlattenFlags,
 const FSSpec *theFile,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

movieFlattenFlags
Contains flags (see below) that control the process of adding movie data to the new movie file. These
flags affect how the toolbox adds movies to the new movie file later. Set unused flags to 0. See these
constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenFSSpecPtrIsDataRefRecordPtr

flattenForceMovieResourceBeforeMovieData

theFile
This parameter usually contains a pointer to the file system specification for the movie file to be
created. In place of a FSSpec pointer, QuickTime lets you pass a pointer to a data reference structure
to receive the flattened movie data.

1338 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

creator
The creator value for the new file.

scriptTag
Contains constants (see below) that specify the script in which the movie file should be created. See
Inside Macintosh: Text for more information about scripts and script tags. See these constants:

createMovieFileFlags
Contains flags (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

Return Value
The identifier of the new movie. If the function could not create the movie, it sets this returned identifier to
NIL.

Discussion
This function will take any movie and optionally make it self-contained, interleaved, and Fast Start. Unlike
FlattenMovie (page 1336), this function does not add the new movie resource to the new movie file; instead,
FlattenMovieData returns the new movie to your application. Your application must dispose of the returned
movie. You can use this function to create a single-fork movie file, by setting the
flattenAddMovieToDataFork flag in the movieFlattenFlags parameter to 1. The Movie Toolbox then
places the movie into the data fork of the movie file. Instead of flattening to a file, you can specify a data
reference to flatten a movie to. The following two code samples show flattening a movie to a data location
and to a file:

// FlattenMovieData used to flatten a movie to a data location
// create a 0-length handle
 myHandle =NewHandleClear(mySize);
 if (myHandle ==NIL)
 goto bail;

// fill in the data reference record
 myDataRefRec.dataRefType =HandleDataHandlerSubType;
 myDataRefRec.dataRef =NewHandle(sizeof(Handle));
 if (myDataRefRec.dataRef ==NIL)
 goto bail;
 *((Handle *)*(myDataRefRec.dataRef)) =myHandle;
 myFlags =flattenFSSpecPtrIsDataRefRecordPtr;
 myFile =(FSSpec *)&myDataRefRec;
 // flatten the source movie into the handle
 myMemMovie =FlattenMovieData(mySrcMovie, myFlags, myFile, 0L,
 smSystemScript, 0L);
 Movie aMovie;
 aMovie =FlattenMovieData(theMovie,
 flattenAddMovieToDataFork |
 flattenForceMovieResourceBeforeMovieData,
 &theOutputFile, OSTypeConst('TVOD'), smSystemScript,
 createMovieFileDeleteCurFile | createMovieFileDontCreateResFile);

 DisposeMovie(aMovie);
 Movie aMovie;
 aMovie =FlattenMovieData(theMovie,
 flattenAddMovieToDataFork,
 &theOutputFile, OSTypeConst('TVOD'), smSystemScript,
 createMovieFileDeleteCurFile | createMovieFileDontCreateResFile);

 DisposeMovie(aMovie);

Functions 1339
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

// FlattenMovieData used to flatten a movie to a Fast Start file
// See "Discovering QuickTime," page 257
myErr =OpenMovieFile(&myTempSpec, &myTempResRefNum, fsRdPerm);
if (myErr !=noErr)
 goto bail;
myErr =NewMovieFromFile(&myTempMovie, myTempResRefNum, NIL, 0, 0, 0);
if (myErr !=noErr)
 goto bail;
SetMovieProgressProc(myTempMovie, (MovieProgressUPP)-1, 0L);
// flatten the temporary file into a new movie file; put the movie
// resource first so that progressive downloading is possible
myPanoMovie =FlattenMovieData(
 myTempMovie,
 flattenDontInterleaveFlatten
 | flattenAddMovieToDataFork
 | flattenForceMovieResourceBeforeMovieData,
 &myDestSpec,
 FOUR_CHAR_CODE('TVOD'),
 smSystemScript,
 createMovieFileDeleteCurFile
 | createMovieFileDontCreateResFile);

Special Considerations

Through the SetTrackLoadSettings (page 1497) function, the Movie Toolbox allows you to set a movie's
preloading guidelines when you create the movie. The preload information is preserved when you save or
flatten the movie (using either FlattenMovie or FlattenMovieData). In flattened movies, the tracks that
are to be preloaded are stored at the start of the movie, rather than being interleaved with the rest of the
movie data. This greatly improves preload performance because it is not necessary for the device storing the
movie data to seek during retrieval of the data to be preloaded.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

FlattenMovieDataToDataRef
Performs a flattening operation to a movie at a storage location.

1340 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Movie FlattenMovieDataToDataRef (
 Movie theMovie,
 long movieFlattenFlags,
 Handle dataRef,
 OSType dataRefType,
 OSType creator,
 ScriptCode scriptTag,
 long createMovieFileFlags
);

Parameters
theMovie

The movie passed into this operation. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

movieFlattenFlags
Constants (see below) that control the process of adding movie data to the new container. QuickTime
will read these flags later when it adds movies to the storage. Set unused flags to 0. See these constants:

flattenAddMovieToDataFork

flattenDontInterleaveFlatten

flattenActiveTracksOnly

flattenCompressMovieResource

flattenForceMovieResourceBeforeMovieData

dataRef
A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

creator
The creator type of the new container (for example, 'TV0D', the creator type for Apple's movie
player).

scriptTag
Constants (see below) that specify the script for the new container. See these constants:

createMovieFileFlags
Constants (see below) that control file creation options. See these constants:

createMovieFileDeleteCurFile

createMovieFileDontCreateMovie

createMovieFileDontOpenFile

Return Value
The identifier of the new movie. If the function could not create the movie, it sets the returned identifier to
NIL.

Discussion
This function performs a flattening operation to the destination data reference.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Functions 1341
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
QTCarbonShell

Declared In
Movies.h

GetMaxLoadedTimeInMovie
When a movie is being progressively downloaded, returns the duration of the part of a movie that has already
been downloaded.

OSErr GetMaxLoadedTimeInMovie (
 Movie theMovie,
 TimeValue *time
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The duration of the part of a movie that has already been downloaded. This time value is expressed
in the movie's time coordinate system. If all of a movie has been downloaded, this parameter returns
the duration of the entire movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox creates a time table for a movie when either QTMovieNeedsTimeTable (page 1450) or
GetMaxLoadedTimeInMovie is called for the movie, but the time table is used only by the toolbox and is
not accessible to applications. The toolbox disposes of the time table when the download is complete.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaDataRef
Returns a copy of a specified data reference.

1342 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr GetMediaDataRef (
 Media theMedia,
 short index,
 Handle *dataRef,
 OSType *dataRefType,
 long *dataRefAttributes
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
The index value that corresponds to the data reference. It must be less than or equal to the value that
is returned by GetMediaDataRefCount (page 1344).

dataRef
A pointer to a field that is to receive a handle to the data reference. The media handler returns a
handle to information that identifies the file that contains this media's data. The type of information
stored in that handle depends upon the value of the dataRefType parameter. If the function cannot
locate the specified data reference, the handler sets this returned value to NIL. Set the dataRef
parameter to NIL if you are not interested in this information.

dataRefType
A pointer to a field that is to receive the type of data reference. If the data reference is an alias, the
media handler sets this value to 'alis'. Set the dataRefType parameter to NIL if you are not
interested in this information.

dataRefAttributes
A pointer to a field that is to receive the reference's attribute flags (see below). Unused flags are set
to 0. See these constants:

dataRefSelfReference

dataRefWasNotResolved

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function to retrieve information about a data reference. For example, you might want to verify the
condition of a movie's data references after loading the movie from its movie file. You could use this function
to check each data reference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
SlideShowImporter
SlideShowImporter.win
ThreadsImporter
ThreadsImportMovie

Functions 1343
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

GetMediaDataRefCount
Determines the number of data references in a media.

OSErr GetMediaDataRefCount (
 Media theMedia,
 short *count
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

count
A pointer to a field that is to receive the number of data references in the media.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

GetMediaNextInterestingDecodeTime
Searches for decode times of interest in a media.

void GetMediaNextInterestingDecodeTime (
 Media theMedia,
 short interestingTimeFlags,
 TimeValue64 decodeTime,
 Fixed rate,
 TimeValue64 *interestingDecodeTime,
 TimeValue64 *interestingDecodeDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

1344 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:
nextTimeMediaSample Set this flag to 1 to search for the next sample. nextTimeMediaEdit Set
this flag to 1 to search for the next group of samples. nextTimeSyncSample Set this flag to 1 to
search for the next sync sample. nextTimeEdgeOK Set this flag to 1 to accept information about
elements that begin or end at the time specified by the decodeTime parameter. When this flag is set
the function returns valid information about the beginning and end of a media. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

decodeTime
Specifies the starting point for the search in decode time. This time value must be expressed in the
media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDecodeTime
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media's time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to -1. Set this parameter to NULL if you are not interested in this information.

interestingDecodeDuration
On return, a pointer to a 64-bit time value in decode time. The Movie Toolbox returns the duration
of the interesting time in the media's time coordinate system. Set this parameter to NULL if you don't
want this information; this lets the function works faster.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

GetMediaNextInterestingDisplayTime
Searches for display times of interest in a media.

Functions 1345
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void GetMediaNextInterestingDisplayTime (
 Media theMedia,
 short interestingTimeFlags,
 TimeValue64 displayTime,
 Fixed rate,
 TimeValue64 *interestingDisplayTime,
 TimeValue64 *interestingDisplayDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

interestingTimeFlags
Flags that determine the search criteria. Note that you may set only one of the nextTimeMediaSample,
nextTimeMediaEdit, or nextTimeSyncSample flags to 1. Set unused flags to 0:
nextTimeMediaSample Set this flag to 1 to search for the next sample. nextTimeMediaEdit Set
this flag to 1 to search for the next group of samples. nextTimeSyncSample Set this flag to 1 to
search for the next sync sample. nextTimeEdgeOK Set this flag to 1 to accept information about
elements that begin or end at the time specified by the decodeTime parameter. When this flag is set
the function returns valid information about the beginning and end of a media. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

displayTime
Specifies the starting point for the search in display time. This time value must be expressed in the
media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingDisplayTime
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the first time
value it finds that meets the search criteria specified in the flags parameter. This time value is in the
media's time scale. If there are no times that meet the search criteria you specify, the Movie Toolbox
sets this value to -1. Set this parameter to NIL if you are not interested in this information.

interestingDisplayDuration
On return, a pointer to a 64-bit time value in display time. The Movie Toolbox returns the duration of
the interesting time in the media's time coordinate system. Set this parameter to NIL if you don't
want this information; this lets the function works faster.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMediaNextInterestingTime
Searches for times of interest in a media.

1346 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void GetMediaNextInterestingTime (
 Media theMedia,
 short interestingTimeFlags,
 TimeValue time,
 Fixed rate,
 TimeValue *interestingTime,
 TimeValue *interestingDuration
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit or nextTimeSyncSample flags to 1. Set unused
flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeSyncSample

nextTimeEdgeOK

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the media's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the media's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. Set this
parameter to NIL if you are not interested in this information.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the media's time coordinate system. Set this parameter to NIL if you don't want this
information; this lets the function works faster.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
Some compression algorithms conserve space by eliminating duplication between consecutive frames in a
sample. They do this by deriving frames from sync samples, which don't rely on preceding frames for content.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1347
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
qdmediahandler
qdmediahandler.win
TimeCode Media Handlers

Declared In
Movies.h

GetMediaPlayHints
Undocumented

void GetMediaPlayHints (
 Media theMedia,
 long *flags
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

flags
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaPropertyAtom
Retrieves the property atom container of a media handler.

OSErr GetMediaPropertyAtom (
 Media theMedia,
 QTAtomContainer *propertyAtom
);

Parameters
theMedia

A reference to the media handler for this operation.

propertyAtom
A pointer to a QT atom container. On return, the atom container contains the property atoms for the
track associated with the media handler.

1348 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can call GetMediaPropertyAtom to retrieve the properties of the track associated with the specified
media handler. The contents of the returned QT atom container are defined by the media handler.

Special Considerations

The caller is responsible for disposing of the QT atom container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win
vrscript
vrscript.win

Declared In
Movies.h

GetMovieAnchorDataRef
Retrieves a movie's anchor data reference and type.

OSErr GetMovieAnchorDataRef (
 Movie theMovie,
 Handle *dataRef,
 OSType *dataRefType,
 long *outFlags
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dataRef
A handle to the data reference. The type of information stored in the handle depends upon the data
reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

outFlags
If there is no anchor data reference associated with the movie, then GetMovieAnchorDataRef sets
this parameter to kMovieAnchorDataRefIsDefault (see below) and returns copies of the default
data reference and type. See these constants:

kMovieAnchorDataRefIsDefault

Functions 1349
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If there is neither an anchor nor a default data reference, NIL will be returned in dataRef and 0 in
dataRefType.

Special Considerations

The caller should dispose of the data reference returned.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieAudioBalance
Returns the balance value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioBalance (
 Movie m,
 Float32 *leftRight,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

leftRight
On return, a pointer to the current balance setting for the movie. The balance setting is a 32-bit
floating-point value that controls the relative volume of the left and right sound channels. A value of
0 sets the balance to neutral. Positive values up to 1.0 shift the balance to the right channel, negative
values up to -1.0 to the left channel.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie's balance setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioBalance (page 1478).

Availability
Available in Mac OS X v10.3 and later.

1350 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

GetMovieAudioFrequencyLevels
Returns the current frequency meter levels of a movie mix.

OSStatus GetMovieAudioFrequencyLevels (
 Movie m,
 FourCharCode whatMixToMeter,
 QTAudioFrequencyLevels *pAveragePowerLevels
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

pAveragePowerLevels
A pointer to a QTAudioFrequencyLevels structure (page 325).

Return Value
An error code. Returns noErr if there is no error.

Discussion
In the structure pointed to by pAveragePowerLevels, the numChannels field must be set to the number
of channels in the movie mix being metered and the numBands field must be set to the number of bands
being metered (as previously configured). Enough memory for the structure must be allocated to hold 32-bit
values for all bands in all channels. This function returns the current frequency meter levels in the level
field of the structure, with all the band levels for the first channel first, all the band levels for the second
channel next and so on.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Core Animation QuickTime Layer
SillyFrequencyLevels

Declared In
Movies.h

GetMovieAudioFrequencyMeteringBandFrequencies
Returns the chosen middle frequency for each band in the configured frequency metering of a particular
movie mix.

Functions 1351
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus GetMovieAudioFrequencyMeteringBandFrequencies (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 numBands,
 Float32 *outBandFrequencies
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

numBands
The number of bands to examine.

outBandFrequencies
A pointer to an array of frequencies, each expressed in Hz.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You can use this function to label a visual meter in a user interface.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioFrequencyMeteringNumBands
Returns the number of frequency bands being metered for a movie's specified audio mix.

OSStatus GetMovieAudioFrequencyMeteringNumBands (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 *outNumBands
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

outNumBands
A pointer to memory that stores the number of frequency bands currently being metered for the
movie's specified audio mix.

1352 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioFrequencyMeteringNumBands (page 1479).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioGain
Returns the gain value for the audio mix of a movie currently playing.

OSStatus GetMovieAudioGain (
 Movie m,
 Float32 *gain,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the movie's volume. 0.0
is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the movie is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet movies to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioGain (page 1480).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioMute
Returns the mute value for the audio mix of a movie currently playing.

Functions 1353
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus GetMovieAudioMute (
 Movie m,
 Boolean *muted,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

muted
Returns TRUE if the movie audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
SetMovieAudioMute (page 1480).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioVolumeLevels
Returns the current volume meter levels of a movie.

OSStatus GetMovieAudioVolumeLevels (
 Movie m,
 FourCharCode whatMixToMeter,
 QTAudioVolumeLevels *pAveragePowerLevels,
 QTAudioVolumeLevels *pPeakHoldLevels
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

pAveragePowerLevels
A pointer to a QTAudioVolumeLevels structure that stores the average power level of each channel
in the mix, measured in decibels. A return of NIL means no channels; if non-NIL, 0.0 dB for each
channel means full volume, -6.0 dB means half volume, -12.0 dB means quarter volume, and -infinite
dB means silence.

1354 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

pPeakHoldLevels
A pointer to a QTAudioVolumeLevels structure that stores the peak hold level of each channel in
the mix, measured in decibels. A return of NIL means no channels; if non-NIL, 0.0 dB for each channel
means full volume, -6.0 dB means half volume, -12.0 dB means quarter volume, and -infinite dB means
silence.

Return Value
An error code. Returns noErr if there is no error.

Discussion
If either pAveragePowerLevels or pPeakHoldLevels returns non-NIL, it must have the numChannels
field in its QTAudioVolumeLevels structure set to the number of channels in the movie mix being metered
and the memory allocated for the structure must be large enough to hold levels for all those channels.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieAudioVolumeMeteringEnabled
Returns the enabled or disabled status of volume metering of a particular audio mix of a movie.

OSStatus GetMovieAudioVolumeMeteringEnabled (
 Movie m,
 FourCharCode whatMixToMeter,
 Boolean *enabled
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

enabled
Returns TRUE if audio volume metering is enabled, FALSE if it is disabled.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See SetMovieAudioVolumeMeteringEnabled (page 1481).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

Functions 1355
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMovieColorTable
Retrieves a movie's color table.

OSErr GetMovieColorTable (
 Movie theMovie,
 CTabHandle *ctab
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

ctab
A pointer to a field that is to receive a handle to the movie's color table. If the movie does not have
a color table, the toolbox sets the field to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The toolbox returns a copy of the color table, so it is your responsibility to dispose of the color table when
you are done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieCoverProcs
Retrieves the cover functions that you set with the SetMovieCoverProcs function.

OSErr GetMovieCoverProcs (
 Movie theMovie,
 MovieRgnCoverUPP *uncoverProc,
 MovieRgnCoverUPP *coverProc,
 long *refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

uncoverProc
Where to return the current uncover procedure. This value is set to NIL if no uncover procedure was
specified.

1356 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

coverProc
Where to return the current cover procedure. This value is set to NIL if no cover procedure was
specified.

refcon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your cover functions need.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function returns the uncover and cover functions for the movie as well as the reference constant for the
cover functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieDefaultDataRef
Gets a movie's default data reference.

OSErr GetMovieDefaultDataRef (
 Movie theMovie,
 Handle *dataRef,
 OSType *dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dataRef
A pointer to a field that is to receive a handle to the data reference. The function returns a handle to
information that identifies the file that contains this media's data. The type of information stored in
that handle depends upon the value of the dataRefType parameter. If the function cannot locate
the specified data reference, the handler sets this returned value to NIL. Set the dataRef parameter
to NIL if you are not interested in this information.

dataRefType
A pointer to a field that is to receive the type of data reference; see Data References. If the data
reference is an alias, the function sets this value to 'alis', indicating that the reference is an alias.
Set the dataRefType parameter to NIL if you are not interested in this information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1357
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieLoadState
Returns a value that indicates the state of a movie's loading process.

long GetMovieLoadState (
 Movie theMovie
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A constant (see below) that indicates the movie's loading status.

Discussion
This function lets your code perform relative comparisons against movie loading milestones to determine if
certain operations make sense. Its return values are ordered so that they conform to this rule:

kMovieLoadStateError
< kMovieLoadStateLoading
< kMovieLoadStatePlayable
< kMovieLoadStateComplete

Special Considerations

Because of the "voting system" involved, an application checking for the load state should throttle its calling
of the routine. Not calling GetMovieLoadState more often than every quarter of a second is a good place
to start.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Movie From DataRef
QTCarbonShell

Declared In
Movies.h

1358 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMovieNextInterestingTime
Searches for times of interest in a movie's enabled tracks.

void GetMovieNextInterestingTime (
 Movie theMovie,
 short interestingTimeFlags,
 short numMediaTypes,
 const OSType *whichMediaTypes,
 TimeValue time,
 Fixed rate,
 TimeValue *interestingTime,
 TimeValue *interestingDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit, nextTimeTrackEdit and nextTimeSyncSample
flags to 1. Set unused flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeTrackEdit

nextTimeSyncSample

nextTimeStep

nextTimeEdgeOK

nextTimeIgnoreActiveSegment

numMediaTypes
The number of media types in the table referred to by the whichMediaType parameter. Set this
parameter to 0 to search all media types.

whichMediaTypes
A pointer to an array of media type constants (see below). You can use this parameter to limit the
search to a specified set of media types. Each entry in the table referred to by this parameter identifies
a media type to be included in the search. You use the numMediaTypes parameter to indicate the
number of entries in the table. Set this parameter to NIL to search all media types. See these
constants:

VisualMediaCharacteristic

AudioMediaCharacteristic

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the movie's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

Functions 1359
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the movie's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. If you are not
interested in this information, set this parameter to NIL.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the movie's time coordinate system. Set this parameter to NIL if you don't want this
information; in this case, the function works faster.

Discussion
The following code sample shows the use of GetMovieNextInterestingTime to return, through the time
parameter, the starting time of the first video sample of the specified QuickTime movie. The trick here is to
set the nextTimeEdgeOK flag, to indicate that you want to get the starting time of the beginning of the
movie. If this function encounters an error, it returns a (bogus) starting time of -1, as shown below:

static OSErr QTStep_GetStartTimeOfFirstVideoSample (Movie theMovie,
 TimeValue *theTime)
{
 short myFlags;
 OSType myTypes[1];

 *theTime =kBogusStartingTime; // a bogus starting time
 if (theMovie ==NIL)
 return(invalidMovie);

 myFlags =nextTimeMediaSample + nextTimeEdgeOK;
 // we want the first sample in the movie
 myTypes[0] =VisualMediaCharacteristic; // we want video samples
 GetMovieNextInterestingTime(theMovie, myFlags, 1, myTypes,
 (TimeValue)0, fixed1, theTime, NIL);
 return(GetMoviesError());
}

Special Considerations

This function examines only the movie's enabled tracks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

1360 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMovieProgressProc
Gets the MovieProgressProc callback attached to a movie.

void GetMovieProgressProc (
 Movie theMovie,
 MovieProgressUPP *p,
 long *refcon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

p
On return, a pointer to a MovieProgressProc callback.

refcon
On return, a reference constant passed to the callback. This parameter is used to point to a data
structure containing any information the function needs.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMoviePropertyAtom
Gets a movie's property atom.

OSErr GetMoviePropertyAtom (
 Movie theMovie,
 QTAtomContainer *propertyAtom
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

propertyAtom
A pointer to a property atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This routine is used to author event handlers for the kQTEventMovieLoaded QuickTime event.

Functions 1361
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieSegmentDisplayBoundsRgn
Determines a movie's display boundary region for a specified segment.

RgnHandle GetMovieSegmentDisplayBoundsRgn (
 Movie theMovie,
 TimeValue time,
 TimeValue duration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

time
The starting time of the movie segment to consider. This time value must be expressed in the movie's
time coordinate system. The duration parameter specifies the length of the segment.

duration
The length of the segment to consider. Set this parameter to 0 to specify an instant in time.

Return Value
A handle to a MacRegion structure that the function allocates. This region is defined in the movie's display
coordinate system. If the movie does not have a spatial representation at the current time, the function
returns an empty region. If the function could not satisfy the request, it sets the returned handle to NIL.

Discussion
This function allocates a region and returns a handle to it. The Movie Toolbox derives the display boundary
region only from enabled tracks and only from those tracks that are used in the current display mode (movie,
poster, or preview). The display boundary region encloses all of a movie's enabled tracks after the track matrix,
track clip, movie matrix, and movie clip have been applied to them.

Special Considerations

Your application must dispose of the returned region when it is done with it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1362 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMovieStatus
Searches for errors in all the enabled tracks of the movie and returns information about errors that are
encountered during the processing associated with the MoviesTask function.

ComponentResult GetMovieStatus (
 Movie theMovie,
 Track *firstProblemTrack
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

firstProblemTrack
A pointer to a track identifier. The Movie Toolbox places the identifier for the first track that is found
to contain an error into the field referred to by this parameter. If you don't want to receive the track
identifier, set this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error in the movie status value.

Discussion
This function returns information about errors that are encountered during MoviesTask (page 257) execution.
These errors typically reflect playback problems, such as low-memory conditions. GetMovieStatus returns
the error associated with the first problem track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Movie From DataRef
ThreadsImportMovie

Declared In
Movies.h

GetMovieThreadAttachState
Determines whether a given movie is attached to a thread.

OSErr GetMovieThreadAttachState (
 Movie m,
 Boolean *outAttachedToCurrentThread,
 Boolean *outAttachedToAnyThread
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Functions 1363
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

outAttachedToCurrentThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to the current thread, FALSE
otherwise.

outAttachedToAnyThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to any thread, FALSE otherwise.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualBrightness
Returns the brightness adjustment for the movie.

OSStatus GetMovieVisualBrightness (
 Movie movie,
 Float32 *brightnessOut,
 UInt32 flags
);

Parameters
movie

The movie.

brightnessOut
Current brightness adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualContrast
Returns the contrast adjustment for the movie.

1364 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus GetMovieVisualContrast (
 Movie movie,
 Float32 *contrastOut,
 UInt32 flags
);

Parameters
movie

The movie.

contrastOut
Current contrast adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid gray.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualHue
Returns the hue adjustment for the movie.

OSStatus GetMovieVisualHue (
 Movie movie,
 Float32 *hueOut,
 UInt32 flags
);

Parameters
movie

The movie.

hueOut
Current hue adjustment. (Float32)

flags
Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

Discussion
The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Functions 1365
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMovieVisualSaturation
Returns the color saturation adjustment for the movie.

OSStatus GetMovieVisualSaturation (
 Movie movie,
 Float32 *saturationOut,
 UInt32 flags
);

Parameters
movie

The movie.

saturationOut
Current saturation adjustment.(Float32)

flags
Reserved. Pass 0. (UInt32)

Return Value
An error code. Returns noErr if there is no error.

Discussion
The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetNextUserDataType
Retrieves the next user data type in a specified user data list.

long GetNextUserDataType (
 UserData theUserData,
 OSType udType
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData (page
225), GetTrackUserData (page 1617), or GetMediaUserData (page 1595).

1366 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

udType
Specifies a user data field; see User Data Identifiers. Set this parameter to 0 to retrieve the first
user data field in the user data list. On subsequent requests, use the previous value returned by this
function.

Return Value
The next user data type in the list. Returns 0 when there are no more user data types.

Discussion
Use this function to scan all the user data types in a user data list.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
ImproveYourImage

Declared In
Movies.h

GetPosterBox
Obtains a poster's boundary rectangle.

void GetPosterBox (
 Movie theMovie,
 Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

boxRect
A pointer to a rectangle. The Movie Toolbox returns the poster's boundary rectangle into the structure
referred to by this parameter.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1367
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetQuickTimePreference
Retrieves a particular preference from the QuickTime preferences.

OSErr GetQuickTimePreference (
 OSType preferenceType,
 QTAtomContainer *preferenceAtom
);

Parameters
preferenceType

A preference type to be retrieved (see below); see Atom ID Codes. See these constants:
ConnectionSpeedPrefsType

BandwidthManagementPrefsType

preferenceAtom
A pointer to the returned preference atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following sample code shows how to retrieve the connection speed setting from the QuickTime
preferences:

struct ConnectionSpeedPrefsRecord {
 long connectionSpeed;
};
typedef struct ConnectionSpeedPrefsRecord ConnectionSpeedPrefsRecord;
. . .
OSErr err;
QTAtomContainer prefs;
QTAtom prefsAtom;
long dataSize;
Ptr atomData;
ConnectionSpeedPrefsRecord prefrec;
err =GetQuickTimePreference(ConnectionSpeedPrefsType, &prefs);
if (err ==noErr) {
 prefsAtom =QTFindChildByID(prefs, kParentAtomIsContainer,
 ConnectionSpeedPrefsType, 1, nil);
 if (!prefsAtom) {
 // set the default setting to 28.8kpbs
 prefrec.connectionSpeed =kDataRate288ModemRate;
 } else {
 err =QTGetAtomDataPtr(prefs, prefsAtom, &dataSize,
 &atomData);
 if (dataSize !=sizeof(ConnectionSpeedPrefsRecord)) {
 // the prefs record wasn't the right size,
 // so it must be corrupt -- set to the default
 prefrec.connectionSpeed =kDataRate288ModemRate;
 } else {
 // everything was fine -- read the connection speed
 prefrec =*(ConnectionSpeedPrefsRecord *)atomData;
 }
 }
 QTDisposeAtomContainer(prefs);
}

1368 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

GetSoundDescriptionExtension
Gets the current extension to a SoundDescription structure.

OSErr GetSoundDescriptionExtension (
 SoundDescriptionHandle desc,
 Handle *extension,
 OSType idType
);

Parameters
desc

A handle to a SoundDescription structure.

extension
A pointer to a handle that, on return, contains the extension.

idType
A four-byte signature that identifies the type of data in the extension.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
SoundPlayer
SoundPlayer.win

Declared In
Movies.h

Functions 1369
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetSpriteProperty
Retrieves the value of a specified sprite property.

OSErr GetSpriteProperty (
 Sprite theSprite,
 long propertyType,
 void *propertyValue
);

Parameters
theSprite

The sprite for this operation.

propertyType
The property whose value should be retrieved (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpritePropertyCanBeHitTested

propertyValue
A pointer to a variable that will hold the selected property value on return. Depending on the property
type, this parameter is either a pointer to the property value or the property value itself, cast as a
void pointer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to retrieve the value of a sprite property, setting the propertyType parameter to the
type of the property you want to retrieve.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackAudioGain
Returns the gain value for the audio mix of a track currently playing.

1370 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus GetTrackAudioGain (
 Track t,
 Float32 *gain,
 UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the track's volume. 0.0 is
silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the track is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet tracks to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track gain setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioGain (page 1496).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTrackAudioMute
Returns the mute value for the audio mix of a track currently playing.

OSStatus GetTrackAudioMute (
 Track t,
 Boolean *muted,
 UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

muted
Returns TRUE if the track's audio is currently muted, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Functions 1371
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
The track's mute setting is not stored in the movie; it is used only until the movie is closed. See
SetTrackAudioMute (page 1496).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTrackLoadSettings
Retrieves a track's preload information.

void GetTrackLoadSettings (
 Track theTrack,
 TimeValue *preloadTime,
 TimeValue *preloadDuration,
 long *preloadFlags,
 long *defaultHints
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

preloadTime
Specifies a field to receive the starting point of the portion of the track to be preloaded. The toolbox
returns a value of -1 if the entire track is to be preloaded.

preloadDuration
Specifies a field to receive the amount of the track to be preloaded, starting from the time specified
in the preloadTime parameter. If the entire track is to be preloaded, this value is ignored.

preloadFlags
Specifies a field to receive the flags (see below) that control when the toolbox preloads the track. See
these constants:

preloadAlways

preloadOnlyIfEnabled

defaultHints
Specifies a field to receive the playback hints for the track.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleVideoOut

1372 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

GetTrackNextInterestingTime
Searches for times of interest in a track.

void GetTrackNextInterestingTime (
 Track theTrack,
 short interestingTimeFlags,
 TimeValue time,
 Fixed rate,
 TimeValue *interestingTime,
 TimeValue *interestingDuration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

interestingTimeFlags
Contains flags (see below) that determine the search criteria. Note that you may set only one of the
nextTimeMediaSample, nextTimeMediaEdit, nextTimeTrackEdit and nextTimeSyncSample
flags to 1. Set unused flags to 0. See these constants:

nextTimeMediaSample

nextTimeMediaEdit

nextTimeTrackEdit

nextTimeSyncSample

nextTimeEdgeOK

nextTimeIgnoreActiveSegment

time
Specifies a time value that establishes the starting point for the search. This time value must be
expressed in the movie's time scale.

rate
The search direction. Negative values cause the Movie Toolbox to search backward from the starting
point specified in the time parameter. Other values cause a forward search.

interestingTime
A pointer to a time value. The Movie Toolbox returns the first time value it finds that meets the search
criteria specified in the flags parameter. This time value is in the movie's time scale. If there are no
times that meet the search criteria you specify, the Movie Toolbox sets this value to -1. Set this
parameter to NIL if you are not interested in this information.

interestingDuration
A pointer to a time value. The Movie Toolbox returns the duration of the interesting time. This time
value is in the movie's time coordinate system. Set this parameter to NIL if you don't want this
information; in this case, the function works more quickly.

Functions 1373
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
Some compression algorithms conserve space by eliminating duplication between consecutive frames in a
sample. In this case, sync samples don't rely on preceding frames for content. You can access error returns
from this function throughGetMoviesError (page 221) andGetMoviesStickyError (page 222). SeeError
Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
MovieVideoChart
qttext
qttext.win
qtwiredactions

Declared In
Movies.h

GetTrackSegmentDisplayBoundsRgn
Determines the region a track occupies in a movie's graphics world during a specified segment.

RgnHandle GetTrackSegmentDisplayBoundsRgn (
 Track theTrack,
 TimeValue time,
 TimeValue duration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

time
The starting time of the track segment to consider. This time value must be expressed in the movie's
time coordinate system. The duration parameter specifies the length of the segment.

duration
The length of the segment to consider. Set this parameter to 0 to consider an instant in time.

Return Value
A handle to the region the specified track occupies in its movie's graphics world during a specified segment.
If the track does not have a spatial representation during the specified segment, the function returns an
empty region. If the function could not satisfy your request, it sets the returned handle to NIL.

Discussion
This function allocates the region and returns a handle to it. This region is valid for the specified segment.

Special Considerations

Your application must dispose of the returned region when you are done with it.

1374 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode

Declared In
Movies.h

GetTrackStatus
Returns the value of the last error the media encountered while playing a specified track.

ComponentResult GetTrackStatus (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from GetMovieStatus (page
1363).

Return Value
GetTrackStatus returns the last error encountered for the specified track; see Error Codes. If the
component does not find any errors, the result is set to noErr.

Discussion
This function returns information about errors that are encountered during the processing associated with
MoviesTask (page 257). These errors typically reflect playback problems, such as low-memory conditions.
This function returns the last error encountered for the specified track. The media clears this error code when
it detects that the error has been corrected.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetUserData
Returns a specified user data item.

Functions 1375
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr GetUserData (
 UserData theUserData,
 Handle data,
 OSType udType,
 long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595)
function.

data
A handle that is to receive the data from the specified item. GetUserData resizes this handle as
appropriate to accommodate the item. Your application is responsible for releasing this handle when
you are done with it. Set this parameter to NIL if you don't want to retrieve the user data item. This
can be useful if you want to verify that a user data item exists, but you don't need to work with the
item's contents.

udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qteffects.win

Declared In
Movies.h

GetUserDataItem
Returns a specified user data item.

1376 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr GetUserDataItem (
 UserData theUserData,
 void *data,
 long size,
 OSType udType,
 long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595).

data
A pointer that is to receive the data from the specified item.

size
The size of the item.

udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtcontroller
qtmusic.win
qtshellCEvents.win
samplemakeeffectmovie.win

Declared In
Movies.h

GetUserDataText
Retrieves language-tagged text from an item in a user data list.

Functions 1377
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr GetUserDataText (
 UserData theUserData,
 Handle data,
 OSType udType,
 long index,
 short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595)
function.

data
A handle that is to receive the data. The GetUserDataText function resizes this handle as appropriate.
Your application must dispose of the handle when you are done with it.

udType
The item's type value; see User Data Identifiers.

index
The item's index value. This parameter must specify an item in the user data list identified by the
parameter theUserData.

itlRegionTag
The language code of the text to be retrieved. See Localization Codes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the user data list and item, and the item's type value and language code. The Movie Toolbox
retrieves the specified text from the user data item.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Graphic Import-Export
QTCarbonShell
qtinfo
QTKitTimeCode
qttimecode.win

Declared In
Movies.h

HasMovieChanged
Determines whether a movie has changed and needs to be saved.

1378 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Boolean HasMovieChanged (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
Returns TRUE if the movie has changed, FALSE otherwise.

Discussion
Your application can clear the movie changed flag, indicating that the movie has not changed, by calling
ClearMovieChanged (page 1310).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

InvalidateSprite
Invalidates the portion of a sprite's sprite world that is occupied by a sprite.

void InvalidateSprite (
 Sprite theSprite
);

Parameters
theSprite

The sprite for this operation.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
In most cases, you do not need to call this function. When you call SetSpriteProperty (page 1491) to modify
a sprite's properties, it takes care of invalidating the appropriate regions of the sprite world. However, you
might call this function if you change a sprite's image data but retain the same image data pointer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1379
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

InvalidateSpriteWorld
Invalidates a rectangular area of a sprite world.

OSErr InvalidateSpriteWorld (
 SpriteWorld theSpriteWorld,
 Rect *invalidArea
);

Parameters
theSpriteWorld

The sprite world for this operation.

invalidArea
A pointer to the Rect structure that defines the area that should be invalidated. This rectangle should
be specified in the sprite world's source space, which is the coordinate system of the sprite layer's
graphics world before the sprite world's matrix is applied to it. To invalidate the entire sprite world,
pass NIL for this parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Typically, your application calls this function when the sprite world's destination window receives an update
event. Invalidating an area of the sprite world will cause the area to be redrawn the next time that
SpriteWorldIdle (page 1502) is called.

Special Considerations

When you modify sprite properties, invalidation takes place automatically; you do not need to call this
function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MakeMediaTimeTable
Returns a time table for the specified media.

ComponentResult ADD_MEDIA_BASENAME() MakeMediaTimeTable

Parameters
theMedia

The media for this operation. Your application obtains this identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

offsets
A handle to an unlocked relocatable memory block allocated by your application. The function returns
the time table for the media in this block.

1380 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

startTime
The first point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

endTime
The last point of the media to be included in the time table. This time value is expressed in the media's
time coordinate system.

timeIncrement
The resolution of the time table. The values in a time table are for a points in the media, and these
points are separated by the amount of time specified by this parameter. The time value is expressed
in the media's time coordinate system.

firstDataRefIndex
An index to the first data reference for the media to be included in the time table. Set this parameter
to -1 to include all data references for the media. Set this parameter to 1 to specify the first data
reference for the media.

lastDataRefIndex
An index to the last data reference for the media to be included in the time table. The value 1 specifies
the first data reference for the media. If the value of the firstDataRefIndex parameter is -1, set
this parameter to 0.

retdataRefSkew
The offset to the next row of the time table, in long integers. The next row contains values for the
next data reference, as explained below. By adding the value of this parameter to an offset into the
table, you get the offset to the corresponding point for the next data reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application must allocate an unlocked relocatable memory block for the time table to be returned and
pass a handle to it in the offsets parameter. The MakeMediaTimeTable (page 1380) function resizes the
block to accommodate the time table it returns.

This time table is a two-dimensional array of long integers, organized so that each row in the table contains
values for one data reference. The first column in the table contains values for the time in the media specified
by the startTime parameter, and each subsequent column contains values for the point in the media that
is later by the value specified by the timeIncrement parameter. Each long integer value in the table specifies
the offset, in bytes, from the beginning of the data reference for that point in the media. The number of
columns in the table is equal to (endTime - startTime) / timeIncrement, rounded up. Because of
alignment issues, this value is not always the same as the value of the retdataRefSkew parameter.

Special Considerations

When all the data for a movie has been transferred, your application must dispose of the time table created
by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1381
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

MakeTrackTimeTable
Returns a time table for a specified track in a movie.

OSErr MakeTrackTimeTable (
 Track trackH,
 long **offsets,
 TimeValue startTime,
 TimeValue endTime,
 TimeValue timeIncrement,
 short firstDataRefIndex,
 short lastDataRefIndex,
 long *retdataRefSkew
);

Parameters
trackH

The track for the operation. Your application gets this identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

offsets
A handle to an unlocked relocatable memory block allocated by your application. The function returns
the time table for the track in this block.

startTime
The first point of the track to be included in the time table. This time value is expressed in the movie's
time coordinate system.

endTime
The last point of the track to be included in the time table. This time value is expressed in the movie's
time coordinate system.

timeIncrement
The resolution of the time table. The values in a time table are for a points in the track, and these
points are separated by the amount of time specified by this parameter. The time value is expressed
in the movie's time coordinate system.

firstDataRefIndex
An index to the first data reference for the track to be included in the time table. Set this parameter
to -1 to include all data references for the track. Set this parameter to 1 to specify the first data
reference for the track.

lastDataRefIndex
An index to the last data reference for the track to be included in the time table. The value 1 specifies
the first data reference for the track. If the value of the firstDataRefIndex parameter is -1, set this
parameter to 0.

retdataRefSkew
The offset to the next row of the time table, as a long integer. The next row contains values for the
next data reference, as explained below. By adding the value of this parameter to an offset into the
table, you get the offset to the corresponding point for the next data reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application must allocate an unlocked relocatable memory block for the time table to be returned and
pass a handle to it in the offsets parameter. The MakeTrackTimeTable (page 1382) function resizes the
block to accommodate the time table it returns.

1382 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

This time table is a two-dimensional array of long integers that is organized so that each row in the table
contains values for one data reference. The first column in the table contains values for the time in the track
specified by the startTime parameter, and each subsequent column contains values for the point in the
track that is later by the value specified by the timeIncrement parameter. Each long integer value in the
table specifies the offset, in bytes, from the beginning of the data reference for that point in the track. The
number of columns in the table is equal to (endTime - startTime) / timeIncrement, rounded up.
Because of alignment issues, this value is not always the same as the value of the retdataRefSkew parameter.
If there are track edits for a track, they are reflected in the track's time table.

Special Considerations

When all the data for a movie has been transferred, your application must dispose of the time table created
by this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieAudioExtractionBegin
Begins a movie audio extraction session.

OSStatus MovieAudioExtractionBegin (
 Movie m,
 UInt32 flags,
 MovieAudioExtractionRef *outSession
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

flags
Reserved; must be 0.

outSession
A pointer to an opaque session object.

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function before doing any movie audio extraction, because you will pass the object returned
by outSession to the other movie audio extraction functions. The format of the extracted audio defaults
to the summary channel layout of the movie (all right channels mixed together, all left surround channels
mixed together, and so on.), 32-bit float, de-interleaved, with the sample rate set to the highest sample rate
found in the movie. You can set the audio format to be something else, as long as it is uncompressed and
you do it before your first call to MovieAudioExtractionFillBuffer (page 1384).

Functions 1383
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionEnd
Ends a movie audio extraction session.

OSStatus MovieAudioExtractionEnd (
 MovieAudioExtractionRef session
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 1383).

Return Value
An error code. Returns noErr if there is no error.

Discussion
You must call this function when movie audio extraction is complete.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionFillBuffer
Extracts audio from a movie.

1384 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus MovieAudioExtractionFillBuffer (
 MovieAudioExtractionRef session,
 UInt32 *ioNumFrames,
 AudioBufferList *ioData,
 UInt32 *outFlags
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 1383).

ioNumFrames
A pointer to the number of PCM frames to be extracted.

ioData
A pointer to an AudioBufferList allocated by the caller to hold the extracted audio data.

outFlags
A bit flag that indicates when extraction is complete: kMovieAudioExtractionComplete The
extraction process is complete. Value is (1L << 0). See these constants:

Return Value
An error code. Returns noErr if there is no error.

Discussion
You call this function repeatedly; each call continues extracting audio where the last call left off. The function
will extract as many of the requested PCM frames as it can, given the limits of the buffer supplied and the
limits of the input movie. ioNumFrameswill be updated with the exact number of valid frames being returned.
When there is no more audio to extract from the movie, the function will continue to return noErr but will
return no further audio data. In this case, the outFlags parameter will have its
kMovieAudioExtractionComplete bit set. It is possible that the kMovieAudioExtractionComplete
bit will accompany the last buffer of valid data.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionGetProperty
Gets a property of a movie audio extraction session.

Functions 1385
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus MovieAudioExtractionGetProperty (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 1383).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_ChannelLayout The
summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

inPropValueSize
The size of the buffer allocated to receive the property value.

outPropValueAddress
A pointer to the buffer allocated to receive the property value.

outPropValueSizeUsed
The actual size of the property value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionGetPropertyInfo
Gets information about a property of a movie audio extraction session.

1386 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus MovieAudioExtractionGetPropertyInfo (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 1383).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_ChannelLayout The
summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

outPropType
A pointer to the type of the returned property's value.

outPropValueSize
A pointer to the size of the returned property's value.

outPropFlags
On return, a pointer to flags representing the requested information about the item's property.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieAudioExtractionSetProperty
Sets a property of a movie audio extraction session.

Functions 1387
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus MovieAudioExtractionSetProperty (
 MovieAudioExtractionRef session,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress
);

Parameters
session

The session object returned by MovieAudioExtractionBegin (page 1383).

inPropClass
Pass the following constant to define the property class: Property of an audio presentation; value is
'audi'.

inPropID
Pass one of these constants to define the property ID: kAudioPropertyID_SummaryChannelLayout
The summary audio channel layout of a movie, or any other grouping of audio streams. All like-labeled
channels are combined, without duplicates. For example, if there is a stereo (L/R) track, 5 single-channel
tracks marked Left, Right, Left Surround, Right Surround and Center, and a 4-channel track marked
L/R/Ls/Rs, then the summary AudioChannelLayoutwill be L/R/Ls/Rs/C, not L/R/L/R/Ls/Rs/C/L/R/Ls/Rs.
The value of this constant is 'clay'. See these constants:

inPropValueSize
The size of the property value.

inPropValueAddress
A const void pointer that points to the property value.

Return Value
An error code. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SCAudioCompress
SimpleAudioExtraction

Declared In
Movies.h

MovieExecuteWiredActions
Undocumented

1388 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr MovieExecuteWiredActions (
 Movie theMovie,
 long flags,
 QTAtomContainer actions
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

flags
Undocumented See these constants:

movieExecuteWiredActionDontExecute

actions
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieSearchText
Searches for text in a movie.

OSErr MovieSearchText (
 Movie theMovie,
 Ptr text,
 long size,
 long searchFlags,
 Track *searchTrack,
 TimeValue *searchTime,
 long *searchOffset
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

text
The text to be searched for.

size
The size of the text.

Functions 1389
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

searchFlags
Flags (see below) that narrow the search process. See these constants:

searchTextDontGoToFoundTime

searchTextDontHiliteFoundText

searchTextOneTrackOnly

searchTextEnabledTracksOnly

searchTrack
On return, a pointer to the found track.

searchTime
On return, a pointer to the found time.

searchOffset
On return, a pointer to the found offset to the text.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Declared In
Movies.h

NewActionsUPP
Allocates a Universal Procedure Pointer for ActionsProc.

ActionsUPP NewActionsUPP (
 ActionsProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewActionsProc.

Availability
Available in Mac OS X v10.0 and later.

1390 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

NewDoMCActionUPP
Allocates a Universal Procedure Pointer for the DoMCActionProc callback.

DoMCActionUPP NewDoMCActionUPP (
 DoMCActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewDoMCActionProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewGetMovieUPP
Allocates a Universal Procedure Pointer for the GetMovieProc callback.

GetMovieUPP NewGetMovieUPP (
 GetMovieProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewGetMovieProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 1391
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

NewMovieController
Locates a movie controller component and assigns a movie to that controller.

ComponentInstance NewMovieController (
 Movie theMovie,
 const Rect *movieRect,
 long someFlags
);

Parameters
theMovie

The movie to be associated with the movie controller.

movieRect
A pointer to the Rect structure that is to define the display boundaries of the movie and its controller.

someFlags
Contains flags (see below) that control the operation. If you set these flags to 0, the movie controller
component centers the movie in the rectangle specified by the movieRect parameter and scales the
movie to fit in that rectangle. The control portion of the controller is also placed within that rectangle.
You may control how the movie and the control are drawn by setting one or more flags to 1. See
these constants:

mcTopLeftMovie

mcScaleMovieToFit

mcWithBadge

mcNotVisible

mcWithFrame

Return Value
The ID of the new controller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQTGraphicImport
MakeEffectMovie
qteffects.win
qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

1392 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

NewMovieDrawingCompleteUPP
Allocates a Universal Procedure Pointer for the MovieDrawingCompleteProc callback.

MovieDrawingCompleteUPP NewMovieDrawingCompleteUPP (
 MovieDrawingCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieDrawingCompleteProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
ASCIIMoviePlayerSample for Windows
MovieGWorlds
OpenGLMovieQT
VideoProcessing

Declared In
Movies.h

NewMovieExecuteWiredActionsUPP
Allocates a Universal Procedure Pointer for the MovieExecuteWiredActionsProc callback.

MovieExecuteWiredActionsUPP NewMovieExecuteWiredActionsUPP (
 MovieExecuteWiredActionsProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieExecuteWiredActionsProc.

Functions 1393
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieForDataRefFromHandle
Creates a movie from a public movie handle, converting internal references to external references.

OSErr NewMovieForDataRefFromHandle (
 Movie *theMovie,
 Handle h,
 short newMovieFlags,
 Boolean *dataRefWasChanged,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

h
A handle to the movie resource from which the movie is to be loaded.

newMovieFlags
Constants (see below) that control characteristics of the new movie. Set unused flags to 0. See these
constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The toolbox sets the value to TRUE if any references were changed. Pass
NIL if you don't want to receive this information.

dataRef
A data reference to the storage from which the movie was retrieved.

dataRefType
The data reference type. See Data References.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access Movie Toolbox error returns through GetMoviesError (page
221) and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function creates a movie from a public movie handle in the same way as NewMovieFromHandle (page
1400), but with one difference. If the public handle contains internal media data references, the function can
convert them to external references, as specified by dataRef and dataRefType. No other data references
are changed.

1394 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewMovieFromDataFork
Retrieves a movie that is stored anywhere in the data fork of a specified Macintosh file.

OSErr NewMovieFromDataFork (
 Movie *theMovie,
 short fRefNum,
 long fileOffset,
 short newMovieFlags,
 Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

fRefNum
A file reference number to a file that is already open.

fileOffset
The starting file offset of the atom in the data fork of the file specified by the fRefNum parameter.

newMovieFlags
Flags (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieResource (page 1503) to preserve these changes. If you
do not want to receive this information, set the dataRefWasChanged parameter to NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Functions 1395
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromDataFork64
Provides a 64-bit version of NewMovieFromDataFork.

OSErr NewMovieFromDataFork64 (
 Movie *theMovie,
 long fRefNum,
 const wide *fileOffset,
 short newMovieFlags,
 Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

fRefNum
A file reference number to a file that is already open.

fileOffset
A pointer to the starting file offset of the atom in the data fork of the file specified by the fRefNum
parameter.

newMovieFlags
Flags (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieResource (page 1503) to preserve these changes. If you
do not want to receive this information, set the dataRefWasChanged parameter to NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

1396 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 4. Superseded in QuickTime 6 by NewMovieFromStorageOffset (page 1402).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromDataRef
Creates a movie from any device with a corresponding data handler.

OSErr NewMovieFromDataRef (
 Movie *m,
 short flags,
 short *id,
 Handle dataRef,
 OSType dataRefType
);

Parameters
m

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

flags
Flags (see below) that control the operation of this function. Be sure to set unused flags to 0. See
these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

id
A pointer to the field that specifies the resource containing the movie data that is to be loaded. If the
field referred to by the id parameter is set to 0, the Movie Toolbox loads the first movie resource it
finds in the specified file. The toolbox then returns the movie's resource ID number in the field referred
to by the id parameter. An enumerated constant (see below) is available. See these constants:

movieInDataForkResID

dataRef
The default data reference. This parameter contains a handle to the information that identifies the
file to be used to resolve any data references and as a starting point for any Alias Manager searches.
The type of information stored in the handle depends upon the value of the dataRefType parameter.
For example, if your application is loading the movie from a file, you would refer to the file's alias in
this parameter and set the dataRefType parameter to rAliasType. If you do not want to identify
a default data reference, set the parameter to NIL.

dataRefType
The type of data reference. If the data reference is an alias, you must set the parameter to rAliasType,
indicating that the reference is an alias.

Functions 1397
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function is intended for use by specialized applications that need to instantiate movies from devices
not visible to the file system. Most applications should continue to use NewMovieFromFile (page 1398). You
are not restricted to instantiating a movie from a file stored on a Macintosh HFS volume. With this function,
you can instantiate a movie from any device.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
qtdataref.win
SlideShowImporter.win
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

NewMovieFromFile
Creates a new movie in memory from a movie file or from any type of file for which QuickTime provides an
import component (AIFF, JPEG, MPEG-4, etc).

OSErr NewMovieFromFile (
 Movie *theMovie,
 short resRefNum,
 short *resId,
 StringPtr resName,
 short newMovieFlags,
 Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

1398 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

resRefNum
The movie file from which the movie is to be loaded. Your application obtains this value from the
OpenMovieFile (page 1416) function.

resId
A pointer to a field that specifies the resource containing the movie data that is to be loaded. If the
field referred to by the resId parameter is set to 0, the Movie Toolbox loads the first movie resource
it finds in the specified file. The Movie Toolbox then returns the movie's resource ID number in the
field referred to by the resId parameter. An enumerated constant (see below) is available. See these
constants:

movieInDataForkResID

resName
A pointer to a character string that is to receive the name of the movie resource that is loaded. If you
set the resName parameter to NIL, the Movie Toolbox does not return the resource name.

newMovieFlags
Flags (see below) that control the operation of NewMovieFromFile. Be sure to set unused flags to
0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any references were changed.
Use UpdateMovieResource (page 1503) to preserve these changes. Set this parameter to NIL if you
don't want to receive this information. See NewMovieTrack (page 1628) for more information about
data references.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox sets many movie characteristics to default values. If you want to change these defaults,
your application must call other Movie Toolbox functions. For example, the Movie Toolbox sets the movie's
graphics world to the one that is active when you call NewMovieFromFile. To change the graphics world
for the new movie, your application should use SetMovieGWorld (page 290).

The following is an example of using this function:

// NewMovieFromFile coding example
// See "Discovering QuickTime," page 385
Movie MyGetMovie (void)
{
 OSErr nErr;
 SFTypeList types ={MovieFileType, 0, 0, 0};
 StandardFileReply sfr;
 Movie movie =NIL;
 short nFileRefNum;
 StandardGetFilePreview(NIL, 1, types, &sfr);
 if (sfr.sfGood) {
 nErr =OpenMovieFile(&sfr.sfFile, &nFileRefNum, fsRdPerm);
 if (nErr ==noErr) {
 short nResID =0; //We want the first movie.

Functions 1399
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 Str255 strName;
 Boolean bWasChanged;

 nErr =NewMovieFromFile(&movie, nFileRefNum, &nResID, strName,
 newMovieActive, &bWasChanged);
 CloseMovieFile(nFileRefNum);
 }
 }
 return movie;
}

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Special Considerations

This function works with some files that don't contain movie resources. When it encounters a file that does
not contain a movie resource, it tries to find a movie import component that can understand the data and
create a movie. It also works for MPEG, uLaw (.AU), and Wave (.WAV) file types. In some cases, the data in a
file is already sufficiently well formatted for QuickTime or its components to understand. For example, the
AIFF movie data import component can understand AIFF sound files and import the sound data into a
QuickTime movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
vrmakepano.win
vrscript
vrscript.win

Declared In
Movies.h

NewMovieFromHandle
Creates a movie in memory from a movie resource or a handle you obtained from PutMovieIntoHandle.

1400 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr NewMovieFromHandle (
 Movie *theMovie,
 Handle h,
 short newMovieFlags,
 Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

h
A handle to the movie resource from which the movie is to be loaded.

newMovieFlags
Flags (see below) that control the operation of NewMovieFromHandle. Be sure to set unused flags
to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The toolbox sets the value to TRUE if any references were changed. Set
the dataRefWasChanged parameter to NIL if you don't want to receive this information.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox sets many movie characteristics to default values. If you want to change these defaults,
your application must call other Movie Toolbox functions. For example, the Movie Toolbox sets the movie's
graphics world to the one that is active when you call NewMovieFromHandle. To change the graphics world
for the new movie, your application should use SetMovieGWorld (page 290).

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Functions 1401
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

ThreadsExportMovie

Declared In
Movies.h

NewMovieFromScrap
Creates a movie from the contents of the scrap.

Movie NewMovieFromScrap (
 long newMovieFlags
);

Parameters
newMovieFlags

Flags (see below) that control the operation of the NewMovieFromScrap function. Be sure to set
unused flags to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

Return Value
The identifier for the new movie. If NewMovieFromScrap fails, or if there is no movie in the scrap, the returned
identifier is set to NIL. You can use GetMoviesError (page 221) to obtain the error result, or noErr if there
was no error. See Error Codes.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieFromStorageOffset
Creates a new movie based on the offset to data in a storage container.

1402 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr NewMovieFromStorageOffset (
 Movie *theMovie,
 DataHandler dh,
 const wide *fileOffset,
 short newMovieFlags,
 Boolean *dataRefWasChanged
);

Parameters
theMovie

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL

dh
The data handler component that was returned by CreateMovieStorage (page 1318). The data
handler's file must be open.

fileOffset
A pointer to the location of the movie data in the storage location specified by the dh parameter.
Unlike NewMovieFromDataFork and NewMovieFromDataFork64, there is no special meaning to a
file offset of -1.

newMovieFlags
Constants (see below) that control characteristics of the new movie. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Movie Toolbox sets the value to TRUE if any of the movie's data
references were changed. Use UpdateMovieInStorage (page 1503) to preserve these changes. If you
do not want to receive this information, pass NIL.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access Movie Toolbox error returns through GetMoviesError (page
221) and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function serves the same purpose for data handlers as NewMovieFromDataFork64 (page 1396) does for
movie file references. The API reads the 'moov' resource found at fileOffset and creates a Movie. The
data handler parameter should be an open data handler component instance for the storage holding the
'moov' resource. The newMovieFlags and dataRefWasChanged parameters are interpreted identically to
those same parameters in NewMovieFromDataFork64.

If you are writing a custom data handler, make sure it implements DataHGetDataRef (page 780). Also
implement DataHScheduleData64 (page 807) and DataHGetFileSize64 (page 785), or
DataHScheduleData (page 806) and DataHGetFileSize (page 784) if the data handler does not support
64-bit file offsets.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Functions 1403
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 6. Supersedes NewMovieFromDataFork64 (page 1396).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewMovieFromUserProc
Creates a movie from data that you provide.

OSErr NewMovieFromUserProc (
 Movie *m,
 short flags,
 Boolean *dataRefWasChanged,
 GetMovieUPP getProc,
 void *refCon,
 Handle defaultDataRef,
 OSType dataRefType
);

Parameters
m

A pointer to a field that is to receive the new movie's identifier. If the function cannot load the movie,
the returned identifier is set to NIL.

flags
Flags (see below) that control the operation of the NewMovieFromUserProc function. Be sure to set
unused flags to 0. See these constants:

newMovieActive

newMovieDontResolveDataRefs

newMovieDontAskUnresolvedDataRefs

dataRefWasChanged
A pointer to a Boolean value. The Toolbox sets the value to TRUE if any references were changed. Use
UpdateMovieResource (page 1503) to preserve these changes. Set thedataRefWasChangedparameter
to NIL if you don't want to receive this information.

getProc
A Universal Procedure Pointer that accesses a GetMovieProc callback, which is responsible for
providing the movie data to the Movie Toolbox.

refCon
A reference constant (defined as a void pointer). This is the same value you provided to the Movie
Toolbox when you called NewMovieFromUserProc. Use this parameter to point to a data structure
containing any information your callback needs.

1404 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

defaultDataRef
The default data reference. This parameter contains a handle to the information that identifies the
file to be used to resolve any data references and as a starting point for any Alias Manager searches.
The type of information stored in the handle depends upon the value of the dataRefType parameter.
For example, if your application is loading the movie from a file, you would refer to the file's alias in
the defaultDataRef parameter, and set the dataRefType parameter to rAliasType. If you don't
want to identify a default data reference, set the parameter to NIL.

dataRefType
The type of data reference. If the data reference is an alias, you must set the parameter to rAliasType,
indicating that the reference is an alias.

Return Value
If the Movie Toolbox cannot completely resolve all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as this through GetMoviesError (page 221)
and GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Normally, when a movie is loaded from a file (for example, by means of NewMovieFromFile (page 1398)), the
Movie Toolbox uses that file as the default data reference. Since this function does not require a file
specification, your application should specify the file to be used as the default data reference using the
defaultDataRef and dataRefType parameters.

Special Considerations

The Movie Toolbox automatically sets the movie's graphics world based on the current graphics port. Be sure
that your application's graphics port is valid before you call this function, even if the movie is sound-only;
you can use GetGWorld to check for a valid port, or you can use NewGWorld to create a port. The graphics
port must remain valid for the life of the movie or until you set another valid graphics port for the movie
using SetMovieGWorld (page 290).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMoviePrePrerollCompleteUPP
Allocates a Universal Procedure Pointer for the MoviePrePrerollCompleteProc callback.

MoviePrePrerollCompleteUPP NewMoviePrePrerollCompleteUPP (
 MoviePrePrerollCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Functions 1405
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviePrePrerollCompleteProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
Movies.h

NewMoviePreviewCallOutUPP
Allocates a Universal Procedure Pointer for the MoviePreviewCallOutProc callback.

MoviePreviewCallOutUPP NewMoviePreviewCallOutUPP (
 MoviePreviewCallOutProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviePreviewCallOutProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieProgressUPP
Allocates a Universal Procedure Pointer for the MovieProgressProc callback.

MovieProgressUPP NewMovieProgressUPP (
 MovieProgressProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

1406 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieProgressProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
qtdataexchange
qtdataexchange.win
ThreadsExportMovie
ThreadsImportMovie

Declared In
Movies.h

NewMovieRgnCoverUPP
Allocates a Universal Procedure Pointer for the MovieRgnCoverProc callback.

MovieRgnCoverUPP NewMovieRgnCoverUPP (
 MovieRgnCoverProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMovieRgnCoverProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

Functions 1407
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

NewMoviesErrorUPP
Allocates a Universal Procedure Pointer for the MoviesErrorProc callback.

MoviesErrorUPP NewMoviesErrorUPP (
 MoviesErrorProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMoviesErrorProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewQTCallBackUPP
Allocates a Universal Procedure Pointer for the QTCallBackProc callback.

QTCallBackUPP NewQTCallBackUPP (
 QTCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTCallBackProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtbigscreen
qtbigscreen.win
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
Movies.h

1408 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

NewQTEffectListFilterUPP
Allocates a Universal Procedure Pointer for the QTEffectListFilterProc callback.

QTEffectListFilterUPP NewQTEffectListFilterUPP (
 QTEffectListFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a QTEffectListFilterProc callback.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

NewQTNextTaskNeededSoonerCallbackUPP
Allocates a Universal Procedure Pointer for the QTNextTaskNeededSoonerCallbackProc callback.

QTNextTaskNeededSoonerCallbackUPP NewQTNextTaskNeededSoonerCallbackUPP (
 QTNextTaskNeededSoonerCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a QTNextTaskNeededSoonerCallbackProc callback.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
qtshellCEvents
qtshellCEvents.win
VideoProcessing

Declared In
Movies.h

Functions 1409
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

NewQTSyncTaskUPP
Allocates a Universal Procedure Pointer for the QTSyncTaskProc callback.

QTSyncTaskUPP NewQTSyncTaskUPP (
 QTSyncTaskProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTSyncTaskProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewSprite
Creates a new sprite in a specified sprite world.

OSErr NewSprite (
 Sprite *newSprite,
 SpriteWorld itsSpriteWorld,
 ImageDescriptionHandle idh,
 Ptr imageDataPtr,
 MatrixRecord *matrix,
 Boolean visible,
 short layer
);

Parameters
newSprite

A pointer to field that is to receive the new sprite's identifier. On return, this field contains the identifier
of the newly created sprite.

itsSpriteWorld
The sprite world with which the new sprite should be associated.

idh
A handle to an ImageDescription structure of the sprite's image.

imageDataPtr
A pointer to the sprite's image data.

matrix
A pointer to the sprite's MatrixRecord structure. If you pass NIL, an identity matrix is assigned to
the sprite.

1410 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

visible
Specifies whether the sprite is visible.

layer
The sprite's layer. Sprites with lower layer values appear in front of sprites with higher layer values. If
you want to create a sprite that is drawn to the background graphics world, you should specify the
constant kBackgroundSpriteLayerNum for the layer parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The visible parameter, the layer parameter, and the newSprite and itsSpriteWorld parameters are
required. You can defer assigning image data to the sprite by passing NIL for both the idh and imageDataPtr
parameters. If you choose to defer assigning image data, you must call SetSpriteProperty (page 1491) to
assign the image description handle and image data to the sprite before the next call to
SpriteWorldIdle (page 1502).

Special Considerations

The caller owns the image description handle and the image data pointer; it is the caller's responsibility to
dispose of them after it disposes of a sprite.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

NewSpriteWorld
Creates a new sprite world.

OSErr NewSpriteWorld (
 SpriteWorld *newSpriteWorld,
 GWorldPtr destination,
 GWorldPtr spriteLayer,
 RGBColor *backgroundColor,
 GWorldPtr background
);

Parameters
newSpriteWorld

A pointer to a field that is to receive the new sprite world's identifier. On return, this field contains
the identifier for the newly created sprite world.

Functions 1411
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

destination
A pointer to a CGrafPort structure that defines the graphics world to be used as the destination.

spriteLayer
A pointer to a CGrafPort structure that defines the graphics world to be used as the sprite layer.

backgroundColor
A pointer to an RGBColor structure that defines the color to be used as the background color. If you
pass a background graphics world to this function by setting the background parameter, you can
set this parameter to NIL.

background
A pointer to a CGrafPort structure that defines the graphics world to be used as the background.
If you pass a background color to this function by setting the backgroundColor parameter, you can
set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to create a new sprite world with associated destination and sprite layer graphics worlds,
and either a background color or a background graphics world. Once created, you can manipulate the sprite
world and add sprites to it using other sprite Movie Toolbox functions.

The newSpriteWorld, destination, and spriteLayer parameters are all required. You should specify a
background color, a background graphics world, or both. You should not pass NIL for both parameters. If
you specify both a background graphics world and a background color, the sprite world is filled with the
background color before the background sprites are drawn. If no background color is specified, black is the
default. If you specify a background graphics world, it should have the same dimensions and depth as the
graphics world specified by spriteLayer. If you draw to the graphics worlds associated with a sprite world
using standard QuickDraw and QuickTime functions, your drawing is erased by the sprite world's background
color. The sprite world created by this function has an identity matrix and does not have a clip shape.

Here is an example of creating a sprite world:

// NewSpriteWorld coding example
// See "Discovering QuickTime," page 166
GWorldPtr pSpritePlane =NIL;
SpriteWorld spriteWorld =NIL;
Rect rectBounce;
RGBColor rgbcBackground;
void CreateSpriteStuff (Rect *pWndRect, CGrafPtr pMacWnd)
{
 OSErr nErr;
 Rect rect;
 // calculate the size of the destination
 rect =*pWndRect;
 OffsetRect(&rect, -rect.left, -rect.top);
 rectBounce =rect;
 InsetRect(&rectBounce, 16, 16);
 // create a sprite graphics world with a bit depth of 16
 NewGWorld(&pSpritePlane, 16, &rect, NIL, NIL, useTempMem);
 if (pSpritePlane ==NIL)
 NewGWorld(&pSpritePlane, 16, &rect, NIL, NIL, 0);
 if (pSpritePlane !=NIL) {
 LockPixels(pSpritePlane->
portPixMap);

1412 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 rgbcBackground.red =
 rgbcBackground.green =
 rgbcBackground.blue =0;
 // create a sprite world
 nErr =NewSpriteWorld(&spriteWorld, (CGrafPtr)pMacWnd,
 pSpritePlane, &rgbcBackground, NIL);
 }
}

Special Considerations

Before calling this function, you should lock the pixel maps of the sprite layer and background graphics
worlds. These graphics worlds must remain valid and locked for the lifetime of the sprite world. The sprite
world does not own the graphics worlds that are associated with it; it is the caller's responsibility to dispose
of the graphics worlds when they are no longer needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

NewTextMediaUPP
Allocates a Universal Procedure Pointer for the TextMediaProc callback.

TextMediaUPP NewTextMediaUPP (
 TextMediaProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTextMediaProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext

Functions 1413
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

qttext.win

Declared In
Movies.h

NewTrackTransferUPP
Allocates a Universal Procedure Pointer for the TrackTransferProc callback.

TrackTransferUPP NewTrackTransferUPP (
 TrackTransferProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTrackTransferProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds

Declared In
Movies.h

NewTweenerDataUPP
Allocates a Universal Procedure Pointer for the TweenerDataProc callback.

TweenerDataUPP NewTweenerDataUPP (
 TweenerDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTweenerDataProc.

1414 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewUserData
Creates a new user data structure.

OSErr NewUserData (
 UserData *theUserData
);

Parameters
theUserData

A pointer to a pointer to a new UserDataRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error. If the function fails, theUserData is set to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
Graphic Import-Export
QTKitTimeCode
qttimecode
qttimecode.win

Declared In
Movies.h

NewUserDataFromHandle
Creates a new user data structure from a handle.

OSErr NewUserDataFromHandle (
 Handle h,
 UserData *theUserData
);

Parameters
h

A handle to the data structure specified in theUserData.

theUserData
A pointer to a pointer to a new UserDataRecord structure.

Functions 1415
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
See Error Codes. Returns noErr if there is no error. If the function fails, theUserData is set to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
Movies.h

OpenMovieFile
Opens a specified movie file.

OSErr OpenMovieFile (
 const FSSpec *fileSpec,
 short *resRefNum,
 SInt8 permission
);

Parameters
fileSpec

A pointer to the FSSpec structure for the movie file to be opened.

resRefNum
A pointer to a field that is to receive the file reference number for the opened movie file. Your
application must use this value when calling other Movie Toolbox functions that work with movie
files. This reference number refers to the file fork that contains the movie resource. If the movie is
stored in the data fork of the file, the returned reference number corresponds to the data fork.

permission
The permission level for the file (see below). If your application is only going to play the movie that
is stored in the file, you can open the file with read permission. If you plan to add data to the file or
change data in the file, you should open the file with write permission. See these constants:

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application must open a movie file before reading movie data from it or writing movie data to it. You
can open a movie file more than once; be sure to call CloseMovieFile (page 1311) once for each time you
call this function. Note that opening the movie file with write permission does not prevent other applications
from reading data from the movie file.

If the specified file has a resource fork, this function opens the resource fork and returns a file reference
number to the resource fork. If the movie file does not have a resource fork (that is, it is a single-fork movie
file), this function opens the data fork instead. In this case, your application cannot use
AddMovieResource (page 1299) with the movie file.

1416 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

The following is an example of using OpenMovieFile:

// OpenMovieFile coding example
// See "Discovering QuickTime," page 385
Movie MyGetMovie (void)
{
 OSErr nErr;
 SFTypeList types ={MovieFileType, 0, 0, 0};
 StandardFileReply sfr;
 Movie movie =NIL;
 short nFileRefNum;
 StandardGetFilePreview(NIL, 1, types, &sfr);
 if (sfr.sfGood) {
 nErr =OpenMovieFile(&sfr.sfFile, &nFileRefNum, fsRdPerm);
 if (nErr ==noErr) {
 short nResID =0; //We want the first movie.
 Str255 strName;
 Boolean bWasChanged;

 nErr =NewMovieFromFile(&movie, nFileRefNum, &nResID, strName,
 newMovieActive, &bWasChanged);
 CloseMovieFile(nFileRefNum);
 }
 }
 return movie;
}

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by OpenMovieStorage (page 1417).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
vrmakepano
vrmakepano.win
vrscript
vrscript.win

Declared In
Movies.h

OpenMovieStorage
Opens a data handler for movie storage.

Functions 1417
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr OpenMovieStorage (
 Handle dataRef,
 OSType dataRefType,
 long flags,
 DataHandler *outDataHandler
);

Parameters
dataRef

A handle to a QuickTime data reference.

dataRefType
The data reference type. See Data References.

flags
A constant (see below) that determines the reading and writing capabilities of the data handler. See
these constants:

kDataHCanRead

kDataHCanWrite

outDataHandler
A pointer to a field that is to receive the data handler for the opened movie file. Your application uses
this value when calling other Movie Toolbox functions that work with movie files. If you pass NIL,
the Movie Toolbox creates the movie storage but does not open it.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function is rarely used. It is an alternative to OpenMovieFile (page 1416).

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CreateMovieFromReferences
QTCarbonShell

Declared In
Movies.h

PutMovieOnScrap
Places a movie into the Macintosh scrap.

1418 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr PutMovieOnScrap (
 Movie theMovie,
 long movieScrapFlags
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

movieScrapFlags
Flags (see below) that control the operation. Be sure to set unused flags to 0. See these constants:

movieScrapDontZeroScrap

movieScrapOnlyPutMovie

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
mdiplayer.win
mfc.win
Play Movie with Controller
simpleeditsdi.win
simpleplayersdi.win

Declared In
Movies.h

PutUserDataIntoHandle
Returns a handle to a user data structure.

OSErr PutUserDataIntoHandle (
 UserData theUserData,
 Handle h
);

Parameters
theUserData

The user data structure.

h
A handle to the UserDataRecord structure pointed to by the theUserData parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1419
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
Movies.h

QTAddMovieError
Adds orthogonal errors to a movie's list of errors.

OSErr QTAddMovieError (
 Movie movieH,
 Component c,
 long errorCode,
 QTErrorReplacementPtr stringReplacements
);

Parameters
movieH

The movie to add the error to. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

c
An instance of the component that is adding the error. Your application obtains component instances
by calling OpenComponent or OpenDefaultComponent.

errorCode
The error to be added.

stringReplacements
A pointer to a QTErrorReplacementRecord data structure that contains the list of strings to subsitute
(in order) for "^1", "^2", etc.

Return Value
You can access the error return from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This routine is used to add orthogonal errors to a list of errors that will later be reported (at the end of an
import or playback, for example). Errors are stored in 'qter' resources within the component.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

1420 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTCopyAtom
Copies an atom and its children to a new atom container.

OSErr QTCopyAtom (
 QTAtomContainer container,
 QTAtom atom,
 QTAtomContainer *targetContainer
);

Parameters
container

The atom container that contains the atom to be copied.

atom
The atom to be copied. To duplicate the entire container, pass a value of kParentAtomIsContainer
for the atom parameter.

targetContainer
A pointer to an uninitialized atom container data structure. On return, this parameter points to an
atom container that contains a copy of the atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The caller is responsible for disposing of the new atom container by calling QTDisposeAtomContainer (page
1427).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addflashactions.win
qtwiredsprites
qtwiredsprites.win
SoftVideoOutputComponent
WiredSprites

Declared In
Movies.h

QTCopyAtomDataToHandle
Copies the specified leaf atom's data to a handle.

Functions 1421
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTCopyAtomDataToHandle (
 QTAtomContainer container,
 QTAtom atom,
 Handle targetHandle
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be copied.

targetHandle
A handle. On return, the handle contains the atom's data. The handle must not be locked. This function
resizes the handle, if necessary.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function, passing an initialized handle, to retrieve a copy of a leaf atom's data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtsprites.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

QTCopyAtomDataToPtr
Copies the specified leaf atom's data to a buffer.

1422 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTCopyAtomDataToPtr (
 QTAtomContainer container,
 QTAtom atom,
 Boolean sizeOrLessOK,
 long size,
 void *targetPtr,
 long *actualSize
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be copied.

sizeOrLessOK
Specifies whether the function may copy fewer bytes than the number of bytes specified by the size
parameter. The buffer may be larger than the amount of atom data if you set the value of this
parameter to TRUE. You can determine the size of an atom's data by calling QTGetAtomDataPtr (page
1433).

size
The length, in bytes, of the buffer pointed to by the targetPtr parameter.

targetPtr
A pointer to a buffer. On return, the buffer contains the atom data.

actualSize
A pointer to a long integer which, on return, contains the number of bytes copied to the buffer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function, passing a data buffer, to retrieve a copy of a leaf atom's data. The buffer must be large
enough to contain the atom's data.

Special Considerations

This function may move memory.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
Movies.h

Functions 1423
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTCountChildrenOfType
Returns the number of atoms of a given type in the child list of the specified parent atom.

short QTCountChildrenOfType (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomType childType
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

childType
The atom type for this operation. To retrieve the total number of atoms in the child list, set this
parameter to 0.

Return Value
The number of atoms of a given type in the child list of the specified parent atom.

Discussion
You can call this function to determine the number of atoms of a specified type in a parent atom's child list.
If the total number of atoms in the parent atom's child list is 0, the parent atom is a leaf atom.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies

Declared In
Movies.h

QTCreateStandardParameterDialog
Creates a dialog box that allows the user to choose an effect from the list of effects passed to the function.

1424 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTCreateStandardParameterDialog (
 QTAtomContainer effectList,
 QTAtomContainer parameters,
 QTParameterDialogOptions dialogOptions,
 QTParameterDialog *createdDialog
);

Parameters
effectList

A list of the effects that the user can choose from. In most cases you should call
QTGetEffectsList (page 1441) to generate this list. If you pass NIL in this parameter, the function
calls QTGetEffectsList to retrieve the list of all currently installed effects; this list is then presented
to the user.

parameters
An effect description containing the default parameter values for the effect. If the effect named in
the parameter description is in effectlist, that effect is displayed when the dialog is first shown and
its parameter values are set from the parameter description. Pass in an empty atom container to have
the dialog box display the first effect in the list, set to its default parameters. On return, this atom
container holds an effect description for the effect selected by the user, including the parameter
settings. This effect description can then be added to the media of an effect track. You will need to
add source atoms to this container for effects that require sources.

dialogOptions
Options (see below) that control the behavior of the dialog. See these constants:

pdOptionsCollectOneValue

pdOptionsAllowOptionalInterpolations

createdDialog
Returns a reference to the dialog box that is created by this function. You should pass this value only
to QTIsStandardParameterDialogEvent (page 1448) and
QTDismissStandardParameterDialog (page 1426).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function creates and displays a standard parameter dialog box that allows the user to choose an effect
from the list in the effectList parameter. The dialog box also allows the user to choose values for the parameters
of the effect, to preview the effects as they choose and customize them, and to get more information about
each effect. Your application must call the Mac OS function WaitNextEvent and
QTIsStandardParameterDialogEvent (page 1448) to allow the user to interact with the dialog box that is
shown. Note that the dialog box will remain hidden until the first event is processed by
QTIsStandardParameterDialogEvent. At this point, the dialog box will be displayed. You can modify
the default behavior of the dialog box that is created by calling
QTStandardParameterDialogDoAction (page 1467).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow

Functions 1425
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

Declared In
Movies.h

QTCreateUUID
Creates a 128-bit universal unique ID number.

OSErr QTCreateUUID (
 QTUUID *outUUID,
 long creationFlags
);

Parameters
outUUID

A pointer to the new ID number.

creationFlags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTDismissStandardParameterDialog
Closes a standard parameter dialog box that was created using QTCreateStandardParameterDialog.

OSErr QTDismissStandardParameterDialog (
 QTParameterDialog createdDialog
);

Parameters
createdDialog

The reference to the standard parameters dialog box that is returned by
QTCreateStandardParameterDialog (page 1424).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

1426 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
This function disposes of all memory associated with the dialog box.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qteffects
qteffects.win
samplemakeeffectmovie.win

Declared In
Movies.h

QTDisposeAtomContainer
Disposes of an atom container.

OSErr QTDisposeAtomContainer (
 QTAtomContainer atomData
);

Parameters
atomData

The atom container to be disposed of.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can call this function to dispose of an atom container data structure that was created by
QTNewAtomContainer (page 1451) or QTCopyAtom (page 1421).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtwiredsprites
vrmakepano
WiredSprites

Declared In
Movies.h

Functions 1427
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTDisposeTween
Disposes of a tween component instance.

OSErr QTDisposeTween (
 QTTweener tween
);

Parameters
tween

The tween to be disposed of.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Declared In
Movies.h

QTDoTween
Runs a tween component.

OSErr QTDoTween (
 QTTweener tween,
 TimeValue atTime,
 Handle result,
 long *resultSize,
 TweenerDataUPP tweenDataProc,
 void *tweenDataRefCon
);

Parameters
tween

The tween to be run.

atTime
A value that defines the time to run the tween.

result
A handle to the result of the tweening operation.

resultSize
A pointer to the size of the result.

tweenDataProc
A Universal Procedure Pointer that accesses a TweenerDataProc callback.

1428 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

tweenDataRefCon
A pointer to a reference constant to be passed to your callback. Use this constant to point to a data
structure containing any information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Declared In
Movies.h

QTDoTweenPtr
Runs a tween component and returns values in a pointer rather than a handle.

OSErr QTDoTweenPtr (
 QTTweener tween,
 TimeValue atTime,
 Ptr result,
 long resultSize
);

Parameters
tween

A pointer to a QTTweenerRecord structure that designates the tween component to be run.

atTime
The time to run the tween.

result
A pointer to the result of the tween operation. The QuickTime atom container used to receive the
tween result must be locked and its size must be large enough to contain the result.

resultSize
The size of the returned result.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes. Tween types that
must allocate memory do not support this call; they return codecUnimpErr.

Discussion
This routine is an interrupt-safe version of QTDoTween (page 1428), which also runs a tween component. This
call is not supported for sequence tweens; you should use interpolation tweens instead.

Version Notes
Introduced in QuickTime 6.

Functions 1429
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTEqualUUIDs
Compares two 128-bit ID numbers.

Boolean QTEqualUUIDs (
 const QTUUID *uuid1,
 const QTUUID *uuid2
);

Parameters
uuid1

A pointer to one 128-bit number.

uuid2
A pointer to the other 128-bit number.

Return Value
Returns TRUE if the two numbers are equal, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTFindChildByID
Retrieves an atom by ID from the child list of the specified parent atom.

QTAtom QTFindChildByID (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomType atomType,
 QTAtomID id,
 short *index
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

atomType
The type of the atom to be retrieved.

1430 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

id
The ID of the atom to be retrieved.

index
A pointer to an uninitialized short integer. On return, if the atom specified by the id parameter was
found, the integer contains the atom's index. If you don't want this function to return the atom's
index, set the value of the index parameter to NIL.

Return Value
The found atom.

Discussion
You call this function to search for and retrieve an atom by its type and ID from a parent atom's child list.
The following code shows how you can use this function to insert a copy of container B's atoms as children
of the 'abcd' atom in container A:

// QTFindChildByID coding example
QTAtom targetAtom;
targetAtom =QTFindChildByID (containerA, kParentAtomIsContainer, 'abcd',
 1000, NIL);
FailOSErr (QTInsertChildren (containerA, targetAtom, containerB));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
Movies.h

QTFindChildByIndex
Retrieves an atom by index from the child list of the specified parent atom.

QTAtom QTFindChildByIndex (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomType atomType,
 short index,
 QTAtomID *id
);

Parameters
container

The atom container that contains the parent atom.

Functions 1431
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

parentAtom
The parent atom for this operation.

atomType
The type of the atom to be retrieved.

index
The index of the atom to be retrieved.

id
A pointer to an uninitialized QTAtomID data structure. On return, if the atom specified by index was
found, the QTAtomID data structure contains the atom's ID. If you don't want this function to return
the atom's ID, set the value of the id parameter to NIL.

Return Value
The found atom.

Discussion
You call this function to search for and retrieve an atom by its type and index within that type from a parent
atom's child list. The following code illustrates one way to use it:

// QTFindChildByIndex coding example
if ((propertyAtom =QTFindChildByIndex (sprite, kParentAtomIsContainer,
 kSpritePropertyImageIndex, 1, NIL)) ==0)
 FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
 kSpritePropertyImageIndex, 1, 1, sizeof(short),&imageIndex,
 NIL));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtwiredactions
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

QTGetAccessKeys
Returns all the application and system access keys of a specified access key type.

1432 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTGetAccessKeys (
 Str255 accessKeyType,
 long flags,
 QTAtomContainer *keys
);

Parameters
accessKeyType

The type of access keys to return.

flags
Unused; must be set to 0.

keys
A pointer to a QT atom container that contains atoms of type kAccessKeyAtomType at the top level.
These atoms contain the keys. If there are no access keys of the specified type, the function returns
an empty QT atom container.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
In the QT atom container, application keys, which are more likely to be the ones an application needs, appear
before system keys. You can get the key values by using QT atom functions.

Special Considerations

When your application is done with the QT atom container, it must dispose of it by calling
QTDisposeAtomContainer (page 1427).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetAtomDataPtr
Retrieves a pointer to the atom data for a specified leaf atom.

OSErr QTGetAtomDataPtr (
 QTAtomContainer container,
 QTAtom atom,
 long *dataSize,
 Ptr *atomData
);

Parameters
container

The atom container that contains the leaf atom.

atom
The leaf atom whose data should be retrieved.

Functions 1433
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

dataSize
On return, contains a pointer to the length, in bytes, of the leaf atom's data.

atomData
On return, contains a pointer to the leaf atom's data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function in retrieve a pointer to a leaf atom's data so that you can access the data directly.

Special Considerations

To ensure that the pointer returned in the atomData parameter will remain valid if memory is moved, you
should call QTLockContainer (page 1449) before you call this function. If you call QTLockContainer, you
should call QTUnlockContainer (page 1469) when you have finished using the atomData pointer. If you
pass a locked atom container to a function that resizes atom containers, the function returns an error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
SimpleVideoOut
vrscript
vrscript.win

Declared In
Movies.h

QTGetAtomParent
Gets the parent of a QT atom.

QTAtom QTGetAtomParent (
 QTAtomContainer container,
 QTAtom childAtom
);

Parameters
container

A QT atom container.

childAtom
A QT child atom in the container.

Return Value
On return, the parent of the child atom.

Version Notes
Introduced in QuickTime 4.

1434 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetAtomTypeAndID
Retrieves an atom's type and ID.

OSErr QTGetAtomTypeAndID (
 QTAtomContainer container,
 QTAtom atom,
 QTAtomType *atomType,
 QTAtomID *id
);

Parameters
container

The atom container that contains the atom.

atom
The atom whose type and ID should be retrieved.

atomType
A pointer to an atom type. On return, this parameter points to the type of the specified atom. You
can pass NIL for this parameter if you don't need this information.

id
A pointer to an atom ID. On return, this parameter points to the ID of the specified atom. You can
pass NIL for this parameter if you don't need this information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmakeobject
vrmakepano
VRMakePano Library
vrmakepano.win
vrscript.win

Declared In
Movies.h

Functions 1435
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTGetDataHandlerDirectoryDataReference
Returns a new data reference to the parent directory of the storage location associated with a data handler
instance.

OSErr QTGetDataHandlerDirectoryDataReference (
 DataHandler dh,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
dh

A data handler component instance that is associated with a file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL.

Discussion
This function creates a new data reference that points at the parent directory of the storage location associated
to the data handler instance.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataHandlerFullPathCFString
Returns the full pathname of the storage location associated with a data handler.

OSErr QTGetDataHandlerFullPathCFString (
 DataHandler dh,
 QTPathStyle style,
 CFStringRef *outPath
);

Parameters
dh

A data handler component instance that is associated with a file.

1436 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

style
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
outPath is NIL.

Discussion
This function creates a new CFString that represents the full pathname of the storage location associated
with the data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataHandlerTargetNameCFString
Returns the name of the storage location associated with a data handler.

OSErr QTGetDataHandlerTargetNameCFString (
 DataHandler dh,
 CFStringRef *fileName
);

Parameters
dh

A data handler component instance that is associated with a file.

fileName
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
fileName is NIL.

Discussion
This function creates a new CFString that represents the name of the storage location associated with the
data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

Functions 1437
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataReferenceDirectoryDataReference
Returns a new data reference for a parent directory.

OSErr QTGetDataReferenceDirectoryDataReference (
 Handle dataRef,
 OSType dataRefType,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL.

Discussion
This function returns a new data reference that points to the parent directory of the storage location specified
by the data reference passed in dataRef. The new data reference returned will have the same type as
dataRefType.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataReferenceFullPathCFString
Returns the full pathname of the target of the data reference as a CFString.

1438 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTGetDataReferenceFullPathCFString (
 Handle dataRef,
 OSType dataRefType,
 QTPathStyle style,
 CFStringRef *outPath
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

pathStyle
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the full pathname of the target pointed to by the
input data reference, which must be an alias data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTGetDataReferenceTargetNameCFString
Returns the name of the target of a data reference as a CFString.

Functions 1439
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTGetDataReferenceTargetNameCFString (
 Handle dataRef,
 OSType dataRefType,
 CFStringRef *name
);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to its directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

name
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the name of the target pointed to by the input data
reference, which must be an alias data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTGetDataRefMaxFileOffset
Undocumented

OSErr QTGetDataRefMaxFileOffset (
 Movie movieH,
 OSType dataRefType,
 Handle dataRef,
 long *offset
);

Parameters
movieH

Undocumented

dataRefType
The type of data reference; see Data References. If the data reference is an alias, you must set this
parameter to rAliasType. See Inside Macintosh: Files for more information about aliases and the
Alias Manager.

dataRef
A handle to a data reference. The type of information stored in the handle depends upon the data
reference type specified by the dataRefType parameter.

1440 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

offset
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetEffectsList
Returns a QT atom container holding a list of the currently installed effects components.

OSErr QTGetEffectsList (
 QTAtomContainer *returnedList,
 long minSources,
 long maxSources,
 QTEffectListOptions getOptions
);

Parameters
returnedList

If the function returns noErr, this parameter contains a newly created QT atom container holding a
list of their currently installed effects. Any data stored in the parameter on entry is overwritten by the
list of effects. It is the responsibility of the calling application to dispose of the storage by calling
QTDisposeAtomContainer (page 1427) once the list is no longer required.

minSources
The minimum number of sources that an effect must have to be added to the list. Pass -1 as this
parameter to specify no minimum.

maxSources
The maximum number of sources that an effect can have to be added to the list. Pass -1 as this
parameter to specify no maximum. The minSources and maxSources parameters allow you to
restrict which effects are returned in the list, by specifying the minimum and maximum number of
sources that qualifying effects can have.

getOptions
Options (see below) that control which effects are added to the list. If you pass 0, the function includes
every effect, except the "none" effect and any prohibited by the values of minSources and
maxSources. See these constants:

elOptionsIncludeNoneInList

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1441
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
The returned list contains two atoms for each effect component. The first atom, of type kEffectNameAtom,
contains the name of the effect. The second atom, of type kEffectTypeAtom, contains the type of the effect,
which is the sub-type of the effect component. This list is sorted alphabetically on the names of the effects.
You can constrain the list to certain types of effects, such as those that take two sources. Use this function
to obtain a list of effects that you can pass to QTCreateStandardParameterDialog (page 1424).

Special Considerations

This function can take a fairly long time to execute, as it searches the system for installed effects components.
You will normally want to call this function once when your application starts, or after a pair of suspend and
resume events.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects
qteffects.win
qtshoweffect
samplemakeeffectmovie.win

Declared In
Movies.h

QTGetEffectsListExtended
Provides for more advanced filtering of effects to be placed into the effect list.

OSErr QTGetEffectsListExtended (
 QTAtomContainer *returnedList,
 long minSources,
 long maxSources,
 QTEffectListOptions getOptions,
 OSType majorClass,
 OSType minorClass,
 QTEffectListFilterUPP filterProc,
 void *filterRefCon
);

Parameters
returnedList

A pointer to an atom container in which the effects list is returned.

minSources
The minimum number of sources that an effect must have to be added to the list. Pass -1 to specify
no minimum.

maxSources
The maximum number of sources that an effect can have to be added to the list. Pass -1 to specify
no maximum.

1442 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

getOptions
The options for populating the list.

majorClass
The major class to include, or 0 for all.

minorClass
The minor class to include, or 0 for all.

filterProc
A QTEffectListFilterProc callback that you can use for additional client filtering. The callback
is called for each effect that passes the other criteria for inclusion. If it returns TRUE, the effect is
included in the list. Note that your callback may receive multiple effects from various manufacturers.
If you return TRUE for multiple effects of a given type, only the one with the higher parameter version
number will be included. If you wish to filter for other criteria, such as for a given manufacturer, you
can return FALSE for rejected effects and TRUE for those that you prefer.

filterRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This routine provides for more advanced filtering of effects to be placed into the effect list. The minSources
and maxSources parameters allow you to restrict which effects are returned in the list, by specifying the
minimum and maximum number of sources that qualifying effects can have. Applications can filter on the
number of input sources or on an effect's major or minor class. They can also achieve custom filtering through
a callback.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTGetEffectSpeed
Returns the speed of the effect, expressed in frames per second.

OSErr QTGetEffectSpeed (
 QTAtomContainer parameters,
 Fixed *pFPS
);

Parameters
parameters

Contains parameter values for the effect.

Functions 1443
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

pFPS
The speed of the effect is returned in this parameter, expressed in frames per second. Effects can also
return the pre-defined constant effectIsRealtime (see below) as their speed. See these constants:

effectIsRealtime

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The value returned should not be treated as an absolute measurement of effect performance. In particular,
most effects only return one value, regardless of parameter settings and hardware. This value is an estimate
of execution speed on a reference hardware platform. Actual performance will vary depending on hardware,
configuration and parameter options.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
Movies.h

QTGetMovieRestrictions
Returns the restrictions, if any, for a given movie.

OSErr QTGetMovieRestrictions (
 Movie theMovie,
 QTRestrictionSet *outRestrictionSet,
 UInt32 *outSeed
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

outRestrictionSet
A pointer to a QTRestrictionSetRecord structure. If there are no restrictions, this parameter returns
NIL. See Movie Restrictions.

outSeed
A pointer to a long integer. Each change to the restriction set will change this value. You can use this
value to detect alterations of the restriction set.

Return Value
Returns qtOperationNotAuthorizedErr if a restricted operation is attempted. You can access Movie
Toolbox error returns through GetMoviesError (page 221) and GetMoviesStickyError (page 222), as
well as in the function result. See Error Codes.

1444 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
You can use this function to preflight an operation on a movie to determine whether or not to perform the
operation. If a restricted operation is attempted, it will fail and the function will return
qtOperationNotAuthorizedErr.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTGetNextChildType
Returns the next atom type in the child list of the specified parent atom.

QTAtomType QTGetNextChildType (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomType currentChildType
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

currentChildType
The last atom type retrieved by this function.

Return Value
The next atom type in the child list of the atom specified by parentAtom.

Discussion
You can call this function to iterate through the atom types in a parent atom's child list. To retrieve the first
atom type, you should set the value of the currentChildType parameter to 0. To retrieve subsequent atom
types, you should set the value of the currentChildType parameter to the atom type retrieved by the
previous call to this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTGetSupportedRestrictions
Reports the movie restrictions enforced by the currently running version of QuickTime.

Functions 1445
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTGetSupportedRestrictions (
 OSType inRestrictionClass,
 UInt32 *outRestrictionIDs
);

Parameters
inRestrictionClass

Specifies the class of restrictions to be reported: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

outRestrictionIDs
A pointer to the restrictions in force for the class passed in inRestrictionClass. See Movie
Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTInsertChild
Creates a new child atom of the specified parent atom.

OSErr QTInsertChild (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomType atomType,
 QTAtomID id,
 short index,
 long dataSize,
 void *data,
 QTAtom *newAtom
);

Parameters
container

The atom container that contains the parent atom. The atom container must not be locked.

parentAtom
The parent atom within the atom container.

atomType
The type of the new atom to be inserted.

id
The ID of the new atom to be inserted. This ID must be unique among atoms of the same type for
the specified parent. If you set this parameter to 0, the function assigns a unique ID to the atom.

1446 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

index
The index of the new atom among atoms with the same parent. To insert the first atom for the specified
parent, you should set this parameter to 1. To insert an atom as the last atom in the child list, you
should set this parameter to 0. Index values greater than the index of the last atom in the child list
plus 1 are invalid.

dataSize
The size of the data for the new atom. If the new atom is to be a parent atom or if you want to add
the atom's data later, you should pass 0 for this parameter. To create the new atom as a leaf atom
that contains data, you should specify the data using the data parameter and and its size using the
dataSize parameter.

data
A pointer to a buffer containing the data for the new atom. If you set the value of the dataSize
parameter to 0, you should pass NIL for this parameter.

newAtom
A pointer to data of type QTAtom. On return, this parameter points to the newly created atom. You
can pass NIL for this parameter if you don't need a reference to the newly created atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to create a new child atom. The new child atom has the specified atom type and atom
ID, and is inserted into its parent atom's child list at the specified index. Any existing atoms at the same index
or greater are moved toward the end of the child list.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtwiredactions
qtwiredactions.win
qtwiredsprites
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
Movies.h

QTInsertChildren
Inserts a container of atoms as children of the specified parent atom.

Functions 1447
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTInsertChildren (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtomContainer childrenContainer
);

Parameters
container

The atom container that contains the parent atom. The atom container must not be locked.

parentAtom
The parent atom within the atom container.

childrenContainer
The atom container that contains the child atoms to be inserted.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to insert a container of atoms as children of a parent atom in another atom container.
Each child atom is inserted as the last atom of its type and is assigned a corresponding index. The ID of a
child atom to be inserted must not duplicate that of an existing child atom of the same type. The following
code shows how you can use this function to create a container, insert an atom, and insert another container
as a child of the atom:

// QTInsertChildren coding example
FailOSErr (QTInsertChild (outerContainer, kParentAtomIsContainer,
 kSpriteAtomType, spriteID, 0, 0, NIL, &newParentAtom));
FailOSErr (QTInsertChildren (outerContainer, newParentAtom,
 innerContainer));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtwiredactions
qtwiredactions.win
qtwiredsprites
qtwiredspritesjr

Declared In
Movies.h

QTIsStandardParameterDialogEvent
Determines if a Macintosh event is processed by a standard parameter dialog box created by
QTCreateStandardParameterDialog.

1448 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTIsStandardParameterDialogEvent (
 EventRecord *pEvent,
 QTParameterDialog createdDialog
);

Parameters
pEvent

The Macintosh event.

createdDialog
The reference to the standard parameters dialog box that is returned by
QTCreateStandardParameterDialog (page 1424).

Return Value
See below.

Discussion
After you create a standard parameter dialog box, pass every Macintosh event through this function to
determine if your application should handle the event. Once the dialog box has been confirmed or cancelled
by the user, you should no longer call this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
makeeffectslideshow
qteffects.win
QTEffectsDialog - Cocoa
samplemakeeffectmovie.win

Declared In
Movies.h

QTLockContainer
Locks an atom container in memory.

OSErr QTLockContainer (
 QTAtomContainer container
);

Parameters
container

The atom container to be locked.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1449
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Discussion
You should call this function to lock an atom container before calling QTGetAtomDataPtr (page 1433) to
directly access a leaf atom's data. When you have finished accessing a leaf atom's data, you should call
QTUnlockContainer (page 1469). You may make nested pairs of calls to QTLockContainer and
QTUnlockContainer; you don't need to check the current state of the container first.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects.win
qtmusic.win
samplemakeeffectmovie.win
vrbackbuffer.win

Declared In
Movies.h

QTMovieNeedsTimeTable
Returns whether a movie is being progressively downloaded.

OSErr QTMovieNeedsTimeTable (
 Movie theMovie,
 Boolean *needsTimeTable
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

needsTimeTable
If TRUE, the movie is being progressively downloaded. If an error occurs, this parameter is set to FALSE.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
A movie can be progressively downloaded when its data is received over a network connection or other slow
data channel. Progressive downloads are not necessary when the data for the movie is on a local disk. The
Movie Toolbox creates a time table for a movie when either this function or
GetMaxLoadedTimeInMovie (page 1342) is called for the movie, but the time table is used only by the toolbox
and is not accessible to applications. The toolbox disposes of the time table when the download is complete.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1450 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Related Sample Code
QTCarbonShell

Declared In
Movies.h

QTNewAlias
Creates a Mac OS alias to a file.

OSErr QTNewAlias (
 const FSSpec *fss,
 AliasHandle *alias,
 Boolean minimal
);

Parameters
fss

A pointer to an FSSpec structure that specifies a file.

alias
On return, a pointer to a handle to a new AliasRecord structure that defines an alias to the file. If
the function was unable to create an alias, the handle is set to NIL. This function does not create
relative aliases. For further information about Mac OS file aliases, see Chapter 4 of Inside Macintosh:
Files.

minimal
If you pass TRUE, the function writes in the AliasRecord structure only the target name, parent
directory ID, volume name and creation date, and volume mounting information. If you pass FALSE,
it fills out the structure fully.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win
qtdataref
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

QTNewAtomContainer
Creates a new atom container.

Functions 1451
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTNewAtomContainer (
 QTAtomContainer *atomData
);

Parameters
atomData

A pointer to an unallocated atom container data structure. On return, this parameter points to an
allocated atom container.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function creates a new, empty atom container structure. Once you have created an atom container, you
can manipulate it using the atom container functions. The following example illustrates using this function
to create a new QT atom container and add an atom:

// QTNewAtomContainer coding example
QTAtom firstAtom;
QTAtomContainer container;
OSErr err
err =QTNewAtomContainer (&container);
if (!err)
 err =QTInsertChild (container, kParentAtomIsContainer, 'abcd',
 1000, 1, 0, NIL, &firstAtom);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtactiontargets
qtactiontargets.win
qteffects.win
qtspritesplus.win
qtwiredspritesjr

Declared In
Movies.h

QTNewDataReferenceFromCFURL
Creates a URL data reference from a CFURL.

1452 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTNewDataReferenceFromCFURL (
 CFURLRef url,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
url

A reference to a Core Foundation struct that represents the URL to which you want a URL data
reference. These structs contain two parts: the string and a base URL, which may be empty. With a
relative URL, the string alone does not fully specify the address; with an absolute URL it does.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
ComboBoxPrefs
SimpleAudioExtraction

Declared In
Movies.h

QTNewDataReferenceFromFSRef
Creates an alias data reference from a file specification.

Functions 1453
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTNewDataReferenceFromFSRef (
 const FSRef *fileRef,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
fileRef

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct a file specification for a file to which you want the new alias
data reference to point. Then you can pass the reference to other Movie Toolbox functions that take a data
reference. To construct a file specification, the file must already exist. To create an alias data reference for a
file that does not exist yet, such as a new file to be created by a Movie Toolbox function, call
QTNewDataReferenceFromFSRefCFString.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
BackgroundExporter
QTCarbonCoreImage101
QTCarbonShell
QTMetaData
ThreadsExportMovie

Declared In
Movies.h

QTNewDataReferenceFromFSRefCFString
Creates an alias data reference from a file reference pointing to a directory and a file name.

1454 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTNewDataReferenceFromFSRefCFString (
 const FSRef *directoryRef,
 CFStringRef fileName,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
directoryRef

A pointer to an opaque file specification that specifies the directory of the newly created alias data
reference.

fileName
A reference to a CFString that specifies the name of the file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
This function is useful for creating an alias data reference to a file that does not exist yet. Note that you cannot
construct an FSRef for a nonexistent file. You can use File Manager functions to construct an FSRef for the
directory. Depending on where your file name comes from, you may already have it in a form of CFString,
or you may have to call CFString functions to create a new CFString for the file name. Then you can pass
the new alias data reference to other Movie Toolbox functions that take a data reference. If you already have
an FSRef for the file you want, you can call QTNewDataReferenceFromFSRef instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile

Declared In
Movies.h

QTNewDataReferenceFromFSSpec
Creates an alias data reference from a file specification of type FSSpec.

Functions 1455
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTNewDataReferenceFromFSSpec (
 const FSSpec *fsspec,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
fsspec

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct an FSSpec structure to specify a file. Then you can pass the
new alias data reference to other Movie Toolbox functions that take a data reference. Because of the limitations
of its data structure, an FSSpecmay not work for a file with long or Unicode file names. Generally, you should
use either QTNewDataReferenceFromFSRef or QTNewDataReferenceFromFSRefCFString instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTNewDataReferenceFromFullPathCFString
Creates an alias data reference from a CFString that represents the full pathname of a file.

OSErr QTNewDataReferenceFromFullPathCFString (
 CFStringRef filePath,
 QTPathStyle pathStyle,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
filePath

A CFString that represents the full pathname of a file.

1456 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

pathStyle
A constant (see below) that identifies the syntax of the pathname. See these constants:

kQTNativeDefaultPathStyle

kQTPOSIXPathStyle

kQTHFSPathStyle

kQTWindowsPathStyle

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You need to specify the syntax of the pathname as one of the QTPathStyle constants. The new alias data
reference created can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ASCIIMoviePlayerSample
Fiendishthngs
Quartz Composer QCTV
SCAudioCompress
WhackedTV

Declared In
Movies.h

QTNewDataReferenceFromURLCFString
Creates a URL data reference from a CFString that represents a URL string.

OSErr QTNewDataReferenceFromURLCFString (
 CFStringRef urlString,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
urlString

A CFString that represents a URL string.

Functions 1457
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCarbonShell
QuickTimeMovieControl

Declared In
Movies.h

QTNewDataReferenceWithDirectoryCFString
Creates an alias data reference from another alias data reference pointing to the parent directory and a
CFString that contains the file name.

OSErr QTNewDataReferenceWithDirectoryCFString (
 Handle inDataRef,
 OSType inDataRefType,
 CFStringRef targetName,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType
);

Parameters
inDataRef

An alias data reference pointing to the parent directory.

inDataRefType
The type of the parent directory data reference; it must be AliasDataHandlerSubType.

targetName
A reference to a CFString containing the file name.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

1458 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
In conjunction with QTGetDataReferenceDirectoryDataReference, this function is useful to construct
an alias data reference to a file in the same directory as the one you already have a data reference for. Then
you can pass the new alias data reference to other Movie Toolbox functions that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

QTNewTween
Undocumented

OSErr QTNewTween (
 QTTweener *tween,
 QTAtomContainer container,
 QTAtom tweenAtom,
 TimeValue maxTime
);

Parameters
tween

A pointer to a pointer to a QTTweenerRecord structure.

container
Undocumented

tweenAtom
Undocumented

maxTime
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dimmer2Effect
Dimmer2Effect.win

Functions 1459
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

QTNextChildAnyType
Returns the next atom in the child list of the specified parent atom.

OSErr QTNextChildAnyType (
 QTAtomContainer container,
 QTAtom parentAtom,
 QTAtom currentChild,
 QTAtom *nextChild
);

Parameters
container

The atom container that contains the parent atom.

parentAtom
The parent atom for this operation.

currentChild
The last atom retrieved by this function. To retrieve the first atom in the child list, set the value of
currentChild to 0.

nextChild
A pointer to an uninitialized QT atom data structure. On return, the data structure contains the offset
of the next atom in the child list after the atom specified by currentChild, or 0 if the atom specified
by currentChild was the last atom in the list.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can call this function to iterate through all the atoms in a parent atom's child list, regardless of their
types and IDs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addflashactions
addflashactions.win
Fiendishthngs
SimpleVideoOut

Declared In
Movies.h

1460 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTRegisterAccessKey
Registers an access key.

OSErr QTRegisterAccessKey (
 Str255 accessKeyType,
 long flags,
 Handle accessKey
);

Parameters
accessKeyType

The access key type of the key to be registered.

flags
Flags that specify the operation of this function. To register a system access key, set the
kAccessKeySystemFlag flag (see below). To register an application access key, set this parameter
to 0. See these constants:

kAccessKeySystemFlag

accessKey
A handle to the key to be registered.

Return Value
See Error Codes. Returns noErr if there is no error or if the access key has already been registered.

Discussion
Most access keys are strings. A string stored in the accessKey handle does not include a trailing zero or
leading length byte; to get the length of the string, get the size of the handle. If the access key has already
been registered, no error is returned, and the request is simply ignored.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTRemoveAtom
Removes an atom and its children from the specified atom container.

OSErr QTRemoveAtom (
 QTAtomContainer container,
 QTAtom atom
);

Parameters
container

The atom container for this operation. The atom container must not be locked.

atom
The atom to be removed from the container.

Functions 1461
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to remove a particular atom and its children from an atom container. To remove all the
atoms in an atom container, you should use QTRemoveChildren (page 1462).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win

Declared In
Movies.h

QTRemoveChildren
Removes all the children of an atom from the specified atom container.

OSErr QTRemoveChildren (
 QTAtomContainer container,
 QTAtom atom
);

Parameters
container

The atom container for this operation. The atom container must not be locked.

atom
The atom whose children should be removed. To remove all the atoms in the atom container, pass
a value of kParentAtomIsContainer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qtsprites
qtsprites.win
qtwiredsprites
WiredSprites

1462 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

QTReplaceAtom
Replaces the contents of an atom and its children with a different atom and its children.

OSErr QTReplaceAtom (
 QTAtomContainer targetContainer,
 QTAtom targetAtom,
 QTAtomContainer replacementContainer,
 QTAtom replacementAtom
);

Parameters
targetContainer

The atom container that contains the atom to be replaced. The atom container must not be locked.

targetAtom
The atom to be replaced.

replacementContainer
The atom container that contains the replacement atom.

replacementAtom
The replacement atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The target atom and the replacement atom must be of the same type. The target atom maintains its original
atom ID. This function does not modify the replacement container.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addvractions
addvractions.win

Declared In
Movies.h

QTRestrictionsGetIndClass
Reports the class of a movie restriction.

Functions 1463
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTRestrictionsGetIndClass (
 QTRestrictionSet inRestrictionSet,
 long inIndex,
 OSType *outClass
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions to be reported.

inIndex
The index of a restriction.

outClass
A pointer to the class of restrictions of inIndex: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionsGetInfo
Reports information about the restrictions in a specified restriction set.

OSErr QTRestrictionsGetInfo (
 QTRestrictionSet inRestrictionSet,
 long *outRestrictionClassCount,
 long *outSeed
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions to be reported.

outRestrictionClassCount
The number of restrictions classes currently in the restriction set.

outSeed
A pointer to a long integer. Each alteration of the restriction set will change this value.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you want to determine all the restrictions, use this routine to get their count.

1464 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionsGetItem
Retrieves specific movie restrictions.

OSErr QTRestrictionsGetItem (
 QTRestrictionSet inRestrictionSet,
 OSType inRestrictionClass,
 UInt32 *outRestrictions
);

Parameters
inRestrictionSet

A pointer to a QTRestrictionSetRecord structure containing the set of restrictions for a given
movie.

inRestrictionClass
Specifies the class of restrictions to be reported: kQTRestrictionClassSave or
kQTRestrictionClassEdit. See Movie Restrictions.

outRestrictions
A pointer to a long integer holding constants that indicate individual restrictions. See Movie
Restrictions.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If the movie has no restrictions, outRestrictions returns 0. If a restriction class is not available, the function
won't return an error but outRestrictions will be set to 0.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTSetAtomData
Changes the data of a leaf atom.

Functions 1465
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTSetAtomData (
 QTAtomContainer container,
 QTAtom atom,
 long dataSize,
 void *atomData
);

Parameters
container

The atom container that contains the atom to be modified.

atom
The atom to be modified.

dataSize
The length, in bytes, of the data pointed to by the atomData parameter.

atomData
A pointer to the new data for the atom.

Return Value
Only leaf atoms contain data; this function returns an error if you pass it to a nonleaf atom. You can access
Movie Toolbox error returns through GetMoviesError (page 221) and GetMoviesStickyError (page 222),
as well as in the function result. See Error Codes.

Discussion
You call this function to replace a leaf atom's data with new data. The atom container specified by the
container parameter should not be locked. The following code illustrates using this function to update an
atom container that describes a sprite:

// QTSetAtomData coding example
OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
 short *visible, short *layer, short *imageIndex)
{
 OSErr err =noErr;
 QTAtom propertyAtom;

 // if the sprite's visible property has a new value
 if (visible)
 {
 // retrieve the atom for the visible property
 // -- if none exists, insert one
 if ((propertyAtom =QTFindChildByIndex (sprite,
 kParentAtomIsContainer, kSpritePropertyVisible, 1,
 NIL)) ==0)
 FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
 kSpritePropertyVisible, 1, 1, sizeof(short), visible,
 NIL))

 // if an atom does exist, update its data
 else
 FailOSErr (QTSetAtomData (sprite, propertyAtom,
 sizeof(short), visible));
 }

Special Considerations

This function may move memory; if the pointer specified by the atomData parameter is a dereferenced
handle, you should lock the handle.

1466 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qtwiredsprites
qtwiredsprites.win
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
Movies.h

QTSetAtomID
Changes the ID of an atom.

OSErr QTSetAtomID (
 QTAtomContainer container,
 QTAtom atom,
 QTAtomID newID
);

Parameters
container

The atom container for this operation.

atom
The atom to be modified. You cannot change the ID of the container by passing 0 for the atom
parameter.

newID
The new ID for the atom. You cannot change an atom's ID to an ID already assigned to a sibling atom
of the same type.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTStandardParameterDialogDoAction
Lets you change some of the default behaviors of the standard parameter dialog box.

Functions 1467
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr QTStandardParameterDialogDoAction (
 QTParameterDialog createdDialog,
 long action,
 void *params
);

Parameters
createdDialog

The reference to the dialog box created by calling QTCreateStandardParameterDialog (page
1424).

action
Determines which of the actions (see below) supported by this function will be performed. See these
constants:

pdActionSetAppleMenu

pdActionSetEditMenu

pdActionSetPreviewPicture

pdActionSetDialogTitle

pdActionGetSubPanelMenu

pdActionActivateSubPanel

pdActionConductStopAlert

params
Optional parameters to the action. The type passed in this parameter depends on the value of the
action parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function allows you to change some of the default behaviors of a standard parameter dialog box you
create using theQTCreateStandardParameterDialog (page 1424) function. To choose which of the available
customizations to perform, pass an action selector value in the action parameter and, optionally, a single
parameter in params.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects
qteffects.win
samplemakeeffectmovie
samplemakeeffectmovie.win

Declared In
Movies.h

1468 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTSwapAtoms
Swaps the contents of two atoms in an atom container.

OSErr QTSwapAtoms (
 QTAtomContainer container,
 QTAtom atom1,
 QTAtom atom2
);

Parameters
container

The atom container for this operation.

atom1
Specifies an atom to be swapped with the atom specified by atom2.

atom2
Specifies an atom to be swapped with the atom specified by atom1.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
After swapping, the ID and index of each atom remains the same. The two atoms specified must be of the
same type. Either atom may be a leaf atom or a container atom.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTUnlockContainer
Unlocks an atom container in memory.

OSErr QTUnlockContainer (
 QTAtomContainer container
);

Parameters
container

The atom container to be unlocked.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You should call this function to unlock an atom container when you have finished accessing a leaf atom's
data. You may make nested pairs of calls to QTLockContainer (page 1449) and this function; you don't need
to check the current state of the container first.

Functions 1469
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
qteffects.win
qtmusic.win
samplemakeeffectmovie.win
vrbackbuffer.win

Declared In
Movies.h

QTUnregisterAccessKey
Removes a previously registered access key.

OSErr QTUnregisterAccessKey (
 Str255 accessKeyType,
 long flags,
 Handle accessKey
);

Parameters
accessKeyType

The access key type of the key to be removed.

flags
Flags (see below) that specify the operation of this function. To remove a system access key, set the
kAccessKeySystemFlag flag. To remove an application access key, set this parameter to 0. See
these constants:

kAccessKeySystemFlag

accessKey
The key to be removed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Most access keys are strings. A string stored in the accessKey handle does not include a trailing zero or a
leading length byte.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1470 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

RemoveMovieExecuteWiredActionsProc
Removes a MovieExecuteWiredActionsProc callback from a movie.

OSErr RemoveMovieExecuteWiredActionsProc (
 Movie theMovie,
 MovieExecuteWiredActionsUPP proc,
 void *refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

proc
A MovieExecuteWiredActionsProc callback that was previously installed using
AddMovieExecuteWiredActionsProc (page 1298).

refCon
A reference constant that is passed to your callback. Use this parameter to point to a data structure
containing any information your callback needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveMovieResource
Removes a movie resource from a specified movie file.

OSErr RemoveMovieResource (
 short resRefNum,
 short resId
);

Parameters
resRefNum

Identifies the movie file that contains the movie resource. Your application obtains this value from
OpenMovieFile (page 1416).

resId
ID of the resource to be removed.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1471
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveSoundDescriptionExtension
Removes an extension from a SoundDescription structure.

OSErr RemoveSoundDescriptionExtension (
 SoundDescriptionHandle desc,
 OSType idType
);

Parameters
desc

A handle to the SoundDescription structure to remove the extension from.

idType
A four-byte signature identifying the type of data being removed from the SoundDescription
structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

RemoveUserData
Removes an item from a user data list.

OSErr RemoveUserData (
 UserData theUserData,
 OSType udType,
 long index
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling GetMovieUserData (page
225), GetTrackUserData (page 1617), or GetMediaUserData (page 1595).

1472 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

udType
The item's type value.

index
The item's index value. This parameter must specify an item in the user data list identified by the
theUserData parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
After the Movie Toolbox removes the item, it renumbers the remaining items of that type so that their index
values are sequential and start at 1.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtactiontargets
qtactiontargets.win
qteffects.win
qtgraphics.win

Declared In
Movies.h

RemoveUserDataText
Removes language-tagged text from an item in a user data list.

OSErr RemoveUserDataText (
 UserData theUserData,
 OSType udType,
 long index,
 short itlRegionTag
);

Parameters
theUserData

The user data list for this operation. You obtain this list reference by calling the
GetMovieUserData (page 225),GetTrackUserData (page 1617), orGetMediaUserData (page 1595).

udType
The item's type value.

index
The item's index value. This parameter must specify an item in the user data list identified by the
theUserData parameter.

itlRegionTag
The language code of the text to be removed. See Localization Codes.

Functions 1473
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDataRef
Changes the file that the specified media identifies as the location for its data storage.

OSErr SetMediaDataRef (
 Media theMedia,
 short index,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theMedia

Specifies The media for this operation. Your application obtains this media identifier from such
functions asNewTrackMedia (page 1630) andGetTrackMedia (page 1612). SeeMedia Identifiers.

index
A pointer to a short integer. The Movie Toolbox returns the index value that is assigned to the new
data reference. Your application can use this index to identify the reference to other Movie Toolbox
functions, such as GetMediaDataRef (page 1342). As with all data reference functions, the index starts
with 1. If the Movie Toolbox cannot add the data reference to the media, it sets the returned index
value to 0.

dataRef
The data reference. This parameter contains a handle to the information that identifies the file that
contains this media's data. The type of information stored in that handle depends upon the value of
the dataRefType parameter.

dataRefType
The type of data reference. If the data reference is an alias, you must set this parameter to rAliasType.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Don't call this function unless you have a really good reason. However, if you want to resolve your own
missing data references, or you are developing a special-purpose kind of application, this function can be
quite useful.

Version Notes
Introduced in QuickTime 3 or earlier.

1474 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDataRefAttributes
Sets a data reference's attributes.

OSErr SetMediaDataRefAttributes (
 Media theMedia,
 short index,
 long dataRefAttributes
);

Parameters
theMedia

Specifies The media for this operation. Your application obtains this media identifier from such
functions asNewTrackMedia (page 1630) andGetTrackMedia (page 1612). SeeMedia Identifiers.

index
The index value that corresponds to the data reference. It must be less than or equal to the value that
is returned by GetMediaDataRefCount (page 1344).

dataRefAttributes
A flag (see below) that determines whether or not the data reference is the movie default. See these
constants:

kMovieAnchorDataRefIsDefault

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaPlayHints
Provides information to the Movie Toolbox that can influence playback of a single media.

Functions 1475
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void SetMediaPlayHints (
 Media theMedia,
 long flags,
 long flagsMask
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

flags
The optimizations that can be used with this media. Each bit in this parameter corresponds to a
specific optimization; be sure to set unused flags to 0. See these constants:

hintsScrubMode

hintsUseSoundInterp

hintsAllowInterlace

hintsAllowBlacklining

hintsDontPurge

hintsInactive

hintsHighQuality

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, you must set the corresponding
bit in the flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single
optimization without altering the settings of other flags.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
This function accepts a flag in which you specify optimizations that the Movie Toolbox can use during movie
playback. These optimizations apply to only the specified media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaPropertyAtom
Sets the property atom container of a media handler.

1476 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr SetMediaPropertyAtom (
 Media theMedia,
 QTAtomContainer propertyAtom
);

Parameters
theMedia

A reference to the media handler for this operation.

propertyAtom
Specifies a QT atom container that contains the property atoms for the track associated with the
media handler.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You can call this function to set properties for the track associated with the specified media handler. The
contents of the QT atom container are defined by the media handler. Here is some sample code that uses
this function to define the background color for a sprite track:

// SetMediaPropertyAtom coding example
// See "Discovering QuickTime," page 360
if (bWithBackgroundPicture) {
 QTAtomContainer qtacTrackProperties;
 RGBColor rgbcBackColor;
 rgbcBackColor.red =EndianU16_NtoB(0x8000);
 rgbcBackColor.green =EndianU16_NtoB(0);
 rgbcBackColor.blue =EndianU16_NtoB0(xffff);
 // create a new atom container for sprite track properties
 QTNewAtomContainer(&qtacTrackProperties);
 // add an atom for the background color property
 QTInsertChild(qtacTrackProperties, 0,
 kSpriteTrackPropertyBackgroundColor, 1, 1, sizeof(RGBColor),
 &rgbcBackColor, NIL);
 // set the sprite track's properties
 nErr =SetMediaPropertyAtom(media, qtacTrackProperties);
 QTDisposeAtomContainer(qtacTrackProperties);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieSprites
qteffects.win
qtsprites.win
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

Functions 1477
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

SetMovieAnchorDataRef
Sets a movie's anchor data reference and type.

OSErr SetMovieAnchorDataRef (
 Movie theMovie,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dataRef
A handle to the data reference. The type of information to be placed in the handle depends upon
the data reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieAudioBalance
Sets the balance level for the mixed audio output of a movie.

OSStatus SetMovieAudioBalance (
 Movie m,
 Float32 leftRight,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

leftRight
A pointer to the new balance setting for the movie. The balance setting is a 32-bit floating-point value
that controls the relative volume of the left and right sound channels. A value of 0 sets the balance
to neutral. Positive values up to 1.0 shift the balance to the right channel, negative values up to -1.0
to the left channel.

1478 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie's balance setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioBalance (page 1350).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioFrequencyMeteringNumBands
Configures frequency metering for a particular audio mix in a movie.

OSStatus SetMovieAudioFrequencyMeteringNumBands (
 Movie m,
 FourCharCode whatMixToMeter,
 UInt32 *ioNumBands
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

ioNumBands
A pointer to memory that stores the number of bands being metered. On calling this function, you
specify the number of frequency bands you want to meter. If that number is higher than is possible
(determined by factors such as the sample rate of the audio being metered), the function will return
the number of bands it is actually going to meter. You can pass NIL or a pointer to 0 to disable
metering.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioFrequencyMeteringNumBands (page 1352).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Core Animation QuickTime Layer
SillyFrequencyLevels

Functions 1479
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

SetMovieAudioGain
Sets the audio gain level for the mixed audio output of a movie, altering the perceived volume of the movie's
playback.

OSStatus SetMovieAudioGain (
 Movie m,
 Float32 gain,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the movie's volume. 0.0
is silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the movie is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet movies to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie gain setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioGain (page 1353).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioMute
Sets the mute value for the audio mix of a movie currently playing.

1480 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus SetMovieAudioMute (
 Movie m,
 Boolean muted,
 UInt32 flags
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

muted
Pass TRUE to mute the movie audio, FALSE otherwise.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The movie mute setting is not stored in the movie; it is used only until the movie is closed. See
GetMovieAudioMute.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieAudioVolumeMeteringEnabled
Enables or disables volume metering of a particular audio mix of a movie.

OSStatus SetMovieAudioVolumeMeteringEnabled (
 Movie m,
 FourCharCode whatMixToMeter,
 Boolean enabled
);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromProperties (page 260), NewMovieFromFile, and
NewMovieFromHandle (page 1400).

whatMixToMeter
The applicable mix of audio channels in the movie; see Movie Audio Mixes.

enabled
Pass TRUE to enable audio volume metering; pass FALSE to disable it.

Return Value
An error code. Returns noErr if there is no error.

Discussion
See GetMovieAudioVolumeMeteringEnabled (page 1355).

Functions 1481
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieColorTable
Associates a ColorTable structure with a movie.

OSErr SetMovieColorTable (
 Movie theMovie,
 CTabHandle ctab
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

ctab
A handle to the ColorTable structure. Set this parameter to NIL to remove the movie's ColorTable
structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The ColorTable structure you supply may be used to modify the palette of indexed display devices at
playback time. If you are using the movie controller, be sure to set the mcFlagsUseWindowPalette flag. If
you are not using the movie controller, you should retrieve the movie's ColorTable structure, using
GetMovieColorTable (page 1356), and supply it to the Palette Manager.

Special Considerations

The toolbox makes a copy of the ColorTable structure, so it is your responsibility to dispose of the structure
when you are done with it. If the movie already has a color table, the toolbox uses the new table to replace
the old one.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieCoverProcs
Sets the callbacks invoked when a movie is covered or uncovered.

1482 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

void SetMovieCoverProcs (
 Movie theMovie,
 MovieRgnCoverUPP uncoverProc,
 MovieRgnCoverUPP coverProc,
 long refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

uncoverProc
Points to a MovieRgnCoverProc callback. This function is called whenever one of your movie's tracks
is removed from the screen or resized, revealing a previously hidden screen region. If you want to
remove this uncover function, set this parameter to NIL. When the uncoverProc parameter is NIL
the function uses the default uncover function, which erases the uncovered area.

coverProc
Points to a MovieRgnCoverProc callback. The Movie Toolbox calls this function whenever one of
your movies covers a portion of the screen. If you want to remove the cover function, set this parameter
to NIL. When the coverProc parameter is NIL the function uses the default cover function, which
does nothing.

refcon
Specifies a reference constant. Use this parameter to point to a data structure containing any
information your callbacks need.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
If a movie with semi-transparent tracks has a movie uncover procedure, set with this function, the uncover
procedure is called before each frame to fill or erase the background.

Version Notes
Before QuickTime 1.6.1, the Movie Toolbox performed the erase, which limited a cover procedure-aware
application's options.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Inside Mac Movie TB Code
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
Movies.h

Functions 1483
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

SetMovieDefaultDataRef
Sets a movie's default data reference and type.

OSErr SetMovieDefaultDataRef (
 Movie theMovie,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dataRef
A handle to the data reference. The type of information to be placed in the handle depends upon
the data reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ConvertMovieSndTrack
qtdataref
SoundPlayer
SurfaceVertexProgram
ThreadsImportMovie

Declared In
Movies.h

SetMovieLanguage
Specifies a movie's localized language or region code.

void SetMovieLanguage (
 Movie theMovie,
 long language
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

1484 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

language
The movie's language or region code; see Localization Codes.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox examines the movie's alternate groups and selects and enables appropriate tracks. If the
Movie Toolbox cannot find an appropriate track, it does not change the movie's language.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMoviePlayHints
Provides information to the Movie Toolbox that can influence movie playback.

void SetMoviePlayHints (
 Movie theMovie,
 long flags,
 long flagsMask
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

flags
The optimizations that can be used with this movie. Each bit in the flags parameter corresponds to
a specific optimization (see below). Be sure to set unused flags to 0. See these constants:

hintsScrubMode

hintsUseSoundInterp

hintsAllowInterlace

hintsAllowBlacklining

hintsDontPurge

hintsInactive

hintsHighQuality

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, you must set the corresponding
bit in the flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single
optimization without altering the settings of other flags.

Functions 1485
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
This function accepts a flag in which you specify optimizations that the Movie Toolbox can use during movie
playback. These optimizations apply to all of the media structures used by the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
vrmakeobject
vrmakeobject.win
vrmakepano

Declared In
Movies.h

SetMovieProgressProc
Attaches a progress function to a movie.

void SetMovieProgressProc (
 Movie theMovie,
 MovieProgressUPP p,
 long refcon
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

p
Points to your MovieProgressProc callback. To remove a movie's progress function, set this parameter
to NIL. Set this parameter to -1 for the Movie Toolbox to provide a default progress function.

refcon
Specifies a reference constant. Use this parameter to point to a data structure containing any
information your callback needs.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox calls your function only during long operations. It ensures that your progress function is
called regularly, but not too often.

1486 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

The following Movie Toolbox functions use progress functions: ConvertFileToMovieFile (page 1552),
CutMovieSelection (page 1560),CopyMovieSelection (page 1558),AddMovieSelection (page 1545), and
InsertMovieSegment (page 1622).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtdataref
soundsnippets
soundsnippets.win
vrmakepano
vrmakepano.win

Declared In
Movies.h

SetMoviePropertyAtom
Sets a movie's property atom.

OSErr SetMoviePropertyAtom (
 Movie theMovie,
 QTAtomContainer propertyAtom
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

propertyAtom
A property atom.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMovieVisualBrightness
Sets the brightness adjustment for the movie.

Functions 1487
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus SetMovieVisualBrightness (
 Movie movie,
 Float32 brightness,
 UInt32 flags
);

Parameters
movie

The movie.

brightness
New brightness adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The brightness adjustment for the movie. The value is a Float32 for which -1.0 means full black, 0.0 means
no adjustment, and 1.0 means full white. The setting is not stored in the movie. It is only used until the movie
is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualContrast
Sets the contrast adjustment for the movie.

OSStatus SetMovieVisualContrast (
 Movie movie,
 Float32 contrast,
 UInt32 flags
);

Parameters
movie

The movie.

contrast
The new contrast adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The contrast adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0 gives
solid gray. The setting is not stored in the movie. It is only used until the movie is closed, at which time it is
not saved.

1488 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualHue
Sets the hue adjustment for the movie.

OSStatus SetMovieVisualHue (
 Movie movie,
 Float32 hue,
 UInt32 flags
);

Parameters
movie

The movie.

hue
New hue adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The hue adjustment for the movie. The value is a Float32 between -1.0 and 1.0, with 0.0 meaning no
adjustment. This adjustment wraps around, such that -1.0 and 1.0 yield the same result. The setting is not
stored in the movie. It is only used until the movie is closed, at which time it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetMovieVisualSaturation
Sets the color saturation adjustment for the movie.

OSStatus SetMovieVisualSaturation (
 Movie movie,
 Float32 saturation,
 UInt32 flags
);

Parameters
movie

The movie.

Functions 1489
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

saturation
The new saturation adjustment.

flags
Reserved. Pass 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The color saturation adjustment for the movie. The value is a Float32 percentage (1.0f = 100%), such that 0.0
gives grayscale. The setting is not stored in the movie. It is only used until the movie is closed, at which time
it is not saved.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetPosterBox
Sets a poster's boundary rectangle.

void SetPosterBox (
 Movie theMovie,
 const Rect *boxRect
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

boxRect
A pointer to a Rect structure. The Movie Toolbox sets the poster's boundary rectangle to the
coordinates specified in the structure referred to by this parameter.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
You define the poster's image by specifying a time in the movie, using SetMoviePosterTime (page 293).
You specify the size and position of the poster image with this function. If you don't specify a boundary
rectangle for the poster, the Movie Toolbox uses the movie's matrix when it displays the poster.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1490 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

SetQuickTimePreference
Sets a particular preference in the QuickTime preferences.

OSErr SetQuickTimePreference (
 OSType preferenceType,
 QTAtomContainer preferenceAtom
);

Parameters
preferenceType

The type of preference to set (see below); also see Atom ID Codes. See these constants:
ConnectionSpeedPrefsType

BandwidthManagementPrefsType

preferenceAtom
A QT atom containing the preference information.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

SetSpriteProperty
Sets the specified property of a sprite.

OSErr SetSpriteProperty (
 Sprite theSprite,
 long propertyType,
 void *propertyValue
);

Parameters
theSprite

The sprite for this operation.

Functions 1491
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

propertyType
The property you want to modify (see below). See these constants:

kSpritePropertyMatrix

kSpritePropertyImageDescription

kSpritePropertyImageDataPtr

kSpritePropertyVisible

kSpritePropertyLayer

kSpritePropertyGraphicsMode

kSpritePropertyCanBeHitTested

propertyValue
The new value of the property. Depending on the property type, you set the propertyValue
parameter to either a pointer to the property value or the property value itself, cast as a void pointer.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You animate a sprite by modifying its properties, using this function. It invalidates the sprite's sprite world
as needed. Here is sample code that uses this function to modify a sprite's properties:

// SetSpriteProperty coding example
// See "Discovering QuickTime," page 345
#define kNumSprites 4
#define kNumSpaceShipImages 24
Rect gBounceBox;
Sprite gSprites[kNumSprites];
Rect gDestRects[kNumSprites];
Point gDeltas[kNumSprites];
short gCurrentImages[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
void MyMoveSprites (void)
{
 short nIndex;
 MatrixRecord matrix;

 SetIdentityMatrix(&matrix);
 // for each sprite
 for (nIndex =0; nIndex < kNumSprites; nIndex++) {
 // modify the sprite's matrix
 OffsetRect(&gDestRects[nIndex], gDeltas[nIndex].h,
 gDeltas[nIndex].v);

 if ((gDestRects[nIndex].right >
=gBounceBox.right) ||
 (gDestRects[nIndex].left <=gBounceBox.left))
 gDeltas[nIndex].h =-gDeltas[nIndex].h;

 if ((gDestRects[nIndex].bottom >
=gBounceBox.bottom) ||
 (gDestRects[nIndex].top <=gBounceBox.top))
 gDeltas[nIndex].v =-gDeltas[nIndex].v;

 matrix.matrix[2][0] =((long)gDestRects[nIndex].left << 16);
 matrix.matrix[2][1] =((long)gDestRects[nIndex].top << 16);

1492 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 SetSpriteProperty(gSprites[nIndex], kSpritePropertyMatrix,
 &matrix);

 // change the sprite's image
 gCurrentImages[nIndex]++;
 if (gCurrentImages[nIndex] >
=(kNumSpaceShipImages *
 (nIndex+1)))
 gCurrentImages[nIndex] =0;
 SetSpriteProperty(gSprites[nIndex], kSpritePropertyImageDataPtr,
 *gCompressedPictures[gCurrentImages[nIndex] / (nIndex+1)]);
 }
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

SetSpriteWorldClip
Sets a sprite world's clip shape to the specified region.

OSErr SetSpriteWorldClip (
 SpriteWorld theSpriteWorld,
 RgnHandle clipRgn
);

Parameters
theSpriteWorld

The sprite world for this operation.

clipRgn
The new clip shape for the sprite world. The clip shape should be specified in the sprite world's source
space, the coordinate system of the sprite layer's graphics world before the sprite world's matrix is
applied to it. You may pass a value of NIL for this parameter to indicate that there is no longer a clip
shape for the sprite world. This means that the whole area is drawn.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You call this function to change the clip shape of a sprite world. The specified region is owned by the caller
and is not copied by this function.

Functions 1493
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldFlags
Sets flags that govern the behavior of a sprite world.

OSErr SetSpriteWorldFlags (
 SpriteWorld spriteWorld,
 long flags,
 long flagsMask
);

Parameters
spriteWorld

The sprite world for this operation.

flags
Constants (see below) that govern sprite world behavior. See these constants:

kScaleSpritesToScaleWorld

kSpriteWorldHighQuality

kSpriteWorldDontAutoInvalidate

kSpriteWorldInvisible

flagsMask
Indicates which flags in the flags parameter are to be considered in this operation. For each bit in
the flags parameter that you want the Movie Toolbox to consider, set the corresponding bit in the
flagsMask parameter to 1. Set unused flags to 0. This allows you to work with a single optimization
without altering the settings of other flags.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldGraphicsMode
Sets the graphics transfer mode for a sprite world.

1494 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSErr SetSpriteWorldGraphicsMode (
 SpriteWorld theSpriteWorld,
 long mode,
 const RGBColor *opColor
);

Parameters
theSpriteWorld

The sprite world for this operation.

mode
A long integer; see Graphics Transfer Modes.

opColor
A pointer to an RGBColor structure. This is the blend value for blends and the transparent color for
transparent operations. The toolbox supplies this value to QuickDraw when you draw in addPin,
subPin, blend, transparent, or graphicsModeStraightAlphaBlend mode.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetSpriteWorldMatrix
Sets a sprite world's matrix to the specified matrix.

OSErr SetSpriteWorldMatrix (
 SpriteWorld theSpriteWorld,
 const MatrixRecord *matrix
);

Parameters
theSpriteWorld

The sprite world for this operation.

matrix
A pointer to the new matrix for the sprite world. Transformations may include translation, scaling,
rotation, skewing, and perspective. You may pass a value of NIL to set the sprite world's matrix to an
identity matrix.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1495
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackAudioGain
Sets the audio gain level for the audio output of a track, altering the perceived volume of the track's playback.

OSStatus SetTrackAudioGain (
 Track t,
 Float32 gain,
 UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

gain
A 32-bit floating-point gain value of 0 or greater. This value is multiplied by the track's volume. 0.0 is
silent, 0.5 is -6 dB, 1.0 is 0 dB (the audio from the track is not modified), 2.0 is +6 dB, etc. The gain
level can be set higher than 1.0 to allow quiet tracks to be boosted in volume. Gain settings higher
than 1.0 may result in audio clipping.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track's gain setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioGain (page 1370).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetTrackAudioMute
Mutes or unmutes the audio output of a track.

1496 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

OSStatus SetTrackAudioMute (
 Track t,
 Boolean muted,
 UInt32 flags
);

Parameters
t

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

muted
Pass TRUE to mute the track's audio, FALSE to unmute it.

flags
Not used; set to 0.

Return Value
An error code. Returns noErr if there is no error.

Discussion
The track mute setting is not stored in the movie; it is used only until the movie is closed. See
GetTrackAudioMute (page 1371).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

SetTrackLoadSettings
Specifies a portion of a track that is to be loaded into memory whenever it is played.

void SetTrackLoadSettings (
 Track theTrack,
 TimeValue preloadTime,
 TimeValue preloadDuration,
 long preloadFlags,
 long defaultHints
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

preloadTime
The starting point of the portion of the track to be preloaded. Set this parameter to -1 if you want to
preload the entire track (in this case the function ignores the preloadDuration parameter). This
parameter should be specified using the movie's time scale.

preloadDuration
The amount of the track to be preloaded, starting from the time specified in the preloadTime
parameter. If you are preloading the entire track, the function ignores this parameter.

Functions 1497
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

preloadFlags
Controls when the toolbox preloads the track. The function supports the following flag values: See
these constants:

preloadAlways

preloadOnlyIfEnabled

defaultHints
Specifies playback hints for the track. You may specify any of the supported hints flags.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
This function allows you to control how the toolbox preloads the tracks in your movie. By using its settings,
you make this information part of the movie, so that the preloading takes place every time the movie is
opened, without an application having to call LoadTrackIntoRam (page 247). Consequently, you should
use this feature carefully, so that your movies don't consume large amounts of memory when opened.

Special Considerations

The toolbox transfers this preload information when you call CopyTrackSettings (page 1559). In addition,
the preload information is preserved when you save or flatten a movie. In flattened movies, the tracks that
are to be preloaded are stored at the start of the movie, rather than being interleaved with the rest of the
movie data. This improves preload performance.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetUserDataItem
Sets an item in a user data list.

OSErr SetUserDataItem (
 UserData theUserData,
 void *data,
 long size,
 OSType udType,
 long index
);

Parameters
theUserData

The user data list for this operation. You obtain this item reference by calling GetMovieUserData (page
225), GetTrackUserData (page 1617), or GetMediaUserData (page 1595).

data
A pointer to the data item to be set in a user data list.

1498 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

size
The size of the information pointed to by the data parameter.

udType
The type value assigned to the new item.

index
The item's index value. This parameter must specify an item in the user data list identified by
theUserData. An index value of 0 or 1 implies the first item, which is created if it doesn't already
exist.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtwiredactions
qtwiredactions.win
vrmakeobject

Declared In
Movies.h

ShowMovieInformation
Displays a movie's information.

void ShowMovieInformation (
 Movie theMovie,
 ModalFilterUPP filterProc,
 long refCon
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

filterProc
A Universal Procedure Pointer that accesses a ModalFilterProc callback.

refCon
A reference constant to be passed to your filter callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Functions 1499
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

SpriteHitTest
Determines whether a location in a sprite's display coordinate system intersects the sprite.

OSErr SpriteHitTest (
 Sprite theSprite,
 long flags,
 Point loc,
 Boolean *wasHit
);

Parameters
theSprite

The sprite for this operation.

flags
Specifies flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

spriteHitTestTreatAllSpritesAsHitTestable

loc
A point in the sprite world's display space to test for the existence of a sprite. You should apply the
sprite world's matrix to the point before passing it to this function.

wasHit
A pointer to a Boolean. On return, the value of the Boolean is TRUE if the sprite is at the specified
location.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function is useful for hit testing a subset of the sprites in a sprite world and for detecting multiple hits
for a single location.

Version Notes
Introduced in QuickTime 3 or earlier.

1500 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteWorldHitTest
Determines whether any sprites are at a specified location in a sprite world.

OSErr SpriteWorldHitTest (
 SpriteWorld theSpriteWorld,
 long flags,
 Point loc,
 Sprite *spriteHit
);

Parameters
theSpriteWorld

The sprite world for this operation.

flags
Specifies flags (see below) that control the hit testing operation. See these constants:

spriteHitTestBounds

spriteHitTestImage

spriteHitTestInvisibleSprites

spriteHitTestIsClick

spriteHitTestLocInDisplayCoordinates

spriteHitTestTreatAllSpritesAsHitTestable

loc
A point in the sprite world's display space to test for the existence of a sprite.

spriteHit
A pointer to a field that is to receive a sprite identifier. On return, this field contains the identifier of
the frontmost sprite at the location specified by the loc parameter. If no sprite exists at the location,
the function sets the value of this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you are drawing the sprite world in a window, you should convert the location to your window's local
coordinate system before passing it to SpriteWorldHitTest. A hit testing operation does not occur unless
you pass either spriteHitTestBounds or spriteHitTestImage in the flags parameter. You can add
other flags as needed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1501
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Declared In
Movies.h

SpriteWorldIdle
Allows a sprite world to update its invalid areas.

OSErr SpriteWorldIdle (
 SpriteWorld theSpriteWorld,
 long flagsIn,
 long *flagsOut
);

Parameters
theSpriteWorld

The sprite world for this operation.

flagsIn
Contains flags (see below) describing actions that may take place during the idle. For the default
behavior, set this parameter to 0. See these constants:

kOnlyDrawToSpriteWorld

flagsOut
On return, a pointer to flags (see below) describing actions that took place during the idle period.
This parameter is optional; if you do not need the information, set it to NIL. See these constants:

kSpriteWorldDidDraw

kSpriteWorldNeedsToDraw

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This is the only sprite function that causes drawing to occur; you should call it as often as is necessary.
Typically, you would make changes in perspective for a number of sprites and then call SpriteWorldIdle
to redraw the changed sprites.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Desktop Sprites
DesktopSprites
DesktopSprites.win

Declared In
Movies.h

1502 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

UpdateMovieInStorage
Updates a movie at a storage location.

OSErr UpdateMovieInStorage (
 Movie theMovie,
 DataHandler dh
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dh
The data handler component that was returned by CreateMovieStorage (page 1318).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function, which is similar to OpenMovieStorage (page 1417), replaces the content of the movie in the
storage associated with the specified data handler.

Version Notes
Introduced in QuickTime 6. Supersedes UpdateMovieResource (page 1503).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTCarbonShell

Declared In
Movies.h

UpdateMovieResource
Replaces the contents of a movie resource in a specified movie file.

OSErr UpdateMovieResource (
 Movie theMovie,
 short resRefNum,
 short resId,
 ConstStr255Param resName
);

Parameters
theMovie

The movie you wish to place in the movie file. Your application obtains this movie identifier from
such functions as NewMovie (page 259), NewMovieFromFile (page 1398), and
NewMovieFromHandle (page 1400).

Functions 1503
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

resRefNum
Identifies the movie file that contains the resource to be changed. Your application obtains this value
from OpenMovieFile (page 1416).

resId
The resource to be changed. This value is obtained from a previous call to NewMovieFromFile (page
1398),NewMovieFromDataRef (page 1397), orAddMovieResource (page 1299). If you specify a single-fork
movie file by passing the movieInDataForkResID constant, the Movie Toolbox places the movie
resource into the file's data fork.

resName
Points to a new name for the resource. If you don't want to change the resource's name, set this
parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the movie that is to be placed into the resource. This function can accommodate single-fork
movie files. After updating the movie file, this function clears the movie changed flag.

Version Notes
Introduced in QuickTime 3 or earlier. Superseded in QuickTime 6 by UpdateMovieInStorage (page 1503).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
ChromaKeyMovie
MakeEffectMovie
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

Callbacks

GetMovieProc
Provides movie data to the Movie Toolbox.

typedef OSErr (*GetMovieProcPtr) (long offset, long size, void *dataPtr, void
*refCon);

If you name your function MyGetMovieProc, you would declare it this way:

OSErr MyGetMovieProc (
 long offset,
 long size,
 void *dataPtr,

1504 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 void *refCon);

Parameters
offset

Specifies the offset into the movie resource (not the movie file). This is the location from which your
function retrieves the movie data.

size
Specifies the amount of data requested by the toolbox, in bytes.

dataPtr
Specifies the destination for the movie data.

refCon
Contains a reference constant (defined as a void pointer). This is the same value you provided to the
toolbox when you called NewMovieFromUserProc (page 1404).

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Discussion
Normally, when a movie is loaded from a file (for example, by means of the NewMovieFromFile function),
the toolbox uses that file as the default data reference. Since NewMovieFromUserProc (page 1404) does not
require a file specification, your application should specify the file to be used as the default data reference
using the defaultDataRef and dataRefType parameters.

Special Considerations

The toolbox automatically sets the movie's graphics world based upon the current graphics port. Be sure
that your application's graphics world is valid before you call this function.

Declared In
Movies.h

MovieExecuteWiredActionsProc
Undocumented

typedef OSErr (*MovieExecuteWiredActionsProcPtr) (Movie theMovie, void *refcon,
long flags, QTAtomContainer wiredActions);

If you name your function MyMovieExecuteWiredActionsProc, you would declare it this way:

OSErr MyMovieExecuteWiredActionsProc (
 Movie theMovie,
 void *refcon,
 long flags,
 QTAtomContainer wiredActions);

Parameters
theMovie

Specifies the movie for this operation.

refcon
Pointer to a reference constant that the client code supplies to your callback. You can use this reference
to point to a data structure containing any information your callback needs.

Callbacks 1505
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

flags
Undocumented

wiredActions
Undocumented

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

MovieRgnCoverProc
Undocumented

typedef OSErr (*MovieRgnCoverProcPtr) (Movie theMovie, RgnHandle changedRgn, long
 refcon);

If you name your function MyMovieRgnCoverProc, you would declare it this way:

OSErr MyMovieRgnCoverProc (
 Movie theMovie,
 RgnHandle changedRgn,
 long refcon);

Parameters
theMovie

Specifies the movie for this operation.

changedRgn
Undocumented

refcon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

QTEffectListFilterProc
Called for each effect which passes the other criteria for inclusion in the effects list, and returns TRUE if the
effect is to be included in the list.

typedef Boolean (*QTEffectListFilterProcPtr) (Component effect,
long effectMinSource, long effectMaxSource, OSType majorClass,
OSType minorClass, void *refcon);

If you name your function MyQTEffectListFilterProc, you would declare it this way:

Boolean MyQTEffectListFilterProc (
 Component effect,

1506 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

 long effectMinSource,
 long effectMaxSource,
 OSType majorClass,
 OSType minorClass,
 void *refcon);

Parameters
effect

The effect component.

effectMinSource
The minimum number of sources that an effect must have to be added to the list. Pass -1 to specify
no minimum.

effectMaxSource
The maximum number of sources that an effect can have to be added to the list. Pass -1 to specify
no maximum.

majorClass
The major class to include, or 0 for all.

minorClass
The minor class to include, or 0 for all.

refcon
A reference constant that points to a data structure containing information the callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Discussion
Note that your filter proc may receive multiple effects from various manufacturers. If you return TRUE for
multiple effects of a given type, only the one with the higher parameter version number will be included. If
you wish other filtering such as effects from a given manufacturer, you can do this by returning FALSE for
the other effects and TRUE for those that you prefer.

Declared In
Movies.h

QTSyncTaskProc
Undocumented

typedef void (*QTSyncTaskProcPtr) (void *task);

If you name your function MyQTSyncTaskProc, you would declare it this way:

void MyQTSyncTaskProc (
 void *task);

Parameters
task

Undocumented

Declared In
Movies.h

Callbacks 1507
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

TweenerDataProc
A callback the tween component calls with the value generated by a tween operation.

typedef ComponentResult (*TweenerDataProcPtr) (TweenRecord *tr, void *tweenData,
long tweenDataSize, long dataDescriptionSeed, Handle dataDescription,
ICMCompletionProcRecordPtr asyncCompletionProc, UniversalProcPtr transferProc, void
 *refCon);

If you name your function MyTweenerDataProc, you would declare it this way:

ComponentResult MyTweenerDataProc (
 TweenRecord *tr,
 void *tweenData,
 long tweenDataSize,
 long dataDescriptionSeed,
 Handle dataDescription,
 ICMCompletionProcRecordPtr asyncCompletionProc,
 UniversalProcPtr transferProc,
 void *refCon);

Parameters
tr

A pointer to the tween record for the tween operation.

tweenData
A pointer to the generated tween value.

tweenDataSize
The size, in bytes, of the tween value.

dataDescriptionSeed
The starting value for the calculation. Every time the content of the dataDescription handle
changes, this value should be incremented.

dataDescription
Specifies a handle containing a description of the tween value passed. For basic types such as integers,
the calling tween component should set this parameter to NIL. For more complex types such as
compressed image data, the calling tween component should set this handle to contain a description
of the tween value, such as an image description.

asyncCompletionProc
A pointer to a completion procedure for asynchronous operations. The calling tween component
should set the value of this parameter to NIL.

transferProc
A pointer to a procedure to transfer the data. The calling tween component should set the value of
this parameter to NIL.

refCon
A pointer to a reference constant. The calling tween component should set the value of this parameter
to NIL.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
Movies.h

1508 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Data Types

FourCharCode
Represents a type used by the Movie Toolkit API.

typedef unsigned long FourCharCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOHIDDescriptorParser.h

FSSpecPtr
Represents a type used by the Movie Toolkit API.

typedef FSSpec * FSSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

GetMovieUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(GetMovieProcPtr) GetMovieUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieExecuteWiredActionsUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(MovieExecuteWiredActionsProcPtr) MovieExecuteWiredActionsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Data Types 1509
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

MovieRgnCoverUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(MovieRgnCoverProcPtr) MovieRgnCoverUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTAtomType
Represents a type used by the Movie Toolkit API.

typedef long QTAtomType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTAudioFrequencyLevels
Stores the frequency meter level settings for the audio channels in a movie mix.

struct QTAudioFrequencyLevels {
 UInt32 numChannels;
 UInt32 numFrequencyBands;
 Float32 level[1];
};

Fields
numChannels

Discussion
The number of audio channels.

numFrequencyBands

Discussion
The number of frequency bands for each channel.

level

Discussion
A 32-bit floating-point value for each frequency band. The frequency bands for each channel are stored
contiguously, with all the band levels for the first channel first, all the band levels for the second channel
next, etc. The total number of 32-bit values in this field equals numFrequencyBands times numChannels.

Related Functions
Associated function: GetMovieAudioFrequencyLevels (page 1351)

Declared In
Movies.h

1510 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

QTAudioVolumeLevels
Stores the volume level settings for the audio channels in a movie mix.

struct QTAudioVolumeLevels {
 UInt32 numChannels;
 Float32 level[1];
};

Fields
numChannels

Discussion
The number of audio channels.

level

Discussion
A 32-bit floating-point value for each channel's volume.

Related Functions
Associated function: GetMovieAudioVolumeLevels (page 1354)

Declared In
Movies.h

QTEffectListFilterUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(QTEffectListFilterProcPtr) QTEffectListFilterUPP;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTEffectListOptions
Represents a type used by the Movie Toolkit API.

typedef long QTEffectListOptions;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTErrorReplacementPtr
Represents a type used by the Movie Toolkit API.

Data Types 1511
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

typedef QTErrorReplacementRecord * QTErrorReplacementPtr;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTErrorReplacementRecord
Contains the list of strings to subsitute for variables in an error message.

struct QTErrorReplacementRecord {
 long numEntries;
 StringPtr replacementString[1];
 };

Fields
numEntries

Discussion
The number of string pointers in replacementString.

replacementString

Discussion
An array of string pointers. Memory for each string is allocated separately.

Version Notes
Introduced in QuickTime 6.

Related Functions
QTAddMovieError (page 1420)

Declared In
Movies.h

QTRestrictionSet
Represents a type used by the Movie Toolkit API.

typedef QTRestrictionSetRecord * QTRestrictionSet;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Movies.h

QTRestrictionSetRecord
Holds a movie's restrictions.

1512 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

struct QTRestrictionSetRecord {
 long data[1];
 };

Fields
data

Discussion
The restrictions for a movie. See Movie Restrictions.

Version Notes
Introduced in QuickTime 6.

Related Functions
QTGetMovieRestrictions (page 1444)
QTRestrictionsGetIndClass (page 1463)
QTRestrictionsGetInfo (page 1464)
QTRestrictionsGetItem (page 1465)

Declared In
Movies.h

QTSyncTaskUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(QTSyncTaskProcPtr) QTSyncTaskUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTTweener
Represents a type used by the Movie Toolkit API.

typedef QTTweenerRecord * QTTweener;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTTweenerRecord
Stores a tween for the QTNewTween function.

Data Types 1513
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

struct QTTweenerRecord {
 long data[1];
 };

Fields
data

Discussion
An array of data that constitutes a tween.

Declared In
Movies.h

QTUUID
Contains QuickTime's version of a universally unique identifier.

struct QTUUID {
 UInt32 data1;
 UInt16 data2;
 UInt16 data3;
 UInt8 data4[8];
 };

Fields
data1

Discussion
Undocumented

data2

Discussion
Undocumented

data3

Discussion
Undocumented

data4

Discussion
Undocumented

Version Notes
Introduced in QuickTime 6.

Related Functions
QTCreateUUID (page 1426)
QTEqualUUIDs (page 1430)

Declared In
Movies.h

Sprite
Represents a type used by the Movie Toolkit API.

1514 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

typedef SpriteRecord * Sprite;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteRecord
Contains a sprite.

struct SpriteRecord {
 long data[1];
 };

Fields
data

Discussion
An array of sprite data.

Declared In
Movies.h

SpriteWorld
Represents a type used by the Movie Toolkit API.

typedef SpriteWorldRecord * SpriteWorld;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SpriteWorldRecord
Contains a sprite world.

struct SpriteWorldRecord {
 long data[1];
 };

Fields
data

Discussion
An array of sprite world data.

Declared In
Movies.h

Data Types 1515
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

TweenerDataUPP
Represents a type used by the Movie Toolkit API.

typedef STACK_UPP_TYPE(TweenerDataProcPtr) TweenerDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Constants

SetQuickTimePreference Values
Constants passed to SetQuickTimePreference.

enum {
 BandwidthManagementPrefsType = 'bwmg'
};

Declared In
Movies.h

CreateMovieFile Values
Constants passed to CreateMovieFile.

enum {
 createMovieFileDeleteCurFile = 1L << 31,
 createMovieFileDontCreateMovie = 1L << 30,
 createMovieFileDontOpenFile = 1L << 29,
 createMovieFileDontCreateResFile = 1L << 28
};

Constants
createMovieFileDontOpenFile

Controls whether the function opens the new movie file. If you set this flag to 1, the Movie Toolbox
does not open the new movie file. In this case, the function ignores the outDataHandler parameter.
If you set this flag to 0, the Movie Toolbox opens the new movie file and returns its reference number
into the field referenced by outDataHandler.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

1516 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

GetMediaDataRef Values
Constants passed to GetMediaDataRef.

enum {
 dataRefSelfReference = 1 << 0,
 dataRefWasNotResolved = 1 << 1
};

Declared In
Movies.h

QTGetEffectSpeed Values
Constants passed to QTGetEffectSpeed.

enum {
 effectIsRealtime = 0 /* effect can be rendered in real time */
};

Declared In
Movies.h

QTGetEffectsList Values
Constants passed to QTGetEffectsList.

enum {
 elOptionsIncludeNoneInList = 0x00000001 /* "None" effect is included in list
 */
};

Declared In
Movies.h

Full Screen Flags
Constants that represent flags for full screen displays.

Constants 1517
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

enum {
 fullScreenHideCursor = 1L << 0,
 fullScreenAllowEvents = 1L << 1,
 fullScreenDontChangeMenuBar = 1L << 2,
 fullScreenPreflightSize = 1L << 3,
 fullScreenDontSwitchMonitorResolution = 1L << 4,
 fullScreenCaptureDisplay = 1 << 5L, /* capturedisplay is a mac os x specific
 parameter */
 fullScreenCaptureAllDisplays = 1 << 6L /* capturealldisplays is a mac os x
specific parameter */
};

Constants
fullScreenHideCursor

If this flag is set, BeginFullScreen hides the cursor. This is useful if you are going to play a QuickTime
movie and do not want the cursor to be visible over the movie.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenAllowEvents
If this flag is set, your application intends to allow other applications to run (by calling WaitNextEvent
to grant them processing time). In this case, BeginFullScreen does not change the monitor
resolution, because other applications might depend on the current resolution.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenDontChangeMenuBar
If this flag is set, BeginFullScreen does not hide the menu bar. This is useful if you want to change
the resolution of the monitor but still need to allow the user to access the menu bar.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenPreflightSize
If this flag is set, BeginFullScreen doesn't change any monitor settings, but returns the actual
height and width that it would use if this bit were not set. This allows applications to test for the
availability of a monitor setting without having to switch to it.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

fullScreenCaptureDisplay
Capturedisplay is a Mac OS X specific parameter.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

Declared In
Movies.h

Hint Flags
Constants that represent hint flags.

1518 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

enum {
 hintsScrubMode = 1 << 0, /* mask == && (if flags == scrub on,
flags != scrub off) */
 hintsLoop = 1 << 1,
 hintsDontPurge = 1 << 2,
 hintsUseScreenBuffer = 1 << 5,
 hintsAllowInterlace = 1 << 6,
 hintsUseSoundInterp = 1 << 7,
 hintsHighQuality = 1 << 8, /* slooooow */
 hintsPalindrome = 1 << 9,
 hintsInactive = 1 << 11,
 hintsOffscreen = 1 << 12,
 hintsDontDraw = 1 << 13,
 hintsAllowBlacklining = 1 << 14,
 hintsDontUseVideoOverlaySurface = 1 << 16,
 hintsIgnoreBandwidthRestrictions = 1 << 17,
 hintsPlayingEveryFrame = 1 << 18,
 hintsAllowDynamicResize = 1 << 19,
 hintsSingleField = 1 << 20,
 hintsNoRenderingTimeOut = 1 << 21,
 hintsFlushVideoInsteadOfDirtying = 1 << 22,
 hintsEnableSubPixelPositioning = 1L << 23,
 hintsRenderingMode = 1L << 24,
 hintsAllowIdleSleep = 1L << 25, /* asks media handlers not to call
UpdateSystemActivity etc */
 hintsDeinterlaceFields = 1L << 26
};

Constants
hintsAllowIdleSleep

Asks media handlers not to call UpdateSystemActivity etc.

Available in Mac OS X v10.3 and later.

Declared in Movies.h.

Declared In
Movies.h

QTUnregisterAccessKey Values
Constants passed to QTUnregisterAccessKey.

enum {
 kAccessKeySystemFlag = 1L << 0
};

Declared In
Movies.h

Sprite Properties
Constants that represent the properties of sprites.

Constants 1519
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

enum {
 kGetSpriteWorldInvalidRegionAndLeaveIntact = -1L,
 kGetSpriteWorldInvalidRegionAndThenSetEmpty = -2L
};
enum {
 kKeyFrameAndSingleOverride = 1L << 1,
 kKeyFrameAndAllOverrides = 1L << 2
};
enum {
 kNoQTIdleEvents = -1
};
enum {
 kOnlyDrawToSpriteWorld = 1L << 0,
 kSpriteWorldPreflight = 1L << 1
};
enum {
 kScaleSpritesToScaleWorld = 1L << 1,
 kSpriteWorldHighQuality = 1L << 2,
 kSpriteWorldDontAutoInvalidate = 1L << 3,
 kSpriteWorldInvisible = 1L << 4,
 kSpriteWorldDirtyInsteadOfFlush = 1L << 5
};
enum {
 kSpritePropertyMatrix = 1,
 kSpritePropertyImageDescription = 2,
 kSpritePropertyImageDataPtr = 3,
 kSpritePropertyVisible = 4,
 kSpritePropertyLayer = 5,
 kSpritePropertyGraphicsMode = 6,
 kSpritePropertyImageDataSize = 7,
 kSpritePropertyActionHandlingSpriteID = 8,
 kSpritePropertyCanBeHitTested = 9,
 kSpritePropertyImageIndex = 100,
 kSpriteTrackPropertyBackgroundColor = 101,
 kSpriteTrackPropertyOffscreenBitDepth = 102,
 kSpriteTrackPropertySampleFormat = 103,
 kSpriteTrackPropertyScaleSpritesToScaleWorld = 104,
 kSpriteTrackPropertyHasActions = 105,
 kSpriteTrackPropertyVisible = 106,
 kSpriteTrackPropertyQTIdleEventsFrequency = 107,
 kSpriteTrackPropertyAllSpritesHitTestingMode = 108,
 kSpriteTrackPropertyPreferredDepthInterpretationMode = 109,
 kSpriteImagePropertyRegistrationPoint = 1000,
 kSpriteImagePropertyGroupID = 1001
};

Declared In
Movies.h

SetMediaDataRefAttributes Values
Constants passed to SetMediaDataRefAttributes.

1520 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

enum {
 kMovieAnchorDataRefIsDefault = 1 << 0 /* data ref returned is movie default data
 ref */
};

Declared In
Movies.h

CopyUserData Values
Constants passed to CopyUserData.

enum {
 kQTCopyUserDataReplace = 'rplc', /* Delete all destination user data items
 and then add source user data items */
 kQTCopyUserDataMerge = 'merg' /* Add source user data items to destination
 user data */
};

Declared In
Movies.h

CanQuickTimeOpenFile Values
Constants passed to CanQuickTimeOpenFile.

enum {
 kQTDontUseDataToFindImporter = 1L << 0,
 kQTDontLookForMovieImporterIfGraphicsImporterFound = 1L << 1,
 kQTAllowOpeningStillImagesAsMovies = 1L << 2,
 kQTAllowImportersThatWouldCreateNewFile = 1L << 3,
 kQTAllowAggressiveImporters = 1L << 4 /* eg, TEXT and PICT movie importers*/
};

Declared In
Movies.h

QTNewDataReferenceFromFullPathCFString Values
Constants passed to QTNewDataReferenceFromFullPathCFString.

enum {
 kQTNativeDefaultPathStyle = -1,
 kQTPOSIXPathStyle = 0,
 kQTHFSPathStyle = 1,
 kQTWindowsPathStyle = 2
};

Declared In
Movies.h

Constants 1521
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

SpriteWorldIdle Values
Constants passed to SpriteWorldIdle.

enum {
 kSpriteWorldDidDraw = 1L << 0,
 kSpriteWorldNeedsToDraw = 1L << 1
};

Declared In
Movies.h

MovieExecuteWiredActions Values
Constants passed to MovieExecuteWiredActions.

enum {
 movieExecuteWiredActionDontExecute = 1L << 0
};

Declared In
Movies.h

NewMovieFromFile Values
Constants passed to NewMovieFromFile.

enum {
 movieInDataForkResID = -1 /* magic res ID */
};

Declared In
Movies.h

PutMovieOnScrap Values
Constants passed to PutMovieOnScrap.

enum {
 movieScrapDontZeroScrap = 1 << 0,
 movieScrapOnlyPutMovie = 1 << 1
};

Declared In
Movies.h

SetTrackLoadSettings Values
Constants passed to SetTrackLoadSettings.

1522 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

enum {
 preloadAlways = 1L << 0,
 preloadOnlyIfEnabled = 1L << 1
};

Declared In
Movies.h

MovieSearchText Values
Constants passed to MovieSearchText.

enum {
 searchTextDontGoToFoundTime = 1L << 16,
 searchTextDontHiliteFoundText = 1L << 17,
 searchTextOneTrackOnly = 1L << 18,
 searchTextEnabledTracksOnly = 1L << 19
};

Declared In
Movies.h

Media Characteristics
Constants that represent the characteristics of media.

enum {
 VisualMediaCharacteristic = 'eyes',
 AudioMediaCharacteristic = 'ears',
 kCharacteristicCanSendVideo = 'vsnd',
 kCharacteristicProvidesActions = 'actn',
 kCharacteristicNonLinear = 'nonl',
 kCharacteristicCanStep = 'step',
 kCharacteristicHasNoDuration = 'noti',
 kCharacteristicHasSkinData = 'skin',
 kCharacteristicProvidesKeyFocus = 'keyf',
 kCharacteristicSupportsDisplayOffsets = 'dtdd'
};

Constants
AudioMediaCharacteristic

Value ='ears'. Instructs the Movie Toolbox to search all tracks that play sound.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

Constants 1523
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

1524 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Movie Toolkit Reference

Framework: Frameworks/QuickTime.framework

Declared in Movies.h

Overview

Track and media management functions help with the construction and editing of QuickTime movies.

Functions by Task

Adding Samples to Media Structures

AddMediaSample (page 1536)
Adds sample data and a description to a media.

AddMediaSampleReference (page 1541)
Works with samples that have already been added to a movie data file.

AddMediaSampleReferences (page 1543)
Adds groups of samples to a movie data file.

BeginMediaEdits (page 1549)
Starts a media-editing session.

EndMediaEdits (page 1567)
Ends a media-editing session.

GetMediaPreferredChunkSize (page 1582)
Retrieves the maximum chunk size for a media.

GetMediaSample (page 1583)
Returns a sample from a movie data file.

GetMediaSampleReference (page 1589)
Obtains reference information about samples that are stored in a movie data file.

GetMediaSampleReferences (page 1590)
Obtains reference information about groups of samples that are stored in a movie.

SetMediaDefaultDataRefIndex (page 1643)
Specifies which of a media's data references is to be accessed during an editing session.

SetMediaPreferredChunkSize (page 1647)
Specifies a maximum chunk size for a media.

Overview 1525
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Creating Tracks and Media Structures

DisposeMovieTrack (page 1564)
Removes a track from a movie.

DisposeTrackMedia (page 1566)
Removes a media from a track.

NewMovieTrack (page 1628)
Creates a new movie track, without a media.

NewTrackMedia (page 1630)
Creates a media for a new track.

Determining Movie Creation and Modification Time

GetMediaCreationTime (page 1570)
Returns the creation date and time stored in a media.

GetMediaModificationTime (page 1581)
Returns a media's modification date and time.

GetTrackCreationTime (page 1604)
Returns a track's creation date and time.

GetTrackModificationTime (page 1613)
Returns a track's modification date and time.

Disabling Movies and Tracks

GetTrackEnabled (page 1609)
Determines whether a track is currently enabled.

SetTrackEnabled (page 1651)
Enables or disables a track.

Editing Tracks

AddEmptyTrackToMovie (page 1535)
Duplicates a track from a movie into the same movie or into another movie.

CopyTrackSettings (page 1559)
Copies many settings from one track to another, overwriting the destination settings.

DeleteTrackSegment (page 1563)
Removes a specified segment from a track.

GetTrackEditRate (page 1608)
Returns the rate of the track edit of a specified track at an indicated time.

InsertEmptyTrackSegment (page 1619)
Adds an empty segment to a track.

InsertMediaIntoTrack (page 1620)
Inserts a reference to a media segment into a track.

1526 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

InsertTrackSegment (page 1623)
Copies data into a track.

ScaleTrackSegment (page 1641)
Changes the duration of a segment of a track.

Enhancing Movie Playback Performance

GetMediaShadowSync (page 1593)
Obsolete; no longer supported.

GetTrackDisplayMatrix (page 1607)
Returns a matrix that is the concatenation of all matrices currently affecting the track's location, scaling,
and so on, including the movie's matrix, the track's matrix, and the modifier matrix.

SetMediaShadowSync (page 1649)
Obsolete; no longer supported.

Finding and Adding Samples

AddMediaSample2 (page 1539)
Adds sample data and a description to a media.

ExtendMediaDecodeDurationToDisplayEndTime (page 1568)
Prepares a media for the addition of a completely new sequence of samples by ensuring that the
media display end time is not later than the media decode end time.

GetMediaAdvanceDecodeTime (page 1570)
Returns the advance decode time of a media.

GetMediaDataSizeTime64 (page 1573)
Determines the size, in bytes, of the sample data in a media segment.

GetMediaDecodeDuration (page 1574)
Returns the decode duration of a media.

GetMediaDisplayDuration (page 1575)
Returns the display duration of a media.

GetMediaDisplayEndTime (page 1575)
Returns the display end time of a media.

GetMediaDisplayStartTime (page 1576)
Returns the display start time of a media.

MediaContainsDisplayOffsets (page 1625)
Tests whether a media contains display offsets.

MediaDecodeTimeToSampleNum (page 1625)
Finds the sample for a specified decode time.

MediaDisplayTimeToSampleNum (page 1626)
Finds the sample number for a specified display time.

TrackTimeToMediaDisplayTime (page 1658)
Converts a track's time value to a display time value that is appropriate to the track's media, using
the track's edit list.

Functions by Task 1527
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

High-Level Movie Editing Functions

AddMovieSelection (page 1545)
Adds one or more tracks to a movie.

ClearMovieSelection (page 1550)
Removes the segment of the movie that is defined by the current selection.

CopyMovieSelection (page 1558)
Creates a new movie that contains the original movie's current selection.

CutMovieSelection (page 1560)
Creates a new movie that contains the original movie's current selection.

IsScrapMovie (page 1624)
Checks the system scrap to find out if it can translate any of the data into a movie.

PasteHandleIntoMovie (page 1633)
Takes the contents of a specified handle, together with its type, and pastes it into a specified movie.

PasteMovieSelection (page 1634)
Places the tracks from one movie into another movie.

PutMovieIntoTypedHandle (page 1636)
Takes a movie, or a single track from within that movie, and converts it into a handle of a specified
type.

Locating a Movie's Tracks and Media Structures

GetMediaTrack (page 1595)
Determines the track that uses a specified media.

GetMovieIndTrack (page 1598)
Determines the track identifier of a track, given the track's index value.

GetMovieIndTrackType (page 1600)
Searches for all of a movie's tracks that share a given media type or media characteristic.

GetMovieTrack (page 1601)
Determines the track identifier of a track, given the track's ID value.

GetMovieTrackCount (page 1601)
Returns the number of tracks in a movie.

GetTrackID (page 1610)
Determines a track's unique track ID value.

GetTrackMedia (page 1612)
Determines the media that contains a track's sample data.

GetTrackMovie (page 1613)
Determines the movie that contains a specified track.

Low-Level Movie Editing Functions

CopyMovieSettings (page 1558)
Copies many settings from one movie to another, overwriting the destination settings in the process.

1528 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

DeleteMovieSegment (page 1561)
Removes a specified segment from a movie.

InsertEmptyMovieSegment (page 1618)
Adds an empty segment to a movie.

InsertMovieSegment (page 1622)
Copies part of one movie to another.

ScaleMovieSegment (page 1640)
Changes the duration of a segment of a movie.

Manipulating Media Input Maps

GetMediaInputMap (page 1579)
Returns a copy of the input map associated with a specified media.

SetMediaInputMap (page 1645)
Replaces the media's existing input map with a given input map.

Movie Functions

ConvertFileToMovieFile (page 1552)
Converts a file to a movie file and supports a user settings dialog box for import operations.

ConvertMovieToFile (page 1555)
Takes a specified movie (or a single track within that movie) and converts it into a specified file and
type, supporting a Save As dialog box.

Movie Posters and Movie Previews

GetTrackUsage (page 1616)
Determines whether a track is used in a movie, its preview, its poster, or a combination of these.

SetTrackUsage (page 1656)
Specifies whether a track is used in a movie, its preview, its poster, or a combination of these.

Movies and Your Event Loop

PtInMovie (page 1634)
Determines whether a specified point lies in the region defined by a movie's final display boundary
region after it has been clipped by the movie's display clipping region.

PtInTrack (page 1635)
Determines whether a specified point lies in the region defined by a track's display boundary region
after it has been clipped by the movie's final display clipping region.

Functions by Task 1529
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Selecting Media Handlers

GetDataHandler (page 1569)
Retrieves the best data handler component to use with a given data reference.

GetMediaDataHandler (page 1571)
Determines a media's data handler.

GetMediaDataHandlerDescription (page 1571)
Retrieves information about a media's data handler.

GetMediaHandler (page 1577)
Obtains a reference to a media handler component.

GetMediaHandlerDescription (page 1578)
Retrieves information about a media handler.

SetMediaDataHandler (page 1643)
Assigns a data handler to a media.

SetMediaHandler (page 1644)
Assigns a specific media handler to a track.

Undo for Movies

DisposeMovieEditState (page 1564)
Disposes of an edit state.

NewMovieEditState (page 1628)
Creates an edit state.

UseMovieEditState (page 1659)
Returns a movie to the condition determined by an edit state created previously.

Undo for Tracks

DisposeTrackEditState (page 1566)
Disposes of a movie's track edit state.

NewTrackEditState (page 1630)
Creates a new edit state for a given track.

UseTrackEditState (page 1660)
Returns a track to the condition determined by an edit state created previously.

Working With Alternate Tracks

GetMediaLanguage (page 1581)
Returns a media's localized language or region code.

GetMediaQuality (page 1582)
Returns a media's quality level value.

GetTrackAlternate (page 1603)
Determines all the tracks in an alternate group.

1530 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

SelectMovieAlternates (page 1642)
Instructs the Movie Toolbox to select appropriate tracks immediately.

SetAutoTrackAlternatesEnabled (page 1642)
Enables or disables automatic track selection by the Movie Toolbox.

SetMediaLanguage (page 1646)
Sets a media's localized language or region code.

SetMediaQuality (page 1647)
Sets a media's quality level value.

SetTrackAlternate (page 1650)
Adds tracks to, or remove tracks from, alternate groups.

Working With Media Samples

GetMediaDataSize (page 1572)
Determines the size, in bytes, of the sample data in a media segment.

GetMediaSampleCount (page 1586)
Determines the number of samples in a media.

GetMediaSampleDescription (page 1587)
Retrieves a SampleDescription structure from a media.

GetMediaSampleDescriptionCount (page 1588)
Returns the number of sample descriptions in a media.

GetMovieDataSize (page 1596)
Determines the size of the sample data in a segment of a movie.

GetTrackDataSize (page 1604)
Determines the size, in bytes, of the sample data in a segment of a track.

MediaTimeToSampleNum (page 1627)
Lets you find the sample that contains the data for a specified time.

SampleNumToMediaTime (page 1639)
Finds the time at which a specified sample plays.

SetMediaSampleDescription (page 1648)
Changes the contents of a particular SampleDescription structure of a specified media.

Working With Media Time

GetMediaDuration (page 1576)
Returns the duration of a media.

GetMediaTimeScale (page 1594)
Determines a media's time scale.

SetMediaTimeScale (page 1649)
Sets a media's time scale.

Functions by Task 1531
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Working With Movie Spatial Characteristics

GetTrackDimensions (page 1606)
Determines a track's source rectangle.

GetTrackLayer (page 1611)
Retrieves a track's layer.

GetTrackMatrix (page 1611)
Retrieves a track's transformation matrix.

SetTrackDimensions (page 1650)
Establishes a track's source rectangle.

SetTrackLayer (page 1652)
Sets a track's layer.

SetTrackMatrix (page 1653)
Establishes a track's transformation matrix.

Working With QuickTime Sample Tables

AddSampleTableToMedia (page 1547)
Adds a sample table to a media.

CopyMediaMutableSampleTable (page 1557)
Obtains information about sample references in a media in the form of a sample table.

Working With Sound Volume

GetTrackVolume (page 1618)
Returns a track's current volume setting.

SetTrackVolume (page 1657)
Sets a track's current volume.

Working With Track References

AddTrackReference (page 1547)
Adds a new track reference to a track.

DeleteTrackReference (page 1562)
Removes a track reference from a track.

GetNextTrackReferenceType (page 1602)
Determines all of the track reference types that are defined for a given track.

GetTrackReference (page 1614)
Retrieves the track identifier contained in an existing track reference.

GetTrackReferenceCount (page 1615)
Determines how many track references of a given type exist for a track.

SetTrackReference (page 1654)
Modifies an existing track reference.

1532 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Working With Track Sound

GetTrackSoundLocalizationSettings (page 1616)
Returns a handle to a copy of the current 3D sound settings for a specified track.

SetTrackSoundLocalizationSettings (page 1655)
Applies 3D sound effect data to a track.

Working With Track Time

GetTrackDuration (page 1607)
Returns the duration of a track.

GetTrackOffset (page 1614)
Determines the time difference between the start of a track and the start of the movie that contains
the track.

SetTrackOffset (page 1653)
Modifies the duration of the empty space that lies at the beginning of a track, thus changing the
duration of the entire track.

TrackTimeToMediaTime (page 1658)
Converts a track's time value to a time value that is appropriate to the track's media, using the track's
edit list.

Working With User Data

GetMediaUserData (page 1595)
Obtains access to a media's user data list.

GetTrackUserData (page 1617)
Obtains access to a track's user data list.

Supporting Functions

AddClonedTrackToMovie (page 1534)
Constructs a clone of an existing track in a movie.

AddMediaSampleFromEncodedFrame (page 1541)
Adds sample data and description from an encoded frame to a media.

AddMediaSampleReferences64 (page 1544)
Provides a 64-bit version of AddMediaSampleReferences.

ConvertDataRefToMovieDataRef (page 1551)
Converts a piece of data in a storage location to a movie file format and stores it in another storage
location, supporting a user settings dialog box for import operations.

ConvertMovieToDataRef (page 1553)
Converts a specified movie (or a single track within a movie) into a specified file format and stores it
in a specified storage location.

GetMediaDataSize64 (page 1573)
Provides a 64-bit version of GetMediaDataSize.

Functions by Task 1533
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaSample2 (page 1585)
Retrieves sample data from a media file.

GetMediaSampleReferences64 (page 1592)
Provides a 64-bit version of GetMediaSampleReferences.

GetMediaSyncSampleCount (page 1594)
Gets the number of sync samples in a media.

GetMovieDataSize64 (page 1596)
Provides a 64-bit version of GetMovieDataSize.

GetMovieImporterForDataRef (page 1597)
Gets the movie importer component for a movie.

GetTrackDataSize64 (page 1605)
Provides a 64-bit version of GetTrackDataSize.

GetTrackEditRate64 (page 1609)
Returns the rate of the track edit of a specified track at an indicated time.

OpenADataHandler (page 1631)
Opens a data handler component.

QTGetMIMETypeInfo (page 1637)
Retrieves information about a particular MIME type.

SampleNumToMediaDecodeTime (page 1638)
Finds the decode time for a specified sample.

SampleNumToMediaDisplayTime (page 1638)
Finds the display time for a specified sample.

Functions

AddClonedTrackToMovie
Constructs a clone of an existing track in a movie.

OSErr AddClonedTrackToMovie (
 Track srcTrack,
 Movie dstMovie,
 long flags,
 Track *dstTrack
);

Parameters
sourceTrack

Indicates the track to be cloned. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601). This is the source of the sample table
once the cloned track is constructed.

destinationMovie
Indicates the movie where the cloned track should be created. Your application obtains this identifier
from such functions as NewMovie (page 259), NewMovieFromFile (page 1398), and
NewMovieFromHandle (page 1400). Currently, this must be the movie that contains the source track.

1534 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

flags
Flags (see below) that determine how cloning should be performed. You currently must pass
kQTCloneShareSamples. See these constants:

kQTCloneShareSamples

kQTCloneDontCopyEdits

dstTrack
The address of storage where a reference to the newly constructed track is returned. If the function
fails, this storage is set to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

Most QuickTime developers should never need to call this function.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AddEmptyTrackToMovie
Duplicates a track from a movie into the same movie or into another movie.

OSErr AddEmptyTrackToMovie (
 Track srcTrack,
 Movie dstMovie,
 Handle dataRef,
 OSType dataRefType,
 Track *dstTrack
);

Parameters
srcTrack

The source track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

dstMovie
The destination movie for this operation. This can be the same movie as the source track or a different
movie.

dataRef
A handle to the data reference. The type of information stored in the handle depends upon the data
reference type specified by dataRefType.

dataRefType
The type of data reference; see Data References. If the data reference is an alias, you must set the
parameter to rAliasType, indicating that the reference is an alias.

Functions 1535
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dstTrack
The newly created track's identifier is returned in this parameter. If AddEmptyTrackToMovie fails,
the resulting track identifier is set to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function returns a newly created, empty track. The newly created track has the same media type and
track settings as the specified track. However, no data is copied from the source track to the new track. To
copy data from the source track to the new track, use InsertTrackSegment (page 1623) after calling
AddEmptyTrackToMovie.

Version Notes
This function has been available since QuickTime 2.0.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
qtdataref
ThreadsImporter
ThreadsImportMovie

Declared In
Movies.h

AddMediaSample
Adds sample data and a description to a media.

OSErr AddMediaSample (
 Media theMedia,
 Handle dataIn,
 long inOffset,
 unsigned long size,
 TimeValue durationPerSample,
 SampleDescriptionHandle sampleDescriptionH,
 long numberOfSamples,
 short sampleFlags,
 TimeValue *sampleTime
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

dataIn
A handle to the sample data. The AddMediaSample function adds this data to the media specified
by the parameter theMedia. You specify the number of bytes of sample data with the size parameter.
You can use the inOffset parameter to specify a byte offset into the data referred to by this handle.

1536 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

inOffset
Specifies an offset into the data referred to by the handle contained in the dataIn parameter. Set
this parameter to 0 if there is no offset.

size
The number of bytes of sample data to be added to the media. This parameter indicates the total
number of bytes in the sample data to be added to the media, not the number of bytes per sample.
Use the numberOfSamples parameter to indicate the number of samples that are contained in the
sample data.

durationPerSample
The duration of each sample to be added. You must specify this parameter in the media's time scale.
For example, if you are adding sound that was sampled at 22 kHz to a media that contains a sound
track with the same time scale, you would set durationPerSample to 1. Similarly, if you are adding
video that was recorded at 10 frames per second to a video media that has a time scale of 600, you
would set this parameter to 60 to add a single sample.

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a SoundDescription structure. If the media does not require a
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of samples contained in the sample data to be added to the media. The Movie Toolbox
considers the value of this parameter as well as the value of the size parameter when it determines
the size of each sample that it adds to the media. You should set the value of this parameter so that
the resulting sample size represents a reasonable compromise between total data retrieval time and
the overhead associated with input and output (I/O). You should also consider the speed of the data
storage device; CD-ROM devices are much slower than hard disks, for example, and should therefore
have a smaller sample size. For a video media, set a sample size that corresponds to the size of a
frame. For a sound media, choose a number of samples that corresponds to between 0.5 and 1.0
seconds of sound. In general, you should not create groups of sound samples that are less than 2 KB
in size or greater than 15 KB. Typically, a sample size of about 8 KB is reasonable for most storage
devices.

sampleFlags
Contains flags (see below) that control the add operation. Set unused flags to 0. See these constants:

mediaSampleNotSync

sampleTime
A pointer to a time value. After adding the sample data to the media, the AddMediaSample function
returns the time where the sample was inserted in the time value referred to by this parameter. If you
don't want to receive this information, set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application specifies the sample and the media for the operation. AddMediaSample updates the media
so that it contains the sample data. One call to this function can add several samples to a media; however,
all the samples must be the same size. Samples are always appended to the end of the media. Furthermore,
the media duration is extended each time a sample is added.

// AddMediaSample coding example

Functions 1537
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

// See "Discovering QuickTime," page 250
#define kSoundSampleDuration 1
#define kSyncSample 0
#define kTrackStart 0
#define kMediaStart 0
#define kFix1 0x00010000
void CreateMySoundTrack (Movie movie)
{
 Track track;
 Media media;
 Handle hSound =NIL;
 SoundDescriptionHandle hSoundDesc =NIL;
 long lDataOffset;
 long lDataSize;
 long lNumSamples;
 hSound =GetResource(soundListRsrc, 128);
 if (hSound ==NIL)
 return;
 hSoundDesc =(SoundDescriptionHandle)NewHandle(4);

 CreateMySoundDescription(hSound,
 hSoundDesc,
 &lDataOffset,
 &lNumSamples,
 &lDataSize);

 track =NewMovieTrack(movie, 0, 0, kFullVolume);
 media =NewTrackMedia(track, SoundMediaType,
 FixRound((**hSoundDesc).sampleRate),
 NIL, 0);
 BeginMediaEdits(media);
 AddMediaSample(media,
 hSound,
 lDataOffset, // offset in data
 lDataSize,
 kSoundSampleDuration, // duration of each sound
 // sample
 (SampleDescriptionHandle)hSoundDesc,
 lNumSamples,
 kSyncSample, // self-contained samples
 NIL);
 EndMediaEdits(media);
 InsertMediaIntoTrack(track,
 kTrackStart, // track start time
 kMediaStart, // media start time
 GetMediaDuration(media),
 kFix1);
 if (hSoundDesc !=NIL)
 DisposeHandle((Handle)hSoundDesc);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1538 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

AddMediaSample2
Adds sample data and a description to a media.

OSErr AddMediaSample2 (
 Media theMedia,
 const UInt8 *dataIn,
 ByteCount size,
 TimeValue64 decodeDurationPerSample,
 TimeValue64 displayOffset,
 SampleDescriptionHandle sampleDescriptionH,
 ItemCount numberOfSamples,
 MediaSampleFlags sampleFlags,
 TimeValue64 *sampleDecodeTimeOut
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

dataIn
A handle to the sample data. The function adds this data to the media specified by theMedia. You
specify the number of bytes of sample data with the size parameter.

size
The number of bytes of sample data to be added to the media. This parameter indicates the total
number of bytes in the sample data to be added to the media, not the number of bytes per sample.
Use the numberOfSamples parameter to indicate the number of samples that are contained in the
sample data.

decodeDurationPerSample
The duration of each sample to be added, representing the amount of time that passes while the
sample data is being displayed. You must specify this parameter in the media's time scale. For example,
if you are adding sound that was sampled at 22 kHz to a media that contains a sound track with the
same time scale, you would set durationPerSample to 1. Similarly, if you are adding video that was
recorded at 10 frames per second to a video media that has a time scale of 600, you would set this
parameter to 60. Note that this is the duration per sample, regardless of the number of samples being
added.

displayOffset
A 64-bit time value that specifies the offset between the decode time (the start time of the track plus
the duration of all previous samples) and the display time. This value is normally zero unless the
sample is frame reordering compressed video.

Functions 1539
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a SoundDescription structure. If the media does not require a
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of samples contained in the sample data to be added to the media. The Movie Toolbox
considers the value of this parameter as well as the value of the size parameter when it determines
the size of each sample that it adds to the media. You should set the value of this parameter so that
the resulting sample size represents a reasonable compromise between total data retrieval time and
the overhead associated with input and output. You should also consider the speed of the data storage
device; CD-ROM devices are much slower than hard disks, for example, and should therefore have a
smaller sample size. For a video media, set a sample size that corresponds to the size of a frame. For
a sound media, choose a number of samples that corresponds to between 0.5 and 1.0 seconds of
sound. In general, you should not create groups of sound samples that are less than 2 KB in size or
greater than 15 KB. Typically, a sample size of about 8 KB is reasonable for most storage devices.

sampleFlags
Flags that control the add operation; set unused flags to 0: mediaSampleNotSync Indicates that the
sample to be added is not a sync sample. Set this flag to 1 if the sample is not a sync sample; set it
to 0 if the sample is a sync sample. See these constants:

mediaSampleNotSync

sampleDecodeTimeOut
A pointer to a time value that represents the sample decode time. After adding the sample data to
the media, the function returns in this parameter the time where the sample was inserted. If you don't
want to receive this information, set this parameter to NIL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
Your application specifies the sample and the media for the operation. This function updates the media so
that it contains the sample data. One call to this function can add several samples to a media. This function
replaces AddMediaSample (page 1536); it adds 64-bit support and support for frame reordering video
compression (display offset).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile
QTKitTimeCode
SCAudioCompress

Declared In
Movies.h

1540 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

AddMediaSampleFromEncodedFrame
Adds sample data and description from an encoded frame to a media.

OSErr AddMediaSampleFromEncodedFrame (
 Media theMedia,
 ICMEncodedFrameRef encodedFrame,
 TimeValue64 *sampleDecodeTimeOut
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612)

encodedFrame
An encoded frame token returned by an ICMCompressionSequence.

sampleDecodeTimeOut
A pointer to a time value. After adding the sample data to the media, the function returns the decode
time where the first sample was inserted in the time value referred to by this parameter. If you don't
want to receive this information, set this parameter to NULL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
This is a convenience API to make it easy to add frames emitted by new ICM compression functions to media.
It can return these errors:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
Movies.h

AddMediaSampleReference
Works with samples that have already been added to a movie data file.

Functions 1541
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr AddMediaSampleReference (
 Media theMedia,
 long dataOffset,
 unsigned long size,
 TimeValue durationPerSample,
 SampleDescriptionHandle sampleDescriptionH,
 long numberOfSamples,
 short sampleFlags,
 TimeValue *sampleTime
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

dataOffset
The offset into the movie data file. This parameter is used differently by each data handler. For example,
for the standard HFS data handler, this parameter specifies the offset into the file. This parameter
contains either data you add yourself or the data offset returned byGetMediaSampleReference (page
1589).

size
The number of bytes of sample data to be identified by the reference. This parameter indicates the
total number of bytes in the sample data, not the number of bytes per sample. Use numberOfSamples
to indicate the number of samples that are contained in the reference.

durationPerSample
The duration of each sample in the reference. You must specify this parameter in the media's time
scale. For example, if you are referring to sound that was sampled at 22 kHz in a media that contains
a sound track with the same time scale, to add a reference to a single sample you would set
durationPerSample to 1. Similarly, if you are referring to video that was recorded at 10 frames per
second in a video media that has a time scale of 60, you would set this parameter to 6 to add a
reference to a single sample.

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a sound description structure. If the media does not require a
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of samples contained in the reference. For details, see AddMediaSample (page 1536). If
the media does not require a SampleDescription structure, set this parameter to NIL.

sampleFlags
Contains flags (see below) that control the operation. Set unused flags to 0. See these constants:

mediaSampleNotSync

sampleTime
A pointer to a time value. After adding the reference to the media, the AddMediaSampleReference
function returns the time where the reference was inserted in the time value referred to by this
parameter. If you don't want to receive this information, set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

1542 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
This function does not add sample data to the file or device that contains a media. Rather, it defines references
to sample data that you previously added to a movie data file. Instead of actually writing out samples to disk,
this function writes out references to existing samples, which you specify in dataOffset and the size
parameter. As with AddMediaSample (page 1536), your application specifies the media for the operation. Note
that one reference may refer to more than one sample; all the samples described by a reference must be the
same size. This function does not update the movie data file as part of the add operation. Therefore, your
application does not have to call BeginMediaEdits (page 1549) before calling AddMediaSampleReference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
ElectricImageComponent.win
qt3dtween.win
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

AddMediaSampleReferences
Adds groups of samples to a movie data file.

OSErr AddMediaSampleReferences (
 Media theMedia,
 SampleDescriptionHandle sampleDescriptionH,
 long numberOfSamples,
 SampleReferencePtr sampleRefs,
 TimeValue *sampleTime
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a sound description structure. If you don't want the
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of SampleReferenceRecord structures pointed to by the sampleRefs parameter.
Each structure may contain one or more contiguous samples. For details, see AddMediaSample (page
1536).

Functions 1543
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleRefs
A pointer to the number of SampleReferenceRecord structures specified by the numberOfSamples
parameter.

sampleTime
A pointer to a time value. After adding the reference to the media, the AddMediaSampleReferences
function returns the time where the reference was inserted, using the time scale referred to by this
parameter. If you don't want to receive this information, set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Using this function instead of AddMediaSampleReference (page 1541) can greatly improve the performance
of operations that involve adding a large number of samples to a movie at one time.
AddMediaSampleReferences provides no capabilities that weren't previously available with
AddMediaSampleReference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

AddMediaSampleReferences64
Provides a 64-bit version of AddMediaSampleReferences.

OSErr AddMediaSampleReferences64 (
 Media theMedia,
 SampleDescriptionHandle sampleDescriptionH,
 long numberOfSamples,
 SampleReference64Ptr sampleRefs,
 TimeValue *sampleTime
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

sampleDescriptionH
A handle to a SampleDescription structure. Some media structures may require sample descriptions.
There are different descriptions for different types of samples. For example, a media that contains
compressed video requires that you supply an ImageDescription structure. A media that contains
sound requires that you supply a sound description structure. If you don't want the
SampleDescription structure, set this parameter to NIL.

numberOfSamples
The number of SampleReference64Record structures pointed to by the sampleRefs parameter.
Each structure may contain one or more contiguous samples. For details, see AddMediaSample (page
1536).

1544 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleRefs
A pointer to the number of SampleReference64Record structures specified by the
numberOfSamples parameter.

sampleTime
A pointer to a time value. After adding the reference to the media, the AddMediaSampleReferences
function returns the time where the reference was inserted, using the time scale referred to by this
parameter. If you don't want to receive this information, set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The only difference between this function and AddMediaSampleReferences (page 1543) is that the
sampleRefsparameter points to SampleReference64Record structures instead of SampleReferenceRecord
structures.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CreateMovieFromReferences

Declared In
Movies.h

AddMovieSelection
Adds one or more tracks to a movie.

void AddMovieSelection (
 Movie theMovie,
 Movie src
);

Parameters
theMovie

The destination movie for this operation. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

src
The source movie for this operation. AddMovieSelection adds the tracks from this movie to the
destination movie. The function adds these tracks at the time specified by the current selection in
the destination movie.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Functions 1545
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
This function scales the source movie so that it fits into the destination selection. If the current selection in
the destination movie has a 0 duration, the Movie Toolbox adds the segment at the beginning of the current
selection. The entire source movie is used regardless of the selection in the source movie. The Movie Toolbox
removes any empty tracks from the destination movie after the add operation. If you have assigned a progress
function to the destination movie, the Movie Toolbox calls that progress function during long add operations.
Following is an example of using this function:

// AddMovieSelection coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Special Considerations

Some Movie Toolbox functions can take a long time to execute. For example, if you call FlattenMovie (page
1336) and specify a large movie, the Movie Toolbox must read and write all the sample data for the movie.
During such operations you may wish to display some kind of progress indicator to the user. A progress
function is an application-defined function that you can create to track the progress of time-consuming
activities and keep the user informed.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SlideShowImporter

1546 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

SlideShowImporter.win

Declared In
Movies.h

AddSampleTableToMedia
Adds a sample table to a media.

OSErr AddSampleTableToMedia (
 Media theMedia,
 QTSampleTableRef sampleTable,
 SInt64 startSampleNum,
 SInt64 numberOfSamples,
 TimeValue64 *sampleDecodeTimeOut
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

sampleTable
A reference to an opaque sample table object containing sample references to be added to the media.

startSampleNum
The sample number of the first sample reference in the sample table to be added to the media. The
first sample's number is 1.

numberOfSamples
The number of sample references from the sample table to be added to the media.

sampleDecodeTimeOut
A pointer to a time value. After adding the sample references to the media, the function returns the
decode time where the first sample was inserted in the time value referred to by this parameter. If
you don't want to receive this information, set this parameter to NULL.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
This function can return these errors:

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

AddTrackReference
Adds a new track reference to a track.

Functions 1547
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr AddTrackReference (
 Track theTrack,
 Track refTrack,
 OSType refType,
 long *addedIndex
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

refTrack
The track to be identified in the track reference.

refType
The type of reference.

addedIndex
A pointer to a long integer. The toolbox returns the index value assigned to the new track reference.
If you don't want this information, set this parameter to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following code snippet shows how AddTrackReference can be used to add a modifier track reference
to a sprite track.

// AddTrackReference coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track

1548 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow
samplemakeeffectmovie.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

BeginMediaEdits
Starts a media-editing session.

OSErr BeginMediaEdits (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use EndMediaEdits (page 1567) to end a media-editing session. You must call BeginMediaEdits before
you add samples to a media with the AddMediaSample (page 1536) function. You must also call
BeginMediaEdits before calling InsertTrackSegment (page 1623) if you wish InsertTrackSegment to
copy media samples instead of copying the segment by reference.

// BeginMediaEdits coding example
// See "Discovering QuickTime," page 89
void CreateMyVideoTrack (Movie movie)
{
 Track track;
 Media media;
 Rect rect ={0, 0, 100, 320};
 track =NewMovieTrack(movie,
 FixRatio(rect.right, 1),
 FixRatio(rect.bottom, 1),
 kNoVolume);
 media =NewTrackMedia(track,

Functions 1549
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

 VideoMediaType,
 600, // video time scale
 NIL, NIL);
 BeginMediaEdits(media);
 MyAddVideoSamplesToMedia(media, &rect); // assemble data
 EndMediaEdits(media);
 InsertMediaIntoTrack(track,
 0, // track start time
 0, // media start time
 GetMediaDuration(media),
 kFix1); // normal speed
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

ClearMovieSelection
Removes the segment of the movie that is defined by the current selection.

void ClearMovieSelection (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1550 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

ConvertDataRefToMovieDataRef
Converts a piece of data in a storage location to a movie file format and stores it in another storage location,
supporting a user settings dialog box for import operations.

OSErr ConvertDataRefToMovieDataRef (
 Handle inputDataRef,
 OSType inputDataRefType,
 Handle outputDataRef,
 OSType outputDataRefType,
 OSType creator,
 long flags,
 ComponentInstance userComp,
 MovieProgressUPP proc,
 long refCon
);

Parameters
inputDataRef

A data reference that specifies the storage location of the source data.

inputDataRefType
The type of the input data reference.

outputDataRef
A data reference that specified the storage location to receive the converted data.

outputDataRefType
The type of the output data reference.

creator
The creator type of the output storage location.

flags
Flags (see below) that control the operation of the dialog box. See these constants:

createMovieFileDeleteCurFile

movieToFileOnlyExport

movieFileSpecValid

showUserSettingsDialog

userComp
An instance of a component to be used for converting the movie data.

proc
A progress callback function; see MovieProgressProc in the QuickTime API Reference.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function converts a piece of data in a storage location into a movie and stores into another storage
location. Both the input and the output storage locations are specified through data references. If the storage
location is on a local file system, the file will have the specified creator. If specified as such in the flags, the
function displays a dialog box that lets the user to choose the output file and the export type. If an export
component (or its instance) is specified in userComp, it will be used for the conversion operation.

Functions 1551
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

ConvertFileToMovieFile
Converts a file to a movie file and supports a user settings dialog box for import operations.

OSErr ConvertFileToMovieFile (
 const FSSpec *inputFile,
 const FSSpec *outputFile,
 OSType creator,
 ScriptCode scriptTag,
 short *resID,
 long flags,
 ComponentInstance userComp,
 MovieProgressUPP proc,
 long refCon
);

Parameters
inputFile

A pointer to the file system specification for the file to be converted into a movie file.

outputFile
A pointer to the file specification for the destination movie file.

creator
The creator value for the file if it is a new one.

scriptTag
The script in which the movie file should be converted. Use the Script Manager constant
smSystemScript to use the system script; use the smCurrentScript constant to use the current
script. See Inside Macintosh: Text for more information about scripts and script tags.

resID
A pointer to a field that is to receive the resource ID of the file to be converted. If you don't want to
receive the resource ID, set this parameter to NIL.

flags
Contains flags (see below) that control movie file conversion and determine whether or not the user
settings dialog box appears. See these constants:

createMovieFileDeleteCurFile

movieToFileOnlyExport

movieFileSpecValid

showUserSettingsDialog

1552 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

userComp
Indicates a component or component instance of the movie export component you want to perform
the conversion. Otherwise, set this parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, it will be used by ConvertFileToMovieFile. This
allows you to communicate directly with the component before using this function to establish any
conversion parameters. If you pass in a component ID, an instance is created and closed within this
function.

proc
Points to your progress callback. To remove a movie's progress function, set this parameter to NIL.
Set this parameter to -1 for the Movie Toolbox to provide a default progress function. See
MovieProgressProc for the interface your progress callback must support.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function to specify an input file and convert it to a movie file. Because some conversions may take
a nontrivial amount of time, you can pass a standard movie progress function in the proc and refCon
parameters.

Special Considerations

Once you are finished working with a movie, you should release the resources used by the movie by calling
DisposeMovie (page 188).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImportExportMovie
qtdataexchange
qtdataexchange.win

Declared In
Movies.h

ConvertMovieToDataRef
Converts a specified movie (or a single track within a movie) into a specified file format and stores it in a
specified storage location.

Functions 1553
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr ConvertMovieToDataRef (
 Movie m,
 Track onlyTrack,
 Handle dataRef,
 OSType dataRefType,
 OSType fileType,
 OSType creator,
 long flags,
 ComponentInstance userComp
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

onlyTrack
The track in the source movie, if you want to convert only a single track.

dataRef
A data reference that specifies the storage location to receive the converted movie data.

dataRefType
The type of data reference. This function currently supports only alias data references.

fileType
The Mac OS file type of the storage location, which determines the export format.

creator
The creator type of the storage location.

flags
Flags (see below) that control the operation of the dialog box. See these constants:

showUserSettingsDialog

movieToFileOnlyExport

movieFileSpecValid

userComp
An instance of the component to be used for converting the movie data.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
If the storage location is on a local file system, the file will have the specified file type and the creator. If
specified as such in the flags, the function displays a dialog box that lets the user choose the output file and
the export type. If an export component (or its instance) is specified in the userComp parameter, it will be
used to perform the conversion operation.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
BackgroundExporter

1554 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

ConvertMovieToFile
Takes a specified movie (or a single track within that movie) and converts it into a specified file and type,
supporting a Save As dialog box.

OSErr ConvertMovieToFile (
 Movie theMovie,
 Track onlyTrack,
 FSSpec *outputFile,
 OSType fileType,
 OSType creator,
 ScriptCode scriptTag,
 short *resID,
 long flags,
 ComponentInstance userComp
);

Parameters
theMovie

The source movie for this conversion operation. Your application obtains this movie identifier from
such functions as NewMovie (page 259), NewMovieFromFile (page 1398), and
NewMovieFromHandle (page 1400).

onlyTrack
The track within the source movie for this conversion operation. To specify all tracks, set the value
of this parameter to 0.

outputFile
A pointer to the file specification for the destination file.

fileType
The data type of the destination file for the movie specified in the parameter theMovie.

creator
The creator value for the output file if it is a new one.

scriptTag
The script into which the movie should be converted if the output file is a new one. Use the Script
Manager constant smSystemScript to use the system script; use the smCurrentScript constant
to use the current script. See InsideMacintosh: Text for more information about scripts and script tags.

resID
A pointer to a field that is to receive the resource ID of the open movie. If you don't want to receive
this information, set the resID parameter to NIL.

flags
Contains flags (see below) that control whether and how the Save As dialog box appears. See these
constants:

showUserSettingsDialog

movieToFileOnlyExport

movieFileSpecValid

Functions 1555
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

userComp
If you want a particular movie export component to perform the conversion, you may pass the
component or an instance of that component in this parameter. Otherwise, set it to 0 to allow the
Movie Toolbox to use the appropriate component. If you pass in a component instance, it is used by
ConvertMovieToFile. This allows you to communicate directly with the component before making
this call to establish any conversion parameters. If you pass in a component ID, an instance is created
and closed within this call.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application controls whether a Save As dialog box appears by setting the value of the flags parameter.
The dialog box lets the user specify the file name and type. Supported types include standard QuickTime
movies, flattened movies, single-fork flattened movies, and any format that is supported by a movie data
export component. The following code snippets show how to call ConvertMovieToFile to provide a simple
export capability and how to save a sound-only QuickTime movie as a WAV file.

// Providing an export capability with ConvertMovieToFile
err =ConvertMovieToFile (theMovie, /* identifies movie */
 NIL, /* all tracks */
 NIL, /* no output file */
 0, /* no file type */
 0, /* no creator */
 -1, /* script */
 NIL, /* no resource ID */
 createMovieFileDeleteCurFile |
 showUserSettingsDialog |
 movieToFileOnlyExport,
 0); /* no specific component */
// Saving a sound-only QuickTime movie as a WAVE file
// See "Discovering QuickTime," page 257
void SndSnip_SaveSoundMovieAsWAVEFile (Movie theMovie)
{
 StandardFileReply myReply;
 // have the user select the name and location of the new WAVE file
 StandardPutFile("\pSave sound movie file as:",
 "\pUntitled.wav", &myReply);
 if (!myReply.sfGood)
 return;
 // use the default progress procedure, if any
 SetMovieProgressProc(theMovie, (MovieProgressUPP)-1L, 0);
 // export the movie into a file
 ConvertMovieToFile(theMovie, // the movie to convert
 NIL, // all tracks in the movie
 &myReply.sfFile, // the output file
 kQTFileTypeWave, // the output file type
 FOUR_CHAR_CODE('TVOD'), // the output file creator
 smSystemScript, // the script
 NIL, // no resource ID
 // to be returned
 0L, // no flags
 NIL); // no specific component
}

Version Notes
Introduced in QuickTime 3 or earlier.

1556 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImportExportMovie
MovieToAIFF
qthintmovies.win
soundsnippets
soundsnippets.win

Declared In
Movies.h

CopyMediaMutableSampleTable
Obtains information about sample references in a media in the form of a sample table.

OSErr CopyMediaMutableSampleTable (
 Media theMedia,
 TimeValue64 startDecodeTime,
 TimeValue64 *sampleStartDecodeTime,
 SInt64 maxNumberOfSamples,
 TimeValue64 maxDecodeDuration,
 QTMutableSampleTableRef *sampleTableOut
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

startDecodeTime
A 64-bit time value that represents the starting decode time of the sample references to be retrieved.
You must specify this value in the media's time scale.

sampleStartDecodeTime
A pointer to a time value. The function updates this time value to indicate the actual decode time of
the first returned sample reference. If you are not interested in this information, set this parameter
to NULL. The returned time may differ from the time you specified with the startDecodeTime
parameter. This will occur if the time you specified falls in the middle of a sample.

maxNumberOfSamples
A 64-bit signed integer that contains the maximum number of sample references to be returned. If
you set this parameter to 0, the Movie Toolbox uses a value that is appropriate to the media.

maxDecodeDuration
A 64-bit time value that represents the maximum decode duration to be returned. The function does
not return samples with greater decode duration than you specify with this parameter. If you set this
parameter to 0, the Movie Toolbox uses a value that is appropriate for the media.

sampleTableOut
A reference to an opaque sample table object. When you are done with the returned sample table,
release it with QTSampleTableRelease (page 1269).

Functions 1557
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if there was an invalid
parameter, or noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
To find out how many samples were returned in the sample table, call
QTSampleTableGetNumberOfSamples (page 1265).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

CopyMovieSelection
Creates a new movie that contains the original movie's current selection.

Movie CopyMovieSelection (
 Movie theMovie
);

Parameters
theMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The new movie.

Discussion
This function creates a new movie from the source movie's current selection, but does not change the source
movie or the selection. If you have assigned a progress function to the source movie, the Movie Toolbox calls
that progress function during long copy operations.

Special Considerations

Your application must dispose of the new movie once you are done with it, using DisposeMovie (page 188).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

CopyMovieSettings
Copies many settings from one movie to another, overwriting the destination settings in the process.

1558 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr CopyMovieSettings (
 Movie srcMovie,
 Movie dstMovie
);

Parameters
srcMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

dstMovie
The destination movie for this operation. The CopyMovieSettings function uses the settings from
the source movie, which is specified by the srcMovie parameter, to replace the current settings of
this movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function to copy certain important settings from one movie to another. It copies the preferred rate
and volume, source clipping region, matrix information, and user data; it does not copy the movie's contents.
To work with movie contents, you should use segment editing functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtcompress.win
qteffects
qteffects.win
samplemakeeffectmovie.win

Declared In
Movies.h

CopyTrackSettings
Copies many settings from one track to another, overwriting the destination settings.

OSErr CopyTrackSettings (
 Track srcTrack,
 Track dstTrack
);

Parameters
srcTrack

The source track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Functions 1559
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dstTrack
The destination track for this operation. The CopyTrackSettings function uses the settings from
the source track, which you specify with the srcTrack parameter, to replace the current settings of
this track.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function copies matrix information, track volume, the clipping region, user data, matte information,
media language, quality, user data, and other media-specific settings (such as sound balance and video
graphics mode). It does not copy any alternate group information pertaining to the track. This function does
not copy the track's contents. To work with track contents, you should use segment-editing functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
qtaddeffectseg
qtaddeffectseg.win
qteffects
qteffects.win

Declared In
Movies.h

CutMovieSelection
Creates a new movie that contains the original movie's current selection.

Movie CutMovieSelection (
 Movie theMovie
);

Parameters
theMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
as NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The newly created movie.

Discussion
This function removes the current selection from the original movie and makes the selection into a new
movie. After the current selection has been removed from the original movie, the duration of the current
selection is 0. The starting time of the current selection is not affected. If you have assigned a progress function
to the source movie, the Movie Toolbox calls that progress function during long cut operations.

1560 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Special Considerations

Your application must dispose of the new movie once you are done with it, using DisposeMovie (page 188).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DeleteMovieSegment
Removes a specified segment from a movie.

OSErr DeleteMovieSegment (
 Movie theMovie,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

startTime
A time value specifying the starting point of the segment to be deleted.

duration
A time value that specifies the duration of the segment to be deleted.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You identify the segment to remove by specifying its starting time and duration. The following code snippet
shows DeleteMovieSegment being used while adding a modifier track to a movie.

// DeleteMovieSegment coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);

Functions 1561
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtspritesplus.win

Declared In
Movies.h

DeleteTrackReference
Removes a track reference from a track.

OSErr DeleteTrackReference (
 Track theTrack,
 OSType refType,
 long index
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

refType
The type of reference.

index
The index value of the reference to be deleted. You obtain this index value when you create the track
reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

1562 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
This function deletes a track reference from a track. If there are additional track references with higher index
values, the toolbox automatically renumbers those references, decrementing their index values by 1.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
QTKitTimeCode
qttext
qttext.win

Declared In
Movies.h

DeleteTrackSegment
Removes a specified segment from a track.

OSErr DeleteTrackSegment (
 Track theTrack,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

startTime
A time value specifying the starting point of the segment to be deleted. This time value must be
expressed in the time scale of the movie that contains the source track.

duration
A time value that specifies the duration of the segment to be deleted. This time value must be
expressed in the time scale of the movie that contains the source track.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You identify the segment to remove by specifying its starting time and duration.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1563
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
addflashactions.win
addhtactions.win
qttext.win
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

DisposeMovieEditState
Disposes of an edit state.

OSErr DisposeMovieEditState (
 MovieEditState state
);

Parameters
state

The edit state for this operation. Your application obtains this edit state identifier when you create
the edit state by calling NewMovieEditState (page 1628).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

You must dispose of a movie's edit states before you dispose of the movie itself.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeMovieTrack
Removes a track from a movie.

void DisposeMovieTrack (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

1564 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
The following code snippet illustrates the use of DisposeMovieTrack:

// DisposeMovieTrack coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
QTKitTimeCode
qttext
qttext.win
qttimecode.win

Declared In
Movies.h

Functions 1565
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

DisposeTrackEditState
Disposes of a movie's track edit state.

OSErr DisposeTrackEditState (
 TrackEditState state
);

Parameters
state

The edit state for this operation. Your application obtains this edit state identifier when you create
the edit state by calling the NewTrackEditState (page 1630) function.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application must dispose of any edit states you create. You create an edit state by calling
NewTrackEditState (page 1630).

Special Considerations

You must dispose of a movie's track edit states before you dispose of the track or the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

DisposeTrackMedia
Removes a media from a track.

void DisposeTrackMedia (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
This function does not remove the track from its movie.

Version Notes
Introduced in QuickTime 3 or earlier.

1566 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode

Declared In
Movies.h

EndMediaEdits
Ends a media-editing session.

OSErr EndMediaEdits (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The following code sample illustrates the use of EndMediaEdits:

// EndMediaEdits coding example
// See "Discovering QuickTime," page 89
void CreateMyVideoTrack (Movie movie)
{
 Track track;
 Media media;
 Rect rect ={0, 0, 100, 320};
 track =NewMovieTrack(movie,
 FixRatio(rect.right, 1),
 FixRatio(rect.bottom, 1),
 kNoVolume);
 media =NewTrackMedia(track,
 VideoMediaType,
 600, // video time scale
 NIL, NIL);
 BeginMediaEdits(media);
 MyAddVideoSamplesToMedia(media, &rect); // assemble data
 EndMediaEdits(media);
 InsertMediaIntoTrack(track,
 0, // track start time
 0, // media start time
 GetMediaDuration(media),
 kFix1); // normal speed
}

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1567
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

ExtendMediaDecodeDurationToDisplayEndTime
Prepares a media for the addition of a completely new sequence of samples by ensuring that the media
display end time is not later than the media decode end time.

OSErr ExtendMediaDecodeDurationToDisplayEndTime (
 Media theMedia,
 Boolean *mediaChanged
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

mediaChanged
A pointer to a Boolean that returns TRUE if any samples in the media were adjusted, FALSE otherwise.
If you don't want to receive this information, set this parameter to NULL.

Return Value
An error code. Returns memFullErr if it could not allocate memory, paramErr if there was an invalid
parameter, or noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
After adding a complete, well-formed set of samples to a media, the media's display end time should be the
same as the media's decode end time (also called the media decode duration). However, this is not necessarily
the case after individual sample-adding operations, and hence it is possible for a media to be left with a
display end time later than its decode end time (if adding a sequence of frames is aborted halfway, for
example).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
Movies.h

1568 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetDataHandler
Retrieves the best data handler component to use with a given data reference.

Component GetDataHandler (
 Handle dataRef,
 OSType dataHandlerSubType,
 long flags
);

Parameters
dataRef

A handle to the data reference. The type of information stored in the handle depends upon the data
reference type specified by the dataHandlerSubType parameter.

dataHandlerSubType
Identifies both the type of data reference and, by implication, the component subtype value assigned
to the data handler components that operate on data references of that type.

flags
Contains flags (see below) that indicate the way in which you intend to use the data handler
component. Note that not all data handlers necessarily support all services; for example, some data
handler components may not support streaming writes. Set the appropriate flags to 1. See these
constants:

kDataHCanRead

kDataHCanWrite

kDataHCanStreamingWrite

Return Value
The best data handler component conforming to the parameters passed in.

Discussion
Once you have used this function to get information about the best data handler component for your data
reference, you can open and use the component using Component Manager functions. If the function returns
a value of NIL, the toolbox was unable to find an appropriate data handler component. For more information
about the error that caused a return of NIL, call GetMoviesError (page 221).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent.win
qtdataref
qtfiletransfer
qtfiletransfer.win
ThreadsImportMovie

Declared In
Movies.h

Functions 1569
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaAdvanceDecodeTime
Returns the advance decode time of a media.

TimeValue64 GetMediaAdvanceDecodeTime (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
A 64-bit time value that represents the media's advance decode time. A media's advance decode time is the
absolute value of the greatest-magnitude negative display offset of its samples, or 0 if there are no samples
with negative display offsets. This is the amount that the decode time axis must be adjusted ahead of the
display time axis to ensure that no sample's adjusted decode time is later than its display time. For media
without nonzero display offsets, the advance decode time is 0.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

GetMediaCreationTime
Returns the creation date and time stored in a media.

unsigned long GetMediaCreationTime (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's creation date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1570 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaDataHandler
Determines a media's data handler.

DataHandler GetMediaDataHandler (
 Media theMedia,
 short index
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
Identifies the data reference. You provide the index value that corresponds to the data reference for
which you want to retrieve the data handler. You must set this parameter to 1.

Return Value
A data handler component instance.

Special Considerations

QuickTime normally takes care of selecting data handlers for media. Your application should not need to call
this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaDataHandlerDescription
Retrieves information about a media's data handler.

void GetMediaDataHandlerDescription (
 Media theMedia,
 short index,
 OSType *dhType,
 Str255 creatorName,
 OSType *creatorManufacturer
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
Identifies the data reference. You provide the index value that corresponds to the data reference for
which you want to retrieve the data handler description. You must set this parameter to 1.

Functions 1571
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dhType
A pointer to a field of data type OSType. The Movie Toolbox returns the data handler type identifier.
This value indicates the type of data reference supported by this data handler. This value also
corresponds to the component subtype specified for the data handler component. All QuickTime
data references have a type value of 'alis'. If you don't want to receive this information, set this
parameter to NIL.

creatorName
Points to a string. The Movie Toolbox returns the name of the data handler's creator. If you don't want
to receive this information, set this parameter to NIL.

creatorManufacturer
A pointer to a long integer. The Movie Toolbox returns the 4-byte value that identifies the manufacturer
of the component. If you don't want to retrieve this information, set this parameter to NIL.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaDataSize
Determines the size, in bytes, of the sample data in a media segment.

long GetMediaDataSize (
 Media theMedia,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

Return Value
The size, in bytes, of the sample data in the defined media segment.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1572 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetMediaDataSize64
Provides a 64-bit version of GetMediaDataSize.

OSErr GetMediaDataSize64 (
 Media theMedia,
 TimeValue startTime,
 TimeValue duration,
 wide *dataSize
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

dataSize
The size, in bytes, of the sample data in the defined media segment.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The only difference between this function andGetMediaDataSize (page 1572) is that thedataSizeparameter
returns a 64-bit integer instead of the function returning a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaDataSizeTime64
Determines the size, in bytes, of the sample data in a media segment.

Functions 1573
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr GetMediaDataSizeTime64 (
 Media theMedia,
 TimeValue64 startDisplayTime,
 TimeValue64 displayDuration,
 SInt64 *dataSize
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

startDisplayTime
A 64-bit time value that specifies the starting point of the segment in media display time.

displayDuration
A 64-bit time value that specifies the duration of the segment in media display time.

dataSize
A pointer to a variable to receive the size, in bytes, of the sample data in the defined media segment.

Return Value
An error code. Returns noErr if there is no error. You can access Movie Toolbox error returns through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result.

Discussion
The only difference between this function and GetMediaDataSize64 is that this function uses 64-bit time
values and returns a 64-bit size.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMediaDecodeDuration
Returns the decode duration of a media.

TimeValue64 GetMediaDecodeDuration (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
A 64-bit time value that represents the media's decode duration. A media's decode duration is the sum of
the decode durations of its samples.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

1574 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetMediaDisplayDuration
Returns the display duration of a media.

TimeValue64 GetMediaDisplayDuration (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
A 64-bit time value that represents the media's display duration. A media's display duration is its display end
time minus its display start time. For media without nonzero display offsets, the decode duration and display
duration are the same.

Discussion
When inserting media with display offsets into a track, use display time:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
Movies.h

GetMediaDisplayEndTime
Returns the display end time of a media.

TimeValue64 GetMediaDisplayEndTime (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
A 64-bit time value that represents the media's display end time. A media's display end time is the sum of
the display time and decode duration of the sample with the greatest display time. For media without nonzero
display offsets, the display end time is the same as the media's decode duration.

Functions 1575
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMediaDisplayStartTime
Returns the display start time of a media.

TimeValue64 GetMediaDisplayStartTime (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
A 64-bit time value that represents the media's display start time. A media's display start time is the earliest
display time of any of its samples. For media without nonzero display offsets, the display start time is always
0.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetMediaDuration
Returns the duration of a media.

TimeValue GetMediaDuration (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's duration.

Discussion
The following code sample illustrates the use of GetMediaDuration:

// GetMediaDuration coding example
// See "Discovering QuickTime," page 89
void CreateMyVideoTrack (Movie movie)
{
 Track track;
 Media media;

1576 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

 Rect rect ={0, 0, 100, 320};
 track =NewMovieTrack(movie,
 FixRatio(rect.right, 1),
 FixRatio(rect.bottom, 1),
 kNoVolume);
 media =NewTrackMedia(track,
 VideoMediaType,
 600, // video time scale
 NIL, NIL);
 BeginMediaEdits(media);
 MyAddVideoSamplesToMedia(media, &rect); // assemble data
 EndMediaEdits(media);
 InsertMediaIntoTrack(track,
 0, // track start time
 0, // media start time
 GetMediaDuration(media),
 kFix1); // normal speed
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
vrmakepano
VRMakePano Library

Declared In
Movies.h

GetMediaHandler
Obtains a reference to a media handler component.

MediaHandler GetMediaHandler (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
A media handler component instance.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1577
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win
qtwiredactions
vrscript
vrscript.win

Declared In
Movies.h

GetMediaHandlerDescription
Retrieves information about a media handler.

void GetMediaHandlerDescription (
 Media theMedia,
 OSType *mediaType,
 Str255 creatorName,
 OSType *creatorManufacturer
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

mediaType
A pointer to a field in which the Movie Toolbox returns the media type identifier (see below). This
value indicates the type of media supported by this media handler. This value also corresponds to
the component subtype specified for the media handler component. If you don't want to receive this
information, set the mediaType parameter to NIL. See these constants:

VideoMediaType

SoundMediaType

TextMediaType

creatorName
Points to a string. The Movie Toolbox returns the name of the media handler's creator. If you don't
want to receive this information, set this parameter to NIL.

creatorManufacturer
A pointer to a long integer. The Movie Toolbox returns the 4-byte value that identifies the manufacturer
of the component. If you don't want to retrieve this information, set this parameter to NIL.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Discussion
The following code sample illustrates the use of GetMediaHandlerDescription:

// GetMediaHandlerDescription coding example

1578 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

GetMediaInputMap
Returns a copy of the input map associated with a specified media.

Functions 1579
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr GetMediaInputMap (
 Media theMedia,
 QTAtomContainer *inputMap
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

inputMap
The media input map for this operation. You must dispose of the map referred to by this parameter
when you are done with it using QTDisposeAtomContainer (page 1427).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function to specify the media you want to get so you can modify its input map, as illustrated below:

// GetMediaInputMap coding example
// See "Discovering QuickTime," page 365
#define kImageIndexToOverride 1
Movie movie1, movie2;
long lReferenceIndex, lImageIndexToOverride;
Track trackSprite;
QTAtomContainer qtacInputMap;
QTAtom lInputAtom;
OSType dwInputType;
Media mediaSprite;
// get the sprite media's input map
mediaSprite =GetTrackMedia(trackSprite);
GetMediaInputMap(mediaSprite, &qtacInputMap);
// add an atom for a modifier track
QTInsertChild(qtacInputMap, kParentAtomIsContainer, kTrackModifierInput,
 lReferenceIndex, 0, 0, NIL, &lInputAtom);
// add a child atom to specify the input type
dwInputType =kTrackModifierTypeImage;
QTInsertChild(qtacInputMap, lInputAtom, kTrackModifierType, 1, 0,
 sizeof(dwInputType), &dwInputType, NIL);
// add a second child atom to specify index of image to override
lImageIndexToOverride =EndianS16_NtoB(kImageIndexToOverride);
QTInsertChild(qtacInputMap, lInputAtom, kSpritePropertyImageIndex, 1, 0,
 sizeof(lImageIndexToOverride), &lImageIndexToOverride, NIL);
// update the sprite media's input map
SetMediaInputMap(mediaSprite, qtacInputMap);
QTDisposeAtomContainer(qtacInputMap);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ChromaKeyMovie

1580 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetMediaLanguage
Returns a media's localized language or region code.

short GetMediaLanguage (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's language or region code.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaModificationTime
Returns a media's modification date and time.

unsigned long GetMediaModificationTime (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's modification date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1581
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaPreferredChunkSize
Retrieves the maximum chunk size for a media.

OSErr GetMediaPreferredChunkSize (
 Media theMedia,
 long *maxChunkSize
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

maxChunkSize
Specifies a field to receive the maximum chunk size, in bytes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaQuality
Returns a media's quality level value.

short GetMediaQuality (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
A short integer whose bits indicate quality constants (see below). More than one of these bits may be set to
1.

Discussion
The Movie Toolbox uses this quality value to influence which track of a movie it selects to play on a given
computer. This even applies to sound media. The low-order 6 bits specify pixel depths and the upper 2 bits
specify quality levels. If a bit is set to 1, the media can be played at the corresponding depth and quality
level.

Version Notes
Introduced in QuickTime 3 or earlier.

1582 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win

Declared In
Movies.h

GetMediaSample
Returns a sample from a movie data file.

OSErr GetMediaSample (
 Media theMedia,
 Handle dataOut,
 long maxSizeToGrow,
 long *size,
 TimeValue time,
 TimeValue *sampleTime,
 TimeValue *durationPerSample,
 SampleDescriptionHandle sampleDescriptionH,
 long *sampleDescriptionIndex,
 long maxNumberOfSample,
 long *numberOfSamples,
 short *sampleFlags
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

dataOut
A handle. The GetMediaSample function returns the sample data into this handle. The function
increases the size of this handle, if necessary. You can specify the handle's maximum size with the
maxSizeToGrow parameter.

maxSizeToGrow
The maximum number of bytes of sample data to be returned. The GetMediaSample function does
not increase the handle specified by the dataOut parameter to a size greater than you specify with
this parameter. Set this value to 0 to enforce no limit on the number of bytes to be returned.

size
A pointer to a long integer. The GetMediaSample function updates the field referred to by the size
parameter with the number of bytes of sample data returned in the handle specified by the dataOut
parameter. Set this parameter to NIL if you are not interested in this information.

time
The starting time of the sample to be retrieved. You must specify this value in the media's time scale.

Functions 1583
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleTime
A pointer to a time value. The GetMediaSample function updates this time value to indicate the
actual time of the returned sample data. (The returned time may differ from the time you specified
with the time parameter. This will occur if the time you specified falls in the middle of a sample.) If
you are not interested in this information, set this parameter to NIL.

durationPerSample
A pointer to a time value. The Movie Toolbox returns the duration of each sample in the media. This
time value is expressed in the media's time scale. Set this parameter to 0 if you don't want this
information.

sampleDescriptionH
A handle to a SampleDescription structure. The GetMediaSample function returns the sample
description corresponding to the returned sample data. The function resizes this handle as appropriate.
If you don't want a SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. The GetMediaSample function returns an index value to the
SampleDescription structure that corresponds to the returned sample data. You can retrieve the
structure by calling GetMediaSampleDescription (page 1587) and passing this index in the descH
parameter. If you don't want this information, set this parameter to NIL.

maxNumberOfSamples
The maximum number of samples to be returned. The Movie Toolbox does not return more samples
than you specify with this parameter. If you set this parameter to 0, the Movie Toolbox uses a value
that is appropriate for the media, and returns that value in the field referenced by the
numberOfSamples parameter.

numberOfSamples
A pointer to a long integer. The GetMediaSample function updates the field referred to by this
parameter with the number of samples it actually returns. If you don't want this information, set this
parameter to NIL.

sampleFlags
A pointer to a short integer in which GetMediaSample returns flags (see below) that describe the
sample. Unused flags are set to 0. If you don't want this information, set this parameter to NIL. See
these constants:

mediaSampleNotSync

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qdmediahandler.win
qttext.win
qtwiredactions
qtwiredactions.win
vrmakepano

1584 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetMediaSample2
Retrieves sample data from a media file.

OSErr GetMediaSample2 (
 Media theMedia,
 UInt8 *dataOut,
 ByteCount maxDataSize,
 ByteCount *size,
 TimeValue64 decodeTime,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *decodeDurationPerSample,
 TimeValue64 *displayOffset,
 SampleDescriptionHandle sampleDescriptionH,
 ItemCount *sampleDescriptionIndex,
 ItemCount maxNumberOfSamples,
 ItemCount *numberOfSamples,
 MediaSampleFlags *sampleFlags
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

dataOut
A pointer to a buffer to receive sample data. The buffer must be large enough to contain at least
maxDataSize bytes. If you do not want to receive sample data, pass NULL.

maxDataSize
The maximum number of bytes allocated to hold the sample data.

size
A pointer to memory where the function returns the number of bytes of sample data returned in the
memory area specified by dataOut. Set this parameter to NULL if you are not interested in this
information.

decodeTime
The starting time of the sample to be retrieved in decode time. You must specify this value in the
media's time scale.

sampleDecodeTime
A pointer to a time value in decode time. The function updates this time value to indicate the actual
time of the returned sample data. (The returned time may differ from the time you specified with the
time parameter. This will occur if the time you specified falls in the middle of a sample.) If you are
not interested in this information, set this parameter to NULL.

decodeDurationPerSample
A pointer to a time value in decode time. The Movie Toolbox returns the duration of each sample in
the media. Set this parameter to NULL if you don't want this information.

displayOffset
A pointer to a time value. The function updates this time value to indicate the display offset of the
returned sample. This time value is expressed in the media's time scale. Set this parameter to NULL
if you don't want this information.

Functions 1585
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleDescriptionH
A handle to a SampleDescription structure. The function returns the sample description
corresponding to the returned sample data. The function resizes this handle as appropriate. If you
don't want a SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. The function returns an index value to the SampleDescription structure
that corresponds to the returned sample data. You can retrieve the structure by calling
GetMediaSampleDescription (page 1587) and passing this index in the descH parameter. If you
don't want this information, set this parameter to NIL.

maxNumberOfSamples
The maximum number of samples to be returned. The Movie Toolbox does not return more samples
than you specify with this parameter. If you set this parameter to 0, the Movie Toolbox uses a value
that is appropriate for the media, and returns that value in the field referenced by the
numberOfSamples parameter.

numberOfSamples
A pointer to a long integer. The function updates the field referred to by this parameter with the
number of samples it actually returns. If you don't want this information, set this parameter to NULL.

sampleFlags
A pointer to a short integer in which the function returns flags that describe the sample. Unused flags
are set to 0. If you don't want this information, set this parameter to NULL: mediaSampleNotSync
This flag is set to 1 if the sample is not a sync sample and to 0 if the sample is a sync sample. See these
constants:

mediaSampleNotSync

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). It returns paramErr if there is a bad parameter value,
maxSizeToGrowTooSmall if the sample data is larger than maxDataSize, or noErr if there is no error.

Discussion
Whereas GetMediaSample (page 1583) takes a resizable Handle and a maxSizeToGrow parameter,
GetMediaSample2 takes a pointer and a maxDataSize parameter. If you want to read a sample into a Handle,
you can use the following code:

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

GetMediaSampleCount
Determines the number of samples in a media.

1586 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

long GetMediaSampleCount (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
The number of samples in the media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieVideoChart
vrmakepano
vrmakepano.win

Declared In
Movies.h

GetMediaSampleDescription
Retrieves a SampleDescription structure from a media.

void GetMediaSampleDescription (
 Media theMedia,
 long index,
 SampleDescriptionHandle descH
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

index
The index of the SampleDescription structure to retrieve. This index corresponds to the structure
itself, not to the samples in the media. Index numbers start with 1.

descH
Specifies a handle that is to receive the SampleDescription structure. The Movie Toolbox correctly
resizes this handle for the returned structure. If there is no description for the specified index, the
function returns this handle unchanged. Your application must allocate and dispose of this handle.

Discussion
The Movie Toolbox identifies a media's sample descriptions with an index value, ranging from 1 to the number
of sample descriptions in the media. Sample description indexes provide a convenient way to access each
sample description in a media. You can access error returns from this function through GetMoviesError (page
221) and GetMoviesStickyError (page 222). See Error Codes.

Functions 1587
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Special Considerations

The format of sample descriptions differs by media type. Sample descriptions for image data are defined by
ImageDescription structures. Sample descriptions for sound are defined by SoundDescription structures.
Sample descriptions for text are defined by TextDescription structures.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
QT Internals

Declared In
Movies.h

GetMediaSampleDescriptionCount
Returns the number of sample descriptions in a media.

long GetMediaSampleDescriptionCount (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
The number of sample descriptions in the media.

Special Considerations

The format of sample descriptions differs by media type. Sample descriptions for image data are defined by
ImageDescription structures. Sample descriptions for sound are defined by SoundDescription structures.
Sample descriptions for text are defined by TextDescription structures.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1588 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaSampleReference
Obtains reference information about samples that are stored in a movie data file.

OSErr GetMediaSampleReference (
 Media theMedia,
 long *dataOffset,
 long *size,
 TimeValue time,
 TimeValue *sampleTime,
 TimeValue *durationPerSample,
 SampleDescriptionHandle sampleDescriptionH,
 long *sampleDescriptionIndex,
 long maxNumberOfSamples,
 long *numberOfSamples,
 short *sampleFlags
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

dataOffset
A pointer to a long integer. GetMediaSampleReference updates the field referred to by this
parameter with the offset to the sample data. This parameter is used differently by each media handler.
For example, the hierarchical file system (HFS) media handler returns an offset into the file that contains
the media data.

size
A pointer to a long integer. GetMediaSampleReference updates the field referred to by the size
parameter with the number of bytes of sample data referred to by the reference. Set this parameter
to NIL if you are not interested in this information.

time
The starting time of the sample reference to be retrieved. You must specify this value in the media's
time scale.

sampleTime
A pointer to a time value. GetMediaSampleReference updates this time value to indicate the actual
time of the returned sample data. (The returned time may differ from the time you specified with the
time parameter. This will occur if the time you specified falls in the middle of a sample.) If you are
not interested in this information, set this parameter to NIL.

durationPerSample
A pointer to a time value. The Movie Toolbox returns the duration of each sample in the media. This
time value is expressed in the media's time scale. Set this parameter to 0 if you don't want this
information.

sampleDescriptionH
A handle to a SampleDescription structure. GetMediaSampleReference returns the structure
corresponding to the returned sample data. The function resizes this handle as appropriate. If you
don't want the SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. GetMediaSampleReference returns an index value to the
SampleDescription structure that corresponds to the returned sample data. To retrieve the media
sample description, pass this index in the descH parameter of GetMediaSampleDescription (page
1587). If you don't want this information, set this parameter to NIL.

Functions 1589
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

maxNumberOfSamples
The maximum number of samples to be returned. The Movie Toolbox does not return a reference
that refers to more samples than you specify with this parameter. If you set this parameter to 0, the
Movie Toolbox uses a value that is appropriate for the media and returns that value in the field
referenced by the numberOfSamples parameter.

numberOfSamples
A pointer to a long integer. GetMediaSampleReference updates the field referred to by this
parameter with the number of samples referred to by the returned reference. If you don't want this
information, set this parameter to NIL.

sampleFlags
A pointer to a short integer in which GetMediaSampleReference returns flags (see below) that
describe the samples referred to by the returned reference. Unused flags are set to 0. If you don't
want this information, set this parameter to NIL. See these constants:

mediaSampleNotSync

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

GetMediaSampleReferences
Obtains reference information about groups of samples that are stored in a movie.

OSErr GetMediaSampleReferences (
 Media theMedia,
 TimeValue time,
 TimeValue *sampleTime,
 SampleDescriptionHandle sampleDescriptionH,
 long *sampleDescriptionIndex,
 long maxNumberOfEntries,
 long *actualNumberofEntries,
 SampleReferencePtr sampleRefs
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

1590 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

time
The starting time of the sample references to be retrieved. You must specify this value in the media's
time scale.

sampleTime
A pointer to a time value. GetMediaSampleReferences updates this time value to indicate the
actual time of the first returned sample data. If you are not interested in this information, set this
parameter to NIL.

sampleDescriptionH
A handle to a SampleDescription structure. GetMediaSampleReference (page 1589) returns the
structure corresponding to the returned sample data. The function resizes this handle as appropriate.
GetMediaSampleReferences only returns a single sample description. If the sample description
changes within the media, GetMediaSampleReferences returns only as many samples as use a
single sample description. You must call it again to get the next group of samples using the next
sample description. If you don't want the SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. GetMediaSampleReferences returns an index value to the
SampleDescription structures that correspond to the returned sample data. Use this index to
retrieve the media sample descriptions with GetMediaSampleDescription (page 1587). If you don't
want this information, set this parameter to NIL.

maxNumberOfEntries
The maximum number of entries to be returned. The sample references pointer provided by the
sampleRefs parameter must be large enough to receive the number of entries specified by this
parameter. The toolbox does not return more entries than you specify with this parameter. It may,
however, return fewer.

actualNumberofEntries
A pointer to a long integer. GetMediaSampleReferences updates the field referred to by this
parameter with the number of entries referred to by the returned reference.

sampleRefs
A pointer to the number of SampleReferenceRecord structures specified in the
maxNumberOfEntries parameter. On return from this call, the number of sample reference records
indicated by the value returned in actualNumberofEntries will be filled in.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Using this function instead of GetMediaSampleReference (page 1589) can greatly increase the performance
of operations that need access to information about each sample in a movie. No information is returned from
this call that wasn't previously available from GetMediaSampleReference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1591
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaSampleReferences64
Provides a 64-bit version of GetMediaSampleReferences.

OSErr GetMediaSampleReferences64 (
 Media theMedia,
 TimeValue time,
 TimeValue *sampleTime,
 SampleDescriptionHandle sampleDescriptionH,
 long *sampleDescriptionIndex,
 long maxNumberOfEntries,
 long *actualNumberofEntries,
 SampleReference64Ptr sampleRefs
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

time
The starting time of the sample references to be retrieved. You must specify this value in the media's
time scale.

sampleTime
A pointer to a time value. GetMediaSampleReferences64 updates this time value to indicate the actual
time of the first returned sample data. If you are not interested in this information, set this parameter
to NIL.

sampleDescriptionH
A handle to a SampleDescription structure. GetMediaSampleReference (page 1589) returns the
sample description corresponding to the returned sample data. The function resizes this handle as
appropriate. GetMediaSampleReferences only returns a single structure. If the sample description
changes within the media, GetMediaSampleReferences returns only as many samples as use a
single sample description. You must call it again to get the next group of samples using the next
sample description. If you don't want the SampleDescription structure, set this parameter to NIL.

sampleDescriptionIndex
A pointer to a long integer. GetMediaSampleReferences64 returns an index value to the sample
descriptions that correspond to the returned sample data. Use this index to retrieve the media sample
descriptions with GetMediaSampleDescription (page 1587). If you don't want this information, set
this parameter to NIL.

maxNumberOfEntries
The maximum number of entries to be returned. The sample references pointer provided by the
sampleRefs parameter must be large enough to receive the number of entries specified by this
parameter. The toolbox does not return more entries than you specify with this parameter. It may,
however, return fewer.

actualNumberofEntries
A pointer to a long integer. GetMediaSampleReferences64 updates the field referred to by this
parameter with the number of entries referred to by the returned reference.

sampleRefs
A pointer to the number of SampleReference64Record structures specified in the
maxNumberOfEntries parameter. On return from this call, the number of sample reference records
indicated by the value returned in actualNumberofEntries will be filled in.

1592 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The only difference between this function and GetMediaSampleReferences (page 1590) is that the
sampleRefsparameter points to SampleReference64Record structures instead of SampleReferenceRecord
structures.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaShadowSync
Obsolete; no longer supported.

OSErr GetMediaShadowSync (
 Media theMedia,
 long frameDiffSampleNum,
 long *syncSampleNum
);

Parameters
theMedia

Indicates the media in which the shadow sync sample has been established and from which the
shadow sync number is to be obtained.

frameDiffSampleNum
The frame difference sample number associated with the desired shadow sync sample number.

syncSampleNum
A pointer to the sample number of the shadow sync sample. If the media does not have a shadow
sync sample, 0 is returned in the syncSampleNum parameter.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

Functions 1593
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMediaSyncSampleCount
Gets the number of sync samples in a media.

long GetMediaSyncSampleCount (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The number of sync samples in the media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMediaTimeScale
Determines a media's time scale.

TimeScale GetMediaTimeScale (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's time scale.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AddFrameToMovie
BurntTextSampleCode
MovieVideoChart
qttext.win
vrmakeobject

1594 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetMediaTrack
Determines the track that uses a specified media.

Track GetMediaTrack (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The track identifier of the track that uses the specified media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CaptureAndCompressIPBMovie
QTExtractAndConvertToMovieFile
qtmovietrack
qtmovietrack.win
SCAudioCompress

Declared In
Movies.h

GetMediaUserData
Obtains access to a media's user data list.

UserData GetMediaUserData (
 Media theMedia
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Return Value
The media's user data list.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1595
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieDataSize
Determines the size of the sample data in a segment of a movie.

long GetMovieDataSize (
 Movie theMovie,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theMovie

The movie for this operation. You obtain this movie identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

Return Value
The size, in bytes, of the sample data in the defined segment of the designated movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieDataSize64
Provides a 64-bit version of GetMovieDataSize.

OSErr GetMovieDataSize64 (
 Movie theMovie,
 TimeValue startTime,
 TimeValue duration,
 wide *dataSize
);

Parameters
theMovie

The movie for this operation. You obtain this movie identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

1596 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

data size
The size, in bytes, of the sample data in the defined segment of the designated movie.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The only difference between this function andGetMovieDataSize (page 1596) is that thedataSizeparameter
is a 64-bit integer instead of a 32-bit integer.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieImporterForDataRef
Gets the movie importer component for a movie.

OSErr GetMovieImporterForDataRef (
 OSType dataRefType,
 Handle dataRef,
 long flags,
 Component *importer
);

Parameters
dataRefType

The type of data reference; see Data References.

dataRef
A handle to the data reference. The type of information stored in the handle depends upon the data
reference type specified by dataRefType.

flags
Flags (see below) that modify this function's behavior. See these constants:

kGetMovieImporterDontConsiderGraphicsImporters

importer
A pointer to an importer component that can import the movie. Returns NIL if no importer can be
found.

Functions 1597
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
If this function is allowed to use async calls (by being passed kGetMovieImporterUseAsyncCalls in the
flags parameter), it returns notEnoughDataErr if it would block. You can access this error return through
GetMoviesError (page 221) and GetMoviesStickyError (page 222), as well as in the function result. For
other errors, see Error Codes.

Discussion
You can use GetMovieImporterForDataRef to determine if a file can be opened by QuickTime as a movie
(for example, in a drag-and-drop operation) as illustrated below:

AliasHandle alias;
MovieImportComponent mi;
NewAliasMinimal(&reply.sfFile, &alias);
GetMovieImporterForDataRef(rAliasType, (Handle)alias,
kGetMovieImporterDontConsiderGraphicsImporters, &mi);
DisposeHandle((Handle)alias);
if (mi !=NIL) {
 // this file can be opened as a movie
 . . .
 }

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

GetMovieIndTrack
Determines the track identifier of a track, given the track's index value.

Track GetMovieIndTrack (
 Movie theMovie,
 long index
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

index
The index value of the track for this operation.

1598 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
A track identifier. If the function cannot locate the track, it sets this returned value to NIL.

Discussion
This function returns the track identifier that is appropriate to the specified track. The index value identifies
the track among all current tracks in a movie. Index values range from 1 to the number of tracks in the movie.
The following code sample illustrates its use:

// GetMovieIndTrack coding example
// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ChromaKeyMovie
QT Internals
qtinfo
qtinfo.win
qttext.win

Declared In
Movies.h

Functions 1599
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

GetMovieIndTrackType
Searches for all of a movie's tracks that share a given media type or media characteristic.

Track GetMovieIndTrackType (
 Movie theMovie,
 long index,
 OSType trackType,
 long flags
);

Parameters
theMovie

The movie for this operation. Your application obtains this identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

index
The index value of the track for this operation. This is not that same as the track's index value in the
movie. Rather, this parameter is an index into the set of tracks that meet your other selection criteria.

trackType
Contains either a media type or a media characteristic value. The toolbox applies this value to the
search, and returns information about tracks that meet this criterion. You indicate whether you have
specified a media type or characteristic value by setting the flags parameter appropriately.

flags
Contains flags (see below) that control the search operation. Note that you may not set both
movieTrackMediaType and movieTrackCharacteristic to 1. See these constants:

movieTrackMediaType

movieTrackCharacteristic

movieTrackEnabledOnly

Return Value
A track identifier.

Discussion
The toolbox returns the track identifier that corresponds to the track that meets your selection criteria. If the
toolbox cannot find a matching track, in returns a value of NIL. Note that the index parameter does not
work the same way that is does in GetMovieIndTrack (page 1598). With GetMovieIndTrackType, the
index parameter specifies an index into the set of tracks that meet your other selection criteria. For example,
in order to find the third track that supports the sound characteristic, you would call the function in the
following manner:

theTrack =GetMovieIndTrackType (theMovie, 3, AudioMediaCharacteristic,
movieTrackCharacteristic);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qttext

1600 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

qttext.win
qttimecode.win

Declared In
Movies.h

GetMovieTrack
Determines the track identifier of a track, given the track's ID value.

Track GetMovieTrack (
 Movie theMovie,
 long trackID
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

trackID
The ID value of the track for this operation.

Return Value
A track identifier.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetMovieTrackCount
Returns the number of tracks in a movie.

long GetMovieTrackCount (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
The number of tracks in the movie.

Discussion
The following code sample illustrates the use of GetMovieTrackCount:

// GetMovieTrackCount coding example

Functions 1601
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

// See "Discovering QuickTime," page 363
Movie movie1;
TimeValue lOldDuration;
Movie movie2;
long lIndex, lOrigTrackCount, lReferenceIndex;
Track track, trackSprite;
// get the first track in original movie and position at the start
trackSprite =GetMovieIndTrack(movie1, 1);
SetMovieSelection(movie1, 0, 0);
// remove all tracks except video in modifier movie
for (lIndex =1; lIndex <=GetMovieTrackCount(movie2); lIndex++) {
 Track track =GetMovieIndTrack(movie2, lIndex);
 OSType dwType;
 GetMediaHandlerDescription(GetTrackMedia(track),
 &dwType, NIL, NIL);
 if (dwType !=VideoMediaType) {
 DisposeMovieTrack(track);
 lIndex--;
 }
}
// add the modifier track to original movie
lOldDuration =GetMovieDuration(movie1);
AddMovieSelection(movie1, movie2);
DisposeMovie(movie2);
// truncate the movie to the length of the original track
DeleteMovieSegment(movie1, lOldDuration,
 GetMovieDuration(movie1) - lOldDuration);
// associate the modifier track with the original sprite track
track =GetMovieIndTrack(movie1, lOrigTrackCount + 1);
AddTrackReference(trackSprite, track, kTrackModifierReference,
 &lReferenceIndex);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QT Internals
qtinfo
qtinfo.win
qttext
qttext.win

Declared In
Movies.h

GetNextTrackReferenceType
Determines all of the track reference types that are defined for a given track.

1602 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSType GetNextTrackReferenceType (
 Track theTrack,
 OSType refType
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

refType
The type of reference. Set this parameter to 0 to retrieve the first track reference type. On subsequent
requests, use the previous value returned by this function.

Return Value
An OSType containing the next track reference type value defined for the track; see Data References.

Discussion
There is no implied ordering of the values returned by this function . When you reach the end of the track's
reference types, this function sets the returned value to 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
qtgraphics.win
QTKitTimeCode
vrbackbuffer.win

Declared In
Movies.h

GetTrackAlternate
Determines all the tracks in an alternate group.

Track GetTrackAlternate (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The track identifier of the next track in the group.

Functions 1603
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
This function returns the track identifier of the next track in the group. Because the alternate group list is
circular, you must specify a different track in the group each time you call this function. You have retrieved
all the tracks in the group when the function returns the track identifier that you supplied the first time you
called GetTrackAlternate. If there is only one track in an alternate group, or if the track you specify does
not belong to a group, this function returns the track identifier you supply.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackCreationTime
Returns a track's creation date and time.

unsigned long GetTrackCreationTime (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The track's creation date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackDataSize
Determines the size, in bytes, of the sample data in a segment of a track.

1604 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

long GetTrackDataSize (
 Track theTrack,
 TimeValue startTime,
 TimeValue duration
);

Parameters
theTrack

The track for this operation. You obtain this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

Return Value
The size, in bytes, of the sample data in a segment of a track.

Discussion
This function counts each use of a sample. That is, if a track uses a given sample more than once, the size of
that sample is included in the returned size value one time for each use. Consequently, the returned size is
greater than or equal to the actual size of the track's sample data.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackDataSize64
Provides a 64-bit version of GetTrackDataSize.

OSErr GetTrackDataSize64 (
 Track theTrack,
 TimeValue startTime,
 TimeValue duration,
 wide *dataSize
);

Parameters
theTrack

A track identifier. Your application obtains this identifier from such functions as NewMovieTrack (page
1628) and GetMovieTrack (page 1601).

startTime
A time value specifying the starting point of the segment.

duration
A time value that specifies the duration of the segment.

Functions 1605
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dataSize
The size, in bytes, of the sample data in a segment of a track. This function counts each use of a sample.
That is, if a track uses a given sample more than once, the size of that sample is included in the
returned size value one time for each use. Consequently, the returned size is greater than or equal
to the actual size of the track's sample data.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The only difference between this function and GetTrackDataSize (page 1604) is that size of the sample data
is returned as a 64-bit integer in the dataSize parameter instead of as a 32-bit integer returned by the
function.

Special Considerations

New applications should use this function instead of the 32-bit version.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackDimensions
Determines a track's source rectangle.

void GetTrackDimensions (
 Track theTrack,
 Fixed *width,
 Fixed *height
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack (page 1601).

width
A pointer to a fixed-point number. The Movie Toolbox returns the width, in pixels, of the track's
rectangle. This value corresponds to the x coordinate of the lower-right corner of the track's rectangle.

height
A pointer to a fixed-point number. The Movie Toolbox returns the height, in pixels, of the track's
rectangle. This value corresponds to the y coordinate of the lower-right corner of the track's rectangle.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

1606 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects.win
qttext.win
SlideShowImporter.win
vrmakeobject
vrmakepano

Declared In
Movies.h

GetTrackDisplayMatrix
Returns a matrix that is the concatenation of all matrices currently affecting the track's location, scaling, and
so on, including the movie's matrix, the track's matrix, and the modifier matrix.

OSErr GetTrackDisplayMatrix (
 Track theTrack,
 MatrixRecord *matrix
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

matrix
A pointer to a matrix structure.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Since modifier information is passed between tracks at MoviesTask (page 257) time, the information returned
by this call represents the matrix in effect at the last MoviesTask call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackDuration
Returns the duration of a track.

Functions 1607
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

TimeValue GetTrackDuration (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The duration of the specified track, expressed in the time scale of the movie that contains the track.

Discussion
The duration corresponds to the ending time of the track in the movie's time coordinate system (remember
that all tracks start at movie time 0).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
MakeEffectMovie
makeeffectslideshow
makeeffectslideshow.win
qteffects.win

Declared In
Movies.h

GetTrackEditRate
Returns the rate of the track edit of a specified track at an indicated time.

Fixed GetTrackEditRate (
 Track theTrack,
 TimeValue atTime
);

Parameters
theTrack

The track identifier for which the rate of a track edit (at the time given in the atTime parameter) is
to be determined.

atTime
Indicates a time value at which the rate of a track edit (of a track identified in the parameter theTrack)
is to be determined.

Return Value
The rate of the track edit of the specified track at the specified time.

1608 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
This function is useful if you are stepping through track edits directly in your application or if you are a client
of QuickTime's base media handler.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addflashactions.win
addhtactions.win
addvractions
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

GetTrackEditRate64
Returns the rate of the track edit of a specified track at an indicated time.

Fixed GetTrackEditRate64 (
 Track theTrack,
 TimeValue64 atTime
);

Parameters
theTrack

A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

atTime
A 64-bit time value that indicates the time at which the rate of a track edit (of a track identified in the
parameter theTrack) is to be determined.

Return Value
The rate of the track edit of the specified track at the specified time.

Discussion
This function is useful if you are stepping through track edits directly in your application or if you are a client
of QuickTime's base media handler.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

GetTrackEnabled
Determines whether a track is currently enabled.

Functions 1609
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Boolean GetTrackEnabled (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack (page 1601).

Return Value
TRUE if the specified track is currently enabled, FALSE otherwise.

Discussion
The Movie Toolbox services only enabled tracks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win
qttimecode
qttimecode.win
vrscript.win

Declared In
Movies.h

GetTrackID
Determines a track's unique track ID value.

long GetTrackID (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The specified track's unique track ID value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QT Internals

1610 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

GetTrackLayer
Retrieves a track's layer.

short GetTrackLayer (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The specified track's layer number. Layers with lower numbers appear in front of layers with higher numbers.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
qtaddeffectseg
qtaddeffectseg.win
qteffects
qteffects.win

Declared In
Movies.h

GetTrackMatrix
Retrieves a track's transformation matrix.

void GetTrackMatrix (
 Track theTrack,
 MatrixRecord *matrix
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack (page 1601).

Functions 1611
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

matrix
A pointer to a MatrixRecord structure. The GetTrackMatrix function returns the track's matrix
into the structure referred to by this parameter.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
QTKitTimeCode
qttext.win
qttimecode
qttimecode.win

Declared In
Movies.h

GetTrackMedia
Determines the media that contains a track's sample data.

Media GetTrackMedia (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The media identifier for the media that contains the track's sample data. If the function could not locate the
media, it sets this returned value to NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
MovieVideoChart
qtspritesplus.win
qttext
qttext.win

1612 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

GetTrackModificationTime
Returns a track's modification date and time.

unsigned long GetTrackModificationTime (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The specified track's modification date and time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackMovie
Determines the movie that contains a specified track.

Movie GetTrackMovie (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack and GetMovieTrack (page 1601).

Return Value
The identifier of the movie that contains the track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qtmovietrack
qtmovietrack.win

Functions 1613
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

qttext
qttext.win

Declared In
Movies.h

GetTrackOffset
Determines the time difference between the start of a track and the start of the movie that contains the track.

TimeValue GetTrackOffset (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The time difference between the start of the specified track and the start of the movie that contains the track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addflashactions.win
addhtactions.win
BurntTextSampleCode
qtwiredactions
qtwiredactions.win

Declared In
Movies.h

GetTrackReference
Retrieves the track identifier contained in an existing track reference.

Track GetTrackReference (
 Track theTrack,
 OSType refType,
 long index
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

1614 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

refType
The type of reference; see Data References.

index
The index value of the reference found. You obtain this index value when you create the track reference.

Return Value
The track identifier for the specified track. If the toolbox cannot locate the track reference corresponding to
your specifications, it returns a value of NIL.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie
qteffects.win
QTKitTimeCode
qttext
qttext.win

Declared In
Movies.h

GetTrackReferenceCount
Determines how many track references of a given type exist for a track.

long GetTrackReferenceCount (
 Track theTrack,
 OSType refType
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

refType
The type of reference; see Data References. The toolbox determines the number of track references
of this type.

Return Value
A long integer that specifies the number of track references of the specified type in the track. If there are no
references of the type you have specified, the function returns a value of 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie

Functions 1615
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

qteffects.win
QTKitTimeCode
qttext
qttext.win

Declared In
Movies.h

GetTrackSoundLocalizationSettings
Returns a handle to a copy of the current 3D sound settings for a specified track.

OSErr GetTrackSoundLocalizationSettings (
 Track theTrack,
 Handle *settings
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

settings
A handle to a copy of the current 3D sound settings for a specified track, in the format of an
SSpLocalizationData record. If there are no 3D sound settings, the returned handle is set to NIL.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Special Considerations

The caller of this function is responsible for disposing of the returned handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

GetTrackUsage
Determines whether a track is used in a movie, its preview, its poster, or a combination of these.

1616 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

long GetTrackUsage (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
Track usage flags (see below). These flags may be combined.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QT Internals
qtinfo
qtinfo.win

Declared In
Movies.h

GetTrackUserData
Obtains access to a track's user data list.

UserData GetTrackUserData (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
A reference to the specified track's user data. If the function could not locate the track's user data, it sets this
returned value to NIL.

Discussion
This function returns a reference to the track's user data list, which is valid until you dispose of the track.
When you save the track, the Movie Toolbox saves the user data as well.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MakeEffectMovie

Functions 1617
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

qteffects.win
qtgraphics.win
qtwiredactions
vrbackbuffer.win

Declared In
Movies.h

GetTrackVolume
Returns a track's current volume setting.

short GetTrackVolume (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The specified track's current volume setting. The values returned in the high and low words range from
0x0000 (silence) to 0x0100 (full volume). You can use constants (see below) to test for full volume and no
volume.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BurntTextSampleCode
MovieGWorlds
QT Internals
vrmakepano
VRMakePano Library

Declared In
Movies.h

InsertEmptyMovieSegment
Adds an empty segment to a movie.

1618 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr InsertEmptyMovieSegment (
 Movie dstMovie,
 TimeValue dstIn,
 TimeValue dstDuration
);

Parameters
dstMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), or NewMovieFromHandle (page 1400).

dstIn
A time value that specifies where the segment is to be inserted. This time value must be expressed
in the movie's time scale.

dstDuration
A time value that specifies the duration of the segment to be added. This time value must be expressed
in the movie's time scale.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the starting time and duration of the empty segment to be added. These times must be expressed
in the movie's time scale. You cannot add empty space to the end of a movie. If you want to insert a segment
beyond the end of a movie, use InsertMovieSegment (page 1622).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

InsertEmptyTrackSegment
Adds an empty segment to a track.

OSErr InsertEmptyTrackSegment (
 Track dstTrack,
 TimeValue dstIn,
 TimeValue dstDuration
);

Parameters
dstTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

dstIn
A time value specifying where the segment is to be inserted. This time value must be expressed in
the time scale of the movie that contains the destination track.

Functions 1619
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dstDuration
A time value that specifies the duration of the segment to be added. This time value must be expressed
in the time scale of the movie that contains the destination track.

Return Value
See Error Codes. If you try to add an empty segment beyond the end of a track, this function does not
add the empty segment and returns a result code of invalidTime. Returns noErr if there is no error.

Discussion
You specify the starting time and duration of the empty segment to be added. These times must be expressed
in the movie's time scale. This function then inserts the appropriate amount of empty time into the track.
The exact meaning of the term empty time depends upon the type of track. For example, empty time in a
sound track is silence. Note that you cannot add empty space to the end of a movie or to the end of a track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

InsertMediaIntoTrack
Inserts a reference to a media segment into a track.

OSErr InsertMediaIntoTrack (
 Track theTrack,
 TimeValue trackStart,
 TimeValue mediaTime,
 TimeValue mediaDuration,
 Fixed mediaRate
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) or GetMovieTrack (page 1601).

trackStart
A time value specifying where the segment is to be inserted. This time value must be expressed in
the movie's time scale. If you set this parameter to -1, the media data is added to the end of the track.

mediaTime
A time value specifying the starting point of the segment in the media. This time value must be
expressed in the media's time scale.

mediaDuration
A time value specifying the duration of the media's segment. This time value must be expressed in
the media's time scale.

mediaRate
The media's rate. A value of 1.0 indicates the media's natural playback rate. This value should be
positive and not 0.

1620 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You specify the segment in the media by providing a starting time and duration. You specify the point in
the destination track by providing a time in the track. InsertMediaIntoTrack then inserts the media
segment into the track at the specified location. The Movie Toolbox determines the duration of the segment
in the track based on the media rate and duration information you provide.

Use this function after you have added samples to a media. If you play the track before you call this function,
the track does not contain the new media data.

Here's an example of using this function to add atom containers to a track:

//InsertMediaIntoTrack coding example
long descSize;
QTVRSampleDescriptionHandle qtvrSampleDesc;

// Create a QTVR sample description handle
descSize =sizeof(QTVRSampleDescription) + GetHandleSize((Handle) vrWorld)
 - sizeof(UInt32);
qtvrSampleDesc =(QTVRSampleDescriptionHandle) NewHandleClear (descSize);
(*qtvrSampleDesc)->
size =descSize;
(*qtvrSampleDesc)->
type =kQTVRQTVRType;

// Copy the VR world atom container data into the QTVR sample description
BlockMove (*((Handle) vrWorld), &((*qtvrSampleDesc)->
data),
 GetHandleSize((Handle) vrWorld));
// Now add it to the QTVR track's media
err =BeginMediaEdits (qtvrMedia);
err =AddMediaSample (qtvrMedia, (Handle) nodeInfo, 0,
 GetHandleSize((Handle) nodeInfo), duration,
 (SampleDescriptionHandle) qtvrSampleDesc, 1, 0, &sampleTime);
err =EndMediaEdits (qtvrMedia);
InsertMediaIntoTrack (qtvrTrack, trackTime, sampleTime, duration, 1L<<16);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

Functions 1621
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

InsertMovieSegment
Copies part of one movie to another.

OSErr InsertMovieSegment (
 Movie srcMovie,
 Movie dstMovie,
 TimeValue srcIn,
 TimeValue srcDuration,
 TimeValue dstIn
);

Parameters
srcMovie

The source movie for this operation. Your application obtains this movie identifier from such functions
asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page 1400). This
function obtains the movie segment from the source movie specified in this parameter.

dstMovie
The destination movie for this operation. The function places a copy of the segment, which it obtained
from the source movie, into this destination movie.

srcIn
The start of the segment in the source movie. This time value must be expressed in the source movie's
time scale.

srcDuration
The duration of the segment in the source movie. This time value must be expressed in the source
movie's time scale.

dstIn
A time value specifying where the segment is to be inserted. This time value must be expressed in
the destination movie's time scale.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you are not copying data from one location in a movie to a different point in the same movie, this function
may create new tracks, as appropriate. Before adding a track to the destination movie, the Movie Toolbox
looks in the destination movie for tracks that have the same characteristics as the tracks in the source movie.
The toolbox considers several characteristics when searching for an appropriate track, including track spatial
dimensions, track matrix, track clipping region, track matte, alternate group affiliation, media time scale,
media type, media language, and data reference (that is, referring to the same file). If the Movie Toolbox
cannot find an appropriate track in the destination movie, it creates a new track with the proper characteristics.

Special Considerations

If you have assigned a progress function to the destination movie, the Movie Toolbox calls that progress
function during long copy operations. Some Movie Toolbox functions can take a long time to execute. For
example, if you call FlattenMovie (page 1336) and specify a large movie, the Movie Toolbox must read and
write all the sample data for the movie. During such operations you may wish to display some kind of progress
indicator to the user.

Version Notes
Introduced in QuickTime 3 or earlier.

1622 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
qtstreamsplicer
qtstreamsplicer.win

Declared In
Movies.h

InsertTrackSegment
Copies data into a track.

OSErr InsertTrackSegment (
 Track srcTrack,
 Track dstTrack,
 TimeValue srcIn,
 TimeValue srcDuration,
 TimeValue dstIn
);

Parameters
srcTrack

The source track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

dstTrack
The destination track for this operation. This function places a copy of the segment, which is obtained
from the source track, into this destination track. The media for the destination track must be opened
for writing by calling BeginMediaEdits (page 1549) in order for the data to be copied. If the media
is not opened for writing, the segment will be copied by reference. At the end of the editing session,
your application must call EndMediaEdits (page 1567) if it has called BeginMediaEdits.

srcIn
The start of the segment in the source track. This time value must be expressed in the time scale of
the movie that contains the source track.

srcDuration
The duration of the segment in the source track. This time value must be expressed in the time scale
of the movie that contains the source track.

dstIn
A time value specifying where the segment is to be inserted. This time value must be expressed in
the time scale of the movie that contains the destination track.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1623
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
If you are copying data between tracks, make sure that the two tracks are of the same type. For example,
you cannot copy a segment from a sound track into a video track. If you have assigned a progress function
to the movie that contains the destination track, the Movie Toolbox calls that progress function during long
copy operations.

Special Considerations

If you copy a segment without calling BeginMediaEdits on the destination track's media, the data can be
copied later by flattening the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtaddeffectseg
qtaddeffectseg.win
qteffects
qteffects.win
qtstreamsplicer.win

Declared In
Movies.h

IsScrapMovie
Checks the system scrap to find out if it can translate any of the data into a movie.

Component IsScrapMovie (
 Track targetTrack
);

Parameters
targetTrack

The location of the potential target movie track for the data on the system scrap.

Return Value
If IsScrapMovie finds an appropriate type, it returns a movie import component that can translate the
scrap. Otherwise, it returns 0.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1624 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

MediaContainsDisplayOffsets
Tests whether a media contains display offsets.

Boolean MediaContainsDisplayOffsets (
 Media theMedia
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

Return Value
TRUE if the media is valid and contains at least one sample with a nonzero display offset; FALSE otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Movies.h

MediaDecodeTimeToSampleNum
Finds the sample for a specified decode time.

void MediaDecodeTimeToSampleNum (
 Media theMedia,
 TimeValue64 decodeTime,
 SInt64 *sampleNum,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *sampleDecodeDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

decodeTime
A 64-bit time value that represents the decode time for which you are retrieving sample information.
You must specify this value in the media's time scale.

sampleNum
A pointer to a variable that is to receive the sample number. The function returns the sample number
that identifies the sample that contains data for the specified decode time, or 0 if it is not found.

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the logicalSampleNum parameter. This time value is expressed in the
media's time scale. Set this parameter to NULL if you do not want this information.

Functions 1625
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). It returns paramErr if there is a bad parameter value, invalidTime
if sampleDecodeTime is out of the decode time range, or noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

MediaDisplayTimeToSampleNum
Finds the sample number for a specified display time.

void MediaDisplayTimeToSampleNum (
 Media theMedia,
 TimeValue64 displayTime,
 SInt64 *sampleNum,
 TimeValue64 *sampleDisplayTime,
 TimeValue64 *sampleDisplayDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

displayTime
A 64-bit time value that represents the display time for which you are retrieving sample information.
You must specify this value in the media's time scale.

sampleNum
A pointer to a long integer that is to receive the sample number. The function returns the sample
number that identifies the sample for the specified display time, or 0 if it is not found.

sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). It returns paramErr if there is a bad parameter value, invalidTime
if sampleDisplayTime is out of the display time range, or noErr if there is no error.

Availability
Available in Mac OS X v10.3 and later.

1626 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
MovieVideoChart

Declared In
Movies.h

MediaTimeToSampleNum
Lets you find the sample that contains the data for a specified time.

void MediaTimeToSampleNum (
 Media theMedia,
 TimeValue time,
 long *sampleNum,
 TimeValue *sampleTime,
 TimeValue *sampleDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

time
The time for which you are retrieving sample information. You must specify this value in the media's
time scale.

sampleNum
A pointer to a long integer that is to receive the sample number. The Movie Toolbox returns the
sample number that identifies the sample that contains data for the time specified by the time
parameter.

sampleTime
A pointer to a time value. The MediaTimeToSampleNum function updates this time value to indicate
the starting time of the sample that contains data for the time specified by the time parameter. This
time value is expressed in the media's time scale. Set this parameter to NIL if you don't want this
information.

sampleDuration
A pointer to a time value. The Movie Toolbox returns the duration of the sample that contains data
for the time specified by the time parameter. This time value is expressed in the media's time scale.
Set this parameter to NIL if you don't want this information.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qttext
qttext.win

Functions 1627
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

NewMovieEditState
Creates an edit state.

MovieEditState NewMovieEditState (
 Movie theMovie
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
A pointer to a MovieEditStateRecord structure. The edit state contains all the information describing a
movie's content, including the current selection, the movie's tracks, and the media data associated with those
tracks.

Special Considerations

You must dispose of a movie's MovieEditStateRecord structures, using DisposeMovieEditState (page
1564), before you dispose of the movie itself.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewMovieTrack
Creates a new movie track, without a media.

Track NewMovieTrack (
 Movie theMovie,
 Fixed width,
 Fixed height,
 short trackVolume
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

width
A fixed number denoting the display width of the track, in pixels.

1628 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

height
A fixed number denoting the display height of the track, in pixels. Together, the height and width
parameters define the track's display rectangle. The upper-left corner of this rectangle lies at (0,0) in
the movie's rectangle. The height and width parameters therefore establish the lower-right corner of
the track's display rectangle. If you are creating a track that is not displayed, such as a sound track,
set the height and width parameters to 0.

trackVolume
The volume setting of the track as a 16-bit, fixed-point number. The high-order 8 bits specify the
integer portion; the low-order 8 bits specify the fractional part. Volume values range from -1.0 to 1.0.
Negative values play no sound but preserve the absolute value of the volume setting. Set this parameter
to kFullVolume to play the track at its full, natural volume. Set this parameter to kNoVolume to set
the volume to 0. See these constants:

Return Value
The identifier of the new track.

Discussion
Immediately after creating a new track, you should call NewTrackMedia (page 1630) to create a media for the
track; a track without a media is of no use. The following code sample creates a new sprite track and media,
then calls BeginMediaEdits (page 1549) to prepare to add samples to the media:

// NewMovieTrack coding example
// See "Discovering QuickTime," page 349
#define kSpriteMediaTimeScale 600
track =NewMovieTrack(movie, ((long)lTrackWidth << 16),
 ((long)lTrackHeight << 16), 0);
media =NewTrackMedia(track, SpriteMediaType,
 kSpriteMediaTimeScale, NIL, 0);
FailOSErr(BeginMediaEdits(media));

Special Considerations

When you add a track to a movie, the Movie Toolbox automatically adjusts the display Rect structure of the
movie. You may want to detect these changes by calling GetMovieBox (page 207) so that you can adjust the
size of the movie's display window.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

Functions 1629
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

NewTrackEditState
Creates a new edit state for a given track.

TrackEditState NewTrackEditState (
 Track theTrack
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The track's edit state identifier. If the edit state could not be created, the returned identifier is set to NIL. You
must dispose of a movie's track edit states, using Use DisposeTrackEditState (page 1566), before disposing
of the track or of the movie that contains the track.

Discussion
Use the returned identifier with other Movie Toolbox edit state functions, such as UseTrackEditState (page
1660). The edit state contains all the information describing a track's content, including the identity of the
media data associated with the track and all the track's edit lists.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

NewTrackMedia
Creates a media for a new track.

Media NewTrackMedia (
 Track theTrack,
 OSType mediaType,
 TimeScale timeScale,
 Handle dataRef,
 OSType dataRefType
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628).

mediaType
The type of media to create; see Media Identifiers. The Movie Toolbox uses this value to find
the correct media handler for the new media. If the Movie Toolbox cannot locate an appropriate
media handler, it returns an error.

timeScale
Defines the media's time coordinate system.

1630 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

dataRef
The data reference. This parameter contains a handle to the information that identifies the file that
contains this media's data. The type of information stored in that handle depends upon the value of
the dataRefType parameter. If you are creating a new media that refers to existing media data, you
can use the GetMediaDataRef (page 1342) function to obtain information about the existing data
reference. You can then supply information about that reference to this function. Set this parameter
to NIL to use the file that is associated with the movie or if the movie does not have a movie file. For
example, if you have created the movie using CreateMovieFile (page 1316) or
NewMovieFromFile (page 1398), the Movie Toolbox assumes that the movie's data resides in the file
specified at that time. If you have created the movie using the NewMovieFromScrap (page 1402) or
NewMovie (page 259) functions, the movie does not have a movie file.

dataRefType
The type of data reference; see Data References. If the data reference is an alias, you must set this
parameter to rAliasType. See Inside Macintosh: Files for more information about aliases and the
Alias Manager.

Return Value
A media identifier, referring to the actual data samples used by the track. If the function cannot create a new
media, it sets the returned value to NIL.

Discussion
The following code sample creates a new sprite track and media, then calls BeginMediaEdits (page 1549)
to prepare to add samples to the media:

// NewTrackMedia coding example
// See "Discovering QuickTime," page 349
#define kSpriteMediaTimeScale 600
track =NewMovieTrack(movie, ((long)lTrackWidth << 16),
 ((long)lTrackHeight << 16), 0);
media =NewTrackMedia(track, SpriteMediaType,
 kSpriteMediaTimeScale, NIL, 0);
FailOSErr(BeginMediaEdits(media));

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
vrmakepano
VRMakePano Library
vrmakepano.win

Declared In
Movies.h

OpenADataHandler
Opens a data handler component.

Functions 1631
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr OpenADataHandler (
 Handle dataRef,
 OSType dataHandlerSubType,
 Handle anchorDataRef,
 OSType anchorDataRefType,
 TimeBase tb,
 long flags,
 ComponentInstance *dh
);

Parameters
dataRef

A handle to a data reference. The type of information stored in the handle depends upon the data
reference type specified by the dataHandlerSubType parameter.

dataHandlerSubType
Identifies both the type of data reference and, by implication, the component subtype value assigned
to the data handler components that operate on data references of that type.

anchorDataRef
A handle to the anchor data reference.

anchorDataRefType
The type of the anchor data reference.

tb
The time base for the data handler. Your application obtains this time base identifier from
NewTimeBase (page 261).

flags
Flags (see below) that indicate the way in which you intend to use the data handler component. Not
all data handlers necessarily support all services; for example, some data handler components may
not support streaming writes. Set the appropriate flags to 1. See these constants:

kDataHCanRead

kDataHCanWrite

kDataHCanStreamingWrite

dh
A pointer to a field to receive the ComponentInstance value of the newly-opened data handler
component.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ElectricImageComponent
ElectricImageComponent.win

Declared In
Movies.h

1632 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

PasteHandleIntoMovie
Takes the contents of a specified handle, together with its type, and pastes it into a specified movie.

OSErr PasteHandleIntoMovie (
 Handle h,
 OSType handleType,
 Movie theMovie,
 long flags,
 ComponentInstance userComp
);

Parameters
h

The handle to be pasted into the movie indicated by the theMovie parameter.

handleType
The data type of the handle specified in the h parameter. If the handle is set to 0, the function searches
the scrap for a field of the type handleType. If both the h parameter and the handleType parameter
are NIL, the function uses the first available data from the scrap.

theMovie
The destination movie for this operation. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

flags
A flag (see below) that can further refine conditions of the paste operation. See these constants:

pasteInParallel

userComp
The component or an instance of the component that is to perform the conversion of the data into
a QuickTime movie. If you want a particular movie import component to perform the conversion, you
may pass the component or an instance of that component. Otherwise, set this parameter to 0 to
allow the Movie Toolbox to determine the appropriate component. If you pass in a component
instance, this function uses it. This allows you to communicate directly with the component before
using this function to establish any conversion parameters. If you pass in a component ID, an instance
is created and closed within this function.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
If you are just pasting in data from the scrap, it is best to allow this function to retrieve the data from the
scrap, rather than doing it yourself. In this way, the function is able to obtain supplemental data from the
scrap, if necessary (for example, 'styl' resources for 'TEXT'). This function can paste into the current
selection in two different ways. If the selection is empty (for example, duration =0), it adds the data with the
appropriate duration. If the selection is not empty, the data is added and then scaled to fit into the duration
of the selection. The current selection is deleted, unless you set the pasteInParallel flag.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1633
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

PasteMovieSelection
Places the tracks from one movie into another movie.

void PasteMovieSelection (
 Movie theMovie,
 Movie src
);

Parameters
theMovie

The destination movie for this operation. Your application obtains this movie identifier from such
functions asNewMovie (page 259),NewMovieFromFile (page 1398), andNewMovieFromHandle (page
1400).

src
The source movie for this operation. PasteMovieSelection places the tracks from this movie in
the destination movie.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
Whenever possible, the Movie Toolbox uses existing tracks to store the data to be pasted. Before adding a
track to the destination movie, the Toolbox looks in the destination movie for tracks that have the same
characteristics as the tracks in the source movie. It considers several characteristics when searching for an
appropriate track, including track spatial dimensions, track matrix, track clipping region, track matte, alternate
group affiliation, media time scale, media type, media language, and data reference (that is, the two tracks
must refer to the same file). If the Movie Toolbox cannot find an appropriate track in the destination movie,
it creates a track with the proper characteristics. It removes any empty tracks from the destination movie
after the paste operation.

Special Considerations

If you have assigned a progress function to the destination movie, the Movie Toolbox calls that progress
function during long paste operations.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

PtInMovie
Determines whether a specified point lies in the region defined by a movie's final display boundary region
after it has been clipped by the movie's display clipping region.

1634 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Boolean PtInMovie (
 Movie theMovie,
 Point pt
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

pt
The point to be checked. This point must be expressed in the movie's local display coordinate system.

Return Value
Returns TRUE if the point is in the movie.

Discussion
This function is accurate at the current movie time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

PtInTrack
Determines whether a specified point lies in the region defined by a track's display boundary region after it
has been clipped by the movie's final display clipping region.

Boolean PtInTrack (
 Track theTrack,
 Point pt
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

pt
The point to be checked. This point must be expressed in the local display coordinate system of the
movie that contains the track.

Return Value
Returns TRUE if the point lies in the track's display space.

Discussion
This function is accurate at the current movie time.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1635
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

PutMovieIntoTypedHandle
Takes a movie, or a single track from within that movie, and converts it into a handle of a specified type.

OSErr PutMovieIntoTypedHandle (
 Movie theMovie,
 Track targetTrack,
 OSType handleType,
 Handle publicMovie,
 TimeValue start,
 TimeValue dur,
 long flags,
 ComponentInstance userComp
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

targetTrack
The track to convert.

handleType
The type of the new data.

publicMovie
The actual handle in which to place the new data.

start
The start time of the segment of the movie or track to be converted.

dur
The duration of the segment of the movie or track to be converted.

flags
Condition of the conversion. Set this parameter to 0.

userComp
Indicates a component or component instance of the movie export component you want to perform
the conversion. Otherwise, set this parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, this function will use it. This allows you to
communicate directly with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and closed within this function.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

1636 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
MovieGWorlds
soundsnippets

Declared In
Movies.h

QTGetMIMETypeInfo
Retrieves information about a particular MIME type.

OSErr QTGetMIMETypeInfo (
 const char *mimeStringStart,
 short mimeStringLength,
 OSType infoSelector,
 void *infoDataPtr,
 long *infoDataSize
);

Parameters
mimeStringStart

A pointer to the first character of a string holding the MIME type.

mimeStringLength
The number of characters in the MIME type string. Pascal, C, and nondelimited string buffers can be
passed equally well.

infoSelector
A constant (see below) that indicates the type of information being requested. See these constants:

kQTGetMIMETypeInfoIsQuickTimeMovieType

kQTGetMIMETypeInfoIsUnhelpfulType

infoDataPtr
A pointer to a value to be updated. For current selectors this value is Boolean.

infoDataSize
On input, a pointer to the size of the data being expected; on output, a pointer to the size of the data
being retrieved. In all current cases these will be the same size.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Functions 1637
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Declared In
Movies.h

SampleNumToMediaDecodeTime
Finds the decode time for a specified sample.

void SampleNumToMediaDecodeTime (
 Media theMedia,
 SInt64 logicalSampleNum,
 TimeValue64 *sampleDecodeTime,
 TimeValue64 *sampleDecodeDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

logicalSampleNum
A 64-bit signed integer that contains the sample number.

sampleDecodeTime
A pointer to a time value. The function updates this time value to indicate the decode time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDecodeDuration
A pointer to a time value. The function updates this time value to indicate the decode duration of
the sample specified by the logicalSampleNum parameter. This time value is expressed in the
media's time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). It returns paramErr if there is a bad parameter value, or noErr if there
is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

SampleNumToMediaDisplayTime
Finds the display time for a specified sample.

1638 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

void SampleNumToMediaDisplayTime (
 Media theMedia,
 SInt64 logicalSampleNum,
 TimeValue64 *sampleDisplayTime,
 TimeValue64 *sampleDisplayDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

logicalSampleNum
A 64-bit signed integer that contains the sample number.

sampleDisplayTime
A pointer to a time value. The function updates this time value to indicate the display time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

sampleDisplayDuration
A pointer to a time value. The function updates this time value to indicate the display duration of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NULL if you do not want this information.

Discussion
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). It returns paramErr if there is a bad parameter value, or noErr if there
is no error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

SampleNumToMediaTime
Finds the time at which a specified sample plays.

void SampleNumToMediaTime (
 Media theMedia,
 long logicalSampleNum,
 TimeValue *sampleTime,
 TimeValue *sampleDuration
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

logicalSampleNum
The sample number.

Functions 1639
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

sampleTime
A pointer to a time value. The function updates this time value to indicate the starting time of the
sample specified by the logicalSampleNum parameter. This time value is expressed in the media's
time scale. Set this parameter to NIL if you don't want this information.

sampleDuration
A pointer to a time value. The Movie Toolbox returns the duration of the sample specified by the
logicalSampleNum parameter. This time value is expressed in the media's time scale. Set this
parameter to NIL if you don't want this information.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

ScaleMovieSegment
Changes the duration of a segment of a movie.

OSErr ScaleMovieSegment (
 Movie theMovie,
 TimeValue startTime,
 TimeValue oldDuration,
 TimeValue newDuration
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), or NewMovieFromHandle (page 1400).

startTime
The start of the segment. The oldDuration parameter specifies the segment's duration. This time
value must be expressed in the movie's time scale.

oldDuration
The original duration of the segment in the source movie. This time value must be expressed in the
movie's time scale.

newDuration
The new duration of the segment. This time value must be expressed in the movie's time scale. The
function alters the segment to accommodate the new duration.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The Movie Toolbox scales the segment to accommodate the new duration.

1640 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SlideShowImporter
SlideShowImporter.win

Declared In
Movies.h

ScaleTrackSegment
Changes the duration of a segment of a track.

OSErr ScaleTrackSegment (
 Track theTrack,
 TimeValue startTime,
 TimeValue oldDuration,
 TimeValue newDuration
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

startTime
The start of the segment. The oldDuration parameter specifies the segment's duration. This time
value must be expressed in the time scale of the movie that contains the track.

oldDuration
The duration of the segment. This time value must be expressed in the time scale of the movie that
contains the track.

newDuration
The new duration of the segment. This time value must be expressed in the time scale of the movie
that contains the track. The function alters the segment to accommodate the new duration.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function does not cause the Movie Toolbox to add data to or remove data from the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
makeeffectslideshow

Functions 1641
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

makeeffectslideshow.win

Declared In
Movies.h

SelectMovieAlternates
Instructs the Movie Toolbox to select appropriate tracks immediately.

void SelectMovieAlternates (
 Movie theMovie
);

Parameters
theMovie

A movie identifier. Your application obtains this identifier from such functions as NewMovie (page
259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetAutoTrackAlternatesEnabled
Enables or disables automatic track selection by the Movie Toolbox.

void SetAutoTrackAlternatesEnabled (
 Movie theMovie,
 Boolean enable
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

enable
Controls automatic track selection. Set this parameter to TRUE to enable automatic track selection.
Set this parameter to FALSE to disable automatic track selection.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 3 or earlier.

1642 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDataHandler
Assigns a data handler to a media.

OSErr SetMediaDataHandler (
 Media theMedia,
 short index,
 DataHandlerComponent dataHandler
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
Identifies the data reference for this data handler. You provide the index value that corresponds to
the data reference. You must set this parameter to 1.

dataHandler
The data handler for the media. This identifier is a component instance that specifies a connection
to a data handler component, such as that returned by GetMediaDataHandler (page 1571). If the
data handler you specify cannot work with the data stored in the media, the function does not change
the media's data handler.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Your application should normally not call this function. The Movie Toolbox assigns a data handler to each
media when you load a movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaDefaultDataRefIndex
Specifies which of a media's data references is to be accessed during an editing session.

Functions 1643
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

OSErr SetMediaDefaultDataRefIndex (
 Media theMedia,
 short index
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

index
The data reference to access. Values of the index parameter range from 1 to the number of data
references in the media. You can determine the number of data references by calling
GetMediaDataRefCount (page 1344). Once set, the default data reference index persists. Set this
parameter to 0 to revert to the media's default data reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function allows you to specify the index of the data reference to be edited. After calling this function,
you can start editing that data reference by calling BeginMediaEdits (page 1549).

Version Notes
Before QuickTime 2.0, the Movie Toolbox did not allow the creation of tracks that had data in several files.
Therefore, there was no mechanism for controlling which data reference was affected by a media editing
session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaHandler
Assigns a specific media handler to a track.

OSErr SetMediaHandler (
 Media theMedia,
 MediaHandlerComponent mH
);

Parameters
theMedia

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

mH
A reference to a media handler component. You can obtain this reference from
GetMediaHandler (page 1577).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

1644 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Discussion
Your application should not need to call this function. The Movie Toolbox assigns a media handler to each
track when you load a movie.

Special Considerations

The Movie Toolbox closes the track's previous media handler and then opens the new one. It is your
responsibility to ensure that the media handler you specify can handle the data in the track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaInputMap
Replaces the media's existing input map with a given input map.

OSErr SetMediaInputMap (
 Media theMedia,
 QTAtomContainer inputMap
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

inputMap
The media input map for this operation. If the input map is set to NIL, the media's input map is reset
to an empty input map.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
Use this function to specify the media you want to set so you can modify or empty its input map. It makes
a copy of the input map passed to it. The following sample code illustrates how to update an input map,
using this function and GetMediaInputMap (page 1579):

// SetMediaInputMap coding example
QTAtomContainer inputMap;
QTAtom inputAtom;
OSType inputType;
Media aVideoMedia =GetTrackMedia(aVideoTrack);
GetMediaInputMap (aVideoMedia, &inputMap);
QTInsertChild(inputMap, kParentAtomIsContainer, kTrackModifierInput,
 addedIndex, 0,0, nil, &inputAtom);
inputType =kTrackModifierTypeClip;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,
 sizeof(inputType), &inputType, nil);
SetMediaInputMap(aVideoMedia, inputMap);

Functions 1645
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

QTDisposeAtomContainer(inputMap);

Special Considerations

Use QTNewAtomContainer (page 1451) to create an empty input map.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qteffects
qteffects.win
qtshoweffect
qtshoweffect.win
qtspritesplus.win

Declared In
Movies.h

SetMediaLanguage
Sets a media's localized language or region code.

void SetMediaLanguage (
 Media theMedia,
 short language
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

language
The media's language or region code.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
You should call this function only when you are creating a new media.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1646 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

SetMediaPreferredChunkSize
Specifies a maximum chunk size for a media.

OSErr SetMediaPreferredChunkSize (
 Media theMedia,
 long maxChunkSize
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

maxChunkSize
The maximum chunk size, in bytes.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
The term "chunk" refers to the collection of sample data that is added to a movie when you call
AddMediaSample (page 1536). When QuickTime loads a movie for playback, it loads the data a chunk at a
time. Consequently, both the size and number of chunks in a movie can affect playback performance. The
toolbox tries to optimize playback performance by consolidating adjacent sample references into a single
chunk, up to the limit you prescribe with this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaQuality
Sets a media's quality level value.

void SetMediaQuality (
 Media theMedia,
 short quality
);

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

Functions 1647
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

quality
The media's quality value. The quality value indicates the pixel depths at which the media can be
played. This even applies to sound media. The low-order 6 bits of the quality value correspond to
specific pixel depths. If a bit is set to 1, the media can be played at the corresponding depth. More
than one of these bits may be set to 1. The Movie Toolbox uses this quality value to determine which
track it selects to play on a given Macintosh computer. You should set this value only when you are
creating a new media.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaSampleDescription
Changes the contents of a particular SampleDescription structure of a specified media.

OSErr SetMediaSampleDescription (
 Media theMedia,
 long index,
 SampleDescriptionHandle descH
);

Parameters
theMedia

The media for this operation. You obtain this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612).

index
The index of the SampleDescription structure to be changed. This index corresponds to the
SampleDescription structure itself, not the samples in the media. This long integer must be between
1 and the largest SampleDescription index.

descH
The handle to the SampleDescription structure. If there is no description for the specified index,
the function returns this handle unchanged.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1648 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
BurntTextSampleCode

Declared In
Movies.h

SetMediaShadowSync
Obsolete; no longer supported.

OSErr SetMediaShadowSync (
 Media theMedia,
 long frameDiffSampleNum,
 long syncSampleNum
);

Parameters
theMedia

The media in which the shadow sync is to be created.

frameDiffSampleNum
Specifies a frame difference sample. The sample number is obtained from
MediaTimeToSampleNum (page 1627).

syncSampleNum
Specifies a shadow sync sample. The sample number is obtained from MediaTimeToSampleNum (page
1627).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetMediaTimeScale
Sets a media's time scale.

ComponentResult ADD_MEDIA_BASENAME() SetMediaTimeScale

Parameters
theMedia

The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

timeScale
The media's new time scale.

Functions 1649
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackAlternate
Adds tracks to, or remove tracks from, alternate groups.

void SetTrackAlternate (
 Track theTrack,
 Track alternateT
);

Parameters
theTrack

The track and group for this operation. Your application obtains this track identifier from such functions
asNewMovieTrack (page 1628) andGetMovieTrack (page 1601).SetTrackAlternate changes this
track's group affiliation based on the value of the alternateT parameter.

alternateT
Controls whether the function adds the track to a group or removes it from a group. If this parameter
contains a valid track identifier, the Movie Toolbox adds this track to the group that contains the track
specified by the parameter theTrack. If the track identified by this parameter already belongs to a
group, the Movie Toolbox combines the two groups into a single group.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackDimensions
Establishes a track's source rectangle.

1650 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

void SetTrackDimensions (
 Track theTrack,
 Fixed width,
 Fixed height
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

width
A fixed-point number that specifies the width, in pixels, of the track's rectangle. This value corresponds
to the x coordinate of the lower-right corner of the track's rectangle.

height
A fixed-point number that specifies the height, in pixels, of the track's rectangle. This value corresponds
to the y coordinate of the lower-right corner of the track's rectangle.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
If you change the dimensions of an existing track, the media data is scaled to fit into the new rectangle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode.win
SlideShowImporter
SlideShowImporter.win
TimeCode Media Handlers

Declared In
Movies.h

SetTrackEnabled
Enables or disables a track.

void SetTrackEnabled (
 Track theTrack,
 Boolean isEnabled
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Functions 1651
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

isEnabled
Enables or disables the track. Set this parameter to TRUE to enable the track. Set this parameter
to FALSE to disable the track.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
The Movie Toolbox services only enabled tracks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttimecode
qttimecode.win
vrmakepano
VRMakePano Library

Declared In
Movies.h

SetTrackLayer
Sets a track's layer.

void SetTrackLayer (
 Track theTrack,
 short layer
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

layer
The track's layer number. Layers are numbered from -32,768 through 32,767; layers with lower numbers
appear in front of layers with higher numbers. When you create a new track, the Movie Toolbox sets
its track number to 0.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1652 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
BurntTextSampleCode
qtactiontargets
qtactiontargets.win
qtwiredspritesjr
qtwiredspritesjr.win

Declared In
Movies.h

SetTrackMatrix
Establishes a track's transformation matrix.

void SetTrackMatrix (
 Track theTrack,
 const MatrixRecord *matrix
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

matrix
A pointer to a MatrixRecord structure that contains the track's new matrix. If you set this parameter
to NIL, the Movie Toolbox uses the identity matrix.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode
qttext.win
qttimecode
qttimecode.win
qtwiredspritesjr

Declared In
Movies.h

SetTrackOffset
Modifies the duration of the empty space that lies at the beginning of a track, thus changing the duration
of the entire track.

Functions 1653
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

void SetTrackOffset (
 Track theTrack,
 TimeValue movieOffsetTime
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

movieOffsetTime
The track's offset from the start of the movie, and must be expressed in the time scale of the movie
that contains the track.

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Discussion
All of the tracks in a movie use the movie's time coordinate system. That is, the movie's time scale defines
the basic time unit for each of the movie's tracks. Each track begins at the beginning of the movie, but the
track's data might not begin until some time value other than 0. This intervening time is represented by
blank space. In an audio track the blank space translates to silence; in a video track the blank space generates
no visual image. Each track has its own duration. This duration need not correspond to the duration of the
movie. Movie duration always equals the maximum duration of all the tracks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackReference
Modifies an existing track reference.

OSErr SetTrackReference (
 Track theTrack,
 Track refTrack,
 OSType refType,
 long index
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

refTrack
The track to be identified in the track reference. The toolbox uses this information to update the
existing track reference.

1654 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

refType
The type of reference.

index
The index value of the reference to be changed. You obtain this index value when you create the
track reference.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
You may change the track reference so that it identifies a different track in the movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackSoundLocalizationSettings
Applies 3D sound effect data to a track.

OSErr SetTrackSoundLocalizationSettings (
 Track theTrack,
 Handle settings
);

Parameters
theTrack

Identifies the track for this operation. Your application obtains this track identifier from such functions
as NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

settings
A handle to the settings you want to apply, in the format of an SSpLocalizationData record. You
can pass a NIL handle to indicate that no 3D sound effects should be used for this track. This function
makes a copy of the handle passed, so the caller is responsible for disposing of it.

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Discussion
This function replaces the 3D sound settings for the specified track with the new SSpLocalizationData
record contained in the settings parameter. The effect of the new 3D sound setting takes place immediately.
This call always stores the new record passed, even if the track or the computer is not capable of actually
meeting the request. When the movie is saved, the 3D sound settings are saved with it.

The following example code shows how to set the static 3D sound setting for a track using this function:

// SetTrackSoundLocalizationSettings coding example
void setTrackSoundLocalization(Track t)
{

Functions 1655
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

 SSpLocalizationData loc;
 Handle h;
 OSErr err;
 loc.cpuLoad =0;
 loc.medium =kSSpMedium_Air;
 loc.humidity =0;
 loc.roomSize =250;
 loc.roomReflectivity =-5;
 loc.reverbAttenuation =-5;
 loc.sourceMode =kSSpSourceMode_Localized;
 loc.referenceDistance =1;
 loc.coneAngleCos =0;
 loc.coneAttenuation =0;
 loc.currentLocation.elevation =0;
 loc.currentLocation.azimuth =0;
 loc.currentLocation.distance =2;
 loc.currentLocation.projectionAngle =0;
 loc.currentLocation.sourceVelocity =0;
 loc.currentLocation.listenerVelocity =0;
 loc.reserved0 =0;
 loc.reserved1 =0;
 loc.reserved2 =0;
 loc.reserved3 =0;
 loc.virtualSourceCount =0;
 err =PtrToHand(&loc, &h, sizeof(loc));
 err =SetTrackSoundLocalizationSettings(t, h);
 DisposeHandle(h);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SetTrackUsage
Specifies whether a track is used in a movie, its preview, its poster, or a combination of these.

void SetTrackUsage (
 Track theTrack,
 long usage
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

1656 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

usage
Contains flags (see below) that specify how the track is to be used. Be sure to set unused flags to 0.
See these constants:

trackUsageInMovie

trackUsageInPreview

trackUsageInPoster

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtinfo
qtinfo.win

Declared In
Movies.h

SetTrackVolume
Sets a track's current volume.

void SetTrackVolume (
 Track theTrack,
 short volume
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

volume
The current volume setting of the track represented as a 16-bit, fixed-point number. The high-order
8 bits contain the integer part of the value; the low-order 8 bits contain the fractional part. Volume
values range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the
volume setting. You can use constants (see below) for full volume and no volume. See these constants:

Return Value
You can access error returns from this function through GetMoviesError (page 221) and
GetMoviesStickyError (page 222). See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1657
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Related Sample Code
soundsnippets
soundsnippets.win
vrscript
vrscript.win

Declared In
Movies.h

TrackTimeToMediaDisplayTime
Converts a track's time value to a display time value that is appropriate to the track's media, using the track's
edit list.

TimeValue64 TrackTimeToMediaDisplayTime (
 TimeValue64 value,
 Track theTrack
);

Parameters
value

A 64-bit time value that represents the track's time value; it must be expressed in the time scale of
the movie that contains the track.

theTrack
A track identifier, which your application obtains from such functions as NewMovieTrack (page 1628)
and GetMovieTrack (page 1601).

Return Value
A 64-bit time value that represents the corresponding time in media display time, in the media's time
coordinate system. If the track time corresponds to empty space, this function returns a value of -1.

Discussion
This function maps the track time through the track's edit list to come up with the media time. This time
value contains the track's time value according to the media's time coordinate system. If the time you specified
lies outside of the movie's active segment or corresponds to empty space in the track, this function returns
a value of -1. Hence you can use it to determine whether a specified track edit is empty.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieVideoChart

Declared In
Movies.h

TrackTimeToMediaTime
Converts a track's time value to a time value that is appropriate to the track's media, using the track's edit
list.

1658 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

TimeValue TrackTimeToMediaTime (
 TimeValue value,
 Track theTrack
);

Parameters
value

The track's time value; must be expressed in the time scale of the movie that contains the track.

theTrack
The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

Return Value
The track's time value, but in the media's time coordinate system. If the track time corresponds to empty
space, this function returns a value of -1.

Discussion
This function maps the track time through the track's edit list to come up with the media time. This time
value contains the track's time value according to the media's time coordinate system. If the time you specified
lies outside of the movie's active segment or corresponds to empty space in the track, this function returns
a value of -1. Hence you can use it to determine whether a specified track edit is empty.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
addhtactions.win
BurntTextSampleCode
qttext
qttext.win
qtwiredactions

Declared In
Movies.h

UseMovieEditState
Returns a movie to the condition determined by an edit state created previously.

OSErr UseMovieEditState (
 Movie theMovie,
 MovieEditState toState
);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie (page 259), NewMovieFromFile (page 1398), and NewMovieFromHandle (page 1400).

Functions 1659
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

toState
The edit state for this operation. Your application obtains this edit state identifier when you create
the edit state by calling NewMovieEditState (page 1628).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

UseTrackEditState
Returns a track to the condition determined by an edit state created previously.

OSErr UseTrackEditState (
 Track theTrack,
 TrackEditState state
);

Parameters
theTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

state
The edit state for this operation. Your application obtains this edit state identifier when you create
the edit state by calling NewTrackEditState (page 1630).

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

1660 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Callbacks

Data Types

DataHandlerComponent
Represents a type used by the Track and Media API.

typedef Component DataHandlerComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MediaHandlerComponent
Represents a type used by the Track and Media API.

typedef Component MediaHandlerComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieEditState
Represents a type used by the Track and Media API.

typedef MovieEditStateRecord * MovieEditState;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

MovieEditStateRecord
Undocumented

Callbacks 1661
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

struct MovieEditStateRecord {
 long data[1];
 };

Fields
data

Discussion
Undocumented

Declared In
Movies.h

SampleReference64Ptr
Represents a type used by the Track and Media API.

typedef SampleReference64Record * SampleReference64Ptr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SampleReference64Record
Provides a 64-bit version of SampleReferenceRecord.

struct SampleReference64Record {
 wide dataOffset;
 unsigned long dataSize;
 TimeValue durationPerSample;
 unsigned long numberOfSamples;
 short sampleFlags;
 };

Fields
dataOffset

Discussion
Specifies the offset into the movie data file. This field specifies the offset into the file of the sample data.

dataSize

Discussion
Specifies the total number of bytes of sample data identified by the reference. All samples referenced by a
single SampleReference64Record must be the same size.

durationPerSample

Discussion
Specifies the duration of each sample in the reference. You must specify this parameter in the media's time
scale. All samples referenced by a single SampleReference64Record must be the same duration.

1662 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

numberOfSamples

Discussion
Specifies the number of samples contained in the reference.

sampleFlag

Discussion
Contains flags (see below) that control the operation. Set unused flags to 0. See these constants:

mediaSampleNotSync

Related Functions
AddMediaSampleReferences64 (page 1544)
GetMediaSampleReferences64 (page 1592)

Declared In
Movies.h

SampleReferencePtr
Represents a type used by the Track and Media API.

typedef SampleReferenceRecord * SampleReferencePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

SampleReferenceRecord
Describes a sample or group of similar samples.

struct SampleReferenceRecord {
 long dataOffset;
 long dataSize;
 TimeValue durationPerSample;
 long numberOfSamples;
 short sampleFlags;
 };

Fields
dataOffset

Discussion
Specifies the offset into the movie data file. This field specifies the offset into the file of the sample data.

dataSize

Discussion
Specifies the total number of bytes of sample data identified by the reference. All samples referenced by a
single SampleReferenceRecord must be the same size.

Data Types 1663
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

durationPerSample

Discussion
Specifies the duration of each sample in the reference. You must specify this parameter in the media's time
scale. All samples referenced by a single SampleReferenceRecord must be the same duration.

numberOfSamples

Discussion
Specifies the number of samples contained in the reference.

sampleFlag

Discussion
Contains flags (see below) that control the operation. Set unused flags to 0. See these constants:

mediaSampleNotSync

Related Functions
AddMediaSampleReferences (page 1543)
GetMediaSampleReferences (page 1590)

Declared In
Movies.h

TrackEditState
Represents a type used by the Track and Media API.

typedef TrackEditStateRecord * TrackEditState;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

TrackEditStateRecord
Contains a track edit state.

struct TrackEditStateRecord {
 long data[1];
 };

Fields
data

Discussion
An array of data that constitutes a track edit state.

Declared In
Movies.h

1664 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Constants

GetMovieImporter Flags
Constants that represent <codeVoice>GetMovieImporter</codeVoice> flags.

enum {
 kGetMovieImporterValidateToFind = 1L << 0,
 kGetMovieImporterAllowNewFile = 1L << 1,
 kGetMovieImporterDontConsiderGraphicsImporters = 1L << 2,
 kGetMovieImporterDontConsiderFileOnlyImporters = 1L << 6,
 kGetMovieImporterAutoImportOnly = 1L << 10 /* reject aggressive movie importers
 which have dontAutoFileMovieImport set*/
};

Declared In
Movies.h

AddClonedTrackToMovie Values
Constants passed to AddClonedTrackToMovie.

enum {
 kQTCloneShareSamples = 1 << 0,
 kQTCloneDontCopyEdits = 1 << 1
};

Declared In
Movies.h

QTGetMIMETypeInfo Values
Constants passed to QTGetMIMETypeInfo.

enum {
 kQTGetMIMETypeInfoIsQuickTimeMovieType = 'moov', /* info is a pointer to a
Boolean*/
 kQTGetMIMETypeInfoIsUnhelpfulType = 'dumb' /* info is a pointer to a Boolean*/
};

Declared In
Movies.h

GetMovieIndTrackType Values
Constants passed to GetMovieIndTrackType.

Constants 1665
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

enum {
 movieTrackMediaType = 1 << 0,
 movieTrackCharacteristic = 1 << 1,
 movieTrackEnabledOnly = 1 << 2
};

Declared In
Movies.h

movieFileSpecValid
Constants grouped with movieFileSpecValid.

enum {
 pasteInParallel = 1 << 0,
 showUserSettingsDialog = 1 << 1,
 movieToFileOnlyExport = 1 << 2,
 movieFileSpecValid = 1 << 3
};

Declared In
Movies.h

SetTrackUsage Values
Constants passed to SetTrackUsage.

enum {
 trackUsageInMovie = 1 << 1,
 trackUsageInPreview = 1 << 2,
 trackUsageInPoster = 1 << 3
};

Declared In
Movies.h

Media Identifiers
Identify media types in QuickTime.

1666 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

enum {
 VideoMediaType = 'vide',
 SoundMediaType = 'soun',
 TextMediaType = 'text',
 BaseMediaType = 'gnrc',
 MPEGMediaType = 'MPEG',
 MusicMediaType = 'musi',
 TimeCodeMediaType = 'tmcd',
 SpriteMediaType = 'sprt',
 FlashMediaType = 'flsh',
 MovieMediaType = 'moov',
 TweenMediaType = 'twen',
 ThreeDeeMediaType = 'qd3d',
 SkinMediaType = 'skin',
 HandleDataHandlerSubType = 'hndl',
 PointerDataHandlerSubType = 'ptr ',
 NullDataHandlerSubType = 'null',
 ResourceDataHandlerSubType = 'rsrc',
 URLDataHandlerSubType = 'url ',
 AliasDataHandlerSubType = 'alis',
 WiredActionHandlerType = 'wire'
};

Constants
SoundMediaType

Sound channel.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

TextMediaType
Text media.

Available in Mac OS X v10.0 and later.

Declared in Movies.h.

Declared In
Movies.h

Constants 1667
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

1668 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

QuickTime Movie Track and Media Reference

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeMusic.h

Overview

The QuickTime Music Architecture (QTMA) allows QuickTime movies, applications, and other software to play
individual musical notes, sequences of notes, and a broad range of sounds from a variety of instruments and
synthesizers. With QTMA, you can also import Standard MIDI files and convert them into a QuickTime movie
for easy playback.

Functions by Task

Allocating and Using Note Channels

NADisposeNoteChannel (page 1717) Deprecated in Mac OS X v10.5
Deletes a specified note channel.

NAFindNoteChannelTone (page 1717) Deprecated in Mac OS X v10.5
Locates the instrument that best fits a requested tone description for a specific channel.

NAGetController (page 1718) Deprecated in Mac OS X v10.5
Retrieves the controller settings for a note channel.

NAGetIndNoteChannel (page 1719) Deprecated in Mac OS X v10.5
Returns the number of note channels handled by the specified note allocator instance.

NAGetKnob (page 1719) Deprecated in Mac OS X v10.5
Obtains the value of a knob for a given note channel.

NAGetNoteChannelInfo (page 1721) Deprecated in Mac OS X v10.5
Returns the index of the music component for the allocated channel and its part number on that
music component.

NAGetNoteRequest (page 1722) Deprecated in Mac OS X v10.5
Retrieves the NoteRequest structure that was passed to a note channel.

NANewNoteChannel (page 1724) Deprecated in Mac OS X v10.5
Requests a new note channel with the qualities described in a NoteRequest structure.

NANewNoteChannelFromAtomicInstrument (page 1724) Deprecated in Mac OS X v10.5
Requests a new note channel for an atomic instrument.

Overview 1669
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

NAPlayNote (page 1729) Deprecated in Mac OS X v10.5
Plays a note with a specified pitch and velocity on the specified note channel.

NAPrerollNoteChannel (page 1730) Deprecated in Mac OS X v10.5
Attempts to reallocate the note channel if it was invalid previously.

NAResetNoteChannel (page 1731) Deprecated in Mac OS X v10.5
Turns off all currently active notes on the note channel and resets all controllers to their default values.

NASendMIDI (page 1732) Deprecated in Mac OS X v10.5
Sends a MIDI music packet to a synthesizer that contains a specific note channel.

NASetAtomicInstrument (page 1733) Deprecated in Mac OS X v10.5
Initializes a synthesizer part with an atomic instrument.

NASetController (page 1734) Deprecated in Mac OS X v10.5
Changes the controller setting on a note channel to a specified value.

NASetInstrumentNumber (page 1735) Deprecated in Mac OS X v10.5
Initializes initializes a synthesizer part with the specified instrument.

NASetInstrumentNumberInterruptSafe (page 1735) Deprecated in Mac OS X v10.5
Initializes a synthesizer part with the specified instrument during interrupt time.

NASetKnob (page 1736) Deprecated in Mac OS X v10.5
Sets a note channel knob to a particular value.

NASetNoteChannelBalance (page 1737) Deprecated in Mac OS X v10.5
Modifies the pan controller setting for a note channel.

NASetNoteChannelSoundLocalization (page 1738) Deprecated in Mac OS X v10.5
Passes sound localization data to a note channel.

NASetNoteChannelVolume (page 1738) Deprecated in Mac OS X v10.5
Sets the volume on the specified note channel.

NAUnrollNoteChannel (page 1741) Deprecated in Mac OS X v10.5
Marks a note channel as available to be stolen.

Calling Generic Music Component Clients

MusicDerivedSetInstrument (page 1679) Deprecated in Mac OS X v10.5
The complete instrument defined by the Part structure to the synthesizer.

MusicDerivedSetKnob (page 1680) Deprecated in Mac OS X v10.5
Called when any of the synthesizer's knobs are altered.

MusicDerivedSetMIDI (page 1681) Deprecated in Mac OS X v10.5
Sets the MIDI channel and other MIDI settings for MIDI output only.

MusicDerivedSetPart (page 1682) Deprecated in Mac OS X v10.5
Sets the polyphony for the part specified in the GCPart structure.

Managing Instruments and Parts

MusicGetInstrumentAboutInfo (page 1691) Deprecated in Mac OS X v10.5
Obtains the information about an instrument that appears in its About box.

1670 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

MusicGetInstrumentInfo (page 1692) Deprecated in Mac OS X v10.5
Obtains a list of instruments supported by a synthesizer.

MusicGetPart (page 1698) Deprecated in Mac OS X v10.5
Returns the MIDI channel and maximum polyphony for a particular part.

MusicGetPartAtomicInstrument (page 1699) Deprecated in Mac OS X v10.5
Returns the atomic instrument currently in a part.

MusicGetPartController (page 1700) Deprecated in Mac OS X v10.5
Returns the value of a specified controller on a specified part.

MusicGetPartInstrumentNumber (page 1701) Deprecated in Mac OS X v10.5
Returns the instrument number currently assigned to a part.

MusicGetPartKnob (page 1701) Deprecated in Mac OS X v10.5
Retrieves the current value of a knob for a part.

MusicGetPartName (page 1702) Deprecated in Mac OS X v10.5
Returns the string name of a part.

MusicResetPart (page 1703) Deprecated in Mac OS X v10.5
Silences all sounds on a specified part and resets all controllers on that part to their default values.

MusicSetPart (page 1707) Deprecated in Mac OS X v10.5
Sets the MIDI channel and maximum polyphony for a specified part.

MusicSetPartAtomicInstrument (page 1708) Deprecated in Mac OS X v10.5
Initializes a part with an atomic instrument.

MusicSetPartController (page 1709) Deprecated in Mac OS X v10.5
Initializes the value of a specified controller on a specified part.

MusicSetPartInstrumentNumber (page 1710) Deprecated in Mac OS X v10.5
Superseded by MusicSetPartInstrumentNumberInterruptSafe.

MusicSetPartInstrumentNumberInterruptSafe (page 1710) Deprecated in Mac OS X v10.5
Initializes a part with a particular instrument.

MusicSetPartKnob (page 1711) Deprecated in Mac OS X v10.5
Sets a knob for a specified part.

MusicSetPartName (page 1711) Deprecated in Mac OS X v10.5
Changes the name of an instrument in a specified part.

MusicSetPartSoundLocalization (page 1712) Deprecated in Mac OS X v10.5
Passes sound localization data to a specified synthesizer part.

MusicStorePartInstrument (page 1714) Deprecated in Mac OS X v10.5
Puts whatever instrument is on the specified part into the synthesizer's instrument store.

Managing Synthesizers

MusicFindTone (page 1684) Deprecated in Mac OS X v10.5
Returns the number of the best-matching instrument provided by a specified music component.

MusicGetDescription (page 1688) Deprecated in Mac OS X v10.5
Returns a structure describing the synthesizer controlled by the music component device.

MusicGetDeviceConnection (page 1689) Deprecated in Mac OS X v10.5
Determines how many hardware synthesizers are available to a music component and gets the IDs
for those devices.

Functions by Task 1671
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

MusicGetDrumKnobDescription (page 1689) Deprecated in Mac OS X v10.5
Returns a description of a drum kit knob.

MusicGetInstrumentKnobDescription (page 1693) Deprecated in Mac OS X v10.5
Obtains the description of an instrument knob.

MusicGetKnob (page 1694) Deprecated in Mac OS X v10.5
Returns the value of the specified global synthesizer knob.

MusicGetKnobDescription (page 1695) Deprecated in Mac OS X v10.5
Returns a pointer to an initialized knob description structure describing a global synthesizer knob.

MusicGetKnobSettingStrings (page 1696) Deprecated in Mac OS X v10.5
Returns a list of knob setting names known by the specified music component.

MusicGetMIDIPorts (page 1697) Deprecated in Mac OS X v10.5
Returns the number of input and output ports a MIDI device has.

MusicGetMIDIProc (page 1698) Deprecated in Mac OS X v10.5
Returns a pointer to the procedure a music component is using to process external MIDI notes.

MusicPlayNote (page 1702) Deprecated in Mac OS X v10.5
Plays a note on a specified part at a specified pitch and velocity.

MusicSendMIDI (page 1704) Deprecated in Mac OS X v10.5
Sends a MIDI packet to a specified port.

MusicSetKnob (page 1705) Deprecated in Mac OS X v10.5
Modifies the value of the specified global synthesizer knob.

MusicSetMIDIProc (page 1706) Deprecated in Mac OS X v10.5
Informs the music component what procedure to call when it needs to send MIDI data.

MusicUseDeviceConnection (page 1715) Deprecated in Mac OS X v10.5
Tells a music component which hardware synthesizer to talk to.

Managing the Generic Music Component

MusicGenericConfigure (page 1685) Deprecated in Mac OS X v10.5
Informs the generic music component what services your music component requires and points to
any resources that are necessary.

MIDI Component Functions

QTMIDIGetMIDIPorts (page 1743) Deprecated in Mac OS X v10.5
Returns two lists of MIDI ports supported by the specified MIDI component: a list of ports that can
receive MIDI input and a list of ports that can send MIDI output.

QTMIDISendMIDI (page 1744) Deprecated in Mac OS X v10.5
Sends MIDI data to a MIDI port.

QTMIDIUseSendPort (page 1745) Deprecated in Mac OS X v10.5
Allocates a MIDI port for output or to release the port.

1672 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Miscellaneous Music Component Functions

MusicGetMasterTune (page 1696) Deprecated in Mac OS X v10.5
Returns the synthesizer's master tuning as a fixed-point value in semitones.

MusicSetMasterTune (page 1705) Deprecated in Mac OS X v10.5
Alters a synthesizer's master tuning.

MusicSetOfflineTimeTo (page 1707) Deprecated in Mac OS X v10.5
Advances the synthesizer clock when the synthesizer is not running in real time.

MusicStartOffline (page 1713) Deprecated in Mac OS X v10.5
Informs the QuickTime music synthesizer that the music will not be played through the speakers.

MusicTask (page 1714) Deprecated in Mac OS X v10.5
Allows a music component to perform tasks it must perform at foreground task time.

Note Allocator Configuration and Utilities

NAGetMIDIPorts (page 1720) Deprecated in Mac OS X v10.5
The MIDI input and output ports available to a note allocator.

NAGetRegisteredMusicDevice (page 1722) Deprecated in Mac OS X v10.5
Returns details about music components registered to the specified note allocator instance.

NARegisterMusicDevice (page 1730) Deprecated in Mac OS X v10.5
Registers a music component with the note allocator.

NASaveMusicConfiguration (page 1732) Deprecated in Mac OS X v10.5
Saves the current list of registered devices to a file.

NATask (page 1740) Deprecated in Mac OS X v10.5
Called periodically to allow the note allocator to perform tasks in foreground task time.

NAUnregisterMusicDevice (page 1740) Deprecated in Mac OS X v10.5
Removes a previously registered music component from the note allocator.

Note Allocator Interface Tools

NACopyrightDialog (page 1716) Deprecated in Mac OS X v10.5
Displays a copyright dialog box with information specific to a music device.

NAPickArrangement (page 1725) Deprecated in Mac OS X v10.5
Displays a dialog box to allow instrument selection.

NAPickEditInstrument (page 1726) Deprecated in Mac OS X v10.5
Presents a user interface for changing the instrument in a live note channel or modifying an atomic
instrument.

NAPickInstrument (page 1728) Deprecated in Mac OS X v10.5
Presents a user interface for picking an instrument.

NAStuffToneDescription (page 1739) Deprecated in Mac OS X v10.5
Initializes a tone description structure with the details of a General MIDI note channel.

Functions by Task 1673
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Using the Tune Player

TuneGetIndexedNoteChannel (page 1746) Deprecated in Mac OS X v10.5
Determines how many parts a tune is playing and which instrument is assigned to those parts.

TuneGetNoteAllocator (page 1746) Deprecated in Mac OS X v10.5
Returns the instance of the note allocator that the tune player is using.

TuneGetPartMix (page 1747) Deprecated in Mac OS X v10.5
Gets volume, balance, and mixing settings for a specified part of a tune.

TuneGetStatus (page 1748) Deprecated in Mac OS X v10.5
Returns an initialized structure describing the state of the tune player instance.

TuneGetTimeBase (page 1748) Deprecated in Mac OS X v10.5
Returns the time base of the tune player.

TuneGetTimeScale (page 1749) Deprecated in Mac OS X v10.5
Returns the current time scale for a specified tune player instance.

TuneGetVolume (page 1749) Deprecated in Mac OS X v10.5
Returns the volume associated with an entire tune sequence.

TuneInstant (page 1750) Deprecated in Mac OS X v10.5
Plays a particular sequence of events active at a specified position.

TunePreroll (page 1751) Deprecated in Mac OS X v10.5
Prepares to play a tune player sequence data by attempting to reserve note channels for each part
in the sequence.

TuneQueue (page 1751) Deprecated in Mac OS X v10.5
Places a sequence of music events into a queue to be played.

TuneSetBalance (page 1752) Deprecated in Mac OS X v10.5
Modifies the pan controller setting for a tune player.

TuneSetHeader (page 1753) Deprecated in Mac OS X v10.5
Prepares the tune player to accept subsequent music event sequences by defining one or more parts
to be used by sequence Note events.

TuneSetHeaderWithSize (page 1754) Deprecated in Mac OS X v10.5
Similar to TuneSetHeader but lets you specify the header length.

TuneSetNoteChannels (page 1755) Deprecated in Mac OS X v10.5
Assigns note channels to a tune player.

TuneSetPartMix (page 1755) Deprecated in Mac OS X v10.5
Sets volume, balance, and mixing settings for a specified part of a tune.

TuneSetPartTranspose (page 1756) Deprecated in Mac OS X v10.5
Modifies the pitch and volume of every note of a tune.

TuneSetSofter (page 1757) Deprecated in Mac OS X v10.5
Adjusts the volume a tune is played at to the softer volume produced by QuickTime 2.1.

TuneSetSoundLocalization (page 1758) Deprecated in Mac OS X v10.5
Passes sound localization data to a tune player.

TuneSetTimeScale (page 1758) Deprecated in Mac OS X v10.5
Sets the time scale used by the specified tune player instance.

TuneSetVolume (page 1759) Deprecated in Mac OS X v10.5
Sets the volume for an entire sequence.

1674 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TuneStop (page 1759) Deprecated in Mac OS X v10.5
Stops a currently playing sequence.

TuneTask (page 1760) Deprecated in Mac OS X v10.5
Lets a tune player to perform tasks it must perform at foreground task time.

TuneUnroll (page 1760) Deprecated in Mac OS X v10.5
Releases any note channel resources that may have been locked down by previous calls to TunePreroll
for this tune player.

Supporting Functions

DisposeMusicMIDISendUPP (page 1676) Deprecated in Mac OS X v10.5
Disposes of a MusicMIDISendUPP pointer.

DisposeMusicOfflineDataUPP (page 1676) Deprecated in Mac OS X v10.5
Disposes of a MusicOfflineDataUPP pointer.

DisposeTuneCallBackUPP (page 1677) Deprecated in Mac OS X v10.5
Disposes of a TuneCallBackUPP pointer.

DisposeTunePlayCallBackUPP (page 1677) Deprecated in Mac OS X v10.5
Disposes of a TunePlayCallBackUPP pointer.

MusicDerivedCloseResFile (page 1678) Deprecated in Mac OS X v10.5
Closes a music movie resource file.

MusicDerivedMIDISend (page 1678) Deprecated in Mac OS X v10.5
Sends a MIDI packet to a music component.

MusicDerivedOpenResFile (page 1679) Deprecated in Mac OS X v10.5
Opens the music resource file for a music component.

MusicDerivedSetPartInstrumentNumber (page 1682) Deprecated in Mac OS X v10.5
Sets the instrument specified in the GCPart structure.

MusicDerivedStorePartInstrument (page 1683) Deprecated in Mac OS X v10.5
Undocumented

MusicGenericGetKnobList (page 1686) Deprecated in Mac OS X v10.5
Gets a list of the knobs of a given type for the generic music component.

MusicGenericGetPart (page 1687) Deprecated in Mac OS X v10.5
Gets a part used by the generic music component.

MusicGenericSetResourceNumbers (page 1687) Deprecated in Mac OS X v10.5
Undocumented

MusicGetDrumNames (page 1690) Deprecated in Mac OS X v10.5
Undocumented

MusicGetInfoText (page 1691) Deprecated in Mac OS X v10.5
Undocumented

MusicGetInstrumentNames (page 1693) Deprecated in Mac OS X v10.5
Undocumented

NewMusicMIDISendUPP (page 1741) Deprecated in Mac OS X v10.5
Allocates a Universal Procedure Pointer for the MusicMIDISendProc callback.

NewMusicOfflineDataUPP (page 1742) Deprecated in Mac OS X v10.5
Allocates a Universal Procedure Pointer for the MusicOfflineDataProc callback.

Functions by Task 1675
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

NewTuneCallBackUPP (page 1742) Deprecated in Mac OS X v10.5
Allocates a Universal Procedure Pointer for the TuneCallBackProc callback.

NewTunePlayCallBackUPP (page 1743) Deprecated in Mac OS X v10.5
Allocates a Universal Procedure Pointer for the TunePlayCallBackProc callback.

Functions

DisposeMusicMIDISendUPP
Disposes of a MusicMIDISendUPP pointer. (Deprecated in Mac OS X v10.5.)

void DisposeMusicMIDISendUPP (
 MusicMIDISendUPP userUPP
);

Parameters
userUPP

A MusicMIDISendUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

DisposeMusicOfflineDataUPP
Disposes of a MusicOfflineDataUPP pointer. (Deprecated in Mac OS X v10.5.)

void DisposeMusicOfflineDataUPP (
 MusicOfflineDataUPP userUPP
);

Parameters
userUPP

A MusicOfflineDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

1676 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

DisposeTuneCallBackUPP
Disposes of a TuneCallBackUPP pointer. (Deprecated in Mac OS X v10.5.)

void DisposeTuneCallBackUPP (
 TuneCallBackUPP userUPP
);

Parameters
userUPP

A TuneCallBackUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

DisposeTunePlayCallBackUPP
Disposes of a TunePlayCallBackUPP pointer. (Deprecated in Mac OS X v10.5.)

void DisposeTunePlayCallBackUPP (
 TunePlayCallBackUPP userUPP
);

Parameters
userUPP

A TunePlayCallBackUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Functions 1677
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedCloseResFile
Closes a music movie resource file. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedCloseResFile (
 MusicComponent mc,
 short resRefNum
);

Parameters
mc

A music component. Your software obtains this reference when calling OpenComponent or
OpenDefaultComponent.

resRefNum
The resource file to be closed. Your application obtains this value from the OpenMovieFile (page
1416) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedMIDISend
Sends a MIDI packet to a music component. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedMIDISend (
 MusicComponent mc,
 MusicMIDIPacket *packet
);

Parameters
mc

A music component. Your software obtains this reference when calling OpenComponent or
OpenDefaultComponent function.

packet
A pointer to the music MIDI packet to be sent.

Return Value
See Error Codes. Returns noErr if there is no error.

1678 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedOpenResFile
Opens the music resource file for a music component. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedOpenResFile (
 MusicComponent mc
);

Parameters
mc

A music component. Your software obtains this reference when calling OpenComponent or
OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedSetInstrument
The complete instrument defined by the Part structure to the synthesizer. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedSetInstrument (
 MusicComponent mc,
 long partNumber,
 GCPart *p
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

partNumber
The number of the part for this operation.

Functions 1679
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

p
A pointer to the part for this operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedSetKnob
Called when any of the synthesizer's knobs are altered. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedSetKnob (
 MusicComponent mc,
 long knobType,
 long knobNumber,
 long knobValue,
 long partNumber,
 GCPart *p,
 GenericKnobDescription *gkd
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

knobType
The type of knob that has been altered (see below). See these constants:

kGenericMusicKnob

kGenericMusicInstrumentKnob

kGenericMusicDrumKnob

knobNumber
The number of the knob that has been altered.

knobValue
The new value of the altered knob.

partNumber
The number of the part whose knob has been altered.

p
A pointer to the part whose knob has been altered.

gkd
A GenericKnobDescription structure for the knob.

1680 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called when any knob on the synthesizer is altered. It should look at the GCPart and the
GenericKnobDescription structures and address the synthesizer hardware appropriately to set the new
knob value. For a MIDI device, this means to construct a system-exclusive MIDI packet and send it to the MIDI
routine received by the MusicDerivedSetMIDI (page 1681) call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedSetMIDI
Sets the MIDI channel and other MIDI settings for MIDI output only. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedSetMIDI (
 MusicComponent mc,
 MusicMIDISendUPP midiProc,
 long refcon,
 long midiChannel
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

midiProc
A pointer to the MusicMIDISendProc callback in your music component for performing MIDI output.

refcon
A reference constant sent to the callback specified by the midiProc parameter. Use this parameter
to point to a data structure containing any information your callback needs.

midiChannel
The MIDI channel to use for the operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A derived component for a MIDI synthesizer receives this call soon after it is opened. It should store the
midiProc, refCon, and midiChannel parameters in its global variables. When the derived component
needs to communicate with the synthesizer, it calls your MusicMIDISendProc function with this reference
constant. The midiChannel variable specifies the "system channel" of the device.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1681
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedSetPart
Sets the polyphony for the part specified in the GCPart structure. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedSetPart (
 MusicComponent mc,
 long partNumber,
 GCPart *p
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

partNumber
The number of the part for this operation.

p
A pointer to the part for this operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedSetPartInstrumentNumber
Sets the instrument specified in the GCPart structure. (Deprecated in Mac OS X v10.5.)

1682 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicDerivedSetPartInstrumentNumber (
 MusicComponent mc,
 long partNumber,
 GCPart *p
);

Parameters
mc

A music component. Your software obtains this reference when calling OpenComponent or
OpenDefaultComponent.

partNumber
The number of the part for this operation.

p
A pointer to the part for this operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicDerivedStorePartInstrument
Undocumented (Deprecated in Mac OS X v10.5.)

ComponentResult MusicDerivedStorePartInstrument (
 MusicComponent mc,
 long partNumber,
 GCPart *p,
 long instrumentNumber
);

Parameters
mc

An instance of the music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

partNumber
The number of the part for this operation.

p
A pointer to the part for this operation.

instrumentNumber
Number of the instrument for this part. You can use MusicFindTone (page 1684) to get an instrument
number.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1683
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicFindTone
Returns the number of the best-matching instrument provided by a specified music component. (Deprecated
in Mac OS X v10.5.)

ComponentResult MusicFindTone (
 MusicComponent mc,
 ToneDescription *td,
 long *libraryIndexOut,
 unsigned long *fit
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

td
Pointer to a ToneDescription structure.

libraryIndexOut
On return, contains the number of the best-matching instrument. Only General MIDI numbers are
guaranteed to be the same for later instantiations of the component.

fit
On return, a constant (see below) that indicates how well an instrument matches the tone description.
See these constants:

kInstrumentMatchSynthesizerType

kInstrumentMatchSynthesizerName

kInstrumentMatchName

kInstrumentMatchNumber

kInstrumentMatchGMNumber

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The music component searches for an instrument as follows:

If the synthesizerType field of the td parameter matches the type of the specified music component, it
first tries to find an instrument that matches the value of the instrumentNumber field of the td parameter.
If this value is in the range 129-16512, which specifies a GS instrument, and the GS instrument is not available,
it tries to find the General MIDI instrument that corresponds to it, which has the number
((GSinstrumentnumber - 1) & 0x7F) + 1. If the value is greater than 16512, which specifies a transient

1684 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ROM instrument or internal instrument index value, it tries to find an instrument that matches the
synthesizerName field of the td parameter. If that fails, it tries to find an instrument that matches the value
of the gmNumber field of the td parameter.

If the synthesizerType field of the td parameter does not match the type of the specified music component,
it tries to find an instrument that matches the value of the gmNumber field of the td parameter.

If none of these rules apply, or the fields are blank (0 for the type or numeric fields, or zero-length for the
strings), then the call returns instrument 1 and a fit parameter of zero.

The synthesizerName field may be ignored by the component; it is used by the note allocator when
deciding which music device to use.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicGenericConfigure
Informs the generic music component what services your music component requires and points to any
resources that are necessary. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGenericConfigure (
 MusicComponent mc,
 long mode,
 long flags,
 long baseResID
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling the
Component Manager's OpenComponent or OpenDefaultComponent function.

mode
Must be 0.

Functions 1685
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags
Flags (see below) that control the importation of MIDI files. See these constants:

kGenericMusicDoMIDI

kGenericMusicBank0

kGenericMusicBank32

kGenericMusicErsatzMIDI

kGenericMusicCallKnobs

kGenericMusicCallParts

kGenericMusicCallInstrument

kGenericMusicCallNumber

kGenericMusicCallROMInstrument

baseResID
The resource ID of the lowest-numbered resource used by your music component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The baseResID parameter is the lowest resource ID used by your component for the standard resources
described above. Since the resource numbers are relative to this, you can include several music components
in a single system extension.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGenericGetKnobList
Gets a list of the knobs of a given type for the generic music component. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGenericGetKnobList (
 MusicComponent mc,
 long knobType,
 GenericKnobDescriptionListHandle *gkdlH
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

knobType
A constant (see below) that defines the type of knob. See these constants:

kGenericMusicKnob

kGenericMusicInstrumentKnob

kGenericMusicDrumKnob

1686 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

gkdlH
On return, a pointer to a handle to a GenericKnobDescriptionList structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGenericGetPart
Gets a part used by the generic music component. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGenericGetPart (
 MusicComponent mc,
 long partNumber,
 GCPart **part
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

partNumber
The number of the part for this operation.

part
A handle to a GCPart structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGenericSetResourceNumbers
Undocumented (Deprecated in Mac OS X v10.5.)

Functions 1687
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGenericSetResourceNumbers (
 MusicComponent mc,
 Handle resourceIDH
);

Parameters
mc

The instance of the generic music component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

resourceIDH
A handle to a resource ID.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetDescription
Returns a structure describing the synthesizer controlled by the music component device. (Deprecated in
Mac OS X v10.5.)

ComponentResult MusicGetDescription (
 MusicComponent mc,
 SynthesizerDescription *sd
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

sd
Pointer to a SynthesizerDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

1688 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

MusicGetDeviceConnection
Determines how many hardware synthesizers are available to a music component and gets the IDs for those
devices. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetDeviceConnection (
 MusicComponent mc,
 long index,
 long *id1,
 long *id2
);

Parameters
mc

Music component returned by NAGetRegisteredMusicDevice (page 1722).

index
Index of the device for which you want to find out the IDs. Set to 0 if you are calling to get the number
of hardware devices.

id1
On return, a hardware synthesizer ID.

id2
On return, another hardware synthesizer ID.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
To get the number of hardware synthesizers available to the music component specified in the mc parameter
and an index you can use to request ID numbers for a specific device, call this function with a value of 0 for
the index parameter. You can then pass an index value in the index parameter, and the function returns
hardware synthesizer IDs in the id1 and id2 parameters.

Special Considerations

This function is implemented only for hardware synthesizers, such as PCI card devices.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetDrumKnobDescription
Returns a description of a drum kit knob. (Deprecated in Mac OS X v10.5.)

Functions 1689
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGetDrumKnobDescription (
 MusicComponent mc,
 long knobIndex,
 KnobDescription *mkd
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobIndex
A knob index or knob ID.

mkd
A pointer to a KnobDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetDrumNames
Undocumented (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetDrumNames (
 MusicComponent mc,
 long modifiableInstruments,
 Handle *instrumentNumbers,
 Handle *instrumentNames
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

modifiableInstruments
Undocumented

instrumentNumbers
Undocumented

instrumentNames
A pointer to a handle to the requested list of instrument name strings, formatted as a short integer
followed by packed strings.

Return Value
See Error Codes. Returns noErr if there is no error.

1690 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetInfoText
Undocumented (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetInfoText (
 MusicComponent mc,
 long selector,
 Handle *textH,
 Handle *styleH
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

selector
Undocumented

textH
Undocumented

styleH
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetInstrumentAboutInfo
Obtains the information about an instrument that appears in its About box. (Deprecated in Mac OS X v10.5.)

Functions 1691
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGetInstrumentAboutInfo (
 MusicComponent mc,
 long part,
 InstrumentAboutInfo *iai
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Number of the part containing the instrument for which you want information.

iai
On return, a pointer to an InstrumentAboutInfo structure for the instrument currently on the
specified synthesizer part.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetInstrumentInfo
Obtains a list of instruments supported by a synthesizer. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetInstrumentInfo (
 MusicComponent mc,
 long getInstrumentInfoFlags,
 InstrumentInfoListHandle *infoListH
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

getInstrumentInfoFlags
Flags (see below) that specify limits to the list of instruments. See these constants:

kGetInstrumentInfoNoBuiltIn

kGetInstrumentInfoMidiUserInst

kGetInstrumentInfoNoIText

infoListH
On return, a pointer to a handle to an InstrumentInfoList structure that contains the list of
instruments. This handle must be disposed of by the caller.

Return Value
See Error Codes. Returns noErr if there is no error.

1692 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetInstrumentKnobDescription
Obtains the description of an instrument knob. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetInstrumentKnobDescription (
 MusicComponent mc,
 long knobIndex,
 KnobDescription *mkd
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobIndex
A knob index or knob ID.

mkd
On return, a KnobDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicGetInstrumentNames
Undocumented (Deprecated in Mac OS X v10.5.)

Functions 1693
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGetInstrumentNames (
 MusicComponent mc,
 long modifiableInstruments,
 Handle *instrumentNames,
 Handle *instrumentCategoryLasts,
 Handle *instrumentCategoryNames
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

modifiableInstruments
Undocumented

instrumentNames
A pointer to a handle to the requested list of instrument name strings, formatted as a short integer
followed by packed strings.

instrumentCategoryLasts
A pointer to a handle to a group of short integers, the first of which contains the number of integers
to follow.

instrumentCategoryNames
A pointer to a handle to the requested list of instrument category name strings, formatted as a short
integer followed by packed strings.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetKnob
Returns the value of the specified global synthesizer knob. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetKnob (
 MusicComponent mc,
 long knobID
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobID
Knob index or ID.

Return Value
See Error Codes. Returns noErr if there is no error.

1694 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Discussion
A global knob controls an aspect of the entire synthesizer. It is not specific to a part within the synthesizer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicGetKnobDescription
Returns a pointer to an initialized knob description structure describing a global synthesizer knob. (Deprecated
in Mac OS X v10.5.)

ComponentResult MusicGetKnobDescription (
 MusicComponent mc,
 long knobIndex,
 KnobDescription *mkd
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobIndex
Knob index or ID.

mkd
Pointer to a KnobDescription structure. The initialized structure provides default values associated
with the particular knob.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A global knob controls an aspect of the entire synthesizer; it is not limited to a part within the synthesizer.
You can use the information returned by a call to this function to reset a knob to some known, usable value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Functions 1695
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

MusicGetKnobSettingStrings
Returns a list of knob setting names known by the specified music component. (Deprecated in Mac OS X
v10.5.)

ComponentResult MusicGetKnobSettingStrings (
 MusicComponent mc,
 long knobIndex,
 long isGlobal,
 Handle *settingsNames,
 Handle *settingsCategoryLasts,
 Handle *settingsCategoryNames
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobIndex
The knob index or knob ID.

isGlobal
If a knob index is used, indicates whether the specified knob is a global knob.

settingsNames
The requested list of knob setting strings formatted as a short followed by packed strings.

settingsCategoryLasts
A group of short integers, the first of which contains the number of shorts to follow.

settingsCategoryNames
Knob setting category names formatted as a short integer followed by a list of names.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All handles must be disposed of by the caller.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetMasterTune
Returns the synthesizer's master tuning as a fixed-point value in semitones. (Deprecated in Mac OS X v10.5.)

1696 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGetMasterTune (
 MusicComponent mc
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

Return Value
A fixed-point value representing the synthesizer's master tuning. The value is a fixed 16.16 number, allowing
shifts by fractional values.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicGetMIDIPorts
Returns the number of input and output ports a MIDI device has. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetMIDIPorts (
 MusicComponent mc,
 long *inputPortCount,
 long *outputPortCount
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

inputPortCount
On return, the number of input MIDI ports available to the music component.

outputPortCount
On return, the number of output MIDI ports available to the music component.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This call is implemented only for hardware synthesizers, such as PCI card devices.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1697
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetMIDIProc
Returns a pointer to the procedure a music component is using to process external MIDI notes. (Deprecated
in Mac OS X v10.5.)

ComponentResult MusicGetMIDIProc (
 MusicComponent mc,
 MusicMIDISendUPP *midiSendProc,
 long *refCon
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

midiSendProc
Pointer to a MIDI serial port MusicMIDISendProc callback that processes external MIDI notes. This
function was set by a previous call to MusicSetMIDIProc (page 1706). If no function has been set with
MusicSetMIDIProc, this parameter returns 0.

refCon
A reference constant. The Movie Toolbox passes this reference constant to your MusicMIDISendProc
each time it calls it. Use this parameter to point to a data structure containing any information your
callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetPart
Returns the MIDI channel and maximum polyphony for a particular part. (Deprecated in Mac OS X v10.5.)

1698 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicGetPart (
 MusicComponent mc,
 long part,
 long *midiChannel,
 long *polyphony
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The music component part requested.

midiChannel
On return, a pointer to a MIDI channel. For non-MIDI devices, the MIDI channel pointed to by this
parameter is 0.

polyphony
On return, a pointer to the maximum number of voices or polyphony for the part..

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetPartAtomicInstrument
Returns the atomic instrument currently in a part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetPartAtomicInstrument (
 MusicComponent mc,
 long part,
 AtomicInstrument *ai,
 long flags
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The part with the atomic instrument.

ai
On return, an atomic instrument.

Functions 1699
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags
A constant (see below) that specifies what pieces of information about an atomic instrument the
caller is interested in. See these constants:

kGetAtomicInstNoExpandedSamples

kGetAtomicInstNoOriginalSamples

kGetAtomicInstNoSamples

kGetAtomicInstNoKnobList

kGetAtomicInstNoInstrumentInfo

kGetAtomicInstOriginalKnobList

kGetAtomicInstAllKnobs

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetPartController
Returns the value of a specified controller on a specified part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetPartController (
 MusicComponent mc,
 long part,
 MusicController controllerNumber
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part whose controller value you want to get.

controllerNumber
On return, the controller number; see Music Controllers.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1700 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

MusicGetPartInstrumentNumber
Returns the instrument number currently assigned to a part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetPartInstrumentNumber (
 MusicComponent mc,
 long part
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part number containing the instrument.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicGetPartKnob
Retrieves the current value of a knob for a part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetPartKnob (
 MusicComponent mc,
 long part,
 long knobID
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The part number.

knobID
The knob index or ID.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1701
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicGetPartName
Returns the string name of a part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicGetPartName (
 MusicComponent mc,
 long part,
 StringPtr name
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part to get the name of.

name
On return, a string containing the part name.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The name string is used by selection dialog boxes or configuration information.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicPlayNote
Plays a note on a specified part at a specified pitch and velocity. (Deprecated in Mac OS X v10.5.)

1702 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicPlayNote (
 MusicComponent mc,
 long part,
 long pitch,
 long velocity
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The part to play the note on.

pitch
The pitch at which to play the note. If the pitch is specified by a number from 0 to 127, it is a MIDI
pitch, where 60 is middle C. If the pitch is a positive number above 65535, the value is a fixed-point
pitch value. Thus, microtonal values may be specified.

velocity
How hard to strike the key. Values are 0-127 where 0 is silence. Velocity refers to how hard the key is
struck (if performed on a keyboard-instrument); typically, this translates directly to volume, but on
many synthesizers this also subtly alters the timbre of the tone.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The current note continues to play until a MusicPlayNote function with the same pitch and velocity of 0
turns the note off.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicResetPart
Silences all sounds on a specified part and resets all controllers on that part to their default values. (Deprecated
in Mac OS X v10.5.)

Functions 1703
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicResetPart (
 MusicComponent mc,
 long part
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The number of the part.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The default value to which controllers on the part are set is 0 for all controllers except volume. Volume is set
to its maximum, 32767 (0x7FFF).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSendMIDI
Sends a MIDI packet to a specified port. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSendMIDI (
 MusicComponent mc,
 long portIndex,
 MusicMIDIPacket *mp
);

Parameters
mc

Music component instance returned by NAGetRegisteredMusicDevice (page 1722).

portIndex
The index of the port to send the MIDI packet to. The index value is 1 through the port count returned
by MusicGetMIDIPorts (page 1697).

mp
A pointer to the music MIDI packet to be sent. The function sends the MIDI music packet specified
by this parameter to the specified port.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This call is implemented only for hardware synthesizers, such as PCI card devices.

1704 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetKnob
Modifies the value of the specified global synthesizer knob. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetKnob (
 MusicComponent mc,
 long knobID,
 long knobValue
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

knobID
Knob index or ID.

knobValue
Value for specified knob.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A global knob controls an aspect of the entire synthesizer; it is not limited to a part within the synthesizer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicSetMasterTune
Alters a synthesizer's master tuning. (Deprecated in Mac OS X v10.5.)

Functions 1705
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicSetMasterTune (
 MusicComponent mc,
 long masterTune
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

masterTune
The amount by which to transpose the entire synthesizer in pitch. The value is a fixed 16.16 number,
allowing shifts by fractional values.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicSetMIDIProc
Informs the music component what procedure to call when it needs to send MIDI data. (Deprecated in Mac
OS X v10.5.)

ComponentResult MusicSetMIDIProc (
 MusicComponent mc,
 MusicMIDISendUPP midiSendProc,
 long refCon
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

midiSendProc
A pointer to the MusicMIDISendProc callback to use when sending MIDI data.

refCon
A reference constant value. The Movie Toolbox passes this reference constant to your callback each
time it calls it. Use this parameter to point to a data structure containing any information your callback
needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This call is implemented only by music components for MIDI synthesizers.

1706 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetOfflineTimeTo
Advances the synthesizer clock when the synthesizer is not running in real time. (Deprecated in Mac OS X
v10.5.)

ComponentResult MusicSetOfflineTimeTo (
 MusicComponent mc,
 long newTimeStamp
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

newTimeStamp
The number of samples to synthesize.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The synthesizer may not be running in real time due to a call to MusicStartOffline (page 1713). Setting
the time generates audio output from the synthesizer.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPart
Sets the MIDI channel and maximum polyphony for a specified part. (Deprecated in Mac OS X v10.5.)

Functions 1707
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicSetPart (
 MusicComponent mc,
 long part,
 long midiChannel,
 long polyphony
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part whose MIDI channel and polyphony are to be set.

midiChannel
The MIDI channel to set the part to. For non-MIDI devices, set this parameter to 0.

polyphony
The maximum number of voices or polyphony for the part.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPartAtomicInstrument
Initializes a part with an atomic instrument. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartAtomicInstrument (
 MusicComponent mc,
 long part,
 AtomicInstrumentPtr aiP,
 long flags
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The part to initialize with the atomic instrument to.

aiP
The atomic instrument.

1708 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags
Constants (see below) that specify details of initializing a part with an atomic instrument. See these
constants:

kGetAtomicInstNoExpandedSamples

kGetAtomicInstNoOriginalSamples

kGetAtomicInstNoSamples

kGetAtomicInstNoKnobList

kGetAtomicInstNoInstrumentInfo

kGetAtomicInstOriginalKnobList

kGetAtomicInstAllKnobs

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPartController
Initializes the value of a specified controller on a specified part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartController (
 MusicComponent mc,
 long part,
 MusicController controllerNumber,
 long controllerValue
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part whose controller value you want to set.

controllerNumber
Controller number; see Music Controllers.

controllerValue
Value for controller.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1709
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPartInstrumentNumber
Superseded by MusicSetPartInstrumentNumberInterruptSafe. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartInstrumentNumber (
 MusicComponent mc,
 long part,
 long instrumentNumber
);

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPartInstrumentNumberInterruptSafe
Initializes a part with a particular instrument. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartInstrumentNumberInterruptSafe (
 MusicComponent mc,
 long part,
 long instrumentNumber
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part to be initialized.

instrumentNumber
Number of instrument to initialize part with. You can use MusicFindTone (page 1684) to get an
instrument number.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

You can call this function at interrupt time.

1710 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicSetPartKnob
Sets a knob for a specified part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartKnob (
 MusicComponent mc,
 long part,
 long knobID,
 long knobValue
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
The part number.

knobID
The index or ID of the knob to be set.

knobValue
The value to set the knob to.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicSetPartName
Changes the name of an instrument in a specified part. (Deprecated in Mac OS X v10.5.)

Functions 1711
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicSetPartName (
 MusicComponent mc,
 long part,
 StringPtr name
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part to apply name to.

name
A pointer to the name to apply to part.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You might want to change the name of a modified instrument before saving it. The instrument name string
is used by selection dialog and configuration information boxes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

MusicSetPartSoundLocalization
Passes sound localization data to a specified synthesizer part. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicSetPartSoundLocalization (
 MusicComponent mc,
 long part,
 Handle data
);

Parameters
mc

Music component instance identifier.

part
The part to pass the data to.

data
The sound localization data.

Return Value
See Error Codes. Returns noErr if there is no error.

1712 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Discussion
Use the functions described in this section to get and modify the master tuning of the synthesizer, to play
off line, and to allow the music component to perform tasks it must perform at foreground task time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicStartOffline
Informs the QuickTime music synthesizer that the music will not be played through the speakers. (Deprecated
in Mac OS X v10.5.)

ComponentResult MusicStartOffline (
 MusicComponent mc,
 unsigned long *numChannels,
 UnsignedFixed *sampleRate,
 unsigned short *sampleSize,
 MusicOfflineDataUPP dataProc,
 long dataProcRefCon
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

numChannels
Number of channels in the music sample; 1 indicates monaural, 2 indicates stereo.

sampleRate
The number of samples per second.

sampleSize
The size of the music sample: 8-bit or 16-bit.

dataProc
A pointer to a MusicOfflineDataProc callback to handle the audio data.

dataProcRefCon
A reference constant to pass to the MusicOfflineDataProc callback. Use this parameter to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Audio data will be sent to a function that will create a sound file to be played back later. You pass this function
the requested values for the numChannels, sampleRate, and sampleSize parameters. When the function
returns, those parameters contain the actual values used.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1713
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicStorePartInstrument
Puts whatever instrument is on the specified part into the synthesizer's instrument store. (Deprecated in Mac
OS X v10.5.)

ComponentResult MusicStorePartInstrument (
 MusicComponent mc,
 long part,
 long instrumentNumber
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

part
Part containing the instrument to be stored.

instrumentNumber
Instrument number at which to store the part. The value must be between 1 and the synthesizer's
modifiable instrument count, as defined by the modifiableInstrumentCount field of the
synthesizer's SynthesizerDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets you store modified instruments.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicTask
Allows a music component to perform tasks it must perform at foreground task time. (Deprecated in Mac
OS X v10.5.)

1714 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult MusicTask (
 MusicComponent mc
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function must be called periodically. In the case of the QuickTime music synthesizer, instruments cannot
be loaded from disk at interrupt time, so if theNASetInstrumentNumberInterruptSafe (page 1735) function
is called, the instrument is loaded during the next MusicTask call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

MusicUseDeviceConnection
Tells a music component which hardware synthesizer to talk to. (Deprecated in Mac OS X v10.5.)

ComponentResult MusicUseDeviceConnection (
 MusicComponent mc,
 long id1,
 long id2
);

Parameters
mc

Music component instance identifier returned by NAGetRegisteredMusicDevice (page 1722).

id1
The ID of the device returned in the id1 parameter of MusicGetDeviceConnection (page 1689).

id2
The ID of the device returned in the id2 parameter of MusicGetDeviceConnection (page 1689).

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This call is implemented only for hardware synthesizers, such as PCI card devices.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 1715
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NACopyrightDialog
Displays a copyright dialog box with information specific to a music device. (Deprecated in Mac OS X v10.5.)

ComponentResult NACopyrightDialog (
 NoteAllocator na,
 PicHandle p,
 StringPtr author,
 StringPtr copyright,
 StringPtr other,
 StringPtr title,
 ModalFilterUPP filterProc,
 long refCon
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

p
A handle to a Picture structure containing the image resource for the dialog box.

author
A pointer to a string containing author information.

copyright
A pointer to a string containing copyright information.

other
A pointer to a string containing any additional information.

title
A pointer to a string containing title information.

filterProc
Pointer to a ModalFilterProc callback.

refCon
A reference constant value. The Movie Toolbox passes this reference constant to your
ModalFilterProc each time it calls it. Use this parameter to point to a data structure containing
any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1716 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

NADisposeNoteChannel
Deletes a specified note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NADisposeNoteChannel (
 NoteAllocator na,
 NoteChannel noteChannel
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to be disposed. You obtain the note channel identifier from NANewNoteChannel (page
1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

NAFindNoteChannelTone
Locates the instrument that best fits a requested tone description for a specific channel. (Deprecated in Mac
OS X v10.5.)

ComponentResult NAFindNoteChannelTone (
 NoteAllocator na,
 NoteChannel noteChannel,
 ToneDescription *td,
 long *instrumentNumber
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

Functions 1717
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

noteChannel
The note channel for which you want an instrument. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

td
A ToneDescription structure that describes the instrument fit.

instrumentNumber
On return, the number of the instrument that best fits the tone description.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAGetController
Retrieves the controller settings for a note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NAGetController (
 NoteAllocator na,
 NoteChannel noteChannel,
 long controllerNumber,
 long *controllerValue
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel for which to get controller settings. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

controllerNumber
The controller for which to get settings; see Music Controllers.

controllerValue
On return, the value for the controller setting, typically 0 (0x00.00) to 32767 (0x7F.FF).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1718 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

NAGetIndNoteChannel
Returns the number of note channels handled by the specified note allocator instance. (Deprecated in Mac
OS X v10.5.)

ComponentResult NAGetIndNoteChannel (
 NoteAllocator na,
 long index,
 NoteChannel *nc,
 long *seed
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

index
The index of the note channel. If 0, the result is still the number of note channels, but the nc parameter
is not filled out.

nc
The note channel requested.

seed
A number that changes on successive calls if anything significant changes about a note channel; for
example, if the note channel has been reallocated or released.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function can also return a requested note channel. To get a count of the note channels, pass 0 in the
index parameter. To get a specific note channel, pass the index value returned by a previous call to
NAGetIndNoteChannel.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAGetKnob
Obtains the value of a knob for a given note channel. (Deprecated in Mac OS X v10.5.)

Functions 1719
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NAGetKnob (
 NoteAllocator na,
 NoteChannel noteChannel,
 long knobNumber,
 long *knobValue
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
The note channel whose knob value you want to get. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

knobNumber
The index or ID of the knob whose value you want to get.

knobValue
On return, a pointer to the value of the knob.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAGetMIDIPorts
The MIDI input and output ports available to a note allocator. (Deprecated in Mac OS X v10.5.)

ComponentResult NAGetMIDIPorts (
 NoteAllocator na,
 QTMIDIPortListHandle *inputPorts,
 QTMIDIPortListHandle *outputPorts
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

inputPorts
On return, a handle giving the number of input ports (the first two bytes) followed by a list of
QTMIDIPort structures.

outputPorts
On return, a handle giving the number of output ports (the first two bytes) followed by a list of
QTMIDIPort structures.

Return Value
See Error Codes. Returns noErr if there is no error.

1720 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Discussion
This routine calls the QuickTime MIDI components to query them.

Special Considerations

NAGetMIDIPorts is the correct call for applications to make. They should not call QTMIDIGetMIDIPorts.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAGetNoteChannelInfo
Returns the index of the music component for the allocated channel and its part number on that music
component. (Deprecated in Mac OS X v10.5.)

ComponentResult NAGetNoteChannelInfo (
 NoteAllocator na,
 NoteChannel noteChannel,
 long *index,
 long *part
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to get information about. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

index
Music component index.

part
Music component part pointer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The NAGetNoteChannelInfo function allows direct access to the music component allocated to the note
channel by the note allocator. The index returned becomes invalid if music components are subsequently
registered or unregistered.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 1721
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

NAGetNoteRequest
Retrieves the NoteRequest structure that was passed to a note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NAGetNoteRequest (
 NoteAllocator na,
 NoteChannel noteChannel,
 NoteRequest *nrOut
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

noteChannel
The note channel whose note request you want to get. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

nrOut
On return, the NoteRequest structure that was used when the specified note channel was allocated.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAGetRegisteredMusicDevice
Returns details about music components registered to the specified note allocator instance. (Deprecated in
Mac OS X v10.5.)

1722 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NAGetRegisteredMusicDevice (
 NoteAllocator na,
 long index,
 OSType *synthType,
 Str31 name,
 SynthesizerConnections *connections,
 MusicComponent *mc
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

index
The index of the music component to get information about. To get a count of the registered music
components, pass 0 in the index parameter. The return value is the count of components. To get
information about one of the music components registered with the note allocator, pass the music
component index in the index parameter. The index value can be 1 through the number of registered
components returned by a previous call to NAGetRegisteredMusicDevice.

synthType
Synthesizer type.

name
Synthesizer name as a text string.

connections
A synthesizer connections for MIDI devices structure.

mc
Music component instance identifier.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If you request information about a specific registered music component, this function returns the type of
synthesizer the component supports in the synthType parameter, the name of the synthesizer in the name
parameter, and the music component identifier in the mc parameter. For MIDI devices, it returns a pointer
to a MIDI devices structure with information about the synthesizer connections.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

Functions 1723
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

NANewNoteChannel
Requests a new note channel with the qualities described in a NoteRequest structure. (Deprecated in Mac
OS X v10.5.)

ComponentResult NANewNoteChannel (
 NoteAllocator na,
 NoteRequest *noteRequest,
 NoteChannel *outChannel
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

noteRequest
A pointer to a NoteRequest structure.

outChannel
On return, a pointer to an identifier for a new note channel or NIL if the function fails to create a note
channel.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function searches all available music components for the instrument that best matches the specifications
in the ToneDescription structure that is contained within the noteRequest parameter. If an error occurs,
the new note channel is initialized to NIL. The caller can request an instrument that is not currently allocated
to a part. In that case, this function may return a value in outChannel, even though the request cannot
initially be satisfied. The note channel may become valid at a later time, as other note channels are released
or other music components are registered.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

NANewNoteChannelFromAtomicInstrument
Requests a new note channel for an atomic instrument. (Deprecated in Mac OS X v10.5.)

1724 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NANewNoteChannelFromAtomicInstrument (
 NoteAllocator na,
 AtomicInstrumentPtr instrument,
 long flags,
 NoteChannel *outChannel
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

instrument
A pointer to the atomic instrument. This may be a dereferenced locked QT atom container.

flags
Flags (see below) that specify details of initializing a part with an atomic instrument. See these
constants:

kSetAtomicInstKeepOriginalInstrument

kSetAtomicInstShareAcrossParts

kSetAtomicInstCallerTosses

kSetAtomicInstDontPreprocess

outChannel
On return, a pointer to an identifier for a new note channel or NIL if the function fails to create a note
channel.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function takes a note allocator identifier in the na parameter and a pointer to the atomic instrument
you are requesting a new channel for in the instrument parameter. Among other things, you can specify
how to handle the expanded sample with the flags parameter. The function returns the note channel
allocated for the instrument in the outChannel parameter, or NIL if an error occurs.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win

Declared In
QuickTimeMusic.h

NAPickArrangement
Displays a dialog box to allow instrument selection. (Deprecated in Mac OS X v10.5.)

Functions 1725
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NAPickArrangement (
 NoteAllocator na,
 ModalFilterUPP filterProc,
 StringPtr prompt,
 long zero1,
 long zero2,
 Track t,
 StringPtr songName
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

filterProc
A Universal Procedure Pointer to a ModalFilterProc callback.

prompt
A pointer to a dialog box prompt string.

zero1
Must be 0.

zero2
Must be 0.

t
The arrangement movie track number.

songName
A pointer to the name of a song to display in the dialog box.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAPickEditInstrument
Presents a user interface for changing the instrument in a live note channel or modifying an atomic instrument.
(Deprecated in Mac OS X v10.5.)

1726 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NAPickEditInstrument (
 NoteAllocator na,
 ModalFilterUPP filterProc,
 StringPtr prompt,
 long refCon,
 NoteChannel nc,
 AtomicInstrument ai,
 long flags
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

filterProc
Pointer to a ModalFilterProc callback.

prompt
Dialog box prompt "New Instrument".

refCon
A reference constant value. The Movie Toolbox passes this reference constant to your
ModalFilterProc callback each time it calls it. Use this parameter to point to a data structure
containing any information your callback needs.

nc
The live note channel that appears in the dialog box. If you specify a note channel, set the ai parameter
to 0. You obtain the note channel identifier from NANewNoteChannel (page 1724) or
NANewNoteChannelFromAtomicInstrument (page 1724).

ai
The atomic instrument that appears in the dialog box. If you specify an atomic instrument, set the nc
parameter to 0.

flags
Flags (see below) that limit the instruments presented. If the kPickDontMix flag is set, the dialog
box does not display a mix of synthesizer part types. For example, if the current instrument is a drum,
only available drums appear in the dialog box. The kPickSameSynth flag allows selections only
within the current synthesizer. The kPickUserInsts flag allows user modifiable instruments to
appear. If the kPickEditAllowPick flag is not set, no dialog box appears. See these constants:

kPickDontMix

kPickSameSynth

kPickUserInsts

kPickEditAllowPick

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

Functions 1727
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

NAPickInstrument
Presents a user interface for picking an instrument. (Deprecated in Mac OS X v10.5.)

ComponentResult NAPickInstrument (
 NoteAllocator na,
 ModalFilterUPP filterProc,
 StringPtr prompt,
 ToneDescription *sd,
 unsigned long flags,
 long refCon,
 long reserved1,
 long reserved2
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

filterProc
Pointer to a ModalFilterProc callback.

prompt
A pointer to the dialog box prompt "New Instrument".

sd
On entry, the tone description of the instrument that appears in the picker dialog box. On return, a
tone description of the instrument the user selected.

flags
Flags (see below) that determine whether to display the picker dialog box and what instruments
appear for selection. If the kPickDontMix flag is set, the dialog box does not display a mix of
synthesizer part types. For example, if the current instrument is a drum, only available drums appear
in the dialog box. The kPickSameSynth flag allows selections only within the current synthesizer.
The kPickUserInsts flag allows user modifiable instruments to appear. The kPickEditAllowPick
flag is used only with NAPickEditInstrument (page 1726). See these constants:

kPickDontMix

kPickSameSynth

kPickUserInsts

refCon
A reference constant value. The Movie Toolbox passes this reference constant to your
ModalFilterProc callback each time it calls it. Use this parameter to point to a data structure
containing any information your callback needs.

reserved1
Must contain 0.

reserved2
Must contain 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1728 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

NAPlayNote
Plays a note with a specified pitch and velocity on the specified note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NAPlayNote (
 NoteAllocator na,
 NoteChannel noteChannel,
 long pitch,
 long velocity
);

Parameters
na

You obtain the note allocator identifier from OpenComponent.

noteChannel
The note channel to play the note. You obtain the note channel identifier from the
NANewNoteChannel (page 1724) or the NANewNoteChannelFromAtomicInstrument (page 1724)
function.

pitch
The pitch at which to play the note. You can specify values as integer pitch values (0-127 where 60
is middle C) or fractional pitch values (256 (0x1.00) through 32767 (0x7F.FF)). If the pitch is a number
from 0 to 127, then it is the MIDI pitch, where 60 is middle C. If the pitch is a positive number above
65535, then the value is a fixed-point pitch value. Thus, microtonal values can be specified. Negative
values are not defined and should not be used.

velocity
The velocity with which the key is struck. Typically, this translates directly to volume, but on many
synthesizers this also subtly alters the timbre of the tone. A value of 0 is silence; a value of 127 is
maximum force.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win

Functions 1729
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

QTMusicToo

Declared In
QuickTimeMusic.h

NAPrerollNoteChannel
Attempts to reallocate the note channel if it was invalid previously. (Deprecated in Mac OS X v10.5.)

ComponentResult NAPrerollNoteChannel (
 NoteAllocator na,
 NoteChannel noteChannel
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to be re-allocated. You obtain the note channel identifier from NANewNoteChannel (page
1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The NAPrerollNoteChannel function attempts to reallocate the note channel, if it was invalid previously.
It could have been invalid if there were no available voices on any registered music components when the
note channel was created.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

NARegisterMusicDevice
Registers a music component with the note allocator. (Deprecated in Mac OS X v10.5.)

1730 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NARegisterMusicDevice (
 NoteAllocator na,
 OSType synthType,
 Str31 name,
 SynthesizerConnections *connections
);

Parameters
na

You obtain the note allocator identifier from OpenComponent.

synthType
Subtype of the music component.

name
The synthesizer name. This parameter provides a means of distinguishing multiple instances of the
same type of device and is a string that can be displayed to the user. If no value is passed in the name
parameter, the name defaults to the name of the music component type. The name appears in the
instrument picker dialog box.

connections
A SynthesizerConnections structure that describes the hardware connections to a MIDI device.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAResetNoteChannel
Turns off all currently active notes on the note channel and resets all controllers to their default values.
(Deprecated in Mac OS X v10.5.)

ComponentResult NAResetNoteChannel (
 NoteAllocator na,
 NoteChannel noteChannel
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
The note channel to reset. You obtain the note channel identifier from NANewNoteChannel (page
1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1731
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Discussion
This function resets the specified note channel by turning "off" any note currently playing. All controllers are
reset to their default state. The effects of the NAResetNoteChannel call are propagated down to the allocated
part within the appropriate music component.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

NASaveMusicConfiguration
Saves the current list of registered devices to a file. (Deprecated in Mac OS X v10.5.)

ComponentResult NASaveMusicConfiguration (
 NoteAllocator na
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The NASaveMusicConfiguration function saves the current list of registered devices to a file. This file is
read whenever a note allocator connection is opened, restoring the previously configured list of devices. The
list is saved in the QuickTime Preferences file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASendMIDI
Sends a MIDI music packet to a synthesizer that contains a specific note channel. (Deprecated in Mac OS X
v10.5.)

1732 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NASendMIDI (
 NoteAllocator na,
 NoteChannel noteChannel,
 MusicMIDIPacket *mp
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

noteChannel
The function sends the packet to the synthesizer that contains this note channel. You obtain the note
channel identifier from the NANewNoteChannel (page 1724) or the
NANewNoteChannelFromAtomicInstrument (page 1724) function.

mp
The music packet to be sent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sends the MIDI music packet pointed to by the mp parameter to the synthesizer that contains
the note channel identified by the noteChannel parameter. The na parameter specifies the note allocator
instance to use.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASetAtomicInstrument
Initializes a synthesizer part with an atomic instrument. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetAtomicInstrument (
 NoteAllocator na,
 NoteChannel noteChannel,
 AtomicInstrumentPtr instrument,
 long flags
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
The note channel to apply the atomic instrument to. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

instrument
A pointer to the atomic instrument. This can be a locked, dereferenced atomic instrument.

Functions 1733
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags
Flags (see below) that detail how to initialize the part. See these constants:

kSetAtomicInstKeepOriginalInstrument

kSetAtomicInstShareAcrossParts

kSetAtomicInstCallerTosses

kSetAtomicInstDontPreprocess

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASetController
Changes the controller setting on a note channel to a specified value. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetController (
 NoteAllocator na,
 NoteChannel noteChannel,
 long controllerNumber,
 long controllerValue
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel on which to change controller. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

controllerNumber
The controller to set; see Music Controllers.

controllerValue
Value for controller setting; typically 0 (0x00.00) to 32767 (0x7F.FF).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1734 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

NASetInstrumentNumber
Initializes initializes a synthesizer part with the specified instrument. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetInstrumentNumber (
 NoteAllocator na,
 NoteChannel noteChannel,
 long instrumentNumber
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to initialize with the instrument. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

instrumentNumber
Number of the instrument to initialize the part with. This number is unique to each synthesizer. General
MIDI synthesizers all share the range 1-128 and 16365 to kLastDrumKit.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASetInstrumentNumberInterruptSafe
Initializes a synthesizer part with the specified instrument during interrupt time. (Deprecated in Mac OS X
v10.5.)

Functions 1735
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult NASetInstrumentNumberInterruptSafe (
 NoteAllocator na,
 NoteChannel noteChannel,
 long instrumentNumber
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to initialize with the instrument. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

instrumentNumber
Number of the instrument to initialize the part with.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

If the instrument is not already loaded when you call NASetInstrumentNumberInterruptSafe, you have
to wait for the next call to NATask (page 1740) for the instrument to become available.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASetKnob
Sets a note channel knob to a particular value. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetKnob (
 NoteAllocator na,
 NoteChannel noteChannel,
 long knobNumber,
 long knobValue
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel on which to set the knob value. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

knobNumber
Index or ID of the knob to be set.

1736 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

knobValue
Value to set knob to.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

NASetNoteChannelBalance
Modifies the pan controller setting for a note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetNoteChannelBalance (
 NoteAllocator na,
 NoteChannel noteChannel,
 long balance
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
The note channel to be balanced. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

balance
Specifies how to modify the pan controller setting. Valid values are from -128 to 128 for left to right
balance.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

Functions 1737
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

NASetNoteChannelSoundLocalization
Passes sound localization data to a note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetNoteChannelSoundLocalization (
 NoteAllocator na,
 NoteChannel noteChannel,
 Handle data
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
The note channel to pass the data to. You obtain the note channel identifier from
NANewNoteChannel (page 1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

data
Sound localization data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NASetNoteChannelVolume
Sets the volume on the specified note channel. (Deprecated in Mac OS X v10.5.)

ComponentResult NASetNoteChannelVolume (
 NoteAllocator na,
 NoteChannel noteChannel,
 Fixed volume
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

noteChannel
The note channel to reset. You obtain the note channel identifier from the NANewNoteChannel (page
1724) or the NANewNoteChannelFromAtomicInstrument (page 1724) function.

volume
A fixed 16.16 number. NASetNoteChannelVolume sets the volume for the note channel, which is
different from a kControllerVolume setting. Both volume settings allow fractional values of 0.0 to
1.0. Each value modifies the other. For example, a kControllerVolume value of 0.5 and a
NASetNoteChannelVolume value of 0.5 result in a 0.25 volume level.

1738 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win

Declared In
QuickTimeMusic.h

NAStuffToneDescription
Initializes a tone description structure with the details of a General MIDI note channel. (Deprecated in Mac
OS X v10.5.)

ComponentResult NAStuffToneDescription (
 NoteAllocator na,
 long gmNumber,
 ToneDescription *td
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

gmNumber
A General MIDI instrument number.

td
On return, an initialized tone description. The instrument name field will be filled in with the string
name for the instrument.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Functions 1739
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

NATask
Called periodically to allow the note allocator to perform tasks in foreground task time. (Deprecated in Mac
OS X v10.5.)

ComponentResult NATask (
 NoteAllocator na
);

Parameters
na

You obtain the note allocator identifier from the Component Manager's OpenComponent function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The NATask function calls each registered music component's MusicTask (page 1714) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAUnregisterMusicDevice
Removes a previously registered music component from the note allocator. (Deprecated in Mac OS X v10.5.)

ComponentResult NAUnregisterMusicDevice (
 NoteAllocator na,
 long index
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

index
Synthesizer to unregister. The value is 1 through the registered music component count returned by
NAGetRegisteredMusicDevice (page 1722).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

1740 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NAUnrollNoteChannel
Marks a note channel as available to be stolen. (Deprecated in Mac OS X v10.5.)

ComponentResult NAUnrollNoteChannel (
 NoteAllocator na,
 NoteChannel noteChannel
);

Parameters
na

You obtain the note allocator identifier by calling OpenComponent.

noteChannel
Note channel to be unrolled. You obtain the note channel identifier from NANewNoteChannel (page
1724) or NANewNoteChannelFromAtomicInstrument (page 1724).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

NewMusicMIDISendUPP
Allocates a Universal Procedure Pointer for the MusicMIDISendProc callback. (Deprecated in Mac OS X v10.5.)

MusicMIDISendUPP NewMusicMIDISendUPP (
 MusicMIDISendProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Functions 1741
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMusicMIDISendProc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NewMusicOfflineDataUPP
Allocates a Universal Procedure Pointer for the MusicOfflineDataProc callback. (Deprecated in Mac OS X
v10.5.)

MusicOfflineDataUPP NewMusicOfflineDataUPP (
 MusicOfflineDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewMusicOfflineDataProc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NewTuneCallBackUPP
Allocates a Universal Procedure Pointer for the TuneCallBackProc callback. (Deprecated in Mac OS X v10.5.)

TuneCallBackUPP NewTuneCallBackUPP (
 TuneCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

1742 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTuneCallBackProc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

NewTunePlayCallBackUPP
Allocates a Universal Procedure Pointer for the TunePlayCallBackProc callback. (Deprecated in Mac OS X
v10.5.)

TunePlayCallBackUPP NewTunePlayCallBackUPP (
 TunePlayCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewTunePlayCallBackProc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

QTMIDIGetMIDIPorts
Returns two lists of MIDI ports supported by the specified MIDI component: a list of ports that can receive
MIDI input and a list of ports that can send MIDI output. (Deprecated in Mac OS X v10.5.)

Functions 1743
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult QTMIDIGetMIDIPorts (
 QTMIDIComponent ci,
 QTMIDIPortListHandle *inputPorts,
 QTMIDIPortListHandle *outputPorts
);

Parameters
ci

A MIDI component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

inputPorts
A list of the MIDI ports supported by the component that can receive MIDI input.

outputPorts
A list of the MIDI ports supported by the component that can send MIDI output.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller of this function must dispose of the inputPorts and outputPorts handles.

Special Considerations

NAGetMIDIPorts (page 1720) is the correct call for applications to make. They should not call this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

QTMIDISendMIDI
Sends MIDI data to a MIDI port. (Deprecated in Mac OS X v10.5.)

ComponentResult QTMIDISendMIDI (
 QTMIDIComponent ci,
 long portIndex,
 MusicMIDIPacket *mp
);

Parameters
ci

A MIDI component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

portIndex
The index of the MIDI port to use for this operation.

mp
A pointer to the MIDI data packet to send.

1744 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function can be called at interrupt time. However, the same interrupt level is used whenever MIDI data
is sent by the specified MIDI component.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

QTMIDIUseSendPort
Allocates a MIDI port for output or to release the port. (Deprecated in Mac OS X v10.5.)

ComponentResult QTMIDIUseSendPort (
 QTMIDIComponent ci,
 long portIndex,
 long inUse
);

Parameters
ci

A MIDI component instance. Your software obtains this reference from OpenComponent or
OpenDefaultComponent.

portIndex
The index of the MIDI port for this operation.

inUse
Specifies whether to allocate the MIDI port for output (if the value is 1) or to release the port (if the
value is 0).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

Functions 1745
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TuneGetIndexedNoteChannel
Determines how many parts a tune is playing and which instrument is assigned to those parts. (Deprecated
in Mac OS X v10.5.)

ComponentResult TuneGetIndexedNoteChannel (
 TunePlayer tp,
 long i,
 NoteChannel *nc
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

i
Note channel index, or 0 to get the number of parts.

nc
A pointer to an allocated initialized note channel.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The tune player allocates note channels that best satisfy the requested instrument in the tune header. The
application can use this call to determine which instrument was actually used for each note channel. This
function takes the tune player in the tp parameter and returns the number of parts (1...n) allocated to the
tune player. You can then pass the function a part index and it returns, in the nc parameter, the note channel
allocated for that part.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TuneGetNoteAllocator
Returns the instance of the note allocator that the tune player is using. (Deprecated in Mac OS X v10.5.)

NoteAllocator TuneGetNoteAllocator (
 TunePlayer tp
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

1746 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Return Value
A note allocator or an error code. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneGetPartMix
Gets volume, balance, and mixing settings for a specified part of a tune. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneGetPartMix (
 TunePlayer tp,
 unsigned long partNumber,
 long *volumeOut,
 long *balanceOut,
 long *mixFlagsOut
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

partNumber
The part number for this request.

volumeOut
Returns the volume for the part.

balanceOut
Returns the balance for the part.

mixFlagsOut
Returns flags (see below) that control part mixing. See these constants:

kTuneMixMute

kTuneMixSolo

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

Functions 1747
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TuneGetStatus
Returns an initialized structure describing the state of the tune player instance. (Deprecated in Mac OS X
v10.5.)

ComponentResult TuneGetStatus (
 TunePlayer tp,
 TuneStatus *status
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

status
A pointer to an initialized TuneStatus structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win

Declared In
QuickTimeMusic.h

TuneGetTimeBase
Returns the time base of the tune player. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneGetTimeBase (
 TunePlayer tp,
 TimeBase *tb
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

tb
A pointer to a time base identifier, such as that returned by NewTimeBase (page 261). On return, the
time base used to control the sequence timing.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence can be controlled in several ways through its time base. The rate of playback can be changed,
or the time base object can be slaved to a clock or time base different than real time.

1748 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TuneGetTimeScale
Returns the current time scale for a specified tune player instance. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneGetTimeScale (
 TunePlayer tp,
 TimeScale *scale
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

scale
A pointer to an initialized TimeScale variable that indicates the tune player's current time scale in
units per second.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TuneGetVolume
Returns the volume associated with an entire tune sequence. (Deprecated in Mac OS X v10.5.)

Functions 1749
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult TuneGetVolume (
 TunePlayer tp
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Return Value
The volume as a value from 0.0 to 1.0, or a negative result code. See Error Codes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneInstant
Plays a particular sequence of events active at a specified position. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneInstant (
 TunePlayer tp,
 unsigned long *tune,
 unsigned long tunePosition
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

tune
A pointer to tune sequence data.

tunePosition
The position within the tune sequence data in time units.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function plays the notes that are "on" at the point specified by the tunePosition parameter. The notes
are started and then left playing on return. The notes can be silenced by calling TuneStop (page 1759). This
call is useful for enabling user "scrubbing" on a sequence.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1750 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TunePreroll
Prepares to play a tune player sequence data by attempting to reserve note channels for each part in the
sequence. (Deprecated in Mac OS X v10.5.)

ComponentResult TunePreroll (
 TunePlayer tp
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TuneQueue
Places a sequence of music events into a queue to be played. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneQueue (
 TunePlayer tp,
 unsigned long *tune,
 Fixed tuneRate,
 unsigned long tuneStartPosition,
 unsigned long tuneStopPosition,
 unsigned long queueFlags,
 TuneCallBackUPP callBackProc,
 long refCon
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Functions 1751
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

tune
A pointer to an array of events, terminated by a marker event of subtype kMarkerEventEnd. See
QTMA Events.

tuneRate
Speed at which to play the sequence. "Normal" speed is 0x00010000.

tuneStartPosition
Sequence starting time.

tuneStopPosition
Sequence stopping time. The tuneStartPosition and tuneStopPosition parameters specify, in
time units numbered from 0 for the beginning of the sequence, which part of the queued sequence
to play. To play all of it, pass 0 and 0xFFFFFFFF, respectively.

queueFlags
Flags (see below) with details about how to play the queued tunes. See these constants:

kTuneStartNow

kTuneDontClipNotes

kTuneExcludeEdgeNotes

kTuneQuickStart

kTuneLoopUntil

kTuneStartNewMaster

callBackProc
A pointer to a TuneCallBackProc callback.

refCon
A reference constant to be passed to your TuneCallBackProc callback. Use this parameter to point
to a data structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

TuneSetBalance
Modifies the pan controller setting for a tune player. (Deprecated in Mac OS X v10.5.)

1752 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult TuneSetBalance (
 TunePlayer tp,
 long balance
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

balance
A new pan controller setting. Valid values are from -128 to 128 for left-to-right balance.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneSetHeader
Prepares the tune player to accept subsequent music event sequences by defining one or more parts to be
used by sequence Note events. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetHeader (
 TunePlayer tp,
 unsigned long *header
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

header
A pointer to a list of instruments that will be used in subsequent calls to the TuneQueue function.
The list can include events with subtypes ofkGeneralEventNoteRequest,kGeneralEventPartKey,
kGeneralEventAtomicInstrument, kGeneralEventMIDIChannel, and
kGeneralEventUsedNotes. It can also include atomic instruments. The list is terminated by a marker
event of subtype kMarkerEventEnd. See QTMA Events.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is the first QuickTime music architecture call to play a music sequence. The header parameter
points to one or more initialized General events and atomic instruments. Only one call to this function is
required. Each call to this function resets the tune player.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1753
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
qtmusic
qtmusic.win
QTMusicToo

Declared In
QuickTimeMusic.h

TuneSetHeaderWithSize
Similar to TuneSetHeader but lets you specify the header length. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetHeaderWithSize (
 TunePlayer tp,
 unsigned long *header,
 unsigned long size
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

header
A pointer to a list of instruments that will be used in subsequent calls to the TuneQueue function.
The list can include events with subtypes ofkGeneralEventNoteRequest,kGeneralEventPartKey,
kGeneralEventAtomicInstrument, kGeneralEventMIDIChannel, and
kGeneralEventUsedNotes. It can also include atomic instruments. The list is terminated by a marker
event of subtype kMarkerEventEnd. See QTMA Events.

size
The size of the header in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function resembles TuneSetHeader (page 1753) in that it prepares the tune player to accept subsequent
music event sequences by defining one or more parts to be used by sequence Note events. But unlike
TuneSetHeader, it allows you to specify the header length in bytes. This prevents the call from parsing off
the end if the music event sequence is missing an end marker.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

1754 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TuneSetNoteChannels
Assigns note channels to a tune player. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetNoteChannels (
 TunePlayer tp,
 unsigned long count,
 NoteChannel *noteChannelList,
 TunePlayCallBackUPP playCallBackProc,
 long refCon
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

count
The number of note channels to assign.

noteChannelList
A pointer to the list of note channels to assign. The parts for the note channels you assign are numbered
from 1 to the value of the count parameter.

playCallBackProc
A pointer to a TunePlayCallBackProc callback that is called for each event whose part number is
greater than the value of the count parameter. Events whose part numbers are less than or equal to
the value of the count parameter are passed to the note channel rather than the callback. This lets
you to use the tune player as a general purpose timer/sequencer.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When you call this function, any note channels that were previously assigned to the tune player are no longer
used and are disposed of.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneSetPartMix
Sets volume, balance, and mixing settings for a specified part of a tune. (Deprecated in Mac OS X v10.5.)

Functions 1755
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult TuneSetPartMix (
 TunePlayer tp,
 unsigned long partNumber,
 long volume,
 long balance,
 long mixFlags
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

partNumber
The part number for this request.

volume
The volume for the part.

balance
The balance for the part.

mixFlags
Flags (see below) that control part mixing. See these constants:

kTuneMixMute

kTuneMixSolo

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneSetPartTranspose
Modifies the pitch and volume of every note of a tune. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetPartTranspose (
 TunePlayer tp,
 unsigned long part,
 long transpose,
 long velocityShift
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

part
The part for which you want to change pitch and volume.

1756 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

transpose
A value by which to modify the pitch of the note. The value is a small integer for semitones or an 8.8
fixed-point number for microtones.

velocityShift
A value to add to the velocity parameter passed to NAPlayNote (page 1729).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneSetSofter
Adjusts the volume a tune is played at to the softer volume produced by QuickTime 2.1. (Deprecated in Mac
OS X v10.5.)

ComponentResult TuneSetSofter (
 TunePlayer tp,
 long softer
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

softer
A value of 1 means play at the QuickTime 2.1 volume; a value of 0 means don't make the volume
softer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adjusts the volume a tune is played at to the softer volume produced by QuickTime 2.1. Files
imported with QuickTime 2.1 automatically play softer. Files imported with QuickTime 2.5 or later play at the
new, louder volume.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

Functions 1757
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TuneSetSoundLocalization
Passes sound localization data to a tune player. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetSoundLocalization (
 TunePlayer tp,
 Handle data
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

data
The sound localization data to be passed.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneSetTimeScale
Sets the time scale used by the specified tune player instance. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetTimeScale (
 TunePlayer tp,
 TimeScale scale
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

scale
The time scale value to be used, in units per second.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the time scale data used by the tune player's sequence data when interpreting time-based
events.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1758 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

TuneSetVolume
Sets the volume for an entire sequence. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneSetVolume (
 TunePlayer tp,
 Fixed volume
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

volume
The volume to use for the sequence. The value is a fixed 16.16 number.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the volume level of the active sequence to the value of the volume parameter, ranging
from 0.0 to 1.0. Individual instruments within the sequence can maintain independent volume levels.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneStop
Stops a currently playing sequence. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneStop (
 TunePlayer tp,
 long stopFlags
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Functions 1759
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

stopFlags
Set to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneTask
Lets a tune player to perform tasks it must perform at foreground task time. (Deprecated in Mac OS X v10.5.)

ComponentResult TuneTask (
 TunePlayer tp
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Call this function periodically to allow a tune player to perform certain operations it can performed only at
foreground application task time. Specifically, the QuickTime music synthesizer cannot load instruments from
disk at interrupt time. As a result, embedded program changes are not performed until this function is called.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
QuickTimeMusic.h

TuneUnroll
Releases any note channel resources that may have been locked down by previous calls to TunePreroll for
this tune player. (Deprecated in Mac OS X v10.5.)

1760 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

ComponentResult TuneUnroll (
 TunePlayer tp
);

Parameters
tp

A tune player identifier, obtained from OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
QTMusicToo

Declared In
QuickTimeMusic.h

Callbacks

MusicMIDISendProc
Undocumented

typedef ComponentResult (*MusicMIDISendProcPtr) (ComponentInstance self, long
refCon, MusicMIDIPacket *mmp);

If you name your function MyMusicMIDISendProc, you would declare it this way:

ComponentResult MyMusicMIDISendProc (
 ComponentInstance self,
 long refCon,
 MusicMIDIPacket *mmp);

Parameters
self

Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

mmp
A pointer to a MusicMIDIPacket structure.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Callbacks 1761
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

MusicOfflineDataProc
Undocumented

typedef ComponentResult (*MusicOfflineDataProcPtr) (Ptr SoundData, long numBytes,
 long myRefCon);

If you name your function MyMusicOfflineDataProc, you would declare it this way:

ComponentResult MyMusicOfflineDataProc (
 Ptr SoundData,
 long numBytes,
 long myRefCon);

Parameters
SoundData

Undocumented

numBytes
Undocumented

myRefCon
Undocumented

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeMusic.h

TuneCallBackProc
Called when a sequence of music events is placed into a queue to be played.

typedef void (*TuneCallBackProcPtr) (const TuneStatus *status, long refCon);

If you name your function MyTuneCallBackProc, you would declare it this way:

void MyTuneCallBackProc (
 const TuneStatus *status,
 long refCon);

Parameters
status

A pointer to a TuneStatus structure.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Declared In
QuickTimeMusic.h

1762 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

TunePlayCallBackProc
Supports the TuneSetNoteChannels function.

typedef void (*TunePlayCallBackProcPtr) (unsigned long *event, long seed, long
refCon);

If you name your function MyTunePlayCallBackProc, you would declare it this way:

void MyTunePlayCallBackProc (
 unsigned long *event,
 long seed,
 long refCon);

Parameters
event

A pointer to a QuickTime music event structure in the sequence data.

seed
A 32-bit value that is guaranteed to be different for each call to the callback routine (unless 2^32 calls
are made, after which the values repeat), with one exception: the value passed at the beginning of a
note is also passed at the end of the note's duration, together with a note structure or an extended
note in which the velocity bits are set to 0.

refCon
A reference constant that the client code supplies to the callback.

Declared In
QuickTimeMusic.h

Data Types

AtomicInstrument
Represents a type used by the Music Architecture API.

typedef Handle AtomicInstrument;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

AtomicInstrumentPtr
Represents a type used by the Music Architecture API.

typedef Ptr AtomicInstrumentPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 1763
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

GCPart
Defines a part in the QuickTime Music Architecture.

struct GCPart {
 long hwInstrumentNumber;
 short controller[128];
 long volume;
 long polyphony;
 long midiChannel;
 GCInstrumentData id;
 };

Fields
hwInstrumentNumber

Discussion
The instrument number of the instrument for the part.

controller

Discussion
An array of 128 bits identifying the available controllers; see Music Controllers. Bits are numbered from
1 to 128, starting with the most significant bit of the long word and continuing to the least significant of the
last bit.

volume

Discussion
The sound volume for this part, ranging from -1.0 to +1.0. The high-order 8 bits contain the integer part; the
low-order 8 bits contain the fractional part. A value of +1.0 constitutes the maximum volume of the user's
computer. Negative values are silent but retain the magnitude of the volume setting.

polyphony

Discussion
The maximum number of voices.

midiChannel

Discussion
The system MIDI channel or, for a hardware device, the slot number.

id

Discussion
A GCInstrumentData structure.

Related Functions
MusicDerivedSetInstrument (page 1679)
MusicDerivedSetKnob (page 1680)
MusicDerivedSetPart (page 1682)
MusicDerivedSetPartInstrumentNumber (page 1682)
MusicDerivedStorePartInstrument (page 1683)
MusicGenericGetPart (page 1687)

1764 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

GenericKnobDescription
Describes a knob for the generic music component.

struct GenericKnobDescription {
 KnobDescription kd;
 long hw1;
 long hw2;
 long hw3;
 long settingsID;
 };

Fields
kd

Discussion
A KnobDescription structure.

hw1

Discussion
Undocumented

hw2

Discussion
Undocumented

hw3

Discussion
Undocumented

settingsID

Discussion
Undocumented

Discussion
Undocumented

Related Functions
MusicDerivedSetKnob (page 1680)

Declared In
QuickTimeMusic.h

GenericKnobDescriptionListHandle
Represents a type used by the Music Architecture API.

typedef GenericKnobDescriptionListPtr * GenericKnobDescriptionListHandle;

Availability
Available in Mac OS X v10.0 and later.

Data Types 1765
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

GenericKnobDescriptionListPtr
Represents a type used by the Music Architecture API.

typedef GenericKnobDescriptionList * GenericKnobDescriptionListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

InstrumentAboutInfo
Contains the information that appears in an instrument's About box and is returned by
MusicGetInstrumentAboutInfo.

struct InstrumentAboutInfo {
 PicHandle p;
 Str255 author;
 Str255 copyright;
 Str255 other;
 };

Fields
p

Discussion
A handle to a graphic for the About box.

author

Discussion
The author's name.

copyright

Discussion
The copyright information.

other

Discussion
Any other textual information.

Related Functions
MusicGetInstrumentAboutInfo (page 1691)

Declared In
QuickTimeMusic.h

1766 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

InstrumentInfoListHandle
Represents a type used by the Music Architecture API.

typedef InstrumentInfoListPtr * InstrumentInfoListHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

InstrumentInfoListPtr
Represents a type used by the Music Architecture API.

typedef InstrumentInfoList * InstrumentInfoListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

KnobDescription
Contains sound parameter values for a single knob.

struct KnobDescription {
 Str63 name;
 long lowValue;
 long highValue;
 long defaultValue;
 long flags;
 long knobID;
 };

Fields
name

Discussion
The name of the knob.

lowValue

Discussion
The lowest number you can set the knob to.

highValue

Discussion
The highest number you can set the knob to.

defaultValue

Discussion
A value to use for the default. A default instrument is made of all default values.

Data Types 1767
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags

Discussion
Constants (see below) that provide various items of information about the knob. See these constants:

kKnobReadOnly

kKnobInterruptUnsafe

kKnobKeyrangeOverride

kKnobGroupStart

kKnobFixedPoint8

kKnobFixedPoint16

kKnobTypeNumber

kKnobTypeGroupName

kKnobTypeBoolean

kKnobTypeNote

kKnobTypePan

kKnobTypeInstrument

kKnobTypeSetting

kKnobTypeMilliseconds

kKnobTypePercentage

kKnobTypeHertz

kKnobTypeButton

knobID

Discussion
A knob ID or index. A nonzero value in the high byte indicates that it is an ID. The knob index ranges from
1 to the number of knobs; the ID is an arbitrary number. Use the knob ID to refer to the knob in preference
to the knob index, which may change.

Related Functions
MusicGetDrumKnobDescription (page 1689)
MusicGetInstrumentKnobDescription (page 1693)
MusicGetKnobDescription (page 1695)

Declared In
QuickTimeMusic.h

MusicComponent
Represents a type used by the Music Architecture API.

typedef ComponentInstance MusicComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

1768 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

MusicController
Represents a type used by the Music Architecture API.

typedef SInt32 MusicController;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

MusicMIDIPacket
Describes MIDI data passed by note allocation calls.

struct MusicMIDIPacket {
 unsigned short length;
 unsigned long reserved;
 UInt8 data[249];
 };

Fields
length

Discussion
The length of the data in the packet.

reserved

Discussion
Contains 0, or one of the music packet status constants (see below). See these constants:

kMusicPacketPortLost

kMusicPacketPortFound

kMusicPacketTimeGap

data

Discussion
MIDI data.

Related Functions
MusicDerivedMIDISend (page 1678)
MusicMIDIReadHookProc
MusicMIDISendProc
MusicSendMIDI (page 1704)
NASendMIDI (page 1732)
QTMIDISendMIDI (page 1744)

Declared In
QuickTimeMusic.h

MusicMIDISendUPP
Represents a type used by the Music Architecture API.

Data Types 1769
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

typedef STACK_UPP_TYPE(MusicMIDISendProcPtr) MusicMIDISendUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

MusicOfflineDataUPP
Represents a type used by the Music Architecture API.

typedef STACK_UPP_TYPE(MusicOfflineDataProcPtr) MusicOfflineDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

NoteAllocator
Represents a type used by the Music Architecture API.

typedef ComponentInstance NoteAllocator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

NoteChannel
Represents a type used by the Music Architecture API.

typedef struct OpaqueNoteChannel * NoteChannel;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

NoteRequest
Provides complete information for allocating a note channel.

1770 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

struct NoteRequest {
 NoteRequestInfo info;
 ToneDescription tone;
 };

Fields
info

Discussion
A NoteRequestInfo structure.

tone

Discussion
A ToneDescription structure.

Related Functions
NAGetNoteRequest (page 1722)
NANewNoteChannel (page 1724)

Declared In
QuickTimeMusic.h

QTMIDIComponent
Represents a type used by the Music Architecture API.

typedef ComponentInstance QTMIDIComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

QTMIDIPortListHandle
Represents a type used by the Music Architecture API.

typedef QTMIDIPortListPtr * QTMIDIPortListHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

QTMIDIPortListPtr
Represents a type used by the Music Architecture API.

typedef QTMIDIPortList * QTMIDIPortListPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 1771
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

Str31
Represents a type used by the Music Architecture API.

typedef unsigned char Str31;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

SynthesizerConnections
Describes how a MIDI device is connected to the user's computer.

struct SynthesizerConnections {
 OSType clientID;
 OSType inputPortID;
 OSType outputPortID;
 long midiChannel;
 long flags;
 long unique;
 long reserved1;
 long reserved2;
 };

Fields
clientID

Discussion
The client ID provided by the MIDI Manager, or 'OMS ' for an OMS port.

inputPortID

Discussion
The ID provided by the MIDI Manager or OMS for the port used to SEND to the MIDI synthesizer.

outputPortID

Discussion
The ID provided by the MIDI Manager or OMS for the port that RECEIVES from a keyboard or other control
device.

midiChannel

Discussion
The system MIDI channel or, for a hardware device, the slot number.

1772 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

flags

Discussion
Constants (see below) that provide information about the type of connection. See these constants:

kSynthesizerConnectionMMgr

kSynthesizerConnectionOMS

kSynthesizerConnectionQT

kSynthesizerConnectionFMS

unique

Discussion
A unique ID you can use instead of an index to identify the synthesizer to the note allocator.

reserved1

Discussion
Reserved. Set to 0.

reserved2

Discussion
Reserved. Set to 0.

Related Functions
NAGetRegisteredMusicDevice (page 1722)
NARegisterMusicDevice (page 1730)

Declared In
QuickTimeMusic.h

SynthesizerDescription
Contains information about a synthesizer.

Data Types 1773
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

struct SynthesizerDescription {
 OSType synthesizerType;
 Str31 name;
 unsigned long flags;
 unsigned long voiceCount;
 unsigned long partCount;
 unsigned long instrumentCount;
 unsigned long modifiableInstrumentCount;
 unsigned long channelMask;
 unsigned long drumPartCount;
 unsigned long drumCount;
 unsigned long modifiableDrumCount;
 unsigned long drumChannelMask;
 unsigned long outputCount;
 unsigned long latency;
 unsigned long controllers[4];
 unsigned long gmInstruments[4];
 unsigned long gmDrums[4];
 };

Fields
synthesizerType

Discussion
The synthesizer type. This is the same as the music component subtype.

name

Discussion
Text name of the synthesizer type.

flags

Discussion
Constants (see below) that provide information about how the synthesizer works. See these constants:

kSynthesizerDynamicVoice

kSynthesizerUsesMIDIPort

kSynthesizerMicrotone

kSynthesizerHasSamples

kSynthesizerMixedDrums

kSynthesizerSoftware

kSynthesizerHardware

kSynthesizerDynamicChannel

kSynthesizerHogsSystemChannel

kSynthesizerSlowSetPart

kSynthesizerOffline

kSynthesizerGM

voiceCount

Discussion
Maximum polyphony.

partCount

Discussion
Maximum multi-timbrality (and MIDI channels).

1774 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

instrumentCount

Discussion
The number of built-in ROM instruments. This does not include General MIDI instruments.

modifiableInstrumentCount

Discussion
The number of slots available for saving user-modified instruments.

channelMask

Discussion
Which channels a MIDI device always uses for instruments. Set to 0xFFFF for all channels.

drumPartCount

Discussion
The maximum multi-timbrality of drum parts. For synthesizers where drum kits are separated from instruments.

drumCount

Discussion
The number of built-in ROM drum kits. This does not include General MIDI drum kits. For synthesizers where
drum kits are separated from instruments.

modifiableDrumCount

Discussion
The number of slots available for saving user-modified drum kits. For MIDI synthesizers where drum kits are
separated from instruments.

drumChannelMask

Discussion
Which channels a MIDI device always uses for drum kits. Set to FFFF for all channels.

outputCount

Discussion
The number of audio outputs. This is usually 2.

latency

Discussion
The response time in microseconds.

controllers

Discussion
An array of 128 bits identifying the available controllers; see Music Controllers. Bits are numbered from
1 to 128, starting with the most significant bit of the long word and continuing to the least significant of the
last bit.

gmInstruments

Discussion
An array of 128 bits giving the available General MIDI instruments.

gmDrums

Discussion
An array of 128 bits giving the available General MIDI drum kits.

Related Functions
MusicGetDescription (page 1688)

Data Types 1775
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

TuneCallBackUPP
Represents a type used by the Music Architecture API.

typedef STACK_UPP_TYPE(TuneCallBackProcPtr) TuneCallBackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

TunePlayCallBackUPP
Represents a type used by the Music Architecture API.

typedef STACK_UPP_TYPE(TunePlayCallBackProcPtr) TunePlayCallBackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

TunePlayer
Represents a type used by the Music Architecture API.

typedef ComponentInstance TunePlayer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeMusic.h

TuneStatus
Provides information on the currently playing tune.

1776 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

struct TuneStatus {
 unsigned long * tune;
 unsigned long * tunePtr;
 TimeValue time;
 short queueCount;
 short queueSpots;
 TimeValue queueTime;
 long reserved[3];
 };

Fields
tune

Discussion
The currently playing tune.

tunePtr

Discussion
Current position within the playing tune.

time

Discussion
Current tune time.

queueCount

Discussion
Number of tunes queued up.

queueSpots

Discussion
Number of tunes that can be added to the queue.

queueTime

Discussion
Total amount of playing time represented by tunes in the queue. This value can be very inaccurate.

reserved

Discussion
Reserved; set to 0.

Related Functions
TuneGetStatus (page 1748)

Declared In
QuickTimeMusic.h

Constants

Generic Music Constants
Constants that represent generic music types.

Constants 1777
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

enum {
 kGenericMusicComponentSubtype = 'gene'
};
enum {
 kGenericMusicDoMIDI = 1 << 0, /* implement normal MIDI messages for
note, controllers, and program changes 0-127 */
 kGenericMusicBank0 = 1 << 1, /* implement instrument bank changes on
 controller 0 */
 kGenericMusicBank32 = 1 << 2, /* implement instrument bank changes on
 controller 32 */
 kGenericMusicErsatzMIDI = 1 << 3, /* construct MIDI packets, but send them
 to the derived component */
 kGenericMusicCallKnobs = 1 << 4, /* call the derived component with special
 knob format call */
 kGenericMusicCallParts = 1 << 5, /* call the derived component with special
 part format call */
 kGenericMusicCallInstrument = 1 << 6, /* call MusicDerivedSetInstrument for
MusicSetInstrument calls */
 kGenericMusicCallNumber = 1 << 7, /* call MusicDerivedSetPartInstrumentNumber
 for MusicSetPartInstrumentNumber calls, & don't send any C0 or bank stuff */
 kGenericMusicCallROMInstrument = 1 << 8, /* call MusicSetInstrument for
MusicSetPartInstrumentNumber for "ROM" instruments, passing params from the ROMi
resource */
 kGenericMusicAllDefaults = 1 << 9 /* indicates that when a new instrument
is recalled, all knobs are reset to DEFAULT settings. True for GS modules */
};
enum {
 kGenericMusicKnob = 1,
 kGenericMusicInstrumentKnob = 2,
 kGenericMusicDrumKnob = 3,
 kGenericMusicGlobalController = 4
};
enum {
 kGenericMusicMiscLongFirst = 0,
 kGenericMusicMiscLongVoiceCount = 1,
 kGenericMusicMiscLongPartCount = 2,
 kGenericMusicMiscLongModifiableInstrumentCount = 3,
 kGenericMusicMiscLongChannelMask = 4,
 kGenericMusicMiscLongDrumPartCount = 5,
 kGenericMusicMiscLongModifiableDrumCount = 6,
 kGenericMusicMiscLongDrumChannelMask = 7,
 kGenericMusicMiscLongOutputCount = 8,
 kGenericMusicMiscLongLatency = 9,
 kGenericMusicMiscLongFlags = 10,
 kGenericMusicMiscLongFirstGMHW = 11, /* number to add to locate GM main
instruments */
 kGenericMusicMiscLongFirstGMDrumHW = 12, /* number to add to locate GM drumkits
 */
 kGenericMusicMiscLongFirstUserHW = 13, /* First hw number of user instruments
(presumed sequential) */
 kGenericMusicMiscLongLast = 14
};
enum {
 kGenericMusicResFirst = 0,
 kGenericMusicResMiscStringList = 1, /* STR# 1: synth name, 2:about
author,3:aboutcopyright,4:aboutother */
 kGenericMusicResMiscLongList = 2, /* Long various params, see list below */
 kGenericMusicResInstrumentList = 3, /* NmLs of names and shorts, categories

1778 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

prefixed by two bullet characters */
 kGenericMusicResDrumList = 4, /* NmLs of names and shorts */
 kGenericMusicResInstrumentKnobDescriptionList = 5, /* Knob */
 kGenericMusicResDrumKnobDescriptionList = 6, /* Knob */
 kGenericMusicResKnobDescriptionList = 7, /* Knob */
 kGenericMusicResBitsLongList = 8, /* Long back to back bitmaps of controllers,
 gminstruments, and drums */
 kGenericMusicResModifiableInstrumentHW = 9, /* Shrt same as the hw shorts trailing
 the instrument names, a shortlist */
 kGenericMusicResGMTranslation = 10, /* Long 128 long entries, 1 for each gm
inst, of local instrument numbers 1-n (not hw numbers) */
 kGenericMusicResROMInstrumentData = 11, /* knob lists for ROM instruments, so
the knob values may be known */
 kGenericMusicResAboutPICT = 12, /* picture for aboutlist. must be present
 for GetAbout call to work */
 kGenericMusicResLast = 13
};
enum {
 kMusicGenericRange = 0x0100,
 kMusicDerivedRange = 0x0200
};

Constants
kGenericMusicAllDefaults

Indicates that when a new instrument is recalled, all knobs are reset to DEFAULT settings. True for GS
modules.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicDrumKnob
Value is 3.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicMiscLongFirstGMHW
Number to add to locate GM main instruments.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicMiscLongFirstGMDrumHW
Number to add to locate GM drumkits.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicMiscLongFirstUserHW
First HW number of user instruments (presumed sequential).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResMiscStringList
STR# 1: synth name, 2:about author,3:aboutcopyright,4:aboutother.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Constants 1779
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kGenericMusicResMiscLongList
Long various params, see list below.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResInstrumentList
NmLs of names and shorts, categories prefixed by two bullet characters.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResDrumList
NmLs of names and shorts.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResInstrumentKnobDescriptionList
Knob.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResDrumKnobDescriptionList
Knob.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResKnobDescriptionList
Knob.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResBitsLongList
Long back to back bitmaps of controllers, gminstruments, and drums.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResModifiableInstrumentHW
Short same as the HW shorts trailing the instrument names, a short list.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResGMTranslation
Long 128 long entries, 1 for each gm instrument, of local instrument numbers 1-n (not HW numbers).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kGenericMusicResROMInstrumentData
Knob lists for ROM instruments, so the knob values may be known.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

1780 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kGenericMusicResAboutPICT
Picture for about list. Must be present for GetAbout call to work.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Declared In
QuickTimeMusic.h

MusicSetPartAtomicInstrument Values
Constants passed to MusicSetPartAtomicInstrument.

enum {
 kGetAtomicInstNoExpandedSamples = 1 << 0,
 kGetAtomicInstNoOriginalSamples = 1 << 1,
 kGetAtomicInstNoSamples = kGetAtomicInstNoExpandedSamples |
kGetAtomicInstNoOriginalSamples,
 kGetAtomicInstNoKnobList = 1 << 2,
 kGetAtomicInstNoInstrumentInfo = 1 << 3,
 kGetAtomicInstOriginalKnobList = 1 << 4,
 kGetAtomicInstAllKnobs = 1 << 5 /* return even those that are set to
default*/
};

Declared In
QuickTimeMusic.h

MusicGetInstrumentInfo Values
Constants passed to MusicGetInstrumentInfo.

enum {
 kGetInstrumentInfoNoBuiltIn = 1 << 0,
 kGetInstrumentInfoMidiUserInst = 1 << 1,
 kGetInstrumentInfoNoIText = 1 << 2
};

Declared In
QuickTimeMusic.h

kInstrumentMatchGMNumber
Constants grouped with kInstrumentMatchGMNumber.

Constants 1781
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

enum {
 kInstrumentMatchSynthesizerType = 1,
 kInstrumentMatchSynthesizerName = 2,
 kInstrumentMatchName = 4,
 kInstrumentMatchNumber = 8,
 kInstrumentMatchGMNumber = 16,
 kInstrumentMatchGSNumber = 32
};

Declared In
QuickTimeMusic.h

kKnobBasic
Constants grouped with kKnobBasic.

enum {
 kKnobBasic = 8, /* knob shows up in certain simplified
lists of knobs */
 kKnobReadOnly = 16, /* knob value cannot be changed by user or
 with a SetKnob call */
 kKnobInterruptUnsafe = 32, /* only alter this knob from foreground
task time (may access toolbox) */
 kKnobKeyrangeOverride = 64, /* knob can be overridden within a single
 keyrange (software synth only) */
 kKnobGroupStart = 128, /* knob is first in some logical group of
 knobs */
 kKnobFixedPoint8 = 1024,
 kKnobFixedPoint16 = 2048, /* One of these may be used at a time. */
 kKnobTypeNumber = 0 << 12,
 kKnobTypeGroupName = 1 << 12, /* "knob" is really a group name for
display purposes */
 kKnobTypeBoolean = 2 << 12, /* if range is greater than 1, its a
multi-checkbox field */
 kKnobTypeNote = 3 << 12, /* knob range is equivalent to MIDI keys
 */
 kKnobTypePan = 4 << 12, /* range goes left/right (lose this?)
 */
 kKnobTypeInstrument = 5 << 12, /* knob value = reference to another
instrument number */
 kKnobTypeSetting = 6 << 12, /* knob value is 1 of n different things
 (eg, fm algorithms) popup menu */
 kKnobTypeMilliseconds = 7 << 12, /* knob is a millisecond time range */
 kKnobTypePercentage = 8 << 12, /* knob range is displayed as a Percentage
 */
 kKnobTypeHertz = 9 << 12, /* knob represents frequency */
 kKnobTypeButton = 10 << 12 /* momentary trigger push button */
};

Constants
kKnobReadOnly

The knob value cannot be changed by the user or with a set knob call.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

1782 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kKnobInterruptUnsafe
Alter this knob only from foreground task time.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobKeyrangeOverride
The knob can be overridden within a single key range (software synthesizer only).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobGroupStart
The knob is first in some logical group of knobs.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobFixedPoint8
Interpret knob numbers as fixed-point 8-bit.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobFixedPoint16
Interpret knob numbers as fixed-point 16-bit.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeNumber
The knob value is a numerical value.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeGroupName
The name of the knob is really a group name for display purposes.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeBoolean
The knob is an on/off knob. If the range of the knob (as specified by the low value and high value in
the knob description structure) is greater than one, the knob is a multi-checkbox field.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeNote
The knob value range is equivalent to MIDI keys.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypePan
The knob value is the pan setting and is within a range (as specified by the low value and high value
in the knob description structure) that goes from left to right.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Constants 1783
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kKnobTypeInstrument
The knob value is a reference to another instrument number.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeSetting
The knob value is one of several different discrete settings; for example, items on a pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeMilliseconds
The knob value is in milliseconds.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypePercentage
The knob value is a percentage of the range.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kKnobTypeHertz
The knob value represents frequency.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Declared In
QuickTimeMusic.h

MusicMIDIPacket Values
Constants passed to MusicMIDIPacket.

enum {
 kMusicPacketPortLost = 1, /* received when application loses the
default input port */
 kMusicPacketPortFound = 2, /* received when application gets it back
 out from under someone else's claim */
 kMusicPacketTimeGap = 3 /* data[0] = number of milliseconds to keep
 the MIDI line silent */
};

Constants
kMusicPacketPortLost

The application has lost the default input port.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kMusicPacketPortFound
The application has retrieved the input port from the previous owner.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

1784 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Declared In
QuickTimeMusic.h

kPickDontMix
Constants grouped with kPickDontMix.

enum {
 kPickDontMix = 1, /* dont mix instruments with drum sounds
*/
 kPickSameSynth = 2, /* only allow the same device that went
in, to come out */
 kPickUserInsts = 4, /* show user insts in addition to ROM voices
 */
 kPickEditAllowEdit = 8, /* lets user switch over to edit mode */
 kPickEditAllowPick = 16, /* lets the user switch over to pick mode
 */
 kPickEditSynthGlobal = 32, /* edit the global knobs of the synth */
 kPickEditControllers = 64 /* edit the controllers of the notechannel
 */
};

Declared In
QuickTimeMusic.h

kSetAtomicInstCallerGuarantees
Constants grouped with kSetAtomicInstCallerGuarantees.

enum {
 kSetAtomicInstKeepOriginalInstrument = 1 << 0,
 kSetAtomicInstShareAcrossParts = 1 << 1, /* inst disappears when app goes away*/
 kSetAtomicInstCallerTosses = 1 << 2, /* the caller isn't keeping a copy around
 (for NASetAtomicInstrument)*/
 kSetAtomicInstCallerGuarantees = 1 << 3, /* the caller guarantees a copy is
around*/
 kSetAtomicInstInterruptSafe = 1 << 4, /* dont move memory at this time (but
process at next task time)*/
 kSetAtomicInstDontPreprocess = 1 << 7 /* perform no further preprocessing because
 either 1)you know the instrument is digitally clean, or 2) you got it from a
GetPartAtomic*/
};

Declared In
QuickTimeMusic.h

kSynthesizerConnectionFMS
Constants grouped with kSynthesizerConnectionFMS.

Constants 1785
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

enum {
 kSynthesizerConnectionFMS = 1, /* this connection imported from FMS */
 kSynthesizerConnectionMMgr = 2, /* this connection imported from the MIDI
 Mgr */
 kSynthesizerConnectionOMS = 4, /* this connection imported from OMS */
 kSynthesizerConnectionQT = 8, /* this connection is a QuickTime-only port
 */
 kSynthesizerConnectionOSXMIDI = 16, /* this connection is an OS X CoreMIDI port
 */
 /* lowest five bits are mutually exclusive;
 combinations reserved for future use.*/
 kSynthesizerConnectionUnavailable = 256 /* port exists, but cannot be used just
 now */
};

Constants
kSynthesizerConnectionFMS

This connection is imported from the FreeMIDI system.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerConnectionMMgr
This connection is imported from the MIDI Manager.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerConnectionOMS
This connection is imported from the Open Music System (OMS).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerConnectionQT
This connection is a QuickTime-only port.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Declared In
QuickTimeMusic.h

kSynthesizerDLS
Constants grouped with kSynthesizerDLS.

1786 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

enum {
 kSynthesizerDynamicVoice = 1 << 0, /* can assign voices on the fly (else,
polyphony is very important */
 kSynthesizerUsesMIDIPort = 1 << 1, /* must be patched through MIDI Manager
 */
 kSynthesizerMicrotone = 1 << 2, /* can play microtonal scales */
 kSynthesizerHasSamples = 1 << 3, /* synthesizer has some use for sampled
 data */
 kSynthesizerMixedDrums = 1 << 4, /* any part can play drum parts, total
= instrument parts */
 kSynthesizerSoftware = 1 << 5, /* implemented in main CPU software ==
uses cpu cycles */
 kSynthesizerHardware = 1 << 6, /* is a hardware device (such as nubus,
 or maybe DSP?) */
 kSynthesizerDynamicChannel = 1 << 7, /* can move any part to any channel or
disable each part. (else we assume it lives on all channels in masks) */
 kSynthesizerHogsSystemChannel = 1 << 8, /* can be channelwise dynamic, but always
 responds on its system channel */
 kSynthesizerHasSystemChannel = 1 << 9, /* has some "system channel" notion to
distinguish it from multiple instances of the same device (GM devices dont) */
 kSynthesizerSlowSetPart = 1 << 10, /* SetPart() and SetPartInstrumentNumber()
 calls do not have rapid response, may glitch notes */
 kSynthesizerOffline = 1 << 12, /* can enter an offline synthesis mode
 */
 kSynthesizerGM = 1 << 14, /* synth is a GM device */
 kSynthesizerDLS = 1 << 15, /* synth supports DLS level 1 */
 kSynthesizerSoundLocalization = 1 << 16 /* synth supports extremely baroque,
nonstandard, and proprietary "apple game sprockets" localization parameter set */
};

Constants
kSynthesizerDynamicVoice

Voices can be assigned to parts on the fly with this synthesizer (otherwise, polyphony is very important).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerUsesMIDIPort
This synthesizer must be patched through a MIDI system, such as the MIDI Manager or OMS.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerMicrotone
This synthesizer can play microtonal scales.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerHasSamples
This synthesizer has some use for sampled audio data.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerMixedDrums
Any part of this synthesizer can play drum parts.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Constants 1787
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kSynthesizerSoftware
This synthesizer is implemented in main CPU software and uses CPU cycles.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerHardware
This synthesizer is a hardware device, not a software synthesizer or MIDI device.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerDynamicChannel
This synthesizer can move any part to any channel or disable each part. For devices only.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerHogsSystemChannel
Even if the kSynthesizerDynamicChannel bit is set, this synthesizer always responds on its system
channel. For MIDI devices only.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerSlowSetPart
This synthesizer does not respond rapidly to the various set part and set part instrument calls.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerOffline
This synthesizer can enter an offline synthesis mode.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

kSynthesizerGM
This synthesizer is a General MIDI device.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeMusic.h.

Declared In
QuickTimeMusic.h

TuneSetPartMix Values
Constants passed to TuneSetPartMix.

enum {
 kTuneMixMute = 1, /* disable a part */
 kTuneMixSolo = 2 /* if any parts soloed, play only soloed
parts */
};

Declared In
QuickTimeMusic.h

1788 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

kTuneDontClipNotes
Constants grouped with kTuneDontClipNotes.

enum {
 kTuneStartNow = 1, /* start after buffer is implied */
 kTuneDontClipNotes = 2, /* allow notes to finish their durations
outside sample */
 kTuneExcludeEdgeNotes = 4, /* dont play notes that start at end of
tune */
 kTuneQuickStart = 8, /* Leave all the controllers where they
are, ignore start time */
 kTuneLoopUntil = 16, /* loop a queued tune if there's nothing
else in the queue*/
 kTunePlayDifference = 32, /* by default, the tune difference is
skipped*/
 kTunePlayConcurrent = 64, /* dont block the next tune sequence with
 this one*/
 kTuneStartNewMaster = 16384
};

Declared In
QuickTimeMusic.h

Constants 1789
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

1790 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

QuickTime Music Architecture Reference

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeStreaming.h, QTStreamingComponents.h

Overview

The streaming API in QuickTime allows developers to recognize and play streaming movies, add hint tracks
so movies can be streamed, create packetizers and reassemblers, mix streaming and nonstreaming data in
a single movie, and broadcast live streams in real time.

Functions

DisposeQTSModalFilterUPP
Disposes of a QTSModalFilterUPP pointer.

void DisposeQTSModalFilterUPP (
 QTSModalFilterUPP userUPP
);

Parameters
userUPP

A QTSModalFilterUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

DisposeQTSNotificationUPP
Disposes of a QTSNotificationUPP pointer.

Overview 1791
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

void DisposeQTSNotificationUPP (
 QTSNotificationUPP userUPP
);

Parameters
userUPP

A QTSNotificationUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

DisposeQTSPanelFilterUPP
Disposes of a QTSPanelFilterUPP pointer.

void DisposeQTSPanelFilterUPP (
 QTSPanelFilterUPP userUPP
);

Parameters
userUPP

A QTSPanelFilterUPP pointer.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

DisposeRTPMPDataReleaseUPP
Disposes of an RTPMPDataReleaseUPP pointer.

void DisposeRTPMPDataReleaseUPP (
 RTPMPDataReleaseUPP userUPP
);

Parameters
userUPP

An RTPMPDataReleaseUPP pointer. See Universal Procedure Pointers.

1792 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

DisposeRTPPBCallbackUPP
Disposes of an RTPPBCallbackUPP pointer.

void DisposeRTPPBCallbackUPP (
 RTPPBCallbackUPP userUPP
);

Parameters
userUPP

An RTPPBCallbackUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

InitializeQTS
Initializes QuickTime streaming.

OSErr InitializeQTS (
 void
);

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1793
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QuickTimeStreaming.h

NewQTSModalFilterUPP
Allocates a Universal Procedure Pointer for the QTSModalFilterProc callback.

QTSModalFilterUPP NewQTSModalFilterUPP (
 QTSModalFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

NewQTSNotificationUPP
Allocates a Universal Procedure Pointer for the QTSNotificationProc callback.

QTSNotificationUPP NewQTSNotificationUPP (
 QTSNotificationProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTSNotificationProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1794 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

NewQTSPanelFilterUPP
Allocates a Universal Procedure Pointer for the QTSPanelFilterProc callback.

QTSPanelFilterUPP NewQTSPanelFilterUPP (
 QTSPanelFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

NewRTPMPDataReleaseUPP
Allocates a Universal Procedure Pointer for the RTPMPDataReleaseProc callback.

RTPMPDataReleaseUPP NewRTPMPDataReleaseUPP (
 RTPMPDataReleaseProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewRTPMPDataReleaseProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

NewRTPPBCallbackUPP
Allocates a Universal Procedure Pointer for the RTPPBCallbackProc callback.

Functions 1795
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPPBCallbackUPP NewRTPPBCallbackUPP (
 RTPPBCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewRTPPBCallbackProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSAllocBuffer
Allocates a QuickTime streaming stream buffer.

QTSStreamBuffer * QTSAllocBuffer (
 SInt32 inSize
);

Parameters
inSize

The size of the buffer to be allocated.

Return Value
A QTSStreamBuffer structure

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSAllocMemPtr
Undocumented

1796 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSMemPtr QTSAllocMemPtr (
 UInt32 inByteCount,
 SInt32 inFlags
);

Parameters
inByteCount

Undocumented

inFlags
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSCopyMessage
Undocumented

QTSStreamBuffer * QTSCopyMessage (
 QTSStreamBuffer *inMessage
);

Parameters
inMessage

A pointer to a QTSStreamBuffer structure.

Return Value
A pointer to a QTSStreamBuffer structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSDisposePresentation
Disposes of a QuickTime streaming presentation.

Functions 1797
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSDisposePresentation (
 QTSPresentation inPresentation,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines the presentation to be disposed.

inFlags
Flags governing the disposal of the presentation. Currently, no flags are defined; set this parameter
to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSDisposeStatHelper
Disposes of a QuickTime streaming statistics helper that was previously created by QTSNewStatHelper.

OSErr QTSDisposeStatHelper (
 QTSStatHelper inStatHelper
);

Parameters
inStatHelper

A pointer to a QTSStatHelperRecord structure that defines the statistics helper to be disposed.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSDisposeStream
Disposes of a QuickTime streaming stream.

1798 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSDisposeStream (
 QTSStream inStream,
 SInt32 inFlags
);

Parameters
inStream

A pointer to a QTSStreamRecord structure that defines a stream to be disposed.

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSDuplicateMessage
Undocumented

OSErr QTSDuplicateMessage (
 QTSStreamBuffer *inMessage,
 SInt32 inFlags,
 QTSStreamBuffer **outDuplicatedMessage
);

Parameters
inMessage

Undocumented

inFlags
Undocumented

outDuplicatedMessage
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1799
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSDupMessage
Undocumented

QTSStreamBuffer * QTSDupMessage (
 QTSStreamBuffer *inMessage
);

Parameters
inMessage

A pointer to a QTSStreamBuffer structure.

Return Value
A pointer to a QTSStreamBuffer structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSFindMediaPacketizer
Creates a list of media packetizers that can work with a specified sample description and meet specified
criteria.

OSErr QTSFindMediaPacketizer (
 MediaPacketizerRequirementsPtr inPacketizerinfo,
 SampleDescriptionHandle inSampleDescription,
 RTPPayloadSortRequestPtr inSortInfo,
 QTAtomContainer *outPacketizerList
);

Parameters
inPacketizerinfo

A pointer to a MediaPacketizerRequirements structure that specifies the required features of the
media packetizers you are looking for.

inSampleDescription
A handle to a SampleDescription structure that specifies the media data the packetizer needs to
work with.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
packetizers.

outPacketizerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available media packetizers that meet the specified criteria. Only packetizers that have
the features specified by inPacketizerInfowill be listed. The list will be sorted in the order specified
by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

1800 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFindMediaPacketizerForPayloadID
Creates a list of media packetizers for a specified payload number.

OSErr QTSFindMediaPacketizerForPayloadID (
 long payloadID,
 RTPPayloadSortRequestPtr inSortInfo,
 QTAtomContainer *outPacketizerList
);

Parameters
payloadID

An IETF payload number.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
packetizers.

outPacketizerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available media packetizers for the specified payload ID. The list will be sorted in the
order specified by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFindMediaPacketizerForPayloadName
Creates a list of media packetizers for a specified payload name.

Functions 1801
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSFindMediaPacketizerForPayloadName (
 const char *payloadName,
 RTPPayloadSortRequestPtr inSortInfo,
 QTAtomContainer *outPacketizerList
);

Parameters
payloadName

A pointer to a payload name string.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
packetizers.

outPacketizerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available media packetizers for the specified payload name. The list will be sorted in the
order specified by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFindMediaPacketizerForTrack
Creates a list of media packetizers for a specified movie track and sample data.

OSErr QTSFindMediaPacketizerForTrack (
 Track inTrack,
 long inSampleDescriptionIndex,
 RTPPayloadSortRequestPtr inSortInfo,
 QTAtomContainer *outPacketizerList
);

Parameters
inTrack

The track for this operation. Your application obtains this track identifier from such functions as
NewMovieTrack (page 1628) and GetMovieTrack (page 1601).

inSampleDescriptionIndex
The value of the dataRefIndex field of the SampleDescription structure that specifies the type
of media data that will be packetized.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
packetizers.

1802 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outPacketizerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available media packetizers for the specified track. The list will be sorted in the order
specified by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFindReassemblerForPayloadID
Creates a list of streaming reassemblers for a specified payload number.

OSErr QTSFindReassemblerForPayloadID (
 UInt8 inPayloadID,
 RTPPayloadSortRequest *inSortInfo,
 QTAtomContainer *outReassemblerList
);

Parameters
inPayloadID

An IETF payload number.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
reassemblers.

outReassemblerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available reassemblers for the specified track. The list will be sorted in the order specified
by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFindReassemblerForPayloadName
Creates a list of streaming reassemblers for a specified payload name.

Functions 1803
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSFindReassemblerForPayloadName (
 const char *inPayloadName,
 RTPPayloadSortRequest *inSortInfo,
 QTAtomContainer *outReassemblerList
);

Parameters
inPayloadName

A payload name string.

inSortInfo
A pointer to a RTPPayloadSortRequest structure that specifies the sort order for the list of
reassemblers.

outReassemblerList
On entry, a pointer to a handle to a QT atom container. On return, this container will be filled with a
sorted list of available reassemblers for the specified track. The list will be sorted in the order specified
by inSortInfo.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSFlattenMessage
Undocumented

QTSStreamBuffer * QTSFlattenMessage (
 QTSStreamBuffer *inMessage
);

Parameters
inMessage

A pointer to a QTSStreamBuffer structure.

Return Value
A pointer to a QTSStreamBuffer structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1804 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSFreeMessage
Undocumented

void QTSFreeMessage (
 QTSStreamBuffer *inMessage
);

Parameters
inMessage

A pointer to a QTSStreamBuffer structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSGetErrorString
Undocumented

Boolean QTSGetErrorString (
 SInt32 inErrorCode,
 UInt32 inMaxErrorStringLength,
 char *outErrorString,
 SInt32 inFlags
);

Parameters
inErrorCode

Undocumented

inMaxErrorStringLength
Undocumented

outErrorString
Undocumented

inFlags
Undocumented

Return Value
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1805
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSGetNetworkAppName
Gets the name of a streaming network application.

OSErr QTSGetNetworkAppName (
 SInt32 inFlags,
 char **outCStringPtr
);

Parameters
inFlags

A flag (see below) that determines whether the application name is a full pathname. See these
constants:

kQTSNetworkAppNameIsFullNameFlag

outCStringPtr
A Ptr to a CStringPtr; see MacTypes.h. This information is sent back to servers in HTTP and RTSP
headers, so they can work out client statistics. A typical default string is QTS
(qtver=4.1.1;cpu=PPC;os=Mac 9.0.4).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Following is an example of calling this function:

Ptr networkAppName =NIL;
err =QTSGetNetworkAppName(0L, &networkAppName);
printf("The NetworkAppName is %s", networkAppName);
DisposePtr(networkAppName);
// This call prints
// The NetworkAppName is QTS (qtver=4.1.1;cpu=PPC;os=Mac 9.0.4)
// or
// The NetworkAppName is QTS (qtver=4.0;os=Windows NT 4.0 Service Pack 3)
// If you set it from your app, that will be returned instead.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSGetOrMakeStatAtomForStream
Gets the statistics atom for a stream or creates a new statistics atom for it.

1806 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSGetOrMakeStatAtomForStream (
 QTAtomContainer inContainer,
 QTSStream inStream,
 QTAtom *outParentAtom
);

Parameters
inContainer

An atom container that holds the statistics atoms for the specified stream.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outParentAtom
On entry, a pointer to a variable of type QTAtom; on return, this variable is set to the atom that holds
the statistics for this stream. If no such atom exists for that stream, then the function creates a statistics
atom.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is to be used only by stream components to put stream statistics into an atom container;
applications should not call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSGetStreamPresentation
Gets the presentation for a stream.

QTSPresentation QTSGetStreamPresentation (
 QTSStream inStream
);

Parameters
inStream

A pointer to a QTSStreamRecord structure that defines a stream.

Return Value
A pointer to a QTSPresentationRecord structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1807
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSInitializeMediaParams
Undocumented

OSErr QTSInitializeMediaParams (
 QTSMediaParams *inMediaParams
);

Parameters
inMediaParams

Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

QTSInsertStatistic
Inserts statistics data into the statistic atom for a stream.

OSErr QTSInsertStatistic (
 QTAtomContainer inContainer,
 QTAtom inParentAtom,
 OSType inStatType,
 void *inStatData,
 UInt32 inStatDataLength,
 OSType inStatDataFormat,
 SInt32 inFlags
);

Parameters
inContainer

A handle to the atom container that contains the statistic atom.

inParentAtom
The atom that will hold a new atom containing the specified statistic data.

inStatType
A constant (see below) that identifies the type of statistic atom to insert the data into. See these
constants:

kQTSStatisticsStreamAtomType

kQTSStatisticsNameAtomType

kQTSStatisticsDataFormatAtomType

kQTSStatisticsDataAtomType

kQTSStatisticsUnitsAtomType

kQTSStatisticsUnitsNameAtomType

1808 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStatData
A pointer to a structure containing the data to insert.

inStatDataLength
The length, in bytes, of the statistic data.

inStatDataFormat
A constant (see below) that identifies the format of the inserted statistic atom. See these constants:

kQTSStatisticsSInt32DataFormat

kQTSStatisticsUInt32DataFormat

kQTSStatisticsSInt16DataFormat

kQTSStatisticsUInt16DataFormat

kQTSStatisticsFixedDataFormat

kQTSStatisticsStringDataFormat

kQTSStatisticsOSTypeDataFormat

inFlags
Currently no flags are defined; pass 0 in this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is to be used only by stream components to put stream statistics into an atom container;
applications should not call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSInsertStatisticName
Inserts the name and type of a statistic datum into the statistic atom for a stream.

OSErr QTSInsertStatisticName (
 QTAtomContainer inContainer,
 QTAtom inParentAtom,
 OSType inStatType,
 const char *inStatName,
 UInt32 inStatNameLength
);

Parameters
inContainer

A handle to the atom container that contains the statistic atom. Both the atom container and the
parent atom must already exist.

inParentAtom
The atom that will hold a new atom containing the specified statistic name and type.

Functions 1809
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStatType
A constant (see below) that identifies the type of statistic atom to insert the data into. See these
constants:

kQTSStatisticsStreamAtomType

kQTSStatisticsNameAtomType

kQTSStatisticsDataFormatAtomType

kQTSStatisticsDataAtomType

kQTSStatisticsUnitsAtomType

kQTSStatisticsUnitsNameAtomType

inStatName
A pointer to the name string to be inserted.

inStatNameLength
The length of the name string in characters.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is to be used only by stream components to put stream statistics into an atom container;
applications should not call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSInsertStatisticUnits
Inserts the name and type of statistic units into the statistic atom for a stream.

OSErr QTSInsertStatisticUnits (
 QTAtomContainer inContainer,
 QTAtom inParentAtom,
 OSType inStatType,
 OSType inUnitsType,
 const char *inUnitsName,
 UInt32 inUnitsNameLength
);

Parameters
inContainer

A handle to the atom container that contains the statistic atom. Both the atom container and the
parent atom must already exist.

inParentAtom
The atom that will hold a new atom containing the specified statistic name and type.

1810 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStatType
A constant (see below) that identifies the type of statistic atom to insert the data into. See these
constants:

kQTSStatisticsStreamAtomType

kQTSStatisticsNameAtomType

kQTSStatisticsDataFormatAtomType

kQTSStatisticsDataAtomType

kQTSStatisticsUnitsAtomType

kQTSStatisticsUnitsNameAtomType

inUnitsType
A constant (see below) that identifies the type of units atom to insert the data into. See these constants:

kQTSStatisticsNoUnitsType

kQTSStatisticsPercentUnitsType

kQTSStatisticsBitsPerSecUnitsType

kQTSStatisticsFramesPerSecUnitsType

inUnitsName
A pointer to the units name string to be inserted.

inUnitsNameLength
The length of the units name string in characters.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is to be used only by stream components to put stream statistics into an atom container;
applications should not call it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSMediaGetIndStreamInfo
Undocumented

ComponentResult QTSMediaGetIndStreamInfo (
 MediaHandler mh,
 SInt32 inIndex,
 OSType inSelector,
 void *ioParams
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

Functions 1811
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inIndex
Undocumented

inSelector
A constant (see below) that identifies the type of information to be retrieved. See these constants:

kQTSMediaPresentationInfo

kQTSMediaNotificationInfo

kQTSMediaTotalDataRateInfo

kQTSMediaLostPercentInfo

kQTSMediaNumStreamsInfo

kQTSMediaIndSampleDescriptionInfo

ioParams
A pointer to returned information in a format determined by inSelector (see below).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTSMovie.h

QTSMediaGetInfo
Gets information about a streaming media.

ComponentResult QTSMediaGetInfo (
 MediaHandler mh,
 OSType inSelector,
 void *ioParams
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

inSelector
A constant (see below) that identifies the type of information to be retrieved. See these constants:

kQTSMediaPresentationInfo

kQTSMediaNotificationInfo

kQTSMediaTotalDataRateInfo

kQTSMediaLostPercentInfo

kQTSMediaNumStreamsInfo

kQTSMediaIndSampleDescriptionInfo

ioParams
A pointer to returned information in a format determined by inSelector (see below).

1812 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTSMovie.h

QTSMediaSetIndStreamInfo
Undocumented

ComponentResult QTSMediaSetIndStreamInfo (
 MediaHandler mh,
 SInt32 inIndex,
 OSType inSelector,
 void *ioParams
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

inIndex
Undocumented

inSelector
A constant (see below) that identifies the type of information to be set. See these constants:

kQTSMediaPresentationInfo

kQTSMediaNotificationInfo

kQTSMediaTotalDataRateInfo

kQTSMediaLostPercentInfo

kQTSMediaNumStreamsInfo

kQTSMediaIndSampleDescriptionInfo

ioParams
A pointer to information in a format determined by inSelector (see below).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTSMovie.h

Functions 1813
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSMediaSetInfo
Sets information about a streaming media.

ComponentResult QTSMediaSetInfo (
 MediaHandler mh,
 OSType inSelector,
 void *ioParams
);

Parameters
mh

A media handler. You can obtain this reference from GetMediaHandler (page 1577).

inSelector
A constant (see below) that identifies the type of information to be set. See these constants:

kQTSMediaPresentationInfo

kQTSMediaNotificationInfo

kQTSMediaTotalDataRateInfo

kQTSMediaLostPercentInfo

kQTSMediaNumStreamsInfo

kQTSMediaIndSampleDescriptionInfo

ioParams
A pointer to information in a format determined by inSelector (see below).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTSMovie.h

QTSMessageLength
Undocumented

UInt32 QTSMessageLength (
 QTSStreamBuffer *inMessage
);

Parameters
inMessage

A pointer to a QTSStreamBuffer structure.

Return Value
The message length.

Version Notes
Introduced in QuickTime 4.

1814 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewHandle
Allocates a new handle for data, with options and checking.

Handle QTSNewHandle (
 UInt32 inByteCount,
 SInt32 inFlags,
 SInt32 *outFlags
);

Parameters
inByteCount

The requested size in bytes of the relocatable block.

inFlags
Flags (see below) that control memory allocation options. See these constants:

kQTSMemAllocClearMem

kQTSMemAllocDontUseTempMem

kQTSMemAllocTryTempMemFirst

kQTSMemAllocDontUseSystemMem

kQTSMemAllocTrySystemMemFirst

kQTSMemAllocHoldMemory

kQTSMemAllocIsInterruptTime

outFlags
A pointer to memory where return flags (see below) report on the block's actual memory location.
See these constants:

kQTSMemAllocAllocatedInTempMem

kQTSMemAllocAllocatedInSystemMem

Return Value
The new handle.

Discussion
This function is a handy way to allocate memory without overflowing the application heap, which is mostly
a concern with Mac OS versions 7 through 9. It is often used for streaming data.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1815
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSNewPresentation
Creates a new streaming presentation.

OSErr QTSNewPresentation (
 const QTSNewPresentationParams *inParams,
 QTSPresentation *outPresentation
);

Parameters
inParams

A pointer to a QTSNewPresentationParams structure that specifies the presentation.

outPresentation
A pointer to a pointer to a new QTSPresentationRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewPresentationFromData
Undocumented

OSErr QTSNewPresentationFromData (
 OSType inDataType,
 const void *inData,
 const SInt64 *inDataLength,
 const QTSPresParams *inPresParams,
 QTSPresentation *outPresentation
);

Parameters
inDataType

Undocumented

inData
Undocumented

inDataLength
Undocumented

inPresParams
Undocumented

outPresentation
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

1816 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewPresentationFromDataRef
Undocumented

OSErr QTSNewPresentationFromDataRef (
 Handle inDataRef,
 OSType inDataRefType,
 const QTSPresParams *inPresParams,
 QTSPresentation *outPresentation
);

Parameters
inDataRef

Undocumented

inDataRefType
Undocumented

inPresParams
Undocumented

outPresentation
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewPresentationFromFile
Undocumented

Functions 1817
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSNewPresentationFromFile (
 const FSSpec *inFileSpec,
 const QTSPresParams *inPresParams,
 QTSPresentation *outPresentation
);

Parameters
inFileSpec

Undocumented

inPresParams
Undocumented

outPresentation
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewPtr
Allocates a block of memory for streaming data, with options and checking, and returns a pointer to it.

Ptr QTSNewPtr (
 UInt32 inByteCount,
 SInt32 inFlags,
 SInt32 *outFlags
);

Parameters
inByteCount

The requested size in bytes of the new memory block.

inFlags
Flags (see below) that control memory allocation options. See these constants:

kQTSMemAllocClearMem

kQTSMemAllocDontUseTempMem

kQTSMemAllocTryTempMemFirst

kQTSMemAllocDontUseSystemMem

kQTSMemAllocTrySystemMemFirst

kQTSMemAllocHoldMemory

kQTSMemAllocIsInterruptTime

1818 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outFlags
A pointer to memory where return flags (see below) report on the block's actual memory location.
See these constants:

kQTSMemAllocAllocatedInTempMem

kQTSMemAllocAllocatedInSystemMem

Return Value
A pointer to the newly allocated block.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewSourcer
Undocumented

OSErr QTSNewSourcer (
 void *params,
 const QTSSourcerInitParams *inInitParams,
 SInt32 inFlags,
 ComponentInstance *outSourcer
);

Parameters
params

Undocumented

inInitParams
Undocumented

inFlags
Undocumented

outSourcer
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1819
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSNewStatHelper
Creates a new statistics helper for a stream or presentation.

OSErr QTSNewStatHelper (
 QTSPresentation inPresentation,
 QTSStream inStream,
 OSType inStatType,
 SInt32 inFlags,
 QTSStatHelper *outStatHelper
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines the presentation to keep statistics
on. To create a statistics helper for a particular stream, pass in kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines the stream to keep statistics on. To create a
statistics helper for a whole presentation, pass in kQTSAllStreams.

inStatType
A constant (see below) that defines the type of statistic you want the statistics helper to gather. See
these constants:

kQTSAllStatisticsType

kQTSShortStatisticsType

kQTSSummaryStatisticsType

inFlags
Constants (see below) governing the action of the statistics helper. See these constants:

kQTSGetNameStatisticsFlag

kQTSDontGetDataStatisticsFlag

kQTSUpdateAtomsStatisticsFlag

kQTSGetUnitsStatisticsFlag

outStatHelper
On entry, a pointer to a variable of type QTSStatHelper; on return, this variable is set to the new
statistics helper.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A statistics helper is a set of utility functions that you can use to retrieve and parse statistics from a stream
component. You need to instantiate a statistics helper for every stream from which you want to gather
statistics.

Special Considerations

When you are done using the statistics helper, call QTSDisposeStatHelper (page 1798).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1820 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QuickTimeStreaming.h

QTSNewStreamBuffer
Undocumented

OSErr QTSNewStreamBuffer (
 UInt32 inDataSize,
 SInt32 inFlags,
 QTSStreamBuffer **outStreamBuffer
);

Parameters
inDataSize

Undocumented

inFlags
Undocumented

outStreamBuffer
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsAddConnectionSetting
Undocumented

OSErr QTSPrefsAddConnectionSetting (
 OSType protocol,
 SInt32 portID,
 UInt32 flags,
 UInt32 seed
);

Parameters
protocol

A constant (see below) that identifies the connection protocol. See these constants:
kQTSDirectConnectHTTPProtocol

kQTSDirectConnectRTSPProtocol

portID
Undocumented

Functions 1821
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

flags
Undocumented

seed
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsAddProxySetting
Undocumented

OSErr QTSPrefsAddProxySetting (
 OSType proxyType,
 SInt32 portID,
 UInt32 flags,
 UInt32 seed,
 Str255 srvrURL
);

Parameters
proxyType

A constant (see below) that defines the proxy type. See these constants:
kQTSHTTPProxyPrefsType

kQTSRTSPProxyPrefsType

kQTSSOCKSProxyPrefsType

kQTSDontProxyDataType

portID
Undocumented

flags
Undocumented

seed
Undocumented

srvrURL
A string containing the server's URL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

1822 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsAddProxyUserInfo
Undocumented

OSErr QTSPrefsAddProxyUserInfo (
 OSType proxyType,
 SInt32 flags,
 SInt32 flagsMask,
 StringPtr username,
 StringPtr password
);

Parameters
proxyType

Undocumented

flags
Undocumented

flagsMask
Undocumented

username
Undocumented

password
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsFindConnectionByType
Undocumented

Functions 1823
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPrefsFindConnectionByType (
 OSType protocol,
 UInt32 flags,
 UInt32 flagsMask,
 QTSTransportPref **connectionHndl,
 SInt16 *count
);

Parameters
protocol

A constant (see below) that identifies the connection protocol. See these constants:
kQTSDirectConnectHTTPProtocol

kQTSDirectConnectRTSPProtocol

flags
Undocumented

flagsMask
Undocumented

connectionHndl
A handle to a QTSTransportPref structure.

count
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsFindProxyByType
Undocumented

1824 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPrefsFindProxyByType (
 OSType proxyType,
 UInt32 flags,
 UInt32 flagsMask,
 QTSProxyPref **proxyHndl,
 SInt16 *count
);

Parameters
proxyType

A constant (see below) that defines the proxy type. See these constants:
kQTSHTTPProxyPrefsType

kQTSRTSPProxyPrefsType

kQTSSOCKSProxyPrefsType

kQTSDontProxyDataType

flags
Undocumented

flagsMask
Undocumented

proxyHndl
A handle to a QTSProxyPref structure.

count
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsFindProxyUserInfoByType
Undocumented

OSErr QTSPrefsFindProxyUserInfoByType (
 OSType proxyType,
 SInt32 flags,
 SInt32 flagsMask,
 StringPtr username,
 StringPtr password
);

Parameters
proxyType

Undocumented

Functions 1825
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

flags
Undocumented

flagsMask
Undocumented

username
Undocumented

password
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsGetActiveConnection
Undocumented

OSErr QTSPrefsGetActiveConnection (
 OSType protocol,
 QTSTransportPref *connectInfo
);

Parameters
protocol

A constant (see below) that identifies the connection protocol. See these constants:
kQTSDirectConnectHTTPProtocol

kQTSDirectConnectRTSPProtocol

connectInfo
A pointer to a QTSTransportPref structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1826 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPrefsGetInstantOnSettings
Undocumented

OSErr QTSPrefsGetInstantOnSettings (
 QTSInstantOnPref *outPref,
 SInt32 inFlags
);

Parameters
outPref

A pointer to a QTSInstantOnPref data structure.

inFlags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsGetNoProxyURLs
Undocumented

OSErr QTSPrefsGetNoProxyURLs (
 QTSNoProxyPref **noProxyHndl
);

Parameters
noProxyHndl

A handle to a QTSNoProxyPref structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsSetInstantOnSettings
Undocumented

Functions 1827
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPrefsSetInstantOnSettings (
 QTSInstantOnPref *inPref,
 SInt32 inFlags
);

Parameters
inPref

A pointer to a QTSInstantOnPref data structure.

inFlags
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeStreaming.h

QTSPrefsSetNoProxyURLs
Undocumented

OSErr QTSPrefsSetNoProxyURLs (
 char *urls,
 UInt32 flags,
 UInt32 seed
);

Parameters
urls

A pointer to URL strings.

flags
Undocumented

seed
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1828 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresAddSourcer
Undocumented

OSErr QTSPresAddSourcer (
 QTSPresentation inPresentation,
 QTSStream inStream,
 ComponentInstance inSourcer,
 SInt32 inFlags
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inSourcer
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresExport
Undocumented

OSErr QTSPresExport (
 QTSPresentation inPresentation,
 QTSStream inStream,
 QTSExportParams *inExportParams
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inExportParams
Undocumented

Return Value
You can access Movie Toolbox error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222), as well as in the function result. See Error Codes.

Functions 1829
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetActiveSegment
Undocumented

OSErr QTSPresGetActiveSegment (
 QTSPresentation inPresentation,
 QTSStream inStream,
 TimeValue64 *outStartTime,
 TimeValue64 *outDuration
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outStartTime
Undocumented

outDuration
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetClip
Gets the clipping region for a streaming presentation.

1830 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresGetClip (
 QTSPresentation inPresentation,
 QTSStream inStream,
 RgnHandle *outClip
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outClip
A pointer to a handle to a MacRegion structure that defines a clipping region.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetDimensions
Gets the dimensions of a streaming presentation.

OSErr QTSPresGetDimensions (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Fixed *outWidth,
 Fixed *outHeight
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outWidth
A pointer to the width in pixels.

outHeight
A pointer to the height in pixels.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 1831
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetEnable
Determines whether or not a presentation is enabled.

OSErr QTSPresGetEnable (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Boolean *outEnableMode
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outEnableMode
A pointer to a Boolean that is TRUE if the presentation is enabled, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetFlags
Gets the flags currently set for a presentation.

OSErr QTSPresGetFlags (
 QTSPresentation inPresentation,
 SInt32 *outFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation.

1832 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outFlags
On entry, the address of a variable of type SInt32; on return, this variable is set to the current flags
(see below) for the specified presentation. See these constants:

kQTSAutoModeFlag

kQTSDontShowStatusFlag

kQTSSendMediaFlag

kQTSReceiveMediaFlag

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetGraphicsMode
Gets the graphics mode and blend color in use for video display by a stream or presentation.

OSErr QTSPresGetGraphicsMode (
 QTSPresentation inPresentation,
 QTSStream inStream,
 short *outMode,
 RGBColor *outOpColor
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want the
graphics mode for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want the graphics mode for
the presentation as a whole, pass the value kQTSAllStreams.

outMode
On entry, a pointer to a short integer; on return, this variable is set to the graphics mode of the
specified presentation or stream. See Graphics Transfer Modes.

outOpColor
On entry, the address of an RGBColor structure; on return, this structure is filled in with information
about the color used for blending and transparent operations. The stream handler passes this color
to QuickDraw as appropriate when you draw in addPin, subPin, blend, or transparent mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 1833
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetGWorld
Gets the graphics port and graphics device in use by a stream or presentation.

OSErr QTSPresGetGWorld (
 QTSPresentation inPresentation,
 QTSStream inStream,
 CGrafPtr *outGWorld,
 GDHandle *outGDHandle
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want the
graphics mode for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want the graphics mode for
the presentation as a whole, pass the value kQTSAllStreams.

outGWorld
On entry, the address of a variable of type CGrafPtr; on return, this variable is set to a pointer to a
CGrafPort structure that defines the offscreen graphics world, color graphics port, or basic graphics
port in use by the specified presentation or stream.

outGDHandle
On entry, the address of a variable of type GDHandle; on return, this variable is set to the handle of
a GDevice structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetIndSourcer
Undocumented

1834 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresGetIndSourcer (
 QTSPresentation inPresentation,
 QTSStream inStream,
 UInt32 inIndex,
 ComponentInstance *outSourcer
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inIndex
Undocumented

outSourcer
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetIndStream
Get a stream associated with a presentation, based on its index number.

QTSStream QTSPresGetIndStream (
 QTSPresentation inPresentation,
 UInt32 inIndex
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inIndex
The index number of the stream.

Return Value
A pointer to a QTSStreamRecord structure.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1835
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QuickTimeStreaming.h

QTSPresGetInfo
Gets information about a presentation or stream.

OSErr QTSPresGetInfo (
 QTSPresentation inPresentation,
 QTSStream inStream,
 OSType inSelector,
 void *ioParam
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want information
for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want information for the
presentation as a whole, pass the value kQTSAllStreams.

1836 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inSelector
A constant (see below) that defines the information to be retrieved. See these constants:

kQTSGetURLLink

kQTSTargetBufferDurationInfo

kQTSTargetBufferDurationInfo

kQTSDurationInfo

kQTSSourceTrackIDInfo

kQTSSourceLayerInfo

kQTSSourceLanguageInfo

kQTSSourceTrackFlagsInfo

kQTSSourceDimensionsInfo

kQTSSourceVolumesInfo

kQTSSourceMatrixInfo

kQTSSourceClipRectInfo

kQTSSourceGraphicsModeInfo

kQTSSourceScaleInfo

kQTSSourceBoundingRectInfo

kQTSSourceUserDataInfo

kQTSSourceInputMapInfo

kQTSStatisticsInfo

kQTSMinStatusDimensionsInfo

kQTSNormalStatusDimensionsInfo

kQTSTotalDataRateInfo

kQTSTotalDataRateInInfo

kQTSTotalDataRateOutInfo

kQTSLostPercentInfo

kQTSMediaTypeInfo

kQTSNameInfo

kQTSCanHandleSendDataType

kQTSAnnotationsInfo

ioParam
A pointer to the retrieved information in the format shown below.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1837
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresGetMatrix
Gets the transformation matrix in use for the graphic display of a stream or presentation.

OSErr QTSPresGetMatrix (
 QTSPresentation inPresentation,
 QTSStream inStream,
 MatrixRecord *outMatrix
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to get
the matrix for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to get the matrix for
the presentation as a whole, pass the value kQTSAllStreams.

outMatrix
On entry, the address of a MatrixRecord structure; on return, this structure is filled with the
transformation matrix in use by the stream handler. Note that the matrix passed back is the one last
set by QTSPresSetMatrix (page 1856), regardless of any additional matrixes that might have been
used.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetNotificationProc
Gets the notification callback of a presentation.

OSErr QTSPresGetNotificationProc (
 QTSPresentation inPresentation,
 QTSNotificationUPP *outNotificationProc,
 void **outRefCon
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

outNotificationProc
A pointer to a Universal Procedure Pointer that accesses a QTSNotificationProc callback. The
callback acts as a back channel from a presentation to its creator. The presentation sends notification
of various events, such as a presentation, ending, or acknowledgment of a preroll request.

1838 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outRefCon
A handle to a constant to be passed to your QTSNotificationProc.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetNumSourcers
Undocumented

UInt32 QTSPresGetNumSourcers (
 QTSPresentation inPresentation,
 QTSStream inStream
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetNumStreams
Undocumented

UInt32 QTSPresGetNumStreams (
 QTSPresentation inPresentation
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

Functions 1839
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetPicture
Undocumented

OSErr QTSPresGetPicture (
 QTSPresentation inPresentation,
 QTSStream inStream,
 PicHandle *outPicture
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outPicture
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetPlayHints
Undocumented

1840 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresGetPlayHints (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 *outFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

outFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetPreferredRate
Undocumented

OSErr QTSPresGetPreferredRate (
 QTSPresentation inPresentation,
 Fixed *outRate
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

outRate
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1841
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresGetPresenting
Determines whether presenting is enabled or disabled for a presentation or stream.

OSErr QTSPresGetPresenting (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Boolean *outPresentingMode
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to get
the presenting state for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to get the presenting
state for the presentation as a whole, pass the value kQTSAllStreams.

outPresentingMode
A pointer to a Boolean that is TRUE if presenting is enabled, FALSE if it is disabled.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetSettings
Undocumented

OSErr QTSPresGetSettings (
 QTSPresentation inPresentation,
 QTSStream inStream,
 QTAtomContainer *outSettings,
 SInt32 inFlags
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

outSettings
Undocumented

inFlags
Undocumented

1842 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetSettingsAsText
Undocumented

OSErr QTSPresGetSettingsAsText (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags,
 OSType inSettingsType,
 Handle *outText,
 QTSPanelFilterUPP inPanelFilterProc,
 void *inPanelFilterProcRefCon
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inFlags
Undocumented

inSettingsType
Undocumented

outText
Undocumented

inPanelFilterProc
Undocumented

inPanelFilterProcRefCon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Functions 1843
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QuickTimeStreaming.h

QTSPresGetTimeBase
Undocumented

OSErr QTSPresGetTimeBase (
 QTSPresentation inPresentation,
 TimeBase *outTimeBase
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

outTimeBase
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresGetTimeScale
Undocumented

OSErr QTSPresGetTimeScale (
 QTSPresentation inPresentation,
 TimeScale *outTimeScale
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

outTimeScale
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

1844 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QuickTimeStreaming.h

QTSPresGetVolumes
Gets the sound volume levels of a stream or presentation.

OSErr QTSPresGetVolumes (
 QTSPresentation inPresentation,
 QTSStream inStream,
 short *outLeftVolume,
 short *outRightVolume
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to get
the volumes for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to get the volumes for
the presentation as a whole, pass the value kQTSAllStreams.

outLeftVolume
On exit, the volume level of the left channel of the stream or presentation. The values returned may
range from 0x0000 (silence) to 0x0100 (full volume).

outRightVolume
On exit, the volume level of the right channel of the stream or presentation. The values returned may
range from 0x0000 (silence) to 0x0100 (full volume).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresHasCharacteristic
Undocumented

Functions 1845
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresHasCharacteristic (
 QTSPresentation inPresentation,
 QTSStream inStream,
 OSType inCharacteristic,
 Boolean *outHasIt
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inCharacteristic
Undocumented

outHasIt
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresIdle
Undocumented

void QTSPresIdle (
 QTSPresentation inPresentation,
 QTSPresIdleParams *ioParams
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

ioParams
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1846 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresInvalidateRegion
Undocumented

OSErr QTSPresInvalidateRegion (
 QTSPresentation inPresentation,
 RgnHandle inRegion
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inRegion
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresNewStream
Undocumented

OSErr QTSPresNewStream (
 QTSPresentation inPresentation,
 OSType inDataType,
 const void *inData,
 UInt32 inDataLength,
 SInt32 inFlags,
 QTSStream *outStream
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inDataType
Undocumented

inData
Undocumented

inDataLength
Undocumented

inFlags
Undocumented

outStream
A pointer to a QTSStreamRecord structure that defines a stream.

Functions 1847
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresPreroll
Undocumented

OSErr QTSPresPreroll (
 QTSPresentation inPresentation,
 QTSStream inStream,
 UInt32 inTimeValue,
 Fixed inRate,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inTimeValue
Undocumented

inRate
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresPreroll64
Undocumented

1848 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresPreroll64 (
 QTSPresentation inPresentation,
 QTSStream inStream,
 const TimeValue64 *inPrerollTime,
 Fixed inRate,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inPrerollTime
Undocumented

inRate
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresPreview
Undocumented

OSErr QTSPresPreview (
 QTSPresentation inPresentation,
 QTSStream inStream,
 const TimeValue64 *inTimeValue,
 Fixed inRate,
 SInt32 inFlags
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inTimeValue
Undocumented

Functions 1849
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inRate
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresRemoveSourcer
Undocumented

OSErr QTSPresRemoveSourcer (
 QTSPresentation inPresentation,
 QTSStream inStream,
 ComponentInstance inSourcer,
 SInt32 inFlags
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inSourcer
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetActiveSegment
Undocumented

1850 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresSetActiveSegment (
 QTSPresentation inPresentation,
 QTSStream inStream,
 const TimeValue64 *inStartTime,
 const TimeValue64 *inDuration
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inStartTime
Undocumented

inDuration
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetClip
Undocumented

OSErr QTSPresSetClip (
 QTSPresentation inPresentation,
 QTSStream inStream,
 RgnHandle inClip
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inClip
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Functions 1851
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetDimensions
Undocumented

OSErr QTSPresSetDimensions (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Fixed inWidth,
 Fixed inHeight
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inWidth
Undocumented

inHeight
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetEnable
Undocumented

OSErr QTSPresSetEnable (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Boolean inEnableMode
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

1852 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inEnableMode
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetFlags
Undocumented

OSErr QTSPresSetFlags (
 QTSPresentation inPresentation,
 SInt32 inFlags,
 SInt32 inFlagsMask
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inFlags
Undocumented

inFlagsMask
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetGraphicsMode
Sets the graphics transfer mode for a streaming presentation.

Functions 1853
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresSetGraphicsMode (
 QTSPresentation inPresentation,
 QTSStream inStream,
 short inMode,
 const RGBColor *inOpColor
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inMode
A short integer; see Graphics Transfer Modes.

inOpColor
A pointer to an RGBColor structure. This is the blend value for blends and the transparent color for
transparent operations. The toolbox supplies this value to QuickDraw when you draw in addPin,
subPin, blend, transparent, or graphicsModeStraightAlphaBlend mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetGWorld
Undocumented

OSErr QTSPresSetGWorld (
 QTSPresentation inPresentation,
 QTSStream inStream,
 CGrafPtr inGWorld,
 GDHandle inGDHandle
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inStream
A pointer to a QTSStreamRecord structure that defines a stream.

inGWorld
Undocumented

inGDHandle
Undocumented

1854 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetInfo
Sets information for a presentation or stream.

OSErr QTSPresSetInfo (
 QTSPresentation inPresentation,
 QTSStream inStream,
 OSType inSelector,
 void *ioParam
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to set
information for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to set information for
the presentation as a whole, pass the value kQTSAllStreams.

inSelector
A constant (see below) that defines the type of information to be set. See these constants:

kQTSGetURLLink

kQTSTargetBufferDurationInfo

kQTSDurationInfo

kQTSSourceTrackIDInfo

kQTSSourceLayerInfo

kQTSSourceLanguageInfo

kQTSSourceTrackFlagsInfo

kQTSSourceDimensionsInfo

kQTSSourceVolumesInfo

kQTSSourceMatrixInfo

kQTSSourceClipRectInfo

kQTSSourceGraphicsModeInfo

kQTSSourceScaleInfo

kQTSSourceBoundingRectInfo

kQTSSourceUserDataInfo

kQTSSourceInputMapInfo

Functions 1855
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ioParam
A pointer to the information to be set in the format shown below.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetMatrix
Sets the transformation matrix to be used by the graphic display of a stream or presentation.

OSErr QTSPresSetMatrix (
 QTSPresentation inPresentation,
 QTSStream inStream,
 const MatrixRecord *inMatrix
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to set
the matrix for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to set the matrix for
the presentation as a whole, pass the value kQTSAllStreams.

inMatrix
A pointer to a MatrixRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetNotificationProc
Sets the notification callback for a presentation.

1856 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

OSErr QTSPresSetNotificationProc (
 QTSPresentation inPresentation,
 QTSNotificationUPP inNotificationProc,
 void *inRefCon
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inNotificationProc
A Universal Procedure Pointer that accesses a QTSNotificationProc callback. The callback acts as
a back channel from a presentation to its creator. The presentation sends notification of various events,
such as a presentation, ending, or acknowledgment of a preroll request.

inRefCon
A pointer to data to be passed to your QTSNotificationProc.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetPlayHints
Undocumented

OSErr QTSPresSetPlayHints (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags,
 SInt32 inFlagsMask
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to set
the play hints for a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to set the play hints
for the presentation as a whole, pass the value kQTSAllStreams.

inFlags
Undocumented

inFlagsMask
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1857
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetPreferredRate
Undocumented

OSErr QTSPresSetPreferredRate (
 QTSPresentation inPresentation,
 Fixed inRate,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inRate
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetPresenting
Enables or disables presentation of a stream to the user.

OSErr QTSPresSetPresenting (
 QTSPresentation inPresentation,
 QTSStream inStream,
 Boolean inPresentingMode
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to enable
or disable the presentation for a specific stream, pass the value kQTSInvalidPresentation.

1858 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to enable or disable
the presentation as a whole, pass the value kQTSAllStreams.

inPresentingMode
Pass TRUE to enable the presentation, FALSE to disable it.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetSettings
Undocumented

OSErr QTSPresSetSettings (
 QTSPresentation inPresentation,
 QTSStream inStream,
 QTAtomSpecPtr inSettings,
 SInt32 inFlags
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inSettings
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1859
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresSettingsDialog
Undocumented

OSErr QTSPresSettingsDialog (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags,
 QTSModalFilterUPP inFilterProc,
 void *inFilterProcRefCon
);

Parameters
inPresentation

Undocumented

inStream
Undocumented

inFlags
Undocumented

inFilterProc
Undocumented

inFilterProcRefCon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSettingsDialogWithFilters
Undocumented

OSErr QTSPresSettingsDialogWithFilters (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags,
 QTSModalFilterUPP inFilterProc,
 void *inFilterProcRefCon,
 QTSPanelFilterUPP inPanelFilterProc,
 void *inPanelFilterProcRefCon
);

Parameters
inPresentation

Undocumented

1860 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inStream
Undocumented

inFlags
Undocumented

inFilterProc
Undocumented

inFilterProcRefCon
Undocumented

inPanelFilterProc
Undocumented

inPanelFilterProcRefCon
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickTimeStreaming.h

QTSPresSetVolumes
Sets the sound volume levels of a stream or presentation.

OSErr QTSPresSetVolumes (
 QTSPresentation inPresentation,
 QTSStream inStream,
 short inLeftVolume,
 short inRightVolume
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to set
the volume of a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to set the volume of
the presentation as a whole, pass the value kQTSAllStreams.

inLeftVolume
The volume level to be set for the left channel of the stream or presentation. The values may range
from 0x0000 (silence) to 0x0100 (full volume).

inRightVolume
The volume level to be set for the right channel of the stream or presentation. The values may range
from 0x0000 (silence) to 0x0100 (full volume).

Functions 1861
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSkipTo
Requests that a presentation skip to a given point, specified by a time value.

OSErr QTSPresSkipTo (
 QTSPresentation inPresentation,
 UInt32 inTimeValue
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

inTimeValue
The time value to skip to, expressed in the time scale of the presentation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresSkipTo64
Requests that a streaming presentation skip to a given point, specified by a 64-bit time value.

OSErr QTSPresSkipTo64 (
 QTSPresentation inPresentation,
 const TimeValue64 *inTimeValue
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure.

1862 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inTimeValue
A pointer to a signed 64-bit integer that contains the time value to skip to, expressed in the time scale
of the presentation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresStart
Starts a streaming presentation or a stream.

OSErr QTSPresStart (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to start
a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to start the presentation
as a whole, pass the value kQTSAllStreams.

inFlags
Flags (see below) that govern the starting of the presentation or stream. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If QTSPresPreroll (page 1848) has not been called, QuickTime must set up the streams and do everything
that would have been done in preroll. If the presentation has already been prerolled, it should be ready to
start immediately.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

Functions 1863
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresStop
Stops a streaming presentation or stream.

OSErr QTSPresStop (
 QTSPresentation inPresentation,
 QTSStream inStream,
 SInt32 inFlags
);

Parameters
inPresentation

A pointer to a QTSPresentationRecord structure that defines a presentation. If you want to stop
a specific stream, pass the value kQTSInvalidPresentation.

inStream
A pointer to a QTSStreamRecord structure that defines a stream. If you want to stop the presentation
as a whole, pass the value kQTSAllStreams. All audio and video output will cease.

inFlags
Flags that govern the stopping of the presentation or stream. No flags are currently defined.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSReleaseMemPtr
Disposes of a pointer to a streaming buffer that will be recirculated.

void QTSReleaseMemPtr (
 QTSMemPtr inMemPtr,
 SInt32 inFlags
);

Parameters
inMemPtr

A pointer to an opaque structure.

inFlags
Undocumented

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1864 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSSetNetworkAppName
Sets the name of a streaming network application.

OSErr QTSSetNetworkAppName (
 const char *inAppName,
 SInt32 inFlags
);

Parameters
inAppName

A pointer to a string containing the application's name.

inFlags
A flag (see below) that determines whether the name is a full pathname. See these constants:

kQTSNetworkAppNameIsFullNameFlag

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSSourcerGetEnable
Undocumented

ComponentResult QTSSourcerGetEnable (
 QTSSourcer inSourcer,
 Boolean *outEnableMode,
 SInt32 inFlags
);

Parameters
inSourcer

Undocumented

outEnableMode
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Functions 1865
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QTStreamingComponents.h

QTSSourcerGetInfo
Undocumented

ComponentResult QTSSourcerGetInfo (
 QTSSourcer inSourcer,
 OSType inSelector,
 void *ioParams
);

Parameters
inSourcer

Undocumented

inSelector
Undocumented

ioParams
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSSourcerGetTimeScale
Undocumented

ComponentResult QTSSourcerGetTimeScale (
 QTSSourcer inSourcer,
 TimeScale *outTimeScale
);

Parameters
inSourcer

Undocumented

outTimeScale
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

1866 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSSourcerIdle
Undocumented

ComponentResult QTSSourcerIdle (
 QTSSourcer inSourcer,
 const TimeValue64 *inTime,
 SInt32 inFlags,
 SInt32 *outFlags
);

Parameters
inSourcer

Undocumented

inTime
Undocumented

inFlags
Undocumented

outFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSSourcerInitialize
Undocumented

ComponentResult QTSSourcerInitialize (
 QTSSourcer inSourcer,
 const QTSSourcerInitParams *inInitParams
);

Parameters
inSourcer

Undocumented

Functions 1867
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inInitParams
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QTStreamingComponents.h

QTSSourcerSetEnable
Undocumented

ComponentResult QTSSourcerSetEnable (
 QTSSourcer inSourcer,
 Boolean inEnableMode,
 SInt32 inFlags
);

Parameters
inSourcer

Undocumented

inEnableMode
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSSourcerSetInfo
Undocumented

1868 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult QTSSourcerSetInfo (
 QTSSourcer inSourcer,
 OSType inSelector,
 void *ioParams
);

Parameters
inSourcer

Undocumented

inSelector
Undocumented

ioParams
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

QTSSourcerSetTimeScale
Undocumented

ComponentResult QTSSourcerSetTimeScale (
 QTSSourcer inSourcer,
 TimeScale inTimeScale
);

Parameters
inSourcer

Undocumented

inTimeScale
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1869
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSStatHelperGetNumStats
Gets the number of statistics that a statistic helper is reporting.

UInt32 QTSStatHelperGetNumStats (
 QTSStatHelper inStatHelper
);

Parameters
inStatHelper

A pointer to a QTSStatHelperRecord structure that defines the component instance of a statistics
helper.

Return Value
The number of statistics.

Discussion
You can also find the number of statistics that a statistics helper is reporting by calling
QTSStatHelperResetIter (page 1871), then calling QTSStatHelperNext (page 1871) iteratively until it
returns FALSE and counting the iterations.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSStatHelperGetStats
Tells a statistics helper to update its statistics.

OSErr QTSStatHelperGetStats (
 QTSStatHelper inStatHelper
);

Parameters
inStatHelper

A pointer to a QTSStatHelperRecord structure that defines the component instance of a statistics
helper.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Statistics helpers update their statistics only when this function is called. You should call it at least once
before calling QTSStatHelperNext (page 1871), to ensure that the information returned is valid and current.
The normal sequence is to call this function, then call QTSStatHelperResetIter (page 1871), then make a
series of calls to QTSStatHelperNext (page 1871).

Version Notes
Introduced in QuickTime 4.

1870 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSStatHelperNext
Gets the next statistic from a statistic helper.

Boolean QTSStatHelperNext (
 QTSStatHelper inStatHelper,
 QTSStatHelperNextParams *ioParams
);

Parameters
inStatHelper

A pointer to a QTSStatHelperRecord structure that defines the component instance of a statistics
helper.

ioParams
On entry, a pointer to a QTSStatHelperNextParams structure; on return, this structure is filled in
with information about the next statistic from the specified statistic helper.

Return Value
FALSE if the last statistic has been returned, TRUE otherwise.

Discussion
You need to call this function once to retrieve each statistic. The normal sequence is to call
QTSStatHelperGetStats (page 1870), then callQTSStatHelperResetIter (page 1871), then make a series
of calls to this function until it returns FALSE.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSStatHelperResetIter
Reset the iteration counter of a statistics helper, so the next call to QTSStatHelperNext returns the first statistic.

OSErr QTSStatHelperResetIter (
 QTSStatHelper inStatHelper
);

Parameters
inStatHelper

A pointer to a QTSStatHelperRecord structure that defines the component instance of a statistics
helper.

Functions 1871
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSStreamBufferDataInfo
Undocumented

void QTSStreamBufferDataInfo (
 QTSStreamBuffer *inStreamBuffer,
 unsigned char **outDataStart,
 UInt32 *outDataMaxLength
);

Parameters
inStreamBuffer

Undocumented

outDataStart
Undocumented

outDataMaxLength
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

RTPMPDoUserDialog
Obtains media-specific settings from the user through a dialog box.

1872 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPMPDoUserDialog (
 RTPMediaPacketizer rtpm,
 ModalFilterUPP inFilterUPP,
 Boolean *canceled
);

Parameters
rtpm

The component instance of the media packetizer.

inFilterUPP
A ModalFilterProc callback, which may be used in a call to the Mac OS ModalDialog function.

canceled
On return, a Boolean which is TRUE if the user pressed the cancel button in the dialog box. If this
parameter is returned TRUE, the settings prior to calling this function should be retained.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function invokes a media packetizer's modal dialog to obtain user settings. If the packetizer supports
"more settings," you can put up a dialog allowing the user to enter media-specific settings. You can determine
whether a packetizer has this characteristic by calling RTPMPHasCharacteristic (page 1880)). The settings
can be obtained for storage by calling RTPMPGetSettingsIntoAtomContainerAtAtom (page 1878), and
can be restored or set directly from an application by calling
RTPMPSetSettingsFromAtomContainerAtAtom (page 1889).

Special Considerations

This function may be called at any time.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPFlush
Renamed RTPMPReset.

ComponentResult RTPMPFlush (
 RTPMediaPacketizer rtpm,
 SInt32 inFlags,
 SInt32 *outFlags
);

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1873
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPMPGetInfo
Obtains information of various types from a media packetizer.

ComponentResult RTPMPGetInfo (
 RTPMediaPacketizer rtpm,
 OSType inSelector,
 void *ioParams
);

Parameters
rtpm

The component instance of the media packetizer you want information from.

inSelector
The selector for the type information you want (see below). See these constants:

kRTPMPPayloadTypeInfo

kRTPMPRTPTimeScaleInfo

kRTPMPRequiredSampleDescriptionInfo

kRTPMPMinPayloadSize

kRTPMPMinPacketDuration

kRTPMPSuggestedRepeatPktCountInfo

ioParams
A pointer to a data structure of the appropriate type to hold the information you are requesting. You
need to allocate and dispose of this data structure.

Return Value
See Error Codes. Returns qtsBadSelectorErr if inSelector requests a selector you do not support.
Returns noErr if there is no error.

Discussion
This function can be called at any time.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming

1874 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

qtstreaming.win

Declared In
QTStreamingComponents.h

RTPMPGetMaxPacketDuration
Reads the maximum packet duration currently set for this packetizer.

ComponentResult RTPMPGetMaxPacketDuration (
 RTPMediaPacketizer rtpm,
 UInt32 *outMaxPacketDuration
);

Parameters
rtpm

The component instance of the media packetizer.

outMaxPacketDuration
On return, a pointer to a 32-bit integer containing the maximum packet duration, in milliseconds,
that the packetizer is set to use.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The maximum allowable packet duration can change during a presentation, so you should obtain this value
immediately before using it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetMaxPacketSize
Returns the maximum packet size, in bytes, that the packetizer is set to create.

ComponentResult RTPMPGetMaxPacketSize (
 RTPMediaPacketizer rtpm,
 UInt32 *outMaxPacketSize
);

Parameters
rtpm

The component instance of the media packetizer.

outMaxPacketSize
On return, a pointer to a 32-bit integer containing the maximum packet size, in bytes, that the
packetizer is set to create.

Functions 1875
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The maximum allowable packet size can change during a presentation, so you should obtain this value
immediately before using it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetMediaType
Obtains the data type being handled by a media packetizer.

ComponentResult RTPMPGetMediaType (
 RTPMediaPacketizer rtpm,
 OSType *outMediaType
);

Parameters
rtpm

The component instance of the media packetizer.

outMediaType
On return, a pointer to the media's data type, such as VideoMediaType or SoundMediaType; see
Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

The media's data type must be set prior to calling RTPMPSetSampleData (page 1887). It cannot change
afterward.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetPacketBuilder
Obtains the component instance of the packet builder component being used by a media packetizer.

1876 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPMPGetPacketBuilder (
 RTPMediaPacketizer rtpm,
 ComponentInstance *outPacketBuilder
);

Parameters
rtpm

The component instance of the media packetizer whose packet builder you are interested in.

outPacketBuilder
On return, a pointer to the component instance of the packet builder component in use by this media
packetizer.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetSettings
Undocumented

ComponentResult RTPMPGetSettings (
 RTPMediaPacketizer rtpm,
 QTAtomContainer *outSettings,
 SInt32 inFlags
);

Parameters
rtpm

Undocumented

outSettings
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1877
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPMPGetSettingsAsText
Return the media-specific settings of a media packetizer as text in a format presentable to the user.

ComponentResult RTPMPGetSettingsAsText (
 RTPMediaPacketizer rtpm,
 Handle *text
);

Parameters
rtpm

The component instance of a media packetizer.

text
Return a handle to a copy of your user settings in text format. The text is formatted as simple array
of characters. There is no size byte or null termination. Allocate the handle to fit the text precisely.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function expects you to return your user settings as text. It should be called only if the media packetizer
supports packetizer-specific settings. To determine if your media packetizer supports this function, the
application may call RTPMPHasCharacteristic (page 1880).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetSettingsIntoAtomContainerAtAtom
Obtains the media-specific setting of a media packetizer.

ComponentResult RTPMPGetSettingsIntoAtomContainerAtAtom (
 RTPMediaPacketizer rtpm,
 QTAtomContainer inOutContainer,
 QTAtom inParentAtom
);

Parameters
rtpm

The component instance of the media packetizer.

inOutContainer
The atom container that holds the settings atom, which the caller must allocate.

inParentAtom
The atom that will hold the settings.

Return Value
See Error Codes. Returns noErr if there is no error.

1878 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
This function should be called only if the media packetizer supports packetizer-specific settings. To determine
if a media packetizer supports this function, call RTPMPHasCharacteristic (page 1880).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetTimeBase
Returns the time base passed to a media packetizer by RTPMPSetTimeBase.

ComponentResult RTPMPGetTimeBase (
 RTPMediaPacketizer rtpm,
 TimeBase *outTimeBase
);

Parameters
rtpm

The component instance of your media packetizer.

outTimeBase
A pointer to the time base passed to you by RTPMPSetTimeBase (page 1890).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPGetTimeScale
Obtains the time scale in use by a media packetizer.

ComponentResult RTPMPGetTimeScale (
 RTPMediaPacketizer rtpm,
 TimeScale *outTimeScale
);

Parameters
rtpm

The component instance of media packetizer component.

Functions 1879
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outTimeScale
On return, contains a pointer to the time scale in use by the packetizer. The time scale indicates the
number of time units that pass in one second when the media is playing at a rate of 1.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPHasCharacteristic
Determines whether a media packetizer has a particular characteristic, such as whether it supports a user
settings dialog.

ComponentResult RTPMPHasCharacteristic (
 RTPMediaPacketizer rtpm,
 OSType inSelector,
 Boolean *outHasIt
);

Parameters
rtpm

The component instance of the media packetizer.

inSelector
A selector for the characteristic you want to know about. See these constants:

kRTPMPNoSampleDataRequiredCharacteristic

kRTPMPHasUserSettingsDialogCharacteristic

kRTPMPPrefersReliableTransportCharacteristic

kRTPMPRequiresOutOfBandDimensionsCharacteristic

outHasIt
On return, contains a Boolean value that is TRUE if the media packetizer has this characteristic, FALSE
otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming

1880 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

qtstreaming.win

Declared In
QTStreamingComponents.h

RTPMPIdle
Called periodically in your event loop to allocate time to each media packetizer.

ComponentResult RTPMPIdle (
 RTPMediaPacketizer rtpm,
 SInt32 inFlags,
 SInt32 *outFlags
);

Parameters
rtpm

The component instance of the media packetizer.

inFlags
There are currently no defined flags.

outFlags
On return, contains a pointer to a signed 32-bit integer that holds a flag (see below) from the packetizer.
See these constants:

kRTPMPStillProcessingData

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The packetizer will use this time to process the data in its buffer. If the data has not all been processed, this
function returns the kRTPMPStillProcessingData flag. Data is placed in the buffer by
RTPMPSetSampleData (page 1887).

Special Considerations

The packetizer may make calls to the packet builder in response to this call.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPInitialize
Initializes a media packetizer component.

Functions 1881
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPMPInitialize (
 RTPMediaPacketizer rtpm,
 SInt32 inFlags
);

Parameters
rtpm

The component instance of the media packetizer.

inFlags
A signed 32-bit integer containing the flags (see below) you wish to pass to the packetizer at start-up.
See these constants:

kRTPMPRealtimeModeFlag

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The calling component must call this function before sending any data to a media packetizer or making any
RTPMPSet calls. The calling component then calls RTPMPSetSampleData (page 1887) and RTPMPIdle (page
1881) repeatedly. The calling component passes sample data (obtained, for example, from
GetMediaSample (page 1583)), to the media packetizer by calling RTPMPSetSampleData. If
RTPMPSetSampleData or RTPMPIdle return the flag kRTPMPStillProcessingData, then the calling
component should call RTPMPIdle; if not, it is free to call RTPMPSetSampleData again.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPMPPreflightMedia
Determines whether your packetizer can work with a given media type and sample description.

ComponentResult RTPMPPreflightMedia (
 RTPMediaPacketizer rtpm,
 OSType inMediaType,
 SampleDescriptionHandle inSampleDescription
);

Parameters
rtpm

The component instance of your media packetizer.

1882 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inMediaType
The media type, such as 'vide'; see Data References.

inSampleDescription
A handle to the SampleDescription structure.

Return Value
Return noErr if you can packetize this type of data; return qtsUnsupportedFeatureErr if you cannot.
See Error Codes.

Discussion
This function must be implemented by your packetizer. It will be called before you are asked to packetize
any data.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPReset
Allows a media packetizer to stop packetizing its current input, set its state to idle, and flush its input buffer.

ComponentResult RTPMPReset (
 RTPMediaPacketizer rtpm,
 SInt32 inFlags
);

Parameters
rtpm

The component instance of the media packetizer.

inFlags
A signed 32-bit integer containing any flags you are passing to the media packetizer. There are
currently no defined flags.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this function to stop the media packetizer and flush its input buffer when you wish to stop
transmitting immediately, when you are skipping forward or backward in the stream, or if the network data
connection is interrupted.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win

Functions 1883
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPMPSetInfo
Sets any one of several parameters for a media packetizer.

ComponentResult RTPMPSetInfo (
 RTPMediaPacketizer rtpm,
 OSType inSelector,
 const void *ioParams
);

Parameters
rtpm

The component instance of the media packetizer.

inSelector
A selector (see below) for the type of information you wish to set. See these constants:

kQTSSourceTrackIDInfo

kQTSSourceLayerInfo

kQTSSourceLanguageInfo

kQTSSourceTrackFlagsInfo

kQTSSourceDimensionsInfo

kQTSSourceVolumesInfo

kQTSSourceMatrixInfo

kQTSSourceClipRectInfo

kQTSSourceGraphicsModeInfo

kQTSSourceBoundingRectInfo

kQTSSourceScaleInfo

kQTSSourceUserDataInfo

kQTSSourceInputMapInfo

ioParams
A pointer to a data structure of the appropriate type for the information you are passing.

Return Value
Return qtsBadSelectorErr if you do not support the selector. Return noErr if there is no error. See Error
Codes.

Discussion
This function is used to pass track-level information about the media track to be packetized, such as its track
ID, layer, and transformation matrix. Return qtsBadSelectorErr unless your packetizer is able to transmit
this kind of data to your reassembler for use in the client movie.

Version Notes
Introduced in QuickTime 4.

1884 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetMaxPacketDuration
Sets the maximum packet duration that the media packetizer is to use.

ComponentResult RTPMPSetMaxPacketDuration (
 RTPMediaPacketizer rtpm,
 UInt32 inMaxPacketDuration
);

Parameters
rtpm

The component instance of the media packetizer.

inMaxPacketDuration
An unsigned 32-bit integer containing the maximum packet duration in milliseconds. This value
should not be smaller than the value returned from RTPMPGetInfo (page 1874) with the
kRTPMPMinPacketDuration selector.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The maximum packet duration cannot be changed during a presentation, and this function cannot be called
after calling RTPMPSetSampleData (page 1887).

Special Considerations

If RTPMPSetMaxPacketDuration is not called, a default value will be used.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetMaxPacketSize
Sets the maximum packet size for packets created by a media packetizer.

Functions 1885
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPMPSetMaxPacketSize (
 RTPMediaPacketizer rtpm,
 UInt32 inMaxPacketSize
);

Parameters
rtpm

The component instance of the media packetizer.

inMaxPacketSize
An unsigned 32-bit integer specifying the maximum size, in bytes, of packets to be created. This value
must not be smaller than the value returned from RTPMPGetInfo (page 1874) with the
kRTPMPMinPayloadSize selector. The media packetizer will not create packets larger than this value.
The limit applies only to the payload data.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The maximum packet size cannot change during a presentation. Streaming will be most efficient if this value
is set to the largest packet size that can traverse the network without being split. RTPMPSetMaxPacketSize
may not be called after calling RTPMPSetSampleData (page 1887).

Special Considerations

If RTPMPSetMaxPacketSize is not called, a default value will be used.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetMediaType
Sets the type of media that a media packetizer will process.

ComponentResult RTPMPSetMediaType (
 RTPMediaPacketizer rtpm,
 OSType inMediaType
);

Parameters
rtpm

The component instance of the media packetizer.

inMediaType
The media type; see Data References.

Return Value
See Error Codes. Returns noErr if there is no error.

1886 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
The media type must be set prior to calling RTPMPSetSampleData (page 1887) and cannot change after such
calls.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetPacketBuilder
Selects which packet builder a media packetizer will use.

ComponentResult RTPMPSetPacketBuilder (
 RTPMediaPacketizer rtpm,
 ComponentInstance inPacketBuilder
);

Parameters
rtpm

The component instance of the media packetizer.

inPacketBuilder
The component instance of the packet builder component to use.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A media packetizer always sends its output to a packet builder. The specified packet builder may assemble
actual RTP packets, or it may use information about the packet to build a hint track. You must set the packet
builder using this call prior to any calls to RTPMPSetSampleData (page 1887). You can also use this function
to dynamically change the packet builder a media packetizer uses.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetSampleData
Provides sample data directly to a media packetizer component.

Functions 1887
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPMPSetSampleData (
 RTPMediaPacketizer rtpm,
 const RTPMPSampleDataParams *inSampleData,
 SInt32 *outFlags
);

Parameters
rtpm

The component instance of the media packetizer.

inSampleData
A pointer to a RTPMPSampleDataParams structure containing the sample data you are passing.
Calling this routine adds data cumulatively to any previous calls to this function. The data can contain
any number of samples (1 or more), or a partial sample.

outFlags
Flags (see below) that indicate processing status. This function will return kRTPMPWantsMoreDataFlag
if it has completed processing of all pending data. Otherwise, you must make calls to RTPMPIdle (page
1881) until this function no longer returns kRTPMPStillProcessingData. See these constants:

kRTPMPStillProcessingData

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine is called to pass media data directly to a media packetizer. The packetizer will not copy this data;
it will call the release callback when it is finished with it. The media packetizer may or may not make calls to
the packet builder in response to this call.

Special Considerations

This call is normally followed by a series of calls to RTPMPIdle (page 1881), which grants time to the media
packetizer in order to process the data passed by this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetSettings
Undocumented

ComponentResult RTPMPSetSettings (
 RTPMediaPacketizer rtpm,
 QTAtomSpecPtr inSettings,
 SInt32 inFlags
);

Parameters
rtpm

Undocumented

1888 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inSettings
Undocumented

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetSettingsFromAtomContainerAtAtom
Sets the media-specific settings of a media packetizer, using an atom inside an atom container.

ComponentResult RTPMPSetSettingsFromAtomContainerAtAtom (
 RTPMediaPacketizer rtpm,
 QTAtomContainer inContainer,
 QTAtom inParentAtom
);

Parameters
rtpm

The component instance of the media packetizer.

inContainer
The atom container that holds the settings atom.

inParentAtom
The atom that holds the settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function should be called only if the media packetizer supports packetizer-specific settings. To determine
if a media packetizer supports this function, call RTPMPHasCharacteristic (page 1880).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1889
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPMPSetTimeBase
Tells your packetizer what time base is in use by the calling application.

ComponentResult RTPMPSetTimeBase (
 RTPMediaPacketizer rtpm,
 TimeBase inTimeBase
);

Parameters
rtpm

Component instance of your packetizer.

inTimeBase
The time base in use for this stream. You can query this time base to find out the current time in the
stream.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function may be called during setup for a live transmission.

Special Considerations

Your packetizer should not rely on receiving this call.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSetTimeScale
Sets the time scale the media packetizer will use.

ComponentResult RTPMPSetTimeScale (
 RTPMediaPacketizer rtpm,
 TimeScale inTimeScale
);

Parameters
rtpm

The component instance of the media packetizer.

inTimeScale
The time scale to use.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The time scale is the number of time units that pass in one second when the media is playing at a rate of 1.
This time scale gives meaning to the times used when calling RTPMPSetSampleData (page 1887).

1890 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Special Considerations

The time scale must be set before calling RTPMPSetSampleData (page 1887).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBAddPacketLiteralData
Passes literal data directly to a packet builder component.

ComponentResult RTPPBAddPacketLiteralData (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 UInt8 *inData,
 UInt32 inDataLength,
 RTPPacketRepeatedDataRef *outDataRef
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet into which the data will be placed. This is normally a reference
returned by RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet into which the data will be placed. This is normally a reference returned by
RTPPBBeginPacket (page 1896).

inData
A pointer to the data you are passing.

inDataLength
An unsigned 32-bit integer containing the length, in bytes, of the data you are passing.

outDataRef
On return, contains a pointer to a data reference. Use this reference if you wish to later tell the packet
builder to use this same data again, without having to literally pass the data again. Pass in NIL if you
do not need the packet builder to repeat the data. If you do not pass in NIL, you must dispose of the
data explicitly by calling RTPPBReleaseRepeatedData (page 1904).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1891
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
This function will return a reference which can be used to specify the same data repeatedly without having
to pass in the data again. This is done by calling RTPPBAddPacketRepeatedData (page 1892) with the
reference which was returned by this function. For example, you can use this function to insert static header
information into a packet prior to inserting media sample data. It will return a data reference you can use to
insert the same static information into later packets.

Special Considerations

To specify media data to be placed in a packet, a media packetizer should call
RTPPBAddPacketSampleData (page 1893).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBAddPacketRepeatedData
Tells a packet builder component to insert previously-specified data into a packet.

ComponentResult RTPPBAddPacketRepeatedData (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 RTPPacketRepeatedDataRef inDataRef
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet into which the data will be placed. This is normally a reference
returned by RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet into which the data will be placed. This is normally a reference returned by
RTPPBBeginPacket (page 1896).

1892 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inDataRef
A reference to the data to repeat. This is normally a data reference returned by
RTPPBAddPacketLiteralData (page 1891) or RTPPBAddPacketSampleData (page 1893).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to cause a packet builder component to repeatedly insert the same data into packets without
having to pass the data each time. This is typically done to repeat static header information into a series of
packets, or to insert previously-sent sample data into a redundant packet. The data is first specified by a call
to RTPPBAddPacketLiteralData (page 1891) or RTPPBAddPacketSampleData (page 1893), which inserts
the data the first time and returns a data reference. The data reference is then used with this function to
send the data again.

Special Considerations

When you are done sending the repeated data, release the data structure by calling
RTPPBReleaseRepeatedData (page 1904).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBAddPacketSampleData
Commands a packet builder component to insert media sample data into a packet.

ComponentResult RTPPBAddPacketSampleData (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 RTPMPSampleDataParams *inSampleDataParams,
 UInt32 inSampleOffset,
 UInt32 inSampleDataLength,
 RTPPacketRepeatedDataRef *outDataRef
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet into which the data will be placed. This is normally a reference
returned by RTPPBBeginPacketGroup (page 1897).

Functions 1893
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inPacket
The RTP packet into which the data will be placed. This is normally a reference returned by
RTPPBBeginPacket (page 1896).

inSampleDataParams
A pointer to a RTPMPSampleDataParams structure for the sample data you are inserting.

inSampleOffset
A 32-bit unsigned integer containing the offset into the sample media, in bytes.

inSampleDataLength
A 32-bit unsigned integer specifying the number of bytes of media sample data to insert into the
packet.

outDataRef
On return, contains a pointer to a data reference. Use this reference if you wish to later tell the packet
builder to use this same sample data again, without having to literally pass the data again. Pass in
NIL if you do not need the packet builder to repeat the data. If you do not pass in NIL , you must
dispose of the data explicitly by calling RTPPBReleaseRepeatedData (page 1904).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function will return a reference which can be used to specify the same data repeatedly without having
to pass in the data again. The media packetizer specifies the offset into the media and the length of the
sample to insert. You can insert data repeatedly by calling RTPPBAddPacketRepeatedData (page 1892) with
the reference which was returned by RTPPBAddPacketLiteralData (page 1891).

Special Considerations

When a reference is no longer needed, it should be disposed of by using the call
RTPPBReleaseRepeatedData (page 1904).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBAddPacketSampleData64
Provides a 64-bit version of RTPPBAddPacketSampleData for large sample media.

1894 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBAddPacketSampleData64 (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 RTPMPSampleDataParams *inSampleDataParams,
 const UInt64 *inSampleOffset,
 UInt32 inSampleDataLength,
 RTPPacketRepeatedDataRef *outDataRef
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet into which the data will be placed. This is normally a reference
returned by RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet into which the data will be placed. This is normally a reference returned by
RTPPBBeginPacket (page 1896).

inSampleDataParams
A pointer to a RTPMPSampleDataParams structure for the sample data you are inserting.

inSampleOffset
A 64-bit unsigned integer containing the offset into the sample media, in bytes.

inSampleDataLength
A 32-bit unsigned integer specifying the number of bytes of media sample data to insert into the
packet.

outDataRef
On return, contains a pointer to a data reference. Use this reference if you wish to later tell the packet
builder to use this same sample data again, without having to literally pass the data again. Pass in
NIL if you do not need the packet builder to repeat the data. If you do not pass in NIL , you must
dispose of the data explicitly by calling RTPPBReleaseRepeatedData (page 1904).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBAddRepeatPacket
Undocumented

Functions 1895
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBAddRepeatPacket (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 TimeValue inTransmissionOffset,
 UInt32 inSequenceNumber
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet into which the data will be placed. This is normally a reference
returned by RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet into which the data will be placed. This is normally a reference returned by
RTPPBBeginPacket (page 1896).

inTransmissionOffset
Undocumented

inSequenceNumber
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBBeginPacket
Tells a packet builder to create a new packet.

ComponentResult RTPPBBeginPacket (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 UInt32 inPacketMediaDataLength,
 RTPPacketRef *outPacket
);

Parameters
rtpb

The component instance of the packet builder component.

1896 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the new packet. This is normally a reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacketMediaDataLength
An unsigned 32-bit integer specifying the maximum length of data that will be inserted into this
packet. This includes the data for all subsequent RTPPBAddPacketLiteralData (page 1891),
RTPPBAddPacketSampleData (page 1893), and RTPPBAddPacketRepeatedData (page 1892) calls
until the packet is closed. The value of this parameter may be larger, but must not be smaller, than
the amount of data inserted in the packet.

outPacket
On return, contains a pointer to the packet. Use this reference to insert data into the packet.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The media packetizer uses this function to create each new packet, before inserting any literal, repeated, or
sample data. A call to RTPPBBeginPacketGroup (page 1897) must be made before creating the first packet
in a group. Data can be inserted into the packet using RTPPBAddPacketLiteralData (page 1891),
RTPPBAddPacketRepeatedData (page 1892), orRTPPBAddPacketSampleData (page 1893). When the packet
is complete, call RTPPBEndPacket (page 1898).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBBeginPacketGroup
Tells a packet builder to create a new packet group.

Functions 1897
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBBeginPacketGroup (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 UInt32 inTimeStamp,
 RTPPacketGroupRef *outPacketGroup
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inTimeStamp
A unsigned 32-bit integer containing the time stamp for this packet group.

outPacketGroup
On return, contains a pointer to a reference to the packet group. Use this data reference when creating
a new packet or inserting data into a packet that belongs to this group.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A media packetizer creates a packet group using this function. The data reference returned by this function
is then used to create a series of packets that belong to this group. The data reference is also required when
inserting data into packets.

Special Considerations

When the packet group is complete, call RTPPBEndPacketGroup (page 1899).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBEndPacket
Tells a packet builder that a packet is complete.

1898 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBEndPacket (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 UInt32 inTransmissionTimeOffset,
 UInt32 inDuration
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the new packet. This is normally a reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet containing the data. This is normally a reference returned by RTPPBBeginPacket (page
1896).

inTransmissionTimeOffset
The time offset at which the media sample data contained in this packet begins, in milliseconds. This
offset is added to the RTP transmission time to determine when to send the packet.

inDuration
The duration of this packet, specified in milliseconds.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Call this function once when each packet is complete.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBEndPacketGroup
Tells a packet builder component that a packet group is complete.

Functions 1899
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBEndPacketGroup (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
A data reference to the packet group being ended. This is normally a data reference returned by
RTPPBBeginPacketGroup (page 1897).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function should be called when all the packets in a group are complete and the media packetizer is
ready either to create a new packet group or to terminate the stream.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPPBGetCallback
Gets the callback used to communicate with the caller of a media packetizer.

ComponentResult RTPPBGetCallback (
 RTPPacketBuilder rtpb,
 RTPPBCallbackUPP *outCallback,
 void **outRefCon
);

Parameters
rtpb

The component instance of the packet builder component.

outCallback
A pointer to an RTPPBCallbackProc callback.

1900 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

outRefCon
A handle to any data your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBGetInfo
Gets information about a streaming packet builder.

ComponentResult RTPPBGetInfo (
 RTPPacketBuilder rtpb,
 OSType inSelector,
 void *ioParams
);

Parameters
rtpb

The component instance of the packet builder component.

inSelector
A constant (see below) that defines the type of information to retrieve. See these constants:

ioParams
A pointer to the retrieved information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBGetPacketSequenceNumber
Gets the relative sequence number for a streaming packet.

Functions 1901
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBGetPacketSequenceNumber (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 UInt32 *outSequenceNumber
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
Undocumented

inPacketGroup
A data reference to a packet group. This is normally a data reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet. This is normally a reference returned by RTPPBBeginPacket (page 1896).

outSequenceNumber
A pointer to the sequence number.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBGetPacketTimeStampOffset
Undocumented

ComponentResult RTPPBGetPacketTimeStampOffset (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 SInt32 *outTimeStampOffset
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

1902 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inPacketGroup
The packet group containing the packet of interest. This is normally a reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet of interest. This is normally a reference returned by RTPPBBeginPacket (page 1896).

outTimeStampOffset
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBGetSampleData
Undocumented

ComponentResult RTPPBGetSampleData (
 RTPPacketBuilder rtpb,
 RTPMPSampleDataParams *inParams,
 const UInt64 *inStartOffset,
 UInt8 *outDataBuffer,
 UInt32 inBytesToRead,
 UInt32 *outBytesRead,
 SInt32 *outFlags
);

Parameters
rtpb

The component instance of the packet builder component.

inParams
A pointer to a RTPMPSampleDataParams structure.

inStartOffset
Undocumented

outDataBuffer
Undocumented

inBytesToRead
Undocumented

outBytesRead
Undocumented

outFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1903
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBReleaseRepeatedData
Lets a packet builder deallocate data that will no longer be used.

ComponentResult RTPPBReleaseRepeatedData (
 RTPPacketBuilder rtpb,
 RTPPacketRepeatedDataRef inDataRef
);

Parameters
rtpb

The component instance of the packet builder component.

inDataRef
The data reference to the repeated data. This is normally a data reference returned by
RTPPBAddPacketLiteralData (page 1891) or RTPPBAddPacketSampleData (page 1893).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must release the data if you have allowed RTPPBAddPacketLiteralData (page 1891) or
RTPPBAddPacketSampleData (page 1893) to return a data reference, even if you have not called
RTPPBAddPacketRepeatedData (page 1892).You must either pass NIL to the data reference when adding
literal or sample data, or you must release the data by calling this function.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBSetCallback
Sets the callback used to communicate with the caller of a media packetizer.

1904 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBSetCallback (
 RTPPacketBuilder rtpb,
 RTPPBCallbackUPP inCallback,
 void *inRefCon
);

Parameters
rtpb

The component instance of the packet builder component.

inCallback
A Universal Procedure Pointer that references an RTPPBCallbackProc callback.

inRefCon
A pointer to any data your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBSetInfo
Sets information for a streaming packet builder.

ComponentResult RTPPBSetInfo (
 RTPPacketBuilder rtpb,
 OSType inSelector,
 void *ioParams
);

Parameters
rtpb

The component instance of the packet builder component.

inSelector
A constant (see below) that defines the type of information to set. See these constants:

ioParams
A pointer to the information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1905
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QTStreamingComponents.h

RTPPBSetPacketSequenceNumber
Sets the relative sequence number for a streaming packet.

ComponentResult RTPPBSetPacketSequenceNumber (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 UInt32 inSequenceNumber
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
Undocumented

inPacketGroup
A data reference to a packet group. This is normally a data reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet. This is normally a reference returned by RTPPBBeginPacket (page 1896).

inSequenceNumber
The sequence number to be set.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBSetPacketTimeStampOffset
Undocumented

1906 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPPBSetPacketTimeStampOffset (
 RTPPacketBuilder rtpb,
 SInt32 inFlags,
 RTPPacketGroupRef inPacketGroup,
 RTPPacketRef inPacket,
 SInt32 inTimeStampOffset
);

Parameters
rtpb

The component instance of the packet builder component.

inFlags
A signed 32-bit integer containing any flags you are passing. There are currently no defined flags.

inPacketGroup
The packet group containing the packet of interest. This is normally a reference returned by
RTPPBBeginPacketGroup (page 1897).

inPacket
The RTP packet of interest. This is normally a reference returned by RTPPBBeginPacket (page 1896).

inTimeStampOffset
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmAdjustPacketParams
Called by the base reassembler when it is processing a packet, allowing your packet reassembler to adjust
the packet parameters before the packet is processed.

ComponentResult RTPRssmAdjustPacketParams (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacket,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of your packet reassembler

inPacket
A pointer to the packet whose parameters can be adjusted.

inFlags
A signed 32-bit integer containing any flags (see below) being passed to your packet reassembler.

Functions 1907
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your packet reassembler can adjust the following parameters in each packet: payloadHeaderLength,
dataLength, serverEditParams, and chunkFlags. If your packet reassembler does not implement this
function, or takes no action, the default for these parameters will be: payloadHeaderLength =fixed header
length that is set (default is 0); dataLength =packetData - transportHeaderLength -
payloadHeaderLength; no serverEditParams; chunkFlags =0.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmClearCachedPackets
Forces the base reassembler to flush all packets currently queued in its lists.

ComponentResult RTPRssmClearCachedPackets (
 RTPReassembler rtpr,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of the base reassembler.

inFlags
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function retains the last sequence number and related information. It is useful only when the base
reassembler is operating with the kRTPRssmQueueAndUseMarkerBitFlag flag set; see
RTPRssmSetCapabilities (page 1926).

Version Notes
Introduced in QuickTime 4.1. Replaces RTPRssmFlushPackets.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

1908 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPRssmComputeChunkSize
Lets your packet reassembler compute the size of a chunk, based on the packet list for the chunk, using your
own algorithm.

ComponentResult RTPRssmComputeChunkSize (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacketListHead,
 SInt32 inFlags,
 UInt32 *outChunkDataSize
);

Parameters
rtpr

The component instance of your packet reassembler.

inPacketListHead
A pointer to the list of packets that make up this chunk.

inFlags
A signed 32-bit integer containing any flags being passed to your packet reassembler.

outChunkDataSize
You should return a pointer to an unsigned 32-bit variable containing the calculated size for this
chunk.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called once for each packet list. Implement this function only if you need to override the base
reassembler's default computation. If you do not implement this call, the base reassembler will compute the
chunk size by summing the data lengths for all packets in the list.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmCopyDataToChunk
Lets your packet reassembler write the chunk data, based on the list of packets for the chunk, using your
own algorithm.

Functions 1909
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPRssmCopyDataToChunk (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacketListHead,
 UInt32 inMaxChunkDataSize,
 SHChunkRecord *inChunk,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of your packet reassembler.

inPacketListHead
A pointer to the list of packets that make up this chunk.

inMaxChunkDataSize
An unsigned 32-bit integer containing the maximum allowable chunks size.

inChunk
A pointer to the chunk record. Write the chunk data to this record.

inFlags
A 32-bit signed integer containing any flags being passed to your media packetizer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is useful, for example, when an H.261 packet reassembler must adjust the byte at packet
boundaries. Implement this function only if you need to override the base reassembler's default behavior. If
you do not implement this function, the base reassembler will write the chunk data by taking dataLength
bytes from each packet, starting at an offset of (packetData + transportHeaderLength +
payloadHeaderLength).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmDecrChunkRefCount
Tells the base reassembler to dispose of a chunk that it has created or preserved for you.

ComponentResult RTPRssmDecrChunkRefCount (
 RTPReassembler rtpr,
 SHChunkRecord *inChunk
);

Parameters
rtpr

The component instance of the base reassembler component.

inChunk
A pointer to the chunk record to dispose.

1910 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If you have overridden RTPRssmSendPacketList (page 1924) behavior, and are instructing the base
reassembler to construct chunks manually, your packet assembler must explicitly dispose of the chunks by
calling either this function or RTPRssmSendChunkAndDecrRefCount (page 1923). This function is also used
to release a chunk you have preserved using RTPRssmIncrChunkRefCount (page 1919).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmFillPacketListParams
Fills in a packet structure manually.

ComponentResult RTPRssmFillPacketListParams (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacketListHead,
 SInt32 inNumWraparounds,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of the base reassembler.

inPacketListHead
A pointer to the RTPRssmPacket packet structure.

inNumWraparounds
The high-order 32 bits of the timestamp for this packet. The low-order 32 bits are found in the RTP
packet header.

inFlags
A signed 32-bit integer containing any flags you are passing to the base reassembler.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Call this function only if your packet reassembler is overriding the RTPRssmSendPacketList (page 1924)
behavior. The base reassembler will call back to your packet reassembler using
RTPRssmAdjustPacketParams (page 1907) and RTPRssmComputeChunkSize (page 1909).

Functions 1911
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetCapabilities
Obtains the current flag settings for the base reassembler.

ComponentResult RTPRssmGetCapabilities (
 RTPReassembler rtpr,
 SInt32 *outFlags
);

Parameters
rtpr

The component instance of the base reassembler.

outFlags
On return, contains a pointer to the reassembler's current flags (see below). See these constants:

kRTPRssmEveryPacketAChunkFlag

kRTPRssmQueueAndUseMarkerBitFlag

kRTPRssmTrackLostPacketsFlag

kRTPRssmNoReorderingRequiredFlag

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your packet reassembler can call this function at any time.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetChunkAndIncrRefCount
Causes the base reassembler to create a chunk for you manually.

1912 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ComponentResult RTPRssmGetChunkAndIncrRefCount (
 RTPReassembler rtpr,
 UInt32 inChunkDataSize,
 const TimeValue64 *inChunkPresentationTime,
 SHChunkRecord **outChunk
);

Parameters
rtpr

The component instance of the base reassembler component.

inChunkDataSize
An unsigned 32-bit integer containing the size of the chunk's data portion, in bytes.

inChunkPresentationTime
A pointer to a 64-bit time value specifying the time at which this chunk should be presented, in units
of the stream's time scale.

outChunk
On return, contains a pointer to a newly-created SHChunkRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is useful if you are overriding theRTPRssmSendPacketList (page 1924) behavior and constructing
the chunk yourself. You must explicitly dispose of the chunk when you are done with it by calling either
RTPRssmDecrChunkRefCount (page 1910) or RTPRssmSendChunkAndDecrRefCount (page 1923).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetExtChunkAndIncrRefCount
Undocumented

ComponentResult RTPRssmGetExtChunkAndIncrRefCount (
 RTPReassembler rtpr,
 UInt32 inChunkDataSize,
 const TimeValue64 *inChunkPresentationTime,
 SInt32 inFlags,
 SHExtendedChunkRecord **outChunk
);

Parameters
rtpr

Undocumented

inChunkDataSize
Undocumented

Functions 1913
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inChunkPresentationTime
Undocumented

inFlags
Undocumented

outChunk
A pointer to a pointer to a SHExtendedChunkRecord data structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6. Can be used only with Mac OS X 10.1 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetInfo
Obtains information about your packet reassembler.

ComponentResult RTPRssmGetInfo (
 RTPReassembler rtpr,
 OSType inSelector,
 void *ioParams
);

Parameters
rtpr

The component instance of your packet reassembler.

inSelector
A selector (see below) for the information desired. See these constants:

kQTSSourceTrackIDInfo

kQTSSourceLayerInfo

kQTSSourceLanguageInfo

kQTSSourceTrackFlagsInfo

kQTSSourceDimensionsInfo

kQTSSourceVolumesInfo

kQTSSourceMatrixInfo

kQTSSourceClipRectInfo

kQTSSourceGraphicsModeInfo

kQTSSourceScaleInfo

kQTSSourceBoundingRectInfo

kQTSSourceUserDataInfo

kQTSSourceInputMapInfo

1914 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

ioParams
A pointer to a data structure appropriate for the type of data requested (see below) . If your component
understands the selector, write the requested information into the data structure this parameter
points to.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Implement this function only for the selectors you understand. Delegate this function to the base reassembler
for any other selectors. The base reassembler will correctly return an error if it doesn't understand the selector
either.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmGetPayloadHeaderLength
Obtains the current value of the fixed payload header length from the base reassembler.

ComponentResult RTPRssmGetPayloadHeaderLength (
 RTPReassembler rtpr,
 UInt32 *outPayloadHeaderLength
);

Parameters
rtpr

The component instance of the base reassembler component.

outPayloadHeaderLength
On return, contains a pointer to an unsigned 32-bit integer containing the length of the payload
header in bytes. If your packet reassembler does not implement RTPRssmAdjustPacketParams (page
1907), or takes no action, the default payloadHeaderLength is the fixed header length that is set
(default is 0).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your packet reassembler can call this function at any time.

Version Notes
Introduced in QuickTime 4.

Functions 1915
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetStreamHandler
Obtains the component instance of the stream handler to which the base reassembler is sending your output.

ComponentResult RTPRssmGetStreamHandler (
 RTPReassembler rtpr,
 ComponentInstance *outStreamHandler
);

Parameters
rtpr

The component instance of the base reassembler.

outStreamHandler
On return, contains a pointer to the component instance of the stream handler your output is being
sent to by the base reassembler.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetTimeScale
Obtains the current time scale from the base reassembler.

ComponentResult RTPRssmGetTimeScale (
 RTPReassembler rtpr,
 TimeScale *outSHTimeScale
);

Parameters
rtpr

The component instance of the base reassembler.

outSHTimeScale
On return, contains a pointer to the time scale in use by the stream handler that is processing your
output.

Return Value
See Error Codes. Returns noErr if there is no error.

1916 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmGetTimeScaleFromPacket
Lets your packet reassembler extract the time scale from a received packet and return it to the base
reassembler.

ComponentResult RTPRssmGetTimeScaleFromPacket (
 RTPReassembler rtpr,
 QTSStreamBuffer *inStreamBuffer,
 TimeScale *outTimeScale
);

Parameters
rtpr

The component instance of your packet reassembler.

inStreamBuffer
A pointer to a received packet from which you may be able to extract a time scale.

outTimeScale
Return a pointer to a valid time scale or return an error. If you return a time scale, the packet will be
processed normally. If you return an error, the packet will be discarded.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If your packet reassembler has not specified a time scale as part of RTPRssmNewStreamHandler (page 1920),
or by calling RTPRssmSetTimeScale (page 1930), the base reassembler calls this function when it receives
packets, which allows your packet reassembler to extract the time scale from a received packet and return
it to the base reassembler. Your packet reassembler must set a time scale for the stream handler before the
base reassembler can process any incoming packets. If your packet reassembler doesn't know the time scale
of its media in advance, because the time scale is contained in the packet header for example, the base
reassembler will prompt you for a time scale whenever it receives a packet. If your packet reassembler always
uses the same time scale, it should set the time scale when it opens a stream handler, and it does not need
to implement this function. The base reassembler will discard received packets until it has been given a valid
time scale.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1917
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPRssmHandleNewPacket
Called whenever a new packet arrives, giving your packet reassembler the opportunity to process the packet.

ComponentResult RTPRssmHandleNewPacket (
 RTPReassembler rtpr,
 QTSStreamBuffer *inStreamBuffer,
 SInt32 inNumWraparounds
);

Parameters
rtpr

The component instance of your packet reassembler.

inStreamBuffer
A pointer to the newly-arrived packet.

inNumWraparounds
The upper 32 bits of the 64-bit timestamp (the lower 32 bits are in the RTP packet timestamp).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should implement this function only if you need to process the packet yourself, or if you need to extract
information from the packets as they arrive (you need to monitor the payload header, for example). If you
implement this function, you can process the packet as needed, then delegate the default processing to the
base reassembler.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmHasCharacteristic
Determines what features your reassembler supports.

ComponentResult RTPRssmHasCharacteristic (
 RTPReassembler rtpr,
 OSType inCharacteristic,
 Boolean *outHasIt
);

Parameters
rtpr

The component instance of your packet reassembler.

inCharacteristic
A constant that defines the characteristic being tested.

outHasIt
A pointer to a Boolean value that is TRUE if your packet reassembler has the characteristic, FALSE
otherwise.

1918 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmIncrChunkRefCount
Tells the base reassembler to keep a copy of the most recent chunk after it has been sent.

ComponentResult RTPRssmIncrChunkRefCount (
 RTPReassembler rtpr,
 SHChunkRecord *inChunk
);

Parameters
rtpr

The component instance of the base reassembler.

inChunk
A pointer to the chunk record you want to preserve.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is used to assist in loss recovery, for example. You must call RTPRssmDecrChunkRefCount (page
1910) to release the chunk when you no longer need it.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

Functions 1919
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPRssmInitialize
Called when the base reassembler is ready to have your packet reassembler begin handling media packets.

ComponentResult RTPRssmInitialize (
 RTPReassembler rtpr,
 RTPRssmInitParams *inInitParams
);

Parameters
rtpr

The component instance of your packet reassembler

inInitParams
A pointer to an RTPRssmInitParams structure. Use the information contained in this structure to
initialize your component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is not called when the base reassembler opens your component for payload registration
information.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmNewStreamHandler
Opens a new stream handler and closes any currently-open stream handler.

ComponentResult RTPRssmNewStreamHandler (
 RTPReassembler rtpr,
 OSType inSHType,
 SampleDescriptionHandle inSampleDescription,
 TimeScale inSHTimeScale,
 ComponentInstance *outHandler
);

Parameters
rtpr

The component instance of the base reassembler.

1920 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inSHType
The stream handler type.

inSampleDescription
A handle to a SampleDescription structure appropriate for this media type. Pass in NIL if you don't
know the media type yet. This structure is passed by reference; the caller is responsible for maintaining
it.

inSHTimeScale
The time scale for the stream handler to use. Pass in 0 if the time scale is not yet known.

outHandler
On return, contains a pointer to the component instance of the stream handler that has been opened.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must pass in a valid SampleDescription structure and time scale before the stream handler can process
packets. If you do not pass them as part of this function, do so using RTPRssmSetTimeScale (page 1930) and
RTPRssmSetSampleDescription (page 1928).

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmReleasePacketList
Releases memory associated with a packet list that your packet reassembler created itself, or a list your
reassembler took ownership of as a result of implementing RTPRssmSendPacketList.

ComponentResult RTPRssmReleasePacketList (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacketListHead
);

Parameters
rtpr

The component instance of the base reassembler.

inPacketListHead
A pointer to the packet list to dispose of.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1921
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
This is a housekeeping function that you do not need to perform for packet lists created and handled by the
base reassembler, only for packet lists that you create or take ownership of yourself.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmReset
Called to reset all packet reassembler and base reassembler variables for a new run of data.

ComponentResult RTPRssmReset (
 RTPReassembler rtpr,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of your reassembler.

inFlags
A signed 32-bit integer containing any flags being passed. No flags are currently defined.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function differs from RTPRssmClearCachedPackets (page 1908), which disposes of the packets but still
retains the last sequence number and related information; this function resets all variables as if the reassembler
were just opened.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

1922 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPRssmSendChunkAndDecrRefCount
Called by the packet reassembler when it has finished constructing a chunk and wants the base reassembler
to send it to the stream handler.

ComponentResult RTPRssmSendChunkAndDecrRefCount (
 RTPReassembler rtpr,
 SHChunkRecord *inChunk,
 const SHServerEditParameters *inServerEdit
);

Parameters
rtpr

The component instance of the base reassembler.

inChunk
A pointer to an SHChunkRecord structure.

inServerEdit
A pointer to an SHServerEditParameters structure containing the server edit parameters. Pass in
NIL if there is no server edit.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to manually send a chunk if you have overridden the default behavior of
RTPRssmSendPacketList (page 1924). This function will decrement the reference count of the chunk.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmSendLostChunk
Allows the base reassembler to send loss notification to the stream handler.

ComponentResult RTPRssmSendLostChunk (
 RTPReassembler rtpr,
 const TimeValue64 *inChunkPresentationTime
);

Parameters
rtpr

The component instance of the base reassembler.

inChunkPresentationTime
A pointer to a 64-bit time value indicating when the chunk would have been presented, in units of
the stream's time scale.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1923
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
Loss notification is normally performed automatically by the base reassembler. Use this function if you are
handling losses or sending chunks manually.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmSendPacketList
Called when the base reassembler is ready to send a sample or chunk based on a list of packets.

ComponentResult RTPRssmSendPacketList (
 RTPReassembler rtpr,
 RTPRssmPacket *inPacketListHead,
 const TimeValue64 *inLastChunkPresentationTime,
 SInt32 inFlags
);

Parameters
rtpr

The component instance of your packet reassembler.

inPacketListHead
A pointer to the packet list.

inLastChunkPresentationTime
A pointer to a time value which specifies when to present this chunk, in units of the stream's time
scale.

inFlags
A signed 32-bit integer containing any flags being passed (see below). See these constants:

kRTPRssmLostSomePackets

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Implement this call if your packet reassembler needs to modify the packet list, or if it overrides the default
handling of packet loss. If you do not implement this call, the base reassembler will adjust the packet
parameters on all packets in the list, compute the chunk size, and send the chunk. If packet loss has occurred,
all the packets will be discarded and the stream handler will be informed that the chunk has been lost.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem

1924 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmSendStreamBufferRange
Notifies the base reassembler to construct and send a chunk based on a part of the stream buffer.

ComponentResult RTPRssmSendStreamBufferRange (
 RTPReassembler rtpr,
 RTPSendStreamBufferRangeParams *inParams
);

Parameters
rtpr

The component instance of the base reassembler.

inParams
A pointer to an RTPSendStreamBufferRangeParams structure, which specifies the stream buffer,
presentation time, start position in the buffer, length of the data in bytes, and any flags.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The contents of the stream buffer will be referenced, not copied. You are responsible for maintaining valid
data in the stream buffer.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmSendStreamHandlerChanged
Called when you have changed something in the stream handler and you want the notification propagated.

ComponentResult RTPRssmSendStreamHandlerChanged (
 RTPReassembler rtpr
);

Parameters
rtpr

The component instance of the base reassembler.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1925
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
This function is useful, for example, if you have changed the dimensions of the video.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmSetCapabilities
Sets the capabilities of a streaming packet reassembler.

ComponentResult RTPRssmSetCapabilities (
 RTPReassembler rtpr,
 SInt32 inFlags,
 SInt32 inFlagsMask
);

Parameters
rtpr

The component instance of the base reassembler.

inFlags
A signed 32-bit integer containing the logical OR of all the flags (see below) you are setting. See these
constants:

kRTPRssmEveryPacketAChunkFlag

kRTPRssmQueueAndUseMarkerBitFlag

kRTPRssmTrackLostPacketsFlag

kRTPRssmNoReorderingRequiredFlag

inFlagsMask
Use this field to preserve the state of any flags you do not wish to alter. If a flag (see below) is set in
this field, and is not set in the inFlags field, it will not be changed from its current setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your packet reassembler can call this function at any time.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming

1926 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmSetInfo
Sets various parameters of your packet reassembler; it is also called to set parameters of the base reassembler.

ComponentResult RTPRssmSetInfo (
 RTPReassembler rtpr,
 OSType inSelector,
 void *ioParams
);

Parameters
rtpr

The component instance of your packet reassembler.

inSelector
A selector (see below) for the information being set. Ignore any selectors you do not understand. See
these constants:

kQTSSourceTrackIDInfo

kQTSSourceLayerInfo

kQTSSourceLanguageInfo

kQTSSourceTrackFlagsInfo

kQTSSourceDimensionsInfo

kQTSSourceVolumesInfo

kQTSSourceMatrixInfo

kQTSSourceClipRectInfo

kQTSSourceGraphicsModeInfo

kQTSSourceScaleInfo

kQTSSourceBoundingRectInfo

kQTSSourceUserDataInfo

kQTSSourceInputMapInfo

ioParams
A pointer to the information that should be set.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Delegate this function to the base reassembler for any selectors you don't understand. If the base reassembler
doesn't understand them either, it will return an error to the caller.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Functions 1927
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Declared In
QTStreamingComponents.h

RTPRssmSetPayloadHeaderLength
Called by the packet reassembler to set a fixed header length for your payload.

ComponentResult RTPRssmSetPayloadHeaderLength (
 RTPReassembler rtpr,
 UInt32 inPayloadHeaderLength
);

Parameters
rtpr

The component instance of the base reassembler.

inPayloadHeaderLength
An unsigned 32-bit integer containing the fixed payload header length, in bytes. If your packet
reassembler does not implement RTPRssmAdjustPacketParams (page 1907), or takes no action, the
default payloadHeaderLength is the fixed header length that is set (default is 0).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmSetSampleDescription
Changes the SampleDescription structure being used by the stream handler; all subsequent samples will be
marked with this new structure.

ComponentResult RTPRssmSetSampleDescription (
 RTPReassembler rtpr,
 SampleDescriptionHandle inSampleDescription
);

Parameters
rtpr

The component instance of the base reassembler.

inSampleDescription
The handle of a SampleDescription structure to use. You are responsible for keeping the handle
and the data structure valid during subsequent operations.

Return Value
See Error Codes. Returns noErr if there is no error.

1928 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
The SampleDescription structure is not passed on a per-packet basis, but a per-sample basis, so the
SampleDescription structure should not be changed until a complete sample (sometimes called a "frame"
or "chunk") has been reassembled.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTSPketizerReassem
QTSPketizerReassem.win
qtstreaming
qtstreaming.win

Declared In
QTStreamingComponents.h

RTPRssmSetStreamHandler
Assigns a stream handler to the output of the base reassembler.

ComponentResult RTPRssmSetStreamHandler (
 RTPReassembler rtpr,
 ComponentInstance inStreamHandler
);

Parameters
rtpr

The component instance of the base reassembler.

inStreamHandler
The component instance of the stream handler to use.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The stream handler must already be opened and initialized, and its time scale must already be set.

Special Considerations

Use this function only if you have opened and initialized a stream handler yourself. The base reassembler
will not close the stream handler it is already using.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Functions 1929
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPRssmSetTimeScale
Sets the time scale for the stream handler that will render your output.

ComponentResult RTPRssmSetTimeScale (
 RTPReassembler rtpr,
 TimeScale inSHTimeScale
);

Parameters
rtpr

The component instance of the base reassembler

inSHTimeScale
The time scale for the stream handler to use

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The time scale is the number of time units that pass in one second for the media whose sample data is carried
in this stream. The stream handler's time scale must be set before it can deliver any data to the user.

Special Considerations

This function is normally used by a packet reassembler when the time scale to use is not initially known. You
don't need to call this function if you specified a time scale when the stream handler was opened.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

TerminateQTS
Terminates the QuickTime Streaming toolbox.

OSErr TerminateQTS (
 void
);

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1930 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Callbacks

QTSNotificationProc
A back channel from a presentation to its creator, sending notification of various events such as a presentation,
ending, or acknowledgment of a preroll request.

typedef ComponentResult (*QTSNotificationProcPtr) (ComponentResult inErr, OSType
inNotificationType, void *inNotificationParams, void *inRefCon);

If you name your function MyQTSNotificationProc, you would declare it this way:

ComponentResult MyQTSNotificationProc (
 ComponentResult inErr,
 OSType inNotificationType,
 void *inNotificationParams,
 void *inRefCon);

Parameters
inErr

Undocumented

inNotificationType
The kind of notification; see QuickTimeStreaming.h.

inNotificationParams
Undocumented

inRefCon
Undocumented

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPMPDataReleaseProc
Routine called when a media packetizer is finished with its sample data.

typedef void (*RTPMPDataReleaseProcPtr) (UInt8 *inData, void *inRefCon);

If you name your function MyRTPMPDataReleaseProc, you would declare it this way:

void MyRTPMPDataReleaseProc (
 UInt8 *inData,
 void *inRefCon);

Parameters
inData

A pointer to the data.

Callbacks 1931
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

inRefCon
A pointer to information passed from a RTPMPSampleDataParams structure.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPPBCallbackProc
Routine used to communicate with the caller of a media packetizer.

typedef void (*RTPPBCallbackProcPtr) (OSType inSelector, void *ioParams, void
*inRefCon);

If you name your function MyRTPPBCallbackProc, you would declare it this way:

void MyRTPPBCallbackProc (
 OSType inSelector,
 void *ioParams,
 void *inRefCon);

Parameters
inSelector

Undocumented

ioParams
Undocumented

inRefCon
Undocumented

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

Data Types

MediaPacketizerRequirements
Stores the functional requirements for a media packetizer.

struct MediaPacketizerRequirements {
 OSType mediaType;
 OSType dataFormat;
 UInt32 capabilityFlags;
 UInt8 canPackMatrixType;
 UInt8 pad[3];
 };

Fields
mediaType

Discussion
Media type required; see Data References. 0 means all media types.

1932 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

dataFormat

Discussion
Data format required; see Media Identifiers. 0 means all formats.

capabilityFlags

Discussion
Constants (see below) that indicate the packetizer's ability to handle non-standard track characteristics. See
these constants:

kMediaPacketizerCanPackEditRate

kMediaPacketizerCanPackLayer

kMediaPacketizerCanPackVolume

kMediaPacketizerCanPackBalance

kMediaPacketizerCanPackGraphicsMode

kMediaPacketizerCanPackEmptyEdit

canPackMatrixType

Discussion
Constant (see below); the packetizer needs to pack any matrix type up to this level. Set to
identityMatrixType for identity matrix (no translation) only. See these constants:

identityMatrixType

translateMatrixType

scaleMatrixType

scaleTranslateMatrixType

linearMatrixType

linearTranslateMatrixType

perspectiveMatrixType

pad

Discussion
Unused.

Related Functions
QTSFindMediaPacketizer (page 1800)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

MediaPacketizerRequirementsPtr
Represents a type used by the QuickTime Streaming API.

typedef MediaPacketizerRequirements * MediaPacketizerRequirementsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Data Types 1933
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTAtomSpec
Specifies an atom and its container.

struct QTAtomSpec {
 QTAtomContainer container;
 QTAtom atom;
 };

Fields
container

Discussion
A QT atom container.

atom

Discussion
A QT atom.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTAtomSpecPtr
Represents a type used by the QuickTime Streaming API.

typedef QTAtomSpec * QTAtomSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Movies.h

QTSExportParams
Undocumented

struct QTSExportParams {
 SInt32 version;
 OSType exportType;
 void *exportExtraData;
 OSType destinationContainerType;
 void *destinationContainerData;
 void *destinationContainerExtras;
 SInt32 flagsIn;
 SInt32 flagsOut;
 QTSModalFilterUPP filterProc;
 void *filterProcRefCon;
 Component exportComponent;
 };

Fields
version

Discussion
Undocumented

1934 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

exportType

Discussion
Undocumented

exportExtraData

Discussion
Undocumented

destinationContainerType

Discussion
Undocumented

destinationContainerData

Discussion
Undocumented

destinationContainerExtras

Discussion
Undocumented

flagsIn

Discussion
Undocumented

flagsOut

Discussion
Undocumented

filterProc

Discussion
Undocumented

filterProcRefCon

Discussion
Undocumented

exportComponent

Discussion
Undocumented

Related Functions
QTSPresExport (page 1829)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSInstantOnPref
Contains instant on information for QuickTime Streaming.

Data Types 1935
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

struct QTSInstantOnPref {
 SInt32 flags;
 SInt32 factor;
 };

Fields
flags

Discussion
Constants (see below) that enable instant on. See these constants:

kQTSInstantOnFlag_Enable

kQTSInstantOnFlag_Permitted

factor

Discussion
Values can range from 0 to 100; the default value is 50.

Version Notes
Introduced in QuickTime 6.

Related Functions
QTSPrefsGetInstantOnSettings (page 1827)
QTSPrefsSetInstantOnSettings (page 1827)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSMediaParams
Combines the QTSVideoParams and QTSAudioParams structures.

struct QTSMediaParams {
 QTSVideoParams v;
 QTSAudioParams a;
 };

Fields
v

Discussion
A QTSVideoParams structure.

a

Discussion
A QTSAudioParams structure.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSMemPtr
Represents a type used by the QuickTime Streaming API.

1936 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

typedef struct OpaqueQTSMemPtr * QTSMemPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSNewPresentationParams
Specifies a presentation for QTSNewPresentation.

struct QTSNewPresentationParams {
 OSType dataType;
 const void * data;
 UInt32 dataLength;
 QTSEditListHandle editList;
 SInt32 flags;
 TimeScale timeScale;
 QTSMediaParams * mediaParams;
 QTSNotificationUPP notificationProc;
 void * notificationRefCon;
 };

Fields
dataType

Discussion
Undocumented

data

Discussion
Undocumented

dataLength

Discussion
Undocumented

editList

Discussion
A handle to a QTSEditList structure.

flags

Discussion
Undocumented

timeScale

Discussion
The time scale; set to 0 for the default time scale.

mediaParams

Discussion
Undocumented

Data Types 1937
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

notificationProc

Discussion
A pointer to a QTSNotificationProc callback.

notificationRefCon

Discussion
A reference constant to be passed to the QTSNotificationProc callback.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSNoProxyPref
Provides data for the QTSPrefsGetNoProxyURLs function.

struct QTSNoProxyPref {
 UInt32 flags;
 UInt32 seed;
 char urlList[1];
 };

Fields
flags

Discussion
Undocumented

seed

Discussion
A seed value from the last time this setting was read from the system preferences.

urlList

Discussion
A null-terminated, comma-delimited list of URLs.

Related Functions
QTSPrefsGetNoProxyURLs (page 1827)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSNotificationUPP
Represents a type used by the QuickTime Streaming API.

typedef STACK_UPP_TYPE(QTSNotificationProcPtr) QTSNotificationUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1938 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSPresentation
Represents a type used by the QuickTime Streaming API.

typedef QTSPresentationRecord * QTSPresentation;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSPresentationRecord
Defines a presentation.

struct QTSPresentationRecord {
 long data[1];
 };

Fields
data

Discussion
Array of data that constitutes the presentation.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSPresIdleParams
Provides parameters for QTSPresIdle.

struct QTSPresIdleParams {
 QTSStream stream;
 TimeValue64 movieTimeToDisplay;
 SInt32 flagsIn;
 SInt32 flagsOut;
 };

Fields
stream

Discussion
A pointer to a QTSStreamRecord structure.

movieTimeToDisplay

Discussion
Undocumented

flagsIn

Discussion
Undocumented

Data Types 1939
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

flagsOut

Discussion
Undocumented

Related Functions
QTSPresIdle (page 1846)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSPresParams
Undocumented.

struct QTSPresParams {
 UInt32 version;
 QTSEditListHandle editList;
 SInt32 flags;
 TimeScale timeScale;
 QTSMediaParams *mediaParams;
 QTSNotificationUPP notificationProc;
 void *notificationRefCon;
 };

Fields
version

Discussion
Undocumented

editList

Discussion
Undocumented

flags

Discussion
Undocumented

timeScale

Discussion
Undocumented

mediaParams

Discussion
Undocumented

notificationProc

Discussion
Undocumented

notificationRefCon

Discussion
Undocumented

1940 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Related Functions
QTSNewPresentationFromData (page 1816)
QTSNewPresentationFromDataRef (page 1817)
QTSNewPresentationFromFile (page 1817)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSProxyPref
Provides data for the QTSPrefsFindProxyByType function.

struct QTSProxyPref {
 UInt32 flags;
 SInt32 portID;
 UInt32 seed;
 Str255 serverNameStr;
 };

Fields
flags

Discussion
Undocumented

portID

Discussion
ID of the port to use for this connection type.

seed

Discussion
A seed value from the last time this setting was read from the system preferences.

serverNameStr

Discussion
A proxy server URL.

Related Functions
QTSPrefsFindProxyByType (page 1824)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSSourcer
Represents a type used by the QuickTime Streaming API.

typedef ComponentInstance QTSSourcer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

Data Types 1941
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSSourcerInitParams
Holds information for initializing a streaming sourcer.

struct QTSSourcerInitParams {
 SInt32 version;
 SInt32 flags;
 OSType dataType;
 void *data;
 UInt32 dataLength;
 };

Fields
version

Discussion
Undocumented

flags

Discussion
Undocumented

dataType

Discussion
Undocumented

data

Discussion
Undocumented

dataLength

Discussion
Undocumented

Related Functions
QTSNewSourcer (page 1819)
QTSSourcerInitialize (page 1867)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSStatHelper
Represents a type used by the QuickTime Streaming API.

typedef QTSStatHelperRecord * QTSStatHelper;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

1942 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSStatHelperNextParams
Holds information about the next streaming statistic obtained by QTSStatHelperNext.

struct QTSStatHelperNextParams {
 SInt32 flags;
 OSType returnedStatisticsType;
 QTSStream returnedStream;
 UInt32 maxStatNameLength;
 char * returnedStatName;
 UInt32 maxStatStringLength;
 char * returnedStatString;
 UInt32 maxStatUnitLength;
 char * returnedStatUnit;
 };

Fields
flags

Discussion
Undocumented See these constants:

kQTSStatHelperReturnPascalStringsFlag

returnedStatisticsType

Discussion
Undocumented

returnedStream

Discussion
On return, a pointer to a QTSStreamRecord structure.

maxStatNameLength

Discussion
Undocumented

returnedStatName

Discussion
Undocumented; pass NIL if you don't want this information.

maxStatStringLength

Discussion
Undocumented

returnedStatString

Discussion
Undocumented; pass NIL if you don't want this information.

maxStatUnitLength

Discussion
Undocumented

returnedStatUnit

Discussion
Undocumented; pass NIL if you don't want this information.

Data Types 1943
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Discussion
When you call QTSStatHelperNext (page 1871), specifying a statistic helper and the address of this structure,
QuickTime fills in this structure with information about the next statistic obtained by the statistic helper.

Related Functions
QTSStatHelperNext (page 1871)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSStatHelperRecord
Defines the component instance of a statistics helper.

struct QTSStatHelperRecord {
 long data[1];
 };

Fields
data

Discussion
The component instance of the statistics helper.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSStream
Represents a type used by the QuickTime Streaming API.

typedef QTSStreamRecord * QTSStream;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeStreaming.h

QTSStreamBuffer
Defines a stream buffer for QuickTime streaming.

1944 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

struct QTSStreamBuffer {
 struct QTSStreamBuffer * reserved1;
 struct QTSStreamBuffer * reserved2;
 struct QTSStreamBuffer * next;
 unsigned char * rptr;
 unsigned char * wptr;
 long reserved3;
 UInt32 metadata[4];
 SInt32 flags;
 };

Fields
reserved1

Discussion
Reserved; do not use.

reserved2

Discussion
Reserved; do not use.

next

Discussion
A pointer to the next message block in a message.

rptr

Discussion
A pointer to the first byte in the data buffer that contains real data.

wptr

Discussion
A pointer to the byte after the last byte in the data buffer that contains real data.

reserved3

Discussion
Reserved; do not use.

metadata

Discussion
Usage defined by message sender.

flags

Discussion
Reserved; do not use.

Related Functions
QTSCopyMessage (page 1797)
QTSDupMessage (page 1800)
QTSFlattenMessage (page 1804)
QTSFreeMessage (page 1805)
QTSMessageLength (page 1814)
RTPRssmGetTimeScaleFromPacket (page 1917)
RTPRssmHandleNewPacket (page 1918)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

Data Types 1945
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSStreamRecord
Contains a stream for QuickTime streaming.

struct QTSStreamRecord {
 long data[1];
 };

Fields
data

Discussion
An array of data representing the stream.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSTransportPref
Records streaming transport preferences.

struct QTSTransportPref {
 OSType protocol;
 SInt32 portID;
 UInt32 flags;
 UInt32 seed;
 };

Fields
protocol

Discussion
Constant that identifies the streaming transport protocol; see Streaming Transport Atoms.

portID

Discussion
ID of the port to use for this connection type.

flags

Discussion
Connection flags (see below). See these constants:

kConnectionActive

kConnectionUseSystemPref

seed

Discussion
A seed value from the last time this setting was read from the system preferences.

Related Functions
QTSPrefsFindConnectionByType (page 1823)
QTSPrefsGetActiveConnection (page 1826)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

1946 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPMediaPacketizer
Represents a type used by the QuickTime Streaming API.

typedef ComponentInstance RTPMediaPacketizer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPDataReleaseUPP
Represents a type used by the QuickTime Streaming API.

typedef STACK_UPP_TYPE(RTPMPDataReleaseProcPtr) RTPMPDataReleaseUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPMPSampleDataParams
Holds media packetizer sample data, including any number of samples or a partial sample.

struct RTPMPSampleDataParams {
 UInt32 version;
 UInt32 timeStamp;
 UInt32 duration;
 UInt32 playOffset;
 Fixed playRate;
 SInt32 flags;
 UInt32 sampleDescSeed;
 Handle sampleDescription;
 RTPMPSampleRef sampleRef;
 UInt32 dataLength;
 const UInt8 * data;
 RTPMPDataReleaseUPP releaseProc;
 void * refCon;
 };

Fields
version

Discussion
Version of the data structure. Currently always 0.

timeStamp

Discussion
RTP time stamp for the presentation of the sample data. This time stamp has already been adjusted by edits,
edit rates, etc.

Data Types 1947
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

duration

Discussion
Duration (in RTP time scale) of the sample. For unknown duration, enter 0.

playOffset

Discussion
Offset within the media sample itself. This is only used for media formats where a single media sample can
span across multiple time units. QuickTime Music is an example of this, where a single sample spans the
entire track. For most video and audio formats, this will be 0.

playRate

Discussion
1.0 (0x00010000) is normal. Higher numbers indicate faster play rates. Note that timeStamp is already adjusted
by the rate. This field is generally of interest only to audio packetizers.

flags

Discussion
Flag (see below) to indicate if the sample is a sync sample (key frame). See these constants:

kRTPMPSyncSampleFlag

sampleDescSeed

Discussion
If the sample description changes, this number will change.

sampleDescription

Discussion
The sample description for the given media sample.

sampleRef

Discussion
Reserved; do not use.

dataLength

Discussion
Size of the media data.

data

Discussion
Pointer to the media data.

releaseProc

Discussion
If not NIL, you need to call your RTPMPDataReleaseProc when you are finished with the sample data.

refCon

Discussion
Information to pass to the RTPMPDataReleaseProc.

Related Functions
RTPPBAddPacketSampleData (page 1893)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

1948 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

RTPPacketBuilder
Represents a type used by the QuickTime Streaming API.

typedef ComponentInstance RTPPacketBuilder;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPacketGroupRef
Represents a type used by the QuickTime Streaming API.

typedef struct OpaqueRTPPacketGroupRef * RTPPacketGroupRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPacketRef
Represents a type used by the QuickTime Streaming API.

typedef struct OpaqueRTPPacketRef * RTPPacketRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPacketRepeatedDataRef
Represents a type used by the QuickTime Streaming API.

typedef struct OpaqueRTPPacketRepeatedDataRef * RTPPacketRepeatedDataRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPayloadSortRequest
Specifies the sort order for a list of packetizers.

Data Types 1949
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

struct RTPPayloadSortRequest {
 long characteristicCount;
 RTPPayloadCharacteristic characteristic[1];
 };

Fields
characteristicCount

Discussion
The number of structures in the characteristic field.

characteristic

Discussion
An array of RTPPayloadCharacteristic structures.

Related Functions
QTSFindMediaPacketizer (page 1800)
QTSFindMediaPacketizerForPayloadID (page 1801)
QTSFindMediaPacketizerForPayloadName (page 1801)
QTSFindMediaPacketizerForTrack (page 1802)
QTSFindReassemblerForPayloadID (page 1803)
QTSFindReassemblerForPayloadName (page 1803)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPPayloadSortRequestPtr
Represents a type used by the QuickTime Streaming API.

typedef RTPPayloadSortRequest * RTPPayloadSortRequestPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPPBCallbackUPP
Represents a type used by the QuickTime Streaming API.

typedef STACK_UPP_TYPE(RTPPBCallbackProcPtr) RTPPBCallbackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPReassembler
Represents a type used by the QuickTime Streaming API.

1950 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

typedef ComponentInstance RTPReassembler;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QTStreamingComponents.h

RTPRssmInitParams
Initializes a packet reassembler component.

struct RTPRssmInitParams {
 RTPSSRC ssrc;
 UInt8 payloadType;
 UInt8 pad[3];
 TimeBase timeBase;
 TimeScale timeScale;
 };

Fields
ssrc

Discussion
Undocumented

payloadType

Discussion
Undocumented

pad

Discussion
Unused.

timeBase

Discussion
A reference to the reassembler's time base. You obtain a time base by calling GetMovieTimeBase (page
224) or NewTimeBase (page 261).

timeScale

Discussion
The reassembler's time scale.

Related Functions
RTPRssmInitialize (page 1920)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPRssmPacket
A streaming reassembler packet list.

Data Types 1951
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

struct RTPRssmPacket {
 struct RTPRssmPacket * next;
 struct RTPRssmPacket * prev;
 QTSStreamBuffer * streamBuffer;
 Boolean paramsFilledIn;
 UInt8 pad[1];
 UInt16 sequenceNum;
 UInt32 transportHeaderLength;
 UInt32 payloadHeaderLength;
 UInt32 dataLength;
 SHServerEditParameters serverEditParams;
 TimeValue64 timeStamp;
 SInt32 chunkFlags;
 SInt32 flags;
 };

Fields
next

Discussion
A pointer to the next RTPRssmPacket structure.

prev

Discussion
A pointer to the previous RTPRssmPacket structure.

streamBuffer

Discussion
A pointer to a QTSStreamBuffer structure defining the stream buffer.

paramsFilledIn

Discussion
Undocumented

pad

Discussion
Undocumented

sequenceNum

Discussion
Undocumented

transportHeaderLength

Discussion
Undocumented

payloadHeaderLength

Discussion
Undocumented

dataLength

Discussion
Undocumented

1952 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

serverEditParams

Discussion
Undocumented

timeStamp

Discussion
Undocumented

chunkFlags

Discussion
Undocumented

flags

Discussion
Undocumented

Related Functions
RTPRssmAdjustPacketParams (page 1907)
RTPRssmComputeChunkSize (page 1909)
RTPRssmCopyDataToChunk (page 1909)
RTPRssmFillPacketListParams (page 1911)
RTPRssmReleasePacketList (page 1921)
RTPRssmSendPacketList (page 1924)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPSendStreamBufferRangeParams
Undocumented

struct RTPSendStreamBufferRangeParams {
 QTSStreamBuffer * streamBuffer;
 TimeValue64 presentationTime;
 UInt32 chunkStartPosition;
 UInt32 numDataBytes;
 SInt32 chunkFlags;
 SInt32 flags;
 const SHServerEditParameters * serverEditParams;
 };

Fields
streamBuffer

Discussion
Undocumented

presentationTime

Discussion
Undocumented

chunkStartPosition

Discussion
Undocumented

Data Types 1953
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

numDataBytes

Discussion
Undocumented

chunkFlags

Discussion
Undocumented

flags

Discussion
Undocumented

serverEditParams

Discussion
Undocumented

Related Functions
RTPRssmSendStreamBufferRange (page 1925)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

SHChunkRecord
Defines a chunk for a reassembler.

struct SHChunkRecord {
 UInt32 version;
 long reserved1;
 SInt32 flags;
 UInt32 dataSize;
 const UInt8 * dataPtr;
 long reserved2;
 long reserved3;
 TimeValue64 presentationTime;
 long reserved4;
 long reserved5;
 const SHServerEditParameters * serverEditParameters;
 long reserved6;
 long reserved7;
 };

Fields
version

Discussion
Undocumented

reserved1

Discussion
Reserved; do not use.

flags

Discussion
Undocumented

1954 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

dataSize

Discussion
The size of the chunk data.

dataPtr

Discussion
A pointer to the chunk data.

reserved2

Discussion
Reserved; do not use.

reserved3

Discussion
Reserved; do not use.

presentationTime

Discussion
Undocumented

reserved4

Discussion
Reserved; do not use.

reserved5

Discussion
Reserved; do not use.

serverEditParameters

Discussion
A pointer to an SHServerEditParameters structure containing the server edit parameters

reserved6

Discussion
Reserved; do not use.

reserved7

Discussion
Reserved; do not use.

Related Functions
RTPRssmCopyDataToChunk (page 1909)
RTPRssmDecrChunkRefCount (page 1910)
RTPRssmGetChunkAndIncrRefCount (page 1912)
RTPRssmIncrChunkRefCount (page 1919)
RTPRssmSendChunkAndDecrRefCount (page 1923)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

SHExtendedChunkRecord
Extends an SHChunkRecord data structure.

Data Types 1955
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

struct SHExtendedChunkRecord {
 SHChunkRecord chunk;
 SInt32 extendedFlags;
 SInt32 extendedData[10];
 };

Fields
chunk

Discussion
A SHChunkRecord data structure.

extendedFlags

Discussion
Constants (see below) that indicate what data is being added. See these constants:

kSHExtendedChunkFlag_HasSampleCount

kSHExtendedChunkFlag_HasFrameLengths

extendedData

Discussion
The additional data.

Version Notes
Introduced in QuickTime 6.

Related Functions
RTPRssmGetExtChunkAndIncrRefCount (page 1913)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

SHServerEditParameters
Undocumented

struct SHServerEditParameters {
 UInt32 version;
 Fixed editRate;
 TimeValue64 dataStartTime_mediaAxis;
 TimeValue64 dataEndTime_mediaAxis;
 };

Fields
version

Discussion
Undocumented

editRate

Discussion
Undocumented

dataStartTime_mediaAxis

Discussion
Undocumented

1956 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

dataEndTime_mediaAxis

Discussion
Undocumented

Version Notes
Introduced in QuickTime 6.

Related Functions
RTPRssmGetExtChunkAndIncrRefCount (page 1913)

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

Constants

MediaPacketizerRequirements Values
Constants passed to MediaPacketizerRequirements.

enum {
 identityMatrixType = 0x00, /* result if matrix is identity */
 translateMatrixType = 0x01, /* result if matrix translates */
 scaleMatrixType = 0x02, /* result if matrix scales */
 scaleTranslateMatrixType = 0x03, /* result if matrix scales and translates
 */
 linearMatrixType = 0x04, /* result if matrix is general 2 x 2 */
 linearTranslateMatrixType = 0x05, /* result if matrix is general 2 x 2 and
translates */
 perspectiveMatrixType = 0x06 /* result if matrix is general 3 x 3 */
};
enum {
 kMediaPacketizerCanPackEditRate = 1 << 0,
 kMediaPacketizerCanPackLayer = 1 << 1,
 kMediaPacketizerCanPackVolume = 1 << 2,
 kMediaPacketizerCanPackBalance = 1 << 3,
 kMediaPacketizerCanPackGraphicsMode = 1 << 4,
 kMediaPacketizerCanPackEmptyEdit = 1 << 5
};

Constants
identityMatrixType

Matrix is identity; value is 0x00.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

translateMatrixType
Matrix translates; value is 0x01.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

Constants 1957
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

scaleMatrixType
Matrix scales; value is 0x02.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

scaleTranslateMatrixType
Matrix translates and scales; value is 0x03.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

linearMatrixType
Matrix is general 2 x 2 type; value is 0x04.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

linearTranslateMatrixType
Matrix is general 2 x 2 type and translates; value is 0x05

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

perspectiveMatrixType
Matrix is general 3 x 3 type; value is 0x06.

Available in Mac OS X v10.0 and later.

Declared in ImageCompression.h.

kMediaPacketizerCanPackEditRate
The packetizer can pack the edit rate value.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

kMediaPacketizerCanPackLayer
The packetizer can pack the layer number.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

kMediaPacketizerCanPackVolume
The packetizer can pack the sound volume value.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

kMediaPacketizerCanPackBalance
The packetizer can pack the sound balance value.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

kMediaPacketizerCanPackGraphicsMode
The packetizer can pack the graphics transfer mode value.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

1958 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSTransportPref Values
Constants passed to QTSTransportPref.

enum {
 kConnectionActive = (1L << 0),
 kConnectionUseSystemPref = (1L << 1)
};

Constants
kConnectionActive

The connection is active.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSStatisticsParams Values
Constants passed to QTSStatisticsParams.

enum {
 kQTSAllStatisticsType = 'all ',
 kQTSShortStatisticsType = 'shrt',
 kQTSSummaryStatisticsType = 'summ'
};

Constants
kQTSAllStatisticsType

A full statistics helper for all statistics; constant value is 'all '.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

kQTSShortStatisticsType
A short statistics helper; constant value is 'shrt'.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSPresGetFlags Values
Constants passed to QTSPresGetFlags.

Constants 1959
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kQTSAutoModeFlag = 0x00000001,
 kQTSDontShowStatusFlag = 0x00000008,
 kQTSSendMediaFlag = 0x00010000,
 kQTSReceiveMediaFlag = 0x00020000
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSPrefsGetActiveConnection Values
Constants passed to QTSPrefsGetActiveConnection.

enum {
 kQTSDirectConnectHTTPProtocol = 'http',
 kQTSDirectConnectRTSPProtocol = 'rtsp'
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

kQTSDontGetDataStatisticsFlag
Constants grouped with kQTSDontGetDataStatisticsFlag.

enum {
 kQTSGetNameStatisticsFlag = 0x00000001,
 kQTSDontGetDataStatisticsFlag = 0x00000002,
 kQTSUpdateAtomsStatisticsFlag = 0x00000004,
 kQTSGetUnitsStatisticsFlag = 0x00000008,
 kQTSUpdateAllIfNecessaryStatisticsFlag = 0x00010000
};

Constants
kQTSGetUnitsStatisticsFlag

The statistics helper is to get units statistics.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSPresSetInfo Values
Constants passed to QTSPresSetInfo.

enum {
 kQTSGetURLLink = 'gull' /* QTSGetURLLinkRecord* */
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

1960 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

QTSInstantOnPref Values
Constants passed to QTSInstantOnPref.

enum {
 kQTSInstantOnFlag_Enable = (1L << 0), /* instant on is enabled (read/write)*/
 kQTSInstantOnFlag_Permitted = (1L << 1) /* instant on is possible (read only)*/
};

Constants
kQTSInstantOnFlag_Enable

Instant on is enabled for read or write operations.

Available in Mac OS X v10.2 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSMediaSetInfo Values
Constants passed to QTSMediaSetInfo.

enum {
 kQTSMediaPresentationInfo = 'pres', /* QTSMediaPresentationParams* */
 kQTSMediaNotificationInfo = 'noti', /* QTSMediaNotificationParams* */
 kQTSMediaTotalDataRateInfo = 'dtrt', /* UInt32*, bits/sec */
 kQTSMediaLostPercentInfo = 'lspc', /* Fixed* */
 kQTSMediaNumStreamsInfo = 'nstr', /* UInt32* */
 kQTSMediaIndSampleDescriptionInfo = 'isdc' /* QTSMediaIndSampleDescriptionParams*
 */
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSNewPtr Values
Constants passed to QTSNewPtr.

Constants 1961
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kQTSMemAllocAllocatedInTempMem = 0x00000001,
 kQTSMemAllocAllocatedInSystemMem = 0x00000002
};
enum {
 kQTSMemAllocClearMem = 0x00000001,
 kQTSMemAllocDontUseTempMem = 0x00000002,
 kQTSMemAllocTryTempMemFirst = 0x00000004,
 kQTSMemAllocDontUseSystemMem = 0x00000008,
 kQTSMemAllocTrySystemMemFirst = 0x00000010,
 kQTSMemAllocHoldMemory = 0x00001000,
 kQTSMemAllocIsInterruptTime = 0x01010000 /* currently not supported for alloc*/
};

Constants
kQTSMemAllocAllocatedInSystemMem

The block was allocated in system memory.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSSetNetworkAppName Values
Constants passed to QTSSetNetworkAppName.

enum {
 kQTSNetworkAppNameIsFullNameFlag = 0x00000001
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSStatHelperNextParams Values
Constants passed to QTSStatHelperNextParams.

enum {
 kQTSStatHelperReturnPascalStringsFlag = 0x00000001
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

QTSInsertStatisticUnits Values
Constants passed to QTSInsertStatisticUnits.

1962 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kQTSStatisticsNoUnitsType = 0,
 kQTSStatisticsPercentUnitsType = 'pcnt',
 kQTSStatisticsBitsPerSecUnitsType = 'bps ',
 kQTSStatisticsFramesPerSecUnitsType = 'fps '
};
enum {
 kQTSStatisticsStreamAtomType = 'strm',
 kQTSStatisticsNameAtomType = 'name', /* chars only, no length or terminator
*/
 kQTSStatisticsDataFormatAtomType = 'frmt', /* OSType */
 kQTSStatisticsDataAtomType = 'data',
 kQTSStatisticsUnitsAtomType = 'unit', /* OSType */
 kQTSStatisticsUnitsNameAtomType = 'unin' /* chars only, no length or terminator
 */
};

Constants
kQTSStatisticsFramesPerSecUnitsType

Frames-per-second unit type; value is 'fps '.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

kQTSStatisticsFixedDataFormat
Constants grouped with kQTSStatisticsFixedDataFormat.

enum {
 kQTSStatisticsSInt32DataFormat = 'si32',
 kQTSStatisticsUInt32DataFormat = 'ui32',
 kQTSStatisticsSInt16DataFormat = 'si16',
 kQTSStatisticsUInt16DataFormat = 'ui16',
 kQTSStatisticsFixedDataFormat = 'fixd',
 kQTSStatisticsUnsignedFixedDataFormat = 'ufix',
 kQTSStatisticsStringDataFormat = 'strg',
 kQTSStatisticsOSTypeDataFormat = 'ostp',
 kQTSStatisticsRectDataFormat = 'rect',
 kQTSStatisticsPointDataFormat = 'pont'
};

Constants
kQTSStatisticsOSTypeDataFormat

OSType (32-bit) format; value is 'ostp'.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeStreaming.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

Constants 1963
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Streaming Transport Atoms
Identify transport atom types for QuickTime streaming.

enum {
 kQTSTransAndProxyAtomType = 'strp', /* transport/proxy prefs root atom*/
 kQTSConnectionPrefsVersion = 'vers', /* prefs format version*/
 kQTSTransportPrefsAtomType = 'trns', /* tranport prefs root atom*/
 kQTSConnectionAtomType = 'conn', /* connection prefs atom type, one
for each transport type*/
 kQTSUDPTransportType = 'udp ', /* udp transport prefs*/
 kQTSHTTPTransportType = 'http', /* http transport prefs*/
 kQTSTCPTransportType = 'tcp ', /* tcp transport prefs */
 kQTSProxyPrefsAtomType = 'prxy', /* proxy prefs root atom*/
 kQTSHTTPProxyPrefsType = 'http', /* http proxy settings*/
 kQTSRTSPProxyPrefsType = 'rtsp', /* rtsp proxy settings*/
 kQTSSOCKSProxyPrefsType = 'sock', /* socks proxy settings*/
 kQTSProxyUserInfoPrefsType = 'user', /* proxy username/password root atom*/
 kQTSDontProxyPrefsAtomType = 'nopr', /* no-proxy prefs root atom*/
 kQTSDontProxyDataType = 'data', /* no proxy settings*/
 kQTSInstantOnPrefsAtomType = 'inon' /* instant on prefs*/
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

kRTPMPHasUserSettingsDialogCharacteristic
Constants grouped with kRTPMPHasUserSettingsDialogCharacteristic.

enum {
 kRTPMPNoSampleDataRequiredCharacteristic = 'nsdr',
 kRTPMPHasUserSettingsDialogCharacteristic = 'sdlg',
 kRTPMPPrefersReliableTransportCharacteristic = 'rely',
 kRTPMPRequiresOutOfBandDimensionsCharacteristic = 'robd',
 kRTPMPReadsPartialSamplesCharacteristic = 'rpsp'
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

kRTPInfo_FormatString
Constants grouped with kRTPInfo_FormatString.

1964 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kRTPMPPayloadTypeInfo = 'rtpp', /* RTPMPPayloadTypeParams* */
 kRTPMPRTPTimeScaleInfo = 'rtpt', /* TimeScale* */
 kRTPMPRequiredSampleDescriptionInfo = 'sdsc', /* SampleDescriptionHandle* */
 kRTPMPMinPayloadSize = 'mins', /* UInt32* in bytes, does not include
rtp header; default is 0 */
 kRTPMPMinPacketDuration = 'mind', /* UInt3* in milliseconds; default is no
 min required */
 kRTPMPSuggestedRepeatPktCountInfo = 'srpc', /* UInt32* */
 kRTPMPSuggestedRepeatPktSpacingInfo = 'srps', /* UInt32* in milliseconds */
 kRTPMPMaxPartialSampleSizeInfo = 'mpss', /* UInt32* in bytes */
 kRTPMPPreferredBufferDelayInfo = 'prbd', /* UInt32* in milliseconds */
 kRTPMPPayloadNameInfo = 'name', /* StringPtr */
 kRTPInfo_FormatString = 'fmtp' /* char **, caller allocates ptr, callee
 disposes */
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPMPInitialize Values
Constants passed to RTPMPInitialize.

enum {
 kRTPMPRealtimeModeFlag = 0x00000001
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPMPIdle Values
Constants passed to RTPMPIdle.

enum {
 kRTPMPStillProcessingData = 0x00000001 /* not done with data you've got*/
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

kRTPMPRespectDurationFlag
Constants grouped with kRTPMPRespectDurationFlag.

Constants 1965
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kRTPMPSyncSampleFlag = 0x00000001,
 kRTPMPRespectDurationFlag = 0x00000002
};

Constants
kRTPMPSyncSampleFlag

The sample is a sync sample.

Available in Mac OS X v10.0 and later.

Declared in QTStreamingComponents.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPRssmSetCapabilities Values
Constants passed to RTPRssmSetCapabilities.

enum {
 kRTPRssmEveryPacketAChunkFlag = 0x00000001,
 kRTPRssmQueueAndUseMarkerBitFlag = 0x00000002,
 kRTPRssmTrackLostPacketsFlag = 0x00010000,
 kRTPRssmNoReorderingRequiredFlag = 0x00020000
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

RTPRssmSendPacketList Values
Constants passed to RTPRssmSendPacketList.

enum {
 kRTPRssmLostSomePackets = 0x00000001
};

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

SHExtendedChunkRecord Values
Constants passed to SHExtendedChunkRecord.

1966 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

enum {
 kSHExtendedChunkFlag_HasSampleCount = 1 << 0,
 kSHExtendedChunkFlag_HasFrameLengths = 1 << 1
};

Constants
kSHExtendedChunkFlag_HasSampleCount

Sample count data is added.

Available in Mac OS X v10.2 and later.

Declared in QTStreamingComponents.h.

Declared In
QuickTimeStreaming.h, QTStreamingComponents.h

Constants 1967
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

1968 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

QuickTime Streaming Reference

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeVR.h

Overview

QuickTime Virtual Reality (QTVR) is Apple's cross-platform technology for creating 360-degree panoramas
and object movies. Developers can use QTVR to turn photos and computer renderings into interactive 3D
views and then link these into entire 3D worlds.

Functions by Task

Accessing Image Buffers

QTVRRefreshBackBuffer (page 2035)
Refreshes the QTVR back buffer.

QTVRSetBackBufferImagingProc (page 2039)
Installs or removes a QTVR back buffer imaging procedure.

QTVRSetPrescreenImagingCompleteProc (page 2052)
Installs or removes a prescreen buffer imaging completion procedure.

Converting Angles and Points

QTVRAnglesToCoord (page 1982)
Obtains a floating-point coordinate determined by a pair of pan and tilt angles.

QTVRColumnToPan (page 1985)
Get the pan angle that corresponds to a column number in the object image array.

QTVRCoordToAngles (page 1985)
Get the pan and tilt angles of a floating-point coordinate in a panorama.

QTVRGetAngularUnits (page 1990)
Obtains the type of unit currently used when specifying angles.

QTVRPanToColumn (page 2032)
Obtains the column number in the object image array that corresponds to a pan angle.

QTVRPtToAngles (page 2033)
Obtains the pan and tilt angles of a point.

Overview 1969
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRRowToTilt (page 2036)
Obtains the tilt angle that corresponds to a row number in a QTVR object image array.

QTVRSetAngularUnits (page 2037)
Sets the type of unit used when specifying QTVR angles.

QTVRTiltToRow (page 2061)
Obtains the row number in the QTVR object image array that corresponds to a tilt angle.

QTVRWrapAndConstrain (page 2063)
Preflights a change in the viewing or control characteristics of a QTVR object or panoramic node.

Determining Viewing Limits and Constraints

QTVRGetConstraints (page 1996)
Obtains the current constraints of a QuickTime VR movie.

QTVRGetConstraintStatus (page 1996)
Obtains the set of constraints active for the current view.

QTVRGetViewingLimits (page 2014)
Obtains the current viewing limits of a QuickTime VR movie.

QTVRSetConstraints (page 2041)
Sets the constraints of a VR movie.

Getting Scene and Node Information

QTVRGetCurrentNodeID (page 1999)
Obtains the current node of a movie.

QTVRGetNodeInfo (page 2007)
Obtains the node information atom container that describes a node and all the hot spots in the node.

QTVRGetNodeType (page 2008)
Obtains the type of a movie node.

QTVRGetVRWorld (page 2019)
Obtains the VR world atom container for a movie.

QTVRGoToNodeID (page 2020)
Sets the current node of a movie.

Handling Events

QTVRGetMouseDownTracking (page 2006)
Obtains the current state of mouse-down tracking.

QTVRGetMouseOverTracking (page 2006)
Obtains the current state of mouse-over tracking.

QTVRMouseDown (page 2023)
Handles the user's clicking the mouse button when the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

1970 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRMouseEnter (page 2025)
Handles the user's moving the cursor into a QuickTime VR movie for which mouse-over tracking is
disabled.

QTVRMouseLeave (page 2025)
Handles the user's moving the cursor out of a QuickTime VR movie for which mouse-over tracking is
disabled.

QTVRMouseStillDown (page 2026)
Handles the user's holding down the mouse button while the cursor is in a QuickTime VR movie for
which mouse-down tracking is disabled.

QTVRMouseStillDownExtended (page 2027)
Handles the user's holding down the mouse button while the cursor is in a QuickTime VR movie for
which mouse-down tracking is disabled.

QTVRMouseUp (page 2028)
Handles the user's releasing the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

QTVRMouseUpExtended (page 2029)
Handles the user's releasing the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

QTVRMouseWithin (page 2031)
Handles the user's leaving the cursor in a QuickTime VR movie for which mouse-over tracking is
disabled.

QTVRSetMouseDownTracking (page 2049)
Sets the state of mouse-down tracking.

QTVRSetMouseOverTracking (page 2051)
Sets the state of mouse-over tracking.

Intercepting QuickTime VR Manager Routines

QTVRCallInterceptedProc (page 1984)
Calls an intercepted QuickTime VR function from within an intercept procedure.

QTVRInstallInterceptProc (page 2021)
Installs or removes an intercept procedure for a QuickTime VR Manager function.

Managing Hot Spots

QTVREnableHotSpot (page 1987)
Enables or disables one or more QTVR hot spots.

QTVRGetHotSpotRegion (page 2002)
Obtains the region occupied by a hot spot.

QTVRGetHotSpotType (page 2003)
Obtains the type of a QuickTime VR hot spot.

QTVRGetVisibleHotSpots (page 2018)
Obtains a list of the currently visible hot spots in a QuickTime VR movie.

QTVRPtToHotSpotID (page 2034)
Obtains the ID of the hot spot, if any, that lies beneath a point.

Functions by Task 1971
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRSetMouseOverHotSpotProc (page 2050)
Installs or removes a mouse over hot spot procedure.

QTVRTriggerHotSpot (page 2061)
Triggers a QTVR hot spot.

Managing Imaging Characteristics

QTVRBeginUpdateStream (page 1983)
Begins a stream of immediate updates to a QuickTime VR movie.

QTVREnableTransition (page 1988)
Enables or disables a transition effect.

QTVREndUpdateStream (page 1989)
Ends a stream of immediate updates to a QuickTime VR movie.

QTVRGetImagingProperty (page 2004)
Obtains the current value of an imaging property of a movie.

QTVRGetVisible (page 2018)
Obtains a movie's visibility state.

QTVRSetImagingProperty (page 2046)
Sets the value of an imaging property of a movie.

QTVRSetTransitionProperty (page 2055)
Sets the value of a transition property.

QTVRSetVisible (page 2059)
Sets a VR movie's visibility state.

QTVRUpdate (page 2063)
Forces an immediate update of a QuickTime VR movie image.

Managing Object Nodes

QTVREnableFrameAnimation (page 1986)
Enables or disables frame animation for an object node.

QTVREnableViewAnimation (page 1989)
Enables or disables view animation for an object node.

QTVRGetAnimationSetting (page 1991)
Obtains the current state of an animation setting for an object node.

QTVRGetControlSetting (page 1997)
Obtains the current state of a control setting for an object node.

QTVRGetCurrentMouseMode (page 1998)
Obtains the current mouse control modes.

QTVRGetCurrentViewDuration (page 1999)
Obtains the duration of the current view of an object node.

QTVRGetFrameAnimation (page 2001)
Obtains the current state of frame animation for an object node.

1972 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRGetFrameRate (page 2001)
Obtains the current frame rate of an object node.

QTVRGetViewAnimation (page 2012)
Obtains the current state of view animation for an object node.

QTVRGetViewCurrentTime (page 2013)
Obtains the current time in the current view.

QTVRGetViewRate (page 2016)
Obtains the current view rate of an object node.

QTVRGetViewState (page 2016)
Obtains the value of a view state.

QTVRGetViewStateCount (page 2017)
Obtains the number of view states of an object node.

QTVRSetAnimationSetting (page 2038)
Sets the state of an animation setting for an object node.

QTVRSetControlSetting (page 2042)
Sets the state of a control setting for a QTVR object node.

QTVRSetFrameRate (page 2045)
Sets the frame rate of an object node.

QTVRSetViewCurrentTime (page 2056)
Sets the time in the current QTVR view.

QTVRSetViewRate (page 2058)
Sets the view rate of a QTVR object node.

QTVRSetViewState (page 2059)
Sets the value of a QTVR view state.

Managing QuickTime VR Movie Instances

QTVRGetQTVRInstance (page 2009)
Obtains an instance of a QuickTime VR movie.

QTVRGetQTVRTrack (page 2010)
Obtains a QTVR track contained in a QuickTime movie to use in the QTVRGetQTVRInstance call.

Managing QuickTime VR Movie Interactions

QTVRGetInteractionProperty (page 2005)
Obtains the value of an interaction property.

QTVRReplaceCursor (page 2035)
Replaces any of the standard QuickTime VR cursors with your own custom cursor.

QTVRSetEnteringNodeProc (page 2043)
Installs or removes a node-entering procedure.

QTVRSetInteractionProperty (page 2047)
Sets the value of an interaction property.

Functions by Task 1973
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRSetLeavingNodeProc (page 2048)
Installs or removes a node-leaving procedure.

Managing VR Memory

QTVRGetAvailableResolutions (page 1992)
Obtains the image resolutions present in the current node.

QTVRGetBackBufferMemInfo (page 1992)
Obtains information about the internal back buffer that QuickTime VR maintains for caching panoramic
images.

QTVRGetBackBufferSettings (page 1994)
Obtains information about the resolution, pixel format, and size of the back buffer maintained internally
by QuickTime VR for caching a panoramic image in a particular pixel format.

QTVRSetBackBufferPrefs (page 2040)
Sets the resolution, pixel format, and size of the back buffer maintained internally by QuickTime VR
for caching a panoramic image in a particular pixel format.

Manipulating Viewing Angles and Zooming

QTVRGetFieldOfView (page 2000)
Obtains the vertical field of view of a QuickTime VR movie.

QTVRGetPanAngle (page 2008)
Obtains the pan angle of a QuickTime VR movie.

QTVRGetTiltAngle (page 2011)
Obtains the tilt angle of a QuickTime VR movie.

QTVRGetViewCenter (page 2013)
Obtains the view center of a QuickTime VR movie.

QTVRInteractionNudge (page 2022)
Translates the image and displays the new view or rotates the object in a particular direction and
displays its new appearance.

QTVRNudge (page 2031)
Turns one step in a particular direction and displays the new view.

QTVRSetFieldOfView (page 2044)
Sets the vertical field of view of a QuickTime VR movie.

QTVRSetPanAngle (page 2051)
Sets the pan angle of a QuickTime VR movie.

QTVRSetTiltAngle (page 2054)
Sets the tilt angle of a QuickTime VR movie.

QTVRSetViewCenter (page 2056)
Sets the view center of a QuickTime VR movie.

QTVRShowDefaultView (page 2060)
Displays the default view of a QTVR node.

1974 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Supporting Functions

DisposeQTVRBackBufferImagingUPP (page 1975)
Disposes of a QTVRBackBufferImagingUPP pointer.

DisposeQTVREnteringNodeUPP (page 1976)
Disposes of a QTVREnteringNodeUPP pointer.

DisposeQTVRImagingCompleteUPP (page 1976)
Disposes of a QTVRImagingCompleteUPP pointer.

DisposeQTVRInterceptUPP (page 1977)
Disposes of a QTVRInterceptUPP pointer.

DisposeQTVRLeavingNodeUPP (page 1977)
Disposes of a QTVRLeavingNodeUPP pointer.

DisposeQTVRMouseOverHotSpotUPP (page 1978)
Disposes of a QTVRMouseOverHotSpotUPP pointer.

NewQTVRBackBufferImagingUPP (page 1978)
Allocates a Universal Procedure Pointer for the QTVRBackBufferImagingProc callback.

NewQTVREnteringNodeUPP (page 1979)
Allocates a Universal Procedure Pointer for the QTVREnteringNodeProc callback.

NewQTVRImagingCompleteUPP (page 1980)
Allocates a Universal Procedure Pointer for the QTVRImagingCompleteProc callback.

NewQTVRInterceptUPP (page 1980)
Allocates a Universal Procedure Pointer for the QTVRInterceptProc callback.

NewQTVRLeavingNodeUPP (page 1981)
Allocates a Universal Procedure Pointer for the QTVRLeavingNodeProc callback.

NewQTVRMouseOverHotSpotUPP (page 1981)
Allocates a Universal Procedure Pointer for the QTVRMouseOverHotSpotProc callback.

QTVRGetViewParameter (page 2015)
Undocumented

QTVRSetViewParameter (page 2057)
Undocumented

Functions

DisposeQTVRBackBufferImagingUPP
Disposes of a QTVRBackBufferImagingUPP pointer.

void DisposeQTVRBackBufferImagingUPP (
 QTVRBackBufferImagingUPP userUPP
);

Parameters
userUPP

A QTVRBackBufferImagingUPP pointer. See Universal Procedure Pointers.

Functions 1975
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer
vrbackbuffer.win
vrmovies
vrmovies.win
vrscript.win

Declared In
QuickTimeVR.h

DisposeQTVREnteringNodeUPP
Disposes of a QTVREnteringNodeUPP pointer.

void DisposeQTVREnteringNodeUPP (
 QTVREnteringNodeUPP userUPP
);

Parameters
userUPP

A QTVREnteringNodeUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

DisposeQTVRImagingCompleteUPP
Disposes of a QTVRImagingCompleteUPP pointer.

1976 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

void DisposeQTVRImagingCompleteUPP (
 QTVRImagingCompleteUPP userUPP
);

Parameters
userUPP

A QTVRImagingCompleteUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

DisposeQTVRInterceptUPP
Disposes of a QTVRInterceptUPP pointer.

void DisposeQTVRInterceptUPP (
 QTVRInterceptUPP userUPP
);

Parameters
userUPP

A QTVRInterceptUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

DisposeQTVRLeavingNodeUPP
Disposes of a QTVRLeavingNodeUPP pointer.

Functions 1977
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

void DisposeQTVRLeavingNodeUPP (
 QTVRLeavingNodeUPP userUPP
);

Parameters
userUPP

A QTVRLeavingNodeUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

DisposeQTVRMouseOverHotSpotUPP
Disposes of a QTVRMouseOverHotSpotUPP pointer.

void DisposeQTVRMouseOverHotSpotUPP (
 QTVRMouseOverHotSpotUPP userUPP
);

Parameters
userUPP

A QTVRMouseOverHotSpotUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

NewQTVRBackBufferImagingUPP
Allocates a Universal Procedure Pointer for the QTVRBackBufferImagingProc callback.

1978 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRBackBufferImagingUPP NewQTVRBackBufferImagingUPP (
 QTVRBackBufferImagingProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVRBackBufferImagingProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer
vrbackbuffer.win
vrmovies
vrmovies.win
vrscript.win

Declared In
QuickTimeVR.h

NewQTVREnteringNodeUPP
Allocates a Universal Procedure Pointer for the QTVREnteringNodeProc callback.

QTVREnteringNodeUPP NewQTVREnteringNodeUPP (
 QTVREnteringNodeProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVREnteringNodeProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 1979
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

NewQTVRImagingCompleteUPP
Allocates a Universal Procedure Pointer for the QTVRImagingCompleteProc callback.

QTVRImagingCompleteUPP NewQTVRImagingCompleteUPP (
 QTVRImagingCompleteProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVRImagingCompleteProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

NewQTVRInterceptUPP
Allocates a Universal Procedure Pointer for the QTVRInterceptProc callback.

QTVRInterceptUPP NewQTVRInterceptUPP (
 QTVRInterceptProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

1980 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVRInterceptProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

NewQTVRLeavingNodeUPP
Allocates a Universal Procedure Pointer for the QTVRLeavingNodeProc callback.

QTVRLeavingNodeUPP NewQTVRLeavingNodeUPP (
 QTVRLeavingNodeProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVRLeavingNodeProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

NewQTVRMouseOverHotSpotUPP
Allocates a Universal Procedure Pointer for the QTVRMouseOverHotSpotProc callback.

Functions 1981
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRMouseOverHotSpotUPP NewQTVRMouseOverHotSpotUPP (
 QTVRMouseOverHotSpotProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewQTVRMouseOverHotSpotProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrcursors
vrcursors.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRAnglesToCoord
Obtains a floating-point coordinate determined by a pair of pan and tilt angles.

OSErr QTVRAnglesToCoord (
 QTVRInstance qtvr,
 float panAngle,
 float tiltAngle,
 QTVRFloatPoint *coord
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

panAngle
A pan angle.

tiltAngle
A tilt angle.

coord
On entry, a pointer to a QTVRFloatPoint structure. On return, that structure is set to the coordinate
of the specified movie that corresponds to the specified pan and tilt angles.

Return Value
See Error Codes. Returns noErr if there is no error.

1982 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Special Considerations

QTVRAnglesToCoord is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRBeginUpdateStream
Begins a stream of immediate updates to a QuickTime VR movie.

OSErr QTVRBeginUpdateStream (
 QTVRInstance qtvr,
 QTVRImagingMode imagingMode
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

imagingMode
An imaging mode (see below). See these constants:

kQTVRStatic

kQTVRMotion

kQTVRAllModes

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function configures the QuickTime VR movie specified by the qtvr parameter for a stream of immediate
updates to its movie image. After calling QTVRBeginUpdateStream, you perform the updates by calling
QTVRUpdate (page 2063). When you are finished performing the updates, call QTVREndUpdateStream (page
1989). Issuing a stream of image updates in this manner is significantly faster than simply calling QTVRUpdate
repeatedly (that is, not within a begin/end update sequence). Each call to this function must be balanced by
a call to QTVREndUpdateStream, but you can nest these calls.

Special Considerations

After you call this function and before you call QTVREndUpdateStream (page 1989), you must not change
any of the QuickTime VR movie's imaging properties.

Calling this function locks down large blocks of memory. As a result, you should minimize the amount of
time before calling QTVREndUpdateStream.

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 1983
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRCallInterceptedProc
Calls an intercepted QuickTime VR function from within an intercept procedure.

OSErr QTVRCallInterceptedProc (
 QTVRInstance qtvr,
 QTVRInterceptRecord *qtvrMsg
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

qtvrMsg
A pointer to a QTVRInterceptRecord structure that specifies the function that your procedure is
intercepting and the parameters for that function. This should be the same intercept record passed
to your intercept procedure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function executes the QuickTime VR Manager function indicated by the selector field of the qtvrMsg
intercept record. The parameters passed to that function are the QuickTime VR movie specified by the qtvr
parameter and any other parameters contained in the parameter field of the qtvrMsg record. You can, if
you wish, change the parameters in that field before calling this function.

You can call this function more than once in your intercept procedure. In addition, the QuickTime VR Manager
will call the intercepted function again unless your intercept procedure returns TRUE in the cancel parameter.

Special Considerations

You should call QTVRCallInterceptedProc only in an intercept procedure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrspeech

Declared In
QuickTimeVR.h

1984 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRColumnToPan
Get the pan angle that corresponds to a column number in the object image array.

float QTVRColumnToPan (
 QTVRInstance qtvr,
 short column
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

column
A column number.

Return Value
The pan angle that corresponds to the zero-based column number in the object image array specified by
the column parameter.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRCoordToAngles
Get the pan and tilt angles of a floating-point coordinate in a panorama.

OSErr QTVRCoordToAngles (
 QTVRInstance qtvr,
 QTVRFloatPoint *coord,
 float *panAngle,
 float *tiltAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

coord
On entry, a pointer to a QTVRFloatPoint structure that specifies a coordinate in the full panorama.

panAngle
On entry, a pointer to a floating-point value. On return, that value contains the pan angle of the
specified coordinate.

Functions 1985
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

tiltAngle
On entry, a pointer to a floating-point value. On return, that value contains the tilt angle of the specified
coordinate.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the floating-point values pointed to by the panAngle and tiltAngle parameters,
the pan and tilt angles of the point specified by the coord parameter. This function is useful for setting up
angles in a back buffer imaging procedure; if you know a coordinate in the back buffer, you can call
QTVRCoordToAngles to get the corresponding angles.

Special Considerations

QTVRCoordToAngles is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVREnableFrameAnimation
Enables or disables frame animation for an object node.

OSErr QTVREnableFrameAnimation (
 QTVRInstance qtvr,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enable
A Boolean value that indicates whether to enable (TRUE) or disable (FALSE) frame animation for the
specified object node.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function enables or disables the frame animation state for the object node specified by the qtvr
parameter, according to the value of the enable parameter. The current frame rate, set by the function
QTVRSetFrameRate (page 2045), is unaffected by the state of frame animation of an object node.

Special Considerations

This function is valid only for object nodes. You should use this function instead of standard QuickTime
functions to control object animation.

1986 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVREnableHotSpot
Enables or disables one or more QTVR hot spots.

OSErr QTVREnableHotSpot (
 QTVRInstance qtvr,
 UInt32 enableFlag,
 UInt32 hotSpotValue,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enableFlag
The kind of hot spot or hot spots to enable or disable (see below). See these constants:

kQTVRHotSpotID

kQTVRHotSpotType

kQTVRAllHotSpots

hotSpotValue
The desired hot spot or spots, defined by the specified enabled flag (see below).

enable
A Boolean value that indicates whether the specified hot spots are to be enabled (TRUE) or disabled
(FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function either enables or disables the hot spot or spots specified by the enableFlag and hotSpotValue
parameters, according to the value of the enable parameter. The hot spots are always selected from among
the hot spots in the current node of the QuickTime VR movie specified by the qtvr parameter.

Normally, all hot spots in a node are enabled (that is, the cursor automatically changes shape when it is
moved over a hot spot, and the QTVRTriggerHotSpot (page 2061) function is called internally when the user
clicks a hot spot). When a hot spot is disabled, QuickTime VR behaves as if the hot spot were not present.

Functions 1987
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVREnableTransition
Enables or disables a transition effect.

OSErr QTVREnableTransition (
 QTVRInstance qtvr,
 UInt32 transitionType,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

transitionType
A type of transition property (see below). Currently only one constant is available for this parameter.
See these constants:

kQTVRTransitionSwing

enable
A Boolean value that indicates whether the specified transition property is to be enabled (TRUE) or
disabled (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function enables or disables the transition property specified by the transitionType parameter for
the movie specified by the qtvr parameter, as indicated by the value of the enable parameter. Once a
transition effect is enabled, it is used at the appropriate time until it is disabled by a subsequent call to this
function.

Special Considerations

QTVREnableTransition is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1988 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVREnableViewAnimation
Enables or disables view animation for an object node.

OSErr QTVREnableViewAnimation (
 QTVRInstance qtvr,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enable
A Boolean value that indicates whether to enable (TRUE) or disable (FALSE) view animation for the
specified object node.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should use this function instead of standard QuickTime functions to control object animation.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVREndUpdateStream
Ends a stream of immediate updates to a QuickTime VR movie.

Functions 1989
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVREndUpdateStream (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function unlocks the memory locked by the matching call to QTVRBeginUpdateStream (page 1983) for
the QuickTime VR movie specified by the qtvr parameter and reverses any other actions performed by that
call. Each call to QTVRBeginUpdateStream must be balanced by a call to this function, but you can nest
these calls. For nested calls, only the final call to this function unlocks the memory locked by the first call to
QTVRBeginUpdateStream.

Special Considerations

QTVREndUpdateStream is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetAngularUnits
Obtains the type of unit currently used when specifying angles.

QTVRAngularUnits QTVRGetAngularUnits (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The type of unit currently used (see below).

Discussion
This function returns, as its function result, a constant that indicates the type of angular unit currently used
by the movie instance specified by the qtvr parameter. Angular values you pass to other QuickTime VR
functions, such as QTVRSetPanAngle (page 2051), are interpreted in those units.

1990 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetAnimationSetting
Obtains the current state of an animation setting for an object node.

OSErr QTVRGetAnimationSetting (
 QTVRInstance qtvr,
 QTVRObjectAnimationSetting setting,
 Boolean *enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

setting
An animation setting (see below). See these constants:

kQTVRPalindromeViewFrames

kQTVRDontLoopViewFrames

kQTVRPlayEveryViewFrame

kQTVRSyncViewToFrameRate

kQTVRPalindromeViews

kQTVRPlayStreamingViews

enable
On entry, a pointer to a Boolean value. On return, that value is set to TRUE if the specified animation
setting is currently enabled for the specified object node or to FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

Functions 1991
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRGetAvailableResolutions
Obtains the image resolutions present in the current node.

OSErr QTVRGetAvailableResolutions (
 QTVRInstance qtvr,
 UInt16 *resolutionsMask
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

resolutionsMask
On entry, a pointer to an unsigned short integer. On return, that integer is set to a bitmask that
encodes the image resolutions (see below) available at the current node. See these constants:

kQTVRDefaultRes

kQTVRFullRes

kQTVRHalfRes

kQTVRQuarterRes

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A single node can contain multiple resolutions of a panorama or an object. The lowest order bit is always set
and corresponds to the base resolution of the node. Each succeeding bit corresponds to a resolution that is
half that (both horizontally and vertically) of the preceding bit. If an image with a corresponding resolution
is present in the current node, that bit is set.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetBackBufferMemInfo
Obtains information about the internal back buffer that QuickTime VR maintains for caching panoramic
images.

1992 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRGetBackBufferMemInfo (
 QTVRInstance qtvr,
 UInt32 geometry,
 UInt16 resolution,
 UInt32 cachePixelFormat,
 SInt32 *minCacheBytes,
 SInt32 *suggestedCacheBytes,
 SInt32 *fullCacheBytes
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

geometry
The geometry parameter (see below) specifies the type and orientation of the panorama data. See
these constants:

kQTVRUseMovieGeometry

kQTVRVerticalCylinder

resolution
The resolution for which the information is desired (see below). See these constants:

kQTVRDefaultRes

kQTVRFullRes

kQTVRHalfRes

kQTVRQuarterRes

cachePixelFormat
The desired pixel format for the back buffer. This value should be one of the defined pixel formats
(see below). See these constants:

kQTVRMinimumCache

kQTVRSuggestedCache

kQTVRFullCache

minCacheBytes
On entry, a pointer to a long integer. On return, that long integer is set to the minimum size, in bytes,
of the back buffer required to display the specified panorama with a severely limited maximum field
of view. Set this parameter to NIL to prevent this information from being returned.

suggestedCacheBytes
On entry, a pointer to a long integer. On return, that long integer is set to the minimum size, in bytes,
of the back buffer required to display the specified panorama with full wide-angle zooming. Set this
parameter to NIL to prevent this information from being returned.

fullCacheBytes
On entry, a pointer to a long integer. On return, that long integer is set to the minimum size, in bytes,
of the back buffer required to have the entire panorama in memory at once. That is the default size
of the panorama back buffer. Set this parameter to NIL to prevent this information from being
returned.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 1993
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
You can use this function to get information about the size of the back buffer that would be required for
caching a panoramic image of a specified pixel format, geometry, and resolution. This is a "what-if" function:
you specify a resolution and a pixel format, and this function returns several buffer sizes. You can use this
information, in conjunction with QTVRSetBackBufferPrefs (page 2040), to exercise some control over the
size of the back buffer.

The resolution at which an image is to be displayed is specified by the resolution parameter. You can use
a resolution that is not in the movie file. Relative to that resolution and the pixel depth determined by the
cachePixelFormat parameter, this function returns, through the minCacheBytes parameter, the minimum
size of the buffer needed to display the movie. Using a buffer of that size, however, may result in a severely
limited maximum field of view. You can call the QTVRGetViewingLimits (page 2014) function to determine
the actual maximum field of view.

To allow full wide-angle zooming, you should use a buffer whose size is specified by either the
suggestedCacheBytes parameter or the fullCacheBytes parameter.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetBackBufferSettings
Obtains information about the resolution, pixel format, and size of the back buffer maintained internally by
QuickTime VR for caching a panoramic image in a particular pixel format.

OSErr QTVRGetBackBufferSettings (
 QTVRInstance qtvr,
 UInt32 *geometry,
 UInt16 *resolution,
 UInt32 *cachePixelFormat,
 SInt16 *cacheSize
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

geometry
The type and orientation of the panorama data (see below). See these constants:

kQTVRUseMovieGeometry

kQTVRVerticalCylinder

1994 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

resolution
On entry, a pointer to an unsigned short integer. On return, that integer is set to the index of the
current image resolution (see below). See these constants:

kQTVRDefaultRes

kQTVRFullRes

kQTVRHalfRes

kQTVRQuarterRes

cachePixelFormat
On entry, a pointer to a long integer. On return, that long integer is set to the pixel format of the
current panorama back buffer (see below). See these constants:

cacheSize
On entry, a pointer to a short integer. On return, that integer is set to a value that describes the size
of the current panorama back buffer. See these constants:

kQTVRMinimumCache

kQTVRSuggestedCache

kQTVRFullCache

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, through the resolution parameter, the index of the current resolution for the
QuickTime VR movie specified by the qtvr parameter. The index indicates which bit in the mask value
returned by QTVRGetAvailableResolutions (page 1992) specifies the current resolution. For example, if
the returned index is 1, the base resolution is being used. If the returned index is 2, then a resolution of half
the base resolution is being used. This function also returns the pixel format and the cache size in the
cachePixelFormat and cacheSize parameters, respectively.

The QuickTime VR file might not contain an image track corresponding to the resolution indicated by the
resolution value returned. The QuickTime VR Manager may have set a lower resolution because memory is
low, or the resolution may have been set by a call to QTVRSetBackBufferPrefs (page 2040).

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies

Declared In
QuickTimeVR.h

Functions 1995
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRGetConstraints
Obtains the current constraints of a QuickTime VR movie.

OSErr QTVRGetConstraints (
 QTVRInstance qtvr,
 UInt16 kind,
 float *minValue,
 float *maxValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

kind
The type of constraints to be returned (see below). See these constants:

kQTVRPan

kQTVRTilt

kQTVRFieldOfView

minValue
On entry, a pointer to a floating-point value. On return, the current minimum constraint of the specified
type is copied into that value.

maxValue
On entry, a pointer to a floating-point value. On return, the current maximum constraint of the specified
type is copied into that value.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the floating-point values pointed to by the minValue and maxValue parameters,
the current minimum and maximum constraints of the type specified by the kind parameter. The values
returned by this function are unaffected by the current control settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetConstraintStatus
Obtains the set of constraints active for the current view.

1996 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

UInt32 QTVRGetConstraintStatus (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A long integer (see below) whose bits encode the constraints currently active for the QuickTime VR movie
specified by the qtvr parameter.

Discussion
The values returned by QTVRGetConstraintStatus are unaffected by the current control settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetControlSetting
Obtains the current state of a control setting for an object node.

OSErr QTVRGetControlSetting (
 QTVRInstance qtvr,
 QTVRControlSetting setting,
 Boolean *enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

setting
A control setting (see below). See these constants:

kQTVRWrapPan

kQTVRWrapTilt

kQTVRCanZoom

kQTVRReverseHControl

kQTVRReverseVControl

kQTVRSwapHVControl

kQTVRTranslation

enable
On entry, a pointer to a Boolean value. On return, that value is set to TRUE if the specified control
setting is currently enabled for the specified object node or to FALSE otherwise.

Functions 1997
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, through the enable parameter, the current state of the control setting specified by
the setting parameter for the object node specified by the qtvr parameter. If enable is TRUE, the specified
setting is currently enabled; otherwise, the setting is disabled.

Special Considerations

QTVRGetControlSetting is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetCurrentMouseMode
Obtains the current mouse control modes.

UInt32 QTVRGetCurrentMouseMode (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A constant (see below) that describes the current mouse control modes.

Discussion
The value returned by this function is an unsigned long integer that encodes the current mouse control
modes. If a bit in the integer is set, the corresponding mode is one of the current mouse modes. The mode
bits are addressed using the above constants. Notice that several modes can be returned. That means a
return value could have both zooming and translating set, for example.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

1998 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Declared In
QuickTimeVR.h

QTVRGetCurrentNodeID
Obtains the current node of a movie.

UInt32 QTVRGetCurrentNodeID (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The ID of the current node of the specified movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmovies
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetCurrentViewDuration
Obtains the duration of the current view of an object node.

TimeValue QTVRGetCurrentViewDuration (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The duration of the current view of the object node specified by the qtvr parameter.

Special Considerations

This function is valid only for object nodes. You cannot change a node's view duration.

Functions 1999
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetFieldOfView
Obtains the vertical field of view of a QuickTime VR movie.

float QTVRGetFieldOfView (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The current vertical field of view of the QuickTime VR movie specified by the qtvr parameter. The vertical
field of view is a floating-point value that specifies the angle created by the two lines that connect the
viewpoint to the top and bottom of the image.

Discussion
The following code fragment illustrates the use of this function:

// QTVRGetFieldOfView coding example
#define kDirIn 4L
#define kDirOut 5L
void MyZoomInOrOut (QTVRInstance theInstance, long theDir)
{
 float theFloat;
 theFloat =QTVRGetFieldOfView(theInstance);
 switch (theDir) {
 case kDirIn:
 theFloat =theFloat / 2.0;
 break;
 case kDirOut:
 theFloat =theFloat * 2.0;
 break;
 default:
 break;
 }
 QTVRSetFieldOfView(theInstance, theFloat);
 QTVRUpdate(theInstance, kQTVRStatic);
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

2000 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRGetFrameAnimation
Obtains the current state of frame animation for an object node.

Boolean QTVRGetFrameAnimation (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
TRUE if frame animation is currently enabled, FALSE otherwise.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetFrameRate
Obtains the current frame rate of an object node.

float QTVRGetFrameRate (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The current frame rate of the object node specified by the qtvr parameter. A frame rate is a floating-point
value in the range from -100.0 to +100.0.

Functions 2001
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
An object node's default frame rate is stored in the movie file.

Special Considerations

QTVRGetFrameRate is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetHotSpotRegion
Obtains the region occupied by a hot spot.

OSErr QTVRGetHotSpotRegion (
 QTVRInstance qtvr,
 UInt32 hotSpotID,
 RgnHandle hotSpotRegion
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

hotSpotID
A hot spot ID.

hotSpotRegion
On entry, an initialized handle to a region. On return, this region is rewritten with the region occupied
by the hot spot having the specified ID.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The returned region is clipped to the bounds of the movie's graphics world. You can obtain the regions of
all visible hot spots by calling QTVRGetVisibleHotSpots (page 2018) and then calling this function for each
hot spot ID in the list.

Special Considerations

The first time you call this function, a significant amount of memory might need to be allocated. Accordingly,
you should always check for Memory Manager errors returned by this function. Your application is responsible
for disposing of the memory occupied by the returned region.

2002 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetHotSpotType
Obtains the type of a QuickTime VR hot spot.

OSErr QTVRGetHotSpotType (
 QTVRInstance qtvr,
 UInt32 hotSpotID,
 OSType *hotSpotType
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

hotSpotID
A hot spot ID.

hotSpotType
On entry, a pointer to a long integer. On return, that long integer contains the type of the hot spot
specified by the hot spot ID.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function gets the type of a hot spot whose ID you specify. In combination with the
kQTVRGetHotSpotTypeSelector intercept selector (see QTVRInstallInterceptProc (page 2021)), this
allows an application to change a hot spot's type dynamically. For example, an application can take an existing
movie and cause VR to display the cursors for a type of hotspot different from the one the movie was originally
authored with. In combination with intercepting kQTVRTriggerHotSpotSelector, this would allow an
Internet plugin to override undefined or link hotspots in movies to make them appear and act as though
they are URL links instead. If kQTVRTriggerHotSpotSelector is not intercepted, VR will attempt to act on
the hotspot in the normal way; by storing both link and URL data in a file, the exact behavior can be determined
at runtime by an application to allow linking to either another node locally or a remote URL link, depending
on system configuration or other arbitrary considerations.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2003
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrcursors
vrcursors.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetImagingProperty
Obtains the current value of an imaging property of a movie.

OSErr QTVRGetImagingProperty (
 QTVRInstance qtvr,
 QTVRImagingMode imagingMode,
 UInt32 imagingProperty,
 SInt32 *propertyValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

imagingMode
An imaging mode (see below). See these constants:

kQTVRStatic

kQTVRMotion

kQTVRAllModes

imagingProperty
An imaging property (see below). See these constants:

kQTVRImagingCorrection

kQTVRImagingQuality

kQTVRImagingDirectDraw

kQTVRImagingCurrentMode

propertyValue
On entry, a pointer to a long integer. On return, that long integer contains the current value of the
specified imaging property for the specified mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the long integer pointed to by the propertyValue parameter, the current value of
the property specified by the imagingProperty parameter when the QuickTime VR movie specified by the
qtvr parameter is in the mode specified by the imagingMode parameter.

Special Considerations

QTVRGetImagingProperty is valid only for panoramic nodes.

2004 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetInteractionProperty
Obtains the value of an interaction property.

OSErr QTVRGetInteractionProperty (
 QTVRInstance qtvr,
 UInt32 property,
 void *value
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

property
An interaction property type (see below). See these constants:

kQTVRInteractionMouseClickHysteresis

kQTVRInteractionMouseClickTimeout

kQTVRInteractionPanTiltSpeed

kQTVRInteractionZoomSpeed

kQTVRInteractionTranslateOnMouseDown

kQTVRInteractionMouseMotionScale

kQTVRInteractionNudgeMode

value
On entry, a pointer to a block of memory. On return, that memory contains the current value of the
specified interaction property.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the block of memory pointed to by the value parameter, the current value of the
property specified by the property parameter for the QuickTime VR movie specified by the qtvr parameter.
That block of memory must be large enough to hold the returned value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

Functions 2005
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRGetMouseDownTracking
Obtains the current state of mouse-down tracking.

Boolean QTVRGetMouseDownTracking (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A Boolean value that indicates whether QuickTime VR is currently handling mouse-down tracking for the
QuickTime VR movie specified by the qtvr parameter (TRUE) or not (FALSE).

Discussion
By default, QuickTime VR tracks mouse clicks in a QuickTime VR movie and triggers hot spots as necessary.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetMouseOverTracking
Obtains the current state of mouse-over tracking.

Boolean QTVRGetMouseOverTracking (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A Boolean value that indicates whether QuickTime VR is currently handling mouse-over tracking for the
QuickTime VR movie specified by the qtvr parameter (TRUE) or not (FALSE).

Discussion
By default, QuickTime VR tracks mouse movements in a QuickTime VR movie and changes the shape of the
cursor as appropriate.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

2006 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Declared In
QuickTimeVR.h

QTVRGetNodeInfo
Obtains the node information atom container that describes a node and all the hot spots in the node.

OSErr QTVRGetNodeInfo (
 QTVRInstance qtvr,
 UInt32 nodeID,
 QTAtomContainer *nodeInfo
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

nodeID
A node ID. Set this parameter to kQTVRCurrentNode to receive information about the current node.

nodeInfo
On return, a pointer to an atom container that contains information about the specified node.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the nodeInfo parameter, a pointer to an atom container that contains information
about the node specified by the nodeID parameter in the movie specified by the qtvr parameter. The atom
container includes information about all the hot spots contained in that node. You can use the QuickTime
atom functions to extract atoms from that container. You can also use those functions to access the hot spot
atom list. All hot spot atoms are contained in the hot spot parent atom.

Special Considerations

The node information atom container returned by this function is a copy of the atom container maintained
internally by the QuickTime VR Manager. You should dispose of the node information atom container, by
calling QTDisposeAtomContainer (page 1427), when you're finished using it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
QuickTimeVR.h

Functions 2007
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRGetNodeType
Obtains the type of a movie node.

OSType QTVRGetNodeType (
 QTVRInstance qtvr,
 UInt32 nodeID
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

nodeID
A node ID. Pass kQTVRCurrentNode for the current node.

Return Value
The type of the node specified by the nodeID parameter in the QuickTime VR movie specified by the qtvr
parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer
vrbackbuffer.win
vrcursors
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetPanAngle
Obtains the pan angle of a QuickTime VR movie.

float QTVRGetPanAngle (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A floating-point value that represents the current pan angle of the QuickTime VR movie specified by the
qtvr parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

2008 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrmovies
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRGetQTVRInstance
Obtains an instance of a QuickTime VR movie.

OSErr QTVRGetQTVRInstance (
 QTVRInstance *qtvr,
 Track qtvrTrack,
 MovieController mc
);

Parameters
qtvr

On return, an instance of the specified QuickTime VR movie.

qtvrTrack
A QTVR track contained in a QuickTime movie. You can obtain a reference to this track by calling
QTVRGetQTVRTrack (page 2010).

mc
An identifier for the movie controller to be associated with the new QuickTime VR movie instance.
You obtain this identifier from OpenComponent or OpenDefaultComponent, or from
NewMovieController (page 1392).

Return Value
If qtvrTrack does not specify a QTVR track, this function returns NIL in the qtvr parameter and an error
code as its function result. See Error Codes. Returns noErr if there is no error.

Discussion
You need a QuickTime VR movie instance to call most other QuickTime VR functions. This function returns,
in the qtvr parameter, an instance of the QuickTime VR movie specified by the qtvrTrack parameter. Here's
an example of code that gets a QTVR instance:

// QTVRGetQTVRInstance coding example
// See "Discovering QuickTime," page 390
QTVRInstance MyGetQTVRInstanceFromMC (MovieController mc)
{
 Track track =NIL;
 QTVRInstance qtvrinstance =NIL;
 Movie movie =NIL;
 //Get the movie from the movie controller.
 movie =MCGetMovie(mc);
 if (movie !=NIL) {

Functions 2009
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

 //Get the first QTVR track in the movie.
 track =QTVRGetQTVRTrack(movie, 1);
 //Get a QTVR instance for that QTVR track.
 if (track !=NIL) {
 QTVRGetQTVRInstance(qtvrinstance, track, mc);
 //Set our units to be degrees.
 if (qtvrinstance !=NIL)
 QTVRSetAngularUnits(qtvrinstance, kQTVRDegrees);
 }
 }
 return qtvrinstance;
}

Special Considerations

It's not necessary to dispose of a QuickTime VR movie instance.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
vrbackbuffer.win
vrcursors
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetQTVRTrack
Obtains a QTVR track contained in a QuickTime movie to use in the QTVRGetQTVRInstance call.

Track QTVRGetQTVRTrack (
 Movie theMovie,
 SInt32 index
);

Parameters
theMovie

A QuickTime movie.

index
The index of the desired QTVR track.

Return Value
A track identifier for the QTVR track that has the index specified by the index parameter in the QuickTime
movie specified by the theMovie parameter. If there is no such track, or the movie is not a QTVR movie, this
function returns the value NIL.

Discussion
Here's an example of using this function to help get an instance of a QTVR movie running in a movie controller:

2010 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

// QTVRGetQTVRTrack coding example
// See "Discovering QuickTime," page 390
QTVRInstance MyGetQTVRInstanceFromMC (MovieController mc)
{
 Track track =NIL;
 QTVRInstance qtvrinstance =NIL;
 Movie movie =NIL;
 //Get the movie from the movie controller.
 movie =MCGetMovie(mc);
 if (movie !=NIL) {
 //Get the first QTVR track in the movie.
 track =QTVRGetQTVRTrack(movie, 1);
 //Get a QTVR instance for that QTVR track.
 if (track !=NIL) {
 QTVRGetQTVRInstance(qtvrinstance, track, mc);
 //Set our units to be degrees.
 if (qtvrinstance !=NIL)
 QTVRSetAngularUnits(qtvrinstance, kQTVRDegrees);
 }
 }
 return qtvrinstance;
}

Version Notes
Introduced in QuickTime 3 or earlier. QuickTime VR 2.1 supports files with at most one QTVR track; hence the
value for the index parameter of a movie made with QuickTime VR 2.1 is always 1. Panorama and object
movies made with QuickTime VR version 1.0 have no QTVR track. This function returns the track ID of the
panorama track for version 1.0 panorama movies and the track ID of the image video track for version 1.0
object movies.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
vrbackbuffer.win
vrcursors
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetTiltAngle
Obtains the tilt angle of a QuickTime VR movie.

Functions 2011
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

float QTVRGetTiltAngle (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A floating-point value that represents the current tilt angle of the QuickTime VR movie specified by the qtvr
parameter.

Discussion
When a cylindrical panorama is zoomed all the way out (to its maximum vertical field of view), it can no
longer be tilted because its entire vertical surface is exposed. Attempting to set the tilt angle will result in a
ConstraintReachedErr error (except for the degenerate case of setting the tilt angle to its current value).

The tilt angle may not be zero when the panorama is fully zoomed out; it may be tilted by one line of pixels.
The tilt angle is small in this case, typically 0.006, but its exact magnitude depends on the height of the
panorama; the taller the panorama, the smaller the error.

Do not test for a tilt angle of exactly 0.0 or attempt to adjust the tilt angle of a fully zoomed-out panorama.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrmovies
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRGetViewAnimation
Obtains the current state of view animation for an object node.

Boolean QTVRGetViewAnimation (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

2012 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Return Value
A Boolean value that indicates the current state of view animation for the object node specified by the qtvr
parameter. It is TRUE if view animation is enabled, FALSE otherwise.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetViewCenter
Obtains the view center of a QuickTime VR movie.

OSErr QTVRGetViewCenter (
 QTVRInstance qtvr,
 QTVRFloatPoint *viewCenter
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

viewCenter
On entry, a pointer to a QTVRFloatPoint structure. On return, that structure contains the current
view center of the specified movie.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetViewCurrentTime
Obtains the current time in the current view.

Functions 2013
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

TimeValue QTVRGetViewCurrentTime (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The current time in the current view of the object node specified by the qtvr parameter. The returned value
is always greater than or equal to 0 and less than or equal to the value returned by
QTVRGetCurrentViewDuration (page 1999).

Special Considerations

QTVRGetViewCurrentTime is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetViewingLimits
Obtains the current viewing limits of a QuickTime VR movie.

OSErr QTVRGetViewingLimits (
 QTVRInstance qtvr,
 UInt16 kind,
 float *minValue,
 float *maxValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

kind
The type of viewing limits to be returned (see below). See these constants:

kQTVRPan

kQTVRTilt

kQTVRFieldOfView

2014 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

minValue
On entry, a pointer to a floating-point value. On return, the minimum viewing limit of the specified
type is copied into that value.

maxValue
On entry, a pointer to a floating-point value. On return, the maximum viewing limit of the specified
type is copied into that value.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the floating-point values pointed to by the minValue and maxValue parameters,
the current minimum and maximum values for angles whose type is specified by the kind parameter. The
maximum field of view of a panoramic node can be limited by the size of the back buffer and the current
aspect ratio of the movie's graphics world. The values returned by this function are unaffected by the current
control settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetViewParameter
Undocumented

OSErr QTVRGetViewParameter (
 QTVRInstance qtvr,
 UInt32 viewParameter,
 void *value,
 UInt32 flagsIn,
 UInt32 *flagsOut
);

Parameters
qtvr

Undocumented

viewParameter
Undocumented

value
Undocumented

flagsIn
Undocumented

flagsOut
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2015
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetViewRate
Obtains the current view rate of an object node.

float QTVRGetViewRate (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The current view rate of the object node specified by the qtvr parameter. A view rate is a floating-point
value in the range from -100.0 to +100.0. An object node's default view rate is stored in the movie file.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetViewState
Obtains the value of a view state.

2016 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRGetViewState (
 QTVRInstance qtvr,
 QTVRViewStateType viewStateType,
 UInt16 *state
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

viewStateType
A view state type (see below). See these constants:

kQTVRDefault

kQTVRCurrent

kQTVRMouseDown

state
On entry, a pointer to a short integer. On return, that integer is set to the current value of the specified
type of view state.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetViewStateCount
Obtains the number of view states of an object node.

UInt16 QTVRGetViewStateCount (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
The number of view states associated with the object node specified by the qtvr parameter. The number
of view states in an object movie is defined by the movie file.

Special Considerations

This function is valid only for object nodes.

Functions 2017
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetVisible
Obtains a movie's visibility state.

Boolean QTVRGetVisible (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
A Boolean value that indicates whether the QuickTime VR movie specified by the qtvr parameter is visible
(TRUE) or not (FALSE).

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRGetVisibleHotSpots
Obtains a list of the currently visible hot spots in a QuickTime VR movie.

UInt32 QTVRGetVisibleHotSpots (
 QTVRInstance qtvr,
 Handle hotSpots
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

2018 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

hotSpots
On entry, a valid handle to a block of memory. On return, that block of memory is filled with a list of
the IDs of the visible hot spots in the specified QuickTime VR movie. If necessary, the handle is resized
to hold all the hot spot IDs. Accordingly, the handle must be unlocked at the time you call this function.

Return Value
The number of hot spot IDs returned though the hotSpots parameter.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRGetVRWorld
Obtains the VR world atom container for a movie.

OSErr QTVRGetVRWorld (
 QTVRInstance qtvr,
 QTAtomContainer *VRWorld
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

VRWorld
On return, a pointer to an atom container that contains information about the specified movie.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the VRWorld parameter, a pointer to an atom container that contains general scene
information about the QuickTime VR movie specified by the qtvr parameter, as well as a list of all the nodes
in that movie. You can use the QuickTime atom functions to extract atoms from that container.

Special Considerations

The VR world atom container returned by this function is a copy of the atom container maintained internally
by the QuickTime VR Manager. You should dispose of the VR world atom container by calling
QTDisposeAtomContainer (page 1427) when you're finished using it.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2019
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrscript.win

Declared In
QuickTimeVR.h

QTVRGoToNodeID
Sets the current node of a movie.

OSErr QTVRGoToNodeID (
 QTVRInstance qtvr,
 UInt32 nodeID
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

nodeID
The ID of the node you want to be the current node. The QuickTime VR Manager defines several
constants (see below) for specific nodes. See these constants:

kQTVRCurrentNode

kQTVRPreviousNode

kQTVRDefaultNode

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

Setting the current node also sets the pan, tilt, and field of view of the new current node to their default
values. As a result, if you wish to set non-default angles, you should call this function before you call
QTVRSetPanAngle (page 2051), QTVRSetTiltAngle (page 2054), or QTVRSetFieldOfView (page 2044).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

2020 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRInstallInterceptProc
Installs or removes an intercept procedure for a QuickTime VR Manager function.

OSErr QTVRInstallInterceptProc (
 QTVRInstance qtvr,
 QTVRProcSelector selector,
 QTVRInterceptUPP interceptProc,
 SInt32 refCon,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

selector
A selector (see below) that indicates which QuickTime VR function to intercept. See these constants:

kQTVRSetPanAngleSelector

kQTVRSetTiltAngleSelector

kQTVRSetFieldOfViewSelector

kQTVRSetViewCenterSelector

kQTVRMouseEnterSelector

kQTVRMouseWithinSelector

kQTVRMouseLeaveSelector

kQTVRMouseDownSelector

kQTVRMouseStillDownSelector

kQTVRMouseUpSelector

kQTVRTriggerHotSpotSelector

kQTVRGetHotSpotTypeSelector

interceptProc
A Universal Procedure Pointer for a QTVRInterceptProc callback. Set this parameter to NIL to
remove a previously installed intercept procedure.

refCon
A reference constant to be passed to your intercept callback. Use this parameter to point to a data
structure containing any information your callback needs.

flags
Unused. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the procedure specified by the interceptProc parameter as an intercept procedure
for the QuickTime VR function specified by the selector parameter for the QuickTime VR movie specified
by the qtvr parameter. Your intercept procedure is called whenever QuickTime VR is about to execute the
function you are intercepting.

Functions 2021
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Your procedure can simply replace the intercepted function, by returning TRUE in the cancel parameter;
or it can call through to the intercepted function, by calling QTVRCallInterceptedProc (page 1984); or it
can allow the intercepted function to execute when the intercept procedure returns, by returning FALSE in
the cancel parameter.

Here's an example of using this function:

// QTVRInstallInterceptProc coding example
// See "Discovering QuickTime," page 398
QTVRInterceptUPP MyInstallInterceptProcedure (QTVRInstance qtvrinstance)
{
 QTVRInterceptUPP lpfnIntercept;
 lpfnIntercept =NewQTVRInterceptProc(MyInterceptProc);
 QTVRInstallInterceptProc(qtvrinstance, kQTVRSetPanAngleSelector,
 lpfnIntercept, 0, 0);
 return lpfnIntercept
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRInteractionNudge
Translates the image and displays the new view or rotates the object in a particular direction and displays
its new appearance.

OSErr QTVRInteractionNudge (
 QTVRInstance qtvr,
 QTVRNudgeControl direction
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

2022 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

direction
The direction of the nudge (see below). The type of adjustment depends on the nudge interaction
mode, which you can set with QTVRSetInteractionProperty (page 2047). If the nudge interaction
mode is kQTVRNudgeRotate, the action of QTVRInteractionNudge is to rotate the object in the
specified direction. If the nudge interaction mode is kQTVRNudgeTranslate, the action of
QTVRInteractionNudge is to translate the image in the specified direction. If the nudge interaction
mode is kQTVRUNudgeSameAsMouse, the action of QTVRInteractionNudge is determined by the
current mouse mode, which you can determine by calling QTVRGetCurrentMouseMode (page 1998).
See these constants:

kQTVRRight

kQTVRUpRight

kQTVRUp

kQTVRUpLeft

kQTVRLeft

kQTVRDown

kQTVRDownRight

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adjusts the current view of the movie specified by the qtvr parameter as indicated by the
direction parameter. The type of adjustment depends on the property setting for nudge interaction mode,
which you can set with QTVRSetInteractionProperty (page 2047).

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseDown
Handles the user's clicking the mouse button when the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

Functions 2023
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRMouseDown (
 QTVRInstance qtvr,
 Point pt,
 UInt32 when,
 UInt16 modifiers,
 UInt32 *hotSpotID,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

when
The time, in the number of ticks (sixtieths of a second) since system startup, when the mouse-down
event was posted.

modifiers
A short integer, each bit of which is represented by a constant (see below) that provides information
about the state of the modifier keys and the mouse button at the time the event was posted. More
than one bit may be set. See these constants:

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the long integer pointed to by the hotSpotID parameter, the ID of the hot spot in
the QuickTime VR movie specified by the qtvr parameter that lies directly under the point specified by the
pt parameter. If no hot spot lies under that point, the long integer is set to 0. QTVRMouseDown also performs
any other tasks that are typically performed when the user clicks the mouse button when the cursor is in a
QuickTime VR movie.

Special Considerations

You need to call QTVRMouseDown only if you have disabled mouse-down tracking for the specified QuickTime
VR movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

2024 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRMouseEnter
Handles the user's moving the cursor into a QuickTime VR movie for which mouse-over tracking is disabled.

OSErr QTVRMouseEnter (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the long integer pointed to by the hotSpotID parameter, the ID of the hot spot in
the QuickTime VR movie specified by the qtvr parameter that lies directly under the point specified by the
pt parameter. If no hot spot lies under that point, the long integer is set to 0. QTVRMouseEnter also performs
any other tasks that are typically performed when the user first moves the cursor into a QuickTime VR movie.

Special Considerations

You need to call QTVRMouseEnter only if you have disabled mouse-over tracking for the specified QuickTime
VR movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseLeave
Handles the user's moving the cursor out of a QuickTime VR movie for which mouse-over tracking is disabled.

Functions 2025
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRMouseLeave (
 QTVRInstance qtvr,
 Point pt,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function performs any tasks that are typically performed when the user moves the cursor out of a
QuickTime VR movie.

Special Considerations

You need to call QTVRMouseLeave only if you have disabled mouse-over tracking for the specified QuickTime
VR movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseStillDown
Handles the user's holding down the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

OSErr QTVRMouseStillDown (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

2026 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the long integer pointed to by the hotSpotID parameter, the ID of the hot spot in
the QuickTime VR movie specified by the qtvr parameter that lies directly under the point specified by the
pt parameter. If no hot spot lies under that point, the long integer is set to 0. This function also performs
any other tasks that are typically performed when the user holds down the mouse button when the cursor
is in a QuickTime VR movie. You should call this function repeatedly for as long as the user holds down the
mouse button while the cursor is in the specified QuickTime VR movie.

Special Considerations

You need to call this function only if you have disabled mouse-down tracking for the specified QuickTime
VR movie. Applications running on operating systems other than Mac OS should use the extended form of
this function, QTVRMouseStillDownExtended (page 2027).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseStillDownExtended
Handles the user's holding down the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

OSErr QTVRMouseStillDownExtended (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w,
 UInt32 when,
 UInt16 modifiers
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Functions 2027
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

when
The current time as the number of ticks (sixtieths of a second) since system startup.

modifiers
A short integer, each bit of which is represented by a constant (see below) that provides information
about the state of the modifier keys and the mouse button at the time the event was posted. More
than one bit may be set. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function uses the same intercept asQTVRMouseStillDown (page 2026) but has two additional parameters.
Applications that intercept this function should always check the paramCount field to make sure it is 5 before
using the last two fields. You should call this function repeatedly for as long as the user holds down the
mouse button while the cursor is in the specified QuickTime VR movie.

Special Considerations

You need to call this function only if you have disabled mouse-down tracking for the specified QuickTime
VR movie. Internally, QuickTime VR always uses this function instead of QTVRMouseStillDown. Developers
implementing their own mouse down tracking don't need to use the extended version unless they also
intercept the procedure and need the added parameters.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseUp
Handles the user's releasing the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

2028 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRMouseUp (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the long integer pointed to by the hotSpotID parameter, the ID of the hot spot in
the QuickTime VR movie specified by the qtvr parameter that lies directly under the point specified by the
pt parameter. If no hot spot lies under that point, the long integer is set to 0. this function also performs any
other tasks that are typically performed when the user releases the mouse button after clicking it when the
cursor is in a QuickTime VR movie.

Special Considerations

You need to call this function only if you have disabled mouse-down tracking for the specified QuickTime
VR movie. Applications running on operating systems other than Mac OS should use the extended form of
this function, QTVRMouseUpExtended (page 2029).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseUpExtended
Handles the user's releasing the mouse button while the cursor is in a QuickTime VR movie for which
mouse-down tracking is disabled.

Functions 2029
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRMouseUpExtended (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w,
 UInt32 when,
 UInt16 modifiers
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

when
The time, in the number of ticks (sixtieths of a second) since system startup, when the mouse-up
event was posted.

modifiers
A short integer, each bit of which is represented by a constant (see below) that provides information
about the state of the modifier keys and the mouse button at the time the event was posted. More
than one bit may be set. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function uses the same intercept as the QTVRMouseUp function but has two additional parameters.
Applications that intercept this function should always check the paramCount field to make sure it is 5 before
using the last two fields.

Special Considerations

You need to call QTVRMouseUp (page 2028) or this function only if you have disabled mouse-down tracking
for the specified QuickTime VR movie. Internally, QuickTime VR always uses the this function function instead
of QTVRMouseUp. Developers implementing their own mouse down tracking don't need to use the extended
version unless they also intercept the procedure and need the added parameters.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

2030 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRMouseWithin
Handles the user's leaving the cursor in a QuickTime VR movie for which mouse-over tracking is disabled.

OSErr QTVRMouseWithin (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID,
 WindowRef w
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
The current location of the cursor, in the local coordinates of the graphics world specified by the w
parameter.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

w
A pointer to a graphics world.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should call this function repeatedly for as long as the cursor remains in the specified QuickTime VR movie.

Special Considerations

You need to call QTVRMouseWithin only if you have disabled mouse-over tracking for the specified QuickTime
VR movie.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRNudge
Turns one step in a particular direction and displays the new view.

Functions 2031
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRNudge (
 QTVRInstance qtvr,
 QTVRNudgeControl direction
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

direction
The direction of the nudge (see below). Any value of the direction parameter that is not predefined
is mapped to the closest defined value. See these constants:

kQTVRRight

kQTVRUpRight

kQTVRUp

kQTVRUpLeft

kQTVRLeft

kQTVRDown

kQTVRDownRight

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function adjusts the current view of the movie specified by the qtvr parameter as indicated by the
direction parameter. In particular, it turns one step in the indicated direction and displays the new view.
For example, to move to the next view that is right and up from the current view, set the direction parameter
to kQTVRUpRight (that is, pi/4 radians, or 45 degrees). For objects, if no view is located at the adjacent object
view defined by the nudge direction and wrapping is off in the desired direction, then this function remains
at the current view and returns the result code constraintReachedErr. For objects, this function is useful
for changing to an adjacent view without having to know the new pan and tilt angles. The direction of the
nudge is affected by the current control settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRPanToColumn
Obtains the column number in the object image array that corresponds to a pan angle.

2032 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

short QTVRPanToColumn (
 QTVRInstance qtvr,
 float panAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

panAngle
A pan angle.

Return Value
The zero-based column number in the current object image array that corresponds to the pan angle specified
by the panAngle parameter

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRPtToAngles
Obtains the pan and tilt angles of a point.

OSErr QTVRPtToAngles (
 QTVRInstance qtvr,
 Point pt,
 float *panAngle,
 float *tiltAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
A point, in the local coordinates of the graphics world of the specified movie.

panAngle
On entry, a pointer to a floating-point value. On return, that value contains the pan angle of the
specified point.

tiltAngle
On entry, a pointer to a floating-point value. On return, that value contains the tilt angle of the specified
point.

Functions 2033
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
For a panorama, each point in the current view corresponds to a particular pan and tilt angle, with the point
at the center of the view corresponding to the panorama's current pan and tilt angle. This function returns,
in the floating-point values pointed to by the panAngle and tiltAngle parameters, the pan and tilt angles
of the point specified by the pt parameter.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRPtToHotSpotID
Obtains the ID of the hot spot, if any, that lies beneath a point.

OSErr QTVRPtToHotSpotID (
 QTVRInstance qtvr,
 Point pt,
 UInt32 *hotSpotID
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

pt
A point, in the local coordinates of the graphics world of the specified movie.

hotSpotID
On entry, a pointer to a long integer. On return, that long integer contains the ID of the hot spot that
lies beneath the specified point, or the value 0 if no hot spot lies beneath that point.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

2034 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRRefreshBackBuffer
Refreshes the QTVR back buffer.

OSErr QTVRRefreshBackBuffer (
 QTVRInstance qtvr,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

flags
Unused. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function refreshes some or all of the back buffer associated with the QuickTime VR movie specified by
the qtvr parameter by reloading the appropriate data from the diced frames in the panorama image track.
You can call this function either in a back buffer imaging procedure or elsewhere in your application. If you
call this function in a back buffer imaging procedure, only the current rectangle (that is, the rectangle specified
by the procedure's drawRect parameter) is refreshed. If you call this function outside of a back buffer imaging
procedure, all areas of interest specified in the most recent call to QTVRSetBackBufferImagingProc (page
2039) are refreshed.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRReplaceCursor
Replaces any of the standard QuickTime VR cursors with your own custom cursor.

Functions 2035
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRReplaceCursor (
 QTVRInstance qtvr,
 QTVRCursorRecord *cursRecord
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

cursRecord
A pointer to a QTVRCursorRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function replaces one or more of the standard QuickTime VR cursors associated with the instance specified
by the qtvr parameter with the cursors specified in the cursor record pointed to by the cursRecord
parameter. If the type field of the specified cursor record is kQTVRUseDefaultCursor, the default cursor
for the given resource ID is reloaded; in this case, the handle field of that record should be set to NIL.

Special Considerations

This function replaces the standard cursors only for the specified QuickTime VR movie instance. To replace
the standard cursors for all QuickTime VR movie instances you create, you need to call this function for each
such instance.

Version Notes
Introduced in QuickTime 3 or earlier. Note that QuickTime VR 2.1 makes a copy of the cursor handle specified
in the cursor record. The application is responsible for disposing of its own cursor handle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrcursors
vrcursors.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRRowToTilt
Obtains the tilt angle that corresponds to a row number in a QTVR object image array.

2036 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

float QTVRRowToTilt (
 QTVRInstance qtvr,
 short row
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

row
A row number.

Return Value
The tilt angle that corresponds to the zero-based row number in the object image array specified by the row
parameter.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRSetAngularUnits
Sets the type of unit used when specifying QTVR angles.

OSErr QTVRSetAngularUnits (
 QTVRInstance qtvr,
 QTVRAngularUnits units
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

units
A constant (see below) that indicates the type of angular units to use. See these constants:

kQTVRDegrees

kQTVRRadians

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the type of angular units to be used in all subsequent QuickTime VR Manager calls for the
QuickTime VR movie specified by the qtvr parameter to the unit type specified by the units parameter.

Functions 2037
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrcursors
vrmakeobject
vrmovies
vrspeech

Declared In
QuickTimeVR.h

QTVRSetAnimationSetting
Sets the state of an animation setting for an object node.

OSErr QTVRSetAnimationSetting (
 QTVRInstance qtvr,
 QTVRObjectAnimationSetting setting,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

setting
An animation setting (see below). See these constants:

kQTVRPalindromeViewFrames

kQTVRDontLoopViewFrames

kQTVRPlayEveryViewFrame

kQTVRSyncViewToFrameRate

kQTVRPalindromeViews

kQTVRPlayStreamingViews

enable
A Boolean value that indicates whether the specified animation setting is to be enabled for the
specified object node (TRUE) or disabled (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

2038 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetBackBufferImagingProc
Installs or removes a QTVR back buffer imaging procedure.

OSErr QTVRSetBackBufferImagingProc (
 QTVRInstance qtvr,
 QTVRBackBufferImagingUPP backBufferImagingProc,
 UInt16 numAreas,
 QTVRAreaOfInterest areasOfInterest[],
 SInt32 refCon
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

backBufferImagingProc
A Universal Procedure Pointer for a QTVRBackBufferImagingProc callback. To remove a previously
installed back buffer imaging procedure, pass NIL.

numAreas
The number of area of interest structures in the array pointed to by the areasOfInterest parameter.

areasOfInterest[]
A pointer to an array of QTVRAreaOfInterest structures. Each structure defines a rectangular areas
about which you want your back buffer imaging procedure to be notified. Your procedure is called
for each area of interest as it becomes visible or not visible. You indicate when you want your procedure
to be called for a particular area of interest by setting flags in the flags field in the corresponding
area of interest structure. The width of the area of interest is limited by the size of the back buffer. If
the back buffer is less than the full cache size, then the area of interest can be no wider than half the
size of the back buffer. (For vertical cylinder geometries, limiting factor would be the height of the
buffer.) For a full cache back buffer, the width of the area of interest can be the full size of the buffer.
If the width limit is exceeded, this function returns constraintReachedErr.

refCon
A reference constant. This value is passed to the specified back buffer imaging callback. Use this
parameter to point to a data structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the procedure specified by the backBufferImagingProc parameter as a back buffer
imaging procedure for the panoramic node specified by the qtvr parameter. You can use that procedure
to draw directly into the back buffer. Coordinates in the back buffer are dependent on the current correction

Functions 2039
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

mode; as a result, you need to indicate the area you're interested in drawing into by specifying a pan angle
and tilt angle to determine the upper-left corner of the area and a height and width relative to that corner.
Specifying a height and width instead of a second pair of pan and tilt angles for the bottom-right coordinate
allows the rectangle to wrap around the edge of the panorama.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrbackbuffer.win
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetBackBufferPrefs
Sets the resolution, pixel format, and size of the back buffer maintained internally by QuickTime VR for caching
a panoramic image in a particular pixel format.

OSErr QTVRSetBackBufferPrefs (
 QTVRInstance qtvr,
 UInt32 geometry,
 UInt16 resolution,
 UInt32 cachePixelFormat,
 SInt16 cacheSize
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

geometry
The type and orientation of the panorama data (see below). See these constants:

kQTVRUseMovieGeometry

kQTVRVerticalCylinder

resolution
The desired image resolution (see below). See these constants:

kQTVRDefaultRes

kQTVRFullRes

kQTVRHalfRes

kQTVRQuarterRes

2040 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

cachePixelFormat
The desired pixel format for the back buffer (see below). See these constants:

cacheSize
The desired size for the panorama back buffer (see below). See these constants:

kQTVRMinimumCache

kQTVRSuggestedCache

kQTVRFullCache

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the resolution, pixel format, and size of the panorama back buffer for the movie specified
by the qtvr parameter to the values specified by the resolution parameter an the cachePixelFormat
and cacheSize parameters. You can specify a resolution that isn't contained in the movie file; if you do so,
QuickTime VR takes the highest resolution image in the file and reduces it to fit into the specified buffer size.
If you specify an unsupported pixel format, this function may return an error.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetConstraints
Sets the constraints of a VR movie.

OSErr QTVRSetConstraints (
 QTVRInstance qtvr,
 UInt16 kind,
 float minValue,
 float maxValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Functions 2041
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

kind
The type of constraint to set (see below). See these constants:

kQTVRPan

kQTVRTilt

kQTVRFieldOfView

minValue
A floating-point value that contains the desired minimum constraint of the specified type.

maxValue
A floating-point value that contains the desired maximum constraint of the specified type.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the minimum and maximum constraints of the type specified by the kind parameter to
the values specified by the minValue and maxValue parameters. Note that when you want to specify a pan
angle constraint, the minValue and maxValue parameters should be specified so that a clockwise sweep
from minValue to maxValue selects the desired angular expanse. For example, to constrain panning in the
90-degree expanse that spreads out 45 degrees on each side of the pan angle 0 degrees, you should set the
minValue parameter to 315 degrees and the maxValue parameter to 45 degrees. Similarly, to constrain
panning in the remaining 270-degree expanse, you should set the minValue parameter to 45 degrees and
the maxValue parameter to 315 degrees.

Special Considerations

The values passed to this function are unaffected by the current control settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetControlSetting
Sets the state of a control setting for a QTVR object node.

2042 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetControlSetting (
 QTVRInstance qtvr,
 QTVRControlSetting setting,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

setting
A control setting (see below). See these constants:

kQTVRWrapPan

kQTVRWrapTilt

kQTVRCanZoom

kQTVRReverseHControl

kQTVRReverseVControl

kQTVRSwapHVControl

kQTVRTranslation

enable
A Boolean value that indicates whether the specified control setting is to be enabled for the specified
object node (TRUE) or disabled (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetEnteringNodeProc
Installs or removes a node-entering procedure.

Functions 2043
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetEnteringNodeProc (
 QTVRInstance qtvr,
 QTVREnteringNodeUPP enteringNodeProc,
 SInt32 refCon,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enteringNodeProc
A Universal Procedure Pointer for a QTVREnteringNodeProc callback. To remove a previously installed
QTVREnteringNodeProc callback, set enteringNodeProc to NIL.

refCon
A reference constant. This value is passed to the specified node-entering callback. Use this parameter
to point to a data structure containing any information your callback needs.

flags
Unused. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the procedure specified by the enteringNodeProc parameter as a node-entering
procedure for the QuickTime VR movie specified by the qtvr parameter. Your procedure is called whenever
a node is entered (either in response to user actions or in response to QuickTime VR Manager functions that
change nodes). The reference constant specified by the refCon parameter is passed unchanged to that
node-entering procedure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRSetFieldOfView
Sets the vertical field of view of a QuickTime VR movie.

2044 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetFieldOfView (
 QTVRInstance qtvr,
 float fieldOfView
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

fieldOfView
The desired vertical field of view for the specified movie. This value is constrained by the maximum
field of view of the movie. Values that lie outside that limit are clipped to the maximum. Pan and tilt
angle values are also clipped if, when combined with the current field of view, they would cause an
image to lie outside the current constraints.

Return Value
See Error Codes. Returns noErr if there is no error. If the control setting kQTVRCanZoom is disabled, the
field of view is unchanged and this function returns the result code constraintReachedErr. You can use
QTVRSetControlSetting (page 2042) to control the setting of kQTVRCanZoom.

Special Considerations

The pan and tilt angles are subject to the current pan and tilt range constraints, as imposed by the viewing
limits and the current field of view. Accordingly, if you want to change the field of view, you should do so
before adjusting the pan or tilt angles. Otherwise, the pan and tilt angles are clipped against the current field
of view, which may result in an incorrect view when you alter the field of view.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRSetFrameRate
Sets the frame rate of an object node.

OSErr QTVRSetFrameRate (
 QTVRInstance qtvr,
 float rate
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Functions 2045
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

rate
The desired frame rate of the specified movie. A frame rate is a floating-point value in the range from
-100.0 to +100.0. Positive values indicate forward rates, and negative values indicate reverse rates.
Set this parameter to 0 to stop the movie. If the value specified lies outside the valid range, this
function returns the result code constraintReachedErr and sets the frame rate to the nearest
constraint.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is most useful when an object is being viewed with a looping animation. (The current view of
the object may contain frames that are played in a loop, as specified by the file format.) You can use this
function to change the frame rate of the loop.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetImagingProperty
Sets the value of an imaging property of a movie.

OSErr QTVRSetImagingProperty (
 QTVRInstance qtvr,
 QTVRImagingMode imagingMode,
 UInt32 imagingProperty,
 SInt32 propertyValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

imagingMode
An imaging mode (see below). See these constants:

kQTVRStatic

kQTVRMotion

kQTVRAllModes

2046 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

imagingProperty
An imaging property (see below). See these constants:

kQTVRImagingCorrection

kQTVRImagingQuality

kQTVRImagingDirectDraw

kQTVRImagingCurrentMode

propertyValue
The desired value for the specified imaging property for the specified mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Default values for all imaging properties can be contained in a QuickTime VR movie file. If no defaults are
specified in a movie file, the QuickTime VR Manager uses these values: for static mode, the
kQTVRImagingQuality property is codecHighQuality and kQTVRImagingDirectDraw is TRUE; for
motion mode, the kQTVRImagingQuality property is codecLowQuality and kQTVRImagingDirectDraw
is TRUE. The default correction mode is kQTVRFullCorrection for both static and motion imaging modes.
Note that it would look strange to have one correction mode for static imaging and a different correction
mode for motion imaging. As a result, you should typically set the imagingModeparameter to kQTVRAllModes
when setting a property of type kQTVRImagingCorrection.

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetInteractionProperty
Sets the value of an interaction property.

OSErr QTVRSetInteractionProperty (
 QTVRInstance qtvr,
 UInt32 property,
 void *value
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Functions 2047
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

property
An interaction property type (see below). See these constants:

kQTVRInteractionMouseClickHysteresis

kQTVRInteractionMouseClickTimeout

kQTVRInteractionPanTiltSpeed

kQTVRInteractionZoomSpeed

kQTVRInteractionTranslateOnMouseDown

kQTVRInteractionMouseMotionScale

kQTVRInteractionNudgeMode

value
The desired value of the specified interaction property.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the value of the interaction property of the type specified by the property parameter for
the movie specified by the qtvr parameter to the value specified by the value parameter. For types that
occupy 32 or fewer bits of memory, you pass the desired value itself (cast to a void* type) in the value
parameter. For structures and floating-point values, you must pass a pointer to the desired value in the value
parameter. Note that floating-point values are usually stored as 32-bit values, but compilers differ in how
they pass floating-point values as parameters; as a result, this function demands that floating-point values
always be passed by reference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetLeavingNodeProc
Installs or removes a node-leaving procedure.

OSErr QTVRSetLeavingNodeProc (
 QTVRInstance qtvr,
 QTVRLeavingNodeUPP leavingNodeProc,
 SInt32 refCon,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

2048 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

leavingNodeProc
A Universal Procedure Pointer for a QTVRLeavingNodeProc callback. To remove a previously installed
QTVRLeavingNodeProc callback, set leavingNodeProc to NIL.

refCon
A reference constant. This value is passed to the specified node-leaving callback. Use this parameter
to point to a data structure containing any information your callback needs.

flags
Unused. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the procedure specified by theleavingNodeProcparameter as a node-leaving procedure
for the QuickTime VR movie specified by the qtvr parameter. Your procedure is called whenever a node is
left (either in response to user actions or in response to QuickTime VR Manager functions that change nodes).
The reference constant specified by the refCon parameter is passed unchanged to that node-leaving
procedure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetMouseDownTracking
Sets the state of mouse-down tracking.

OSErr QTVRSetMouseDownTracking (
 QTVRInstance qtvr,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enable
A Boolean value that indicates whether QuickTime VR should handle mouse-down tracking for the
specified movie (TRUE) or not (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2049
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
By default, QuickTime VR tracks mouse clicks in a QuickTime VR movie and triggers hot spots as appropriate.
If you disable mouse-down tracking (by passing FALSE in the enable parameter), you must call
QTVRMouseDown (page 2023),QTVRMouseStillDown (page 2026),andQTVRMouseUp (page 2028)at theappropriate
times to handle user actions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRSetMouseOverHotSpotProc
Installs or removes a mouse over hot spot procedure.

OSErr QTVRSetMouseOverHotSpotProc (
 QTVRInstance qtvr,
 QTVRMouseOverHotSpotUPP mouseOverHotSpotProc,
 SInt32 refCon,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

mouseOverHotSpotProc
A Universal Procedure Pointer for a QTVRMouseOverHotSpotProc callback. To remove a previously
installed QTVRMouseOverHotSpotUPP callback, set mouseOverHotSpotProc to NIL.

refCon
A reference constant. This value is passed to the specified mouse over hot spot callback. Use this
parameter to point to a data structure containing any information your callback needs.

flags
Unused. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the routine specified by the mouseOverHotSpotProc parameter as a mouse over hot
spot procedure for the QuickTime VR movie specified by the qtvr parameter. Subsequent user actions (such
as moving the cursor over an enabled hot spot in that movie) cause the callback routine to be executed. The
reference constant specified by the refCon parameter is passed unchanged to your callback routine.

Special Considerations

Your mouse over hot spot procedure is called only for enabled hot spots.

Version Notes
Introduced in QuickTime 3 or earlier.

2050 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrcursors
vrcursors.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetMouseOverTracking
Sets the state of mouse-over tracking.

OSErr QTVRSetMouseOverTracking (
 QTVRInstance qtvr,
 Boolean enable
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

enable
A Boolean value that indicates whether QuickTime VR should handle mouse-over tracking for the
specified movie (TRUE) or not (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By default, QuickTime VR tracks mouse movements in a QuickTime VR movie and changes the shape of the
cursor as appropriate. If you disable mouse-over tracking (by passing FALSE in the enable parameter), you
must callQTVRMouseEnter (page 2025),QTVRMouseWithin (page 2031), andQTVRMouseLeave (page 2025) at
the appropriate times to handle user actions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRSetPanAngle
Sets the pan angle of a QuickTime VR movie.

Functions 2051
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetPanAngle (
 QTVRInstance qtvr,
 float panAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

panAngle
The desired pan angle of the specified movie. This value is constrained by the maximum and minimum
pan angles of the movie. If the angle falls outside of those constraints and the control setting
kQTVRWrapPan is disabled, the angle is set to the minimum or maximum, whichever is closer. If
wrapping is enabled, the pan angle is clipped to fall within the constraints. Pan angle values are also
clipped if the requested pan angle, when combined with the current tilt angle and field of view, would
cause an image to lie outside the current constraints.

Return Value
See Error Codes. Returns noErr if there is no error. This function returns the result code
constraintReachedErr if wrapping is off and the angle is set to the minimum or maximum constraint
value.

Special Considerations

The pan and tilt angles are subject to the current pan and tilt range constraints, as imposed by the viewing
limits and the current field of view. Accordingly, if you want to change the field of view, you should do so
before adjusting the pan or tilt angles. Otherwise, the pan and tilt angles are clipped against the current field
of view, which may result in an incorrect view when you alter the field of view.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRSetPrescreenImagingCompleteProc
Installs or removes a prescreen buffer imaging completion procedure.

2052 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetPrescreenImagingCompleteProc (
 QTVRInstance qtvr,
 QTVRImagingCompleteUPP imagingCompleteProc,
 SInt32 refCon,
 UInt32 flags
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

imagingCompleteProc
A Universal Procedure Pointer for a QTVRImagingCompleteProc callback. To remove a previously
installed QTVRImagingCompleteProc callback, set imagingCompleteProc to NIL.

refCon
A reference constant. This value is passed to the specified prescreen buffer imaging completion
callback. Use this parameter to point to a data structure containing any information your callback
needs.

flags
A constant (see below) that causes a draw attempt on every idle passed to the movie controller besides
being called whenever QuickTime VR finishes drawing an image into the prescreen buffer. See these
constants:

kQTVRPreScreenEveryIdle

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function installs the procedure specified by the imagingCompleteProc parameter as a prescreen buffer
imaging completion procedure for the QuickTime VR movie specified by the qtvr parameter. Your procedure
is called whenever QuickTime VR finishes drawing an image into the prescreen buffer. The reference constant
specified by the refCon parameter is passed unchanged to that prescreen buffer imaging completion
procedure.

Special Considerations

QTVRSetPrescreenImagingCompleteProc is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

Functions 2053
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRSetTiltAngle
Sets the tilt angle of a QuickTime VR movie.

OSErr QTVRSetTiltAngle (
 QTVRInstance qtvr,
 float tiltAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

tiltAngle
The desired tilt angle of the specified movie. This value is constrained by the maximum and minimum
tilt angles of the movie. If the angle falls outside of those constraints and the control setting
kQTVRWrapTilt is disabled, the angle is set to the minimum or maximum, whichever is closer. If
wrapping is enabled, the tilt angle is clipped to fall within the constraints. Tilt angle values are also
clipped if the requested tilt angle, when combined with the current pan angle and field of view, would
cause an image to lie outside the current constraints.

Return Value
See Error Codes. Returns noErr if there is no error. This function returns the result code
constraintReachedErr if wrapping is off and the angle is set to the minimum or maximum constraint
value.

Discussion
When a cylindrical panorama is zoomed all the way out (to its maximum vertical field of view), it can no
longer be tilted because its entire vertical surface is exposed. Attempting to set the tilt angle will result in a
ConstraintReachedErr error (except for the degenerate case of setting the tilt angle to its current value).

The tilt angle may not be zero when the panorama is fully zoomed out; it may be tilted by one line of pixels.
The tilt angle is small in this case, typically 0.006, but its exact magnitude depends on the height of the
panorama; the taller the panorama, the smaller the error.

Do not test for a tilt angle of exactly 0.0 or attempt to adjust the tilt angle of a fully zoomed-out panorama.

Special Considerations

The pan and tilt angles are subject to the current pan and tilt range constraints, as imposed by the viewing
limits and the current field of view. Accordingly, if you want to change the field of view, you should do so
before adjusting the pan or tilt angles. Otherwise, the pan and tilt angles are clipped against the current field
of view, which may result in an incorrect view when you alter the field of view.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win
vrspeech

2054 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Declared In
QuickTimeVR.h

QTVRSetTransitionProperty
Sets the value of a transition property.

OSErr QTVRSetTransitionProperty (
 QTVRInstance qtvr,
 UInt32 transitionType,
 UInt32 transitionProperty,
 SInt32 transitionValue
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

transitionType
A type of transition (see below). See these constants:

kQTVRTransitionSwing

transitionProperty
A type of transition property (see below). See these constants:

kQTVRTransitionSpeed

kQTVRTransitionDirection

transitionValue
The desired value for the specified transition property.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the value of the transition property whose type is specified by the transitionType and
transitionProperty parameters for the movie specified by the qtvr parameter to the value specified by
the transitionValue parameter. Note that calling this function simply sets a transition property's value;
you must still call QTVREnableTransition (page 1988) to enable that transition effect.

Special Considerations

QTVRSetTransitionProperty is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Functions 2055
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Declared In
QuickTimeVR.h

QTVRSetViewCenter
Sets the view center of a QuickTime VR movie.

OSErr QTVRSetViewCenter (
 QTVRInstance qtvr,
 const QTVRFloatPoint *viewCenter
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

viewCenter
A pointer to a QTVRFloatPoint structure that contains the desired view center of the specified
movie. This point is constrained by the current field of view of the movie. The values you pass in the
QTVRFloatPoint structure are adjusted so that the magnified area does not show anything outside
the view.

Return Value
See Error Codes. Returns noErr if there is no error. If the kQTVRTranslation control setting is disabled,
this function returns the result code constraintReachedErr and doesn't change the current view center.
You can use QTVRSetControlSetting (page 2042) to control the setting of kQTVRTranslation.

Special Considerations

QTVRSetViewCenter is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetViewCurrentTime
Sets the time in the current QTVR view.

2056 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetViewCurrentTime (
 QTVRInstance qtvr,
 TimeValue time
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

time
The desired time in the current view. This value should be greater than or equal to 0 and less than or
equal to the value returned by QTVRGetCurrentViewDuration (page 1999).

Return Value
See Error Codes. Returns noErr if there is no error. This function returns the result code timeNotInViewErr
if the specified time value is greater than or equal to the view duration of the specified object node; in
addition, it sets the current view time to 1 less than the view duration. Similarly, this function returns the
result code timeNotInViewErr if the specified time value is less than 0; in that case, it sets the current view
time to 0.

Special Considerations

QTVRSetViewCurrentTime is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetViewParameter
Undocumented

OSErr QTVRSetViewParameter (
 QTVRInstance qtvr,
 UInt32 viewParameter,
 void *value,
 UInt32 flagsIn
);

Parameters
qtvr

Undocumented

viewParameter
Undocumented

Functions 2057
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

value
Undocumented

flagsIn
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRSetViewRate
Sets the view rate of a QTVR object node.

OSErr QTVRSetViewRate (
 QTVRInstance qtvr,
 float rate
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

rate
The desired view rate of the specified movie. A view rate is a floating-point value in the range from
-100.0 to +100.0. Positive values indicate forward rates, and negative values indicate reverse rates.
Set this parameter to 0 to stop the movie.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function sets the view rate of the object node specified by the qtvr parameter to the rate specified by
the rate parameter. A node's view rate might be modified by the current animation settings. If the value
specified in the rate parameter lies outside the valid range, this function returns the result code
constraintReachedErr and sets the view rate to the nearest constraint.

Special Considerations

QTVRSetViewRate is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

2058 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetViewState
Sets the value of a QTVR view state.

OSErr QTVRSetViewState (
 QTVRInstance qtvr,
 QTVRViewStateType viewStateType,
 UInt16 state
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

viewStateType
A view state type (see below). See these constants:

kQTVRDefault

kQTVRCurrent

kQTVRMouseDown

state
The desired value of the specified type of view state.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

QTVRSetViewState is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRSetVisible
Sets a VR movie's visibility state.

Functions 2059
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRSetVisible (
 QTVRInstance qtvr,
 Boolean visible
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

visible
A Boolean value that indicates whether the specified movie is to be visible (TRUE) or not (FALSE).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Setting the visibility state to FALSE is useful if you want to turn off imaging a QuickTime VR movie without
purging the associated data from memory. When a panoramic node's visibility state is FALSE, the corrected
image is still drawn to the prescreen buffer. You can access the data in that buffer by calling
QTVRSetPrescreenImagingCompleteProc (page 2052).

Special Considerations

This function is valid only for panoramic nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRShowDefaultView
Displays the default view of a QTVR node.

OSErr QTVRShowDefaultView (
 QTVRInstance qtvr
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

Return Value
See Error Codes. Returns noErr if there is no error.

2060 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
This function sets the default values of the pan angle, tilt angle, field of view, view center (for object nodes),
default state, mouse-down state, and all applicable animation and control settings for the VR movie specified
by the qtvr parameter. A VR movie's default view values are stored in the movie file.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

QTVRTiltToRow
Obtains the row number in the QTVR object image array that corresponds to a tilt angle.

short QTVRTiltToRow (
 QTVRInstance qtvr,
 float tiltAngle
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

tiltAngle
A tilt angle.

Return Value
The zero-based row number in the current object image array that corresponds to the tilt angle specified by
the tiltAngle parameter.

Special Considerations

This function is valid only for object nodes.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRTriggerHotSpot
Triggers a QTVR hot spot.

Functions 2061
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRTriggerHotSpot (
 QTVRInstance qtvr,
 UInt32 hotSpotID,
 QTAtomContainer nodeInfo,
 QTAtom selectedAtom
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

hotSpotID
A hot spot ID.

nodeInfo
A node information atom container, obtained from a previous call to QTVRGetNodeInfo (page 2007).
You can pass the value 0 in this parameter to have QuickTime determine the appropriate node
information atom container.

selectedAtom
The atom of the hot spot to trigger. You can pass the value 0 in this parameter to have QuickTime
determine the appropriate hot spot atom.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
One way you can use this function is to execute any hot spot without the user's having clicked it. Usually,
you need only specify the qtvr instance and the hot spot ID. You can pass zero for the nodeInfo and
selectedAtom parameters.

The more common use of this function is not in calling it directly, but in setting up an intercept procedure
on it. This function is called internally by QuickTime whenever a user clicks a hot spot. You can intercept calls
to trigger your custom hot spots, which allows you to perform any custom actions you desire.

When this function is called internally (and then intercepted by your intercept procedure), the nodeInfo
and selectedAtom parameters have been properly set by QuickTime and are available for your use. For
undefined hot spots that do not have an associated hot spot atom in the node info atom container, the
selectedAtom parameter will be set to zero.

Special Considerations

You can call this function even on hot spots that are currently disabled.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrscript
vrscript.win

Declared In
QuickTimeVR.h

2062 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRUpdate
Forces an immediate update of a QuickTime VR movie image.

OSErr QTVRUpdate (
 QTVRInstance qtvr,
 QTVRImagingMode imagingMode
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

imagingMode
An imaging mode. You can specify kQTVRCurrentMode (see below) to use the current imaging mode.
See these constants:

kQTVRCurrentMode

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function immediately updates the image for the QuickTime VR movie specified by the qtvr parameter,
without waiting for the next call to MoviesTask (page 257) in your application's main event loop. If you plan
to call this function repeatedly for a movie instance, then for improved performance you should bracket
those calls with calls to QTVRBeginUpdateStream (page 1983) and QTVREndUpdateStream (page 1989).

Special Considerations

If you call this function after calling QTVRBeginUpdateStream (page 1983) but before calling
QTVREndUpdateStream (page 1989), the imagingMode parameter passed to it must be the same as the
imagingMode parameter passed to QTVRBeginUpdateStream. If you do not specify the same imaging
mode to those two functions, an error will result.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win
vrspeech

Declared In
QuickTimeVR.h

QTVRWrapAndConstrain
Preflights a change in the viewing or control characteristics of a QTVR object or panoramic node.

Functions 2063
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr QTVRWrapAndConstrain (
 QTVRInstance qtvr,
 short kind,
 float value,
 float *result
);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

kind
A constraint type (see below). See these constants:

kQTVRPan

kQTVRTilt

kQTVRFieldOfView

kQTVRViewCenterH

kQTVRViewCenterV

value
The desired value of the specified viewing characteristic.

result
On return, the value to which the specified viewing characteristic would be set if it were changed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns, in the result parameter, the constrained or wrapped value that would result from
setting the viewing or control characteristic specified by the kind parameter to the value specified by the
value parameter. For example, if the kind parameter is set to kQTVRPan, then this function returns the
value that would result from calling QTVRSetPanAngle (page 2051) with its panAngle parameter set to the
value parameter. Similarly, you can use this function to find the current bounds of the view center. It takes
into account the current constraints and wrapping modes of the node specified by the qtvr parameter. This
function does not change the current view or other settings of the specified object or panorama.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
vrmovies
vrmovies.win
vrscript
vrscript.win

Declared In
QuickTimeVR.h

2064 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Callbacks

QTVRBackBufferImagingProc
An imaging procedure that draws directly into the back buffer for a QTVR panoramic node.

typedef OSErr (*QTVRBackBufferImagingProcPtr) (QTVRInstance qtvr, Rect *drawRect,
 UInt16 areaIndex, UInt32 flagsIn, UInt32 *flagsOut, SInt32 refCon);

If you name your function MyQTVRBackBufferImagingProc, you would declare it this way:

OSErr MyQTVRBackBufferImagingProc (
 QTVRInstance qtvr,
 Rect *drawRect,
 UInt16 areaIndex,
 UInt32 flagsIn,
 UInt32 *flagsOut,
 SInt32 refCon);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

drawRect
Undocumented

areaIndex
Undocumented

flagsIn
Undocumented

flagsOut
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeVR.h

QTVREnteringNodeProc
A routine called whenever a QTVR node is entered, in response either to user actions or QuickTime VR Manager
functions that change nodes.

typedef OSErr (*QTVREnteringNodeProcPtr) (QTVRInstance qtvr, UInt32 nodeID, SInt32
 refCon);

If you name your function MyQTVREnteringNodeProc, you would declare it this way:

Callbacks 2065
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

OSErr MyQTVREnteringNodeProc (
 QTVRInstance qtvr,
 UInt32 nodeID,
 SInt32 refCon);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

nodeID
A node ID. Set this parameter to kQTVRCurrentNode to designate the current node.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeVR.h

QTVRImagingCompleteProc
An imaging completion procedure for a QuickTime VR movie, called whenever QTVR finishes drawing an
image into the prescreen buffer.

typedef OSErr (*QTVRImagingCompleteProcPtr) (QTVRInstance qtvr, SInt32 refCon);

If you name your function MyQTVRImagingCompleteProc, you would declare it this way:

OSErr MyQTVRImagingCompleteProc (
 QTVRInstance qtvr,
 SInt32 refCon);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeVR.h

QTVRInterceptProc
A routine that is called when certain QTVR functions are intercepted.

2066 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

typedef void (*QTVRInterceptProcPtr) (QTVRInstance qtvr, QTVRInterceptPtr qtvrMsg,
 SInt32 refCon, Boolean *cancel);

If you name your function MyQTVRInterceptProc, you would declare it this way:

void MyQTVRInterceptProc (
 QTVRInstance qtvr,
 QTVRInterceptPtr qtvrMsg,
 SInt32 refCon,
 Boolean *cancel);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

qtvrMsg
A pointer to a QTVRInterceptRecord structure that determines which functions are intercepted.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

cancel
A pointer to a Boolean; set to TRUE if the intercept is cancelled.

Declared In
QuickTimeVR.h

QTVRLeavingNodeProc
A routine called whenever a QTVR node is left, in response either to user actions or QuickTime VR Manager
functions that change nodes.

typedef OSErr (*QTVRLeavingNodeProcPtr) (QTVRInstance qtvr, UInt32 fromNodeID,
UInt32 toNodeID, Boolean *cancel, SInt32 refCon);

If you name your function MyQTVRLeavingNodeProc, you would declare it this way:

OSErr MyQTVRLeavingNodeProc (
 QTVRInstance qtvr,
 UInt32 fromNodeID,
 UInt32 toNodeID,
 Boolean *cancel,
 SInt32 refCon);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

fromNodeID
The ID of the node being left. Set this parameter to kQTVRCurrentNode to designate the current
node.

Callbacks 2067
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

toNodeID
The ID of the node being entered. Set this parameter to kQTVRCurrentNode to designate the current
node.

cancel
A pointer to a Boolean; set to TRUE if the callback is cancelled.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeVR.h

QTVRMouseOverHotSpotProc
A routine that is called when the mouse is over a hot spot in a QTVR movie.

typedef OSErr (*QTVRMouseOverHotSpotProcPtr) (QTVRInstance qtvr, UInt32 hotSpotID,
 UInt32 flags, SInt32 refCon);

If you name your function MyQTVRMouseOverHotSpotProc, you would declare it this way:

OSErr MyQTVRMouseOverHotSpotProc (
 QTVRInstance qtvr,
 UInt32 hotSpotID,
 UInt32 flags,
 SInt32 refCon);

Parameters
qtvr

An instance of a QuickTime VR movie. You can get this value by calling QTVRGetQTVRInstance (page
2009).

hotSpotID
A hot spot ID.

flags
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeVR.h

2068 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Data Types

QTVRAngularUnits
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRAngularUnits;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRAreaOfInterest
Contains information passed to QTVRSetBackBufferImagingProc.

struct QTVRAreaOfInterest {
 float panAngle;
 float tiltAngle;
 float width;
 float height;
 UInt32 flags;
 };

Fields
panAngle

Discussion
The pan angle of the upper-left coordinate (in panorama space) of the area of interest.

tiltAngle

Discussion
The tilt angle of the upper-left coordinate (in panorama space) of the area of interest.

width

Discussion
The width of the area of interest.

height

Discussion
The height of the area of interest.

flags

Discussion
A set of bit flags (see below) that indicate when to call the back buffer imaging procedure for this area of
interest. See these constants:

kQTVRBackBufferEveryUpdate

kQTVRBackBufferEveryIdle

kQTVRBackBufferAlwaysRefresh

Data Types 2069
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Discussion
The areasOfInterest parameter to QTVRSetBackBufferImagingProc (page 2039) specifies an array of
QTVRAreaOfInterest structures, each one of which indicates a rectangular area in the QTVR back buffer.

Related Functions
QTVRSetBackBufferImagingProc (page 2039)

Declared In
QuickTimeVR.h

QTVRBackBufferImagingUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVRBackBufferImagingProcPtr) QTVRBackBufferImagingUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRControlSetting
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRControlSetting;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRCursorRecord
Contains information passed to QTVRReplaceCursor.

struct QTVRCursorRecord {
 UInt16 theType;
 SInt16 rsrcID;
 Handle handle;
 };

Fields
theType

Discussion
A constant (see below) that defines the type of cursor to replace. See these constants:

kQTVRUseDefaultCursor

kQTVRStdCursorType

kQTVRColorCursorType

2070 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

rsrcID

Discussion
The resource ID of the cursor to replace; see QTVR Cursors.

handle

Discussion
A handle to the cursor data that is to replace the specified cursor. If theType is kQTVRUseDefaultCursor,
then this field should contain NIL.

Discussion
The cursRecord parameter to QTVRReplaceCursor (page 2035) specifies a QTVRCursorRecord structure,
which indicates the cursor to replace and its replacement cursor.

Version Notes
In earlier versions of QuickTime, theType was called the type field.

Related Functions
QTVRReplaceCursor (page 2035)

Declared In
QuickTimeVR.h

QTVREnteringNodeUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVREnteringNodeProcPtr) QTVREnteringNodeUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRFloatPoint
Specifies a point in a QTVR panorama or object.

struct QTVRFloatPoint {
 float x;
 float y;
 };

Fields
x

Discussion
The horizontal coordinate of the point.

y

Discussion
The vertical coordinate of the point.

Data Types 2071
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Related Functions
QTVRAnglesToCoord (page 1982)
QTVRCoordToAngles (page 1985)
QTVRGetViewCenter (page 2013)

Declared In
QuickTimeVR.h

QTVRImagingCompleteUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVRImagingCompleteProcPtr) QTVRImagingCompleteUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRImagingMode
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRImagingMode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRInstance
Represents a type used by the Virtual Reality API.

typedef struct OpaqueQTVRInstance * QTVRInstance;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRInterceptRecord
Contains information about a QTVRInterceptProc being intercepted by QTVR.

2072 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

struct QTVRInterceptRecord {
 SInt32 reserved1;
 SInt32 selector;
 SInt32 reserved2;
 SInt32 reserved3;
 SInt32 paramCount;
 void * parameter[6];
 };

Fields
reserved1

Discussion
Reserved; do not use.

selector

Discussion
A constant that indicates which routine has triggered your intercept procedure (see below). See these
constants:

kQTVRSetPanAngleSelector

kQTVRSetTiltAngleSelector

kQTVRSetFieldOfViewSelector

kQTVRSetViewCenterSelector

kQTVRMouseEnterSelector

kQTVRMouseWithinSelector

kQTVRMouseLeaveSelector

kQTVRMouseDownSelector

kQTVRMouseStillDownSelector

kQTVRMouseUpSelector

kQTVRTriggerHotSpotSelector

kQTVRGetHotSpotTypeSelector

reserved2

Discussion
Reserved; do not use.

reserved3

Discussion
Reserved; do not use.

paramCount

Discussion
The number of items in the parameter field.

parameter

Discussion
An array that holds, in order, the parameters that were passed to the intercepted function, minus the QTVR
instance parameter. For example, if you intercept the QTVRSetPanAngle function, the parameter field
contains a single item, a pointer to a floating-point value that is the new pan angle. You can determine how
many items the parameter field contains by inspecting the paramCount field.

Related Functions
QTVRCallInterceptedProc (page 1984)

Data Types 2073
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Declared In
QuickTimeVR.h

QTVRInterceptUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVRInterceptProcPtr) QTVRInterceptUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRLeavingNodeUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVRLeavingNodeProcPtr) QTVRLeavingNodeUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRMouseOverHotSpotUPP
Represents a type used by the Virtual Reality API.

typedef STACK_UPP_TYPE(QTVRMouseOverHotSpotProcPtr) QTVRMouseOverHotSpotUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRNudgeControl
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRNudgeControl;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

2074 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRObjectAnimationSetting
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRObjectAnimationSetting;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRProcSelector
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRProcSelector;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

QTVRViewStateType
Represents a type used by the Virtual Reality API.

typedef UInt32 QTVRViewStateType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeVR.h

Constants

kQTVRBackBufferAlwaysRefresh
Constants grouped with kQTVRBackBufferAlwaysRefresh.

Constants 2075
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRBackBufferEveryUpdate = 1L << 0,
 kQTVRBackBufferEveryIdle = 1L << 1,
 kQTVRBackBufferAlwaysRefresh = 1L << 2,
 kQTVRBackBufferHorizontal = 1L << 3 /* Requires that backbuffer proc be
long-rowBytes aware (gestaltQDHasLongRowBytes)*/
};

Constants
kQTVRBackBufferEveryUpdate

If this bit is set, the back buffer imaging procedure is to be called whenever QuickTime is about to
update the window containing the specified QuickTime VR movie instance. That is, the procedure is
called just before QuickTime unwarps the back buffer image into the prescreen buffer and redraws
the screen image.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRBackBufferEveryIdle
If this bit is set, the back buffer imaging procedure is to be called when either MCIsPlayerEvent (page
1204) is called with the idle parameter, or when MCIdle (page 1202) is called. Its purpose is to cause the
software to draw as often as possible.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRBackBufferAlwaysRefresh
If this bit is set, the back buffer is always refreshed to the proper movie data just before your back
buffer imaging procedure is called. If your back buffer imaging procedure completely overwrites the
rectangle passed to it, you should not set this bit.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Declared In
QuickTimeVR.h

QTVRGoToNodeID Values
Constants passed to QTVRGoToNodeID.

enum {
 kQTVRCurrentNode = 0,
 kQTVRPreviousNode = (long)0x80000000,
 kQTVRDefaultNode = (long)0x80000001
};

Declared In
QuickTimeVR.h

QTVRSetViewState Values
Constants passed to QTVRSetViewState.

2076 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRDefault = 0,
 kQTVRCurrent = 2,
 kQTVRMouseDown = 3
};

Declared In
QuickTimeVR.h

QTVRSetBackBufferPrefs Values
Constants passed to QTVRSetBackBufferPrefs.

enum {
 kQTVRDefaultRes = 0,
 kQTVRFullRes = 1L << 0,
 kQTVRHalfRes = 1L << 1,
 kQTVRQuarterRes = 1L << 2
};
enum {
 kQTVRMinimumCache = -1,
 kQTVRSuggestedCache = 0,
 kQTVRFullCache = 1
};

Constants
kQTVRQuarterRes

One-quarter the full resolution of the image.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMinimumCache
The minimum cache size required to display the specified VR movie.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRSuggestedCache
The suggested cache size, a cache large enough to allow full zooming out of the panorama.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Declared In
QuickTimeVR.h

QTVRSetAngularUnits Values
Constants passed to QTVRSetAngularUnits.

Constants 2077
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRDegrees = 0,
 kQTVRRadians = 1
};

Declared In
QuickTimeVR.h

QTVREnableHotSpot Values
Constants passed to QTVREnableHotSpot.

enum {
 kQTVRHotSpotID = 0,
 kQTVRHotSpotType = 1,
 kQTVRAllHotSpots = 2
};

Declared In
QuickTimeVR.h

kQTVRImagingCorrection
Constants grouped with kQTVRImagingCorrection.

enum {
 kQTVRImagingCorrection = 1,
 kQTVRImagingQuality = 2,
 kQTVRImagingDirectDraw = 3,
 kQTVRImagingCurrentMode = 100 /* Get Only*/
};

Declared In
QuickTimeVR.h

QTVRSetInteractionProperty Values
Constants passed to QTVRSetInteractionProperty.

2078 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRInteractionMouseClickHysteresis = 1, /* pixels within which the mouse is
considered not to have moved (UInt16)*/
 kQTVRInteractionMouseClickTimeout = 2, /* ticks after which a mouse click times
 out and turns into panning (UInt32)*/
 kQTVRInteractionPanTiltSpeed = 3, /* control the relative pan/tilt speed from
 1 (slowest) to 10 (fastest). (UInt32) Default is 5;*/
 kQTVRInteractionZoomSpeed = 4, /* control the relative zooming speed from
 1 (slowest) to 10 (fastest). (UInt32) Default is 5;*/
 kQTVRInteractionTranslateOnMouseDown = 101, /* Holding MouseDown with this setting
 translates zoomed object movies (Boolean)*/
 kQTVRInteractionMouseMotionScale = 102, /* The maximum angle of rotation caused
 by dragging across the display window. (* float)*/
 kQTVRInteractionNudgeMode = 103 /* A QTVRNudgeMode: rotate, translate, or
 the same as the current mouse mode. Requires QTVR 2.1*/
};

Declared In
QuickTimeVR.h

kQTVRDontLoopViewFrames
Constants grouped with kQTVRDontLoopViewFrames.

enum {
 /* View Frame Animation Settings*/
 kQTVRPalindromeViewFrames = 1,
 kQTVRStartFirstViewFrame = 2,
 kQTVRDontLoopViewFrames = 3,
 kQTVRPlayEveryViewFrame = 4, /* Requires QTVR 2.1 (kQTVRAPIMajorVersion02
 + kQTVRAPIMinorVersion10)*/
 /* View Animation Settings*/
 kQTVRSyncViewToFrameRate = 16,
 kQTVRPalindromeViews = 17,
 kQTVRPlayStreamingViews = 18 /* Requires QTVR 2.1 (kQTVRAPIMajorVersion02
 + kQTVRAPIMinorVersion10)*/
};

Declared In
QuickTimeVR.h

QTVRWrapAndConstrain Values
Constants passed to QTVRWrapAndConstrain.

enum {
 kQTVRPan = 0,
 kQTVRTilt = 1,
 kQTVRFieldOfView = 2,
 kQTVRViewCenterH = 4, /* WrapAndConstrain only*/
 kQTVRViewCenterV = 5 /* WrapAndConstrain only*/
};

Declared In
QuickTimeVR.h

Constants 2079
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

QTVRSetPrescreenImagingCompleteProc Values
Constants passed to QTVRSetPrescreenImagingCompleteProc.

enum {
 kQTVRPreScreenEveryIdle = 1L << 0 /* Requires QTVR 2.1
(kQTVRAPIMajorVersion02 + kQTVRAPIMinorVersion10)*/
};

Declared In
QuickTimeVR.h

kQTVRDown
Constants grouped with kQTVRDown.

enum {
 kQTVRRight = 0,
 kQTVRUpRight = 45,
 kQTVRUp = 90,
 kQTVRUpLeft = 135,
 kQTVRLeft = 180,
 kQTVRDownLeft = 225,
 kQTVRDown = 270,
 kQTVRDownRight = 315
};

Constants
kQTVRLeft

Swing the view to the left.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRDown
Swing the view down.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Declared In
QuickTimeVR.h

kQTVRGetHotSpotTypeSelector
Constants grouped with kQTVRGetHotSpotTypeSelector.

2080 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRSetPanAngleSelector = 0x2000,
 kQTVRSetTiltAngleSelector = 0x2001,
 kQTVRSetFieldOfViewSelector = 0x2002,
 kQTVRSetViewCenterSelector = 0x2003,
 kQTVRMouseEnterSelector = 0x2004,
 kQTVRMouseWithinSelector = 0x2005,
 kQTVRMouseLeaveSelector = 0x2006,
 kQTVRMouseDownSelector = 0x2007,
 kQTVRMouseStillDownSelector = 0x2008,
 kQTVRMouseUpSelector = 0x2009,
 kQTVRTriggerHotSpotSelector = 0x200A,
 kQTVRGetHotSpotTypeSelector = 0x200B, /* Requires QTVR 2.1
(kQTVRAPIMajorVersion02 + kQTVRAPIMinorVersion10)*/
 kQTVRSetViewParameterSelector = 0x200C, /* Requires QTVR 5.0
(kQTVRAPIMajorVersion05 + kQTVRAPIMinorVersion00)*/
 kQTVRGetViewParameterSelector = 0x200D /* Requires QTVR 5.0 (kQTVRAPIMajorVersion05
 + kQTVRAPIMinorVersion00)*/
};

Constants
kQTVRSetPanAngleSelector

Value is 0x2000.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRSetTiltAngleSelector
Value is 0x2000.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRSetFieldOfViewSelector
Value is 0x2002.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRSetViewCenterSelector
Value is 0x2003.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMouseEnterSelector
Value is 0x2004.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMouseWithinSelector
Value is 0x2005.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Constants 2081
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

kQTVRMouseLeaveSelector
Value is 0x2006.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMouseDownSelector
Value is 0x2007.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMouseStillDownSelector
Value is 0x2008.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRMouseUpSelector
Value is 0x2009.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRTriggerHotSpotSelector
Value is 0x200A.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRGetHotSpotTypeSelector
Value is 0x200B.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Declared In
QuickTimeVR.h

kQTVRAllModes
Constants grouped with kQTVRAllModes.

enum {
 kQTVRStatic = 1,
 kQTVRMotion = 2,
 kQTVRCurrentMode = 0, /* Special Value for QTVRUpdate*/
 kQTVRAllModes = 100 /* Special value for QTVRSetProperty*/
};

Declared In
QuickTimeVR.h

QTVRSetTransitionProperty Values
Constants passed to QTVRSetTransitionProperty.

2082 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRTransitionSpeed = 1,
 kQTVRTransitionDirection = 2
};
enum {
 kQTVRTransitionSwing = 1
};

Declared In
QuickTimeVR.h

QTVRCursorRecord Values
Constants passed to QTVRCursorRecord.

enum {
 kQTVRUseDefaultCursor = 0,
 kQTVRStdCursorType = 1,
 kQTVRColorCursorType = 2
};

Constants
kQTVRUseDefaultCursor

Restore the default cursor. In this case, the handle field of the cursor record should contain NIL.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

kQTVRStdCursorType
The cursor is a standard black-and-white cursor.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeVR.h.

Declared In
QuickTimeVR.h

kQTVRCube
Constants grouped with kQTVRCube.

enum {
 kQTVRUseMovieGeometry = 0,
 kQTVRVerticalCylinder = 'vcyl',
 kQTVRHorizontalCylinder = 'hcyl',
 kQTVRCube = 'cube'
};

Declared In
QuickTimeVR.h

QTVRSetControlSetting Values
Constants passed to QTVRSetControlSetting.

Constants 2083
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

enum {
 kQTVRWrapPan = 1,
 kQTVRWrapTilt = 2,
 kQTVRCanZoom = 3,
 kQTVRReverseHControl = 4,
 kQTVRReverseVControl = 5,
 kQTVRSwapHVControl = 6,
 kQTVRTranslation = 7
};

Declared In
QuickTimeVR.h

2084 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

QuickTime Virtual Reality Reference

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeComponents.h

Overview

Sequence Grabber components allow applications to obtain digitized data from external sources, such as
video capture boards. The digitized data can be previewed, saved as a QuickTime movie, or both. Sequence
grabber components allow applications to capture audio and video easily, without concern for the details
of how the data is acquired.

Functions by Task

Configuration Functions for All Channel Components

SGGetChannelDeviceAndInputNames (page 2127)
Returns the sequence grabber's current device and input names.

SGGetChannelRefCon (page 2131)
Returns a reference constant that was previously set by SGSetChannelRefCon.

SGGetDataRate (page 2139)
Determines for a sequence grabber how much recording time is left.

Configuration Functions for Video Channel Components

SGAlignChannelRect (page 2112)
Determines whether or not a channel prefers to draw at a particular screen location.

Configuring Sequence Grabber Channel Components

SGInitChannel (page 2167)
Initializes a channel component.

Overview 2085
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Configuring Sequence Grabber Components

SGDisposeChannel (page 2121)
Removes a channel from a sequence grabber component.

SGGetAlignmentProc (page 2124)
Obtains information about the best screen positions for a sequence grabber's video image in terms
of appearance and maximum performance.

SGGetDataOutput (page 2137)
Determines the movie file that is currently assigned to a sequence grabber component and the control
flags that would govern a record operation.

SGGetDataRef (page 2139)
Determines the data reference currently assigned to a sequence grabber component and the control
flags that would govern a record operation.

SGGetGWorld (page 2142)
Determines the graphics port and device for a sequence grabber component.

SGGetIndChannel (page 2142)
Collects information about all of the channel components currently in use by a sequence grabber
component.

SGInitialize (page 2168)
Initializes the sequence grabber component.

SGNewChannel (page 2169)
Creates a sequence grabber channel and assigns a channel component to the channel.

SGNewChannelFromComponent (page 2170)
Creates a sequence grabber channel and assigns a channel component to the channel.

SGSetDataOutput (page 2197)
Specifies the movie file and options for a sequence grabber record operation.

SGSetDataProc (page 2198)
Specifies a data function for use by the sequence grabber.

SGSetDataRef (page 2199)
Specifies the destination data reference for a record operation.

SGSetGWorld (page 2202)
Establishes the graphics port and device for a sequence grabber component.

Controlling Sequence Grabber Channel Components

SGWriteSamples (page 2227)
Called by a sequence grabber component when it is ready to add recorded data to a movie.

Controlling Sequence Grabber Components

SGGetLastMovieResID (page 2144)
Retrieves the last resource ID used by the sequence grabber component.

SGGetMode (page 2145)
Determines whether a sequence grabber component is in preview mode or record mode.

2086 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetMovie (page 2145)
Returns a reference to the movie that contains the data collected during a record operation.

SGGetPause (page 2149)
Determines whether the sequence grabber is paused.

SGGrabPict (page 2165)
Lets your application obtain a Picture structure from a sequence grabber component.

SGIdle (page 2166)
Provides processing time for sequence grabber components.

SGPause (page 2184)
Suspends or restarts a sequence grabber record or preview operation.

SGPrepare (page 2185)
Instructs a sequence grabber to get ready to begin a preview or record operation.

SGRelease (page 2186)
Instructs the sequence grabber to release any system resources it allocated when you called SGPrepare.

SGStartPreview (page 2222)
Instructs the sequence grabber to begin processing data from its channels.

SGStartRecord (page 2222)
Instructs the sequence grabber component to begin collecting data from its channels.

SGStop (page 2223)
Stops a preview or record operation.

SGUpdate (page 2224)
Informs your component about update events, to update its display.

Managing Your Panel Component

SGPanelCanRun (page 2172)
Lets a sequence grabber component determine whether a panel component can work with the current
sequence grabber channel component.

SGPanelGetDitl (page 2174)
Lets a sequence grabber component determine the dialog items managed by your panel component.

SGPanelGetDITLForSize (page 2175)
Returns user interface elements that fit within a specified size panel.

SGPanelGetTitle (page 2177)
Gets the displayed title of a sequence grabber panel.

SGPanelInstall (page 2177)
Installs added items in a sequence grabber settings dialog box before the dialog box is displayed to
the user.

SGPanelRemove (page 2179)
Removes a panel from the sequence grabber settings dialog box.

SGPanelSetGrabber (page 2181)
Identifies a sequence grabber component to a panel component.

SGPanelSetResFile (page 2182)
Lets the sequence grabber pass a resource file's reference number.

Functions by Task 2087
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Managing Your Panel's Settings

SGPanelGetSettings (page 2176)
Retrieves a panel's current settings for a sequence grabber component.

SGPanelSetSettings (page 2182)
Restores a panel's current settings for a sequence grabber component.

Processing Your Panel's Events

SGPanelEvent (page 2173)
Lets a component receive and process dialog events.

SGPanelItem (page 2178)
Receives and processes mouse clicks in the sequence grabber settings dialog box.

SGPanelSetEventFilter (page 2180)
Sets the event filter callback for a sequence grabber panel component.

SGPanelValidateInput (page 2183)
Validates the contents of the user dialog box for a sequence grabber component.

Text Channel Support

SGGetTextReturnToSpaceValue (page 2156)
Indicates whether the text channel component should replace return characters with spaces.

SGSetFontName (page 2200)
Sets the name of the font to be used to display text for a text channel component.

SGSetFontSize (page 2201)
Sets the font size to be used to display text for a text channel component.

SGSetJustification (page 2204)
Sets the alignment to be used to display text for a text channel component.

SGSetTextBackColor (page 2212)
Sets the background color to be used for the text box.

SGSetTextForeColor (page 2213)
Sets the color to be used to display text.

SGSetTextReturnToSpaceValue (page 2213)
Determines whether the text channel component should replace return characters with spaces.

Utility Functions for Sequence Grabber Channel Components

SGAddExtendedFrameReference (page 2107)
Stores extended sample references for a channel component.

SGAddExtendedMovieData (page 2107)
Adds data to a movie without writing data to a movie file.

SGAddFrameReference (page 2110)
Stores sample references for a channel component.

2088 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGAddMovieData (page 2110)
Lets a channel component add data to a movie.

SGAddOutputDataRefToMedia (page 2111)
Manages capture sessions that involve multiple data references.

SGChangedSource (page 2113)
Informs the sequence grabber that a component is now using a different device.

SGChannelGetDataSourceName (page 2115)
Returns the data source name for a track.

SGChannelGetRequestedDataRate (page 2115)
Returns the current maximum data rate requested for a channel.

SGChannelSetDataSourceName (page 2117)
Sets the data source name for a track.

SGChannelSetRequestedDataRate (page 2118)
Specifies the maximum requested data rate for a channel.

SGGetAdditionalSoundRates (page 2123)
Returns the additional sound sample rates added to a specified sequence grabber sound channel.

SGGetNextExtendedFrameReference (page 2146)
Allows a channel component to retrieve the sample references stored previously by
SGAddExtendedMovieData or SGAddExtendedFrameReference.

SGGetNextFrameReference (page 2147)
Lets a channel component retrieve the sample references that were stored by calling SGAddMovieData
or SGAddFrameReference.

SGGetPreferredPacketSize (page 2150)
Returns the preferred packet size for the sequence grabber component.

SGGetUserVideoCompressorList (page 2157)
Returns the video compression formats to be displayed by the specified sequence grabber video
channel.

SGSetAdditionalSoundRates (page 2186)
Specifies a list of sound sample rates to be included in the sequence grabber's sound settings dialog
box.

SGSetPreferredPacketSize (page 2208)
Sets the preferred packet size for the sequence grabber channel component.

SGSetUserVideoCompressorList (page 2215)
Specifies the list of video compression formats to be included in the sequence grabber's video settings
dialog box.

SGSortDeviceList (page 2221)
Sorts a device list alphabetically.

SGWriteExtendedMovieData (page 2226)
Allows your channel component to add data to a movie.

SGWriteMovieData (page 2227)
Lets a channel component add data to a movie.

Functions by Task 2089
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Video Channel Callback Functions

SGGetVideoBottlenecks (page 2159)
Determines the callback functions that have been assigned to a video channel.

SGSetVideoBottlenecks (page 2217)
Assigns callback functions to a video channel.

Working With Channel Characteristics

SGGetChannelBounds (page 2126)
Determines a channel's display boundary rectangle.

SGGetChannelClip (page 2126)
Retrieves a channel's clipping region.

SGGetChannelInfo (page 2128)
Determines how a channel's data is represented to the user: as visual data or audio data, or both.

SGGetChannelMatrix (page 2129)
Retrieves a channel's display transformation matrix.

SGGetChannelMaxFrames (page 2130)
Determines the number of frames left to be captured from a specified channel.

SGGetChannelPlayFlags (page 2130)
Retrieves the playback control flags that you set with SGSetChannelPlayFlags.

SGGetChannelSampleDescription (page 2132)
Retrieves a channel's sample description structure.

SGGetChannelTimeScale (page 2134)
Lets the sequence grabber retrieve a channel's time scale.

SGGetChannelUsage (page 2135)
Determines how the sequence grabber component is using a channel.

SGGetChannelVolume (page 2135)
Determines a channel's sound volume setting.

SGSetChannelBounds (page 2187)
Specifies a channel's display boundary rectangle.

SGSetChannelClip (page 2188)
Sets a channel's clipping region.

SGSetChannelMatrix (page 2190)
Sets a channel's display transformation matrix.

SGSetChannelMaxFrames (page 2190)
Limits the number of frames that the sequence grabber will capture from a specified channel.

SGSetChannelPlayFlags (page 2192)
Adjusts the speed and quality with which the sequence grabber displays data from a channel.

SGSetChannelRefCon (page 2192)
Sets the value of a reference constant that is passed to your callback functions for channel components.

SGSetChannelUsage (page 2195)
Specifies how a channel is to be used by the sequence grabber component.

2090 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetChannelVolume (page 2195)
Sets a channel's sound volume.

Working With Channel Devices

SGAppendDeviceListToMenu (page 2113)
Places a list of device names into a specified menu.

SGDisposeDeviceList (page 2122)
Disposes of a device list.

SGGetChannelDeviceList (page 2128)
Retrieves a list of the devices that are valid for a specified channel.

SGSetChannelDevice (page 2188)
Assigns a device to a channel.

SGSetChannelSettingsStateChanging (page 2194)
Tells a sequence grabber channel of the beginning and end of a group of setting calls.

SGSetSettingsSummary (page 2209)
Sets the summary of sequence grabber settings that is displayed in the lower left corner of the
sequence grabber dialog.

Working With Sequence Grabber Characteristics

SGGetFlags (page 2140)
Retrieves a sequence grabber's control flags.

SGGetMaximumRecordTime (page 2144)
Determines the time limit you have set for a record operation.

SGGetStorageSpaceRemaining (page 2154)
Monitors the amount of space remaining for use during a record operation.

SGGetTimeBase (page 2156)
Retrieves a reference to the time base that is being used by a sequence grabber component.

SGGetTimeRemaining (page 2157)
Obtains an estimate of the amount of recording time that remains for the current record operation.

SGSetFlags (page 2200)
Passes control information about the current operation to the sequence grabber component.

SGSetMaximumRecordTime (page 2205)
Limits the duration of a record operation

Working With Sequence Grabber Outputs

SGDisposeOutput (page 2123)
Disposes of an existing sequence grabber output.

SGGetDataOutputStorageSpaceRemaining (page 2137)
Returns the amount of space remaining in the data reference associated with an output.

Functions by Task 2091
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetOutputDataReference (page 2147)
Returns information about the data reference associated with the specified sequence grabber output.

SGGetOutputMaximumOffset (page 2148)
Returns the maximum offset for data written to the specified sequence grabber output.

SGGetOutputNextOutput (page 2149)
Returns the next sequence grabber output for the specified output.

SGNewOutput (page 2171)
Creates a new sequence grabber output.

SGSetChannelOutput (page 2191)
Assigns an output to a channel.

SGSetOutputFlags (page 2205)
Configures an existing sequence grabber output.

SGSetOutputMaximumOffset (page 2206)
Specifies the maximum offset for data written to a specified sequence grabber output.

SGSetOutputNextOutput (page 2207)
Specifies the order in which sequence grabber outputs should be used.

Working With Sequence Grabber Settings

SGGetChannelSettings (page 2132)
Retrieves the current settings of a channel used by the sequence grabber.

SGGetSettings (page 2151)
Retrieves the current settings of all channels used by the sequence grabber.

SGSetChannelSettings (page 2193)
Configures a sequence grabber channel.

SGSetSettings (page 2208)
Configures a sequence grabber and its channels.

SGSettingsDialog (page 2214)
Causes a sequence grabber to display its settings dialog box to the user.

Working With Sound Channels

SGGetSoundInputDriver (page 2151)
Determines the sound input device currently in use by a sound channel component.

SGGetSoundInputParameters (page 2152)
Retrieves various parameters that relate to sound recording.

SGGetSoundInputRate (page 2153)
Determines the rate at which the sound channel is collecting sound data.

SGGetSoundRecordChunkSize (page 2153)
Determines the amount of sound data the sequence grabber component works with at a time.

SGSetSoundInputDriver (page 2210)
Assigns a sound input device to a sound channel.

2092 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetSoundInputParameters (page 2210)
Sets various parameters that relate to sound recording.

SGSetSoundInputRate (page 2211)
Sets the rate at which the sound channel obtains its sound data.

SGSetSoundRecordChunkSize (page 2211)
Controls the amount of sound data in each group of sound samples during a record operation.

SGSoundInputDriverChanged (page 2221)
Notifies the sequence grabber component whenever you change the configuration of a sound
channel's sound input device.

Working With Video Channels

SGGetCompressBuffer (page 2136)
Returns information about the filter buffer established for a video channel.

SGGetFrameRate (page 2141)
Retrieves a video channel's frame rate for recording.

SGGetSrcVideoBounds (page 2154)
Determines the size of the source video boundary rectangle.

SGGetUseScreenBuffer (page 2158)
Determines whether a video channel is allowed to use an offscreen buffer.

SGGetVideoCompressor (page 2159)
Determines a channel's current image compression parameters.

SGGetVideoCompressorType (page 2161)
Determines the type of image compression that is being applied to a channel's video data.

SGGetVideoDigitizerComponent (page 2161)
Determines the video digitizer component that is providing source video to a video channel
component.

SGGetVideoRect (page 2162)
Determines the portion of the source video image that is to be captured.

SGSetCompressBuffer (page 2196)
Allows the sequence grabber component to direct your component to create a filter buffer for your
video channel.

SGSetFrameRate (page 2202)
Specifies a video channel's frame rate for recording.

SGSetUseScreenBuffer (page 2216)
Controls whether a video channel uses an offscreen buffer.

SGSetVideoCompressor (page 2218)
Specifies many of the parameters that control image compression of the video data captured by a
video channel.

SGSetVideoCompressorType (page 2219)
Specifies the type of image compression to be applied to captured video images.

SGSetVideoDigitizerComponent (page 2219)
Assigns a video digitizer component to a video channel.

Functions by Task 2093
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetVideoRect (page 2220)
Specifies a part of the source video image that is to be captured by a sequence grabber component.

SGVideoDigitizerChanged (page 2225)
Notifies the sequence grabber component whenever you change the configuration of a video channel's
video digitizer.

Supporting Functions

DisposeSGAddFrameBottleUPP (page 2096)
Disposes of an SGAddFrameBottleUPP pointer.

DisposeSGCompressBottleUPP (page 2096)
Disposes of an SGCompressBottleUPP pointer.

DisposeSGCompressCompleteBottleUPP (page 2097)
Disposes of an SGCompressCompleteBottleUPP pointer.

DisposeSGDataUPP (page 2097)
Disposes of an SGDataUPP pointer.

DisposeSGDisplayBottleUPP (page 2098)
Disposes of an SGDisplayBottleUPP pointer.

DisposeSGDisplayCompressBottleUPP (page 2098)
Disposes of an SGDisplayCompressBottleUPP pointer.

DisposeSGGrabBottleUPP (page 2099)
Disposes of an SGGrabBottleUPP pointer.

DisposeSGGrabCompleteBottleUPP (page 2099)
Disposes of an SGGrabCompleteBottleUPP pointer.

DisposeSGGrabCompressCompleteBottleUPP (page 2099)
Disposes of an SGGrabCompressCompleteBottleUPP pointer.

DisposeSGModalFilterUPP (page 2100)
Disposes of an SGModalFilterUPP pointer.

DisposeSGTransferFrameBottleUPP (page 2100)
Disposes of an SGTransferFrameBottleUPP pointer.

NewSGAddFrameBottleUPP (page 2101)
Allocates a Universal Procedure Pointer for the SGAddFrameBottleProc callback.

NewSGCompressBottleUPP (page 2101)
Allocates a Universal Procedure Pointer for the SGCompressBottleProc callback.

NewSGCompressCompleteBottleUPP (page 2102)
Allocates a Universal Procedure Pointer for the SGCompressCompleteBottleProc callback.

NewSGDataUPP (page 2102)
Allocates a Universal Procedure Pointer for the SGDataProc callback.

NewSGDisplayBottleUPP (page 2103)
Allocates a Universal Procedure Pointer for the SGDisplayBottleProc callback.

NewSGDisplayCompressBottleUPP (page 2104)
Allocates a Universal Procedure Pointer for the SGDisplayCompressBottleProc callback.

NewSGGrabBottleUPP (page 2104)
Allocates a Universal Procedure Pointer for the SGGrabBottleProc callback.

2094 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

NewSGGrabCompleteBottleUPP (page 2105)
Allocates a Universal Procedure Pointer for the SGGrabCompleteBottleProc callback.

NewSGGrabCompressCompleteBottleUPP (page 2105)
Allocates a Universal Procedure Pointer for the SGGrabCompressCompleteBottleProc callback.

NewSGModalFilterUPP (page 2106)
Allocates a Universal Procedure Pointer for the SGModalFilterProc callback.

NewSGTransferFrameBottleUPP (page 2106)
Allocates a Universal Procedure Pointer for the SGTransferFrameBottleProc callback.

SGAddFrame (page 2109)
Provides default values for your add-frame function.

SGChannelGetCodecSettings (page 2114)
Gets the codec settings for a sequence grabber channel.

SGChannelPutPicture (page 2116)
Undocumented

SGChannelSetCodecSettings (page 2116)
Sets the codec settings for a sequence grabber channel.

SGCompressFrame (page 2118)
Provides the default behavior for your compress function.

SGCompressFrameComplete (page 2119)
Provides the default behavior for your compress-complete function.

SGDisplayCompress (page 2120)
Provides the default behavior for your display-compress function.

SGDisplayFrame (page 2121)
Provides the default behavior for your display function.

SGGetBufferInfo (page 2125)
Obtains information about a buffer that has been passed to a callback function.

SGGetChannelTimeBase (page 2133)
Retrieves a reference to the time base that is being used by a sequence grabber channel.

SGGetDataOutputStorageSpaceRemaining64 (page 2138)
Provides a 64-bit version of SGGetDataOutputStorageSpaceRemaining.

SGGetInstrument (page 2143)
Gets a tone description for a music sequence grabber channel.

SGGetStorageSpaceRemaining64 (page 2155)
Provides a 64-bit version of SGGetStorageSpaceRemaining.

SGGrabCompressComplete (page 2163)
Provides the default behavior for your grab-compress-complete function.

SGGrabFrame (page 2163)
Provides the default behavior for your grab function.

SGGrabFrameComplete (page 2164)
Provides the default behavior for your grab-complete function.

SGHandleUpdateEvent (page 2166)
Requests that a sequence grabber handle an update event.

SGSetChannelDeviceInput (page 2189)
Undocumented

Functions by Task 2095
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetInstrument (page 2204)
Sets a tone description for a music sequence grabber channel.

SGTransferFrameForCompress (page 2223)
Provides the default behavior for your transfer-frame function.

Functions

DisposeSGAddFrameBottleUPP
Disposes of an SGAddFrameBottleUPP pointer.

void DisposeSGAddFrameBottleUPP (
 SGAddFrameBottleUPP userUPP
);

Parameters
userUPP

An SGAddFrameBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGCompressBottleUPP
Disposes of an SGCompressBottleUPP pointer.

void DisposeSGCompressBottleUPP (
 SGCompressBottleUPP userUPP
);

Parameters
userUPP

An SGCompressBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

2096 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGCompressCompleteBottleUPP
Disposes of an SGCompressCompleteBottleUPP pointer.

void DisposeSGCompressCompleteBottleUPP (
 SGCompressCompleteBottleUPP userUPP
);

Parameters
userUPP

An SGCompressCompleteBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGDataUPP
Disposes of an SGDataUPP pointer.

void DisposeSGDataUPP (
 SGDataUPP userUPP
);

Parameters
userUPP

An SGDataUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver

Functions 2097
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

VideoProcessing

Declared In
QuickTimeComponents.h

DisposeSGDisplayBottleUPP
Disposes of an SGDisplayBottleUPP pointer.

void DisposeSGDisplayBottleUPP (
 SGDisplayBottleUPP userUPP
);

Parameters
userUPP

An SGDisplayBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGDisplayCompressBottleUPP
Disposes of an SGDisplayCompressBottleUPP pointer.

void DisposeSGDisplayCompressBottleUPP (
 SGDisplayCompressBottleUPP userUPP
);

Parameters
userUPP

An SGDisplayCompressBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2098 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

DisposeSGGrabBottleUPP
Disposes of an SGGrabBottleUPP pointer.

void DisposeSGGrabBottleUPP (
 SGGrabBottleUPP userUPP
);

Parameters
userUPP

An SGGrabBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGGrabCompleteBottleUPP
Disposes of an SGGrabCompleteBottleUPP pointer.

void DisposeSGGrabCompleteBottleUPP (
 SGGrabCompleteBottleUPP userUPP
);

Parameters
userUPP

An SGGrabCompleteBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGGrabCompressCompleteBottleUPP
Disposes of an SGGrabCompressCompleteBottleUPP pointer.

Functions 2099
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

void DisposeSGGrabCompressCompleteBottleUPP (
 SGGrabCompressCompleteBottleUPP userUPP
);

Parameters
userUPP

An SGGrabCompressCompleteBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

DisposeSGModalFilterUPP
Disposes of an SGModalFilterUPP pointer.

void DisposeSGModalFilterUPP (
 SGModalFilterUPP userUPP
);

Parameters
userUPP

An SGModalFilterUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

DisposeSGTransferFrameBottleUPP
Disposes of an SGTransferFrameBottleUPP pointer.

2100 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

void DisposeSGTransferFrameBottleUPP (
 SGTransferFrameBottleUPP userUPP
);

Parameters
userUPP

An SGTransferFrameBottleUPP pointer. See Universal Procedure Pointers.

Return Value
You can access this function's error returns through GetMoviesError (page 221) and
GetMoviesStickyError (page 222).

Version Notes
Introduced in QuickTime 4.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewSGAddFrameBottleUPP
Allocates a Universal Procedure Pointer for the SGAddFrameBottleProc callback.

SGAddFrameBottleUPP NewSGAddFrameBottleUPP (
 SGAddFrameBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGAddFrameBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewSGCompressBottleUPP
Allocates a Universal Procedure Pointer for the SGCompressBottleProc callback.

Functions 2101
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGCompressBottleUPP NewSGCompressBottleUPP (
 SGCompressBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGCompressBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewSGCompressCompleteBottleUPP
Allocates a Universal Procedure Pointer for the SGCompressCompleteBottleProc callback.

SGCompressCompleteBottleUPP NewSGCompressCompleteBottleUPP (
 SGCompressCompleteBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGCompressCompleteBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewSGDataUPP
Allocates a Universal Procedure Pointer for the SGDataProc callback.

2102 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGDataUPP NewSGDataUPP (
 SGDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGDataProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CaptureAndCompressIPBMovie
Cocoa - SGDataProc
SGDataProcSample
VideoProcessing

Declared In
QuickTimeComponents.h

NewSGDisplayBottleUPP
Allocates a Universal Procedure Pointer for the SGDisplayBottleProc callback.

SGDisplayBottleUPP NewSGDisplayBottleUPP (
 SGDisplayBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGDisplayBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 2103
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

NewSGDisplayCompressBottleUPP
Allocates a Universal Procedure Pointer for the SGDisplayCompressBottleProc callback.

SGDisplayCompressBottleUPP NewSGDisplayCompressBottleUPP (
 SGDisplayCompressBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGDisplayCompressBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

NewSGGrabBottleUPP
Allocates a Universal Procedure Pointer for the SGGrabBottleProc callback.

SGGrabBottleUPP NewSGGrabBottleUPP (
 SGGrabBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGGrabBottleProc.

Availability
Available in Mac OS X v10.0 and later.

2104 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

NewSGGrabCompleteBottleUPP
Allocates a Universal Procedure Pointer for the SGGrabCompleteBottleProc callback.

SGGrabCompleteBottleUPP NewSGGrabCompleteBottleUPP (
 SGGrabCompleteBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGGrabCompleteBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sequence Grabbing

Declared In
QuickTimeComponents.h

NewSGGrabCompressCompleteBottleUPP
Allocates a Universal Procedure Pointer for the SGGrabCompressCompleteBottleProc callback.

SGGrabCompressCompleteBottleUPP NewSGGrabCompressCompleteBottleUPP (
 SGGrabCompressCompleteBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGGrabCompressCompleteBottleProc.

Functions 2105
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
QuickTimeComponents.h

NewSGModalFilterUPP
Allocates a Universal Procedure Pointer for the SGModalFilterProc callback.

SGModalFilterUPP NewSGModalFilterUPP (
 SGModalFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGModalFilterProc.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

NewSGTransferFrameBottleUPP
Allocates a Universal Procedure Pointer for the SGTransferFrameBottleProc callback.

SGTransferFrameBottleUPP NewSGTransferFrameBottleUPP (
 SGTransferFrameBottleProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function.

Return Value
A new UPP; see Universal Procedure Pointers.

2106 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
This function is used with Macintosh PowerPC systems. See Inside Macintosh: PowerPC System Software.

Version Notes
Introduced in QuickTime 4.1. Replaces NewSGTransferFrameBottleProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAddExtendedFrameReference
Stores extended sample references for a channel component.

ComponentResult SGAddExtendedFrameReference (
 SeqGrabComponent s,
 SeqGrabExtendedFrameInfoPtr frameInfo
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

frameInfo
A pointer to a SeqGrabExtendedFrameInfo structure. Your component must place the appropriate
information into this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function differs from SGAddFrameReference (page 2110) in that it uses a SeqGrabExtendedFrameInfo
structure instead of a SeqGrabFrameInfo structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAddExtendedMovieData
Adds data to a movie without writing data to a movie file.

Functions 2107
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGAddExtendedMovieData (
 SeqGrabComponent s,
 SGChannel c,
 Ptr p,
 long len,
 wide *offset,
 long chRefCon,
 TimeValue time,
 short writeType,
 SGOutput *whichOutput
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

c
Identifies the connection to your channel.

p
The location of the data to be added to the movie.

len
The number of bytes of data to be added to the movie.

offset
A pointer to a wide integer that receives the offset to the new data in the movie. If the movie is in
memory, the returned offset reflects the location the data will have in the movie on a permanent
storage device.

chRefCon
The reference constant for your channel.

time
The time at which the frame was captured, expressed in the time scale associated with your channel.

writeType
A constant (see below) that determines the type of write operation to be used. See these constants:

seqGrabWriteAppend

seqGrabWriteReserve

seqGrabWriteFill

whichOutput
The use of whichOutput depends on the value passed in the writeType parameter. If writeType
is seqGrabWriteAppend or seqGrabWriteReserve, the whichOutput parameter is a return value
specifying the sequence grabber output to which data was written or in which space was reserved.
If writeType is seqGrabWriteFill, the whichOutput parameter is an input value indicating which
sequence grabber output the data should be written to.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function differs from SGAddMovieData (page 2110) in two respects: the offset parameter allows a 64-bit
value, and the whichOutput parameter does not exist in SGAddMovieData.

Version Notes
Introduced in QuickTime 3 or earlier.

2108 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAddFrame
Provides default values for your add-frame function.

ComponentResult SGAddFrame (
 SGChannel c,
 short bufferNum,
 TimeValue atTime,
 TimeScale scale,
 const SGCompressInfo *ci
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber component provides
this value to your add-frame function.

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your add-frame function.

atTime
The time at which the frame was captured, in the time scale specified by the scale parameter. The
sequence grabber component provides this value to your add-frame function. Your add-frame function
can change this value before calling this function. You can determine the duration of a frame by
subtracting its capture time from the capture time of the next frame in the sequence.

scale
The time scale of the movie. The sequence grabber component provides this value to your add-frame
function.

ci
A pointer to a SGCompressInfo structure. This structure contains information describing the
compression characteristics of the image to be added to the movie.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You should call this function only from your add-frame function. If you call it at any other time, results are
unpredictable.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2109
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGAddFrameReference
Stores sample references for a channel component.

ComponentResult SGAddFrameReference (
 SeqGrabComponent s,
 SeqGrabFrameInfoPtr frameInfo
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

frameInfo
A pointer to a SeqGrabFrameInfo structure. Your component must completely specify the reference
by placing the appropriate information into the record referred to by this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAddMovieData
Lets a channel component add data to a movie.

ComponentResult SGAddMovieData (
 SeqGrabComponent s,
 SGChannel c,
 Ptr p,
 long len,
 long *offset,
 long chRefCon,
 TimeValue time,
 short writeType
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

c
Identifies the connection to your channel.

p
The location of the data to be added to the movie.

len
Indicates the number of bytes of data to be added to the movie.

2110 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

offset
A pointer to a field that is to receive the offset to the new data in the movie. The sequence grabber
component returns an offset that is correct in the context of the movie resource, even if the movie
is currently stored in memory. That is, if the movie is in memory, the returned offset reflects the
location that the data will have in a movie on a permanent storage device, such as a disk.

chRefCon
Your channel's reference constant.

time
The time at which your channel captured the frame. This time value is expressed in your channel's
time scale.

writeType
A constant (see below) that determines the type of write operation to be used. See these constants:

seqGrabWriteAppend

seqGrabWriteReserve

seqGrabWriteFill

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function combines the services provided by SGWriteMovieData (page 2227) and
SGAddFrameReference (page 2110). Your channel component should not write data directly to the movie
file; use this function instead.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGAddOutputDataRefToMedia
Manages capture sessions that involve multiple data references.

ComponentResult SGAddOutputDataRefToMedia (
 SeqGrabComponent s,
 SGOutput sgOut,
 Media theMedia,
 SampleDescriptionHandle desc
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Functions 2111
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

sgOut
A pointer to the current sequence grabber output.

theMedia
The media for this operation. Your application obtains this media identifier from such functions as
NewTrackMedia (page 1630) and GetTrackMedia (page 1612). See Media Identifiers.

desc
A handle to a SampleDescription structure that contains an index, which is assigned to the data
by this function.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is usually called from the SGWriteSamples (page 2227) function of a sequence grabber channel
component. You pass to it a sequence grabber output along with a media and SampleDescription structure,
and it adds the data reference to the data reference list of the specified media. It also updates the data
reference index field of the SampleDescription structure to refer to the data reference.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAlignChannelRect
Determines whether or not a channel prefers to draw at a particular screen location.

ComponentResult SGAlignChannelRect (
 SGChannel c,
 Rect *r
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

r
A pointer to a Rect structure. On entry, this structure contains coordinates at which the sequence
grabber would like to draw your captured video image. If your component can draw more efficiently
or at a higher frame rate at a different location, update the contents of this structure to reflect where
you would prefer to draw. The rectangle will be passed in with global, not local, coordinates.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is called by a sequence grabber to determine whether or not a channel prefers to draw at a
particular screen location.

2112 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAppendDeviceListToMenu
Places a list of device names into a specified menu.

ComponentResult SGAppendDeviceListToMenu (
 SeqGrabComponent s,
 SGDeviceList list,
 MenuRef mh
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

list
A pointer to a pointer to an SGDeviceListRecord. The sequence grabber appends the name of
each device in the list to the menu specified by the mh parameter. If the
sgDeviceNameFlagDeviceUnavailable flag is set to 1 for a device in the list, the sequence grabber
disables the menu item corresponding to that device.

mh
A handle to the menu to which the device names are to be appended.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChangedSource
Informs the sequence grabber that a component is now using a different device.

Functions 2113
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGChangedSource (
 SeqGrabComponent s,
 SGChannel c
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

c
Identifies the connection to your channel.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannelGetCodecSettings
Gets the codec settings for a sequence grabber channel.

ComponentResult SGChannelGetCodecSettings (
 SGChannel c,
 Handle *settings
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

settings
A pointer to a handle that the codec should resize and fill in with the current internal settings. These
settings are codec-defined and usually opaque. Don't dispose of this handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2114 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGChannelGetDataSourceName
Returns the data source name for a track.

ComponentResult SGChannelGetDataSourceName (
 SGChannel c,
 Str255 name,
 ScriptCode *scriptTag
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

name
A string that is to receive the source identification information. Set this parameter to NIL if you do
not want to retrieve the name.

scriptTag
A field that is to receive the source information's language code; see Localization Codes. Set this
parameter to NIL if you do not want this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to get the source information specified with SGChannelSetDataSourceName (page
2117).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannelGetRequestedDataRate
Returns the current maximum data rate requested for a channel.

ComponentResult SGChannelGetRequestedDataRate (
 SGChannel c,
 long *bytesPerSecond
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bytesPerSecond
Points to a field that is to receive the maximum data rate requested by the sequence grabber
component. This field is set to 0 if the sequence grabber has not set any restrictions.

Functions 2115
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows the sequence grabber component to retrieve the current maximum data rate value from
your channel component.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannelPutPicture
Undocumented

ComponentResult SGChannelPutPicture (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannelSetCodecSettings
Sets the codec settings for a sequence grabber channel.

ComponentResult SGChannelSetCodecSettings (
 SGChannel c,
 Handle settings
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

2116 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

settings
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannelSetDataSourceName
Sets the data source name for a track.

ComponentResult SGChannelSetDataSourceName (
 SGChannel c,
 ConstStr255Param name,
 ScriptCode scriptTag
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

name
A string that contains the source identification information. The source information identifies the
source of the video data (for example, a videotape name).

scriptTag
The language of the source identification information; see Localization Codes.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to set the source information for a sequence grabber channel. You must set this
information before you start digitizing. The sequence grabber channel stores this information in a timecode
track in the movie created after the capture is complete. If the video digitizer does not provide timecode
information, the sequence grabber does not save this information.

Special Considerations

This function is currently supported only by video channels.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2117
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGChannelSetRequestedDataRate
Specifies the maximum requested data rate for a channel.

ComponentResult SGChannelSetRequestedDataRate (
 SGChannel c,
 long bytesPerSecond
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bytesPerSecond
The maximum data rate requested by the sequence grabber component, in bytes per second. The
sequence grabber component sets this parameter to 0 to remove any data-rate restrictions.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows the sequence grabber component to specify the maximum rate at which it would like
to receive data from your channel component. The data rate supplied by the sequence grabber component
represents a requested data rate; your component may not be able to observe that rate under all conditions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGCompressFrame
Provides the default behavior for your compress function.

ComponentResult SGCompressFrame (
 SGChannel c,
 short bufferNum
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber provides this value
to your compress function.

bufferNum
The buffer. The sequence grabber provides this value to your compress function.

Return Value
See Error Codes. Returns noErr if there is no error.

2118 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Special Considerations

You should call this function only from your compress function. If you call it at any other time, results are
unpredictable.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGCompressFrameComplete
Provides the default behavior for your compress-complete function.

ComponentResult SGCompressFrameComplete (
 SGChannel c,
 short bufferNum,
 Boolean *done,
 SGCompressInfo *ci
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber component provides
this value to your compress-complete function.

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your compress-complete
function.

done
A pointer to a Boolean value. The function sets this Boolean value to TRUE if the compression is
complete, or FALSE if the operation is incomplete. The sequence grabber component provides this
pointer to your compress-complete function.

ci
A pointer to a SGCompressInfo structure. If the compression is complete, the function completely
formats this structure with information that is appropriate to the frame just compressed. The sequence
grabber component provides this pointer to your compress-complete function.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

You should call this function only from your compress-complete function. If you call it at any other time,
results are unpredictable.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2119
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGDisplayCompress
Provides the default behavior for your display-compress function.

ComponentResult SGDisplayCompress (
 SGChannel c,
 Ptr dataPtr,
 ImageDescriptionHandle desc,
 MatrixRecord *mp,
 RgnHandle clipRgn
);

Parameters
c

Identifies the channel for this operation. The sequence grabber provides this value to your
display-compress function.

dataPtr
A pointer to the compressed image data. The sequence grabber provides this pointer to your
display-compress function.

desc
A handle to the ImageDescription structure to use for the decompression operation. The sequence
grabber provides this handle to your display-compress function.

mp
A pointer to a MatrixRecord structure. This structure contains the transformation matrix to use
when displaying the image. If there is no matrix for the operation, set this parameter to NIL.

clipRgn
A handle to a MacRegion structure that defines the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no clipping region, set this parameter
to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

You should call this function only from your display-compress function. If you call it at any other time, results
are unpredictable.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2120 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGDisplayFrame
Provides the default behavior for your display function.

ComponentResult SGDisplayFrame (
 SGChannel c,
 short bufferNum,
 const MatrixRecord *mp,
 RgnHandle clipRgn
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber component provides
this value to your display function.

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your display function.

mp
A pointer to a MatrixRecord structure for the display operation. If there is no matrix for the operation,
set this parameter to NIL.

clipRgn
A handle to a MacRegion structure that defines the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no clipping region, set this parameter
to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

You should call this function only from your display function. If you call it at any other time, results are
unpredictable.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGDisposeChannel
Removes a channel from a sequence grabber component.

ComponentResult SGDisposeChannel (
 SeqGrabComponent s,
 SGChannel c
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

Functions 2121
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

c
The reference that identifies the channel you want to close. You obtain this reference from
SGNewChannel (page 2169).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
qtcapture
Sequence Grabbing
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGDisposeDeviceList
Disposes of a device list.

ComponentResult SGDisposeDeviceList (
 SeqGrabComponent s,
 SGDeviceList list
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

list
A pointer to a pointer to an SGDeviceListRecord structure. The sequence grabber disposes of the
memory used by this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SGDevices
WhackedTV

2122 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGDisposeOutput
Disposes of an existing sequence grabber output.

ComponentResult SGDisposeOutput (
 SeqGrabComponent s,
 SGOutput sgOut
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to dispose of an existing output. If any sequence grabber channels are using this output,
the sequence grabber component assigns them to an undefined output.

Special Considerations

You cannot dispose of an output when the sequence grabber component is in record mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetAdditionalSoundRates
Returns the additional sound sample rates added to a specified sequence grabber sound channel.

ComponentResult SGGetAdditionalSoundRates (
 SGChannel c,
 Handle *rates
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Functions 2123
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

rates
A pointer to the handle where the list of additional sample rates should be returned. If no additional
sample rates have been set, this function sets the rates handle to NIL. The caller of this routine is
responsible for disposing of the returned handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetAlignmentProc
Obtains information about the best screen positions for a sequence grabber's video image in terms of
appearance and maximum performance.

ComponentResult SGGetAlignmentProc (
 SeqGrabComponent s,
 ICMAlignmentProcRecordPtr alignmentProc
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

alignmentProc
A pointer to an ICMAlignmentProcRecord structure. The sequence grabber places its alignment
information into this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
DigitizerShell
hacktv
hacktv.win
SGDataProcSample

Declared In
QuickTimeComponents.h

2124 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetBufferInfo
Obtains information about a buffer that has been passed to a callback function.

ComponentResult SGGetBufferInfo (
 SGChannel c,
 short bufferNum,
 PixMapHandle *bufferPM,
 Rect *bufferRect,
 GWorldPtr *compressBuffer,
 Rect *compressBufferRect
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your callback function.

bufferPM
A pointer to a location that is to receive a handle to the PixMap structure that contains the image.
Note that this structure may be offscreen. Do not dispose of this structure. If you do not want this
information, set this parameter to NIL.

bufferRect
A pointer to a Rect structure that is to receive the dimensions of the image's boundary rectangle. If
you do not want this information, set this parameter to NIL.

compressBuffer
A pointer to a location that is to receive a pointer to the filter buffer for the image. The sequence
grabber component returns this information only if your application has assigned a filter buffer to
this video channel. You assign a filter buffer by calling SGSetCompressBuffer (page 2196). Do not
dispose of this buffer.

compressBufferRect
A pointer to a Rect structure that is to receive the dimensions of the filter buffer for the image. The
sequence grabber component returns this information only if your application has assigned a filter
buffer to this video channel. You assign a filter buffer by calling SGSetCompressBuffer (page 2196).
If you have not assigned a filter buffer, the sequence grabber component returns an empty rectangle.
If you do not want this information, set this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell
Sequence Grabbing

Declared In
QuickTimeComponents.h

Functions 2125
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetChannelBounds
Determines a channel's display boundary rectangle.

ComponentResult SGGetChannelBounds (
 SGChannel c,
 Rect *bounds
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bounds
A pointer to a Rect structure that is to receive information about your channel's display boundary
rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelClip
Retrieves a channel's clipping region.

ComponentResult SGGetChannelClip (
 SGChannel c,
 RgnHandle *theClip
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

theClip
A pointer to a handle that is to receive a MacRegion structure that defines the clipping region. The
application is responsible for disposing of this handle. If there is no clipping region, set this handle
to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

2126 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Special Considerations

Note that some devices may not support clipping.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGGetChannelDeviceAndInputNames
Returns the sequence grabber's current device and input names.

ComponentResult SGGetChannelDeviceAndInputNames (
 SGChannel c,
 Str255 outDeviceName,
 Str255 outInputName,
 short *outInputNumber
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

outDeviceName
The current device names for display to the user.

outInputName
The current input names for display to the user.

outInputNumber
A pointer to the number of currently selected inputs.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This is a utility call that lets you find out the sequence grabber's current device and input names, instead of
having to call GetDeviceList and walk it yourself. Pass NIL for parameters you are not interested in.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
WhackedTV

Functions 2127
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGGetChannelDeviceList
Retrieves a list of the devices that are valid for a specified channel.

ComponentResult SGGetChannelDeviceList (
 SGChannel c,
 long selectionFlags,
 SGDeviceList *list
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

selectionFlags
Flags (see below) that control the data you are to return for each device. See these constants:

sgDeviceListWithIcons

sgDeviceListDontCheckAvailability

sgDeviceListIncludeInputs

list
A pointer to a pointer to an SGDeviceListRecord structure. The channel creates this structure and
returns a pointer to it in the field referred to by this parameter. Applications use
SGDisposeDeviceList (page 2122) to dispose of the memory used by the list.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function can be useful for retrieving the name of the current device. Retrieve the device list and use the
selectedIndex field to determine which device is currently in use.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SGDevices
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelInfo
Determines how a channel's data is represented to the user: as visual data or audio data, or both.

2128 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetChannelInfo (
 SGChannel c,
 long *channelInfo
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

channelInfo
A pointer to a long integer that is to receive channel information flags (see below). You may set more
than one flag to 1. Set unused flags to 0. See these constants:

seqGrabHasBounds

seqGrabHasVolume

seqGrabHasDiscreteSamples

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetChannelMatrix
Retrieves a channel's display transformation matrix.

ComponentResult SGGetChannelMatrix (
 SGChannel c,
 MatrixRecord *m
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

m
A pointer to a MatrixRecord structure. Place your current matrix values into this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2129
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGGetChannelMaxFrames
Determines the number of frames left to be captured from a specified channel.

ComponentResult SGGetChannelMaxFrames (
 SGChannel c,
 long *frameCount
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

frameCount
A pointer to a long integer that is to receive a value specifying the number of frames left to be captured
during the preview or record operation. If the returned value is -1, the sequence grabber channel
component captures as many frames as it can.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetChannelPlayFlags
Retrieves the playback control flags that you set with SGSetChannelPlayFlags.

ComponentResult SGGetChannelPlayFlags (
 SGChannel c,
 long *playFlags
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

2130 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

playFlags
A pointer to a long integer that is to receive flags (see below) that influence channel playback. Set
unused flags to 0. See these constants:

channelPlayNormal

channelPlayFast

channelPlayHighQuality

channelPlayAllData

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelRefCon
Returns a reference constant that was previously set by SGSetChannelRefCon.

ComponentResult SGGetChannelRefCon (
 SGChannel c,
 long *refCon
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

refCon
A pointer to the reference constant set by SGSetChannelRefCon (page 2192), normally used to point
to a data structure containing information your sequence grabber channel needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

Functions 2131
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetChannelSampleDescription
Retrieves a channel's sample description structure.

ComponentResult SGGetChannelSampleDescription (
 SGChannel c,
 Handle sampleDesc
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

sampleDesc
A handle that is to receive the structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The channel returns a structure that is appropriate to the type of data being captured. For video channels,
the channel component returns an ImageDescription structure; for sound channels, it receives a
SoundDescription structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BrideOfMungGrab
Cocoa - SGDataProc
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelSettings
Retrieves the current settings of a channel used by the sequence grabber.

2132 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetChannelSettings (
 SeqGrabComponent s,
 SGChannel c,
 UserData *ud,
 long flags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

ud
On return, a pointer to a UserDataRecord structure that contains the configuration information.

flags
Reserved for Apple. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelTimeBase
Retrieves a reference to the time base that is being used by a sequence grabber channel.

ComponentResult SGGetChannelTimeBase (
 SGChannel c,
 TimeBase *tb
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

tb
A pointer to a time base identifier, such as that returned by NewTimeBase (page 261).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2133
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
QuickTimeComponents.h

SGGetChannelTimeScale
Lets the sequence grabber retrieve a channel's time scale.

ComponentResult SGGetChannelTimeScale (
 SGChannel c,
 TimeScale *scale
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

scale
A pointer to a time scale. Your channel component places information about its time scale into this
structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The time scale you return typically corresponds to the time scale of the media that has been created by your
channel. Applications may use this time scale in their data functions.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CaptureAndCompressIPBMovie
Cocoa - SGDataProc
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

2134 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetChannelUsage
Determines how the sequence grabber component is using a channel.

ComponentResult SGGetChannelUsage (
 SGChannel c,
 long *usage
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

usage
A pointer to a location that is to receive flags (see below) that specify how your channel is to be used.
You may set more than one of these flags to 1. Set unused flags to 0. See these constants:

seqGrabRecord

seqGrabPreview

seqGrabPlayDuringRecord

seqGrabLowLatencyCapture

seqGrabAlwaysUseTimeBase

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier. Flags added in QuickTime 6.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
WhackedTV

Declared In
QuickTimeComponents.h

SGGetChannelVolume
Determines a channel's sound volume setting.

ComponentResult SGGetChannelVolume (
 SGChannel c,
 short *volume
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Functions 2135
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

volume
A pointer to an integer that is to receive the volume setting of the channel represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the value; the low-order 8 bits
contain the fractional part. Volume values range from -1.0 to 1.0. Negative values play no sound but
preserve the absolute value of the volume setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetCompressBuffer
Returns information about the filter buffer established for a video channel.

ComponentResult SGGetCompressBuffer (
 SGChannel c,
 short *depth,
 Rect *compressSize
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

depth
A pointer to a field that is to receive the pixel depth of the filter buffer. If your component is not
filtering the input video data, set the returned value to 0.

compressSize
A pointer to a Rect structure that is to receive the dimensions of the filter buffer. If your component
is not filtering the input video data, return an empty rectangle (all coordinates set to 0).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2136 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetDataOutput
Determines the movie file that is currently assigned to a sequence grabber component and the control flags
that would govern a record operation.

ComponentResult SGGetDataOutput (
 SeqGrabComponent s,
 FSSpec *movieFile,
 long *whereFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

movieFile
A pointer to an FSSpec structure that is to receive information about the movie file for this record
operation.

whereFlags
A pointer to a long integer that is to receive flags (see below) that control the record operation. See
these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You set the characteristics returned by this function by calling SGSetDataOutput (page 2197). If you have
not set these characteristics before calling this function, the returned data is meaningless.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetDataOutputStorageSpaceRemaining
Returns the amount of space remaining in the data reference associated with an output.

Functions 2137
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetDataOutputStorageSpaceRemaining (
 SeqGrabComponent s,
 SGOutput sgOut,
 unsigned long *space
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

space
A pointer to an unsigned long integer, where the sequence grabber component returns a value that
indicates the number of bytes of space remaining in the data reference associated with the output.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function in place of SGGetStorageSpaceRemaining (page 2154) in cases where you are working
with more than one output.

Version Notes
A sequence grabber output ties a sequence grabber channel to a specified data reference for the output of
captured data. If you are capturing to a single movie file, you can continue to use SGSetDataOutput (page
2197) or SGSetDataRef (page 2199) to specify the sequence grabber's destination. However, if you want to
capture movie data into several different files or data references, you must use sequence grabber outputs
to do so. Even if you are using outputs, you must still use SGSetDataOutput or SGSetDataRef to identify
where the sequence grabber should create the movie resource. You are responsible for creating outputs,
assigning them to sequence grabber channels, and disposing of them when you are done.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetDataOutputStorageSpaceRemaining64
Provides a 64-bit version of SGGetDataOutputStorageSpaceRemaining.

ComponentResult SGGetDataOutputStorageSpaceRemaining64 (
 SeqGrabComponent s,
 SGOutput sgOut,
 wide *space
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

2138 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

space
A pointer to a 64-bit wide integer, where the sequence grabber component returns a value that
indicates the number of bytes of space remaining in the data reference associated with the output.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetDataRate
Determines for a sequence grabber how much recording time is left.

ComponentResult SGGetDataRate (
 SGChannel c,
 long *bytesPerSecond
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bytesPerSecond
A pointer to a long integer that is to receive a value indicating the number of bytes your component
is recording per second. Your component calculates this value based on its current operational
parameters.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetDataRef
Determines the data reference currently assigned to a sequence grabber component and the control flags
that would govern a record operation.

Functions 2139
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetDataRef (
 SeqGrabComponent s,
 Handle *dataRef,
 OSType *dataRefType,
 long *whereFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

dataRef
A pointer to a handle that is to receive the information that identifies the destination container.

dataRefType
A pointer to a field that is to receive the type of data reference.

whereFlags
A pointer to a long integer that is to receive flags (see below) that control the record operation. See
these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to determine the data reference that is currently assigned to a sequence grabber
component and the control flags that would govern a record operation. You set these characteristics by
calling SGSetDataRef (page 2199). If you have not set these characteristics before calling this function, the
returned data is meaningless.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetFlags
Retrieves a sequence grabber's control flags.

2140 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetFlags (
 SeqGrabComponent s,
 long *sgFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgFlags
A pointer to a long integer that is to receive the control flag (see below) for the current operation.
See these constants:

sgFlagControlledGrab

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGGetFrameRate
Retrieves a video channel's frame rate for recording.

ComponentResult SGGetFrameRate (
 SGChannel c,
 Fixed *frameRate
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

frameRate
A pointer to a field to receive the current frame rate.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2141
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGGetGWorld
Determines the graphics port and device for a sequence grabber component.

ComponentResult SGGetGWorld (
 SeqGrabComponent s,
 CGrafPtr *gp,
 GDHandle *gd
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

gp
A pointer to a location that is to receive a pointer to the destination graphics port. Set this parameter
to NIL if you are not interested in this information.

gd
A pointer to a location that is to receive a handle to the destination graphics device. Set this parameter
to NIL if you are not interested in this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetIndChannel
Collects information about all of the channel components currently in use by a sequence grabber component.

ComponentResult SGGetIndChannel (
 SeqGrabComponent s,
 short index,
 SGChannel *ref,
 OSType *chanType
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

2142 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

index
Specifies an index value that identifies the channel to be queried. The first channel has an index value
of 1.

ref
A pointer to a field to receive a value identifying your connection to the channel. If you do not want
to receive this information, set this parameter to NIL.

chanType
A pointer to a field to receive the channel's subtype value (see below). This value indicates the media
type supported by the channel component. See these constants:

VideoMediaType

SoundMediaType

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGGetInstrument
Gets a tone description for a music sequence grabber channel.

ComponentResult SGGetInstrument (
 SGChannel c,
 ToneDescription *td
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

td
Pointer to a ToneDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2143
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGGetLastMovieResID
Retrieves the last resource ID used by the sequence grabber component.

ComponentResult SGGetLastMovieResID (
 SeqGrabComponent s,
 short *resID
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

resID
A pointer to an integer that is to receive the resource ID the sequence grabber assigned to the movie
resource it just created.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetMaximumRecordTime
Determines the time limit you have set for a record operation.

ComponentResult SGGetMaximumRecordTime (
 SeqGrabComponent s,
 unsigned long *ticks
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

ticks
A pointer to a long integer that is to receive a value indicating the maximum duration for the record
operation, in system ticks (sixtieths of a second). A value of 0 indicates that there is no time limit.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

2144 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetMode
Determines whether a sequence grabber component is in preview mode or record mode.

ComponentResult SGGetMode (
 SeqGrabComponent s,
 Boolean *previewMode,
 Boolean *recordMode
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

previewMode
A pointer to a Boolean. The sequence grabber component sets this field to TRUE if the component is
in preview mode.

recordMode
A pointer to a Boolean. The sequence grabber component sets this field to TRUE if the component is
in record mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetMovie
Returns a reference to the movie that contains the data collected during a record operation.

Movie SGGetMovie (
 SeqGrabComponent s
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

Functions 2145
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Return Value
A movie identifier, such as that returned from NewMovie (page 259).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetNextExtendedFrameReference
Allows a channel component to retrieve the sample references stored previously by SGAddExtendedMovieData
or SGAddExtendedFrameReference.

ComponentResult SGGetNextExtendedFrameReference (
 SeqGrabComponent s,
 SeqGrabExtendedFrameInfoPtr frameInfo,
 TimeValue *frameDuration,
 long *frameNumber
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

frameInfo
A pointer to a SeqGrabExtendedFrameInfo structure. Your component must place the appropriate
information into this structure.

frameDuration
A pointer to a time value. The sequence grabber component calculates the duration of the specified
frame and returns that duration in this structure. The sequence grabber component cannot calculate
the duration of the last frame in a sequence. For the last frame, the time value is set to -1.

frameNumber
A pointer to a long integer representing the frame number. Frame numbers need not be sequential,
and need not start at 0. To retrieve information about the first frame in a movie, set the integer to -1.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your channel component can process frame references sequentially or randomly. You can specify any relative
frame for which you want to retrieve information.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2146 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetNextFrameReference
Lets a channel component retrieve the sample references that were stored by calling SGAddMovieData or
SGAddFrameReference.

ComponentResult SGGetNextFrameReference (
 SeqGrabComponent s,
 SeqGrabFrameInfoPtr frameInfo,
 TimeValue *frameDuration,
 long *frameNumber
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

frameInfo
A pointer to a SeqGrabFrameInfo structure. Your component must identify itself to the sequence
grabber component by setting the frameChannel field of this structure to the component instance
that identifies the current connection to your channel. You get this value from SGNewChannel (page
2169) or SGNewChannelFromComponent (page 2170). The sequence grabber component then returns
information about the specified frame in the remaining fields of this structure.

frameDuration
A pointer to a time value. The sequence grabber component calculates the duration of the specified
frame and returns that duration in the structure referred to by this parameter. The sequence grabber
component cannot calculate the duration of the last frame in a sequence. In this case, the sequence
grabber component sets the returned time value to -1.

frameNumber
A pointer to a long integer. Your channel component specifies the frame number corresponding to
the frame about which you want to retrieve information. Frames are numbered starting at 0. However,
frame numbers need not start at 0, and they need not be sequential. Set the integer to -1 to retrieve
information about the first frame in a movie.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGGetOutputDataReference
Returns information about the data reference associated with the specified sequence grabber output.

Functions 2147
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetOutputDataReference (
 SeqGrabComponent s,
 SGOutput sgOut,
 Handle *dataRef,
 OSType *dataRefType
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

dataRef
A pointer to the handle in which the data reference is returned. If you do not need the data reference,
set this parameter to NIL.

dataRefType
A pointer in which the type of the data reference is returned. If you do not need this information, set
this parameter to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The caller is responsible for disposing of the returned handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetOutputMaximumOffset
Returns the maximum offset for data written to the specified sequence grabber output.

ComponentResult SGGetOutputMaximumOffset (
 SeqGrabComponent s,
 SGOutput sgOut,
 wide *maxOffset
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the current sequence grabber output. You obtain this identifier by calling SGNewOutput (page
2171).

2148 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

maxOffset
A pointer to the value of the maximum offset for data written to this output. This value is initialized
to (2^32-1) on systems with a 32-bit file system, and (2^64-1) on systems with a 64-bit file system.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetOutputNextOutput
Returns the next sequence grabber output for the specified output.

ComponentResult SGGetOutputNextOutput (
 SeqGrabComponent s,
 SGOutput sgOut,
 SGOutput *nextOut
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the current sequence grabber output. You obtain this identifier by calling SGNewOutput (page
2171).

nextOut
A pointer to the next output to be used. If there is no next output, this value is NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetPause
Determines whether the sequence grabber is paused.

Functions 2149
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetPause (
 SeqGrabComponent s,
 Byte *paused
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

paused
A pointer to a field that is to receive a constant (see below) that indicates whether the sequence
grabber is currently paused. See these constants:

seqGrabUnpause

seqGrabPause

seqGrabPauseForMenu

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGGetPreferredPacketSize
Returns the preferred packet size for the sequence grabber component.

ComponentResult SGGetPreferredPacketSize (
 SGChannel c,
 long *preferredPacketSizeInBytes
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

preferredPacketSizeInBytes
The preferred packet size in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
SGGetPreferredPacketSize was added in QuickTime 2.5 to support video conferencing applications.

2150 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetSettings
Retrieves the current settings of all channels used by the sequence grabber.

ComponentResult SGGetSettings (
 SeqGrabComponent s,
 UserData *ud,
 long flags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

ud
A pointer to a space where the sequence grabber returns a pointer to a UserDataRecord structure
that contains the configuration information. Your application is responsible for disposing of this
structure when it is done with it.

flags
Reserved for Apple. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGGetSoundInputDriver
Determines the sound input device currently in use by a sound channel component.

Functions 2151
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

long SGGetSoundInputDriver (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
A reference to the sound input device. If your sound channel is not using a sound input device, returns NIL.

Discussion
You may want to gain access to the sound input device if you want to change the device's configuration.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetSoundInputParameters
Retrieves various parameters that relate to sound recording.

ComponentResult SGGetSoundInputParameters (
 SGChannel c,
 short *sampleSize,
 short *numChannels,
 OSType *compressionType
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

sampleSize
A pointer to a field to receive the sample size. Set this field to 8 for 8-bit sound or to 16 for 16-bit
sound.

numChannels
A pointer to a field to receive the number of sound channels used by the sound sample. Set this field
to 1 for monaural sounds or to 2 for stereo sounds.

compressionType
A pointer to a field to receive the format of the sound data (see below). See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

2152 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetSoundInputRate
Determines the rate at which the sound channel is collecting sound data.

Fixed SGGetSoundInputRate (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
A fixed-point number that indicates the number of samples your sound channel collects per second.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetSoundRecordChunkSize
Determines the amount of sound data the sequence grabber component works with at a time.

long SGGetSoundRecordChunkSize (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
A long integer that specifies the number of seconds of sound data your channel works with at a time.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2153
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetSrcVideoBounds
Determines the size of the source video boundary rectangle.

ComponentResult SGGetSrcVideoBounds (
 SGChannel c,
 Rect *r
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

r
A pointer to a Rect structure that is to receive information about your channel's source video boundary
rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
For video channel components that work with video digitizer components, the source video boundary
rectangle corresponds to the video digitizer's active source rectangle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
hacktv
hacktv.win
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGGetStorageSpaceRemaining
Monitors the amount of space remaining for use during a record operation.

ComponentResult SGGetStorageSpaceRemaining (
 SeqGrabComponent s,
 unsigned long *bytes
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

2154 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

bytes
A pointer to a long integer that is to receive a value indicating the amount of space remaining for
the current record operation. If you are recording to memory, this value contains information about
the amount of memory remaining. If you are recording to a movie file, this value contains information
about the amount of storage space available on the device that holds the file.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can call this function only after you have started a record operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetStorageSpaceRemaining64
Provides a 64-bit version of SGGetStorageSpaceRemaining.

ComponentResult SGGetStorageSpaceRemaining64 (
 SeqGrabComponent s,
 wide *bytes
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

bytes
A pointer to a wide integer that is to receive a value indicating the amount of space remaining for
the current record operation. If you are recording to memory, this value contains information about
the amount of memory remaining. If you are recording to a movie file, this value contains information
about the amount of storage space available on the device that holds the file.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2155
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetTextReturnToSpaceValue
Indicates whether the text channel component should replace return characters with spaces.

ComponentResult SGGetTextReturnToSpaceValue (
 SGChannel c,
 short *rettospace
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

rettospace
A pointer to a 16-bit integer. On return, this parameter is TRUE if the text channel is replacing return
characters with spaces, or FALSE if the text channel is not replacing return characters with spaces.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When you capture text from a closed-caption television source, the text is composed of four lines of text of
up to 32 characters each, each line separated by a return character. Sometimes it is useful to replace the
return characters with spaces. You can call this function to determine whether the text channel component
is replacing return characters with spaces.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetTimeBase
Retrieves a reference to the time base that is being used by a sequence grabber component.

ComponentResult SGGetTimeBase (
 SeqGrabComponent s,
 TimeBase *tb
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

tb
A pointer to a time base identifier, such as that returned by NewTimeBase (page 261).

Return Value
See Error Codes. Returns noErr if there is no error.

2156 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BrideOfMungGrab

Declared In
QuickTimeComponents.h

SGGetTimeRemaining
Obtains an estimate of the amount of recording time that remains for the current record operation.

ComponentResult SGGetTimeRemaining (
 SeqGrabComponent s,
 long *ticksLeft
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

ticksLeft
A pointer to a long integer that is to receive a value indicating an estimate of the amount of time
remaining for the current record operation. This value is expressed in system ticks (sixtieths of a
second).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetUserVideoCompressorList
Returns the video compression formats to be displayed by the specified sequence grabber video channel.

Functions 2157
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetUserVideoCompressorList (
 SGChannel c,
 Handle *compressorTypes
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

compressorTypes
A pointer to handle where the list of video compression formats should be returned.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function returns a copy of the list of video compression formats previously passed to
SGSetUserVideoCompressorList (page 2215). If no video compression formats have been set, it sets the
compressorTypes handle to NIL. The caller of this routine is responsible for disposing of the returned
handle.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetUseScreenBuffer
Determines whether a video channel is allowed to use an offscreen buffer.

ComponentResult SGGetUseScreenBuffer (
 SGChannel c,
 Boolean *useScreenBuffer
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

useScreenBuffer
A pointer to a Boolean value. The channel component sets this field to TRUE if it draws directly to the
screen, or FALSE if it can draw to an offscreen buffer.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function can be called by a sequence grabber client to determine whether or not a video channel can
use an offscreen buffer. Some video capture hardware can only capture to the screen.

2158 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetVideoBottlenecks
Determines the callback functions that have been assigned to a video channel.

ComponentResult SGGetVideoBottlenecks (
 SGChannel c,
 VideoBottles *vb
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

vb
A pointer to a VideoBottles structure. This function sets the fields of that structure to indicate the
callback functions that have been assigned to this video channel. You must set the procCount field
in the VideoBottles structure to 9.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
DigitizerShell
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGGetVideoCompressor
Determines a channel's current image compression parameters.

Functions 2159
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGetVideoCompressor (
 SGChannel c,
 short *depth,
 CompressorComponent *compressor,
 CodecQ *spatialQuality,
 CodecQ *temporalQuality,
 long *keyFrameRate
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

depth
A pointer to a field that is to receive the depth at which the image is likely to be viewed. Image
compressor components may use the depth as an indication of the color or grayscale resolution of
the compressed images. Return the depth value currently in use by your channel component. If this
parameter is set to NIL, the sequence grabber component is not interested in this information.

compressor
A pointer to a field that is to receive an image compressor identifier. Return the identifier that
corresponds to the image compressor your channel is using. If this parameter is set to NIL, the
sequence grabber component is not interested in this information.

spatialQuality
A pointer to a field that is to receive the desired compressed image quality. Return the current quality
value. If this parameter is set to NIL, the sequence grabber component is not interested in this
information. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A pointer to a field that is to receive the desired temporal quality of the sequence. This parameter
governs the level of compression you desire with respect to information between successive frames
in the sequence. Return the current temporal quality value. If this parameter is set to NIL, the sequence
grabber component is not interested in this information.

keyFrameRate
A pointer to a field that is to receive the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed sequence may be decompressed.
This value controls the frequency at which the image compressor places key frames into the
compressed sequence. Return the current key frame rate. If this parameter is set to NIL, the sequence
grabber component is not interested in this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

2160 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetVideoCompressorType
Determines the type of image compression that is being applied to a channel's video data.

ComponentResult SGGetVideoCompressorType (
 SGChannel c,
 OSType *compressorType
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

compressorType
A pointer to a field that is to receive information about the type of image compression to use. Return
a value (see below) that corresponds to one of the image-compression types supported by the Image
Compression Manager. You should use GetCodecNameList (page 652) to retrieve these names, so
that your application can take advantage of new compressor types that may be added in the future.
See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGetVideoDigitizerComponent
Determines the video digitizer component that is providing source video to a video channel component.

ComponentInstance SGGetVideoDigitizerComponent (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Functions 2161
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Return Value
A component instance that identifies the connection between your video channel component and its video
digitizer component. If your video channel component does not use a video digitizer component, set this
returned value to NIL.

Discussion
This function allows the sequence grabber component to determine the video digitizer component that is
providing source video to your video channel component. For example, the sequence grabber component
can use this function to obtain access to the video digitizer component so that the grabber component can
set the digitizer's parameters.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
DigitizerShell

Declared In
QuickTimeComponents.h

SGGetVideoRect
Determines the portion of the source video image that is to be captured.

ComponentResult SGGetVideoRect (
 SGChannel c,
 Rect *r
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

r
A pointer to a Rect structure that is to receive the dimensions of the rectangle that defines the portion
of the source video image your component is going to capture.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win

2162 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGGrabCompressComplete
Provides the default behavior for your grab-compress-complete function.

ComponentResult SGGrabCompressComplete (
 SGChannel c,
 UInt8 *queuedFrameCount,
 SGCompressInfo *ci,
 TimeRecord *tr
);

Parameters
c

The connection identifier for the channel for this operation. The sequence grabber provides this value
to your grab-compress-complete function.

queuedFrameCount
A pointer to the number of queued frames yet to be done. 0 means no frames. Some VDIGs may
return 2 even if more than 2 frames are available, and some will return 1 if any number more than 0
are available.

ci
A pointer to an SGCompressInfo structure. When the operation is complete, the function fills in this
structure with information about the compression operation.

tr
A pointer to a TimeRecord structure. When the operation is complete, the function uses this structure
to indicate when the frame was grabbed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By setting the SGGrabCompressCompleteBottleProc callback and calling this function, your application
can determine how many frames are currently queued in the VDIG, which can be useful for real-time
processing.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
QuickTimeComponents.h

SGGrabFrame
Provides the default behavior for your grab function.

Functions 2163
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGGrabFrame (
 SGChannel c,
 short bufferNum
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber component provides
this value to your grab function.

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your grab function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGrabFrameComplete
Provides the default behavior for your grab-complete function.

ComponentResult SGGrabFrameComplete (
 SGChannel c,
 short bufferNum,
 Boolean *done
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber provides this value
to your grab-complete function.

bufferNum
Identifies the buffer. The sequence grabber provides this value to your grab-complete function.

done
A pointer to a Boolean value. The function sets this value to TRUE if the capture is complete, and sets
it to FALSE if the capture is incomplete. The sequence grabber provides this pointer to your
grab-complete function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

2164 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Related Sample Code
DigitizerShell
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGGrabPict
Lets your application obtain a Picture structure from a sequence grabber component.

ComponentResult SGGrabPict (
 SeqGrabComponent s,
 PicHandle *p,
 const Rect *bounds,
 short offscreenDepth,
 long grabPictFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

p
A pointer to a field that is to receive a handle to the Picture structure. If the function cannot create
the structure, it sets this handle to NIL.

bounds
A pointer to the boundary region for the Picture structure. By default, this rectangle lies in the
current graphics port. If you set the grabPictOffScreen flag in the grabPictFlags parameter to
1, the sequence grabber places the structure in an offscreen graphics world. In this case, the rectangle
is interpreted in that offscreen world.

offscreenDepth
The pixel depth for the offscreen graphics world. This parameter is typically set to 0, which chooses
the best available depth. If you set the grabPictOffScreen flag in the grabPictFlags parameter
to 1, the sequence grabber places the Picture structure in an offscreen graphics world. You specify
the pixel depth of this offscreen graphics world with this parameter. If you are displaying the picture,
this parameter is ignored.

grabPictFlags
Contains flags (see below) that control the operation. See these constants:

grabPictOffScreen

grabPictIgnoreClip

grabPictCurrentImage

Return Value
See Error Codes. Returns noErr if there is no error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv

Functions 2165
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

hacktv.win
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGHandleUpdateEvent
Requests that a sequence grabber handle an update event.

ComponentResult SGHandleUpdateEvent (
 SeqGrabComponent s,
 const EventRecord *event,
 Boolean *handled
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

event
A pointer to an EventRecord structure.

handled
A pointer to a Boolean that returns TRUE if the event was handled, FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGIdle
Provides processing time for sequence grabber components.

ComponentResult SGIdle (
 SeqGrabComponent s
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Return Value
See Error Codes. Returns noErr if there is no error.

2166 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
After starting a preview or record operation, the application calls this function as often as possible. The
sequence grabber component then calls your SGIdle function. This continues until the calling application
stops the operation by calling SGStop (page 2223).Your SGIdle function reports several status and error
conditions by means of its result code. If your component returns a nonzero result code during a record
operation, the application should call SGStop so that the sequence grabber component can store the data
it has collected.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win
Sequence Grabbing
SGDataProcSample
VideoProcessing

Declared In
QuickTimeComponents.h

SGInitChannel
Initializes a channel component.

ComponentResult SGInitChannel (
 SGChannel c,
 SeqGrabComponent owner
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

owner
Identifies the sequence grabber component that has been connected to your channel component.
You should save this value so that your channel component can call the utility functions that are
provided by the sequence grabber component.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2167
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGInitialize
Initializes the sequence grabber component.

ComponentResult SGInitialize (
 SeqGrabComponent s
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Before you can call this function you must establish a connection to the sequence grabber component. Use
OpenDefaultComponent or OpenComponent to establish a component connection, as shown below:

// SGInitialize coding example
// See "Discovering QuickTime," page 262
SeqGrabComponent MakeMySequenceGrabber (WindowRef pMacWnd)
{
 SeqGrabComponent seqGrab =NIL;
 OSErr nErr =noErr;
 // open the default sequence grabber
 seqGrab =OpenDefaultComponent(SeqGrabComponentType, 0);
 if (seqGrab !=NIL) {
 // initialize the default sequence grabber component
 nErr =SGInitialize(seqGrab);
 if (nErr ==noErr) {
 // set its graphics world to the specified window
 nErr =SGSetGWorld(seqGrab, (CGrafPtr)pMacWnd, NIL);
 }
 }
 if (nErr && (seqGrab !=NIL)) { // clean up on failure
 CloseComponent(seqGrab);
 seqGrab =NIL;
 }
 return seqGrab;
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa - SGDataProc
MovieGWorlds
qtcapture
SGDataProcSample
WhackedTV

2168 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGNewChannel
Creates a sequence grabber channel and assigns a channel component to the channel.

ComponentResult SGNewChannel (
 SeqGrabComponent s,
 OSType channelType,
 SGChannel *ref
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

channelType
The type of channel to open (see below). This value corresponds to the component subtype value of
the channel component. See these constants:

VideoMediaType

SoundMediaType

ref
A pointer to the frameChannel field in the SeqGrabFrameInfo structure that is to receive a reference
to the channel that is added to the sequence grabber component. If the sequence grabber component
successfully locates and connects to an appropriate channel component, the sequence grabber
component returns a reference to the channel component into this field.

Return Value
See Error Codes. If the sequence grabber component cannot open a connection, it sets the result code to
a nonzero value. It returns noErr if there is no error.

Discussion
The channel component is responsible for providing digitized data to the sequence grabber component.
You specify the type of channel component to be added to the sequence grabber component, as shown in
the following sample code:

// SGNewChannel coding example
// See "Discovering QuickTime," page 263
void MakeMyGrabChannels (SeqGrabComponent seqGrab,
 SGChannel *sgchanVideo,
 SGChannel *sgchanSound,
 const Rect *rect,
 Boolean bWillRecord)
{
 OSErr nErr;
 long lUsage;
 // figure out the usage
 lUsage =seqGrabPreview; // always previewing
 if (bWillRecord)
 lUsage |=seqGrabRecord; // sometimes recording
 // create a video channel
 nErr =SGNewChannel(seqGrab, VideoMediaType, sgchanVideo);
 if (nErr ==noErr) {

Functions 2169
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

 // set boundaries for new video channel
 nErr =SGSetChannelBounds(*sgchanVideo, rect);
 // set usage for new video channel
 if (nErr ==noErr)
 nErr =SGSetChannelUsage(*sgchanVideo, lUsage |
 seqGrabPlayDuringRecord);
 if (nErr !=noErr) {
 // clean up on failure
 SGDisposeChannel(seqGrab, *sgchanVideo);
 *sgchanVideo =NIL;
 }
 }
 // create a sound channel
 nErr =SGNewChannel(seqGrab, SoundMediaType, sgchanSound);
 if (nErr ==noErr) {
 // set usage of new sound channel
 nErr =SGSetChannelUsage(*sgchanSound, lUsage);
 if (nErr !=noErr) {
 // clean up on failure
 SGDisposeChannel(seqGrab, *sgchanSound);
 *sgchanSound =NIL;
 }
 }
}

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
MungSaver
Sequence Grabbing
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGNewChannelFromComponent
Creates a sequence grabber channel and assigns a channel component to the channel.

ComponentResult SGNewChannelFromComponent (
 SeqGrabComponent s,
 SGChannel *newChannel,
 Component sgChannelComponent
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

2170 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

newChannel
A pointer to a channel component that is to receive a reference to the channel that is added to the
sequence grabber component. If the sequence grabber component successfully locates and connects
to the specified channel component, the sequence grabber component returns a reference to the
channel component into this field.

sgChannelComponent
Identifies the channel component to use. You supply a component ID value to the sequence grabber.
The sequence grabber then opens a connection to that channel component and returns your
connection ID in the field specified by the newChannel parameter. You may obtain a component ID
value by calling FindNextComponent.

Return Value
See Error Codes. If the sequence grabber component cannot open a connection, it sets the result code to
a nonzero value. It returns noErr if there is no error.

Discussion
This function is similar to SGNewChannel (page 2169), except that this function allows you to specify a particular
component rather than just a component subtype value.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGNewOutput
Creates a new sequence grabber output.

ComponentResult SGNewOutput (
 SeqGrabComponent s,
 Handle dataRef,
 OSType dataRefType,
 long whereFlags,
 SGOutput *sgOut
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

dataRef
A handle to the destination container.

dataRefType
The type of data reference; see Data References. If the data reference is an alias, you must set the
parameter to rAliasType.

Functions 2171
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

whereFlags
Flags (see below) that control the record operation. You must set either seqGrabToDisk or
seqGrabToMemory to 1. Set unused flags to 0. See these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

sgOut
A pointer to a sequence grabber output. The sequence grabber component returns an output identifier
that you can use with other sequence grabber component functions.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Once you have created the sequence grabber output, you can use SGSetChannelOutput (page 2191) to
assign the output to a sequence grabber channel.

Version Notes
A sequence grabber output ties a sequence grabber channel to a specified data reference for the output of
captured data. If you are capturing to a single movie file, you can continue to use SGSetDataOutput (page
2197) or SGSetDataRef (page 2199) to specify the sequence grabber's destination. However, if you want to
capture movie data into several different files or data references, you must use sequence grabber outputs
to do so. Even if you are using outputs, you must still use SGSetDataOutput or SGSetDataRef to identify
where the sequence grabber should create the movie resource. You are responsible for creating outputs,
assigning them to sequence grabber channels, and disposing of them when you are done.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGPanelCanRun
Lets a sequence grabber component determine whether a panel component can work with the current
sequence grabber channel component.

2172 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelCanRun (
 SeqGrabComponent s,
 SGChannel c
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. The sequence grabber component provides
you with a connection to the channel component in question. You must determine whether your
panel component can operate with this channel component and its associated channel hardware.

Return Value
If your component can work with the specified channel, return a result code of noErr. Otherwise, return an
appropriate sequence grabber or sequence grabber channel component result code. See Error Codes.

Discussion
Set the channelFlagHasDependency flag in the ComponentDescription structure of your sequence
grabber panel component to cause the sequence grabber component to call this function. Your component
should query the channel component to determine whether you can operate with it. You may want to use
channel component functions to determine the characteristics of the digitization source attached to the
channel.

Special Considerations

If your panel component can only support a limited number of connections, you should regulate the number
of active connections through this function. Return a nonzero result code to indicate to the sequence grabber
that your panel component cannot support the current connection.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelEvent
Lets a component receive and process dialog events.

Functions 2173
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelEvent (
 SeqGrabComponent s,
 SGChannel c,
 DialogRef d,
 short itemOffset,
 const EventRecord *theEvent,
 short *itemHit,
 Boolean *handled
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

d
A dialog pointer identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

theEvent
A pointer to an EventRecord structure. This structure contains information identifying the nature
of the event.

itemHit
A pointer to a field that is to receive the item number in cases where your component handles the
event. The number returned is an absolute, not a relative number, so it must be offset by the
itemOffset parameter.

handled
A pointer to a Boolean value. Set this Boolean value to TRUE if you handle the event; set it to FALSE
if you do not.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelGetDitl
Lets a sequence grabber component determine the dialog items managed by your panel component.

2174 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelGetDitl (
 SeqGrabComponent s,
 Handle *ditl
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

ditl
A pointer to a handle provided by the sequence grabber component. Your component returns the
item list in this handle. Your component should resize this handle as appropriate. The sequence
grabber component will dispose of this handle after retrieving the item list, so make sure that the
item list is not stored in a resource.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence grabber uses the information returned by this function to build a sequence grabber settings
dialog box for the user. The sequence grabber component will open your resource file before calling this
function, unless you have instructed the sequence grabber component not to open your resource file by
setting the channelFlagDontOpenResFile flag in your your panel component's ComponentDescription
structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelGetDITLForSize
Returns user interface elements that fit within a specified size panel.

ComponentResult SGPanelGetDITLForSize (
 SeqGrabComponent s,
 Handle *ditl,
 Point *requestedSize
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

ditl
A pointer to a handle provided by the sequence grabber component. Your panel component returns
the dialog item list in this handle. Your component should resize this handle as appropriate. The
sequence grabber component will dispose of this handle after retrieving the item list, so make sure
that the item list is not stored in a resource.

Functions 2175
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

requestedSize
The size of the panel, or constants (see below). The sequence grabber will interpolate the panel
elements between the two sizes if just the constants are returned. See these constants:

kSGSmallestDITLSize

kSGLargestDITLSize

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine is used to retrieve user interface elements that fit within a specified size panel. If it is not
implemented, the sequenced grabber will assume that your panel does not have resizable user interface
elements.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

SGPanelGetSettings
Retrieves a panel's current settings for a sequence grabber component.

ComponentResult SGPanelGetSettings (
 SeqGrabComponent s,
 SGChannel c,
 UserData *ud,
 long flags
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

ud
A pointer to a UserDataRecord structure. Your component is responsible for creating a new structure
and returning it by means of this pointer. Your component is not responsible for disposing of the
structure. These settings may be stored as part of a larger sequence grabber configuration and may
be stored for a long period of time. Therefore, you should not store values that may change without
your knowledge (such as component ID or connection values). You are free to format the data in user
data items any way you desire.

flags
Reserved for future use.

Return Value
See Error Codes. Returns noErr if there is no error.

2176 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
Make sure your component can retrieve the settings information from the user data item when this function
is called. You may choose to format the data in such a way that other components can parse it easily, thus
allowing your component to operate with other panel components.

Special Considerations

You create new user data items by calling NewUserData (page 1415). You may then use other Movie Toolbox
functions to manipulate the user data items.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelGetTitle
Gets the displayed title of a sequence grabber panel.

ComponentResult SGPanelGetTitle (
 SeqGrabComponent s,
 Str255 title
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

title
A string containing the panel's title.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelInstall
Installs added items in a sequence grabber settings dialog box before the dialog box is displayed to the user.

Functions 2177
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelInstall (
 SeqGrabComponent s,
 SGChannel c,
 DialogRef d,
 short itemOffset
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

d
A dialog pointer identifying the settings dialog box. Your component may use this value to manage
its part of the dialog box.

itemOffset
The offset to your panel's first item in the dialog box. Because sequence grabber components build
your dialog items into a larger dialog box containing other items, this value may be different each
time your panel component is installed; do not rely on it being the same.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A sequence grabber component calls this function just before displaying the dialog box to the user. The
sequence grabber provides you with information identifying the channel that your panel is to configure, the
dialog box, and the offset of your panel's items into the dialog box. You may use this opportunity to set
default dialog values or to initialize your control values.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelItem
Receives and processes mouse clicks in the sequence grabber settings dialog box.

2178 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelItem (
 SeqGrabComponent s,
 SGChannel c,
 DialogRef d,
 short itemOffset,
 short itemNum
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

d
A dialog pointer identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

itemNum
The item number of the dialog item selected by the user. The sequence grabber provides an absolute
item number. It is your responsibility to adjust this value to account for the offset to your panel's first
item in the dialog box.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A sequence grabber component calls this function whenever the user clicks an item in the settings dialog
box. Your component may then perform whatever processing is appropriate, depending upon the item
number.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelRemove
Removes a panel from the sequence grabber settings dialog box.

Functions 2179
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelRemove (
 SeqGrabComponent s,
 SGChannel c,
 DialogRef d,
 short itemOffset
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

d
A dialog pointer identifying the settings dialog box.

itemOffset
The offset to your panel's first item in the dialog box.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A sequence grabber component calls this function just before removing your items from the settings dialog
box. The sequence grabber provides you with information identifying the channel your panel is to configure,
the dialog box, and the offset of your panel's items into the dialog box. You may use this opportunity to save
any changes you may have made to the dialog box or to retrieve the contents of text items.

Special Considerations

If the sequence grabber opened your resource file, it will still be open when it calls this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelSetEventFilter
Sets the event filter callback for a sequence grabber panel component.

2180 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelSetEventFilter (
 SeqGrabComponent s,
 SGModalFilterUPP proc,
 long refCon
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

proc
An SGModalFilterProc callback.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelSetGrabber
Identifies a sequence grabber component to a panel component.

ComponentResult SGPanelSetGrabber (
 SeqGrabComponent s,
 SeqGrabComponent sg
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component.

sg
Identifies a connection to the sequence grabber component that is using your panel component.
Your component may use this connection to call sequence grabber component functions.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A sequence grabber component calls this function in order to identify itself to your panel component. Your
component can use the provided connection to call sequence grabber functions, either to determine the
characteristics of the current capture operation or to alter those characteristics.

Special Considerations

This is typically the first function a sequence grabber component calls after opening your panel component.

Functions 2181
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelSetResFile
Lets the sequence grabber pass a resource file's reference number.

ComponentResult SGPanelSetResFile (
 SeqGrabComponent s,
 short resRef
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

resRef
A reference number that identifies your component's resource file. After it closes your resource file,
the sequence grabber component calls this function and sets this value to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
A sequence grabber component calls this function to pass you your component's resource file reference
number. By default, the sequence grabber component opens your component's resource file for you. You
can use this reference number to retrieve resources from your resource file. The sequence grabber component
also calls this function when it closes your component's resource file. In this case, it sets the resRef parameter
to 0. The sequence grabber component may close your resource file at any time; you should not count on
any particular calling sequence. If you do not want the sequence grabber component to open your resource
file, set the channelFlagDontOpenResFile flag in your panel component's ComponentDescription
structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelSetSettings
Restores a panel's current settings for a sequence grabber component.

2182 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelSetSettings (
 SeqGrabComponent s,
 SGChannel c,
 UserData ud,
 long flags
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

ud
Identifies a UserDataRecord structure that contains new settings information for your panel. Your
component must not dispose of this structure.

flags
Reserved for future use.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your component originally creates the settings information when the sequence grabber calls
SGPanelGetSettings (page 2176). The sequence grabber passes this configuration information back to you
in the ud parameter to this function. Your component should parse the configuration information and use
it to establish your panel's current settings. Note that your component may not be able to accommodate
the original settings. For example, because the settings may have been stored for some time, the hardware
environment may not be able to support the values in the settings. You should try to make your new settings
match the original settings as closely as possible. If you cannot get close enough, return an appropriate
sequence grabber or sequence grabber channel result code.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPanelValidateInput
Validates the contents of the user dialog box for a sequence grabber component.

Functions 2183
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGPanelValidateInput (
 SeqGrabComponent s,
 Boolean *ok
);

Parameters
s

Identifies the sequence grabber component's connection to your panel component. See
SGPanelSetGrabber (page 2181).

ok
A pointer to a Boolean value. Set this value to TRUE if the settings are OK; otherwise, set it to FALSE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence grabber calls this function when the user clicks the OK button. If the user clicks the Cancel
button, the sequence grabber does not call this function. You indicate whether the settings are acceptable
by setting the Boolean value referred to by the ok parameter. If you set this value to FALSE, the sequence
grabber component ignores the OK button in the dialog box.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGPause
Suspends or restarts a sequence grabber record or preview operation.

ComponentResult SGPause (
 SeqGrabComponent s,
 Byte pause
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

pause
A constant (see below) that instructs your component to suspend or restart the current operation.
See these constants:

seqGrabUnpause

seqGrabPause

Return Value
See Error Codes. Returns noErr if there is no error.

2184 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
Your component should not release any system resources or temporary memory associated with the current
operation. You should be ready to restart the operation immediately.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGPrepare
Instructs a sequence grabber to get ready to begin a preview or record operation.

ComponentResult SGPrepare (
 SeqGrabComponent s,
 Boolean prepareForPreview,
 Boolean prepareForRecord
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

prepareForPreview
The sequence grabber component sets this parameter to TRUE to prepare for a preview operation.
The sequence grabber component may set both the prepareForPreview and prepareForRecord
parameters to TRUE.

prepareForRecord
The sequence grabber component sets this parameter to TRUE to prepare for a record operation. The
sequence grabber component may set both the prepareForPreview and prepareForRecord
parameters to TRUE.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If you do not call this function before starting a record or preview operation, the sequence grabber component
makes these preparations when you start the operation. You cannot call this function after you start a preview
or record operation. If you call this function without subsequently starting a record or preview operation,
you should call SGRelease (page 2186). This allows the sequence grabber component to release any system
resources it allocated when you called this function.

Functions 2185
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
Cocoa - SGDataProc
OpenGLCompositorLab
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGRelease
Instructs the sequence grabber to release any system resources it allocated when you called SGPrepare.

ComponentResult SGRelease (
 SeqGrabComponent s
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You cannot call this function during a record or preview operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview
BrideOfMungGrab
MungSaver
WhackedTV

Declared In
QuickTimeComponents.h

SGSetAdditionalSoundRates
Specifies a list of sound sample rates to be included in the sequence grabber's sound settings dialog box.

2186 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetAdditionalSoundRates (
 SGChannel c,
 Handle rates
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

rates
A handle containing a list of unsigned 32-bit fixed-point values. The sequence grabber channel
determines the number of sample rates contained in the handle, based on the size of the handle. If
any of the requested rates are not supported directly by the available sound capture hardware, sound
will be captured at one of the available hardware rates and then converted in software to the requested
rate.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence grabber channel makes a copy of the additional rates handle, so your application can
immediately dispose of it after making this call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGSetChannelBounds
Specifies a channel's display boundary rectangle.

ComponentResult SGSetChannelBounds (
 SGChannel c,
 const Rect *bounds
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bounds
A pointer to a Rect structure that defines your channel's display boundary rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2187
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
MovieGWorlds
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGSetChannelClip
Sets a channel's clipping region.

ComponentResult SGSetChannelClip (
 SGChannel c,
 RgnHandle theClip
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

theClip
A handle to the new clipping region. You should make a copy of this region; the application may
dispose of the region immediately.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGSetChannelDevice
Assigns a device to a channel.

2188 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetChannelDevice (
 SGChannel c,
 StringPtr name
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

name
A pointer to the device's name string. This name is contained in the name field of the appropriate
SGDeviceName structure in the SGDeviceListRecord structure that your channel component
returns to the SGGetChannelDeviceList (page 2128) function.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetChannelDeviceInput
Undocumented

ComponentResult SGSetChannelDeviceInput (
 SGChannel c,
 short inInputNumber
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

inInputNumber
Identifies a device. The value of this field corresponds to the appropriate entry in the device name
array defined by the entry field of a SGDeviceListRecord structure. This value is zero-relative; the
first entry has an index number of 0, the second's value is 1, and so on.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

Functions 2189
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetChannelMatrix
Sets a channel's display transformation matrix.

ComponentResult SGSetChannelMatrix (
 SGChannel c,
 const MatrixRecord *m
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

m
A pointer to a MatrixRecord structure. This parameter is set to NIL to select the identity matrix.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlwaysPreview

Declared In
QuickTimeComponents.h

SGSetChannelMaxFrames
Limits the number of frames that the sequence grabber will capture from a specified channel.

ComponentResult SGSetChannelMaxFrames (
 SGChannel c,
 long frameCount
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

frameCount
The maximum number of frames to capture during the preview or record operation. The sequence
grabber component sets this parameter to -1 to remove the limit.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You may use this function only after you have prepared the sequence grabber component for a record
operation or during an active record operation.

2190 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Special Considerations

Note that sequence grabber components clear this value when you prepare for a record operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetChannelOutput
Assigns an output to a channel.

ComponentResult SGSetChannelOutput (
 SeqGrabComponent s,
 SGChannel c,
 SGOutput sgOut
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Use this function to assign an output to a channel. One output may be assigned to one or more channels.
Note that when you call SGSetDataRef (page 2199) or SGSetDataOutput (page 2197) the sequence grabber
component sets every channel to the specified file or container. If you want to use different outputs, you
must use this function to assign the channels appropriately.

Version Notes
A sequence grabber output ties a sequence grabber channel to a specified data reference for the output of
captured data. If you are capturing to a single movie file, you can continue to use SGSetDataOutput (page
2197) or SGSetDataRef (page 2199) to specify the sequence grabber's destination. However, if you want to
capture movie data into several different files or data references, you must use sequence grabber outputs
to do so. Even if you are using outputs, you must still use SGSetDataOutput or SGSetDataRef to identify
where the sequence grabber should create the movie resource. You are responsible for creating outputs,
assigning them to sequence grabber channels, and disposing of them when you are done.

Availability
Available in Mac OS X v10.0 and later.

Functions 2191
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGSetChannelPlayFlags
Adjusts the speed and quality with which the sequence grabber displays data from a channel.

ComponentResult SGSetChannelPlayFlags (
 SGChannel c,
 long playFlags
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

playFlags
A long integer that contains flags (see below) that influence channel playback. A sequence grabber
component must use one of these values. See these constants:

channelPlayNormal

channelPlayFast

channelPlayHighQuality

channelPlayAllData

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OpenGLCompositorLab
WhackedTV

Declared In
QuickTimeComponents.h

SGSetChannelRefCon
Sets the value of a reference constant that is passed to your callback functions for channel components.

2192 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetChannelRefCon (
 SGChannel c,
 long refCon
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

refCon
A reference constant value that your component should pass to the callback functions that have been
assigned to this channel. Use this parameter to point to a data structure containing any information
your callbacks need.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
DigitizerShell
Sequence Grabbing
WhackedTV

Declared In
QuickTimeComponents.h

SGSetChannelSettings
Configures a sequence grabber channel.

ComponentResult SGSetChannelSettings (
 SeqGrabComponent s,
 SGChannel c,
 UserData ud,
 long flags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

ud
A UserDataRecord structure that contains the configuration information to be used by the channel
component.

Functions 2193
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

flags
Reserved for Apple. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MungSaver
WhackedTV

Declared In
QuickTimeComponents.h

SGSetChannelSettingsStateChanging
Tells a sequence grabber channel of the beginning and end of a group of setting calls.

ComponentResult SGSetChannelSettingsStateChanging (
 SGChannel c,
 UInt32 inFlags
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

inFlags
Constants (see below) that determine whether this function is being called at the beginning or end
of a series of channel setting calls. See these constants:

sgSetSettingsBegin

sgSetSettingsEnd

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You can use this call to bracket a group of sequence grabber channel configuration calls, giving downstream
components an opportunity to deal with the entire settings change in one operation.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

2194 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetChannelUsage
Specifies how a channel is to be used by the sequence grabber component.

ComponentResult SGSetChannelUsage (
 SGChannel c,
 long usage
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

usage
Contains flags (see below) specifying how your channel is to be used. The sequence grabber component
may set more than one of these flags to 1. It sets unused flags to 0. See these constants:

seqGrabRecord

seqGrabPreview

seqGrabPlayDuringRecord

seqGrabLowLatencyCapture

seqGrabAlwaysUseTimeBase

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier. Flags added in QuickTime 6.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win
SGDataProcSample

Declared In
QuickTimeComponents.h

SGSetChannelVolume
Sets a channel's sound volume.

Functions 2195
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetChannelVolume (
 SGChannel c,
 short volume
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

volume
The volume setting of your channel represented as a 16-bit, fixed-point number. The high-order 8
bits contain the integer part of the value; the low-order 8 bits contain the fractional part. Volume
values range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of the
volume setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win

Declared In
QuickTimeComponents.h

SGSetCompressBuffer
Allows the sequence grabber component to direct your component to create a filter buffer for your video
channel.

ComponentResult SGSetCompressBuffer (
 SGChannel c,
 short depth,
 const Rect *compressSize
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

depth
The pixel depth of the filter buffer. If the sequence grabber sets this parameter to 0, use the depth of
the video buffer, which the sequence grabber sets with SGSetChannelBounds (page 2187).

2196 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

compressSize
A pointer to a Rect structure that contains the dimensions of the filter buffer. This buffer should be
larger than the destination buffer. To stop filtering the input source video data, the sequence grabber
component sets this parameter to NIL or it sets the coordinates of this rectangle to 0 (specifying an
empty rectangle).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some video source data may contain unacceptable levels of visual noise or artifacts. One technique for
removing this noise is to capture the image and then reduce it in size. During the size reduction process, the
noise can be filtered out. Logically, this buffer sits between the source video buffer and the destination
rectangle you set with the SGSetChannelBounds (page 2187).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetDataOutput
Specifies the movie file and options for a sequence grabber record operation.

ComponentResult SGSetDataOutput (
 SeqGrabComponent s,
 const FSSpec *movieFile,
 long whereFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

movieFile
A pointer to the FSSpec structure that identifies the movie file for this record operation.

whereFlags
Contains flags (see below) that control the record operation. You must set either seqGrabToDisk
flag or seqGrabToMemory to 1. Set unused flags to 0. See these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2197
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGSetDataProc
Specifies a data function for use by the sequence grabber.

ComponentResult SGSetDataProc (
 SeqGrabComponent s,
 SGDataUPP proc,
 long refCon
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

proc
A pointer to your data function. To remove your data function, set this parameter to NIL.

refCon
A reference constant. The sequence grabber provides this value to your data callback. Use this
parameter to point to a data structure containing any information your function needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa - SGDataProc
MungSaver
SGDataProcSample
VideoProcessing
WhackedTV

2198 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGSetDataRef
Specifies the destination data reference for a record operation.

ComponentResult SGSetDataRef (
 SeqGrabComponent s,
 Handle dataRef,
 OSType dataRefType,
 long whereFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

dataRef
A handle to the information that identifies the destination container.

dataRefType
The type of data reference. If the data reference is an alias, you must set the parameter to rAliasType.

whereFlags
Contains flags (see below) that control the record operation. You must set either seqGrabToDisk or
seqGrabToMemory to 1. Set unused flags to 0. See these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function allows you to specify the destination for a record operation using a data reference, and to
specify other options that govern the operation. This function is similar to SGSetDataOutput (page 2197),
and provides you with an alternative way to specify the destination.

Special Considerations

If you are performing a preview operation, you don't need to use this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Functions 2199
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Cocoa - SGDataProc
OpenGLCompositorLab
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGSetFlags
Passes control information about the current operation to the sequence grabber component.

ComponentResult SGSetFlags (
 SeqGrabComponent s,
 long sgFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgFlags
Contains a flag (see below) to tell the sequence grabber if you are performing a controlled grab using
a frame-addressable source device. See these constants:

sgFlagControlledGrab

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGSetFontName
Sets the name of the font to be used to display text for a text channel component.

2200 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetFontName (
 SGChannel c,
 StringPtr pstr
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

pstr
A pointer to a Pascal string containing the name of the font.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If the specified font is available on the system, the text channel uses the font to display text. If the specified
font is not available, the text channel uses the default system font. For more information about fonts, see
Inside Macintosh: Text.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetFontSize
Sets the font size to be used to display text for a text channel component.

ComponentResult SGSetFontSize (
 SGChannel c,
 short fontSize
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

fontSize
The point size of the font. This value must be a positive integer.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2201
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGSetFrameRate
Specifies a video channel's frame rate for recording.

ComponentResult SGSetFrameRate (
 SGChannel c,
 Fixed frameRate
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

frameRate
The desired frame rate. If this parameter is set to 0, use your channel's default frame rate. Typically,
this corresponds to the fastest rate that your channel can support.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
QuickTimeComponents.h

SGSetGWorld
Establishes the graphics port and device for a sequence grabber component.

ComponentResult SGSetGWorld (
 SeqGrabComponent s,
 CGrafPtr gp,
 GDHandle gd
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

gp
The destination graphics port, which must be a color graphics port. The sequence grabber component
always sets this parameter to a valid value. To use the current graphics port, the parameter is set to
NIL.

2202 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

gd
A handle to the destination graphics device. The sequence grabber component always sets this
parameter to a valid value.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You must call this function if you are working with any channels that collect visual data. If you are working
only with data that has no visual representation, you do not need to call this function. The sequence grabber
component performs this operation implicitly when you call SGInitialize (page 2168) and the component
uses your application's current graphics port. To set it to a specified window, use code such as the following:

// SGSetGWorld coding example
// See "Discovering QuickTime," page 262
SeqGrabComponent MakeMySequenceGrabber (WindowRef pMacWnd)
{
 SeqGrabComponent seqGrab =NIL;
 OSErr nErr =noErr;
 // open the default sequence grabber
 seqGrab =OpenDefaultComponent(SeqGrabComponentType, 0);
 if (seqGrab !=NIL) {
 // initialize the default sequence grabber component
 nErr =SGInitialize(seqGrab);
 if (nErr ==noErr) {
 // set its graphics world to the specified window
 nErr =SGSetGWorld(seqGrab, (CGrafPtr)pMacWnd, NIL);
 }
 }
 if (nErr && (seqGrab !=NIL)) { // clean up on failure
 CloseComponent(seqGrab);
 seqGrab =NIL;
 }
 return seqGrab;
}

Special Considerations

You cannot call this function during a record or preview operation, or after you have prepared the sequence
grabber component for a record or preview operation by calling SGPrepare (page 2185). The window in which
the sequence grabber is to draw video frames as defined by this function must be visible before you call
SGPrepare; otherwise, the sequence grabber does not display the frames properly.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MovieGWorlds
MungSaver
qtcapture
SGDataProcSample
WhackedTV

Functions 2203
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGSetInstrument
Sets a tone description for a music sequence grabber channel.

ComponentResult SGSetInstrument (
 SGChannel c,
 ToneDescription *td
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

td
Pointer to a ToneDescription structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetJustification
Sets the alignment to be used to display text for a text channel component.

ComponentResult SGSetJustification (
 SGChannel c,
 short just
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

just
A constant (see below) that represents the text alignment. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to specify the alignment to be used for text in a text track. The text channel component
justifies text relative to the boundaries of its text box.

2204 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetMaximumRecordTime
Limits the duration of a record operation

ComponentResult SGSetMaximumRecordTime (
 SeqGrabComponent s,
 unsigned long ticks
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

ticks
The maximum duration for the record operation, in system ticks (sixtieths of a second). Set this
parameter to 0 to remove the time limit from the operation.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
By default, there is no time limit on a record operation. If you do not set a limit, a record operation will run
until it exhausts the Operating System resources or you call SGStop (page 2223). Memory and disk space are
the two major limiting factors.

Special Considerations

You must call this function before you start a sequence grabber record operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGSetOutputFlags
Configures an existing sequence grabber output.

Functions 2205
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetOutputFlags (
 SeqGrabComponent s,
 SGOutput sgOut,
 long whereFlags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the sequence grabber output for this operation. You obtain this identifier by calling
SGNewOutput (page 2171).

whereFlags
Contains flags (see below) that control the record operation. You must set either seqGrabToDisk or
seqGrabToMemory to 1. Set unused flags to 0. See these constants:

seqGrabToDisk

seqGrabToMemory

seqGrabDontUseTempMemory

seqGrabAppendToFile

seqGrabDontAddMovieResource

seqGrabDontMakeMovie

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets you configure an existing sequence grabber output.

Version Notes
A sequence grabber output ties a sequence grabber channel to a specified data reference for the output of
captured data. If you are capturing to a single movie file, you can continue to use SGSetDataOutput (page
2197) or SGSetDataRef (page 2199) to specify the sequence grabber's destination. However, if you want to
capture movie data into several different files or data references, you must use sequence grabber outputs
to do so. Even if you are using outputs, you must still use SGSetDataOutput or SGSetDataRef to identify
where the sequence grabber should create the movie resource. You are responsible for creating outputs,
assigning them to sequence grabber channels, and disposing of them when you are done.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetOutputMaximumOffset
Specifies the maximum offset for data written to a specified sequence grabber output.

2206 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetOutputMaximumOffset (
 SeqGrabComponent s,
 SGOutput sgOut,
 const wide *maxOffset
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
Identifies the current sequence grabber output. You obtain this identifier by calling SGNewOutput (page
2171).

maxOffset
A pointer to the value of the maximum offset for data written to this output.

Return Value
See Error Codes. Returns an error if no more outputs are available. Returns noErr if there is no error.

Discussion
If an attempt is made to write data beyond the maximum offset, the sequence grabber switches to the next
output specified by SGSetOutputNextOutput (page 2207). If no more outputs are available, an end-of-file
error is returned and recording ends.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetOutputNextOutput
Specifies the order in which sequence grabber outputs should be used.

ComponentResult SGSetOutputNextOutput (
 SeqGrabComponent s,
 SGOutput sgOut,
 SGOutput nextOut
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

sgOut
The current output to use. When a new output is created, its nextOut is set to NIL.

nextOut
The next output to be used. To specify that this is the last output, set this value to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2207
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
This function should not be called while recording.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetPreferredPacketSize
Sets the preferred packet size for the sequence grabber channel component.

ComponentResult SGSetPreferredPacketSize (
 SGChannel c,
 long preferredPacketSizeInBytes
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

preferredPacketSizeInBytes
The preferred packet size in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
This function was added in QuickTime 2.5 to support video conferencing applications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetSettings
Configures a sequence grabber and its channels.

ComponentResult SGSetSettings (
 SeqGrabComponent s,
 UserData ud,
 long flags
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

2208 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ud
A UserDataRecord structure that contains the configuration information to be used by the sequence
grabber.

flags
Reserved for Apple. Set this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence grabber disposes of any of its current channels before applying this configuration information.
It then opens connections to new channels as appropriate.

Special Considerations

You can restore saved settings by using NewUserDataFromHandle (page 1415).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
QuickTimeComponents.h

SGSetSettingsSummary
Sets the summary of sequence grabber settings that is displayed in the lower left corner of the sequence
grabber dialog.

ComponentResult SGSetSettingsSummary (
 SeqGrabComponent s,
 Handle summaryText
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

summaryText
A handle to the summary text.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This routine supplies a handle (no length byte) that defines a user readable summary of the state of the user's
sequence grabber settings.

Version Notes
Introduced in QuickTime 6.

Functions 2209
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

SGSetSoundInputDriver
Assigns a sound input device to a sound channel.

ComponentResult SGSetSoundInputDriver (
 SGChannel c,
 ConstStr255Param driverName
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

driverName
The name of the sound input device. This is a Pascal string, and it must correspond to a valid sound
input device.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetSoundInputParameters
Sets various parameters that relate to sound recording.

ComponentResult SGSetSoundInputParameters (
 SGChannel c,
 short sampleSize,
 short numChannels,
 OSType compressionType
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

sampleSize
The number of bits in each sound sample. This field is set to 8 for 8-bit sound; it is set to 16 for 16-bit
sound.

2210 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

numChannels
Indicates the number of sound channels to be used by the sound sample. This field is set to 1 for
monaural sounds; it is set to 2 for stereo sounds.

compressionType
A constant (see below) that describes the format of the sound data. See these constants:

Return Value
See Error Codes. If your sound device cannot support a specified parameter value, return an appropriate
Sound Manager result code. Return noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetSoundInputRate
Sets the rate at which the sound channel obtains its sound data.

ComponentResult SGSetSoundInputRate (
 SGChannel c,
 Fixed rate
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

rate
The rate at which your sound channel is to acquire data. This parameter specifies the number of
samples your sound channel is to generate per second. If your sound channel cannot support the
specified rate, use the closest available rate that you can support. If this parameter is set to 0, use
your default rate.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetSoundRecordChunkSize
Controls the amount of sound data in each group of sound samples during a record operation.

Functions 2211
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetSoundRecordChunkSize (
 SGChannel c,
 long seconds
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

seconds
A Fixed 16.16 value representing number of seconds of sound data your sound channel component
is to work with at a time. Set this parameter to a negative number to specify a fraction of a second.
For example, to set the duration to half a second, -0.5 is passed in.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
During record operations, the sequence grabber component and its sound channels work with groups of
sound samples, referred to as chunks. By default, each chunk contains two seconds of sound data. Smaller
chunks use less memory.

Special Considerations

This function may return a fraction.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetTextBackColor
Sets the background color to be used for the text box.

ComponentResult SGSetTextBackColor (
 SGChannel c,
 RGBColor *theColor
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

theColor
A pointer to an RGBColor structure that contains the new background color.

Return Value
See Error Codes. Returns noErr if there is no error.

2212 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
You call this function to set the background color of a text track. The text channel component uses the
specified color as the background of the text box.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetTextForeColor
Sets the color to be used to display text.

ComponentResult SGSetTextForeColor (
 SGChannel c,
 RGBColor *theColor
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

theColor
A pointer to an RGBColor structure that contains the new text color.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You call this function to set the text color for a text track.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetTextReturnToSpaceValue
Determines whether the text channel component should replace return characters with spaces.

Functions 2213
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetTextReturnToSpaceValue (
 SGChannel c,
 short rettospace
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

rettospace
Set this parameter to TRUE if the text channel should replace return characters with spaces, or FALSE
otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When you capture text from a closed-caption television source, the text is composed of four lines of text of
up to 32 characters each, each line separated by a return character. You can call this function to request that
the text channel component replace the return characters with spaces.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSettingsDialog
Causes a sequence grabber to display its settings dialog box to the user.

ComponentResult SGSettingsDialog (
 SeqGrabComponent s,
 SGChannel c,
 short numPanels,
 ConstComponentListPtr panelList,
 long flags,
 SGModalFilterUPP proc,
 long procRefNum
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

2214 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

numPanels
The number of panel components to be listed in the panel component pop-up menu. You specify
the panel components with the panelList parameter. You may use these parameters to limit the
user's choice of panel components. If you set this parameter to 0 and the panelList parameter to
NIL, the sequence grabber lists all available panel components.

panelList
A pointer to an array of component identifiers. The sequence grabber presents only these components
in the panel component pop-up menu. You specify the number of identifiers in the array with the
numPanels parameter. If you set this parameter to NIL, the sequence grabber lists all available panel
components.

flags
Either set this to 0 or to seqGrabSettingsPreviewOnly (see below). See these constants:

seqGrabSettingsPreviewOnly

proc
Specifies an SGModalFilterProc callback. Because the sequence grabber's settings dialog box is a
movable modal dialog box, you must supply an event filter function to process update events in your
window.

procRefNum
A reference constant to be passed to your filter callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See Error Codes. If the user clicks OK and the settings are acceptable to the panel and channel components,
this function returns a result code of noErr.

Discussion
Because the user may change several channel configuration parameters, your application should retrieve
new configuration information from the channel so that you can update any values you save, such as the
channel's display boundaries or the channel device. In particular, the video rectangle for the channels may
have to be adjusted.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell
hacktv
hacktv.win
qtcapture
WhackedTV

Declared In
QuickTimeComponents.h

SGSetUserVideoCompressorList
Specifies the list of video compression formats to be included in the sequence grabber's video settings dialog
box.

Functions 2215
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGSetUserVideoCompressorList (
 SGChannel c,
 Handle compressorTypes
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

compressorTypes
A handle containing a list of OSType values indicating which video compression formats should be
displayed. See Codec Identifiers. The sequence grabber channel determines the number of video
compression formats contained in the handle based on the size of the handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function lets an application limit the number of video compression formats that will be displayed to the
user. For applications using the sequence grabber for a very specific purpose, this function allows inappropriate
compression choices to be filtered out.

Special Considerations

The sequence grabber channel makes a copy of the video compression formats handle. Therefore, your
application can immediately dispose of the video compression formats handle after making this call.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetUseScreenBuffer
Controls whether a video channel uses an offscreen buffer.

ComponentResult SGSetUseScreenBuffer (
 SGChannel c,
 Boolean useScreenBuffer
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

useScreenBuffer
Indicates whether to use an offscreen buffer. If this parameter is set to TRUE, draw directly to the
screen. If it is set to FALSE, your channel may use an offscreen buffer. If your channel cannot work
with offscreen buffers, ignore this parameter.

2216 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Directing a channel to draw offscreen may be useful if you are performing transformations on the data before
displaying it (such as blending it with another graphical image).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetVideoBottlenecks
Assigns callback functions to a video channel.

ComponentResult SGSetVideoBottlenecks (
 SGChannel c,
 VideoBottles *vb
);

Parameters
c

The connection identifier for the video channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

vb
A pointer to a VideoBottles structure, which identifies the callback functions to be assigned to the
video channel.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
DigitizerShell
Sequence Grabbing

Declared In
QuickTimeComponents.h

Functions 2217
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSetVideoCompressor
Specifies many of the parameters that control image compression of the video data captured by a video
channel.

ComponentResult SGSetVideoCompressor (
 SGChannel c,
 short depth,
 CompressorComponent compressor,
 CodecQ spatialQuality,
 CodecQ temporalQuality,
 long keyFrameRate
);

Parameters
c

The connection identifier for the video channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

depth
The depth at which the image is likely to be viewed. Image compressors may use this as an indication
of the color or grayscale resolution of the compressed images. If the sequence grabber component
sets this parameter to 0, let the sequence grabber component determine the appropriate value for
the source image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits per pixel for color
images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and 8-bit grayscale, respectively, for
grayscale images. Your component can determine which depths are supported by a given compressor
by examining the CodecInfo structure returned by GetCodecInfo (page 652).

compressor
The image compressor identifier. The sequence grabber component may specify a particular compressor
by setting this parameter to its compressor identifier. You can obtain these identifiers from
GetCodecNameList (page 652).

spatialQuality
A constant (see below) that defines the desired quality of the compressed image. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A constant (see below) that defines the desired temporal quality of the sequence. This parameter
governs the level of compression the sequence grabber component desires with respect to information
in successive frames in the sequence. The sequence grabber component sets this parameter to 0 to
prevent the image compressor from applying temporal compression to the sequence.

keyFrameRate
The maximum number of frames allowed between key frames. Key frames provide points from which
a temporally compressed sequence may be decompressed. The sequence grabber component uses
this parameter to control the frequency with which the image compressor places key frames into the
compressed sequence.

Return Value
See Error Codes. Returns noErr if there is no error.

2218 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetVideoCompressorType
Specifies the type of image compression to be applied to captured video images.

ComponentResult SGSetVideoCompressorType (
 SGChannel c,
 OSType compressorType
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

compressorType
A constant (see below) that defines the type of image compression to use. You should use
GetCodecNameList (page 652) to retrieve their names, so that your application can take advantage
of new compressor types that may be added in the future. See these constants:

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetVideoDigitizerComponent
Assigns a video digitizer component to a video channel.

ComponentResult SGSetVideoDigitizerComponent (
 SGChannel c,
 ComponentInstance vdig
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Functions 2219
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

vdig
A component instance that identifies a connection to a video digitizer component. Your video channel
component should use this video digitizer component to obtain its source video data.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSetVideoRect
Specifies a part of the source video image that is to be captured by a sequence grabber component.

ComponentResult SGSetVideoRect (
 SGChannel c,
 const Rect *r
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

r
A pointer to the Rect structure that defines the portion of the source video image to be captured.
This rectangle must lie within the boundaries of the source video boundary rectangle, which the
sequence grabber can obtain by calling SGGetSrcVideoBounds (page 2154). If you do not use this
function to set a source rectangle, the sequence grabber component captures the entire video image,
as defined by the source video boundary rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
You cannot call this function during a record operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
QuickTimeComponents.h

2220 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGSortDeviceList
Sorts a device list alphabetically.

ComponentResult SGSortDeviceList (
 SeqGrabComponent s,
 SGDeviceList list
);

Parameters
s

The component instance that identifies your connection to the sequence grabber component. You
obtain this value from OpenDefaultComponent or OpenComponent.

list
A pointer to a pointer to an SGDeviceListRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGSoundInputDriverChanged
Notifies the sequence grabber component whenever you change the configuration of a sound channel's
sound input device.

ComponentResult SGSoundInputDriverChanged (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2221
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGStartPreview
Instructs the sequence grabber to begin processing data from its channels.

ComponentResult SGStartPreview (
 SeqGrabComponent s
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your channel component should immediately present the data to the user in the appropriate format, according
to your channel's configuration. Display video data in the destination display region; play sound data at the
specified volume settings.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
qtcapture.win
Sequence Grabbing

Declared In
QuickTimeComponents.h

SGStartRecord
Instructs the sequence grabber component to begin collecting data from its channels.

ComponentResult SGStartRecord (
 SeqGrabComponent s
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

2222 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CaptureAndCompressIPBMovie
Cocoa - SGDataProc
SGDataProcSample
WhackedTV

Declared In
QuickTimeComponents.h

SGStop
Stops a preview or record operation.

ComponentResult SGStop (
 SeqGrabComponent s
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
It is dangerous to allow an update event to occur during recording. Many digitizers capture directly to the
screen, and an update event will result in data loss.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
qtcapture
qtcapture.win
Sequence Grabbing
SGDataProcSample

Declared In
QuickTimeComponents.h

SGTransferFrameForCompress
Provides the default behavior for your transfer-frame function.

Functions 2223
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGTransferFrameForCompress (
 SGChannel c,
 short bufferNum,
 const MatrixRecord *mp,
 RgnHandle clipRgn
);

Parameters
c

The reference that identifies the channel for this operation. The sequence grabber component provides
this value to your transfer-frame function.

bufferNum
Identifies the buffer. The sequence grabber component provides this value to your transfer-frame
function.

mp
A pointer to a MatrixRecord structure for the transfer operation. If there is no matrix for the operation,
set this parameter to NIL.

clipRgn
A handle to a MacRegion structure that defines the clipping region for the destination image. This
region is defined in the destination coordinate system. If there is no clipping region, set this parameter
to NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGUpdate
Informs your component about update events, to update its display.

ComponentResult SGUpdate (
 SeqGrabComponent s,
 RgnHandle updateRgn
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

updateRgn
Indicates the part of the window that has been changed.

Return Value
See Error Codes. Returns noErr if there is no error.

2224 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
Applications can determine the part of the window that has been changed by examining the appropriate
window record. For example, they may call the sequence grabber in this manner:

SGUpdate (theSG, ((WindowPeek)updateWindow)->
updateRgn);

Special Considerations

Your application should avoid drawing where the sequence grabber is displaying video. Doing so may cause
some video digitizer components to stop displaying video.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
hacktv
hacktv.win
qtcapture
Sequence Grabbing
SGDataProcSample

Declared In
QuickTimeComponents.h

SGVideoDigitizerChanged
Notifies the sequence grabber component whenever you change the configuration of a video channel's
video digitizer.

ComponentResult SGVideoDigitizerChanged (
 SGChannel c
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
It is very important to notify the sequence grabber of any configuration changes you make.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2225
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SGWriteExtendedMovieData
Allows your channel component to add data to a movie.

ComponentResult SGWriteExtendedMovieData (
 SeqGrabComponent s,
 SGChannel c,
 Ptr p,
 long len,
 wide *offset,
 SGOutput *sgOut
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

p
The location of the data to be added to the movie.

len
The number of bytes of data to be added to the movie.

offset
A pointer to a wide integer that receives the offset to the new data in the movie. If the movie is in
memory, the returned offset reflects the location the data will have in the movie on a permanent
storage device.

sgOut
A pointer to the sequence grabber output to which the data was written.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function differs from SGWriteMovieData (page 2227), in two respects: the offsetparameter has a 64-bit
value, and the sgOut parameter does not exist in SGWriteMovieData.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2226 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGWriteMovieData
Lets a channel component add data to a movie.

ComponentResult SGWriteMovieData (
 SeqGrabComponent s,
 SGChannel c,
 Ptr p,
 long len,
 long *offset
);

Parameters
s

An instance of the sequence grabber component connected to your channel component. The sequence
grabber component provides this value through SGInitChannel (page 2167).

c
The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

p
The location of the data to be added to the movie.

len
The number of bytes of data to be added to the movie.

offset
A pointer to a long integer that is to receive the offset to the new data in the movie. The sequence
grabber component returns an offset that is correct in the context of a movie resource, even if the
movie data is currently stored in memory. That is, if the movie is in memory, the returned offset reflects
the location that the data will have in a movie on a permanent storage device, such as a disk.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGWriteSamples
Called by a sequence grabber component when it is ready to add recorded data to a movie.

Functions 2227
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

ComponentResult SGWriteSamples (
 SGChannel c,
 Movie m,
 AliasHandle theFile
);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

m
Identifies the movie to which your component should add the captured data. Your component should
not make any other changes to the movie identified by this reference. Use SGWriteMovieData (page
2227) instead.

theFile
Identifies the movie file. The sequence grabber component provides this alias so that you can supply
it to the Movie Toolbox. You should not open this file or write to it directly. Use
SGWriteMovieData (page 2227) instead.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Callbacks

SGAddFrameBottleProc
Undocumented

typedef ComponentResult (*SGAddFrameBottleProcPtr) (SGChannel c, short bufferNum,
 TimeValue atTime, TimeScale scale, const SGCompressInfo *ci,
long refCon);

If you name your function MySGAddFrameBottleProc, you would declare it this way:

ComponentResult MySGAddFrameBottleProc (
 SGChannel c,
 short bufferNum,
 TimeValue atTime,
 TimeScale scale,
 const SGCompressInfo *ci,
 long refCon);

2228 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

atTime
Undocumented

scale
The current time scale.

ci
A pointer to a SGCompressInfo structure.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGCompressBottleProc
Undocumented

typedef ComponentResult (*SGCompressBottleProcPtr) (SGChannel c, short bufferNum,
 long refCon);

If you name your function MySGCompressBottleProc, you would declare it this way:

ComponentResult MySGCompressBottleProc (
 SGChannel c,
 short bufferNum,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

Callbacks 2229
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGCompressCompleteBottleProc
Undocumented

typedef ComponentResult (*SGCompressCompleteBottleProcPtr) (SGChannel c, short
bufferNum, Boolean *done, SGCompressInfo *ci, long refCon);

If you name your function MySGCompressCompleteBottleProc, you would declare it this way:

ComponentResult MySGCompressCompleteBottleProc (
 SGChannel c,
 short bufferNum,
 Boolean *done,
 SGCompressInfo *ci,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

done
A pointer to a Boolean; return TRUE if the task was completed, FALSE otherwise.

ci
A pointer to a SGCompressInfo structure.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGDataProc
Undocumented

typedef OSErr (*SGDataProcPtr) (SGChannel c, Ptr p, long len, long *offset, long
chRefCon, TimeValue time, short writeType, long refCon);

If you name your function MySGDataProc, you would declare it this way:

OSErr MySGDataProc (
 SGChannel c,
 Ptr p,
 long len,
 long *offset,
 long chRefCon,
 TimeValue time,
 short writeType,

2230 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

p
Undocumented

len
Undocumented

offset
Undocumented

chRefCon
Undocumented

time
Undocumented

writeType
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGDisplayBottleProc
Undocumented

typedef ComponentResult (*SGDisplayBottleProcPtr) (SGChannel c, short bufferNum,
MatrixRecord *mp, RgnHandle clipRgn, long refCon);

If you name your function MySGDisplayBottleProc, you would declare it this way:

ComponentResult MySGDisplayBottleProc (
 SGChannel c,
 short bufferNum,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

Callbacks 2231
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

bufferNum
A buffer identifier provided by the sequence grabber component.

mp
Undocumented

clipRgn
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGDisplayCompressBottleProc
Undocumented

typedef ComponentResult (*SGDisplayCompressBottleProcPtr) (SGChannel c, Ptr dataPtr,
 ImageDescriptionHandle desc, MatrixRecord *mp, RgnHandle clipRgn,
long refCon);

If you name your function MySGDisplayCompressBottleProc, you would declare it this way:

ComponentResult MySGDisplayCompressBottleProc (
 SGChannel c,
 Ptr dataPtr,
 ImageDescriptionHandle desc,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

dataPtr
Undocumented

desc
Undocumented

mp
Undocumented

clipRgn
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

2232 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGGrabBottleProc
Undocumented

typedef ComponentResult (*SGGrabBottleProcPtr) (SGChannel c, short bufferNum, long
 refCon);

If you name your function MySGGrabBottleProc, you would declare it this way:

ComponentResult MySGGrabBottleProc (
 SGChannel c,
 short bufferNum,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGGrabCompleteBottleProc
Undocumented

typedef ComponentResult (*SGGrabCompleteBottleProcPtr) (SGChannel c, short bufferNum,
 Boolean *done, long refCon);

If you name your function MySGGrabCompleteBottleProc, you would declare it this way:

ComponentResult MySGGrabCompleteBottleProc (
 SGChannel c,
 short bufferNum,
 Boolean *done,
 long refCon);

Callbacks 2233
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

done
A pointer to a Boolean; return TRUE if the task was completed, FALSE otherwise.

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGGrabCompressCompleteBottleProc
Undocumented

typedef ComponentResult (*SGGrabCompressCompleteBottleProcPtr) (SGChannel c, Boolean
 *done, SGCompressInfo *ci, TimeRecord *t, long refCon);

If you name your function MySGGrabCompressCompleteBottleProc, you would declare it this way:

ComponentResult MySGGrabCompressCompleteBottleProc (
 SGChannel c,
 UInt8 *queuedFrameCount,
 SGCompressInfo *ci,
 TimeRecord *t,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

queuedFrameCount
A pointer to the number of queued frames yet to be done. 0 means no frames. Some VDIGs may
return 2 even if more than 2 frames are available, and some will return 1 if any number more than 0
are available.

ci
A pointer to a SGCompressInfo structure. When the compression operation is complete, this structure
is filled with information about it.

t
A pointer to a TimeRecord structure. When the compression operation is complete, this structure is
used to indicate what time the frame was grabbed.

2234 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

SGModalFilterProc
Undocumented

typedef Boolean (*SGModalFilterProcPtr) (DialogPtr theDialog, const EventRecord
*theEvent, short *itemHit, long refCon);

If you name your function MySGModalFilterProc, you would declare it this way:

Boolean MySGModalFilterProc (
 DialogPtr theDialog,
 const EventRecord *theEvent,
 short *itemHit,
 long refCon);

Parameters
theDialog

A pointer to a dialog box.

theEvent
Undocumented

itemHit
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
Return TRUE if the event was handled, FALSE otherwise.

Declared In
QuickTimeComponents.h

SGTransferFrameBottleProc
Undocumented

typedef ComponentResult (*SGTransferFrameBottleProcPtr) (SGChannel c, short
bufferNum, MatrixRecord *mp, RgnHandle clipRgn, long refCon);

If you name your function MySGTransferFrameBottleProc, you would declare it this way:

ComponentResult MySGTransferFrameBottleProc (
 SGChannel c,

Callbacks 2235
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

 short bufferNum,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

Parameters
c

The connection identifier for the channel for this operation. You get this value from
SGNewChannel (page 2169) or SGNewChannelFromComponent (page 2170).

bufferNum
A buffer identifier provided by the sequence grabber component.

mp
Undocumented

clipRgn
Undocumented

refCon
A reference constant that the client code supplies to your callback. You can use this reference to point
to a data structure containing any information your callback needs.

Return Value
See Error Codes. Your callback should return noErr if there is no error.

Declared In
QuickTimeComponents.h

Data Types

ConstComponentListPtr
Represents a type used by the Sequence Grabber API.

typedef const Component * ConstComponentListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SeqGrabComponent
Represents a type used by the Sequence Grabber API.

typedef ComponentInstance SeqGrabComponent;

Availability
Available in Mac OS X v10.0 and later.

2236 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Declared In
QuickTimeComponents.h

SeqGrabExtendedFrameInfo
Defines a frame for a sequence grabber component and its sequence grabber channel components.

struct SeqGrabExtendedFrameInfo {
 wide frameOffset;
 long frameTime;
 long frameSize;
 SGChannel frameChannel;
 long frameRefCon;
 SGOutput frameOutput;
 };

Fields
frameOffset

Discussion
Specifies the offset to the sample. Note that this is a 64-bit value.

frameTime

Discussion
Specifies the time at which the frame was captured by a sequence grabber channel component. The time
value is relative to the data sequence. The channel component must choose a time scale and use it consistently
for all sample references.

frameSize

Discussion
Specifies the number of bytes in the current sample.

frameChannel

Discussion
Identifies the current connection to the channel component.

frameRefCon

Discussion
Contains a reference constant for use by the channel component. The channel component uses this constant
in any appropriate way; for example, to store a reference to frame differencing information for a
time-compressed sequence.

frameOutput

Discussion
Identifies the sequence grabber output used to store captured data referenced by the current record.

Discussion
This structure differs from SeqGrabFrameInfo in two respects: the frameOffset field takes a 64-bit value,
and the frameOutput field does not exist in SeqGrabFrameInfo.

Version Notes
Introduced in QuickTime 4.

Related Functions
SGAddExtendedFrameReference (page 2107)

Data Types 2237
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGGetNextExtendedFrameReference (page 2146)

Declared In
QuickTimeComponents.h

SeqGrabExtendedFrameInfoPtr
Represents a type used by the Sequence Grabber API.

typedef SeqGrabExtendedFrameInfo * SeqGrabExtendedFrameInfoPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SeqGrabFrameInfo
Provides information about a frame for a sequence grabber component and its sequence grabber channel
components.

struct SeqGrabFrameInfo {
 long frameOffset;
 long frameTime;
 long frameSize;
 SGChannel frameChannel;
 long frameRefCon;
 };

Fields
frameOffset

Discussion
Specifies the offset to the sample. Your channel component obtains this value from SGWriteMovieData (page
2227).

frameTime

Discussion
Specifies the time at which your channel component captured the frame. This time value is relative to the
data sequence. That is, this time is not represented in the context of any fixed time scale. Rather, your channel
component must choose and use a time scale consistently for all sample references.

frameSize

Discussion
Specifies the number of bytes in the sample described by the sample reference.

frameChannel

Discussion
Identifies the current connection to your channel.

2238 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

frameRefCon

Discussion
Contains a reference constant for use by your channel component. You can use this value in any way that is
appropriate for your channel component. For example, video channel components may use this value to
store a reference to frame differencing information for a temporally compressed image sequence.

Discussion
This structure differs from SeqGrabExtendedFrameInfo in two respects: the frameOffset field takes a
32-bit value, and SeqGrabExtendedFrameInfo has a frameOutput field.

Related Functions
SGAddFrameReference (page 2110)
SGGetNextFrameReference (page 2147)

Declared In
QuickTimeComponents.h

SeqGrabFrameInfoPtr
Represents a type used by the Sequence Grabber API.

typedef SeqGrabFrameInfo * SeqGrabFrameInfoPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGAddFrameBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGAddFrameBottleProcPtr) SGAddFrameBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGChannel
Represents a type used by the Sequence Grabber API.

typedef ComponentInstance SGChannel;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Data Types 2239
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGCompressBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGCompressBottleProcPtr) SGCompressBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGCompressCompleteBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGCompressCompleteBottleProcPtr) SGCompressCompleteBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGCompressInfo
Defines the characteristics of a buffer that contains a captured image that has been compressed.

struct SGCompressInfo {
 Ptr buffer;
 unsigned long bufferSize;
 UInt8 similarity;
 UInt8 reserved;
 };

Fields
buffer

Discussion
Points to the buffer that contains the compressed image. This pointer must contain a 32-bit clean address.

bufferSize

Discussion
Specifies the number of bytes of image data in the buffer.

similarity

Discussion
Indicates the relative similarity of this image to the previous image in a sequence. A value of 0 indicates that
the current frame is a key frame in the sequence. A value of 255 indicates that the current frame is identical
to the previous frame. Values from 1 through 254 indicate relative similarity, ranging from very different (1)
to very similar (254).

reserved

Discussion
Reserved; set to 0.

2240 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Discussion
Callback functions use this structure to exchange information about compressed images. For example,
SGCompressCompleteBottleProcmust format a compression information record whenever a video frame
is compressed.

Related Functions
SGCompressCompleteBottleProc
SGCompressFrameComplete (page 2119)
SGGrabCompressComplete (page 2163)
SGGrabCompressCompleteBottleProc

Declared In
QuickTimeComponents.h

SGDataUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGDataProcPtr) SGDataUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGDeviceList
Represents a type used by the Sequence Grabber API.

typedef SGDeviceListPtr * SGDeviceList;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGDeviceListPtr
Represents a type used by the Sequence Grabber API.

typedef SGDeviceListRecord * SGDeviceListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Data Types 2241
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

SGDisplayBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGDisplayBottleProcPtr) SGDisplayBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGDisplayCompressBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGDisplayCompressBottleProcPtr) SGDisplayCompressBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGrabBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGGrabBottleProcPtr) SGGrabBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGrabCompleteBottleUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGGrabCompleteBottleProcPtr) SGGrabCompleteBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGGrabCompressCompleteBottleUPP
Represents a type used by the Sequence Grabber API.

2242 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

typedef STACK_UPP_TYPE(SGGrabCompressCompleteBottleProcPtr)
SGGrabCompressCompleteBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGModalFilterUPP
Represents a type used by the Sequence Grabber API.

typedef STACK_UPP_TYPE(SGModalFilterProcPtr) SGModalFilterUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGOutput
Represents a type used by the Sequence Grabber API.

typedef SGOutputRecord * SGOutput;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

SGOutputRecord
Contains a sequence grabber output.

struct SGOutputRecord {
 long data[1];
 };

Fields
data

Discussion
An array of data.

Declared In
QuickTimeComponents.h

SGTransferFrameBottleUPP
Represents a type used by the Sequence Grabber API.

Data Types 2243
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

typedef STACK_UPP_TYPE(SGTransferFrameBottleProcPtr) SGTransferFrameBottleUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VideoBottles
Identifies the callback functions to be assigned to a sequence grabber channel.

struct VideoBottles {
 short procCount;
 SGGrabBottleUPP grabProc;
 SGGrabCompleteBottleUPP grabCompleteProc;
 SGDisplayBottleUPP displayProc;
 SGCompressBottleUPP compressProc;
 SGCompressCompleteBottleUPP compressCompleteProc;
 SGAddFrameBottleUPP addFrameProc;
 SGTransferFrameBottleUPP transferFrameProc;
 SGGrabCompressCompleteBottleUPP grabCompressCompleteProc;
 SGDisplayCompressBottleUPP displayCompressProc;
 };

Fields
procCount

Discussion
Specifies the number of callback functions that may be identified in the structure. Set this field to 9.

grabProc

Discussion
Identifies the SGGrabBottleProc function. If you are setting such a function, set this field so that it points
to the function's entry point. If you are not setting such a function, set this field to NIL.

grabCompleteProc

Discussion
Identifies the SGGrabCompleteBottleProc function. If you are setting such a function, set this field so that
it points to the function's entry point. If you are not setting such a function, set this field to NIL.

displayProc

Discussion
Identifies the SGDisplayBottleProc function. If you are setting such a function, set this field so that it
points to the function's entry point. If you are not setting such a function, set this field to NIL.

compressProc

Discussion
Identifies the SGCompressBottleProc function. If you are setting such a function, set this field so that it
points to the function's entry point. If you are not setting such a function, set this field to NIL.

compressCompleteProc

Discussion
Identifies the SGCompressCompleteBottleProc function. If you are setting such a function, set this field
so that it points to the function's entry point. If you are not setting such a function, set this field to NIL.

2244 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

addFrameProc

Discussion
Identifies the SGAddFrameBottleProc function. If you are setting such a function, set this field so that it
points to the function's entry point. If you are not setting such a function, set this field to NIL.

transferFrameProc

Discussion
Identifies the SGTransferFrameBottleProc function. If you are setting such a function, set this field so
that it points to the function's entry point. If you are not setting such a function, set this field to NIL.

grabCompressCompleteProc

Discussion
Identifies the SGGrabCompressCompleteBottleProc function. If you are setting such a function, set this
field so that it points to the function's entry point. If you are not setting such a function, set this field to NIL.

displayCompressProc

Discussion
Identifies the SGDisplayCompressBottleProc function. If you are setting such a function, set this field so
that it points to the function's entry point. If you are not setting such a function, set this field to NIL.

Related Functions
SGGetVideoBottlenecks (page 2159)
SGSetVideoBottlenecks (page 2217)

Declared In
QuickTimeComponents.h

Constants

channelPlayAllData
Constants grouped with channelPlayAllData.

Constants 2245
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

enum {
 /*
 * Play flag specifying that the SGChannel should use its default
 * preview/playthru methodology. Currently it is only used by the
 * VideoMediaType SGChannel.
 */
 channelPlayNormal = 0,
 /*
 * Play flag specifying that the SGChannel should sacrifice playback
 * quality to achieve the specified playback rate. Currently it is
 * only used by the VideoMediaType SGChannel.
 */
 channelPlayFast = 1L << 0,
 /*
 * Play flag specifying that the SGChannel should play its data at
 * the highest possible quality. This option sacrifices playback rate
 * for the sake of image quality. It may reduce the amount of
 * processor time available to other programs in the computer. This
 * option should not affect the quality of the recorded data,
 * however. Currently it is only used by the VideoMediaType
 * SGChannel.
 */
 channelPlayHighQuality = 1L << 1,
 /*
 * Play flag specifying that the SGChannel should try to play all of
 * the data it captures, even the data that is stored in offscreen
 * buffers. This option is useful when you want to be sure that the
 * user sees as much of the captured data as possible. The sequence
 * grabber component sets this flag to 1 to play all the captured
 * data. The sequence grabber component may combine this flag with
 * any of the other values for the playFlags parameter. Currently it
 * is only used by the VideoMediaType SGChannel.
 */
 channelPlayAllData = 1L << 2,
 /*
 * Play flag specifying that the SGChannel should preview/play raw
 * audio samples just after they are captured from its recording
 * device. Currently it is only used by the SGAudioMediaType
 * SGChannel.
 */
 channelPlayPreMix = 1L << 3,
 /*
 * Play flag specifying that the SGChannel should preview/play audio
 * samples just after they are mixed down to the client-specified
 * movie track channel layout. Currently it is only used by the
 * SGAudioMediaType SGChannel.
 */
 channelPlayPostMix = 1L << 4,
 /*
 * Play flag specifying that the SGChannel should preview/play audio
 * samples just before they are interleaved/converted/compressed to
 * the client-specified movie track format. Currently it is only
 * used by the SGAudioMediaType SGChannel.
 */
 channelPlayPreConversion = 1L << 5,
 /*
 * Play flag specifying that the SGChannel should preview/play audio
 * samples after they have been interleaved/converted/compressed to

2246 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

 * the client-specified movie track format. Currently it is only
 * used by the SGAudioMediaType SGChannel.
 */
 channelPlayPostConversion = 1L << 6
};

Declared In
QuickTimeComponents.h

SGGrabPict Values
Constants passed to SGGrabPict.

enum {
 grabPictOffScreen = 1,
 grabPictIgnoreClip = 2,
 grabPictCurrentImage = 4
};

Declared In
QuickTimeComponents.h

seqGrabCanMoveWindowWhileRecording
Constants grouped with seqGrabCanMoveWindowWhileRecording.

enum {
 seqGrabHasBounds = 1,
 seqGrabHasVolume = 2,
 seqGrabHasDiscreteSamples = 4,
 seqGrabDoNotBufferizeData = 8,
 seqGrabCanMoveWindowWhileRecording = 16
};

Declared In
QuickTimeComponents.h

seqGrabAlwaysUseTimeBase
Constants grouped with seqGrabAlwaysUseTimeBase.

Constants 2247
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

enum {
 seqGrabRecord = 1,
 seqGrabPreview = 2,
 seqGrabPlayDuringRecord = 4,
 seqGrabLowLatencyCapture = 8, /* return the freshest frame possible, for
 live work (videoconferencing, live broadcast, live image processing) */
 seqGrabAlwaysUseTimeBase = 16, /* Tell VDIGs to use TimebaseTime always,
 rather than creating uniform frame durations, for more accurate live sync with
audio */
 seqGrabRecordPreferQualityOverFrameRate = 32 /* quality is more important than
frame rate: client rather drop frame instead of lower quality to achieve full frame
 rate */
};

Declared In
QuickTimeComponents.h

SGSettingsDialog Values
Constants passed to SGSettingsDialog.

enum {
 seqGrabSettingsPreviewOnly = 1
};

Declared In
QuickTimeComponents.h

seqGrabAppendToFile
Constants grouped with seqGrabAppendToFile.

enum {
 seqGrabToDisk = 1,
 seqGrabToMemory = 2,
 seqGrabDontUseTempMemory = 4,
 seqGrabAppendToFile = 8,
 seqGrabDontAddMovieResource = 16,
 seqGrabDontMakeMovie = 32,
 seqGrabPreExtendFile = 64,
 seqGrabDataProcIsInterruptSafe = 128,
 seqGrabDataProcDoesOverlappingReads = 256,
 seqGrabDontPreAllocateFileSize = 512 /* Don't set the size of the file before
capture unless the file has been pre-extended */
};

Declared In
QuickTimeComponents.h

SGGetPause Values
Constants passed to SGGetPause.

2248 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

enum {
 seqGrabUnpause = 0,
 seqGrabPause = 1,
 seqGrabPauseForMenu = 3
};

Declared In
QuickTimeComponents.h

SGAddMovieData Values
Constants passed to SGAddMovieData.

enum {
 seqGrabWriteAppend = 0,
 seqGrabWriteReserve = 1,
 seqGrabWriteFill = 2
};

Declared In
QuickTimeComponents.h

SGGetChannelDeviceList Values
Constants passed to SGGetChannelDeviceList.

enum {
 sgDeviceListWithIcons = (1 << 0),
 sgDeviceListDontCheckAvailability = (1 << 1),
 sgDeviceListIncludeInputs = (1 << 2)
};

Declared In
QuickTimeComponents.h

sgFlagAllowNonRGBPixMaps
Constants grouped with sgFlagAllowNonRGBPixMaps.

enum {
 sgFlagControlledGrab = (1 << 0),
 sgFlagAllowNonRGBPixMaps = (1 << 1)
};

Declared In
QuickTimeComponents.h

SGSetChannelSettingsStateChanging Values
Constants passed to SGSetChannelSettingsStateChanging.

Constants 2249
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

enum {
 sgSetSettingsBegin = (1 << 0), /* SGSetSettings related set calls
about to start*/
 sgSetSettingsEnd = (1 << 1) /* Finished SGSetSettings calls. Get
ready to use the new settings*/
};

Declared In
QuickTimeComponents.h

2250 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Sequence Grabber Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in QuickTimeComponents.h

Overview

Video digitizer components convert video input into digitized color images that are compatible with the
graphics system of a computer.

Functions by Task

Controlling Analog Video

VDGetBlackLevelValue (page 2276)
Returns the current black level value.

VDGetBrightness (page 2277)
Returns the current brightness value.

VDGetContrast (page 2281)
Returns the current contrast value.

VDGetHue (page 2287)
Returns the current hue value.

VDGetInputGammaValue (page 2291)
Returns the current gamma values.

VDGetSaturation (page 2300)
Returns the current saturation value.

VDGetSharpness (page 2301)
Returns the current sharpness value.

VDGetVideoDefaults (page 2305)
Returns the recommended values for many of the analog video parameters that may be set by
applications.

VDGetWhiteLevelValue (page 2307)
Returns the current white level value.

VDSetBlackLevelValue (page 2318)
Sets the current black level value.

Overview 2251
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDSetBrightness (page 2318)
Sets the current brightness value.

VDSetContrast (page 2322)
Sets the current contrast value.

VDSetHue (page 2326)
Sets the current hue value.

VDSetInputGammaValue (page 2329)
Sets the gamma values.

VDSetSaturation (page 2336)
Sets the saturation value.

VDSetSharpness (page 2337)
Sets the sharpness value.

VDSetWhiteLevelValue (page 2338)
Sets the white level value.

Controlling Color

VDGetCLUTInUse (page 2278)
Obtains the color lookup table used by a video digitizer component.

VDGetDMADepths (page 2285)
Determines which pixel depths a digitizer supports.

VDGetInputColorSpaceMode (page 2289)
Determines whether a digitizer is operating in color or grayscale mode.

VDSetInputColorSpaceMode (page 2328)
Chooses between color and grayscale digitized video.

VDUseThisCLUT (page 2340)
Specifies the lookup table for color digitization.

Controlling Compressed Source Devices

VDCompressDone (page 2273)
Determines whether the video digitizer has finished digitizing and compressing a frame of image
data.

VDCompressOneFrameAsync (page 2274)
Instructs the video digitizer to digitize and compress a single frame of image data.

VDGetCompressionTime (page 2279)
Confirms or quantifies a video digitizer's compression settings.

VDGetCompressionTypes (page 2280)
Determines the image-compression capabilities of the video digitizer.

VDGetImageDescription (page 2288)
Retrieves an ImageDescription structure from a video digitizer.

VDGetSoundInputSource (page 2302)
Instructs your video digitizer component to return the sound input source associated with a particular
video input.

2252 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDReleaseCompressBuffer (page 2316)
Frees a buffer received from VDCompressDone.

VDResetCompressSequence (page 2317)
Forces the video digitizer to insert a key frame into a temporally compressed image sequence.

VDSetCompression (page 2320)
Specifies certain compression parameters.

VDSetCompressionOnOff (page 2321)
Allows an application to start and stop compression by video digitizers that can deliver either
compressed or uncompressed image data.

VDSetDataRate (page 2323)
Instructs your video digitizer component to limit the rate at which it delivers compressed, digitized
video data.

VDSetTimeBase (page 2337)
Establishes the video digitizer's time coordinate system.

Controlling Digitization

VDCaptureStateChanging (page 2272)
Provides process information from a sequence grabber component to the VDIG.

VDDone (page 2275)
Determines if VDGrabOneFrameAsync is finished with a specific output buffer.

VDGetDataRate (page 2282)
Retrieves information that describes the performance capabilities of a video digitizer.

VDGetTimeCode (page 2303)
Instructs your video digitizer component to return timecode information for the incoming video
signal.

VDGrabOneFrame (page 2307)
Instructs the video digitizer component to digitize a single frame of source video.

VDGrabOneFrameAsync (page 2308)
Instructs the video digitizer component to start to digitize asynchronously a single frame of source
video.

VDReleaseAsyncBuffers (page 2316)
Releases the buffers that were allocated with VDSetupBuffers.

VDSetFrameRate (page 2326)
Indicates an application's desired frame rate to the video digitizer.

VDSetPlayThruOnOff (page 2334)
Controls continuous digitization.

VDSetPreferredPacketSize (page 2335)
Sets the preferred packet size for video digitizing.

VDSetupBuffers (page 2338)
Defines output buffers for use with asynchronous grabs.

Functions by Task 2253
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Controlling the Video Output Display Mode

QTVideoOutputGetDisplayMode (page 2264)
Returns the current display mode for a video output component.

QTVideoOutputGetDisplayModeList (page 2264)
Returns a list of the display modes supported by a video output component.

QTVideoOutputSetDisplayMode (page 2270)
Specifies the display mode to be used by a video output component.

Controlling Video Output

QTVideoOutputBaseSetEchoPort (page 2258)
Called on the base video output component to inform it about a change in the echo port.

QTVideoOutputBegin (page 2259)
Obtains exclusive access to the video hardware controlled by a video output component.

QTVideoOutputCustomConfigureDisplay (page 2260)
Displays a custom video configuration dialog box, which can include settings that are specific to the
video device controlled by the video output component.

QTVideoOutputEnd (page 2261)
Releases access to the video hardware controlled by a video output component.

QTVideoOutputGetGWorld (page 2265)
Returns a pointer to the graphics world used by a video output component.

QTVideoOutputGetGWorldParameters (page 2266)
Called by the base video output component as part of its implementation of QTVideoOutputGetGWorld.

QTVideoOutputSetEchoPort (page 2271)
Specifies a window on the desktop in which to display video sent to the device.

Finding Components Associated With a Video Output

QTVideoOutputGetClock (page 2262)
Returns a pointer to the clock component associated with the video output component.

QTVideoOutputGetIndSoundOutput (page 2267)
Determines which sound output components are associated with the video output component.

Getting Information About Video Digitizer Components

VDGetCurrentFlags (page 2281)
Returns status information about a specified video digitizer component.

VDGetDeviceNameAndFlags (page 2283)
Returns the current name and device visibility of a video digitizer.

VDGetDigitizerInfo (page 2284)
Returns capability and status information about a specified video digitizer component.

2254 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetUniqueIDs (page 2304)
Returns a unique identifier for a particular video digitizer device.

VDSelectUniqueIDs (page 2317)
Selects a video digitizer device by ID.

Registering the Name of Video Output Software

QTVideoOutputGetClientName (page 2262)
Obtains the name of the application or other software that is registered with an instance of a video
output component.

QTVideoOutputGetCurrentClientName (page 2263)
Returns the name of the software, if any, that has exclusive access to the video hardware controlled
by a video output component.

QTVideoOutputSetClientName (page 2270)
Registers the name of an application or other software with an instance of a video output component.

Saving and Restoring Component Configurations

QTVideoOutputRestoreState (page 2268)
Restores the previously saved state of a video output component.

QTVideoOutputSaveState (page 2269)
Saves state information for an instance of a video output component.

Selecting an Input Source

VDGetInput (page 2288)
Returns data that identifies the currently active input video source.

VDGetInputFormat (page 2289)
Determines the format of the video signal provided by a specified video input source.

VDGetNumberOfInputs (page 2297)
Returns the number of input video sources that a video digitizer component supports.

VDSetInput (page 2327)
Selects the input video source for a video digitizer component.

VDSetInputStandard (page 2329)
Specifies the input signaling standard to digitize.

Selectively Displaying Video

VDAddKeyColor (page 2272)
Adds a key color to a component's list of active key colors.

VDGetKeyColor (page 2292)
Obtains the index value of the active key color.

Functions by Task 2255
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetKeyColorRange (page 2293)
Obtains the currently defined key color range.

VDGetMaskandValue (page 2294)
Obtains the appropriate alpha channel or blend mask value for a desired level of video blending.

VDGetMaskPixMap (page 2295)
Retrieves the pixel map data for a component's blend mask.

VDGetNextKeyColor (page 2296)
Obtains the index value of the active key colors in cases where the digitizer component supports
multiple key colors.

VDSetKeyColor (page 2330)
Sets the key color for video digitizing.

VDSetKeyColorRange (page 2331)
Defines a key color range for video digitizing.

VDSetMasterBlendLevel (page 2331)
Sets the blend level value for the input video signal.

Setting Source Characteristics

VDGetActiveSrcRect (page 2276)
Obtains size and location information for the active source rectangle used by a video digitizer
component.

VDGetDigitizerRect (page 2285)
Returns the current digitizer rectangle.

VDGetMaxSrcRect (page 2296)
Returns the maximum source rectangle.

VDGetVBlankRect (page 2304)
Returns the vertical blanking rectangle.

VDSetDigitizerRect (page 2324)
Sets the current video digitizer rectangle.

Setting Video Destinations

VDGetMaxAuxBuffer (page 2295)
Obtains access to buffers that are located on special hardware.

VDGetPlayThruDestination (page 2298)
Obtains information about the current video destination.

VDPreflightDestination (page 2314)
Verifies that a video digitizer component can support a set of destination settings intended for use
with VDSetPlayThruDestination.

VDPreflightGlobalRect (page 2315)
Verifies that a video digitizer component can support a set of destination settings intended for use
with VDSetPlayThruGlobalRect.

VDSetPlayThruDestination (page 2332)
Establishes the destination settings for a video digitizer component.

2256 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDSetPlayThruGlobalRect (page 2333)
Establishes the destination settings for a video digitizer component that is to digitize into a global
rectangle.

Video Clipping

VDClearClipRgn (page 2273)
Disables all or part of a clipping region that was previously set with VDSetClipRgn.

VDGetClipState (page 2278)
Determines whether clipping is enabled.

VDSetClipRgn (page 2319)
Defines a clipping region for a video digitizer.

VDSetClipState (page 2320)
Controls whether clipping is enabled.

Video Digitizer Utilities

VDGetFieldPreference (page 2286)
Determines which field is being used in cases where the image is vertically scaled to half its original
size.

VDGetPLLFilterType (page 2299)
Determines which phase locked loop (PLL) mode is currently active for a video digitizer.

VDGetPreferredTimeScale (page 2300)
Determines a digitizer's preferred time scale.

VDGetSoundInputDriver (page 2302)
Retrieves information about a video digitizer's sound input driver.

VDSetDigitizerUserInterrupt (page 2324)
Sets custom interrupt functions.

VDSetFieldPreference (page 2325)
Specifies which field to use in cases where the vertical scaling is less than half size.

VDSetPLLFilterType (page 2334)
Specifies which phase locked loop (PLL) is to be active.

Supporting Functions

QTVideoOutputCopyIndAudioOutputDeviceUID (page 2260)
Identifies the audio device being used by a video output component.

QTVideoOutputGetIndImageDecompressor (page 2267)
Undocumented

VDGetInputGammaRecord (page 2290)
Retrieves a pointer to the active input VDGammaRecord structure for a video digitizer.

VDGetInputName (page 2292)
Gets the name of a video input.

Functions by Task 2257
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetPreferredImageDimensions (page 2299)
Gets the preferred image dimensions for a video digitizer.

VDIIDCGetCSRData (page 2309)
Reads a camera's CSR registers directly.

VDIIDCGetDefaultFeatures (page 2310)
Places atoms in a QuickTime atom container that specify the default capabilities and default state of
a camera's IIDC features.

VDIIDCGetFeatures (page 2310)
Places atoms in a QuickTime atom container that specify the current capabilities of a camera and the
state of its IIDC features.

VDIIDCGetFeaturesForSpecifier (page 2311)
Places atoms in a QuickTime atom container that specify the current state of a single camera IIDC
feature or group of features.

VDIIDCSetCSRData (page 2312)
Writes to a camera's CSR registers directly.

VDIIDCSetFeatures (page 2313)
Changes the state of a camera's IIDC features.

VDSetDestinationPort (page 2323)
Sets the destination port for a video digitizer.

VDSetInputGammaRecord (page 2328)
Changes the active input gamma data structure.

VDSetPreferredImageDimensions (page 2335)
Sets the preferred image dimensions for a video digitizer.

VDUseSafeBuffers (page 2339)
Instructs a video digitizer to use protected buffers.

Functions

QTVideoOutputBaseSetEchoPort
Called on the base video output component to inform it about a change in the echo port.

ComponentResult QTVideoOutputBaseSetEchoPort (
 QTVideoOutputComponent vo,
 CGrafPtr echoPort
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

echoPort
The window on the computer's desktop in which to display the video.

Return Value
See Error Codes. Returns noErr if there is no error.

2258 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SoftVideoOutputComponent

Declared In
QuickTimeComponents.h

QTVideoOutputBegin
Obtains exclusive access to the video hardware controlled by a video output component.

ComponentResult QTVideoOutputBegin (
 QTVideoOutputComponent vo
);

Parameters
vo

The instance of a video output component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error. If this function returns the videoOutputInUseErr
result code that indicates that the video hardware is currently in use, your software can get the name of the
application or other software that is using the hardware by calling
QTVideoOutputGetCurrentClientName (page 2263). You can then display an alert to the user that says
that the video hardware is in use and specifies the name of the software using the video hardware.

Discussion
When your software calls this function, the video output component acquires exclusive access to the video
hardware controlled by the specified video output component or returns the videoOutputInUseErr result
code if the video hardware is currently in use. If the video hardware is available, the video output component
also enables the display mode last set with QTVideoOutputSetDisplayMode (page 2270) and enables the
video settings, if any, that were most recently specified by the user in a custom video configuration dialog
box. If the video output component supports QTVideoOutputCustomConfigureDisplay (page 2260), your
software can call the function to display a custom video configuration dialog box. When your software no
longer needs the video output component, release it by calling QTVideoOutputEnd (page 2261).

Special Considerations

If your software needs to change the display mode, it must change it before calling this function. It cannot
change the display mode between calls to this function and to QTVideoOutputEnd (page 2261).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV

Functions 2259
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Quartz Composer QCTV
SoftVideoOutputComponent

Declared In
QuickTimeComponents.h

QTVideoOutputCopyIndAudioOutputDeviceUID
Identifies the audio device being used by a video output component.

ComponentResult QTVideoOutputCopyIndAudioOutputDeviceUID (
 QTVideoOutputComponent vo,
 long index,
 CFStringRef *audioDeviceUID
);

Parameters
vo

Video output component whose audio output is being asked about.

index
Which of video output component's audio outputs is being asked about.

audioDeviceUID
Returned unique identifier for the audio device. If the UID is NIL, the movie is playing to the default
device.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error. Returns
badComponentInstance if vo is not a valid ComponentInstance. Returns badComponentSelector if vo
doesn't support this function. Returns paramErr if audioDeviceUID is NIL, or if there is no device with the
passed index.

Discussion
The returned audioDeviceUID has already been retained for the caller, using standard Core Foundation
copy semantics.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputCustomConfigureDisplay
Displays a custom video configuration dialog box, which can include settings that are specific to the video
device controlled by the video output component.

2260 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

ComponentResult QTVideoOutputCustomConfigureDisplay (
 QTVideoOutputComponent vo,
 ModalFilterUPP filter
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

filter
A ModalFilterProc callback for the video output component to use for the dialog box. The filter
allows the software to process events while the dialog box is displayed.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your software can determine if a video output component supports this function by calling
ComponentFunctionImplemented for the component with the routine selector
kQTVideoOutputCustomConfigureDisplaySelect.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputEnd
Releases access to the video hardware controlled by a video output component.

ComponentResult QTVideoOutputEnd (
 QTVideoOutputComponent vo
);

Parameters
vo

The instance of a video output component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your software should release access to a video output component as soon as it is done using the video
hardware controlled by the component. If you close the instance of a video output component that currently
has exclusive access to video hardware, the video output component automatically calls this function to
release the hardware.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 2261
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV
Quartz Composer QCTV
SoftVideoOutputComponent

Declared In
QuickTimeComponents.h

QTVideoOutputGetClientName
Obtains the name of the application or other software that is registered with an instance of a video output
component.

ComponentResult QTVideoOutputGetClientName (
 QTVideoOutputComponent vo,
 Str255 str
);

Parameters
vo

The instance of a video output component for the request. Your software obtains this reference when
it calls OpenComponent or OpenDefaultComponent.

str
The name of the application or other software that is registered with the component instance.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputGetClock
Returns a pointer to the clock component associated with the video output component.

ComponentResult QTVideoOutputGetClock (
 QTVideoOutputComponent vo,
 ComponentInstance *clock
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

2262 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

clock
A pointer to the clock component associated with the video output component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your software can use the clock component returned by this function to synchronize video and sound for a
movie to the rate of the display. To associate the instance of the clock component with a movie, call
SetMovieMasterClock (page 290). Because a change to the display mode could affect a clock component,
your software should call this function only between calls to QTVideoOutputBegin (page 2259) and
QTVideoOutputEnd (page 2261), when it is not possible to change the display mode.

Special Considerations

When your software calls QTVideoOutputEnd (page 2261), the video output component disposes of the
instance of the clock component returned by this function. Because of this, software that uses the clock to
control a movie must reset the clock for the movie to the default clock, by calling
SetMovieMasterClock (page 290) with NIL as the value of the clock component, before calling
QTVideoOutputEnd.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputGetCurrentClientName
Returns the name of the software, if any, that has exclusive access to the video hardware controlled by a
video output component.

ComponentResult QTVideoOutputGetCurrentClientName (
 QTVideoOutputComponent vo,
 Str255 str
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

str
The name of the software that has exclusive access to the video hardware controlled by a video output
component, or a zero-length string if no software currently has access.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If video hardware is unavailable because other software is using it, your software can inform users by getting
the name of the software with this function and displaying the name in an alert box.

Functions 2263
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputGetDisplayMode
Returns the current display mode for a video output component.

ComponentResult QTVideoOutputGetDisplayMode (
 QTVideoOutputComponent vo,
 long *displayModeID
);

Parameters
vo

The instance of a video output component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

displayModeID
A pointer to the ID of the current display mode, or 0 if no display mode has been selected. The ID
specifies a QT atom of type kQTVODisplayModeItem in the QT atom container returned by
QTVideoOutputGetDisplayModeList (page 2264).

Return Value
See Error Codes. Returns noErr if there is no error. If this function returns an atom ID of 0, it indicates that
no display mode has been selected.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVideoOutputComponent

Declared In
QuickTimeComponents.h

QTVideoOutputGetDisplayModeList
Returns a list of the display modes supported by a video output component.

2264 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

ComponentResult QTVideoOutputGetDisplayModeList (
 QTVideoOutputComponent vo,
 QTAtomContainer *outputs
);

Parameters
vo

The instance of a video output component. Your software obtains this reference when calling
OpenComponent or OpenDefaultComponent.

outputs
A pointer to the QT atom container that lists the video modes supported by this component.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
After your software calls this function, it must dispose of the QT atom container returned by the function by
calling QTDisposeAtomContainer (page 1427).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

QTVideoOutputGetGWorld
Returns a pointer to the graphics world used by a video output component.

ComponentResult QTVideoOutputGetGWorld (
 QTVideoOutputComponent vo,
 GWorldPtr *gw
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

gw
A pointer to the graphics world used by the video output component to display images.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2265
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
If the pixel format of the graphics world is 1, 2, 4, 8, 16, or 32, your software can use either QuickDraw or
QuickTime to draw graphics to it. If the graphics world has any other pixel format, your software must use
QuickTime functions draw to it. Your software can pass the pointer returned by this function to the
SetMovieGWorld (page 290),DecompressSequenceBegin (page 621),DecompressSequenceBeginS (page
622), DecompressImage (page 619), and FDecompressImage (page 643) functions.

Your software can call QTVideoOutputGetGWorld only between calls to QTVideoOutputBegin (page 2259)
and QTVideoOutputEnd (page 2261). When your software calls QTVideoOutputEnd, the video output
component automatically disposes of the graphics world. If your software needs to use the graphics world
after calling QTVideoOutputEnd, it must call this function again after the next time it calls
QTVideoOutputBegin.

Special Considerations

Your software must not dispose of the graphics world used by a video output component. The video output
component automatically disposes of the graphics world when your software calls QTVideoOutputEnd (page
2261).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

QTVideoOutputGetGWorldParameters
Called by the base video output component as part of its implementation of QTVideoOutputGetGWorld.

ComponentResult QTVideoOutputGetGWorldParameters (
 QTVideoOutputComponent vo,
 Ptr *baseAddr,
 long *rowBytes,
 CTabHandle *colorTable
);

Parameters
vo

An instance of your video output component.

baseAddr
The address at which to display pixels. If your video output component does not display pixels, return
0 for this parameter.

rowBytes
The width of each scan line in bytes. If your video output component does not display pixels, return
the width of the current display mode.

2266 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

colorTable
The ColorTable structure to be used. If your video output component does not use a color table,
return NIL.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is not called by applications or other client software.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputGetIndImageDecompressor
Undocumented

ComponentResult QTVideoOutputGetIndImageDecompressor (
 QTVideoOutputComponent vo,
 long index,
 Component *codec
);

Parameters
vo

Undocumented

index
Undocumented

codec
Undocumented

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputGetIndSoundOutput
Determines which sound output components are associated with the video output component.

Functions 2267
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

ComponentResult QTVideoOutputGetIndSoundOutput (
 QTVideoOutputComponent vo,
 long index,
 Component *outputComponent
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

index
Specifies which of the sound output components to return. The index of the first component is 1.

outputComponent
A pointer to a sound output component associated with the video output component that is specified
by the index parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Your software can display sound output components returned by this function in a dialog box and let the
user choose which outputs to use for movie playback.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputRestoreState
Restores the previously saved state of a video output component.

ComponentResult QTVideoOutputRestoreState (
 QTVideoOutputComponent vo,
 QTAtomContainer state
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

state
A QT atom container, returned earlier by QTVideoOutputSaveState (page 2269), that contains state
information for the video output component.

Return Value
See Error Codes. Returns noErr if there is no error.

2268 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
If your software saves state information to disk, it must read the QT atom container structure from disk before
calling this function. When your software restores state information for a video output component, the current
display mode may change. Because of this, your software must call this function before calling
QTVideoOutputBegin (page 2259).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

QTVideoOutputSaveState
Saves state information for an instance of a video output component.

ComponentResult QTVideoOutputSaveState (
 QTVideoOutputComponent vo,
 QTAtomContainer *state
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

state
A pointer to complete information about the video output component's current configuration.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When your software saves state information for an instance of a video output component, it can restore this
information when reconnecting to the component by calling QTVideoOutputRestoreState (page 2268).

Special Considerations

When your software calls this function, it must dispose of the QT atom container returned by the function
by calling QTDisposeAtomContainer (page 1427).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2269
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

QTVideoOutputSetClientName
Registers the name of an application or other software with an instance of a video output component.

ComponentResult QTVideoOutputSetClientName (
 QTVideoOutputComponent vo,
 ConstStr255Param str
);

Parameters
vo

The instance of a video output component for the request. Your software obtains this reference when
it calls OpenComponent or OpenDefaultComponent.

str
The name of the application or other software to be registered.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The name you specify with this function can later be used by QTVideoOutputGetCurrentClientName (page
2263) to specify which software has exclusive access to the video output device controlled by the component.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

QTVideoOutputSetDisplayMode
Specifies the display mode to be used by a video output component.

ComponentResult QTVideoOutputSetDisplayMode (
 QTVideoOutputComponent vo,
 long displayModeID
);

Parameters
vo

The instance of a video output component for the request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

displayModeID
The ID of the display mode to use. The ID specifies a QT atom of type kQTVODisplayModeItem in
the QT atom container returned by QTVideoOutputGetDisplayModeList (page 2264).

Return Value
See Error Codes. Returns noErr if there is no error.

2270 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
When software changes the display mode with this function, the change does not take effect until the next
time the software calls QTVideoOutputBegin (page 2259) for the video output component. This lets the
software change other output settings before displaying the video.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV
Quartz Composer QCTV

Declared In
QuickTimeComponents.h

QTVideoOutputSetEchoPort
Specifies a window on the desktop in which to display video sent to the device.

ComponentResult QTVideoOutputSetEchoPort (
 QTVideoOutputComponent vo,
 CGrafPtr echoPort
);

Parameters
vo

The instance of a video output component for this request. Your software obtains this reference when
calling OpenComponent or OpenDefaultComponent.

echoPort
The window on the computer's desktop in which to display the video.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When your software sends video to the window you specify, the video is both displayed in the window and
sent to the normal output of the video output device. When an output device can display video both on an
external video display and in a window on a computer's desktop, the video displayed on the desktop is often
at a smaller size and/or lower frame rate.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2271
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDAddKeyColor
Adds a key color to a component's list of active key colors.

VideoDigitizerError VDAddKeyColor (
 VideoDigitizerComponent ci,
 long *index
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

index
A pointer to the color to add to the key color list. The value of the index field corresponds to a color
in the current color lookup table.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDCaptureStateChanging
Provides process information from a sequence grabber component to the VDIG.

VideoDigitizerError VDCaptureStateChanging (
 VideoDigitizerComponent ci,
 UInt32 inStateFlags
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inStateFlags
Constants (see below) that tell the VDIG what is about to happen. See these constants:

vdFlagCaptureStarting

vdFlagCaptureStopping

vdFlagCaptureIsForPreview

vdFlagCaptureIsForRecord

vdFlagCaptureLowLatency

vdFlagCaptureAlwaysUseTimeBase

Return Value
An error return of type ComponentResult. See Error Codes. Returns noErr if there is no error.

2272 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
It has long been a problem for VDIG writers that the sequence grabber can make a series of calls to a VDIG
and it is not always clear what their intent is. This function lets you provide additional information about
what is happening at the sequence grabber level to the VDIG, so it can take this into account. In particular,
the settings bracketing calls are designed for the VDIG to update a series of parameters without reinitializing.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

VDClearClipRgn
Disables all or part of a clipping region that was previously set with VDSetClipRgn.

VideoDigitizerError VDClearClipRgn (
 VideoDigitizerComponent ci,
 RgnHandle clipRegion
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

clipRegion
A handle to a MacRegion structure that defines the clipping region to clear. This region must
correspond to all or part of the clipping region established previously with VDSetClipRgn (page
2319).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDCompressDone
Determines whether the video digitizer has finished digitizing and compressing a frame of image data.

Functions 2273
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDCompressDone (
 VideoDigitizerComponent ci,
 UInt8 *queuedFrameCount,
 Ptr *theData,
 long *dataSize,
 UInt8 *similarity,
 TimeRecord *t
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

queuedFrameCount
A pointer to the number of queued frames yet to be done. 0 means no frames. Some VDIGs may
return 2 even if more than 2 frames are available, and some will return 1 if any number more than 0
are available.

theData
A pointer to a field that is to receive a pointer to the compressed image data. The digitizer returns a
pointer that is valid in the application's current memory mode.

dataSize
A pointer to a field to receive a value indicating the number of bytes of compressed image data.

similarity
A pointer to a field to receive an indication of the relative similarity of this image to the previous
image in a sequence. A value of 0 indicates that the current frame is a key frame in the sequence. A
value of 255 indicates that the current frame is identical to the previous frame. Values from 1 through
254 indicate relative similarity, ranging from very different (1) to very similar (254). This field is only
filled in if the temporal quality passed in with VDSetCompression (page 2320) is not 0; that is, if it is
not frame-differenced.

t
A pointer to a TimeRecord structure. When the operation is complete, the digitizer fills in this structure
with information indicating when the frame was grabbed. The time value stored in this structure is
in the time base that the application sets with VDSetTimeBase (page 2337).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDCompressOneFrameAsync
Instructs the video digitizer to digitize and compress a single frame of image data.

2274 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDCompressOneFrameAsync (
 VideoDigitizerComponent ci
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Unlike VDGrabOneFrameAsync (page 2308), this function causes the video digitizer to handle all details of
managing data buffers.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDDone
Determines if VDGrabOneFrameAsync is finished with a specific output buffer.

VideoDigitizerError VDDone (
 VideoDigitizerComponent ci,
 short buffer
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

buffer
Identifies the buffer for the operation. The value of this parameter must correspond to a valid index
into the list of buffers you supply when your application calls VDSetupBuffers (page 2338). This value
is zero-based; that is, you must set this parameter to 0 to refer to the first buffer in the buffer list.

Return Value
Returns a long integer indicating whether the specified asynchronous frame grab is complete. If the returned
value is 0, the video digitizer component is still working on the frame. If the returned value is nonzero, the
digitizer component is finished with the frame and the application can perform its processing.

Discussion
Applications can determine whether a video digitizer component supports asynchronous frame grabbing
by examining the output capability flags of the digitizer component, using VDGetCurrentFlags (page 2281).
Specifically, if the digiOutDoesAsyncGrabs flag is set to 1, the digitizer component supports both this
function and VDGrabOneFrameAsync (page 2308).

Functions 2275
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetActiveSrcRect
Obtains size and location information for the active source rectangle used by a video digitizer component.

VideoDigitizerError VDGetActiveSrcRect (
 VideoDigitizerComponent ci,
 short inputStd,
 Rect *activeSrcRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputStd
A short integer that specifies the input video signal associated with this maximum source rectangle.

activeSrcRect
A pointer to a Rect structure that is to receive the size and location information for the active source
rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetBlackLevelValue
Returns the current black level value.

2276 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetBlackLevelValue (
 VideoDigitizerComponent ci,
 unsigned short *blackLevel
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

blackLevel
A pointer to an integer field that is to receive the current black level value. Black level values range
from 0 to 65,535, where 0 represents the maximum black value and 65,535 represents the minimum
black value.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExampleVideoPanel
ExampleVideoPanel.win

Declared In
QuickTimeComponents.h

VDGetBrightness
Returns the current brightness value.

VideoDigitizerError VDGetBrightness (
 VideoDigitizerComponent ci,
 unsigned short *brightness
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

brightness
A pointer to an integer field that is to receive the current brightness value. Brightness values range
from 0 to 65,535, where 0 is the darkest possible setting and 65,535 is the lightest possible setting.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 2277
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetClipState
Determines whether clipping is enabled.

VideoDigitizerError VDGetClipState (
 VideoDigitizerComponent ci,
 short *clipEnable
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

clipEnable
A pointer to a short integer field that is to receive a value indicating whether clipping is enabled. The
video digitizer component places 0 into the field if clipping is disabled, and 1 if it is enabled.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetCLUTInUse
Obtains the color lookup table used by a video digitizer component.

VideoDigitizerError VDGetCLUTInUse (
 VideoDigitizerComponent ci,
 CTabHandle *colorTableHandle
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

colorTableHandle
A pointer to a field that is to receive a handle to a ColorTable structure. The video digitizer
component returns a handle to its color lookup table. Applications can then set the destination to
use this returned ColorTable structure. Your application is responsible for disposing of this handle.

2278 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetCompressionTime
Confirms or quantifies a video digitizer's compression settings.

VideoDigitizerError VDGetCompressionTime (
 VideoDigitizerComponent ci,
 OSType compressionType,
 short depth,
 Rect *srcRect,
 CodecQ *spatialQuality,
 CodecQ *temporalQuality,
 unsigned long *compressTime
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

compressionType
A compressor type. This value corresponds to the component subtype of the compressor component.
See Codec Identifiers.

depth
The depth at which the image is to be compressed. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the
number of bits per pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit, 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images.

srcRect
A pointer to a Rect structure that defines the portion of the source image to compress.

spatialQuality
A pointer to a field containing the desired compressed image quality (see below). The compressor
sets this field to the closest actual quality that it can achieve. A value of NIL indicates that the client
does not want this information. See these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

Functions 2279
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

temporalQuality
A pointer to a field containing the desired sequence temporal quality (see below). The compressor
sets this field to the closest actual quality that it can achieve. A value of NIL indicates that the client
does not want this information.

compressTime
A pointer to a field to receive the compression time, in milliseconds. Your component should return
a long integer indicating the maximum number of milliseconds it would require to compress the
specified image. If your component cannot determine the amount of time required to compress the
image, set this field to 0. A value of NIL indicates that the client does not want this information.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The sequence grabber's video compression settings dialog box uses this function to snap the quality slider
to the correct value when working with a compression type that is specified by the video digitizer.

Version Notes
In QuickTime 1.5, video digitizers could provide compressed data directly to clients; however, there was no
way to preflight the settings for compression. In QuickTime 2.1, this function was added to allow the video
digitizer to quantify the compression time for the actual quality levels that will be used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetCompressionTypes
Determines the image-compression capabilities of the video digitizer.

VideoDigitizerError VDGetCompressionTypes (
 VideoDigitizerComponent ci,
 VDCompressionListHandle h
);

Parameters
ci

Identifies an application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

h
A handle to receive the compression information in one or more VDCompressionList structures. If
the digitizer supports more than one compression type, it creates an array of structures in this handle.
The video digitizer returns information about its capabilities by formatting these structures.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

There must be a decompressor component of the appropriate type available in the system if an application
is to display images from a compressed image sequence.

2280 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetContrast
Returns the current contrast value.

VideoDigitizerError VDGetContrast (
 VideoDigitizerComponent ci,
 unsigned short *contrast
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

contrast
A pointer to an integer field that is to receive the current contrast value. The contrast value ranges
from 0 to 65,535, where 0 represents no change to the basic image and larger values increase the
contrast of the video image (they increase the slope of the transform).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetCurrentFlags
Returns status information about a specified video digitizer component.

VideoDigitizerError VDGetCurrentFlags (
 VideoDigitizerComponent ci,
 long *inputCurrentFlag,
 long *outputCurrentFlag
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

Functions 2281
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

inputCurrentFlag
A pointer to a long integer that is to receive the current input state flags for the video digitizer
component; see Video Digitizer Capabilities.

outputCurrentFlag
A pointer to a long integer that is to receive the current output state flags for the video digitizer
component; see Video Digitizer Capabilities.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is often more convenient than VDGetDigitizerInfo (page 2284). For example, this function
provides a simple mechanism for determining whether a video digitizer is receiving a valid input signal. An
application can retrieve the current input state flags and test the high-order bit by examining the sign of the
returned value. If the value is negative (that is, the high-order bit, digiInSignalLock, is set to 1), the
digitizer component is receiving a valid input signal.

Special Considerations

All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompressMovies
DigitizerShell
DragAndDrop Shell
Fiendishthngs
MovieGWorlds

Declared In
QuickTimeComponents.h

VDGetDataRate
Retrieves information that describes the performance capabilities of a video digitizer.

VideoDigitizerError VDGetDataRate (
 VideoDigitizerComponent ci,
 long *milliSecPerFrame,
 Fixed *framesPerSecond,
 long *bytesPerSecond
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

2282 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

milliSecPerFrame
A pointer to a long integer. The video digitizer returns a value that indicates the number of milliseconds
of synchronous overhead involved in digitizing a single frame. This value includes the average delay
incurred between the time when the digitizer requests a frame from its associated device, and the
time at which the device delivers the frame.

framesPerSecond
A pointer to a fixed value. The video digitizer supplies the maximum rate at which it can capture
video. Note that this value may differ from the rate that the application set with
VDSetFrameRate (page 2326).

bytesPerSecond
A pointer to a long integer. Video digitizers that can return compressed image data return a value
that indicates the approximate number of bytes per second that the digitizer is generating compressed
data, given the current compression and frame rate settings.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetDeviceNameAndFlags
Returns the current name and device visibility of a video digitizer.

VideoDigitizerError VDGetDeviceNameAndFlags (
 VideoDigitizerComponent ci,
 Str255 outName,
 UInt32 *outNameFlags
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

outName
The video digitizer device name.

outNameFlags
A pointer to a constant (see below) that determines whether to show or hide the VDIG device. See
these constants:

vdDeviceFlagShowInputsAsDevices

vdDeviceFlagHideDevice

Functions 2283
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
An error return of type ComponentResult. See Error Codes. Returns noErr if there is no error.

Discussion
This routine is designed to give the VDIG more control over how it is presented to the user, and to clarify the
distinction between devices and inputs. Historically, the assumption has been that there is one component
registered per device and that the component name is displayed. This function lets a component choose its
name after registration. When this function is called, it is also a good time to check for hardware and register
further VDIG components if needed, allowing for lazy initialization when the application needs to find a VDIG
rather than initializing at every launch or replug.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetDigitizerInfo
Returns capability and status information about a specified video digitizer component.

VideoDigitizerError VDGetDigitizerInfo (
 VideoDigitizerComponent ci,
 DigitizerInfo *info
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

info
A pointer to a DigitizerInfo structure. The function returns information describing the capabilities
of the specified video digitizer into this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DigitizerShell

2284 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDGetDigitizerRect
Returns the current digitizer rectangle.

VideoDigitizerError VDGetDigitizerRect (
 VideoDigitizerComponent ci,
 Rect *digitizerRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

digitizerRect
A pointer to a Rect structure that is to receive the size and location information for the current
digitizer rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetDMADepths
Determines which pixel depths a digitizer supports.

VideoDigitizerError VDGetDMADepths (
 VideoDigitizerComponent ci,
 long *depthArray,
 long *preferredDepth
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

depthArray
A pointer to a long integer. The video digitizer returns a value that indicates the depths it can support.
Each depth is represented by a single bit in this field. More than one bit may be set to 1.

Functions 2285
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

preferredDepth
A pointer to a long integer. Video digitizers that have a preferred depth value return that value in this
field, using one of the possible values of the depthArray parameter. Digitizers that do not prefer
any given value set this field to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The flags returned by this function augment the information that an application can obtain from the digitizer's
output capability flags in the DigitizerInfo structure. If a digitizer does not support this function but does
support DMA, an application may assume that the digitizer can handle offscreen buffers at all of the depths
indicated in its output capabilities flags. Applications may use the following enumerators to set bits in the
field referred to by the depthArray parameter.

enum {
 dmaDepth1 =1 /* supports black and white */
 dmaDepth2 =2 /* supports 2-bit color */
 dmaDepth4 =4 /* supports 4-bit color */
 dmaDepth8 =8 /* supports 8-bit color */
 dmaDepth16 =16 /* supports 16-bit color */
 dmaDepth32 =32 /* supports 32-bit color */
 dmaDepth2Gray =64 /* supports 2-bit grayscale */
 dmaDepth4Gray =128 /* supports 4-bit grayscale */
 dmaDepth8Gray =256 /* supports 8-bit grayscale */
};

Special Considerations

Before a program that uses a video digitizer creates an offscreen buffer, it should call the this function to
determine the pixel depths supported by the digitizer. If possible, the program should use the preferred
depth, in order to obtain the best possible display performance.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetFieldPreference
Determines which field is being used in cases where the image is vertically scaled to half its original size.

VideoDigitizerError VDGetFieldPreference (
 VideoDigitizerComponent ci,
 short *fieldFlag
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

2286 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

fieldFlag
Points to a field that is to receive a value (see below) indicating which field is being used. See these
constants:

vdUseAnyField

vdUseOddField

vdUseEvenField

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetHue
Returns the current hue value.

VideoDigitizerError VDGetHue (
 VideoDigitizerComponent ci,
 unsigned short *hue
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

hue
A pointer to an integer that is to receive the current hue value. Hue is similar to the tint control on a
television, and it is specified in degrees with complementary colors set 180 degrees apart (red is 0
degrees, green is +120 degrees, and blue is -120 degrees). Video digitizer components support hue
values that range from 0 (-180 degrees shift in hue) to 65,535 (+179 degrees shift in hue), where
32,767 represents a 0 degree shift in hue.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2287
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetImageDescription
Retrieves an ImageDescription structure from a video digitizer.

VideoDigitizerError VDGetImageDescription (
 VideoDigitizerComponent ci,
 ImageDescriptionHandle desc
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

desc
A handle. The video digitizer fills this handle with an ImageDescription structure containing
information about the digitizer's current compression settings. The digitizer resizes the handle
appropriately. It is the application's responsibility to dispose of this handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetInput
Returns data that identifies the currently active input video source.

VideoDigitizerError VDGetInput (
 VideoDigitizerComponent ci,
 short *input
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

input
A pointer to a short integer that is to receive the identifier for the currently active input video source.
Video digitizer components number video sources sequentially, starting at 0. So, if the first source is
active, this function sets the field referred to by the input parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

2288 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Special Considerations

All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetInputColorSpaceMode
Determines whether a digitizer is operating in color or grayscale mode.

VideoDigitizerError VDGetInputColorSpaceMode (
 VideoDigitizerComponent ci,
 short *colorSpaceMode
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

colorSpaceMode
A pointer to a value that indicates whether the digitizer is operating in color (1) or grayscale (0) mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Applications can determine whether a digitizer component supports grayscale or color digitization by
examining the digitizer component's input capability flags. Specifically, if the digiInDoesColor flag is set
to 1, the digitizer component supports color digitization. Similarly, if the digiInDoesBW flag is set to 1, the
digitizer component supports grayscale digitization. Applications can use VDGetCurrentFlags (page 2281)
to obtain the input capability flags of a digitizer component.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetInputFormat
Determines the format of the video signal provided by a specified video input source.

Functions 2289
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetInputFormat (
 VideoDigitizerComponent ci,
 short input,
 short *format
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

input
The input video source for this request. Video digitizer components number video sources sequentially,
starting at 0. So, to request information about the first video source, an application sets this parameter
to 0. Applications can get the number of video sources supported by a video digitizer component by
calling VDGetNumberOfInputs (page 2297).

format
A pointer to a short integer that is to receive a constant (see below) that specifies the video format
of the specified input source. See these constants:

compositeIn

sVideoIn

rgbComponentIn

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetInputGammaRecord
Retrieves a pointer to the active input VDGammaRecord structure for a video digitizer.

VideoDigitizerError VDGetInputGammaRecord (
 VideoDigitizerComponent ci,
 VDGamRecPtr *inputGammaPtr
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputGammaPtr
A pointer to a field that is to receive a pointer to an input VDGammaRecord structure.

2290 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Gamma structures give applications complete control over color filtering transforms and are therefore more
precise than the gamma values that can be set by calling VDSetInputGammaValue (page 2329).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetInputGammaValue
Returns the current gamma values.

VideoDigitizerError VDGetInputGammaValue (
 VideoDigitizerComponent ci,
 Fixed *channel1,
 Fixed *channel2,
 Fixed *channel3
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

channel1
A pointer to a fixed integer field that is to receive the gamma value for the red component of the
input video signal.

channel2
A pointer to a fixed integer field that is to receive the gamma value for the green component of the
input video signal.

channel3
A pointer to a fixed integer field that is to receive the gamma value for the blue component of the
input video signal.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2291
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetInputName
Gets the name of a video input.

VideoDigitizerError VDGetInputName (
 VideoDigitizerComponent ci,
 long videoInput,
 Str255 name
);

Parameters
ci

Specifies the video digitizer component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

videoInput
The input video source for this request. Video digitizer components number video sources sequentially,
starting at 0. So, to request information about the first video source, an application sets this parameter
to 0. Applications can get the number of video sources supported by a video digitizer component by
calling VDGetNumberOfInputs (page 2297).

name
The video input source's name string.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetKeyColor
Obtains the index value of the active key color.

VideoDigitizerError VDGetKeyColor (
 VideoDigitizerComponent ci,
 long *index
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

2292 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

index
A pointer to a field that is to receive the index of the key color. This index value identifies the key
color within the currently active color lookup table. If there are several active key colors, the video
digitizer returns the first color from the key color list. Subsequently, applications use
VDGetNextKeyColor (page 2296) to obtain other colors from the list. If there is no active key color,
the function sets the field to -1.

Return Value
See Error Codes. Returns noErr if there is no error.

Special Considerations

All video digitizer components that support key colors must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetKeyColorRange
Obtains the currently defined key color range.

VideoDigitizerError VDGetKeyColorRange (
 VideoDigitizerComponent ci,
 RGBColor *minRGB,
 RGBColor *maxRGB
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

minRGB
A pointer to a field that is to receive the lower bound of the key color range. The video digitizer
component places the RGBColor structure that corresponds to the lower end of the range in the
field referred to by this parameter.

maxRGB
A pointer to a field that is to receive the upper bound of the key color range. The video digitizer
component places the RGBColor structure that corresponds to the upper end of the range in the
field referred to by this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2293
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDGetMaskandValue
Obtains the appropriate alpha channel or blend mask value for a desired level of video blending.

VideoDigitizerError VDGetMaskandValue (
 VideoDigitizerComponent ci,
 unsigned short blendLevel,
 long *mask,
 long *value
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

blendLevel
The desired blend level. Valid values range from 0 to 65,535, where 0 corresponds to no video and
65,535 corresponds to all video.

mask
A pointer to a field that is to receive a value indicating which bits are meaningful in the data returned
for the value parameter. The video digitizer component sets to 1 the bits that correspond to
meaningful bits in the data returned for the value parameter.

value
A pointer to a field that is to receive data that can be used to obtain the desired blend level. The data
returned for the mask parameter indicates which bits are valid in the data returned for this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The information returned by the digitizer component differs based on the type of blending supported by
the component. In all cases, however, the returned value of the value parameter contains the value for the
desired blend level, and the returned value of the mask parameter indicates which bits in the value parameter
are meaningful. Bits in the returned mask parameter value that are set to 1 correspond to meaningful bits
in the returned value parameter value.

For example, if an application requests a 50 percent video blend level from a digitizer that supports 8-bit
alpha channels, the digitizer component might return 0xFF000000 in the mask parameter, identifying a full
upper byte as the alpha channel, and 0x80000000 in the value parameter, specifying a 50 percent blend
level.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2294 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDGetMaskPixMap
Retrieves the pixel map data for a component's blend mask.

VideoDigitizerError VDGetMaskPixMap (
 VideoDigitizerComponent ci,
 PixMapHandle maskPixMap
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

maskPixMap
A handle to a PixMap structure. The video digitizer component returns the pixel map data for its
blend mask into the PixMap structure specified by this parameter. The video digitizer component
resizes the handle as appropriate. Your application is responsible for disposing of this handle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is supported only by digitizer components that support blend masks.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetMaxAuxBuffer
Obtains access to buffers that are located on special hardware.

VideoDigitizerError VDGetMaxAuxBuffer (
 VideoDigitizerComponent ci,
 PixMapHandle *pm,
 Rect *r
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

pm
A pointer to a handle to a PixMap structure. The video digitizer component returns a handle to the
destination PixMap structure in the field referred to by this parameter. Do not dispose of this structure.
If the digitizer component cannot allocate a buffer, this handle is set to NIL.

r
A pointer to a Rect structure. The video digitizer component places the coordinates of the largest
output rectangle it can support into the structure referred to by this parameter.

Functions 2295
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetMaxSrcRect
Returns the maximum source rectangle.

VideoDigitizerError VDGetMaxSrcRect (
 VideoDigitizerComponent ci,
 short inputStd,
 Rect *maxSrcRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputStd
A short integer that specifies the input video signal associated with this maximum source rectangle.

maxSrcRect
A pointer to a Rect structure that is to receive the size and location information for the maximum
source rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetNextKeyColor
Obtains the index value of the active key colors in cases where the digitizer component supports multiple
key colors.

2296 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetNextKeyColor (
 VideoDigitizerComponent ci,
 long index
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

index
A field that is to receive the index of the next key color. This index value identifies the key color within
the currently active color lookup table. If there are no more colors left in the list, the digitizer
component sets the field referred to by the index parameter to -1.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components that support multiple key colors must support this function

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetNumberOfInputs
Returns the number of input video sources that a video digitizer component supports.

VideoDigitizerError VDGetNumberOfInputs (
 VideoDigitizerComponent ci,
 short *inputs
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputs
A pointer to an integer that is to receive the number of input video sources supported by the specified
component. Video digitizer components number video sources sequentially, starting at 0. So, if a
digitizer component supports two inputs, this function sets the field referred to by the inputs
parameter to 1.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Functions 2297
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetPlayThruDestination
Obtains information about the current video destination.

VideoDigitizerError VDGetPlayThruDestination (
 VideoDigitizerComponent ci,
 PixMapHandle *dest,
 Rect *destRect,
 MatrixRecord *m,
 RgnHandle *mask
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

dest
A pointer to a handle to a PixMap structure. The video digitizer component returns a handle to the
destination PixMap structure in the field referred to by this parameter. It is the caller's responsibility
to dispose of the PixMap structure.

destRect
A pointer to a Rect structure. The video digitizer component places the coordinates of the output
rectangle into the structure referred to by this parameter. If there is no output rectangle defined, the
component returns an empty rectangle.

m
A pointer to a MatrixRecord structure. The video digitizer component places the transformation
matrix into the structure referred to by this parameter.

mask
A pointer to a handle to a MacRegion structure. The video digitizer component places a handle to
the mask region into the field referred to by this parameter. Applications can use masks to control
the video into the destination rectangle. If there is no mask region defined, the digitizer component
sets this returned handle to NIL. The caller is responsible for disposing of the MacRegion structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

2298 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetPLLFilterType
Determines which phase locked loop (PLL) mode is currently active for a video digitizer.

VideoDigitizerError VDGetPLLFilterType (
 VideoDigitizerComponent ci,
 short *pllType
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

pllType
Points to a field that is to receive a value indicating which PLL mode is active. Values are 0 for broadcast
mode and 1 for videotape recorder mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetPreferredImageDimensions
Gets the preferred image dimensions for a video digitizer.

VideoDigitizerError VDGetPreferredImageDimensions (
 VideoDigitizerComponent ci,
 long *width,
 long *height
);

Parameters
ci

Specifies the video digitizer component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

width
A pointer to the preferred image width.

Functions 2299
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

height
A pointer to the preferred image height.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetPreferredTimeScale
Determines a digitizer's preferred time scale.

VideoDigitizerError VDGetPreferredTimeScale (
 VideoDigitizerComponent ci,
 TimeScale *preferred
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

preferred
A pointer to a time scale. The video digitizer returns information about its preferred time scale in this
structure.

Return Value
If the digitizer does not have a preferred time scale, it returns a result code of digiUnimpErr. See Error
Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetSaturation
Returns the current saturation value.

2300 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetSaturation (
 VideoDigitizerComponent ci,
 unsigned short *saturation
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

saturation
A pointer to an integer that is to receive the current saturation value. The saturation value controls
color intensity. For example, at high saturation levels, red appears to be red; at low saturation, red
appears as pink. Valid saturation values range from 0 to 65,535, where 0 is the minimum saturation
value and 65,535 specifies maximum saturation.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetSharpness
Returns the current sharpness value.

VideoDigitizerError VDGetSharpness (
 VideoDigitizerComponent ci,
 unsigned short *sharpness
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

sharpness
A pointer to an integer that is to receive the current sharpness value. The sharpness value ranges
from 0 to 65,535, where 0 represents no sharpness filtering and 65,535 represents full sharpness
filtering. Higher values result in a visual impression of increased picture sharpness.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2301
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDGetSoundInputDriver
Retrieves information about a video digitizer's sound input driver.

VideoDigitizerError VDGetSoundInputDriver (
 VideoDigitizerComponent ci,
 Str255 soundDriverName
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

soundDriverName
A pointer to a string. The video digitizer returns the name of its sound input driver. If the digitizer
does not have an associated driver, it returns a result code of digiUnimpErr.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDGetSoundInputSource
Instructs your video digitizer component to return the sound input source associated with a particular video
input.

VideoDigitizerError VDGetSoundInputSource (
 VideoDigitizerComponent ci,
 long videoInput,
 long *soundInput
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

2302 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

videoInput
The input video source for this request. Video digitizer components number video sources sequentially,
starting at 0. So, to request information about the first video source, an application sets this parameter
to 0. Applications can get the number of video sources supported by a video digitizer component by
calling VDGetNumberOfInputs (page 2297).

soundInput
The sound input index to use with the sound input driver returned by VDGetSoundInputDriver (page
2302).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
Some video digitizers may associate different sound inputs with each video input.
VDGetSoundInputDriver (page 2302) returns the name of the sound input driver that the sound input is
associated with.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetTimeCode
Instructs your video digitizer component to return timecode information for the incoming video signal.

VideoDigitizerError VDGetTimeCode (
 VideoDigitizerComponent ci,
 TimeRecord *atTime,
 void *timeCodeFormat,
 void *timeCodeTime
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

atTime
A pointer to a TimeRecord structure to receive the QuickTime movie time value corresponding to
the timecode information.

timeCodeFormat
A pointer to a TimeCodeDef structure. Your video digitizer component returns the movie's timecode
definition information in this structure.

timeCodeTime
A pointer to a TimeCodeRecord structure. Your video digitizer component returns the time value
corresponding to the movie time contained in this structure.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2303
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
Typically, this function is called once, at the beginning of a capture session. The use of this function assumes
that the timecoding for the entire capture session will be continuous.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetUniqueIDs
Returns a unique identifier for a particular video digitizer device.

VideoDigitizerError VDGetUniqueIDs (
 VideoDigitizerComponent ci,
 UInt64 *outDeviceID,
 UInt64 *outInputID
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

outDeviceID
A pointer to a 64-bit hardware device ID. In the case of a FireWire device, this is the FireWire ID.

outInputID
A pointer to a 64-bit hardware input ID. A return of 0 means you don't have one.

Return Value
An error return of type ComponentResult. See Error Codes. Returns noErr if there is no error.

Discussion
This function is provided so the VDIG can give the sequence grabber information that helps it choose a
particular device and input from those available. You might use it, for example, to restore a specific camera
from a set of several hot-plugged FireWire cameras. The caller can pass NIL if it is not interested in one of
the IDs.

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

VDGetVBlankRect
Returns the vertical blanking rectangle.

2304 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetVBlankRect (
 VideoDigitizerComponent ci,
 short inputStd,
 Rect *vBlankRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputStd
A short integer (see below) that identifies the signaling standard used in the source video signal. See
these constants:

ntscIn

palIn

secamIn

vBlankRect
A pointer to a Rect structure that is to receive the size and location information for the vertical
blanking rectangle.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetVideoDefaults
Returns the recommended values for many of the analog video parameters that may be set by applications.

Functions 2305
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDGetVideoDefaults (
 VideoDigitizerComponent ci,
 unsigned short *blackLevel,
 unsigned short *whiteLevel,
 unsigned short *brightness,
 unsigned short *hue,
 unsigned short *saturation,
 unsigned short *contrast,
 unsigned short *sharpness
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

blackLevel
A pointer to an integer that is to receive the default black level value. Black level values range from
0 to 65,535, where 0 represents the maximum black value and 65,535 represents the minimum black
value.

whiteLevel
A pointer to an integer that is to receive the default white level value. White level values range from
0 to 65,535, where 0 represents the minimum white value and 65,535 represents the maximum white
value.

brightness
A pointer to an integer that is to receive the default brightness value. Brightness values range from
0 to 65,535, where 0 is the darkest possible setting and 65,535 is the lightest possible setting.

hue
A pointer to an integer that is to receive the default hue value. Hue is similar to the tint control on a
television, and it is specified in degrees with complementary colors set 180 degrees apart (red is 0
degrees, green is +120 degrees, and blue is -120 degrees). Video digitizer components support hue
values that range from 0 (-180 degrees shift in hue) to 65,535 (+179 degrees shift in hue), where
32,767 represents a 0 degree shift in hue.

saturation
A pointer to an integer that is to receive the default saturation value. The saturation value controls
color intensity. For example, at high saturation levels, red appears to be red; at low saturation, red
appears as pink. Valid saturation values range from 0 to 65,535, where 0 is the minimum saturation
value and 65,535 specifies maximum saturation.

contrast
A pointer to an integer that is to receive the default contrast value. The contrast value ranges from 0
to 65,535, where 0 represents no change to the basic image and larger values increase the contrast
of the video image (they increase the slope of the transform).

sharpness
A pointer to an integer that is to receive the default sharpness value. The sharpness value ranges from
0 to 65,535, where 0 represents no sharpness filtering and 65,535 represents full sharpness filtering.
Higher values result in a visual impression of increased picture sharpness.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

2306 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGetWhiteLevelValue
Returns the current white level value.

VideoDigitizerError VDGetWhiteLevelValue (
 VideoDigitizerComponent ci,
 unsigned short *whiteLevel
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

whiteLevel
A pointer to an integer that is to receive the current white level value. White level values range from
0 to 65,535, where 0 represents the minimum white value and 65,535 represents the maximum white
value.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGrabOneFrame
Instructs the video digitizer component to digitize a single frame of source video.

VideoDigitizerError VDGrabOneFrame (
 VideoDigitizerComponent ci
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2307
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
If the specified digitizer component is already digitizing continuously when the application calls this function,
the digitizer component returns the next digitized frame and then stops. If the digitizer component is stopped,
the component digitizes a single frame and then stops. To resume continuous digitization, applications
should call VDSetPlayThruOnOff (page 2334).

Special Considerations

This function supports synchronous single-frame video digitization; that is, the digitizer component does
not return control to your application until it has successfully processed the next video frame. Some video
digitizer components may also support asynchronous single-frame digitization. Applications can request
asynchronous digitization by calling VDGrabOneFrameAsync (page 2308).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGrabOneFrameAsync
Instructs the video digitizer component to start to digitize asynchronously a single frame of source video.

VideoDigitizerError VDGrabOneFrameAsync (
 VideoDigitizerComponent ci,
 short buffer
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

buffer
Identifies the next output buffer. The value of this parameter must correspond to a valid index into
the list of buffers that you supply when your application calls VDSetupBuffers (page 2338). Note that
this value is zero-based (that is, you must set this parameter to 0 to refer to the first buffer in the
buffer list).

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When calling this function, the application specifies the next destination video buffer, allowing the digitizer
component to quickly switch from the current buffer to the next buffer. In this manner, your application's
ability to grab video at high frame rates is enhanced. If the specified digitizer component is already digitizing
continuously when the application calls this function, the digitizer component returns the next digitized
frame and then stops. If the digitizer component is stopped, the component digitizes a single frame and
then stops. To resume continuous digitization, applications should call VDSetPlayThruOnOff (page 2334).

2308 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

This function also allows applications to use more than one destination buffer for the digitized video. The
application defines these buffers by calling VDSetupBuffers (page 2338). The application specifies one of
these destination buffers for the digitized frame when it calls VDSetPlayThruDestination (page 2332) or
VDSetPlayThruGlobalRect (page 2333).

Special Considerations

Applications can determine whether a video digitizer component supports asynchronous frame grabbing
by using VDGetCurrentFlags (page 2281) to retrieve the digitizer component's output capability flags. If the
digiOutDoesAsyncGrabs flag is set to 1, the digitizer component supports both this function and
VDDone (page 2275). If a video digitizer component does not support asynchronous digitization, applications
must use VDGrabOneFrame (page 2307) to perform single-frame digitization.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDIIDCGetCSRData
Reads a camera's CSR registers directly.

VideoDigitizerError VDIIDCGetCSRData (
 VideoDigitizerComponent ci,
 Boolean offsetFromUnitBase,
 UInt32 offset,
 UInt32 *data
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

offsetFromUnitBase
Pass TRUE if the offset is relative to the initial unit space (FFFF Fxxx xxxx), FALSE if the offset is relative
to the initial register space (FFFF F000 0000).

offset
Offset in bytes of the value to read.

data
Location to store the value (of type UInt32) that was read.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
You might want to read a camera's registers directly if you're querying the state of a feature not accessed by
VDIIDCGetFeatures or if some camera-specific information must be accessed.

Version Notes
Introduced in QuickTime 6.4.

Functions 2309
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

VDIIDCGetDefaultFeatures
Places atoms in a QuickTime atom container that specify the default capabilities and default state of a camera's
IIDC features.

VideoDigitizerError VDIIDCGetDefaultFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer *container
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature whose default is known. The container may
be empty if defaults cannot be determined.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The digitizer will create the QuickTime atom container, and it is the responsibility of the client to delete it if
the routine does not return an error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

VDIIDCGetFeatures
Places atoms in a QuickTime atom container that specify the current capabilities of a camera and the state
of its IIDC features.

2310 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDIIDCGetFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer *container
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature. If the camera has not implemented any
IIDC features the container returns empty.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The digitizer creates the container, and it is the responsibility of the client to ultimately delete it if the routine
does not return an error. Since the values that this function retrieves might change underneath the client,
they should not be cached but should be retrieved each time they are needed.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Fiendishthngs

Declared In
QuickTimeComponents.h

VDIIDCGetFeaturesForSpecifier
Places atoms in a QuickTime atom container that specify the current state of a single camera IIDC feature or
group of features.

VideoDigitizerError VDIIDCGetFeaturesForSpecifier (
 VideoDigitizerComponent ci,
 OSType specifier,
 QTAtomContainer *container
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

Functions 2311
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

specifier
The feature or group of features to be retrieved: // IIDC feature types vdIIDCFeatureHue = 'hue ',
vdIIDCFeatureSaturation = 'satu', vdIIDCFeatureSharpness = 'shrp',
vdIIDCFeatureBrightness = 'brit', vdIIDCFeatureGain = 'gain', vdIIDCFeatureIris =
'iris', vdIIDCFeatureShutter = 'shtr', vdIIDCFeatureExposure = 'xpsr',
vdIIDCFeatureWhiteBalanceU = 'whbu', vdIIDCFeatureWhiteBalanceV = 'whbv',
vdIIDCFeatureGamma= 'gmma', vdIIDCFeatureTemperature= 'temp', vdIIDCFeatureZoom
= 'zoom', vdIIDCFeatureFocus = 'fcus', vdIIDCFeaturePan = 'pan ', vdIIDCFeatureTilt
= 'tilt', vdIIDCFeatureOpticalFilter = 'opft', vdIIDCFeatureTrigger = 'trgr',
vdIIDCFeatureCaptureSize = 'cpsz', vdIIDCFeatureCaptureQuality = 'cpql',
vdIIDCFeatureFocusPoint = 'fpnt', vdIIDCFeatureEdgeEnhancement = 'eden'
vdIIDCFeatureLightingHint = 'lhnt' // IIDC group types vdIIDCGroupImage = 'imag',
vdIIDCGroupColor = 'colr', vdIIDCGroupMechanics = 'mech', vdIIDCGroupTrigger =
'trig'

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature corresponding to the specifier. If the camera
has not implemented any of the specified features the container returns empty.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The digitizer creates the container, and it is the responsibility of the client to ultimately delete it if the routine
does not return an error. Since the values that this function retrieves might change underneath the client,
they should not be cached but should be retrieved each time they are needed.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

VDIIDCSetCSRData
Writes to a camera's CSR registers directly.

VideoDigitizerError VDIIDCSetCSRData (
 VideoDigitizerComponent ci,
 Boolean offsetFromUnitBase,
 UInt32 offset,
 UInt32 data
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

2312 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

offsetFromUnitBase
Pass TRUE if the offset is relative to the initial unit space (FFFF Fxxx xxxx), FALSE if the offset is relative
to the initial register space (FFFF F000 0000).

offset
Offset in bytes of the value to set.

data
Location of the value (of type UInt32) to write.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
You might want to write to a camera's registers directly if you're setting the state of a feature not accessed
by VDIIDCSetFeatures or if some camera-specific information must be set.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QuickTimeComponents.h

VDIIDCSetFeatures
Changes the state of a camera's IIDC features.

VideoDigitizerError VDIIDCSetFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer container
);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer's
subtype must be vdSubtypeIIDC ('iidc').

container
A pointer to a QuickTime atom container populated with atoms of type vdIIDCAtomTypeFeature;
the container may have one or many atoms in it. An empty container will cause the function to have
no effect.

Return Value
See Error Codes in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
It is the responsibility of the client to provide the QuickTime atom container and delete it after use.

Version Notes
Introduced in QuickTime 6.4.

Availability
Available in Mac OS X v10.3 and later.

Functions 2313
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDPreflightDestination
Verifies that a video digitizer component can support a set of destination settings intended for use with
VDSetPlayThruDestination.

VideoDigitizerError VDPreflightDestination (
 VideoDigitizerComponent ci,
 Rect *digitizerRect,
 PixMap **dest,
 RectPtr destRect,
 MatrixRecordPtr m
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

digitizerRect
A pointer to a Rect structure that contains the size and location information for the digitizer rectangle.
The coordinates of this rectangle must be relative to the maximum source rectangle. In addition, the
digitizer rectangle must be within the maximum source rectangle. For a discussion of the relationship
between these rectangles, see "Video Digitizer Components" in Inside Macintosh: QuickTime
Components. If the video digitizer component cannot accommodate the specified rectangle, it changes
the coordinates in this structure to specify a rectangle that it can support and sets the result to
qtParamErr.

dest
A handle to the destination PixMap structure.

destRect
A pointer to a Rect structure that specifies the size and location of the video destination. This is an
optional parameter. Applications may specify a transformation matrix to control the placement and
scaling of the video image in the destination PixMap structure. In this case, the destRect parameter
is set to NIL and the m parameter specifies the matrix. The destination rectangle must be in the
coordinate system of the destination PixMap structure specified by the dest parameter. If the video
digitizer component cannot accommodate this rectangle, it changes the coordinates in the structure
to specify a rectangle that it can support and sets the result to qtParamErr.

m
A pointer to a MatrixRecord structure containing the transformation matrix for the destination
video image. This is an optional parameter. Applications may specify a destination rectangle to control
the placement and scaling of the video image in the destination PixMap structure. In this case, the
m parameter is set to NIL and the destRect parameter specifies the destination rectangle. If the
destRect parameter is NIL, you can determine the destination rectangle for simple matrices by
calling TransformRect (page 736) using the current digitizer rectangle and this matrix. If the video
digitizer component cannot accommodate this matrix, it changes the values in the structure to define
a matrix that it can support and sets the result to qtParamErr. Applications can determine the
capabilities of a video digitizer component by calling VDGetDigitizerInfo (page 2284).

2314 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
The application provides the desired settings as parameters to this function. The video digitizer component
then examines those settings. If the digitizer component can support the specified settings, it sets the result
code to noErr. If the digitizer component cannot support the settings, it alters the input settings to reflect
values that it can support and returns a result code of qtParamErr. See Error Codes.

Discussion
All video digitizer components must support this function. Applications should use this function to test
destination settings whenever a video digitizer component cannot support arbitrary scaling.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDPreflightGlobalRect
Verifies that a video digitizer component can support a set of destination settings intended for use with
VDSetPlayThruGlobalRect.

VideoDigitizerError VDPreflightGlobalRect (
 VideoDigitizerComponent ci,
 GrafPtr theWindow,
 Rect *globalRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

theWindow
A pointer to the destination window.

globalRect
A pointer to a Rect structure that specifies the size and location of the video destination. This rectangle
must be in the coordinate system of the destination window specified by the theWindow parameter.
If the video digitizer component cannot accommodate this rectangle, it changes the coordinates in
the structure to specify a rectangle that it can support and sets the result to qtParamErr.

Return Value
Returns qtParamErr if the video digitizer component cannot accommodate the destination rectangle.
Returns digiUnimpErr if the video digitizer component does not support placing destination video into a
rectangle that crosses screens. See Error Codes. Returns noErr if there is no error.

Discussion
Applications should use this function to determine whether a video digitizer supports placing destination
video into a rectangle that crosses screens. Digitizers that do not support this capability return a result of
digiUnimpErr.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 2315
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDReleaseAsyncBuffers
Releases the buffers that were allocated with VDSetupBuffers.

VideoDigitizerError VDReleaseAsyncBuffers (
 VideoDigitizerComponent ci
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDReleaseCompressBuffer
Frees a buffer received from VDCompressDone.

VideoDigitizerError VDReleaseCompressBuffer (
 VideoDigitizerComponent ci,
 Ptr bufferAddr
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

bufferAddr
Points to the location of the buffer to be released. This address must correspond to a buffer address
that the application obtained from VDCompressDone (page 2273).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

2316 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDResetCompressSequence
Forces the video digitizer to insert a key frame into a temporally compressed image sequence.

VideoDigitizerError VDResetCompressSequence (
 VideoDigitizerComponent ci
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSelectUniqueIDs
Selects a video digitizer device by ID.

VideoDigitizerError VDSelectUniqueIDs (
 VideoDigitizerComponent ci,
 const UInt64 *inDeviceID,
 const UInt64 *inInputID
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inDeviceID
A pointer to a unique 64-bit hardware device ID.

inInputID
A pointer to a unique 64-bit hardware input ID.

Return Value
An error return of type ComponentResult. See Error Codes. Returns vdDontHaveThatUniqueIDErr if
your device doesn't have a match. Returns noErr if there is no error.

Functions 2317
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Discussion
Note this function does selection, not setting. The assumption is that the unique ID is set by the hardware
and is not modifiable by the calling application. Passing either a NIL pointer or 0 for an ID means you don't
care. This should restore the device and input IDs returned by VDGetUniqueIDs (page 2304).

Version Notes
Introduced in QuickTime 6.

Availability
Available in Mac OS X v10.2 and later.

Declared In
QuickTimeComponents.h

VDSetBlackLevelValue
Sets the current black level value.

VideoDigitizerError VDSetBlackLevelValue (
 VideoDigitizerComponent ci,
 unsigned short *blackLevel
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

blackLevel
A pointer to an integer that contains the new black level value. Black level values range from 0 to
65,535, where 0 represents the maximum black value and 65,535 represents the minimum black value.
The digitizer component returns the new value, so that the application can avoid using unsupported
values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExampleVideoPanel
ExampleVideoPanel.win

Declared In
QuickTimeComponents.h

VDSetBrightness
Sets the current brightness value.

2318 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetBrightness (
 VideoDigitizerComponent ci,
 unsigned short *brightness
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

brightness
A pointer to an integer that contains the new brightness value. Brightness values range from 0 to
65,535, where 0 is the darkest possible setting and 65,535 is the lightest possible setting. The digitizer
component returns the new value, so that the application can avoid using unsupported values in
future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetClipRgn
Defines a clipping region for a video digitizer.

VideoDigitizerError VDSetClipRgn (
 VideoDigitizerComponent ci,
 RgnHandle clipRegion
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

clipRegion
A handle to a MacRegion structure that defines the clipping region.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2319
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDSetClipState
Controls whether clipping is enabled.

VideoDigitizerError VDSetClipState (
 VideoDigitizerComponent ci,
 short clipEnable
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

clipEnable
Controls whether clipping is enabled. Place 0 into the short integer if clipping is disabled, and 1 if it
is enabled.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetCompression
Specifies certain compression parameters.

VideoDigitizerError VDSetCompression (
 VideoDigitizerComponent ci,
 OSType compressType,
 short depth,
 Rect *bounds,
 CodecQ spatialQuality,
 CodecQ temporalQuality,
 long keyFrameRate
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

compressType
A compressor type. This value corresponds to the component subtype of the compressor component;
see Codec Identifiers.

2320 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

depth
The depth at which the image is likely to be viewed. Compressors may use this as an indication of
the color or grayscale resolution of the image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number
of bits per pixel for color images. Values of 33, 34, 36, and 40 correspond to 1-bit, 2-bit, 4-bit, and
8-bit grayscale images.

bounds
A pointer to a Rect structure that defines the desired boundaries of the compressed image.

spatialQuality
A constant (see below) that indicates the desired image quality for each frame in the sequence. See
these constants:

codecMinQuality

codecLowQuality

codecNormalQuality

codecHighQuality

codecMaxQuality

codecLosslessQuality

temporalQuality
A constant (see below) that indicates the desired temporal quality for the sequence as a whole.

keyFrameRate
The maximum number of frames to allow between key frames. This value defines the minimum rate
at which key frames are to appear in the compressed sequence; however, the video digitizer may
insert key frames more often than an application specifies. If the application requests no temporal
compression (that is, the application set the temporalQuality parameter to 0), the video digitizer
ignores this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetCompressionOnOff
Allows an application to start and stop compression by video digitizers that can deliver either compressed
or uncompressed image data.

VideoDigitizerError VDSetCompressionOnOff (
 VideoDigitizerComponent ci,
 Boolean state
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

Functions 2321
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

state
A Boolean value that indicates whether to enable or disable compression. Applications set this
parameter to TRUE to enable compression. Setting it to FALSE disables compression.

Return Value
Digitizers that only provide compressed data have their digiOutDoesCompressOnly flag set to 1, rather
than 0. These digitizers may either ignore this function or return a nonzero result code. See Error Codes.
Return noErr if there is no error.

Discussion
Applications must call this function before they call either VDSetCompression (page 2320) or
VDCompressOneFrameAsync (page 2274). This allows the video digitizer to prepare for the operation.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetContrast
Sets the current contrast value.

VideoDigitizerError VDSetContrast (
 VideoDigitizerComponent ci,
 unsigned short *contrast
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

contrast
A pointer to an integer that contains the new contrast value. The contrast value ranges from 0 to
65,535, where 0 represents no change to the basic image and larger values increase the contrast of
the video image (they increase the slope of the transform). The digitizer component returns the new
value, so that the application can avoid using unsupported values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2322 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDSetDataRate
Instructs your video digitizer component to limit the rate at which it delivers compressed, digitized video
data.

VideoDigitizerError VDSetDataRate (
 VideoDigitizerComponent ci,
 long bytesPerSecond
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

bytesPerSecond
The maximum data rate requested by the application, in bytes per second. This parameter is set to 0
to remove any data-rate restrictions.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This function is valid only for video digitizer components that can deliver compressed video; that is,
components that support the VDCompressOneFrameAsync (page 2274) function. Components that support
data-rate limiting set the codecInfoDoesRateConstrain flag to 1 in the compressFlags field of the
VDCompressionList structure returned by the component in response to the
VDGetCompressionTypes (page 2280) function. Your video digitizer component should return this data-rate
limit in the bytesPerSecond parameter of the existing VDGetDataRate (page 2282) function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetDestinationPort
Sets the destination port for a video digitizer.

VideoDigitizerError VDSetDestinationPort (
 VideoDigitizerComponent ci,
 CGrafPtr destPort
);

Parameters
ci

Specifies the video digitizer component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

destPort
A pointer to a CGrafPort structure.

Functions 2323
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetDigitizerRect
Sets the current video digitizer rectangle.

VideoDigitizerError VDSetDigitizerRect (
 VideoDigitizerComponent ci,
 Rect *digitizerRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

digitizerRect
A pointer to a Rect structure that contains the size and location information for the digitizer rectangle.
The coordinates of this rectangle must be relative to the maximum source rectangle. In addition, the
digitizer rectangle must be within the maximum source rectangle. For a discussion of the relationship
between these rectangles, see "Video Digitizer Components" in Inside Macintosh: QuickTime
Components.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetDigitizerUserInterrupt
Sets custom interrupt functions.

2324 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetDigitizerUserInterrupt (
 VideoDigitizerComponent ci,
 long flags,
 VdigIntUPP userInterruptProc,
 long refcon
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

flags
Indicates when the interrupt function is to be called. If bit 0 is set to 1, the video digitizer component
calls the custom interrupt procedure each time it starts to display an even-line field. If bit 1 is set to
1, the video digitizer component calls the custom interrupt procedure each time it starts to display
an odd-line field. Applications may set both bits to 1.

userInterruptProc
A Universal Procedure Pointer to a VdigIntProc callback. Applications can set this parameter to NIL
to remove a VdigIntProc callback.

refcon
Contains parameter data that is appropriate for the callback. Use this parameter to point to a data
structure containing any information your callback needs.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetFieldPreference
Specifies which field to use in cases where the vertical scaling is less than half size.

VideoDigitizerError VDSetFieldPreference (
 VideoDigitizerComponent ci,
 short fieldFlag
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

Functions 2325
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

fieldFlag
A constant (see below) that indicates which field to use. See these constants:

vdUseAnyField

vdUseOddField

vdUseEvenField

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetFrameRate
Indicates an application's desired frame rate to the video digitizer.

VideoDigitizerError VDSetFrameRate (
 VideoDigitizerComponent ci,
 Fixed framesPerSecond
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

framesPerSecond
The application's desired frame rate. Applications may set this parameter to 0 to return the digitizer
to its default frame rate (typically 29.97 frames per second).

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetHue
Sets the current hue value.

2326 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetHue (
 VideoDigitizerComponent ci,
 unsigned short *hue
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

hue
A pointer to an integer that contains the new hue value. Hue is similar to the tint control on a television,
and it is specified in degrees with complementary colors set 180 degrees apart (red is 0 degrees, green
is +120 degrees, and blue is -120 degrees). Video digitizer components support hue values that range
from 0 (-180 degrees shift in hue) to 65,535 (+179 degrees shift in hue), where 32,767 represents a 0
degree shift in hue. The digitizer component returns the new value, so that the application can avoid
using unsupported values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetInput
Selects the input video source for a video digitizer component.

VideoDigitizerError VDSetInput (
 VideoDigitizerComponent ci,
 short input
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

input
The input video source for this request. Video digitizer components number video sources sequentially,
starting at 0. To request the first video source, an application sets this parameter to 0.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Functions 2327
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetInputColorSpaceMode
Chooses between color and grayscale digitized video.

VideoDigitizerError VDSetInputColorSpaceMode (
 VideoDigitizerComponent ci,
 short colorSpaceMode
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

colorSpaceMode
Controls color digitization. Set to 0 for grayscale, 1 for color.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetInputGammaRecord
Changes the active input gamma data structure.

VideoDigitizerError VDSetInputGammaRecord (
 VideoDigitizerComponent ci,
 VDGamRecPtr inputGammaPtr
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputGammaPtr
A VDGammaRecord structure.

Return Value
See Error Codes. Returns noErr if there is no error.

2328 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetInputGammaValue
Sets the gamma values.

VideoDigitizerError VDSetInputGammaValue (
 VideoDigitizerComponent ci,
 Fixed channel1,
 Fixed channel2,
 Fixed channel3
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from the Component
Manager's OpenComponent function.

channel1
The gamma value for the red component of the input video signal.

channel2
The gamma value for the green component of the input video signal.

channel3
The gamma value for the blue component of the input video signal.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
These gamma values control the brightness of the input video signal. Your application can implement special
color effects, such as turning off specific color channels, by calling this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetInputStandard
Specifies the input signaling standard to digitize.

Functions 2329
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetInputStandard (
 VideoDigitizerComponent ci,
 short inputStandard
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

inputStandard
A short integer (see below) that identifies the input signaling standard. See these constants:

ntscIn

palIn

secamIn

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetKeyColor
Sets the key color for video digitizing.

VideoDigitizerError VDSetKeyColor (
 VideoDigitizerComponent ci,
 long index
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

index
The new key color. This value must correspond to a color in the current color lookup table.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components that support key colors must support this function.

Version Notes
Introduced in QuickTime 3 or earlier.

2330 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetKeyColorRange
Defines a key color range for video digitizing.

VideoDigitizerError VDSetKeyColorRange (
 VideoDigitizerComponent ci,
 RGBColor *minRGB,
 RGBColor *maxRGB
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

minRGB
A pointer to a field that contains the lower bound of the key color range. All colors in the color table
between the color specified by the minRGB parameter and the color specified by the maxRGB parameter
are considered key colors.

maxRGB
A pointer to a field that contains the upper bound of the key color range. All colors in the color table
between the color specified by the minRGB parameter and the color specified by the maxRGB parameter
are considered key colors.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetMasterBlendLevel
Sets the blend level value for the input video signal.

Functions 2331
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetMasterBlendLevel (
 VideoDigitizerComponent ci,
 unsigned short *blendLevel
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

blendLevel
A pointer to a field that specifies the new master blend level. Valid values range from 0 to 65,535,
where 0 corresponds to no video and 65,535 corresponds to all video. The digitizer component returns
the new value in this field, so your application can avoid using unsupported values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetPlayThruDestination
Establishes the destination settings for a video digitizer component.

VideoDigitizerError VDSetPlayThruDestination (
 VideoDigitizerComponent ci,
 PixMapHandle dest,
 RectPtr destRect,
 MatrixRecordPtr m,
 RgnHandle mask
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

dest
A handle to the destination PixMap structure. This pixel map may be in the video frame buffer of the
Macintosh computer, or it may specify an offscreen buffer.

destRect
A pointer to a Rect structure that specifies the size and location of the video destination. This rectangle
must be in the coordinate system of the destination PixMap structure specified by the dest parameter.

m
A pointer to a MatrixRecord structure containing the transformation matrix for the destination
video image. To determine the capabilities of a video digitizer component, you can call
VDGetDigitizerInfo (page 2284) in your application.

2332 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

mask
A handle to a MacRegion structure that defines a mask. Applications can use masks to control clipping
of the video into the destination rectangle. This mask region is defined in the destination coordinate
space.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
All video digitizer components must support this function.

Special Considerations

Applications set the source digitizer rectangle by calling VDSetDigitizerRect (page 2324).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetPlayThruGlobalRect
Establishes the destination settings for a video digitizer component that is to digitize into a global rectangle.

VideoDigitizerError VDSetPlayThruGlobalRect (
 VideoDigitizerComponent ci,
 GrafPtr theWindow,
 Rect *globalRect
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

theWindow
A pointer to the destination window.

globalRect
A pointer to a Rect structure that specifies the size and location of the video destination. This rectangle
must be in the coordinate system of the destination window specified by the theWindow parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
The application provides the desired settings as parameters to this function. Not all video digitizer components
support global rectangles.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Functions 2333
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDSetPlayThruOnOff
Controls continuous digitization.

VideoDigitizerError VDSetPlayThruOnOff (
 VideoDigitizerComponent ci,
 short state
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

state
A short integer (see below) that specifies whether to use continuous digitization. When an application
stops continuous digitization, the video digitizer component must restore its alpha channel, blending
mask, or key color settings to graphics mode. See these constants:

vdPlayThruOff

vdPlayThruOn

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
When opened, video digitizer components are always set to off, so that no digitization is taking place. Your
application can use this function to turn continuous digitization on and off.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetPLLFilterType
Specifies which phase locked loop (PLL) is to be active.

VideoDigitizerError VDSetPLLFilterType (
 VideoDigitizerComponent ci,
 short pllType
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

2334 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

pllType
Indicates which PLL is to be active. Values are 0 for broadcast mode and 1 for videotape recorder
mode.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetPreferredImageDimensions
Sets the preferred image dimensions for a video digitizer.

VideoDigitizerError VDSetPreferredImageDimensions (
 VideoDigitizerComponent ci,
 long width,
 long height
);

Parameters
ci

Specifies the video digitizer component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

width
The preferred image width.

height
The preferred image height.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetPreferredPacketSize
Sets the preferred packet size for video digitizing.

Functions 2335
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetPreferredPacketSize (
 VideoDigitizerComponent ci,
 long preferredPacketSizeInBytes
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

preferredPacketSizeInBytes
The preferred packet size in bytes.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
This function was added in QuickTime 2.5 to support videoconferencing applications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetSaturation
Sets the saturation value.

VideoDigitizerError VDSetSaturation (
 VideoDigitizerComponent ci,
 unsigned short *saturation
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

saturation
A pointer to an integer that contains the new saturation value. The saturation value controls color
intensity. For example, at high saturation levels, red appears to be red; at low saturation, red appears
as pink. Valid saturation values range from 0 to 65,535, where 0 is the minimum saturation value and
65,535 specifies maximum saturation. The video digitizer component attempts to set the saturation
value to the value specified by this parameter. The digitizer component returns the new value, so
that the application can avoid using unsupported values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

2336 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

VDSetSharpness
Sets the sharpness value.

VideoDigitizerError VDSetSharpness (
 VideoDigitizerComponent ci,
 unsigned short *sharpness
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

sharpness
A pointer to an integer that contains the new sharpness value. The sharpness value ranges from 0 to
65,535, where 0 represents no sharpness filtering and 65,535 represents full sharpness filtering. Higher
values result in a visual impression of increased picture sharpness. The video digitizer component
attempts to set the sharpness value to the value specified by this parameter. The digitizer component
returns the new value, so that the application can avoid using unsupported values in future requests.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetTimeBase
Establishes the video digitizer's time coordinate system.

VideoDigitizerError VDSetTimeBase (
 VideoDigitizerComponent ci,
 TimeBase t
);

Parameters
ci

Identifies the application's connection to the video digitizer component. An application obtains this
value from OpenComponent or OpenDefaultComponent.

t
A time base identifier. You can get this value from NewTimeBase (page 261).

Return Value
See Error Codes. Returns noErr if there is no error.

Functions 2337
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetupBuffers
Defines output buffers for use with asynchronous grabs.

VideoDigitizerError VDSetupBuffers (
 VideoDigitizerComponent ci,
 VdigBufferRecListHandle bufferList
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

bufferList
A handle to a VdigBufferRecList structure. Video digitizer components extract information about
the spatial characteristics of the video destinations from these buffers.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
If you are developing a video digitizer component, note that the matrix field in the buffer list structure
contains a pointer to the MatrixRecord structure. It is your responsibility to copy that matrix structure.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDSetWhiteLevelValue
Sets the white level value.

2338 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VideoDigitizerError VDSetWhiteLevelValue (
 VideoDigitizerComponent ci,
 unsigned short *whiteLevel
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

whiteLevel
A pointer to an integer that contains the new white level value. White level values range from 0 to
65,535, where 0 represents the minimum white value and 65,535 represents the maximum white
value.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDUseSafeBuffers
Instructs a video digitizer to use protected buffers.

VideoDigitizerError VDUseSafeBuffers (
 VideoDigitizerComponent ci,
 Boolean useSafeBuffers
);

Parameters
ci

Specifies the video digitizer component for this operation. Applications can obtain this reference from
OpenComponent or OpenDefaultComponent.

useSafeBuffers
Pass TRUE to use protected buffers; pass FALSE otherwise.

Return Value
See Error Codes. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Functions 2339
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDUseThisCLUT
Specifies the lookup table for color digitization.

VideoDigitizerError VDUseThisCLUT (
 VideoDigitizerComponent ci,
 CTabHandle colorTableHandle
);

Parameters
ci

The video digitizer component for the request. Applications obtain this reference from OpenComponent
or OpenDefaultComponent.

colorTableHandle
A handle to a ColorTable structure. The video digitizer component uses the color table referred to
by this parameter.

Return Value
See Error Codes. Returns noErr if there is no error.

Discussion
This feature is useful only for capturing 8-bit color video.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Callbacks

Data Types

DigitizerInfo
Contains information about the capabilities and current status of a video digitizer component.

2340 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

struct DigitizerInfo {
 short vdigType;
 long inputCapabilityFlags;
 long outputCapabilityFlags;
 long inputCurrentFlags;
 long outputCurrentFlags;
 short slot;
 GDHandle gdh;
 GDHandle maskgdh;
 short minDestHeight;
 short minDestWidth;
 short maxDestHeight;
 short maxDestWidth;
 short blendLevels;
 long reserved;
 };

Fields
vdigType

Discussion
Constant (see below) that specifies the type of video digitizer component. See these constants:

vdTypeBasic

vdTypeAlpha

vdTypeMask

vdTypeKey

inputCapabilityFlags

Discussion
Constant (see below) that specifies the capabilities of the video digitizer component with respect to the input
video signal. See these constants:

digiInDoesNTSC

digiInDoesPAL

digiInDoesSECAM

digiInDoesGenLock

digiInDoesComposite

digiInDoesComponent

digiInVTR_Broadcast

digiInDoesColor

digiInDoesBW

Data Types 2341
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

outputCapabilityFlags

Discussion
Constant (see below) that specifies the capabilities of the video digitizer component with respect to the
output digitized video information. See these constants:

digiOutDoes1

digiOutDoes2

digiOutDoes4

digiOutDoes8

digiOutDoes16

digiOutDoes32

digiOutDoesDither

digiOutDoesStretch

digiOutDoesShrink

digiOutDoesMask

digiOutDoesDouble

digiOutDoesQuad

digiOutDoesQuarter

digiOutDoesSixteenth

digiOutDoesRotate

digiOutDoesHorizFlip

digiOutDoesVertFlip

digiOutDoesSkew

digiOutDoesBlend

digiOutDoesWarp

digiOutDoesHWPlayThru

digiOutDoesILUT

digiOutDoesKeyColor

digiOutDoesAsyncGrabs

digiOutDoesUnreadableScreenBits

digiOutDoesCompress

digiOutDoesCompressOnly

digiOutDoesPlayThruDuringCompress

inputCurrentFlags

Discussion
Specifies the current status of the video digitizer with respect to the input video signal. Video digitizer
components report their current input status by returning a flags field that contains 1 bit for each of the
applicable inputCapabilityFlags constants (see below), plus additional inputCurrentFlags constants
(see below) as appropriate. The digitizer component sets these flags to reflect its current status. When
reporting input status, for example, a video digitizer component sets the digiInDoesGenLock flag to 1
whenever the digitizer component is deriving its time signal from the input video. When reporting its input
capabilities, the digitizer component sets this flag to 1 to indicate that it can derive its timing from the input
video. See these constants:

digiInSignalLock

2342 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

outputCurrentFlags

Discussion
Specifies the current status of the video digitizer with respect to the output video signal. Video digitizer
components report their current output status by returning a flags field that contains 1 bit for each of the
applicable outputCapabilityFlags constants (see below)

slot

Discussion
Identifies the slot that contains the video digitizer interface card.

gdh

Discussion
Contains a handle to the graphics device that defines the screen to which the digitized data is to be written.
Set this field to NIL if your application is not constrained to a particular graphics device.

maskgdh

Discussion
Contains a handle to the graphics device that contains the mask plane. This field is used only by digitizers
that clip by means of mask planes.

minDestHeight

Discussion
Indicates the smallest height value the digitizer component can accommodate in its destination.

minDestWidth

Discussion
Indicates the smallest width value the digitizer component can accommodate in its destination.

maxDestHeight

Discussion
Indicates the largest height value the digitizer component can accommodate in its destination.

maxDestWidth

Discussion
Indicates the largest width value the digitizer component can accommodate in its destination.

blendLevels

Discussion
Specifies the number of blend levels the video digitizer component supports.

reserved

Discussion
Reserved. Set this field to 0.

Discussion
Your application can retrieve information about the capabilities and current status of a video digitizer
component. You call VDGetDigitizerInfo (page 2284) to retrieve all this information from a video digitizer
component. In response, the component formats a DigitizerInfo structure. The contents of this structure
fully define the capabilities and current status of the video digitizer component.

Related Functions
VDGetDigitizerInfo (page 2284)

Data Types 2343
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

GrafPort
Defines a complete drawing environment for black-and-white graphics operations.

struct GrafPort {
 short device;
 BitMap portBits;
 Rect portRect;
 RgnHandle visRgn;
 RgnHandle clipRgn;
 Pattern bkPat;
 Pattern fillPat;
 Point pnLoc;
 Point pnSize;
 short pnMode;
 Pattern pnPat;
 short pnVis;
 short txFont;
 StyleField txFace;
 short txMode;
 short txSize;
 Fixed spExtra;
 long fgColor;
 long bkColor;
 short colrBit;
 short patStretch;
 Handle picSave;
 Handle rgnSave;
 Handle polySave;
 QDProcsPtr grafProcs;
 };

Fields
device

Discussion
See CGrafPort.

portBits

Discussion
See CGrafPort. In a GrafPort structure, this field contains a complete 14-byte BitMap structure. In a
CGrafPort structure, this field is partly replaced by the 4-byte portPixMap field, which contains a handle
to a PixMap structure. In what would be the rowBytes field of the BitMap structure, a CGrafPort structure
has a 2-byte portVersion field in which the two high bits are always set to 1. QuickTime uses these bits to
distinguish CGrafPort records from GrafPort records, in which the two high bits of the rowBytes field
are always 0. Following the portBits field in the CGrafPort structure are the portVersion and grafVars
fields. The grafVars field contains a handle to a GrafVars structure; this handle is not included in the
GrafPort structure. For information about the GrafVars structure, see Inside Macintosh: Imaging With
QuickDraw.

portRect

Discussion
See CGrafPort.

2344 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

visRgn

Discussion
See CGrafPort.

clipRgn

Discussion
See CGrafPort.

bkPat

Discussion
In a GrafPort structure, the bkPat, pnPat, and fillPat fields hold 8-byte bit patterns. In a CGrafPort
structure, these fields are partly replaced by three 4-byte handles to pixel patterns. The resulting 12 bytes of
additional space in the CGrafPort structure are taken up by the rgbFgColor and rgbBkColor fields, which
contain 6-byte RGBColor structures specifying the optimal foreground and background colors for the color
graphics port. Note that the closest matching available colors, which QuickTime actually uses to render the
foreground and background, are stored in the fgColor and bkColor fields of the CGrafPort structure.

fillPat

Discussion
See the bkPat field (above).

pnLoc

Discussion
See CGrafPort.

pnSize

Discussion
See CGrafPort.

pnMode

Discussion
See CGrafPort.

pnPat

Discussion
See the bkPat field (above).

pnVis

Discussion
See CGrafPort.

txFont

Discussion
See CGrafPort.

txFace

Discussion
The character style of the text, with values from the set defined by the Style type, which includes such
styles as bold, italic, and shaded. You can apply stylistic variations either alone or in combination. This field
is initially set to plain text.

Data Types 2345
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

txMode

Discussion
See CGrafPort.

txSize

Discussion
See CGrafPort.

spExtra

Discussion
See CGrafPort.

fgColor

Discussion
See CGrafPort.

bkColor

Discussion
See CGrafPort.

colrBit

Discussion
See CGrafPort.

patStretch

Discussion
See CGrafPort.

picSave

Discussion
See CGrafPort.

rgnSave

Discussion
See CGrafPort.

polySave

Discussion
See CGrafPort.

grafProcs

Discussion
See CGrafPort. In a GrafPort structure, you can supply this field with a pointer to a QDProcs structure;
in a CGrafPort structure, you provide this field with a pointer to a CQDProcs structure.

Discussion
See CGrafPort.

Version Notes
The GrafPort structure has been largely superseded by the CGrafPort structure, which defines a full color
environment. The two structures are the same size; QuickTime distinguishes between them by examining
the portBits field.

2346 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Declared In
QuickTimeComponents.h

GrafPtr
Represents a type used by the Video Components API.

typedef GrafPort * GrafPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QTVideoOutputComponent
Represents a type used by the Video Components API.

typedef ComponentInstance QTVideoOutputComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

RectPtr
Represents a type used by the Video Components API.

typedef Rect * RectPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

VDCompressionListHandle
Represents a type used by the Video Components API.

typedef VDCompressionListPtr * VDCompressionListHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Data Types 2347
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VDCompressionListPtr
Represents a type used by the Video Components API.

typedef VDCompressionList * VDCompressionListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VDGammaRecord
Holds a gamma table.

struct VDGammaRecord {
 Ptr csGTable;
 };

Fields
csGTable

Discussion
A pointer to a gamma table.

Declared In
QuickTimeComponents.h

VDGamRecPtr
Represents a type used by the Video Components API.

typedef VDGammaRecord * VDGamRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSVideo.h

VdigBufferRecListHandle
Represents a type used by the Video Components API.

typedef VdigBufferRecListPtr * VdigBufferRecListHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

2348 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

VdigBufferRecListPtr
Represents a type used by the Video Components API.

typedef VdigBufferRecList * VdigBufferRecListPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VideoDigitizerComponent
Represents a type used by the Video Components API.

typedef ComponentInstance VideoDigitizerComponent;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

VideoDigitizerError
Represents a type used by the Video Components API.

typedef ComponentResult VideoDigitizerError;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.h

Constants

compositeIn
Constants grouped with compositeIn.

Constants 2349
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

enum {
 compositeIn = 0, /* input is composite format */
 sVideoIn = 1, /* input is sVideo format */
 rgbComponentIn = 2, /* input is rgb component format */
 rgbComponentSyncIn = 3, /* input is rgb component format (sync on
 green?)*/
 yuvComponentIn = 4, /* input is yuv component format */
 yuvComponentSyncIn = 5, /* input is yuv component format (sync on
 green?) */
 tvTunerIn = 6,
 sdiIn = 7
};

Declared In
QuickTimeComponents.h

Video Digitizer Capabilities
Flags that indicate the input and output capabilities of a video digitizer.

2350 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

enum {
 digiInDoesNTSC = 1L << 0, /* digitizer supports NTSC input format
 */
 digiInDoesPAL = 1L << 1, /* digitizer supports PAL input format
 */
 digiInDoesSECAM = 1L << 2, /* digitizer supports SECAM input format
 */
 digiInDoesGenLock = 1L << 7, /* digitizer does genlock */
 digiInDoesComposite = 1L << 8, /* digitizer supports composite input
type */
 digiInDoesSVideo = 1L << 9, /* digitizer supports S-Video input type
 */
 digiInDoesComponent = 1L << 10, /* digitizer supports component = rgb,
 input type */
 digiInVTR_Broadcast = 1L << 11, /* digitizer can differentiate between
 the two */
 digiInDoesColor = 1L << 12, /* digitizer supports color */
 digiInDoesBW = 1L << 13, /* digitizer supports black & white */
 /* Digitizer Input Current Flags = these
are valid only during active operating conditions, */
 digiInSignalLock = 1L << 31 /* digitizer detects input signal is
locked, this bit = horiz lock || vertical lock */
};
enum {
 digiOutDoes1 = 1L << 0, /* digitizer supports 1 bit pixels */
 digiOutDoes2 = 1L << 1, /* digitizer supports 2 bit pixels */
 digiOutDoes4 = 1L << 2, /* digitizer supports 4 bit pixels */
 digiOutDoes8 = 1L << 3, /* digitizer supports 8 bit pixels */
 digiOutDoes16 = 1L << 4, /* digitizer supports 16 bit pixels */
 digiOutDoes32 = 1L << 5, /* digitizer supports 32 bit pixels */
 digiOutDoesDither = 1L << 6, /* digitizer dithers in indexed modes
*/
 digiOutDoesStretch = 1L << 7, /* digitizer can arbitrarily stretch */
 digiOutDoesShrink = 1L << 8, /* digitizer can arbitrarily shrink */
 digiOutDoesMask = 1L << 9, /* digitizer can mask to clipping regions
 */
 digiOutDoesDouble = 1L << 11, /* digitizer can stretch to exactly
double size */
 digiOutDoesQuad = 1L << 12, /* digitizer can stretch exactly
quadruple size */
 digiOutDoesQuarter = 1L << 13, /* digitizer can shrink to exactly
quarter size */
 digiOutDoesSixteenth = 1L << 14, /* digitizer can shrink to exactly
sixteenth size */
 digiOutDoesRotate = 1L << 15, /* digitizer supports rotate
transformations */
 digiOutDoesHorizFlip = 1L << 16, /* digitizer supports horizontal flips
 Sx < 0 */
 digiOutDoesVertFlip = 1L << 17, /* digitizer supports vertical flips
Sy < 0 */
 digiOutDoesSkew = 1L << 18, /* digitizer supports skew = shear,twist,
 */
 digiOutDoesBlend = 1L << 19,
 digiOutDoesWarp = 1L << 20,
 digiOutDoesHW_DMA = 1L << 21, /* digitizer not constrained to local
 device */
 digiOutDoesHWPlayThru = 1L << 22, /* digitizer doesn't need time to play
 thru */

Constants 2351
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

 digiOutDoesILUT = 1L << 23, /* digitizer does inverse LUT for index
 modes */
 digiOutDoesKeyColor = 1L << 24, /* digitizer does key color functions
 too */
 digiOutDoesAsyncGrabs = 1L << 25, /* digitizer supports async grabs */
 digiOutDoesUnreadableScreenBits = 1L << 26, /* playthru doesn't generate readable
 bits on screen*/
 digiOutDoesCompress = 1L << 27, /* supports alternate output data types
 */
 digiOutDoesCompressOnly = 1L << 28, /* can't provide raw frames anywhere
*/
 digiOutDoesPlayThruDuringCompress = 1L << 29, /* digi can do playthru while
providing compressed data */
 digiOutDoesCompressPartiallyVisible = 1L << 30, /* digi doesn't need all bits
visible on screen to do hardware compress */
 digiOutDoesNotNeedCopyOfCompressData = 1L << 31 /* digi doesn't need any
bufferization when providing compressed data */
};

Constants
digiInDoesNTSC

The video digitizer supports National Television System Committee (NTSC) format input video signals.
This flag is set to 1 if the digitizer component supports NTSC video.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesPAL
The video digitizer component supports Phase Alternation Line (PAL) format input video signals. This
flag is set to 1 if the digitizer component supports PAL video.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesSECAM
The video digitizer component supports Systeme Electronique Couleur avec Memoire (SECAM) format
input video signals. This flag is set to 1 if the digitizer component supports SECAM video.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesGenLock
The video digitizer component supports genlock; that is, the digitizer can derive its timing from an
external time base. This flag is set to 1 if the digitizer component supports genlock.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesComposite
The video digitizer component supports composite input video. This flag is set to 1 if the digitizer
component supports composite input.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

2352 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

digiInDoesComponent
The video digitizer component supports RGB input video. This flag is set to 1 if the digitizer component
supports RGB input.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInVTR_Broadcast
The video digitizer component can distinguish between an input signal that emanates from a videotape
player and a broadcast signal. This flag is set to 1 if the digitizer component can differentiate between
the two different signal types.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesColor
The video digitizer component supports color input. This flag is set to 1 if the digitizer component
can accept color input.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInDoesBW
The video digitizer component supports grayscale input. This flag is set to 1 if the digitizer component
can accept grayscale input.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiInSignalLock
The video digitizer component is locked onto the input signal. If this flag is set to 1, the digitizer
component detects either vertical or horizontal signal lock.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoes1
The video digitizer component can work with pixel maps that contain 1-bit pixels. If this flag is set to
1, then the digitizer component can write images that contain 1-bit pixels. If this flag is set to 0, then
the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoes2
The video digitizer component can work with pixel maps that contain 2-bit pixels. If this flag is set to
1, then the digitizer component can write images that contain 2-bit pixels. If this flag is set to 0, then
the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoes4
The video digitizer component can work with pixel maps that contain 4-bit pixels. If this flag is set to
1, then the digitizer component can write images that contain 4-bit pixels. If this flag is set to 0, then
the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Constants 2353
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

digiOutDoes8
The video digitizer component can work with pixel maps that contain 8-bit pixels. If this flag is set to
1, then the digitizer component can write images that contain 8-bit pixels. If this flag is set to 0, then
the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoes16
The video digitizer component can work with pixel maps that contain 16-bit pixels. If this flag is set
to 1, then the digitizer component can write images that contain 16-bit pixels. If this flag is set to 0,
then the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoes32
The video digitizer component can work with pixel maps that contain 32-bit pixels. If this flag is set
to 1, then the digitizer component can write images that contain 32-bit pixels. If this flag is set to 0,
then the digitizer component cannot handle such images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesDither
The video digitizer component supports dithering. If this flag is set to 1, the component supports
dithering of colors. If this flag is set to 0, the digitizer component does not support dithering.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesStretch
The video digitizer component can stretch images to arbitrary sizes. If this flag is set to 1, the digitizer
component can stretch images. If this flag is set to 0, the digitizer component does not support
stretching.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesShrink
The video digitizer component can shrink images to arbitrary sizes. If this flag is set to 1, the digitizer
component can shrink images. If this flag is set to 0, the digitizer component does not support
shrinking.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesMask
The video digitizer component can handle clipping regions. If this flag is set to 1, the digitizer
component can mask to an arbitrary clipping region. If this flag is set to 0, the digitizer component
does not support clipping regions.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

2354 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

digiOutDoesDouble
The video digitizer component supports stretching to quadruple size when displaying the output
video. The parameters for the stretch operation are specified in the matrix structure for the request;
the component modifies the scaling attributes of the matrix (see the chapter "Movie Toolbox" in
Inside Macintosh: QuickTime for information about transformation matrices). If this flag is set to 1,
the digitizer component can stretch an image to exactly four times its original size, up to the maximum
size specified by the maxDestHeight and maxDestWidth fields in the digitizer information structure.
If this flag is set to 0, the digitizer component does not support stretching to quadruple size.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesQuad
The video digitizer component supports stretching an image to 16 times its original size when
displaying the output video. The parameters for the stretch operation are specified in the matrix
structure for the request; the component modifies the scaling attributes of the matrix (see the chapter
"Movie Toolbox" in Inside Macintosh: QuickTime for information about transformation matrices). If
this flag is set to 1, the digitizer component can stretch an image to exactly 16 times its original size,
up to the maximum size specified by the maxDestHeight and maxDestWidth fields in the digitizer
information structure. If this flag is set to 0, the digitizer component does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesQuarter
The video digitizer component can shrink an image to one-quarter of its original size when displaying
the output video. The parameters for the shrink operation are specified in the matrix structure for the
request; the component modifies the scaling attributes of the matrix (see the chapter "Movie Toolbox"
in Inside Macintosh: QuickTime for information about transformation matrices). If this flag is set to 1,
the digitizer component can shrink an image to exactly one-quarter of its original size, down to the
minimum size specified by the minDestHeight and minDestWidth fields in the digitizer information
structure. If this flag is set to 0, the digitizer component does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesSixteenth
The video digitizer component can shrink an image to 1/16 of its original size when displaying the
output video. The parameters for the shrink operation are specified in the matrix structure for the
request; the digitizer component modifies the scaling attributes of the matrix (see the chapter "Movie
Toolbox" in Inside Macintosh: QuickTime for information about transformation matrices). If this flag
is set to 1, the digitizer component can shrink an image to exactly 1/16 of its original size, down to
the minimum size specified by the minDestHeight and minDestWidth fields in the digitizer
information structure. If this flag is set to 0, the digitizer component does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesRotate
The video digitizer component can rotate an image when displaying the output video. The parameters
for the rotation are specified in the matrix structure for an operation. If this flag is set to 1, the digitizer
component can rotate the image. If this flag is set to 0, the digitizer component cannot rotate the
resulting image.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Constants 2355
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

digiOutDoesHorizFlip
The video digitizer component can flip an image horizontally when displaying the output video. The
parameters for the horizontal flip are specified in the matrix structure for an operation. If this flag is
set to 1, the digitizer component can flip the image. If this flag is set to 0, the digitizer component
cannot flip the resulting image.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesVertFlip
The video digitizer component can flip an image vertically when displaying the output video. The
parameters for the vertical flip are specified in the matrix structure for an operation. If this flag is set
to 1, the digitizer component can flip the image. If this flag is set to 0, the digitizer component cannot
flip the resulting image.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesSkew
The video digitizer component can skew an image when displaying the output video. Skewing an
image distorts it linearly along only a single axis; for example, drawing a rectangular image into a
parallelogram-shaped region. The parameters for the skew operation are specified in the matrix
structure for the request. If this flag is set to 1, the digitizer component can skew an image. If this flag
is set to 0, the digitizer component does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesBlend
The video digitizer component can blend the resulting image with a matte when displaying the output
video. The matte is provided by the application by defining either an alpha channel or a mask plane.
If this flag is set to 1, the digitizer component can blend. If this flag is set to 0, the digitizer component
does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesWarp
The video digitizer component can warp an image when displaying the output video. Warping an
image distorts it along one or more axes, perhaps nonlinearly, in effect "bending" the result region.
The parameters for the warp operation are specified in the matrix structure for the request. If this flag
is set to 1, the digitizer component can warp an image. If this flag is set to 0, the digitizer component
does not support this capability.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesHWPlayThru
The video digitizer component does not need idle time in order to display its video. If this flag is set
to 1, your application does not need to grant processor time to the digitizer component at normal
display speeds.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

2356 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

digiOutDoesILUT
The video digitizer component supports inverse lookup tables for indexed color modes. If this flag is
set to 1, the digitizer component uses inverse lookup tables when appropriate.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesKeyColor
The video digitizer component supports clipping by means of key colors. If this flag is set to 1, the
digitizer component can clip to a region defined by a key color.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesAsyncGrabs
The video digitizer component can operate asynchronously. If this flag is set to 1, your application
can use the VDSetupBuffers and VDGrabOneFrameAsync functions (described on page 0-669 and
page 0-671, respectively).

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesUnreadableScreenBits
The video digitizer may place pixels on the screen that cannot be used when compressing images.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesCompress
The video digitizer component supports compressed source devices. These devices provide compressed
data directly, without having to use the Image Compression Manager. See "Controlling Compressed
Source Devices" beginning on page 0-657 for more information about the functions that applications
can use to work with compressed source devices.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesCompressOnly
The video digitizer component only provides compressed image data; the component cannot provide
displayable data. This flag only applies to digitizers that support compressed source devices.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

digiOutDoesPlayThruDuringCompress
The video digitizer component can draw images on the screen at the same time that it is delivering
compressed image data. This flag only applies to digitizers that support compressed source devices.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

currentIn
Constants grouped with currentIn.

Constants 2357
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

enum {
 ntscIn = 0, /* current input format */
 currentIn = 0, /* ntsc input format */
 palIn = 1, /* pal input format */
 secamIn = 2, /* secam input format */
 ntscReallyIn = 3 /* ntsc input format */
};

Declared In
QuickTimeComponents.h

VDGetDeviceNameAndFlags Values
Constants passed to VDGetDeviceNameAndFlags.

enum {
 vdDeviceFlagShowInputsAsDevices = (1 << 0), /* Tell the Panel to promote Inputs
 to Devices*/
 vdDeviceFlagHideDevice = (1 << 1) /* Omit this Device entirely from the
list*/
};

Declared In
QuickTimeComponents.h

vdFlagCaptureAlwaysUseTimeBase
Constants grouped with vdFlagCaptureAlwaysUseTimeBase.

enum {
 vdFlagCaptureStarting = (1 << 0), /* Capture is about to start; allocate
 bandwidth */
 vdFlagCaptureStopping = (1 << 1), /* Capture is about to stop; stop
queuing frames*/
 vdFlagCaptureIsForPreview = (1 << 2), /* Capture is just to screen for preview
 purposes*/
 vdFlagCaptureIsForRecord = (1 << 3), /* Capture is going to be recorded*/
 vdFlagCaptureLowLatency = (1 << 4), /* Fresh frames are more important than
 delivering every frame - don't queue too much*/
 vdFlagCaptureAlwaysUseTimeBase = (1 << 5), /* Use the timebase for every frame;
 don't worry about making durations uniform*/
 vdFlagCaptureSetSettingsBegin = (1 << 6), /* A series of calls are about to be
made to restore settings.*/
 vdFlagCaptureSetSettingsEnd = (1 << 7) /* Finished restoring settings; any set
 calls after this are from the app or UI*/
};

Declared In
QuickTimeComponents.h

VDSetPlayThruOnOff Values
Constants passed to VDSetPlayThruOnOff.

2358 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

enum {
 vdPlayThruOff = 0,
 vdPlayThruOn = 1
};

Declared In
QuickTimeComponents.h

VdigType Values
Constants passed to VdigType.

enum {
 vdTypeBasic = 0, /* basic, no clipping */
 vdTypeAlpha = 1, /* supports clipping with alpha channel */
 vdTypeMask = 2, /* supports clipping with mask plane */
 vdTypeKey = 3 /* supports clipping with key color(s) */
};

Constants
vdTypeBasic

Basic video digitizer; does not support any clipping.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

vdTypeAlpha
Supports clipping by means of an alpha channel.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

vdTypeMask
Supports clipping by means of a mask plane.

Available in Mac OS X v10.0 and later.

Declared in QuickTimeComponents.h.

Declared In
QuickTimeComponents.h

VDSetFieldPreference Values
Constants passed to VDSetFieldPreference.

enum {
 vdUseAnyField = 0, /* Digitizers choice on field use */
 vdUseOddField = 1, /* Use odd field for half size vert and
smaller */
 vdUseEvenField = 2 /* Use even field for half size vert and
smaller */
};

Declared In
QuickTimeComponents.h

Constants 2359
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

2360 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Video Components Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in QTML.h

Overview

Apple provides a small set of utility functions that are used for developing QuickTime applications in the
Windows environment.

Functions

QTMLCreateMutex
Creates a synchronization object to facilitate mutually exclusive access to a Windows data structure.

QTMLMutex QTMLCreateMutex (
 void
);

Discussion
This function creates a mutex object for guarded access to data structures and routines that require mutually
exclusive access. In a multithreaded preemptive environment, such as Windows NT, you can use the various
mutex utility functions such as QTMLGrabMutex (page 2362) to protect a shared resource from simultaneous
access by multiple threads or processes. Mutex objects are used throughout QTML to provide such protection.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
audiocodec
audiocodec.win
QTCarbonCoreImage101
WhackedTV

Declared In
QTML.h

Overview 2361
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

QTMLDestroyMutex
Deallocates a synchronization object created by QTMLCreateMutex.

void QTMLDestroyMutex (
 QTMLMutex mu
);

Parameters
mu

A mutex object.

Discussion
Call this function to deallocate the mutex object created by QTMLCreateMutex (page 2361).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
audiocodec
audiocodec.win
WhackedTV

Declared In
QTML.h

QTMLGrabMutex
Confers ownership of a mutex created by QTMLCreateMutex.

void QTMLGrabMutex (
 QTMLMutex mu
);

Parameters
mu

A mutex object.

Discussion
Call this function when you require exclusive ownership of the resource guarded by a mutex. This function
will return when you have gained this ownership. In the case where another thread or process holds the
mutex, this function waits until that process or thread relinquishes control. If you need to determine if you
can grab the mutex, without actually grabbing it, call QTMLTryGrabMutex (page 2363).

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
audiocodec
audiocodec.win

2362 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

QTCarbonCoreImage101
WhackedTV

Declared In
QTML.h

QTMLReturnMutex
Releases ownership of a QTMLMutex object.

void QTMLReturnMutex (
 QTMLMutex mu
);

Parameters
mu

A mutex object.

Discussion
Call this function to balance a call to QTMLGrabMutex (page 2362) when you are ready to relinquish control
of the mutex and corresponding shared resource. By making this call, you allow other processes or threads
waiting for the release of this mutex to gain access.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
audiocodec
audiocodec.win
QTCarbonCoreImage101
WhackedTV

Declared In
QTML.h

QTMLTryGrabMutex
Determines if you would be able to get immediate ownership of a mutex created by QTMLCreateMutex.

Boolean QTMLTryGrabMutex (
 QTMLMutex mu
);

Parameters
mu

A mutex object.

Return Value
Returns TRUE if you are able to immediately grab the mutex, via the QTMLGrabMutex (page 2362) call, without
having to wait.

Functions 2363
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

Discussion
Call this function when you need to preflight a QTMLGrabMutex (page 2362) call.

Special Considerations

Under normal circumstances you should not need to make this call.

Version Notes
Introduced in QuickTime 4.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTML.h

QTMLYieldCPU
Yields time to other threads while your code is in a tight loop.

void QTMLYieldCPU (
 void
);

Discussion
Use this function from within tight loops to yield time to other threads. Using this function is similar to calling
SystemTask from within a Macintosh event loop.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTML.h

QTMLYieldCPUTime
Yields time to other threads and specifies the sleep time while in a tight loop.

void QTMLYieldCPUTime (
 long milliSeconds,
 unsigned long flags
);

Parameters
milliSeconds

Number of milliseconds to sleep before returning to the caller.

flags
A flag (see below) that specifies an option for this function. See these constants:

kQTMLHandlePortEvents

2364 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

Discussion
Use this function from within tight loops to yield time to other threads.

Special Considerations

This function differs from QTMLYieldCPU (page 2364) in that you can specify the time to sleep as well as
optionally have QTML process Win32 messages while waiting for the yield time to expire.

Version Notes
Introduced in QuickTime 3 or earlier.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTML.h

Callbacks

Data Types

QTMLMutex
Represents a type used by the Windows API API.

typedef long QTMLMutex;

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTML.h

Constants

QTMLYieldCPUTime Values
Constants passed to QTMLYieldCPUTime.

enum {
 kQTMLHandlePortEvents = (1L << 0) /* ask for event handling during the
yield*/
};

Declared In
QTML.h

Callbacks 2365
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

2366 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Windows API Reference for QuickTime

Framework: Frameworks/QuickTime.framework

Declared in QuickTime.h

Overview

This reference covers the API details of QuickTime atoms and public resource types.

Overview 2367
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

QuickTime Atoms and Resources Reference

2368 Overview
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

QuickTime Atoms and Resources Reference

Atoms

0x00000000 Terminates an audio atom list.

struct AudioTerminatorAtom {
 long size;
 OSType atomType;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant kAudioTerminatorAtomType.

Programming Info
C interface file: Sound.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000001 A sprite property matrix atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000001.

data

Discussion
The sprite matrix property, a structure of type MatrixRecord.

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000004 A sprite visible property atom.

Atoms 2369
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000004.

data

Discussion
The sprite visible property, of type short.

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000005 A sprite property layer atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000005.

data

Discussion
The sprite layer property, of type short.

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000006 A sprite graphics mode property atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000006.

data

Discussion
The sprite graphics mode property.

2370 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000064 A sprite image index atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000064.

data

Discussion
The sprite image index property, of type short.

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000065 A sprite background color property atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000065.

data

Discussion
The sprite background color property, a structure of type RGBColor.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000066 A sprite property offscreen bit depth atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000066.

Atoms 2371
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
The sprite offscreen bit depth property, of type short.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

0x00000067 A sprite property sample format atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
0x00000067.

data

Discussion
The sprite sample format property, of type short.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'AllF' User data list entry atom to play all frames.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
'AllF'.

data

Discussion
A byte indicating that all frames of video should be played, regardless of timing.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'beha' Defines sprite behavior.

2372 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'beha'.

Optional Child Atoms

'imag' (page 2400)
A sprite image atom.
'crsr' (page 2382)
Color custom cursor child atom.
'sstr' (page 2429)
Specifies the ID of a string variable, contained in a sprite track, to display in the status area of the browser.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'chap' Chapter or scene list track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTrackReferenceChapterList, designating atom type 'chap'.

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'clip' Defines a clipping region.

struct ClippingAtom {
 long size;
 long atomType;
 RgnAtom aRgnClip;
};

Fields
size

Discussion
The size in bytes of this atom structure.

Atoms 2373
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

atomType

Discussion
Constant ClipAID, designating atom type 'clip'.

aRgnClip

Discussion
A 'crgn' (page 2382) atom that defines the clipping region.

Discussion
You can treat this atom either as a declared structure or as a QT atom, which you can create it with
QTInsertChild (page 1446).

Programming Info
C interface file: MoviesFormat.h

See Also

For the atoms that may contain this atom, see 'moov' (page 2414) and 'trak' (page 2441). For general
information about atoms, see Inside QuickTime: QuickTime File Format.

'clon' Contains information about a track clone.

struct CloneAtom {
 long size;
 long atomType;
 CloneRecord cloneInfo;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Value is 'clon'.

cloneInfo

Discussion
A CloneRecord structure.

See Also

See the CloneRecord structure and AddClonedTrackToMovie (page 1534). For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'cmov' Contains a compressed movie.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameter:

Fields
atomType

Discussion
Constant CompressedMovieAID, designating atom type 'cmov'.

2374 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'moov' (page 2414)
Parent atom can contain only one atom of this type.

Required Child Atoms

'dcom' (page 2385)
Indicates the compression algorithm used to compress a movie. Only one allowed.
'cmvd' (page 2375)
Stores the data for a compressed movie. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'cmvd' Stores the data for a compressed movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant CompressedMovieDataAID, designating atom type 'cmvd'.

data

Discussion
An integer of type UInt32 that gives the length of the uncompressed movie in bytes, followed by the
compressed movie data.

Parent Atom

'cmov' (page 2374)
Parent atom can contain only one atom of this type.
'co64' A 64-bit version of the 'stco' (page 2431) atom.

For details, see 'stco' (page 2431).

Fields
atomType

Discussion
Constant STChunkOffset64AID, designating atom type 'co64'.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©cpy' User data list entry atom: copyright information.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

Atoms 2375
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

udType

Discussion
Constant kUserDataTextCopyright, designating atom type '©cpy'.

data

Discussion
A string containing copyright information.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©day' User data list entry atom: creation date.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextCreationDate, designating atom type '©day'.

data

Discussion
A string containing the creation date.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©dir' User data list entry atom: name of movie's director.

2376 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextDirector, designating atom type '©dir'.

data

Discussion
A string containing the name of the movie's director.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©ed1' User data list entry atom: edit date 1.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextEditDate1, designating atom type '©ed1'.

data

Discussion
A string containing the first edit date.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Discussion
Similar atoms of types '©ed2' through '©ed9' may contain other edit date strings.

Atoms 2377
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©fmt' User data list entry atom: indication of movie's format.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextOriginalFormat, designating atom type '©fmt'.

data

Discussion
A string indicating the movie's format.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©inf' User data list entry atom: information about the movie.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextInformation, designating atom type '©inf'.

2378 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A string containing information about the movie.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©prd' User data list entry atom: name of movie's producer.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextProducer, designating atom type '©prd'.

data

Discussion
A string containing the name of the movie's producer.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©prf' User data list entry atom: names of performers.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

Atoms 2379
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

udType

Discussion
Constant kUserDataTextPerformers, designating atom type '©prf'.

data

Discussion
A string containing names of the performers.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©req' User data list entry atom: special hardware or software requirements.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextSpecialPlaybackRequirements, designating atom type '©req'.

data

Discussion
A string detailing special hardware or software requirements.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©src' User data list entry atom: credits for those who provided movie source content.

2380 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextOriginalSource, designating atom type '©src'.

data

Discussion
A string containing credits for those who provided movie source content.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'©wrt' User data list entry atom: name of movie's writer.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataTextWriter, designating atom type '©wrt'.

data

Discussion
A string containing the name of the movie's writer.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

Atoms 2381
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'crgn' Defines a clipping region.

struct RgnAtom {
 long size;
 long atomType;
 short rgnSize;
 Rect rgnBBox;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant RgnClipAID, designating atom type 'crgn'.

rgnSize

Discussion
The size in bytes of the region.

rgnBBox

Discussion
The bounding box for the region.

data

Discussion
Additional data if the clipping region is not rectangular.

Parent Atom

'clip' (page 2373)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'crsr' Color custom cursor child atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteCursorBehaviorAtomType, designating atom type 'crsr'.

2382 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A cursor description.

Parent Atom

'vrcp' (page 2450)
Parent atom can contain multiple atoms of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'cspd' Contains the connection speed currently set in the QuickTime preferences.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ConnectionSpeedPrefsType, designating atom type 'cspd'.

data

Discussion
The connection speed.

See Also

See the GetQuickTimePreference (page 1368) and SetQuickTimePreference (page 1491) functions. For
general information about atoms, see Inside QuickTime: QuickTime File Format.

'ctab' Color table atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ColorTableAID, designating atom type 'ctab'.

data

Discussion
A color table.

Parent Atom

'moov' (page 2414)
Parent atom can contain only one atom of this type.

Discussion
Color table atoms define a list of preferred colors for displaying the movie on devices that support only 256
colors. The list may contain up to 256 colors.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'cufa' Non-standard cubic QTVR panorama data atom.

Atoms 2383
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'cufa'.

data

Discussion
A QTVRCubicFaceData structure.

Discussion
Each entry in the QTVRCubicFaceData structure describes one face of the polyhedron being described.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'CURS' Custom cursor child atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRCursorAtomType, designating atom type 'CURS'.

data

Discussion
A cursor description.

Parent Atom

'vrcp' (page 2450)
Parent atom can contain multiple atoms of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'cuvw' Cubic view atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'cuvw'.

data

Discussion
A QTVRCubicViewAtom structure.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

2384 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'dasz' Data size atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTTargetDataSize, designating atom type 'dasz'.

data

Discussion
A QTTargetDataSize structure.

Parent Atom

'vide' (page 2448)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dcom' Indicates the compression algorithm used to compress a movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant DataCompressionAtomAID, designating atom type 'dcom'.

data

Discussion
A 32-bit constant (see below) that indicates which lossless algorithm was used to compress the movie
contained in the parent atom.

Data Constants

AppleDataCompressorSubType
The Apple data compressor; value is 'adec'.
zlibDataCompressorSubType
The zlib data compressor; value is 'zlib'.

Parent Atom

'cmov' (page 2374)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'defi' A sprite image data reference atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Atoms 2385
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Fields
atomType

Discussion
Constant kSpriteImageDefaultImageIndexAtomType, designating atom type 'defi'.

data

Discussion
The image index of a traditional image, of type short, to use while waiting for the referenced image to load.

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

Discussion
You use the this atom type to specify that an image is referenced and how to access it. Its ID should be 1.

Version Notes
Added to QuickTime 4.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'desc' Graphics export description atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kCustomHandlerDesc, designating atom type 'desc'.

data

Discussion
A nonterminated string containing a human-readable format name.

Parent Atom

'expo' (page 2392)
Parent atom can contain only one atom of this type.

See Also

See the GraphicsExportGetMIMETypeList (page 995) and
GraphicsImportGetExportImageTypeList (page 1047) functions. For general information about atoms,
see Inside QuickTime: QuickTime File Format.

'dflt' Key frame shared-data atom.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameter:

Fields
atomType

Discussion
Constant kSpriteSharedDataAtomType, designating atom type 'dflt'.

2386 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'imct' (page 2401)
Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dimm' Number of bytes of immediate data to be sent.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'dimm'.

data

Discussion
8-byte value.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dinf' Specifies where media data is stored.

struct DataInfoAtom {
 long size;
 long atomType;
 DataRefAtom dataRef;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant DataInfoAID, designating atom type 'dinf'.

dataRef

Discussion
A value that contains the data for this atom. The 4-byte DataRefAtom data type is private and is not
documented.

Optional Child Atoms

'dref' (page 2388)
Only one allowed.

Programming Info
C interface file: MoviesFormat.h

Atoms 2387
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dmax' The largest packet duration.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'dmax'.

data

Discussion
4 bytes packet duration, in milliseconds.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dmed' Number of bytes from the media track to be sent.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'dmed'.

data

Discussion
8-byte value.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'dref' Data reference atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant DataRefAID, designating atom type 'dref'.

2388 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
Data references.

Parent Atom

'dinf' (page 2387)
Parent atom can contain only one atom of this type.

See Also

See the AliasRecord structure. For general information about atoms, see Inside QuickTime: QuickTime File
Format.

'drep' Number of bytes of repeated data to be sent.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'drep'.

data

Discussion
8-byte value.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'edts' Contains an atom that defines an edit list.

struct EditsAtom {
 long size;
 long atomType;
 EditListAtom editList;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant EditsAID, designating atom type 'edts'.

editList

Discussion
An 'elst' (page 2390) atom.

Atoms 2389
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'trak' (page 2441)
Parent atom can contain only one atom of this type.

Required Child Atoms

'elst' (page 2390)
Only one allowed.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'elst' Contains a list of edit segment definitions for a media.

struct EditListAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 EditListType editListTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant EditListAID, designating atom type 'elst'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flag bytes are not currently used.

numEntries

Discussion
The number of entries in editListTable.

editListTable

Discussion
An array of EditListType data structures, each of which locates and defines an edit segment within a
media.

Parent Atom

'edts' (page 2389)
Parent atom can contain only one atom of this type.

Discussion
You can use the edit list atom to tell QuickTime how to map from a time in a movie to a time in a media, and
ultimately to each segment of the media's data.

Programming Info
C interface file: MoviesFormat.h

2390 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'end ' Defines the ending offset of hypertext in a text stream.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'end ' (the fourth character is a space).

data

Discussion
The ending offset of hypertext in a text stream.

Parent Atom

'htxt' (page 2399)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'enda' Determines the endian status of the sound component that interprets data contained in an audio
atom list.

struct AudioEndianAtom {
 long size;
 OSType atomType;
 short littleEndian;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant kAudioEndianAtomType, designating atom type 'enda'.

littleEndian

Discussion
Set this field to TRUE if the audio component is to operate on little-endian data, and FALSE otherwise.

Programming Info
C interface file: Sound.h

See Also

To choose the sound component for an audio atom list, see the 'frma' (page 2393) atom. For general
information about atoms, see Inside QuickTime: QuickTime File Format.

'expo' Defines a graphics export group.

Atoms 2391
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it with QTInsertChild (page 1446), using the following
parameters:

Fields
atomType

Discussion
Constant kGraphicsExportGroup, designating atom type 'expo'.

Required Child Atoms

'ftyp' (page 2394)
An OSType representing the exported file type.
'ext ' (page 2392)
A nonterminated string containing the suggested file extension for this format.
'desc' (page 2386)
A nonterminated string containing a human-readable name for this format.

Optional Child Atoms

'mime'[atom] (page 2410)
A nonterminated string containing the MIME type for this format.

See Also

See the GraphicsImportGetExportImageTypeList (page 1047) function. For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'ext ' Defines a graphics export extension.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kGraphicsExportExtension, designating atom type 'ext ' (the fourth character is a space).

data

Discussion
A nonterminated string containing a file extension.

Parent Atom

'expo' (page 2392)
Parent atom can contain only one atom of this type.

See Also

See the GraphicsImportGetExportImageTypeList (page 1047) function. For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'flap' Extension to the SoundDescription structure.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant siSlopeAndIntercept, designating atom type 'flap'; see Sound Information Selectors.

2392 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A SoundSlopeAndInterceptRecord structure.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'flov' Contains a floating-point variable for a sprite.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'flov'.

Parent Atom

'vars' (page 2448)
Contains variables for a sprite.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'free' Provides unused space in a movie file.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant FreeAtomType, designating atom type 'free'.

data

Discussion
Any number of bytes of free space.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'frma' Specifies which sound component is responsible for the atoms contained in an audio atom list.

struct AudioFormatAtom {
 long size;
 OSType atomType;
 OSType format;
};

Fields
size

Discussion
The size in bytes of this atom structure.

Atoms 2393
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

atomType

Discussion
Constant kAudioFormatAtomType, designating atom type 'frma'.

format

Discussion
A constant that identifies a sound component. See Codec Identifiers.

Programming Info
C interface file: Sound.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'ftyp' Defines a graphics export file type.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kGraphicsExportFileType, designating atom type 'ftyp'.

data

Discussion
An OSType representing the exported file type.

Parent Atom

'expo' (page 2392)
Parent atom can contain only one atom of this type.

See Also

See the GraphicsImportGetExportImageTypeList (page 1047) function. For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'gmhd' Contains a generic media information atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant GenericMediaInfoHeaderAID, designating atom type 'gmhd'.

Parent Atom

'minf'[generic] (page 2411)
Parent atom can contain only one atom of this type.

Required Child Atoms

'gmin' (page 2395)
Provides data that is specific to a handler for media other than video or sound. Only one allowed.

Discussion
This atom is currently used only as a container for a 'gmin' (page 2395) atom.

2394 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'gmin' Provides data that is specific to a handler for media other than video or sound.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant GenericMediaInfoAID, designating atom type 'gmin'.

data

Discussion
Data required by the media handler that is designated by the 'hdlr' (page 2395) atom contained in the
'minf'[generic] (page 2411) atom that also contains the parent of this atom.

Parent Atom

'gmhd' (page 2394)
Parent atom can contain any number of atoms of this type.

Discussion
This atom contains handler-specific information to support your use of a 'minf'[generic] (page 2411) atom.
Note that the data in this atom is not used by RTP servers.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hdlr' Specifies the component that is to interpret a media's data.

struct HandlerAtom {
 long size;
 long atomType;
 PublicHandlerInfo hInfo;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant HandlerAID, designating atom type 'hdlr'.

hInfo

Discussion
A PublicHandlerInfo structure, which contains the actual data for this atom.

Discussion
RTP servers ignore this atom's data when it is contained in a 'minf'[generic] (page 2411) atom.

Programming Info
C interface file: MoviesFormat.h

Atoms 2395
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For the atoms that may contain this atom, see 'mdia' (page 2409), 'minf'[generic] (page 2411),
'minf'[sound] (page 2412), and'minf'[video] (page 2413). For general information about atoms, see Inside
QuickTime: QuickTime File Format.

'hinf' Contains statistics for the hint track.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'hinf'.

Required Child Atoms

'trpy' (page 2443)
Total number of bytes that will be sent, including 12-byte RTP headers but not including network headers.
Only one allowed.
'nump' (page 2417)
Total number of network packets that will be sent. Only one allowed.
'tpyl' (page 2440)
Total number of bytes that will be sent, not including 12-byte RTP headers. Only one allowed.
'maxr' (page 2408)
Maximum data rate. Only one allowed.
'dmed' (page 2388)
Number of bytes from the media track to be sent. Only one allowed.
'dimm' (page 2387)
Number of bytes of immediate data to be sent. Only one allowed.
'drep' (page 2389)
Number of bytes of repeated data to be sent. Only one allowed.
'tmin' (page 2440)
Smallest relative transmission time, in milliseconds. Only one allowed.
'tmax' (page 2439)
Largest relative transmission time, in milliseconds. Only one allowed.
'pmax' (page 2419)
Largest packet, in bytes, including 12-byte RTP header. Only one allowed.
'dmax' (page 2388)
The largest packet duration. Only one allowed.
'payt' (page 2418)
Payload type. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hint' Hint track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'hint'.

2396 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hlit' Defines the highlighted portion in text.

struct HiliteAtom {
 long size;
 long atomType;
 long selStart;
 long selEnd;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Value is 'hlit'.

selStart

Discussion
Character number of highlighted selection start character.

selEnd

Discussion
Character number of highlighted selection end character.

Discussion
For general information about atoms, see Inside QuickTime: QuickTime File Format.

Programming Info
C interface file: MoviesFormat.h

'hnti' Hint track user data atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'hnti'.

Atoms 2397
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'sdp ' (page 2426)
SDP text for a hint track. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hots' A QTVR hot spot.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kQTVRHotSpotAtomType, designating atom type 'hots'.

Parent Atom

'hspa' (page 2398)
Parent atom can contain any number of atoms of this type.

Required Child Atoms

'hsin' (page 2398)
Contains general hot spot information. Only one allowed.
'link' (page 2406)
Specific information about a link hot spot. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hsin' Contains general hot spot information.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRHotSpotInfoAtomType, designating atom type 'hsin'.

data

Discussion
Hot spot information.

Parent Atom

'hots' (page 2398)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'hspa' Hot spot parent atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

2398 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Fields
atomType

Discussion
Constant kQTVRHotSpotParentAtomType, designating atom type 'hspa'.

Parent Atom

'vrnp' (page 2450)
Parent atom can contain only one atom of this type.

Required Child Atoms

'hots' (page 2398)
A QTVR hot spot. Any number allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'htxt' Hypertext in a text stream.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'htxt'.

Parent Atom

'wtxt' (page 2453)
Parent atom can contain multiple atoms of this type.

Required Child Atoms

'strt' (page 2432)
Defines the starting offset of hypertext in a text stream. Only one allowed.
'end ' (page 2391)
Defines the ending offset of hypertext in a text stream. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'idat' Image data atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant quickTimeImageFileImageDataAtom, designating atom type 'idat'.

data

Discussion
The image data.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

Atoms 2399
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'idsc' Image description atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant quickTimeImageFileImageDescriptionAtom, designating atom type 'idsc'.

data

Discussion
The image description.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'iicc' ColorSync profile atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant quickTimeImageFileColorSyncProfileAtom, designating atom type 'iicc'.

data

Discussion
A ColorSync profile.

Version Notes
This is a new optional atom in QuickTime 4.

See Also

See theGraphicsExportSetColorSyncProfile (page 1006) function. For general information about atoms,
see Inside QuickTime: QuickTime File Format.

'imag' A sprite image atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kSpriteImageAtomType, designating atom type 'imag'.

Parent Atom

'imct' (page 2401)
Parent atom can contain any number of atoms of this type.

Required Child Atoms

'imda' (page 2401)
Contains sprite image data. Only one allowed.

2400 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Optional Child Atoms

'name'[sprite] (page 2416)
A sprite name atom. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imap' An input map.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant InputMapAID, designating atom type 'imap'.

Parent Atom

'trak' (page 2441)
Parent atom can contain only one atom of this type.

Required Child Atoms

' in' (page 2405)
Track input atom. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imct' A sprite image container atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kSpriteImagesContainerAtomType, designating atom type 'imct'.

Parent Atom

'dflt' (page 2386)
Parent atom can contain only one atom of this type.

Required Child Atoms

'imag' (page 2400)
Sprite image atom. Any number allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imda' A sprite image data.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteImageDataAtomType, designating atom type 'imda'.

Atoms 2401
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
Image data.

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imgp' Panorama imaging parent atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kQTVRImagingParentAtomType, designating atom type 'imgp'.

Required Child Atoms

'impn' (page 2403)
Panorama imaging atom. Any number allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imgr' A sprite image group ID atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteImageGroupIDAtomType, designating atom type 'imgr'.

data

Discussion
The group ID, of type long.

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

Discussion
Each image in a sprite media key frame sample is assigned to a group. Add an atom of this type as a child of
the 'imag' (page 2400) atom and set its leaf data to a long containing the group ID. For example, if the sample
contains ten images where the first two images are equivalent, and the last eight images are equivalent,
then you could assign a group ID of 1000 to the first two images, and a group ID of 1001 to the last eight
images. This divides the images in the sample into two sets. The actual ID does not matter, it just needs to
be a unique positive integer. Note that you must assign group IDs to your sprite sample if you want a sprite
to display images with non-equivalent image descriptions (i.e., images with different dimensions).

2402 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Special Considerations

Although QuickTime does not currently use this atom internally, tools that edit sprite media can use the
information provided to optimize certain operations, such as cut, copy, and paste.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'impn' Panorama imaging atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRPanoImagingAtomType, designating atom type 'impn'.

data

Discussion
A QTVRPanoImagingAtom structure.

Parent Atom

'imgp' (page 2402)
Parent atom can contain any number of atoms of this type.

Discussion
A QTVRPanoImagingAtom describes the default imaging characteristics for all the panoramic nodes in a
scene. This atom overrides QuickTime VR's own defaults.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imre' A sprite image data reference atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteImageDataRefAtomType, designating atom type 'imre'.

data

Discussion
The data reference, which is similar to the dataRef parameter of GetDataHandler (page 1569).

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

Discussion
You use the this atom type to specify that an image is referenced and how to access it. Add this atom as a
child of the 'imag' (page 2400) atom instead of an 'imda' (page 2401) atom. Its ID should be 1.

Version Notes
Added in QuickTime 4.

Atoms 2403
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

See the GetDataHandler (page 1569) function. For general information about atoms, see Inside QuickTime:
QuickTime File Format.

'imrg' Custom sprite image registration point atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteImageRegistrationAtomType, designating atom type 'imrg'.

data

Discussion
The desired sprite registration point, a FixedPoint structure.

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

Discussion
Sprite images have a default registration point of 0, 0. To specify a different point, add an atom of this type
as a child atom of the 'imag' (page 2400) and set its leaf data to a FixedPoint value with the desired
registration point.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'imrt' A sprite image data reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteImageDataRefTypeAtomType, designating atom type 'imrt'.

data

Discussion
The data reference type, which is similar to the dataRefType parameter of GetDataHandler (page 1569).

Parent Atom

'imag' (page 2400)
Parent atom can contain only one atom of this type.

Discussion
You use the this atom type to specify that an image is referenced and how to access it. Add this atom as a
child of the 'imag' (page 2400) atom. Its ID should be 1.

Version Notes
Added in QuickTime 4.

2404 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

See the GetDataHandler (page 1569) function. For general information about atoms, see Inside QuickTime:
QuickTime File Format.

' in' Track input atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value ' in'; the first two characters are spaces.

Parent Atom

'imap' (page 2401)
Parent atom can contain only one atom of this type.

Required Child Atoms

' ty' (page 2445)
Input atom type. Only one allowed.

Optional Child Atoms

'obid' (page 2418)
Object ID atom. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'kmat' Defines a matte for a track's compressed media.

struct MatteCompressedAtom {
 long size;
 long atomType;
 long flags;
 ImageDescription matteImageDescription;
 char matteData[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MatteCompAID, designating atom type 'kmat'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

matteImageDescription

Discussion
An ImageDescription data structure for the matte.

Atoms 2405
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

matteData

Discussion
An array of matte data.

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see the 'matt' (page 2407) atom. For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'link' Contains specific information about a link hot spot.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRLinkInfoAtomType, designating atom type 'link'.

data

Discussion
Link hot spot information.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'load' Contains preloading information for a track.

struct TrackLoadSettingsAtom {
 long size;
 long atomType;
 TrackLoadSettings settings;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant LoadSettingsAID, designating atom type 'load'.

settings

Discussion
A TrackLoadSettings data structure, which contains the actual data for this atom.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'LOOP' User data list entry atom: looping style.

2406 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Value is 'LOOP'.

data

Discussion
A long integer, indicating looping style: 0 for normal looping, 1 for palindromic looping.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Discussion
This atom is present only if the movie is set to loop.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MoviesUserData structure. For general information about atoms, see Inside QuickTime: QuickTime
File Format.

'matt' Defines a matte for a track's media.

struct MatteAtom {
 long size;
 long atomType;
 MatteCompressedAtom aCompressedMatte;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MatteAID, designating atom type 'matt'.

aCompressedMatte

Discussion
A 'kmat' (page 2405) atom.

Atoms 2407
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'kmat' (page 2405)
Only one allowed.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'maxr' Maximum data rate.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'maxr'.

data

Discussion
8 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'mdat' Media data atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant MovieDataAtomType, designating atom type 'mdat'.

data

Discussion
Media data.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'mdhd' Specifies the characteristics of a media.

2408 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct MediaHeaderAtom {
 long size;
 long atomType;
 MediaHeader header;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaHeaderAID, designating atom type 'mdhd'.

header

Discussion
A MediaHeader data structure, which contains the actual data for this atom.

Parent Atom

'mdia' (page 2409)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'mdia' Defines the media for a movie track.

struct MediaDirectory {
 long size;
 long atomType;
 MediaHeaderAtom mediaHeader;
 HandlerAtom mediaHandler;
 MediaInfo mediaInfo;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaAID, designating atom type 'mdia'.

mediaHeader

Discussion
A 'mdhd' (page 2409) atom that specifies general characteristics of the media.

mediaHandler

Discussion
A 'hdlr' (page 2395) atom that defines a handler for the media.

Atoms 2409
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

mediaInfo

Discussion
A 'minf'[generic] (page 2411) atom structure that contains data to be passed to the media handler.

Parent Atom

'trak' (page 2441)
Parent atom can contain only one atom of this type.

Required Child Atoms

'mdhd' (page 2409)
General characteristics of the media. Only one allowed.

Optional Child Atoms

'hdlr' (page 2395)
The type of media this atom contains. Only one allowed.
'minf'[generic] (page 2411)
Data that is specific to a media handler. Only one allowed.
'udta' (page 2446)
User data atom. Only one allowed.

Discussion
The 'hdlr' atom specifies what type of media this atom contains; for example, video or sound. The content
of the 'minf'[generic] atom is specific to the media handler that is to interpret the media.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MediaHeader structure. For general information about atoms, see Inside QuickTime: QuickTime File
Format.

'mime'[atom] Defines a graphics export MIME type.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kGraphicsExportMIMEType, designating atom type 'mime'.

data

Discussion
A nonterminated string containing a MIME type.

Parent Atom

'expo' (page 2392)
Parent atom can contain only one atom of this type.

See Also

See theGraphicsImportGetExportImageTypeList (page 1047),GraphicsImportGetMIMETypeList (page
1055), and GraphicsExportGetMIMETypeList (page 995) functions. For general information about atoms,
see Inside QuickTime: QuickTime File Format.

'minf'[base] Provides data that is specific to a handler for media other than video or sound.

2410 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct MediaInfo {
 long size;
 long atomType;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaInfoAID, designating atom type 'minf'.

Parent Atom

'mdia' (page 2409)
Parent atom can contain only one atom of this type.

Required Child Atoms

'gmhd' (page 2394)
Generic media information atom. Only one allowed.
'gmin' (page 2395)
Provides data that is specific to a handler for media other than video or sound. Only one allowed.

Discussion
Media information atoms store handler-specific information for the media data that constitutes a track. The
media handler uses this information to map from media time to media data. The format and content of media
information atoms are dictated by the media handler that is responsible for interpreting the media data
stream. Another media handler would not know how to interpret this information.

Programming Info
C interface file: MoviesFormat.h

See Also

This isotope of the 'minf' atom provides data that is specific to a handler for media other than video or
sound. Handler-specific data for sound and video are provided by the 'minf'[sound] (page 2412) atom and
the 'minf'[video] (page 2413) atom. For general information about atoms, see InsideQuickTime:QuickTime
File Format.

'minf'[generic] Provides data that is specific to a handler for media other than video or sound.

struct MediaInfo {
 long size;
 long atomType;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaInfoAID, designating atom type 'minf'.

Atoms 2411
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'mdia' (page 2409)
Parent atom can contain only one atom of this type.

Required Child Atoms

'gmhd' (page 2394)
Generic media information atom. Only one allowed.
'hdlr' (page 2395)
The type of media this atom contains. Only one allowed.

Optional Child Atoms

'dinf' (page 2387)
Specifies where media data is stored. Only one allowed.
'stbl' (page 2430)
Contains information for converting from media time to sample number to sample location and indicates
how to interpret samples and chunks. Only one allowed.

Discussion
Media information atoms store handler-specific information for the media data that constitutes a track. The
media handler uses this information to map from media time to media data. The format and content of media
information atoms are dictated by the media handler that is responsible for interpreting the media data
stream. Another media handler would not know how to interpret this information.

Programming Info
C interface file: MoviesFormat.h

See Also

This isotope of the 'minf' atom provides data that is specific to a handler for media other than video or
sound. Handler-specific data for sound and video are provided by the 'minf'[sound] (page 2412) atom and
the 'minf'[video] (page 2413) atom. For general information about atoms, see InsideQuickTime:QuickTime
File Format.

'minf'[sound] Sound media information atom.

struct MediaInfo {
 long size;
 long atomType;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaInfoAID, designating atom type 'minf'.

Parent Atom

'mdia' (page 2409)
Parent atom can contain only one atom of this type.

Required Child Atoms

'smhd' (page 2427)
Contains sound stereo balance information. Only one allowed.

2412 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'hdlr' (page 2395)
The type of media this atom contains. Only one allowed.

Optional Child Atoms

'dinf' (page 2387)
Specifies where media data is stored. Only one allowed.
'stbl' (page 2430)
Contains information for converting from media time to sample number to sample location and indicates
how to interpret samples and chunks. Only one allowed.

Discussion
Media information atoms store handler-specific information for the media data that constitutes a track. The
media handler uses this information to map from media time to media data. The format and content of media
information atoms are dictated by the media handler that is responsible for interpreting the media data
stream. Another media handler would not know how to interpret this information.

Programming Info
C interface file: MoviesFormat.h

See Also

This isotope of the 'minf' atom provides handler-specific data for sound. Handler-specific data for video is
provided by the the 'minf'[video] (page 2413) atom. For general information about atoms, see Inside
QuickTime: QuickTime File Format.

'minf'[video] Video media information atom.

struct MediaInfo {
 long size;
 long atomType;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MediaInfoAID, designating atom type 'minf'.

Parent Atom

'mdia' (page 2409)
Parent atom can contain only one atom of this type.

Required Child Atoms

'vmhd'[media] (page 2448)
Stores handler-specific information for video media in a track. Only one allowed.
'hdlr' (page 2395)
The type of media this atom contains. Only one allowed.

Optional Child Atoms

'dinf' (page 2387)
Specifies where media data is stored. Only one allowed.
'stbl' (page 2430)
Contains information for converting from media time to sample number to sample location and indicates
how to interpret samples and chunks. Only one allowed.

Atoms 2413
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Discussion
Media information atoms store handler-specific information for the media data that constitutes a track. The
media handler uses this information to map from media time to media data. The format and content of media
information atoms are dictated by the media handler that is responsible for interpreting the media data
stream. Another media handler would not know how to interpret this information.

Programming Info
C interface file: MoviesFormat.h

See Also

This isotope of the 'minf' atom provides handler-specific data for video. Handler-specific data for sound is
provided by the 'minf'[sound] (page 2412) atom. For general information about atoms, see InsideQuickTime:
QuickTime File Format.

'moov' Contains the top-level atoms that constitute a movie.

struct MovieDirectory {
 long size;
 long atomType;
 MovieHeaderAtom header;
 ClippingAtom movieClip;
 TrackDirectoryEntry track[1];
 UserDataAtom userData;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MovieAID, designating atom type 'moov'.

header

Discussion
A 'mvhd' (page 2415) atom that specifies the general characteristics of the movie.

movieClip

Discussion
A 'clip' (page 2373) atom that defines the clipping region for the movie.

track

Discussion
An array of one or more TrackDirectoryEntry data structures, each of which includes a 'trak' (page
2441) atom that defines a track in the movie.

userData

Discussion
A 'udta' (page 2446) atom, which contains user data.

Required Child Atoms

'mvhd' (page 2415)
Specifies the general characteristics of a movie. Only one allowed.

2414 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Optional Child Atoms

'clip' (page 2373)
Defines the clipping region for the movie. Only one allowed.
'trak' (page 2441)
Defines a single track of the movie. Any number allowed.
'udta' (page 2446)
User data atom. Only one allowed.
'ctab' (page 2383)
Color table atom. Only one allowed.
'ptv ' (page 2419)
Defines a movie's full screen mode.

Discussion
You use movie atoms to specify the information that defines a movie; that is, the information that allows
your application to understand the data that is stored in the movie data atom. The movie atom contains the
movie header atom, which defines the time scale and duration information for the entire movie, as well as
its display characteristics. In addition, the movie atom contains each track in the movie.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MovieHeader structure. For general information about atoms, see Inside QuickTime: QuickTime File
Format.

'mvhd' Specifies the characteristics of an entire movie.

struct MovieHeaderAtom {
 long size;
 long atomType;
 MovieHeader header;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant MovieHeaderAID, designating atom type 'mvhd'.

header

Discussion
A MovieHeader data structure, which contains the actual data for this atom.

Parent Atom

'moov' (page 2414)
Parent atom can contain only one atom of this type.

Discussion
You use the movie header atom to specify the characteristics of an entire QuickTime movie. The data contained
in this atom defines characteristics of the entire QuickTime movie, such as time scale and duration.

Programming Info
C interface file: MoviesFormat.h

Atoms 2415
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'name'[sprite] A sprite name atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteNameAtomType, designating atom type 'name'.

data

Discussion
One or more ASCII characters comprising the sprite's name.

Parent Atom

'sprt' (page 2428)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'name'[userdata] User data list entry atom: name of object.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant kUserDataName, designating atom type 'name'.

data

Discussion
A name string.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MoviesUserData structure. For general information about atoms, see Inside QuickTime: QuickTime
File Format.

2416 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'ndhd' Node header atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRNodeHeaderAtomType, designating atom type 'ndhd'.

data

Discussion
Node header information.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'nloc' QTVR node location atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRNodeLocationAtomType, designating atom type 'nloc'.

data

Discussion
Node location.

Parent Atom

'vrni' (page 2450)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'nump' Total number of network packets that will be sent.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'nump'.

data

Discussion
8 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

Atoms 2417
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'obid' Object ID atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTrackModifierObjectID, designating atom type 'obid'.

data

Discussion
The object ID.

Parent Atom

' in' (page 2405)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'payt' Payload type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'payt'.

data

Discussion
Payload type, which includes payload number (32-bits) followed by an RTP map payload string (a Pascal
string).

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'pdat' Panorama sample atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRPanoSampleDataAtomType, designating atom type 'pdat'.

2418 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A panorama sample.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'pmax' Largest packet, in bytes; includes 12-byte RTP header.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'pmax'.

data

Discussion
4 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'pnot' Reference to movie preview data.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ShowFilePreviewComponentType, designating atom type 'pnot'.

data

Discussion
Reference to a movie preview.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'ptv ' Defines a movie's full screen mode.

This is a classic atom; you can access its information by calculating offsets.

Fields
size

Discussion
Value is 0x0000000C.

Atoms 2419
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

atomType

Discussion
Value is 'ptv '.

Parent Atom

'moov' (page 2414)
Contains the top-level atoms that constitute a movie.

Data offsets

0x0000
Display size: a 16-bit big-endian integer (see below) indicating the display size for the movie.
0x0002
Reserved: set to 0.
0x0004
Reserved: set to 0.
0x0006
Slide show: an 8-bit Boolean whose value is 1 for a slide show. In slide show mode, the movie advances one
frame each time the right-arrow key is pressed. Audio is muted.
0x0007
Play on open: an 8-bit boolean whose value is normally 1, indicating that the movie should play when opened.
Since there is no visible controller in full-screen mode, applications should always set this field to 1 to prevent
user confusion.

Display size constants

0x00000
The movie should be played at its normal size.
0x0001
The movie should be played at double size.
0x0002
The movie should be played at half size.
0x0003
The movie should be scaled to fill the screen.
0x0004
The movie should be played at its current size. This value is normally used when the 'ptv ' atom is inserted
transiently and the movie has been temporarily resized.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'qdrg' QuickDraw region atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTweenRegionData, designating atom type 'qdrg'.

data

Discussion
Two Rect structures and a MacRegion structure.

Discussion
This atom's ID must be 1.

2420 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

See the TweenerInitialize (page 550) function. For general information about atoms, see InsideQuickTime:
QuickTime File Format.

'rdrf' Provides a reference to an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieDataRefAID, designating atom type 'rdrf'.

data

Discussion
A ReferenceMovieDataRefRecord data structure. The alternate movie referenced by this structure is the
movie associated with the parent 'rmda' (page 2422) atom.

Parent Atom

'rmda' (page 2422)
Parent atom can contain only one atom of this type.

Discussion
Alias data references are the contents of AliasRecord structures. The QuickTime plug-in is smart enough
to convert a relative alias to a relative URL. To designate the anchor file for a relative alias, pass the FSSpec
structure that specifies the file you are creating. You can pass absolute or relative URLs; if the movie is loaded
from the desktop, QuickTime will convert a relative URL into a relative alias.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'reso' Pixmap resolution atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTResolutionSettings, designating atom type 'reso'.

data

Discussion
A QTResolutionSettings structure.

Parent Atom

'vide' (page 2448)
Parent atom can contain only one atom of this type.

Discussion
This atom specifies the resolution for the PixMap structure passed to the compressor.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

Atoms 2421
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'rmcd' Provides component availability information for selecting an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieComponentCheckAID, designating atom type 'rmcd'.

data

Discussion
A QTAltComponentCheckRecord data structure.

Parent Atom

'rmda' (page 2422)
Parent atom can contain any number of atoms of this type.

See Also

See the QTAltComponentCheckRecord structure. For general information about atoms, see InsideQuickTime:
QuickTime File Format.

'rmcs' Provides CPU speed information for selecting an alternate movie.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieCPURatingAID, designating atom type 'rmcs'.

data

Discussion
A QTAltCPURatingRecord data structure.

Parent Atom

'rmda' (page 2422)
Parent atom can contain only one atom of this type.

See Also

See the QTAltCPURatingRecord structure. For general information about atoms, see Inside QuickTime:
QuickTime File Format.

'rmda' Provides criteria for selecting an alternate movie.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameter:

Fields
atomType

Discussion
Constant ReferenceMovieDescriptorAID, designating atom type 'rmda'.

2422 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'rmra' (page 2424)
Parent atom can contain only one atom of this type.

Required Child Atoms

'rdrf' (page 2421)
A reference to an alternate movie. Only one allowed.

Optional Child Atoms

'rmdr' (page 2423)
Data rate information for selecting an alternate movie. Only one allowed.
'rmvc' (page 2425)
Version criteria for selecting an alternate movie. Multiples allowed.
'rmcd' (page 2422)
Component availability information for selecting an alternate movie. Multiples allowed.
'rmqu' (page 2424)
Playback quality information for selecting an alternate movie. Only one allowed.
'rmla' (page 2423)
Language information for selecting an alternate movie. Only one allowed.
'rmcs' (page 2422)
CPU speed information for selecting an alternate movie. Only one allowed.

Discussion
The 'rdrf' atom contains a ReferenceMovieDataRefRecord, which designates an alternate movie. The
'rmda' atom's optional atoms help QuickTime decide whether or not to run that movie. If multiple 'rmvc'
or 'rmcd' atoms are present, all their criteria must be satisfied for the movie to play.

See Also

See the ReferenceMovieDataRefRecord structure. For general information about atoms, see Inside
QuickTime: QuickTime File Format.

'rmdr' Provides data rate information for selecting an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieDataRateAID, designating atom type 'rmdr'.

data

Discussion
A QTAltDataRateRecord data structure.

Parent Atom

'rmda' (page 2422)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'rmla' Provides language information for selecting an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Atoms 2423
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Fields
atomType

Discussion
Constant ReferenceMovieLanguageAID, designating atom type 'rmla'.

data

Discussion
A QTAltLanguageRecord structure.

Parent Atom

'rmda' (page 2422)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'rmqu' Provides playback quality information for selecting an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieQualityAID, designating atom type 'rmqu'.

data

Discussion
A quality value of type SInt32. Higher quality values are selected over lower quality values.

Parent Atom

'rmda' (page 2422)
Parent atom can contain only one atom of this type.

Discussion
If the criteria established by the 'rmdr' (page 2423), 'rmvc' (page 2425), and 'rmcd' (page 2422) atoms are
equally satisfied by two or more alternate movies, the one with the highest quality value will be selected.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'rmra' Designates a reference movie.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameter:

Fields
atomType

Discussion
Constant ReferenceMovieRecordAID, designating atom type 'rmra'.

Parent Atom

'moov' (page 2414)
Parent atom can contain only one atom of this type.

2424 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'rmda' (page 2422)
Provides criteria for selecting an alternate movie. Only one allowed.

Discussion
You insert an 'rmra' atom in a 'moov' atom to create a reference movie. Each 'rmda' atom in the 'rmra'
atom designates an alternate movie.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'rmvc' Provides version criteria for selecting an alternate movie.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant ReferenceMovieVersionCheckAID, designating atom type 'rmvc'.

data

Discussion
A QTAltVersionCheckRecord data structure.

Parent Atom

'rmda' (page 2422)
Parent atom can contain any number of atoms of this type.

Discussion
This optional atom in a 'rmda' atom lets you demand minimum product version criteria for selecting an
alternate movie. For example, a movie that needs QuickTime VR 2.1 or later could require a Gestalt 'qtvv'
value of 0x02100000 or higher.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'scpt' Transcript track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'scpt'.

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

Atoms 2425
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'sdp ' SDP text for a hint track.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'sdp '. The fourth character is a space.

data

Discussion
SDP text.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'sean' The outermost atom container, of which all other atoms are children.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451), using the following parameter:

Fields
atomData

Discussion
A pointer to a memory location that will hold the new atom.

Discussion
After creating a 'sean' atom, you can populate it with other atoms by using QTInsertChild (page 1446).

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'SelO' User data list entry atom: play selection only.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Constant 'SelO'.

data

Discussion
A byte indicating that only the selected area of the movie should be played.

2426 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MoviesUserData function. For general information about atoms, see Inside QuickTime: QuickTime
File Format.

'skip' Unused space available in the file.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant SkipAtomType, designating atom type 'skip'.

data

Discussion
Any number of bytes of free space.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'smhd' Contains sound stereo balance information.

struct SoundMediaInfoHeaderAtom {
 long size;
 long atomType;
 SoundMediaInfoHeader smiHeader;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant SoundMediaInfoHeaderAID, designating atom type 'smhd'.

smiHeader

Discussion
A SoundMediaInfoHeader data structure, which contains the actual data for this atom.

Discussion
The SoundMediaInfoHeader data structure currently contains only stereo balance information.

Programming Info
C interface file: MoviesFormat.h

Atoms 2427
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For the structure that contains this atom, see 'minf'[sound] (page 2412). For general information about
atoms, see Inside QuickTime: QuickTime File Format.

'sprt' A key frame sprite definition.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kSpriteAtomType, designating atom type 'sprt'.

data

Discussion
A list of sprite property constants (see below).

Sprite property constants

kSpritePropertyMatrix
(Value is 1). Describes the sprite's location and scaling within its sprite world or sprite track. By modifying a
sprite's matrix, you can modify the sprite's location so that it appears to move in a smooth path on the screen
or so that it jumps from one place to another. You can modify a sprite's size, so that it shrinks, grows, or
stretches. Depending on which image compressor is used to create the sprite images, other transformations,
such as rotation, may be supported as well. Translation-only matrixes provide the best performance.
kSpritePropertyVisible
(Value is 4). Specifies whether or not the sprite is visible. To make a sprite visible, you set the sprite's visible
property to true.
kSpritePropertyLayer
(Value is 5). Contains a 16-bit integer value specifying the layer into which the sprite is to be drawn. Sprites
with lower layer numbers appear in front of sprites with higher layer numbers. To designate a sprite as a
background sprite, you should assign it the special layer number kBackgroundSpriteLayerNum.
kSpritePropertyGraphicsMode
(Value is 6). Specifies a graphics mode and blend color that indicates how to blend a sprite with any sprites
behind it and with the background. To set a sprite's graphics mode, you call SetSpriteProperty (page
1491), passing a pointer to a ModifierTrackGraphicsModeRecord structure.
kSpritePropertyActionHandlingSpriteID
(Value is 8). Specifies another sprite by ID that delegates QT events.
kSpritePropertyImageIndex
(Value is 100). Contains the atom ID of the sprite's image atom.
kSpriteUsesImageIDsAtomType
(Value is 'uses'). Lets a sprite specify the subset of images that kSpritePropertyImageIndex can refer
to.

Parent Atom

'stss' (page 2435)
Parent atom can contain only one atom of this type.

Discussion
Sprite atoms should have ID numbers start at 1 and count consecutively upward.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

2428 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'sptl' Specifies which graphics export compressor to use, its depth, and the spatial quality.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant scSpatialSettingsType, designating atom type 'sptl'.

data

Discussion
A pointer to SCSpatialSettings structure.

See Also

See the GraphicsExportCanUseCompressor (page 975) function. For general information about atoms,
see Inside QuickTime: QuickTime File Format.

'ssrc' Nonprimary source track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTrackModifierReference, designating atom type 'ssrc'.

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'sstr' Specifies the ID of a string variable, contained in a sprite track, to display in the status area of the browser.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'sstr'.

Atoms 2429
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'beha' (page 2373)
Defines sprite behavior.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'stbl' Contains information for converting from media time to sample number to sample location and indicates
how to interpret samples and chunks.

struct SampleTableAtom {
 long size;
 long atomType;
 SampleDescriptionAtom sampleDescription;
 TimeToSampleNumAtom timeToSampleNum;
 SampleToChunkAtom sampleToChunk;
 SyncSampleAtom syncSample;
 SampleSizeAtom sampleSize;
 ChunkOffsetAtom chunkOffset;
 ShadowSyncAtom shadowSync;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant SampleTableAID, designating atom type 'stbl'.

sampleDescription

Discussion
A 'stsd' (page 2433) atom, which contains information required to decode the samples in the media.

timeToSampleNum

Discussion
A 'stts' (page 2437) atom that relates sample numbers to sample durations.

sampleToChunk

Discussion
A 'stsc' (page 2433) atom that maps sample numbers to chunk numbers.

syncSample

Discussion
A 'stss' (page 2435) atom that identifies the key frames in the media.

sampleSize

Discussion
A 'stsz' (page 2436) atom, which identifies the size of each sample in the media.

chunkOffset

Discussion
A 'stco' (page 2431) atom that identifies the location of each data chunk in the media.

2430 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

shadowSync

Discussion
A 'stsh' (page 2434) atom, which lists self-contained sync samples that are alternates for existing frame
difference samples. This field may be omitted.

Discussion
This atom contains the information you need to find a sample number based on a time and to find the
sample's location based on the sample number. Samples are organized into chunks, containing one or more
samples. This atom contains the information you need to find out which chunk holds a given sample, where
that chunk begins, and where in that chunk you can find the sample.

Programming Info
C interface file: MoviesFormat.h

See Also

For the atoms that may contain this atom, see 'minf'[generic] (page 2411), 'minf'[sound] (page 2412),
and 'minf'[video] (page 2413). For general information about atoms, see Inside QuickTime: QuickTime File
Format.

'stco' Identifies the location of each chunk of data in the media's data stream.

struct ChunkOffsetAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 long chunkOffsetTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STChunkOffsetAID, designating atom type 'stco'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

numEntries

Discussion
The number of entries in chunkOffsetTable.

chunkOffsetTable

Discussion
An array of chunk offset values.

Discussion
A chunk is a collection of data samples in a media that allows optimized data access. A chunk may contain
one or more samples. Chunks in a media may have different sizes, and the samples within a chunk may have
different sizes.

Atoms 2431
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'strt' Defines the starting offset of hypertext in a text stream.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'strt'.

data

Discussion
The starting offset of hypertext.

Parent Atom

'htxt' (page 2399)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'strv' Contains a string variable for a sprite.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'strv'.

Parent Atom

'vars' (page 2448)
Contains variables for a sprite.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'stsc' Maps sample numbers to chunk numbers.

2432 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct SampleToChunkAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 SampleToChunk sampleToChunkTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STSampleToChunkAID, designating atom type 'stsc'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

numEntries

Discussion
The number of entries in sampleToChunkTable.

sampleToChunkTable

Discussion
An array of SampleToChunk data structures, which contain the actual data for this atom.

Discussion
A chunk is a collection of data samples in a media that allows optimized data access. A chunk may contain
one or more samples. Chunks in a media may have different sizes, and the samples within a chunk may have
different sizes.

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'stsd' Holds one or more sample description structures.

struct SampleDescriptionAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 SampleDescription sampleDescTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

Atoms 2433
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

atomType

Discussion
Constant STSampleDescAID, designating atom type 'stsd'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

numEntries

Discussion
Number of entries in sampleDescTable.

sampleDescTable

Discussion
An array of SampleDescription data structures, which contain the actual data for this atom.

Discussion
In QuickTime streaming, this atom describes the data format of the hint samples and contains track-level
information, such as the RTP timescale for a track.

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'stsh' Lists self-contained sync samples that are alternates for existing frame difference samples.

struct ShadowSyncAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 ShadowSync shadowSyncTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STShadowSyncAID, designating atom type 'stsh'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

numEntries

Discussion
The number of entries in shadowSyncTable.

2434 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

shadowSyncTable

Discussion
An array of ShadowSync data structures, which contain the actual data for this atom.

Discussion
Shadow sync atoms are used to optimize random access operations on a movie, thereby enhancing playback
performance.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'stss' Identifies the key frames in a media.

struct SyncSampleAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 long syncSampleTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STSyncSampleAID, designating atom type 'stss'.

flags

Discussion
Flags (currently not used).

numEntries

Discussion
The number of entries in syncSampleTable.

syncSampleTable

Discussion
An array of physical sample numbers, each of which identifies a key frame in the media.

Discussion
In a media that contains compressed data, key frames define starting points for portions of a temporally
compressed sequence. Each key frame is independent of the preceding frames. Subsequent frames may
depend on the key frame.

Programming Info
C interface file: MoviesFormat.h

Atoms 2435
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'stsz' Identifies the size of each sample in a media.

struct SampleSizeAtom {
 long size;
 long atomType;
 long flags;
 long sampleSize;
 long numEntries;
 long sampleSizeTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STSampleSizeAID, designating atom type 'stsz'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

sampleSize

Discussion
The number of bytes in the samples. If all the samples are the same size, sampleSize indicates the size of
all the samples. If sampleSize is set to 0, then the samples have different sizes, and those sizes are stored
in sampleSizeTable.

numEntries

Discussion
The number of entries in sampleSizeTable.

sampleSizeTable

Discussion
An array of numbers, one for every sample. This field is indexed by sample number; the first entry corresponds
to the first sample, the second to the second sample, and so on.

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'stts' Holds one or more structures that relate sample numbers to sample durations.

2436 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

struct TimeToSampleNumAtom {
 long size;
 long atomType;
 long flags;
 long numEntries;
 TimeToSampleNum timeToSampleNumTable[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant STTimeToSampAID, designating atom type 'stts'.

flags

Discussion
One byte of version information followed by three bytes of flags. The flags bytes are not currently used.

numEntries

Discussion
The number of entries in timeToSampleNumTable.

timeToSampleNumTable

Discussion
An array of TimeToSampleNum data structures, each of which maps a sample number to its sample duration.

Discussion
Entries in timeToSampleNumTable collect samples according to their order in the media and their duration.
If consecutive samples have the same duration, a single table entry may be used to define more than one
sample. In these cases, the count field indicates the number of consecutive samples that have the same
duration. For example, if a video media had a constant frame rate, timeToSampleNumTable would have
one entry.

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'stbl' (page 2430). For general information about atoms, see
Inside QuickTime: QuickTime File Format.

'sync' Synchronization track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'sync'.

Atoms 2437
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tbox' Defines a text box rectangle.

struct TextBoxAtom {
 long size;
 long atomType;
 Rect textBox;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Value is 'tbox'.

textBox

Discussion
A new text box rectangle, which overrides the rectangle defined by the defaultTextBox constant.

Discussion
This is a classic atom; you can access its information by calculating offsets.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tcmi' Time code media information atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'tcmi'.

data

Discussion
Time code media information.

2438 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'minf'[video] (page 2413)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tkhd' Specifies the characteristics of a track in a movie.

struct TrackHeaderAtom {
 long size;
 long atomType;
 TrackHeader header;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant TrackHeaderAID, designating atom type 'tkhd'.

header

Discussion
A TrackHeader structure that contains the actual data for this atom.

Parent Atom

'trak' (page 2441)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tmax' Largest relative transmission time, in milliseconds.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'tmax'.

data

Discussion
4 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

Atoms 2439
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tmcd' Time code track reference type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant TimeCodeMediaType, designating atom type 'tmcd'.

data

Discussion
A list of track ID values (32-bit integers) specifying the related tracks. Note that a track ID value can be set to
0 to indicate an unused entry in the atom. Doing this can be more convenient than deleting the reference.

Parent Atom

'tref' (page 2442)
Parent atom can contain only one atom of this type.

See Also

See the TimeCodeDescription structure. For general information about atoms, see Inside QuickTime:
QuickTime File Format.

'tmin' Smallest relative transmission time, in milliseconds.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'tmin'.

data

Discussion
4 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'tpyl' Total number of bytes that will be sent, not including 12-byte RTP headers.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'tpyl'.

2440 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

data

Discussion
8 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'trak' Defines a single track of a movie.

struct TrackDirectory {
 long size;
 long atomType;
 TrackHeaderAtom trackHeader;
 ClippingAtom trackClip;
 EditsAtom edits;
 MediaDirectory media;
 UserDataAtom userData;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant TrackAID, designating atom type 'trak'.

trackHeader

Discussion
A 'tkhd' (page 2439) atom, which specifies general characteristics of the track.

trackClip

Discussion
A 'clip' (page 2373) atom, which defines the track's clipping region.

edits

Discussion
An 'edts' (page 2389) atom, which defines the portions of the track's media that are going into the track.

media

Discussion
A 'mdia' (page 2409) atom structure that defines the media for the track.

userData

Discussion
A 'udta' (page 2446) atom that contains user data.

Parent Atom

'moov' (page 2414)
Parent atom can contain any number of atoms of this type.

Atoms 2441
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'tkhd' (page 2439)
Specifies general characteristics of the track. Only one allowed.
'mdia' (page 2409)
The media for the track. Only one allowed.

Optional Child Atoms

'clip' (page 2373)
Defines the clipping region for the track. Only one allowed.
'matt' (page 2407)
Defines a matte for a track's media. Only one allowed.
'edts' (page 2389)
Defines the portions of the track's media that are going into the track. Only one allowed.
'tref' (page 2442)
Track reference atom. Only one allowed.
'load' (page 2406)
Contains preloading information for a track. Only one allowed.
'imap' (page 2401)
An input map. Only one allowed.
'udta' (page 2446)
User data atom. Only one allowed.

Discussion
A movie may consist of one or more tracks. Each track is independent of the other tracks in the movie and
carries its own temporal and spatial information. Each track atom contains an associated media atom. Note
that there must be at least one media track within a QuickTime movie. All media tracks that are present must
remain in the movie, even if the media data within them is not referenced by the hint tracks. After deleting
all hint tracks, the entire unhinted movie must remain.

Programming Info
C interface file: MoviesFormat.h

See Also

See the TrackDirectoryEntry structure. For general information about atoms, see Inside QuickTime:
QuickTime File Format.

'tref' Track reference atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it with QTInsertChild (page 1446), using the following
parameters:

Fields
atomType

Discussion
Constant TrackHeaderAID, designating atom type 'tref'.

data

Discussion
One track reference atom of a type listed below.

Parent Atom

'trak' (page 2441)
Parent atom can contain only one atom of this type.

2442 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms (one from this list)

'tmcd' (page 2440)
Time code track reference type atom. Only one allowed.
'chap' (page 2373)
Chapter or scene list track reference type atom. Only one allowed.
'sync' (page 2437)
Synchronization track reference type atom. Only one allowed.
'scpt' (page 2425)
Transcript track reference type atom. Only one allowed.
'ssrc' (page 2429)
Nonprimary source track reference type atom. Only one allowed.
'hint' (page 2396)
Hint track reference type atom. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'trpy' Total number of bytes that will be sent, including 12-byte RTP headers, but not including network
headers.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'trpy'.

data

Discussion
8 bytes.

Parent Atom

'hinf' (page 2396)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'twdt' Tween data type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is 'twdt'.

data

Discussion
Tween data.

Atoms 2443
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Parent Atom

'twen' (page 2444)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'twdu' Tween duration atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTweenDuration, designating atom type 'twdu'.

data

Discussion
Tween duration data.

Parent Atom

'twen' (page 2444)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'twen' Tween entry atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kTweenEntry, designating atom type 'twen'.

Required Child Atoms

'twst' (page 2445)
Tween start atom. Only one allowed.
'twdu' (page 2444)
Tween duration atom. Only one allowed.
'twdt' (page 2443)
Tween data type atom. Only one allowed.
'twnt' (page 2444)
Tween type atom. Only one allowed.

See Also

See the TweenSequenceEntryRecord structure. For general information about atoms, see InsideQuickTime:
QuickTime File Format.

'twnt' Tween type atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

2444 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Fields
atomType

Discussion
Constant kTweenType, designating atom type 'twnt'.

data

Discussion
A tween type; see Tween Types.

Parent Atom

'twen' (page 2444)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'twst' Tween start offset atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kTweenStartOffset, designating atom type 'twst'.

data

Discussion
Tween start offset.

Parent Atom

'twen' (page 2444)
Parent atom can contain only one atom of this type.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

' ty' Input atom type.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Value is ' ty'; first and second characters are spaces.

data

Discussion
Track input atom type code.

Parent Atom

' in' (page 2405)
Parent atom can contain only one atom of this type.

Atoms 2445
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'udta' Holds one or more structures of movie user data.

struct UserDataAtom {
 long size;
 long atomType;
 MoviesUserData userData[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant UserDataAID, designating atom type 'udta'.

userData

Discussion
An array of MoviesUserData data structures, which contain the actual data for this atom. The currently
defined types are listed below.

Parent atom (one or the other)

'moov' (page 2414)
Parent atom can contain any number of atoms of this type.
'trak' (page 2441)
Parent atom can contain any number of atoms of this type.

Optional child atom

' ccpy' (page 2375)
Copyright statement.
' cday' (page 2376)
Date the movie content was created.
' cdir' (page 2377)
Name of movie's director.
' ced1' (page 2377)
First edit date and description. Similar for ' ced2' through ' ced9'.
' cfmt' (page 2378)
Indication of movie format (computer-generated, digitized, and so on).
' cinf' (page 2378)
Information about the movie.
' cprd' (page 2379)
Name of movie's producer.
' cprf' (page 2379)
Names of performers.
' creq' (page 2380)
Special hardware and software requirements.
' csrc' (page 2381)
Credits for those who provided movie source content.

2446 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

' cwrt' (page 2381)
Name of movie's writer.
'WLOC' (page 2453)
Default window location for movie. Two 16-bit values, {x,y}.
'name'[userdata] (page 2416)
Name of object.
'LOOP' (page 2407)
Looping. Long integer indicating looping style. 0 for none, 1 for looping, 2 for palindromic looping.
'SelO' (page 2426)
Play selection only. Byte indicating that only the selected area of the movie should be played.
'AllF' (page 2372)
Play all frames. Byte indicating that all frames of video should be played, regardless of timing.

Discussion
Inside the user data atom is a list of atoms describing each piece of user data. Each data element contains
size and type information along with the data. Furthermore, for historical reasons, the list of atoms is optionally
terminated by a 32-bit integer set to 0. If you are writing a program to read user data atoms, you should
allow for the terminating 0. However, if you are writing a program to create user data atoms, you can safely
leave out the trailing 0.

Programming Info
C interface file: MoviesFormat.h

See Also

See the MoviesUserData structure. For general information about atoms, see Inside QuickTime: QuickTime
File Format.

'url ' Contains a URL for a sprite.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'url '.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'uses' Lets a sprite specify the subset of images that its image index property can refer to.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'uses'.

Parent Atom

'sprt' (page 2428)
A key frame sprite definition.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

Atoms 2447
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

'vars' Contains variables for a sprite.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Value is 'vars'.

Optional Child Atoms

'flov' (page 2393)
Contains a floating-point variable for a sprite. Multiple atoms allowed.
'strv' (page 2432)
Contains a string variable for a sprite. Multiple atoms allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vide' Contains compression information for the Base Image Exporter.

This is a QT atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameter:

Fields
atomType

Discussion
Constant VideoMediaType, designating atom type 'vide'; see Component Identifiers.

Optional Child Atoms

'dasz' (page 2385)
Only one allowed. If present, it specifies a desired data size. The base exporter repeats compression attempts,
decreasing the quality parameter until it reaches this size or lower, or it runs out of patience.
'reso' (page 2421)
Only one allowed. If present, it specifies the resolution for the pixmap passed to the compressor.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vmhd'[media] Stores handler-specific information for video media in a track.

struct VideoMediaInfo {
 long size;
 long atomType;
 VideoMediaInfoHeaderAtom header;
 HandlerAtom dataHandler;
 DataInfoAtom dataInfo;
 SampleTableAtom sampleTable;
};

Fields
size

Discussion
The size in bytes of this atom structure.

2448 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

atomType

Discussion
Constant VideoMediaInfoAID, designating atom type 'vmhd'.

header

Discussion
A 'vmhd'[transfer] (page 2449) atom, which defines the graphics transfer mode for this video media.

dataHandler

Discussion
A 'hdlr' (page 2395) atom that specifies the component that is to handle this media.

dataInfo

Discussion
A 'dinf' (page 2387) atom, which specifies where the video media data is stored.

sampleTable

Discussion
A 'stbl' (page 2430) atom, which tells the media handler how to locate and interpret data samples.

Discussion
This atom stores handler-specific information for the media that constitutes a video track. A video media
handler uses this information to map from media time to media data. Another type of media handler would
not know how to interpret this information.

Programming Info
C interface file: MoviesFormat.h

See Also

See the 'minf'[sound] (page 2412) atom for sound media and the 'minf'[generic] (page 2411) atom for
media other than video or sound. Also see the VideoMediaInfoHeader structure. For general information
about atoms, see Inside QuickTime: QuickTime File Format.

'vmhd'[transfer] Defines the graphics transfer characteristics for a video media.

struct VideoMediaInfoHeaderAtom {
 long size;
 long atomType;
 VideoMediaInfoHeader vmiHeader;
};

Fields
size

Discussion
The size in bytes of this atom structure.

atomType

Discussion
Constant VideoMediaInfoHeaderAID, designating atom type 'vmhd'.

vmiHeader

Discussion
A VideoMediaInfoHeader data structure, which contains the actual data for this atom.

Atoms 2449
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Programming Info
C interface file: MoviesFormat.h

See Also

For the structure that contains this atom, see 'minf'[video] (page 2413). Also see the
VideoMediaInfoHeader structure. For general information about atoms, see Inside QuickTime: QuickTime
File Format.

'vrcp' Custom cursor atom parent.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kQTVRCursorParentAtomType, designating atom type 'vrcp'.

Required Child Atoms

'CURS' (page 2384)
Custom cursor child atom. Multiple atoms of this type allowed.
'crsr' (page 2382)
Color custom cursor child atom. Multiple atoms of this type allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vrni' QTVR node ID atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kQTVRNodeIDAtomType, designating atom type 'vrni'.

Parent Atom

'vrnp' (page 2450)
Parent atom can contain any number of atoms of this type.

Required Child Atoms

'nloc' (page 2417)
QTVR node location atom. Only one allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vrnp' QTVR node parent atom.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Fields
atomType

Discussion
Constant kQTVRNodeParentAtomType, designating atom type 'vrnp'.

2450 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Required Child Atoms

'vrni' (page 2450)
QTVR node ID atom. Any number allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vrsc' VR world header atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant kQTVRWorldHeaderAtomType, designating atom type 'vrsc'.

data

Discussion
Contains the name of the scene and the default node ID.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'vrsg' Contains the name of a VR scene.

This is a QT leaf atom that contains a struct in its data field. Using the constant kQTVRStringAtomType and
a pointer to the atom, you can access its data with QTGetAtomDataPtr (page 1433) and change it with
QTSetAtomData (page 1465). The struct is declared as follows:

struct QTVRStringAtom {
 UInt16 stringUsage;
 UInt16 stringLength;
 unsigned char theString[4];
};

Fields
stringUsage

Discussion
Unused field.

stringLength

Discussion
The length of the name string in bytes.

theString

Discussion
The name as a C string.

Discussion
One leaf atom of this type is contained in a VR world container. You can get a pointer to this container by
calling QTVRGetVRWorld (page 2019). One of this atom's siblings in the VR world is a 'vrsc' (page 2451) atom,
which contains the atom ID of this atom in its nameAtomID field. The following code illustrates a function
that returns the name of a VR node as a Pascal string, given the node's ID:

OSErr MyGetNodeName (QTVRInstance theInstance, UInt32 theNodeID,

Atoms 2451
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

 StringPtr theStringPtr)
{
 OSErr theErr =noErr;
 QTAtomContainer theNodeInfo;
 QTVRNodeHeaderAtomPtr theNodeHeader;
 QTAtom theNodeHeaderAtom =0;

 // Get the node information atom container
 theErr =QTVRGetNodeInfo(theInstance, theNodeID, &theNodeInfo);

 // Get the node header atom.
 if (!theErr)
 theNodeHeaderAtom =QTFindChildByID(theNodeInfo,
 kParentAtomIsContainer,
 kQTVRNodeHeaderAtomType, 1, nil);
 if (theNodeHeaderAtom !=0) {
 QTLockContainer(theNodeInfo);

 // Get a pointer to the node header atom data.
 theErr =QTGetAtomDataPtr(theNodeInfo, theNodeHeaderAtom, nil,
 (Ptr *)&theNodeHeader);
 // See if there is a name atom.
 if (!theErr && theNodeHeader->
nameAtomID !=0) {
 QTAtom theNameAtom;
 theNameAtom =QTFindChildByID(theNodeInfo,
 kParentAtomIsContainer, kQTVRStringAtomType,
 theNodeHeader->
nameAtomID, nil);
 if (theNameAtom !=0) {
 VRStringAtomPtr theStringAtomPtr;

 // Get a pointer to the name atom data; copy it into string
 theErr =QTGetAtomDataPtr(theNodeInfo, theNameAtom, nil,
 (Ptr *)&theStringAtomPtr);
 if (!theErr) {
 short theLen =theStringAtomPtr->
stringLength;
 if (theLen >
255)
 theLen =255;
 BlockMove(theStringAtomPtr->
theString,
 &theStringPtr[1], theLen);
 theStringPtr[0] =theLen;
 }
 }
 }
 QTUnlockContainer(theNodeInfo);
 }
 QTDisposeAtomContainer(theNodeInfo);
 return(theErr);
}

Programming Info
C interface file: QuickTimeVRFormat.h

2452 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'wide' Wide atom name placeholder atom.

This is a QT leaf atom; it is not declared in the header files. You can create it with QTInsertChild (page 1446)
using the following parameters:

Fields
atomType

Discussion
Constant WideAtomPlaceholderType, designating atom type 'wide'.

data

Discussion
8 bytes of placeholder space to allow an atom to be converted from a 32-bit to a 64-bit atom.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'WLOC' User data list entry atom: default window location for movie.

struct MoviesUserData {
 long size;
 long udType;
 char data[1];
};

Fields
size

Discussion
The size in bytes of this atom structure.

udType

Discussion
Value is 'WLOC'.

data

Discussion
2 16-bit values, {x,y}.

Parent Atom

'udta' (page 2446)
Parent atom can contain only one atom of this type.

Programming Info
C interface file: MoviesFormat.h

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

'wtxt' Parent atom for hypertext items.

This is a QT container atom; it is not declared in the header files. You can create it with
QTNewAtomContainer (page 1451) and insert it withQTInsertChild (page 1446), using the following parameter:

Atoms 2453
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Fields
atomType

Discussion
Value is 'wtxt'.

Required Child Atoms

'strt' (page 2432)
Defines the starting offset of hypertext in a text stream. Only one allowed.
'end ' (page 2391)
Defines the ending offset of hypertext in a text stream. Only one allowed.

Optional Child Atoms

'htxt' (page 2399)
Multiple atoms allowed.

See Also

For general information about atoms, see Inside QuickTime: QuickTime File Format.

2454 Atoms
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

QuickTime Atoms

Resources

'atms'

Lists effect and parameter description atoms for effect components.

Resources 2455
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'atms' {
 longint; // root atom count
 array AtomArray {
 literal longint; // atomType
 longint; // atomID
 longint noChildren =0; // children
 longint =$$CountOf(AtomData);
 array AtomData {
 switch {
 case long:
 key literal longint ='long';
 pstring; // data
 case short:
 key literal longint ='shrt';
 pstring; // data
 case noMininumFixed:
 key literal longint ='nmiF';
 pstring = ""; // data
 case noMaximumFixed:
 key literal longint ='nmaF';
 pstring = ""; // data
 case noMininumDouble:
 key literal longint ='nmiD';
 pstring = ""; // data
 case noMaximumDouble:
 key literal longint ='nmaD';
 pstring = ""; // data
 case fixed:
 key literal longint ='fixd';
 pstring; // data
 case double:
 key literal longint ='doub';
 pstring; // data
 case string:
 key literal longint ='str ';
 pstring; // data
 case lstring:
 key literal longint ='lstr';
 LongStringStart:
 longint =
 ((LongStringEnd[$$ArrayIndex(AtomArray),
 $$ArrayIndex(AtomData)] -
 LongStringStart[$$ArrayIndex(AtomArray),
 $$ArrayIndex(AtomData)]) >
>
3) - 4;
 hex string
 [$$Word(LongStringStart[$$ArrayIndex(AtomArray),
 $$ArrayIndex(AtomData)]) - 4];
 LongStringEnd:
 case OSType:
 key literal longint ='osty';
 pstring; // data
 };
 };
 };
};

2456 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

Discussion
The 'atms' resource for a video effect contains two sets of information. The first set contains the effect
information that is used to construct the standard parameters dialog box. This includes items such as the
name of the effect and optional copyright information. The second set contains a description of each parameter
that the effect takes. If the effect does not take parameters, there is no information in this set.

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'avvc'

Lists AVI four cc types for compressor components.

type 'avvc' {
 array {
 literal longint; // avi four cc type
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'avvd'

Lists AVI four cc types for decompressor components.

type 'avvd' {
 array {
 literal longint; // avi four cc type
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'cdci'

Contains codec characteristics.

Resources 2457
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'cdci' {
 pstring[31];
 hex integer version;
 hex integer revlevel;
 hex longint vendor;
 hex longint decompressFlags;
 hex longint compressFlags;
 hex longint formatFlags;
 byte compressionAccuracy;
 byte decompressionAccuracy;
 integer compressionSpeed;
 integer decompressionSpeed;
 byte compressionLevel;
 byte resvd;
 integer minimumHeight;
 integer minimumWidth;
 integer decompressPipelineLatency;
 integer compressPipelineLatency;
 longint privateData;
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'cdec'

Contains a codec string.

type 'cdec' {
 hex string;
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'cpix'

Lists supported pixel formats for a codec compressor.

2458 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'cpix' {
 array {
 literal longint;
 };
};

Discussion
A 'cpix' resource is an array of 4-character codes (such as '2vuy' or 'yuvs') that define the pixel formats
a codec can accept. You can use this array to list any pixel formats that your codec prefers to straight RGB.
An application can get the list, by calling GetComponentPublicResource, to see what kind of graphics
world it should construct.

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: ImageCodec.r
Programming summary: Component Public Resources

'dlle'

Contains a string for a multiplatform component.

type 'dlle' {
 cstring;
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'mcfg'

Lists characteristics of files supported by a graphics importer component.

Resources 2459
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'mcfg' {
 longint =kQTMediaConfigResourceVersion; // resource version (long)
 // version of the component this applies to
 longint kVersionDoesntMatter =0;
 // array, one entry for each media type
 longint =$$Countof(MIMEInfoArray);
 array MIMEInfoArray {
 literal longint; // ID of the group this type belongs with:
 // OSType, a kQTMediaConfigStreamGroupID, etc.
 literal longint; // MIME config flags:
 // unsigned long, a kQTMediaConfigCanUseApp, etc.
 literal longint; // MacOS file type when saved (OSType)
 literal longint; // MacOS file creator when saved (OSType)
 literal longint; // component type (OSType)
 literal longint; // component subtype (OSType)
 literal longint; // component manufacturer (OSType)
 unsigned hex longint; // component flags
 // component flags mask
 unsigned hex longint kAnyComponentFlagsMask =0;
 literal longint; // default file extension (OSType)
 // all caps to match subType
 // of eat and grip components
 literal longint; // QT file group:
 // OSType, a kQTMediaInfoNetGroup, etc.
 longint =$$Countof(QTMediaSynonymsArray);
 array QTMediaSynonymsArray {
 pstring; // array of media type synonyms
 };
 align long; // align
 wide array [5] {
 pstring;
 // array of 5 Pascal strings:
 // + media type description
 // + file extension(s)
 // + opening application name
 // + missing software description
 // + vendor info string (copyright, version, etc)
 };
 align long; // align
 // array of MIME types that describe this
 // (eg. audio/mpeg, audio/x-mpeg, etc.)
 longint =$$Countof(MIMETypeArray);
 array MIMETypeArray {
 pstring;
 };
 align long; // align
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: QuicktimeComponents.r
Programming summary: Component Public Resources

2460 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

'mgrp'

Lists MIME groups supported by a graphics importer component.

type 'mgrp' {
 longint =kQTMediaGroupResourceVersion; // resource version (long)
 // component version this applies to
 longint kVersionDoesntMatter =0;
 // array of group information
 // (optional unless you are defining new group(s))
 longint =$$Countof(MIMEGroupArray);
 array MIMEGroupArray {
 literal longint; // group ID (OSType)
 pstring; // name of the grouping
 pstring; // description
 align long; // align
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: QuicktimeComponents.r
Programming summary: Component Public Resources

'mime'[resource]

Lists MIME types supported by a movie importer or exporter component.

Resources 2461
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'mime' {
 longint =0; // 10 bytes of reserved
 longint =0;
 integer =0;
 integer =0; // 2 bytes of lock count
 parentStart:
 longint =((parentEnd - parentStart) / 8); // size of this atom
 literal longint ='sean'; // atom type
 longint =1; // atom ID
 integer =0;
 integer = $$CountOf(AtomArray);
 longint =0;
 array AtomArray {
 atomStart:
 // size of this atom
 longint =((atomEnd[$$ArrayIndex(AtomArray)] -
 atomStart[$$ArrayIndex(AtomArray)]) / 8);
 literal longint; // atom type
 longint; // atom ID
 integer =0;
 integer =0; // no children
 longint =0;
 string;
 atomEnd:
 };
 parentEnd:
};

Discussion
Every import component should include a 'thnr' (page 2474) resource holding the same data that
MovieImportGetMIMETypeList (page 492) would return. By including this public resource, QuickTime and
applications don't need to open the import component and call MovieImportGetMIMETypeList to
determine the MIME types the importer supports. In the absence of this resource, QuickTime and applications
will use MovieImportGetMIMETypeList. This resource's public type and ID should be 'mime' and 1. Here
is an example of such a list:

resource 'thnr' (kMyImportComponentResID) {
 'mime', 1, 0,
 'mime', kMyImportMIMETypeListResID, 0
}

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: QuicktimeComponents.r
Programming summary: Component Public Resources

'pcki'

Lists streaming payload media supported by a packetizer component.

2462 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'pcki' {
 array infoArray {
 align long;
 hex longint mediaType;
 hex longint dataFormat;
 hex longint vendor;
 hex longint capabilityFlags;
 byte canPackMatrixType;
 byte =0;
 byte =0;
 byte =0;
 longint =$$CountOf(characteristicArray); // array size
 array characteristicArray {
 hex longint tag;
 hex longint value;
 };
 hex longint payloadFlags;
 byte payloadID; // if static payload
 byte =0;
 byte =0;
 byte =0;
 cstring;
 };
};

Discussion
Every packetizer must provide a public resource of type 'pcki', which contains information about its
capabilities. This information lists the media types and compression formats the packetizer can work with.
It also lists the track characteristics the packetizer can work with, such as layers or transformation matrices.
In addition, it provides information about the packetizer's performance characteristics, such as its speed or
ability to recover from packet loss. QuickTime selects the packetizer best suited to a stream's current media,
compression format, and track characteristics. If there are multiple packetizers that can work with a given
track, QuickTime picks the one with the best performance.

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: QTStreamingComponents.r
Programming summary: Component Public Resources

'qter'

Stores error messages for QTAddMovieError (page 1420).

Resources 2463
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'qter' {
 longint =$$Countof(ErrorSpec);
 wide array ErrorSpec {
 longint; // error code used to find this error
 longint // error type
 kQuickTimeErrorNotice =1,
 kQuickTimeErrorWarning =2,
 kQuickTimeErrorError =3;
 // In the following strings, ^FILENAME, ^APPNAME, ^0, ^1, etc will be
 // replaced as appropriate.
 pstring; // main error string
 pstring; // explanation error string
 pstring; // technical string (not displayed
 // to user except in debug cases)
 align long;
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: Movies.r

'rsmi'

Lists the characteristics of streaming payloads supported by a reassembler component.

type 'rsmi' {
 array infoArray {
 align long;
 longint =$$CountOf(characteristicArray); // array size
 array characteristicArray {
 hex longint tag;
 hex longint value;
 };
 hex longint payloadFlags;
 byte payloadID; // if static payload
 byte =0;
 byte =0;
 byte =0;
 cstring;
 };
};

Discussion
Every reassembler must provide a public resource of type 'rsmi', which contains information about its
capabilities. This information lists the RTP payload types the reassembler can work with, as well as the
reassembler's speed and ability to recover from lost packets. If more than one reassembler is available for a
given RTP payload type, QuickTime chooses the one with the best performance characteristics, such as highest
speed or best ability to deal with packet loss.

Version Notes
Introduced in QuickTime 6.

2464 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

Programming Info
Resource accessibility: Can be made public
Rez source file: QTStreamingComponents.r
Programming summary: Component Public Resources

'skcr'

Defines a media skin content region.

// no declaration

Discussion
The content of this resource is currently a 1-bit 'pict' image.

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Programming summary: Component Public Resources

'skgr'

Defines a media skin drag region.

// no declaration

Discussion
The content of this resource is currently a 1-bit 'pict' image.

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Programming summary: Component Public Resources

'snd '

Lists sound commands supported by a sound component.

Resources 2465
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'snd ' {
 switch {
 case FormatOne:
 key unsigned integer =$0001;
 unsigned integer =$$CountOf(Synthesizers);
 wide array Synthesizers {
 // Resource ID of synthesizer/modifer
 integer squareWaveSynth =$0001,
 waveTableSynth =$0003,
 sampledSynth =$0005;
 longint; // init parameter
 };
 case FormatTwo:
 key unsigned integer =$0002;
 integer free =0, keepInMemory =256+1; // Space for refe count
 };
 unsigned integer =$$CountOf(SoundCmnds);
 wide array SoundCmnds {
 boolean noData, hasData;
 switch {
 case nullCmd:
 key bitstring[15] =0;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case quietCmd:
 key bitstring[15] =3;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case flushCmd:
 key bitstring[15] =4;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case waitCmd:
 key bitstring[15] =10;
 integer oneSecond =2000; // Duration
 fill long; // Param 2 =nil
 case pauseCmd:
 key bitstring[15] =11;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case resumeCmd:
 key bitstring[15] =12;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case callBackCmd:
 key bitstring[15] =13;
 integer; // User-defined
 longint; // User-defined
 case syncCmd:
 key bitstring[15] =14;
 integer; // Count
 longint; // Identifier
 case emptyCmd:
 key bitstring[15] =15;
 fill word; // Param 1 =nil
 fill long; // Param 2 =nil
 case freqDurationCmd:
 key bitstring[15] =40;

2466 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

 integer oneSecond =2000; // Duration
 longint; // Frequency
 case restCmd:
 key bitstring[15] =41;
 integer oneSecond =2000; // Duration
 fill long; // Param 2 =nil
 case freqCmd:
 key bitstring[15] =42;
 fill word; // Param 1 =nil
 longint; // Frequency
 case ampCmd:
 key bitstring[15] =43;
 integer; // Amplitude
 fill long; // Param 2
 case timbreCmd:
 key bitstring[15] =44;
 integer sineWave, squareWave =255; // Timbre
 fill long; // Param 2
 case waveTableCmd:
 key bitstring[15] =60;
 unsigned integer; // Length
 longint; // Pointer to table
 case phaseCmd:
 key bitstring[15] =61;
 integer; // Shift
 longint; // chanPtr
 case soundCmd:
 key bitstring[15] =80;
 fill word; // Param 1 =nil
 longint; // Pointer to sound
 case bufferCmd:
 key bitstring[15] =81;
 fill word; // Param 1 =nil
 longint; // Pointer to buffer
 case rateCmd:
 key bitstring[15] =82;
 fill word; // Param 1 =nil
 longint; // Rate
 };
 };
 array DataTables {
 DataTable:
 fill long; // Pointer to data
 SampleCnt:
 unsigned longint; // # of sound samples
 unsigned hex longint Rate22K =$56EE8BA3; // Sampling rate
 unsigned longint; // Start of loop
 unsigned longint; // End of loop
 hex byte; // encode (header type)
 hex byte; // baseFrequency
 hex string [$$Long(SampleCnt[$$ArrayIndex(DataTables)])];
 };
};

Version Notes
Introduced in QuickTime 6.

Resources 2467
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

Programming Info
Resource accessibility: Private
Rez source file: Sound.r
Programming summary: Component Public Resources

'src#'

Lists a movie exporter component's supported media types and the minimum and maximum number of
sources for each.

type 'src#' {
 longint =$$CountOf(SourceArray);
 longint =0; // reserved
 array SourceArray {
 literal longint; // Media type of source
 // min number of sources of this kind required; 0 if none required
 integer;
 // max number of sources of this kind allowed;
 // 65535 if unlimited allowed
 integer;
 longint isMediaType =0x01,
 isMediaCharacteristic =0x02,
 isSourceType =0x04;
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Can be made public
Rez source file: QuicktimeComponents.r
Programming summary: Component Public Resources

'stg#'

Lists QuickTime's presets.

2468 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'stg#' {
 hex longint; // flags
 longint =$$CountOf(PresetDescriptionArray);
 longint =0;
 array PresetDescriptionArray {
 literal longint; // preset key ID
 unsigned hex longint noFlags =0,
 kQTPresetInfoIsDivider =1; // preset flags
 literal longint; // preset resource type
 integer; // preset resource ID
 integer =0; // padding but also reserved
 integer; // preset name string list ID
 integer; // preset name string index
 integer; // preset description string list ID
 integer; // preset description string index
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: QuicktimeComponents.r
Programming summary: Component Public Resources

'stgp'

Lists QuickTime's preset platforms.

type 'stgp' {
 longint =0; // reserved
 literal longint; // default settings list resource type
 integer; // default settings list resource id
 integer =$$CountOf(SettingsPlatformInfo);
 wide array SettingsPlatformInfo {
 unsigned hex longint =0; // reserved
 literal longint; // platform settings list resource Type
 integer; // platform settings list resource ID
 // platform type (response from gestaltSysArchitecture)
 integer platform68k =1,
 platformPowerPC =2,
 platformInterpreted =3,
 platformWin32 =4;
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: QuickTimeComponents.r
Programming summary: Component Public Resources

Resources 2469
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

'stri'

Contains a component information string.

type 'stri' {
 pstring; // string
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'strn'

Contains a component name string.

type 'strn' {
 pstring; // string
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'sttg'

Lists QuickTime's presets.

// no declaration

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Programming summary: Component Public Resources

'thga'

Lists the characteristics of a component resource alias.

2470 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'thga' {
 literal longint; // type
 literal longint; // subtype
 literal longint; // manufacturer
 unsigned hex longint; // component flags
 unsigned hex longint kAnyComponentFlagsMask =0; // component flags mask
 literal longint; // code type
 integer; // code ID
 literal longint; // name type
 integer; // name ID
 literal longint; // info type
 integer; // info ID
 literal longint; // icon type
 integer; // icon ID
 literal longint; // type
 literal longint; // subtype
 literal longint; // manufacturer
 unsigned hex longint; // component flags
 unsigned hex longint kAnyComponentFlagsMask =0; // component flags mask
 #if thng_RezTemplateVersion >
=2
 literal longint; // resource map type
 integer; // resource map id
 integer cmpAliasNoFlags =0,
 cmpAliasOnlyThisFile =1; // alias flags
 #endif
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'thn#'

Lists a component's load order dependencies.

type 'thn#' {
 array {
 literal longint; // code type
 integer; // code ID
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

Resources 2471
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

'thnd'

Lists a component's dependencies.

type 'thnd' {
 longint =$$CountOf(ComponentDependency);
 wide array ComponentDependency {
 literal longint; // type
 literal longint; // subtype
 literal longint; // manufacturer
 unsigned hex longint; // component flags
 unsigned hex longint kAnyComponentFlagsMask =0; // flags mask
 };
};

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'thng'

Lists the characteristics of a component resource.

2472 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

type 'thng' {
 literal longint; // type
 literal longint; // subtype
 literal longint; // manufacturer
 unsigned hex longint; // component flags
 unsigned hex longint kAnyComponentFlagsMask =0; // component flags mask
 literal longint; // code type
 integer; // code ID
 literal longint; // name type
 integer; // name ID
 literal longint; // info type
 integer; // info ID
 literal longint; // icon type
 integer; // icon ID
 #if thng_RezTemplateVersion >
=1
 unsigned hex longint; // version
 longint; // registration flags
 integer; // resource ID of icon family
 longint =$$CountOf(ComponentPlatformInfo);
 wide array ComponentPlatformInfo {
 unsigned hex longint; // component flags
 literal longint; // code type
 integer; // code ID
 integer platform68k =1, // platform type
 platformPowerPC =2,
 platformInterpreted =3,
 platformWin32 =4,
 platformPowerPCNativeEntryPoint =5;
 };
 #if thng_RezTemplateVersion >
=2
 literal longint; // resource map type
 integer; // resource map ID
 #endif
 #endif
};

Fields
platform type

Discussion
The response from gestaltComponentPlatform if available, or else from gestaltSysArchitecture.

resource map

Discussion
See the 'thnr' (page 2474) resource type.

Discussion
To associate a Public Resource Map with a component, the component's 'thng' resource must be extended
to include a references to a 'thnr' (page 2474) resource. This can be done when the value of
thng_RezTemplateVersion is 2, by adding the resource type 'thnr' and an ID. Here is an example:

resource 'thng' (512) {
 // component type, subtype, manufacturer, etc. go here
 'thnr', 512
};

Resources 2473
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r
Programming summary: Component Public Resources

'thnr'

Contains a public resource map for a component.

type 'thnr' {
 array {
 literal longint; // resource type
 integer; // resource id
 integer; // unused flags
 literal longint; // Mac OS resource type
 integer; // Mac OS resource ID
 integer cmpResourceNoFlags =0,
 cmpResourceCallComponent =1; // flags
 };
};

Fields
flags

Discussion
Some components may need to build the contents of their public resources at run time. For example, the
ColorSync visual effect's parameter list varies depending on what color matching methods are installed. In
this case, its public component resource cannot be stored in its resource file, but instead must be dynamically
created at run time. To indicate that a public resource cannot be loaded directly from a component's file, the
component's 'thnr' resource contains 0 in the ID field for that resource and the
cmpResourceCallComponent flag is set to 1.

Discussion
Public resources are identified by a four-character OSType codes and ID numbers. Unlike private resources,
however, a public resource's OSType code and ID do not have to be the same as the Mac OS resource type
and ID that the resource is stored in. Consequently, a component that provides public resources must add
a Public Resource Map to the component's 'thng' (page 2472) resource, giving the mapping between each
public resource type and ID and the corresponding private resource type and ID. Here's an example of a
Public Resource Map. It makes available two public resource, 'PICT' 1 and 'PICT' 2, which are stored in
the component as Mac OS resources 'pict' 128 and 'pict' 129.

resource 'thnr' (512) {
 {
 'PICT', 1, 0, 'pict', 128, 0,
 'PICT', 2, 0, 'pict', 129, 0,
 }
}

Version Notes
Introduced in QuickTime 6.

Programming Info
Resource accessibility: Private
Rez source file: Components.r

2474 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

Programming summary: Component Public Resources

See Also

For functions that access public resources, see GetComponentPublicResource and
GetComponentPublicResourceList.

Resources 2475
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

2476 Resources
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

QuickTime Public Resources

This table describes the changes to QuickTime Framework Reference.

NotesDate

First publication of this content as a collection of newly published separate
QuickTime reference documents.

2006-05-23

2477
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

2478
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AbortPrePrerollMovie function 177
AddCallBackToTimeBase function 178
AddClonedTrackToMovie function 1534
AddClonedTrackToMovie Values 1665
AddEmptyTrackToMovie function 1535
AddFilePreview function 586
AddImageDescriptionExtension function 586
addMax constant 433
AddMediaDataRef function 1298
AddMediaSample function 1536
AddMediaSample2 function 1539
AddMediaSampleFromEncodedFrame function 1541
AddMediaSampleReference function 1541
AddMediaSampleReferences function 1543
AddMediaSampleReferences64 function 1544
AddMovieExecuteWiredActionsProc function 1298
AddMovieResource function 1299
AddMovieSelection function 1545
AddMovieToStorage function 1301
addOver constant 433
addPin constant 433
AddSampleTableToMedia function 1547
AddSoundDescriptionExtension function 1302
AddTime function 178
AddTrackReference function 1547
AddUserData function 1302
AddUserDataText function 1303
adMax constant 433
adMin constant 433
AlignScreenRect function 587
AlignWindow function 588
Arithmetic and Logical Operator IDs 408
Atom ID Codes 363
AtomicInstrument data type 1763
AtomicInstrumentPtr data type 1763
AttachMovieToCurrentThread function 1304
AttachTimeBaseToCurrentThread function 179
AudioMediaCharacteristic constant 1523

B

badCallOrderErr constant 428
badDepthErr constant 428
BeginFullScreen function 1305
BeginMediaEdits function 1549
blend constant 433

C

CallComponentExecuteWiredAction function 1093
CallMeWhen function 179
CancelCallBack function 180
CanQuickTimeOpenDataRef function 1307
CanQuickTimeOpenFile function 1309
CanQuickTimeOpenFile Values 1521
cantCreateSingleForkFile constant 427
CDSequenceBusy function 589
CDSequenceChangedSourceData function 589
CDSequenceDataSource structure 933
CDSequenceDataSourcePtr data type 936
CDSequenceDisposeDataSource function 590
CDSequenceDisposeMemory function 590
CDSequenceEnd function 591
CDSequenceEquivalentImageDescription function

591
CDSequenceEquivalentImageDescriptionS function

592
CDSequenceFlush function 593
CDSequenceGetDataSource function 594
CDSequenceInvalidate function 594
CDSequenceNewDataSource function 595
CDSequenceNewMemory function 597
CDSequenceSetSourceData function 598
CDSequenceSetSourceDataQueue function 599
CDSequenceSetTimeBase function 599
channelPlayAllData 2245
CheckQuickTimeRegistration function 181
ChooseMovieClock function 181
ClearMovieChanged function 1310
ClearMovieSelection function 1550

2479
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Index

ClearMoviesStickyError function 182
ClockCallMeWhen function 453
ClockCancelCallBack function 454
ClockDisposeCallBack function 455
ClockGetRate function 456
ClockGetRateChangeConstraints function 456
ClockGetTime function 457
ClockNewCallBack function 457
ClockRateChanged function 458
ClockSetTimeBase function 459
ClockStartStopChanged function 459
ClockTimeChanged function 460
CloseMovieFile function 1311
CloseMovieStorage function 1312
Codec Flags 373
Codec Identifiers 408
Codec Properties 409, 957
Codec Type Constants 410
codecCompletionDecoded constant 376
codecCompletionDest constant 375
codecCompletionDropped constant 376
codecCompletionForceChainFlush constant 375
codecCompletionNotDisplayable constant 376
codecCompletionNotDrawn constant 376
codecCompletionSource constant 375
codecCompletionUnlockBits constant 375
codecCompletionWentOffscreen constant 375
CodecComponent data type 740
CodecCompressParams structure 936
codecConditionCatchUpDiff constant 960
codecConditionCodecChangedMask constant 961
codecConditionDoCursor constant 960
codecConditionFirstBand constant 959
codecConditionFirstFrame constant 959
codecConditionFirstScreen constant 960
codecConditionLastBand constant 959
codecConditionMaskMayBeChanged constant 960
codecConditionNewAccuracy constant 960
codecConditionNewClut constant 959
codecConditionNewDepth constant 959
codecConditionNewDestination constant 960
codecConditionNewMatte constant 959
codecConditionNewSrcRect constant 959
codecConditionNewTransferMode constant 959
codecConditionNewTransform constant 959
codecConditionToBuffer constant 960
CodecDecompressParams structure 941
CodecDecompressParams Values 963
codecDrawsHigherQualityScaled constant 962
codecFlagDiffFrame constant 373, 750
codecFlagLiveGrab constant 373, 749
codecFlagSupportDisable constant 373, 750
codecFlagUpdatePrevious constant 372, 749

codecFlagUpdatePreviousComp constant 373, 749
codecFlagUsedImageBuffer constant 376
codecFlagWasCompressed constant 372, 749
codecImageBufferIsInAGPMemory constant 961
codecImageBufferIsInPCIMemory constant 410, 961
codecImageBufferIsOverlaySurface constant 961
codecImageBufferMemoryFlagsValid constant 962
CodecInfo Values 379
codecInfoDepth1 constant 380
codecInfoDepth16 constant 381
codecInfoDepth2 constant 380
codecInfoDepth24 constant 381
codecInfoDepth32 constant 381
codecInfoDepth33 constant 381
codecInfoDepth34 constant 381
codecInfoDepth36 constant 381
codecInfoDepth4 constant 380
codecInfoDepth40 constant 381
codecInfoDepth8 constant 380
codecInfoDoes1 constant 376
codecInfoDoes16 constant 377
codecInfoDoes2 constant 376
codecInfoDoes32 constant 377
codecInfoDoes4 constant 376
codecInfoDoes8 constant 376
codecInfoDoesBlend constant 378
codecInfoDoesDither constant 377
codecInfoDoesDouble constant 377
codecInfoDoesHalf constant 377
codecInfoDoesHorizFlip constant 378
codecInfoDoesLossless constant 381
codecInfoDoesMask constant 377
codecInfoDoesMultiPass constant 378
codecInfoDoesQuad constant 377
codecInfoDoesQuarter constant 378
codecInfoDoesRecompress constant 378
codecInfoDoesReorder constant 378
codecInfoDoesRotate constant 378
codecInfoDoesShrink constant 377
codecInfoDoesSpool constant 379
codecInfoDoesStretch constant 377
codecInfoDoesTemporal constant 377
codecInfoDoesVertFlip constant 378
codecInfoDoesWarp constant 378
codecInfoHasEffectParameterList constant 378
codecInfoResourceType constant 410, 961
codecInfoStoresClut constant 381
codecInterfaceVersion constant 410, 961
codecLosslessQuality constant 379
codecLowQuality constant 379
CodecManagerVersion function 600
codecMaxQuality constant 379
codecMinQuality constant 379

2480
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

CodecNameSpecList structure 740
CodecNameSpecListPtr data type 741
codecNormalQuality constant 379
codecProgressOpen constant 140
codecProgressUpdatePercent constant 140
codecSrcMustBeImageBuffer constant 961
codecSuggestedBufferSentinel constant 410, 961
codecSupportsOutOfOrderDisplayTimes constant

410, 962
codecSupportsScheduledBackwardsPlaybackWith-

DifferenceFrames constant 410
codecUsesOverlaySurface constant 961
Color Constants 412
Color Modes 412, 750
CompAdd function 601
CompCompare function 601
CompDiv function 602
CompFixMul function 603
CompMul function 603
CompMulDiv function 604
CompMulDivTrunc function 604
CompNeg function 605
Component Call Selectors 412
Component Identifiers 421
Component Property IDs and Flags 422
componentDllEntryNotFoundErr constant 427
componentDllLoadErr constant 427
ComponentMPWorkFunctionProc callback 932
ComponentMPWorkFunctionUPP data type 949
compositeIn 2349
CompressImage function 605
CompressPicture function 607
CompressPictureFile function 609
CompressSequenceBegin function 609
CompressSequenceFrame function 612
CompShift function 614
CompSquareRoot function 615
CompSub function 615
ConcatMatrix function 616
ConstComponentListPtr data type 2236
ConstFSSpecPtr data type 842
ConstStrFileNameParam data type 741
ControlPtr data type 351
ControlRef data type 352
ConvertDataRefToMovieDataRef function 1551
ConvertFileToMovieFile function 1552
ConvertImage function 616
ConvertMovieToDataRef function 1553
ConvertMovieToFile function 1555
ConvertTime function 183
ConvertTimeScale function 183
ConvertTimeToClockTime function 184
CopyMatrix function 618

CopyMediaMutableSampleTable function 1557
CopyMediaUserData function 1312
CopyMovieSelection function 1558
CopyMovieSettings function 1558
CopyMovieUserData function 1313
CopyTrackSettings function 1559
CopyTrackUserData function 1314
CopyUserData function 1314
CopyUserData Values 1521
CountImageDescriptionExtensionType function 618
CountUserDataType function 1315
CreateMovieControl function 184
CreateMovieControl Values 357
CreateMovieFile function 1316
CreateMovieFile Values 381, 1516
createMovieFileDontOpenFile constant 382, 1516
CreateMovieStorage function 1318
CreateShortcutMovieFile function 1319
currentIn 2357
CurveAddAtomToVectorStream function 854
CurveAddPathAtomToVectorStream function 855
CurveAddZeroAtomToVectorStream function 856
CurveCountPointsInPath function 856
CurveCreateVectorStream function 857
CurveGetAtomDataFromVectorStream function 858
CurveGetLength function 859
CurveGetNearestPathPoint function 859
CurveGetPathPoint function 860
CurveInsertPointIntoPath function 861
CurveLengthToPoint function 862
CurveNewPath function 863
CurvePathPointToLength function 864
CurveSetPathPoint function 865
CutMovieSelection function 1560

D

Data Handler Flags 1171
DataCodecBeginInterruptSafe function 759
DataCodecComponent data type 843
DataCodecCompress function 760
DataCodecCompressPartial function 761
DataCodecDecompress function 762
DataCodecDecompressPartial function 763
DataCodecEndInterruptSafe function 764
DataCodecGetCompressBufferSize function 765
DataHAddMovie function 766
DataHandlerComponent data type 1661
DataHAppend64 function 766
DataHCanUseDataRef function 767
DataHCloseForRead function 768
DataHCloseForWrite function 769

2481
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

DataHCompareDataRef function 770
DataHCompletionProc callback 842
DataHCompletionUPP data type 843
DataHCreateFile function 771
DataHCreateFileWithFlags function 772
DataHDeleteFile function 773
DataHDoesBuffer function 773
DataHFileTypeOrderingHandle data type 843
DataHFileTypeOrderingPtr data type 843
DataHFinishData function 774
DataHFlushCache function 775
DataHFlushData function 775
DataHGetAvailableFileSize function 776
DataHGetCacheSizeLimit function 776
DataHGetData function 777
DataHGetDataAvailability function 778
DataHGetDataInBuffer function 779
DataHGetDataRate function 779
DataHGetDataRef function 780
DataHGetDataRefAsType function 780
DataHGetDataRefExtension function 781
DataHGetDataRefWithAnchor function 782
DataHGetDeviceIndex function 782
DataHGetFileName function 783
DataHGetFileSize function 784
DataHGetFileSize64 function 785
DataHGetFileSizeAsync function 785
DataHGetFileTypeOrdering function 786
DataHGetFileTypeOrdering Values 847
DataHGetFreeSpace function 787
DataHGetFreeSpace64 function 787
DataHGetInfo function 788
DataHGetInfoFlags function 789
DataHGetInfoFlags Values 848
DataHGetMacOSFileType function 789
DataHGetMIMEType function 790
DataHGetMIMETypeAsync function 790
DataHGetMovie function 791
DataHGetMovieWithFlags function 792
DataHGetPreferredBlockSize function 793
DataHGetScheduleAheadTime function 794
DataHGetTemporaryDataRefCapabilities function

794
DataHGetVolumeList function 795
DataHIsStreamingDataHandler function 796
DataHOpenForRead function 796
DataHOpenForWrite function 797
DataHPlaybackHints function 798
DataHPlaybackHints64 function 799
DataHPollRead function 800
DataHPreextend function 801
DataHPreextend64 function 801
DataHPutData function 802

DataHReadAsync function 803
DataHRenameFile function 804
DataHResolveDataRef function 805
DataHScheduleData function 806
DataHScheduleData64 function 807
DataHSchedulePtr data type 843
DataHScheduleRecord structure 844
DataHScheduleRecord Values 847
DataHSetCacheSizeLimit function 808
DataHSetDataRef function 809
DataHSetDataRefExtension function 810
DataHSetDataRefWithAnchor function 811
DataHSetFileSize function 811
DataHSetFileSize64 function 812
DataHSetIdleManager function 813
DataHSetMacOSFileType function 813
DataHSetMovieUsageFlags function 814
DataHSetMovieUsageFlags Values 848
DataHSetTimeBase function 814
DataHSetTimeHints function 815
DataHTask function 816
DataHUpdateMovie function 816
DataHUseTemporaryDataRef function 817
DataHVolumeList data type 845
DataHVolumeListPtr data type 845
DataHWrite function 817
DataHWrite64 function 819
DataRateParams structure 741
DataRateParamsPtr data type 742
DecompressImage function 619
DecompressorComponent data type 743
DecompressSequenceBegin function 621
DecompressSequenceBeginS function 622
DecompressSequenceFrame function 624
DecompressSequenceFrameS function 625
DecompressSequenceFrameWhen function 626
DeleteMovieFile function 1320
DeleteMovieSegment function 1561
DeleteMovieStorage function 1321
DeleteTrackReference function 1562
DeleteTrackSegment function 1563
DetachMovieFromCurrentThread function 1321
DetachTimeBaseFromCurrentThread function 186
dfClipToTextBox constant 407
dfDontAutoScale constant 407
dfDontDisplay constant 407
dfHorizScroll constant 407
dfReverseScroll constant 407
dfScrollIn constant 407
dfScrollOut constant 407
dfShrinkTextBoxToFit constant 407
dfUseMovieBGColor constant 407
digiInDoesBW constant 2353

2482
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

digiInDoesColor constant 2353
digiInDoesComponent constant 2353
digiInDoesComposite constant 2352
digiInDoesGenLock constant 2352
digiInDoesNTSC constant 2352
digiInDoesPAL constant 2352
digiInDoesSECAM constant 2352
digiInSignalLock constant 2353
digiInVTR_Broadcast constant 2353
digiOutDoes1 constant 2353
digiOutDoes16 constant 2354
digiOutDoes2 constant 2353
digiOutDoes32 constant 2354
digiOutDoes4 constant 2353
digiOutDoes8 constant 2354
digiOutDoesAsyncGrabs constant 2357
digiOutDoesBlend constant 2356
digiOutDoesCompress constant 2357
digiOutDoesCompressOnly constant 2357
digiOutDoesDither constant 2354
digiOutDoesDouble constant 2355
digiOutDoesHorizFlip constant 2356
digiOutDoesHWPlayThru constant 2356
digiOutDoesILUT constant 2357
digiOutDoesKeyColor constant 2357
digiOutDoesMask constant 2354
digiOutDoesPlayThruDuringCompress constant 2357
digiOutDoesQuad constant 2355
digiOutDoesQuarter constant 2355
digiOutDoesRotate constant 2355
digiOutDoesShrink constant 2354
digiOutDoesSixteenth constant 2355
digiOutDoesSkew constant 2356
digiOutDoesStretch constant 2354
digiOutDoesUnreadableScreenBits constant 2357
digiOutDoesVertFlip constant 2356
digiOutDoesWarp constant 2356
DigitizerInfo structure 2340
digiUnimpErr constant 427
DisposeActionsUPP function 1322
DisposeAllSprites function 1322
DisposeCallBack function 186
DisposeCDataHandlerUPP function 820
DisposeCharDataHandlerUPP function 820
DisposeCodecNameList function 628
DisposeCommentHandlerUPP function 821
DisposeDataHCompletionUPP function 821
DisposeDoMCActionUPP function 1323
DisposeEndDocumentHandlerUPP function 822
DisposeEndElementHandlerUPP function 822
DisposeGetMovieUPP function 1323
DisposeICMAlignmentUPP function 21
DisposeICMCompletionUPP function 22

DisposeICMConvertDataFormatUPP function 22
DisposeICMCursorShieldedUPP function 23
DisposeICMDataUPP function 23
DisposeICMFlushUPP function 24
DisposeICMMemoryDisposedUPP function 24
DisposeICMProgressUPP function 25
DisposeImageCodecDrawBandCompleteUPP function

866
DisposeImageCodecMPDrawBandUPP function 866
DisposeImageCodecTimeTriggerUPP function 867
DisposeMatte function 187
DisposeMCActionFilterUPP function 1179
DisposeMCActionFilterWithRefConUPP function

1179
DisposeMovie function 188
DisposeMovieController function 1324
DisposeMovieDrawingCompleteUPP function 1326
DisposeMovieEditState function 1564
DisposeMovieExecuteWiredActionsUPP function

1327
DisposeMovieExportGetDataUPP function 461
DisposeMovieExportGetPropertyUPP function 461
DisposeMovieExportStageReachedCallbackUPP

function 462
DisposeMoviePrePrerollCompleteUPP function 1327
DisposeMoviePreviewCallOutUPP function 1328
DisposeMovieProgressUPP function 1328
DisposeMovieRgnCoverUPP function 1329
DisposeMoviesErrorUPP function 1329
DisposeMovieTrack function 1564
DisposeMusicMIDISendUPP function (Deprecated in

Mac OS X v10.5) 1676
DisposeMusicOfflineDataUPP function (Deprecated

in Mac OS X v10.5) 1676
DisposePrePrerollCompleteUPP function 1093
DisposePreprocessInstructionHandlerUPP function

822
DisposeQDPixUPP function 25
DisposeQTBandwidthNotificationUPP function

(Deprecated in Mac OS X v10.4) 1232
DisposeQTCallBackUPP function 1330
DisposeQTEffectListFilterUPP function 1330
DisposeQTNextTaskNeededSoonerCallbackUPP

function 1331
DisposeQTSModalFilterUPP function 1791
DisposeQTSNotificationUPP function 1791
DisposeQTSPanelFilterUPP function 1792
DisposeQTSyncTaskUPP function 1331
DisposeQTTrackPropertyListenerUPP function 1233
DisposeQTVRBackBufferImagingUPP function 1975
DisposeQTVREnteringNodeUPP function 1976
DisposeQTVRImagingCompleteUPP function 1976
DisposeQTVRInterceptUPP function 1977

2483
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

DisposeQTVRLeavingNodeUPP function 1977
DisposeQTVRMouseOverHotSpotUPP function 1978
DisposeRTPMPDataReleaseUPP function 1792
DisposeRTPPBCallbackUPP function 1793
DisposeSCModalFilterUPP function 462
DisposeSCModalHookUPP function 463
DisposeSGAddFrameBottleUPP function 2096
DisposeSGCompressBottleUPP function 2096
DisposeSGCompressCompleteBottleUPP function

2097
DisposeSGDataUPP function 2097
DisposeSGDisplayBottleUPP function 2098
DisposeSGDisplayCompressBottleUPP function 2098
DisposeSGGrabBottleUPP function 2099
DisposeSGGrabCompleteBottleUPP function 2099
DisposeSGGrabCompressCompleteBottleUPP function

2099
DisposeSGModalFilterUPP function 2100
DisposeSGTransferFrameBottleUPP function 2100
DisposeSprite function 1331
DisposeSpriteWorld function 1332
DisposeStartDocumentHandlerUPP function 823
DisposeStartElementHandlerUPP function 823
DisposeStdPixUPP function 26
DisposeTextMediaUPP function 1333
DisposeTimeBase function 189
DisposeTrackEditState function 1566
DisposeTrackMedia function 1566
DisposeTrackTransferUPP function 1334
DisposeTuneCallBackUPP function (Deprecated in Mac

OS X v10.5) 1677
DisposeTunePlayCallBackUPP function (Deprecated

in Mac OS X v10.5) 1677
DisposeTweenerDataUPP function 1334
DisposeUserData function 1335
DisposeVdigIntUPP function 824
ditherCopy constant 434
DragAlignedGrayRgn function 629
DragAlignedWindow function 630
DrawPictureFile function 633
DrawTrimmedPicture function 634
DrawTrimmedPictureFile function 635
DSequence Flags 748

E

EffectsFrameParams structure 949
EffectsFrameParamsPtr data type 950
EffectSource structure 951
EffectSource Values 963
EffectSourcePtr data type 951
EndFullScreen function 1335

EndMediaEdits function 1567
EnterMovies function 189
EnterMoviesOnThread function 191
EnterMoviesOnThread Values 358
EqualMatrix function 636
Error Codes 422
ExecuteCallBack function 192
ExitMovies function 192
ExitMoviesOnThread function 194
ExtendMediaDecodeDurationToDisplayEndTime

function 1568

F

FCompressImage function 637
FCompressImage Values 372, 748
FCompressPicture function 639
FCompressPictureFile function 641
FDecompressImage function 643
File Types and Creators 428
FindCodec function 645
FixedRect structure 743
FixExp2 function 646
FixLog2 function 647
FixMulDiv function 647
FixPow function 648
FlashMediaDoButtonActions function 194
FlashMediaFrameLabelToMovieTime function 195
FlashMediaFrameNumberToMovieTime function 196
FlashMediaGetDisplayedFrameNumber function 196
FlashMediaGetFlashVariable function 197
FlashMediaGetRefConBounds function 198
FlashMediaGetRefConID function 198
FlashMediaGetSupportedSwfVersion function 199
FlashMediaIDToRefCon function 200
FlashMediaSetFlashVariable function 200
FlashMediaSetPan function 201
FlashMediaSetZoom function 202
FlashMediaSetZoomRect function 202
FlattenMovie function 1336
FlattenMovieData function 1338
FlattenMovieData Values 382
FlattenMovieDataToDataRef function 1340
FourCharCode data type 1509
FracSinCos function 648
Fract data type 743
FSSpecPtr data type 1509
Full Screen Flags 1517
fullScreenAllowEvents constant 1518
fullScreenCaptureDisplay constant 1518
fullScreenDontChangeMenuBar constant 1518
fullScreenHideCursor constant 1518

2484
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

fullScreenPreflightSize constant 1518

G

GCPart structure 1764
GDGetScale function 649
GDHasScale function 649
GDSetScale function 650
Generic Music Constants 1777
GenericKnobDescription structure 1765
GenericKnobDescriptionListHandledata type 1765
GenericKnobDescriptionListPtr data type 1766
GetBestDeviceRect function 651
GetCallBackTimeBase function 203
GetCallBackType function 203
GetCodecInfo function 652
GetCodecNameList function 652
GetCompressedImageSize function 653
GetCompressedPixMapInfo function 654
GetCompressionTime function 655
GetCSequenceDataRateParams function 657
GetCSequenceFrameNumber function 657
GetCSequenceKeyFrameRate function 658
GetCSequenceMaxCompressionSize function 658
GetCSequencePrevBuffer function 659
GetDataHandler function 1569
GetDSequenceImageBuffer function 660
GetDSequenceMatrix function 661
GetDSequenceNonScheduledDisplayDirection

function 661
GetDSequenceNonScheduledDisplayTime function

662
GetDSequenceScreenBuffer function 662
GetFirstCallBack function 204
GetGraphicsImporterForDataRef function 663
GetGraphicsImporterForDataRefWithFlags function

664
GetGraphicsImporterForFile function 665
GetGraphicsImporterForFileWithFlags function

666
GetGraphicsImporterForFileWithFlags Values 752
GetImageDescriptionCTable function 667
GetImageDescriptionExtension function 668
GetMatrixType function 669
GetMaxCompressionSize function 670
GetMaxLoadedTimeInMovie function 1342
GetMediaAdvanceDecodeTime function 1570
GetMediaCreationTime function 1570
GetMediaDataHandler function 1571
GetMediaDataHandlerDescription function 1571
GetMediaDataRef function 1342
GetMediaDataRef Values 1517

GetMediaDataRefCount function 1344
GetMediaDataSize function 1572
GetMediaDataSize64 function 1573
GetMediaDataSizeTime64 function 1573
GetMediaDecodeDuration function 1574
GetMediaDisplayDuration function 1575
GetMediaDisplayEndTime function 1575
GetMediaDisplayStartTime function 1576
GetMediaDuration function 1576
GetMediaHandler function 1577
GetMediaHandlerDescription function 1578
GetMediaInputMap function 1579
GetMediaLanguage function 1581
GetMediaModificationTime function 1581
GetMediaNextInterestingDecodeTime function 1344
GetMediaNextInterestingDisplayTime function

1345
GetMediaNextInterestingTime function 1346
GetMediaPlayHints function 1348
GetMediaPreferredChunkSize function 1582
GetMediaPropertyAtom function 1348
GetMediaQuality function 1582
GetMediaSample function 1583
GetMediaSample2 function 1585
GetMediaSampleCount function 1586
GetMediaSampleDescription function 1587
GetMediaSampleDescriptionCount function 1588
GetMediaSampleReference function 1589
GetMediaSampleReferences function 1590
GetMediaSampleReferences64 function 1592
GetMediaShadowSync function 1593
GetMediaSyncSampleCount function 1594
GetMediaTimeScale function 1594
GetMediaTrack function 1595
GetMediaUserData function 1595
GetMovieActive function 204
GetMovieActiveSegment function 205
GetMovieAnchorDataRef function 1349
GetMovieAudioBalance function 1350
GetMovieAudioContext function 205
GetMovieAudioFrequencyLevels function 1351
GetMovieAudioFrequencyMeteringBandFrequencies

function 1351
GetMovieAudioFrequencyMeteringNumBands function

1352
GetMovieAudioGain function 1353
GetMovieAudioMute function 1353
GetMovieAudioVolumeLevels function 1354
GetMovieAudioVolumeMeteringEnabled function

1355
GetMovieBoundsRgn function 206
GetMovieBox function 207
GetMovieClipRgn function 208

2485
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

GetMovieColorTable function 1356
GetMovieCompleteParams structure 1164
GetMovieCoverProcs function 1356
GetMovieCreationTime function 209
GetMovieDataSize function 1596
GetMovieDataSize64 function 1596
GetMovieDefaultDataRef function 1357
GetMovieDisplayBoundsRgn function 209
GetMovieDisplayClipRgn function 210
GetMovieDuration function 211
GetMovieGWorld function 212
GetMovieImporter Flags 1665
GetMovieImporterForDataRef function 1597
GetMovieIndTrack function 1598
GetMovieIndTrackType function 1600
GetMovieIndTrackType Values 1665
GetMovieLoadState function 1358
GetMovieMatrix function 213
GetMovieModificationTime function 213
GetMovieNaturalBoundsRect function 214
GetMovieNextInterestingTime function 1359
GetMoviePict function 214
GetMoviePosterPict function 215
GetMoviePosterTime function 216
GetMoviePreferredRate function 217
GetMoviePreferredVolume function 217
GetMoviePreviewMode function 218
GetMoviePreviewTime function 218
GetMovieProc callback 1504
GetMovieProgressProc function 1361
GetMoviePropertyAtom function 1361
GetMovieRate function 219
GetMovieRateChangeConstraints function 220
GetMovieSegmentDisplayBoundsRgn function 1362
GetMovieSelection function 220
GetMoviesError function 221
GetMoviesStickyError function 222
GetMovieStatus function 1363
GetMovieThreadAttachState function 1363
GetMovieTime function 223
GetMovieTimeBase function 224
GetMovieTimeScale function 224
GetMovieTrack function 1601
GetMovieTrackCount function 1601
GetMovieUPP data type 1509
GetMovieUserData function 225
GetMovieVisualBrightness function 1364
GetMovieVisualContext function 226
GetMovieVisualContrast function 1364
GetMovieVisualHue function 1365
GetMovieVisualSaturation function 1366
GetMovieVolume function 226
GetNextCallBack function 227

GetNextImageDescriptionExtensionType function
672

GetNextTrackForCompositing function 227
GetNextTrackReferenceType function 1602
GetNextUserDataType function 1366
GetPictureFileHeader function 673
GetPosterBox function 1367
GetPrevTrackForCompositing function 228
GetQuickTimePreference function 1368
GetSimilarity function 673
GetSoundDescriptionExtension function 1369
GetSpriteProperty function 1370
GetTimeBaseEffectiveRate function 228
GetTimeBaseFlags function 229
GetTimeBaseMasterClock function 229
GetTimeBaseMasterOffsetTimeBase function 230
GetTimeBaseMasterTimeBase function 231
GetTimeBaseRate function 231
GetTimeBaseRateChangeStatus function 232
GetTimeBaseStartTime function 233
GetTimeBaseStatus function 234
GetTimeBaseStopTime function 234
GetTimeBaseThreadAttachState function 235
GetTimeBaseTime function 235
GetTrackAlternate function 1603
GetTrackAudioGain function 1370
GetTrackAudioMute function 1371
GetTrackBoundsRgn function 236
GetTrackClipRgn function 237
GetTrackCreationTime function 1604
GetTrackDataSize function 1604
GetTrackDataSize64 function 1605
GetTrackDimensions function 1606
GetTrackDisplayBoundsRgn function 237
GetTrackDisplayMatrix function 1607
GetTrackDuration function 1607
GetTrackEditRate function 1608
GetTrackEditRate64 function 1609
GetTrackEnabled function 1609
GetTrackID function 1610
GetTrackLayer function 1611
GetTrackLoadSettings function 1372
GetTrackMatrix function 1611
GetTrackMatte function 238
GetTrackMedia function 1612
GetTrackModificationTime function 1613
GetTrackMovie function 1613
GetTrackMovieBoundsRgn function 239
GetTrackNextInterestingTime function 1373
GetTrackOffset function 1614
GetTrackPict function 239
GetTrackReference function 1614
GetTrackReferenceCount function 1615

2486
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

GetTrackSegmentDisplayBoundsRgn function 1374
GetTrackSoundLocalizationSettings function 1616
GetTrackStatus function 1375
GetTrackUsage function 1616
GetTrackUserData function 1617
GetTrackVolume function 1618
GetUserData function 1375
GetUserDataItem function 1376
GetUserDataText function 1377
GoToBeginningOfMovie function 240
GoToEndOfMovie function 241
GrafPort structure 2344
GrafPtr data type 2347
GraphicImageMovieImportComponent data type 555
Graphics Importer Flags 1082
Graphics Transfer Modes 430
GraphicsExportCanTranscode function 974
GraphicsExportCanUseCompressor function 975
GraphicsExportComponent data type 1081
GraphicsExportDoExport function 975
GraphicsExportDoStandaloneExport function 976
GraphicsExportDoTranscode function 977
GraphicsExportDoUseCompressor function 977
GraphicsExportDrawInputImage function 978
GraphicsExportGetColorSyncProfile function 979
GraphicsExportGetCompressionMethod function 980
GraphicsExportGetCompressionQuality function

980
GraphicsExportGetDefaultFileNameExtension

function 981
GraphicsExportGetDefaultFileTypeAndCreator

function 982
GraphicsExportGetDepth function 982
GraphicsExportGetDontRecompress function 983
GraphicsExportGetExifEnabled function 983
GraphicsExportGetInputCGBitmapContext function

984
GraphicsExportGetInputCGImage function 984
GraphicsExportGetInputDataReference function

985
GraphicsExportGetInputDataSize function 986
GraphicsExportGetInputFile function 986
GraphicsExportGetInputGraphicsImporter function

987
GraphicsExportGetInputGWorld function 988
GraphicsExportGetInputHandle function 988
GraphicsExportGetInputImageDepth function 989
GraphicsExportGetInputImageDescription function

989
GraphicsExportGetInputImageDimensions function

990
GraphicsExportGetInputOffsetAndLimit function

991

GraphicsExportGetInputPicture function 991
GraphicsExportGetInputPixmap function 992
GraphicsExportGetInputPtr function 993
GraphicsExportGetInterlaceStyle function 994
GraphicsExportGetMetaData function 994
GraphicsExportGetMIMETypeList function 995
GraphicsExportGetOutputDataReference function

995
GraphicsExportGetOutputFile function 996
GraphicsExportGetOutputFileTypeAndCreator

function 997
GraphicsExportGetOutputHandle function 997
GraphicsExportGetOutputMark function 998
GraphicsExportGetOutputOffsetAndMaxSize

function 998
GraphicsExportGetProgressProc function 999
GraphicsExportGetResolution function 1000
GraphicsExportGetSettingsAsAtomContainer

function 1000
GraphicsExportGetSettingsAsText function 1001
GraphicsExportGetTargetDataSize function 1001
GraphicsExportGetThumbnailEnabled function 1002
GraphicsExportMayExporterReadInputData function

1002
GraphicsExportReadInputData function 1003
GraphicsExportReadOutputData function 1004
GraphicsExportRequestSettings function 1005
GraphicsExportSetColorSyncProfile function 1006
GraphicsExportSetCompressionMethod function

1006
GraphicsExportSetCompressionQuality function

1007
GraphicsExportSetDepth function 1008
GraphicsExportSetDontRecompress function 1008
GraphicsExportSetExifEnabled function 1009
GraphicsExportSetInputCGBitmapContext function

1010
GraphicsExportSetInputCGImage function 1010
GraphicsExportSetInputDataReference function

1011
GraphicsExportSetInputFile function 1011
GraphicsExportSetInputGraphicsImporter function

1012
GraphicsExportSetInputGWorld function 1013
GraphicsExportSetInputHandle function 1014
GraphicsExportSetInputOffsetAndLimit function

1015
GraphicsExportSetInputPicture function 1015
GraphicsExportSetInputPixmap function 1016
GraphicsExportSetInputPtr function 1017
GraphicsExportSetInterlaceStyle function 1018
GraphicsExportSetMetaData function 1018

2487
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

GraphicsExportSetOutputDataReference function
1019

GraphicsExportSetOutputFile function 1020
GraphicsExportSetOutputFileTypeAndCreator

function 1020
GraphicsExportSetOutputHandle function 1021
GraphicsExportSetOutputMark function 1021
GraphicsExportSetOutputOffsetAndMaxSize

function 1022
GraphicsExportSetProgressProc function 1023
GraphicsExportSetResolution function 1023
GraphicsExportSetSettingsFromAtomContainer

function 1024
GraphicsExportSetTargetDataSize function 1025
GraphicsExportSetThumbnailEnabled function 1025
GraphicsExportWriteOutputData function 1026
GraphicsImageImportGetSequenceEnabled function

463
GraphicsImageImportSetSequenceEnabled function

464
GraphicsImportComponent data type 1081
GraphicsImportCreateCGImage function 1027
GraphicsImportCreateCGImage Values 1082
GraphicsImportDoesDrawAllPixels function 1027
GraphicsImportDoesDrawAllPixels Values 1081
GraphicsImportDoExportImageFileDialog function

1028
GraphicsImportDoExportImageFileToDataRefDialog

function 1029
GraphicsImportDraw function 1030
GraphicsImportExportImageFile function 1031
GraphicsImportExportImageFileToDataRef function

1033
GraphicsImportGetAliasedDataReference function

1033
GraphicsImportGetAsPicture function 1034
GraphicsImportGetBaseDataOffsetAndSize64

function 1035
GraphicsImportGetBoundsRect function 1035
GraphicsImportGetClip function 1036
GraphicsImportGetColorSyncProfile function 1037
GraphicsImportGetDataFile function 1037
GraphicsImportGetDataHandle function 1038
GraphicsImportGetDataOffsetAndSize function

1039
GraphicsImportGetDataOffsetAndSize64 function

1040
GraphicsImportGetDataReference function 1040
GraphicsImportGetDataReferenceOffsetAndLimit

function 1041
GraphicsImportGetDataReferenceOffsetAndLimit64

function 1042
GraphicsImportGetDefaultClip function 1043

GraphicsImportGetDefaultGraphicsMode function
1044

GraphicsImportGetDefaultMatrix function 1045
GraphicsImportGetDefaultSourceRect function

1045
GraphicsImportGetDestinationColorSyncProfileRef

function 1046
GraphicsImportGetDestRect function 1046
GraphicsImportGetExportImageTypeList function

1047
GraphicsImportGetExportSettingsAsAtomContainer

function 1048
GraphicsImportGetFlags function 1049
GraphicsImportGetGenericColorSyncProfile

function 1049
GraphicsImportGetGraphicsMode function 1050
GraphicsImportGetGWorld function 1050
GraphicsImportGetImageCount function 1051
GraphicsImportGetImageDescription function 1052
GraphicsImportGetImageIndex function 1053
GraphicsImportGetMatrix function 1053
GraphicsImportGetMetaData function 1054
GraphicsImportGetMIMETypeList function 1055
GraphicsImportGetNaturalBounds function 1055
GraphicsImportGetOverrideSourceColorSyncProfileRef

function 1056
GraphicsImportGetProgressProc function 1057
GraphicsImportGetQuality function 1057
GraphicsImportGetSourceRect function 1058
GraphicsImportReadData function 1059
GraphicsImportReadData64 function 1060
GraphicsImportSaveAsPicture function 1060
GraphicsImportSaveAsPictureToDataRef function

1061
GraphicsImportSaveAsQuickTimeImageFile function

1062
GraphicsImportSaveAsQuickTimeImageFileToDataRef

function 1063
GraphicsImportSetBoundsRect function 1063
GraphicsImportSetClip function 1064
GraphicsImportSetDataFile function 1065
GraphicsImportSetDataHandle function 1066
GraphicsImportSetDataReference function 1067
GraphicsImportSetDataReferenceOffsetAndLimit

function 1068
GraphicsImportSetDataReferenceOffsetAndLimit64

function 1069
GraphicsImportSetDestinationColorSyncProfileRef

function 1069
GraphicsImportSetDestRect function 1070
GraphicsImportSetExportSettingsFromAtomContainer

function 1070
GraphicsImportSetFlags function 1071

2488
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

GraphicsImportSetGraphicsMode function 1072
GraphicsImportSetGWorld function 1072
GraphicsImportSetImageIndex function 1073
GraphicsImportSetImageIndexToThumbnail function

1074
GraphicsImportSetMatrix function 1075
GraphicsImportSetOverrideSourceColorSyncProfileRef

function 1075
GraphicsImportSetProgressProc function 1076
GraphicsImportSetQuality function 1077
GraphicsImportSetSourceRect function 1078
GraphicsImportValidate function 1078
GraphicsImportWillUseColorMatching function

1079
grayishTextOr constant 432
gxPaths structure 952
gxPoint structure 952

H

HandlerError data type 555
HasMovieChanged function 1378
hilite constant 432
hilitetransfermode constant 432
HIMovieViewChangeAttributes function 1180
HIMovieViewCreate function 1180
HIMovieViewGetAttributes function 1181
HIMovieViewGetControllerBarSize function 1181
HIMovieViewGetMovie function 1182
HIMovieViewGetMovieController function 1182
HIMovieViewPause function 1183
HIMovieViewPlay function 1183
HIMovieViewSetMovie function 1184
Hint Flags 1518
hintsAllowIdleSleep constant 1519
HitTestDSequenceData function 674

I

ICM Preferences and Flags 382
ICM Property IDs 140
ICMAlignmentProc callback 130
ICMAlignmentUPP data type 136
ICMCompletionProc callback 131
ICMCompletionUPP data type 136
ICMCompressionFrameOptionsCreate function 26
ICMCompressionFrameOptionsCreateCopy function

27
ICMCompressionFrameOptionsGetForceKeyFrame

function 27

ICMCompressionFrameOptionsGetFrameType function
28

ICMCompressionFrameOptionsGetProperty function
28

ICMCompressionFrameOptionsGetPropertyInfo
function 29

ICMCompressionFrameOptionsGetTypeID function
30

ICMCompressionFrameOptionsRelease function 30
ICMCompressionFrameOptionsRetain function 31
ICMCompressionFrameOptionsSetForceKeyFrame

function 31
ICMCompressionFrameOptionsSetFrameType function

32
ICMCompressionFrameOptionsSetProperty function

33
ICMCompressionSessionBeginPass function 33
ICMCompressionSessionCompleteFrames function

34
ICMCompressionSessionCreate function 35
ICMCompressionSessionEncodeFrame function 37
ICMCompressionSessionEndPass function 38
ICMCompressionSessionGetImageDescription

function 38
ICMCompressionSessionGetPixelBufferPool

function 39
ICMCompressionSessionGetProperty function 40
ICMCompressionSessionGetPropertyInfo function

41
ICMCompressionSessionGetTimeScale function 42
ICMCompressionSessionGetTypeID function 42
ICMCompressionSessionOptionsCreate function 42
ICMCompressionSessionOptionsCreateCopy function

43
ICMCompressionSessionOptionsGetAllowFrame-

Reordering function 44
ICMCompressionSessionOptionsGetAllowFrameTime-

Changes function 44
ICMCompressionSessionOptionsGetAllowTemporal-

Compression function 44
ICMCompressionSessionOptionsGetDurationsNeeded

function 45
ICMCompressionSessionOptionsGetMaxKeyFrameInterval

function 45
ICMCompressionSessionOptionsGetProperty

function 46
ICMCompressionSessionOptionsGetPropertyInfo

function 47
ICMCompressionSessionOptionsGetTypeID function

48
ICMCompressionSessionOptionsRelease function

49
ICMCompressionSessionOptionsRetain function 49

2489
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

ICMCompressionSessionOptionsSetAllowFrame-
Reordering function 49

ICMCompressionSessionOptionsSetAllowFrameTime-
Changes function 50

ICMCompressionSessionOptionsSetAllowTemporal-
Compression function 51

ICMCompressionSessionOptionsSetDurationsNeeded
function 51

ICMCompressionSessionOptionsSetMaxKeyFrameInterval
function 52

ICMCompressionSessionOptionsSetProperty
function 53

ICMCompressionSessionProcessBetweenPasses
function 54

ICMCompressionSessionRelease function 55
ICMCompressionSessionRetain function 55
ICMCompressionSessionSetProperty function 56
ICMCompressionSessionSupportsMultiPassEncoding

function 57
ICMCompressorSessionDropFrame function 57
ICMCompressorSessionEmitEncodedFrame function

58
ICMCompressorSourceFrameGetDisplayNumber

function 59
ICMCompressorSourceFrameGetDisplayTimeStampAnd-

Duration function 59
ICMCompressorSourceFrameGetFrameOptions

function 60
ICMCompressorSourceFrameGetPixelBuffer function

60
ICMCompressorSourceFrameGetTypeID function 61
ICMCompressorSourceFrameRelease function 61
ICMCompressorSourceFrameRetain function 62
ICMCursorShieldedProc callback 131
ICMCursorShieldedUPP data type 136
ICMDataProc callback 132
ICMDataUPP data type 137
ICMDecompressComplete function 675
ICMDecompressCompleteS function 676
ICMDecompressionFrameOptionsCreate function 62
ICMDecompressionFrameOptionsCreateCopy function

63
ICMDecompressionFrameOptionsGetProperty

function 63
ICMDecompressionFrameOptionsGetPropertyInfo

function 64
ICMDecompressionFrameOptionsGetTypeID function

65
ICMDecompressionFrameOptionsRelease function

66
ICMDecompressionFrameOptionsRetain function 66
ICMDecompressionFrameOptionsSetProperty

function 66

ICMDecompressionSessionCreate function 67
ICMDecompressionSessionCreateForVisualContext

function 68
ICMDecompressionSessionDecodeFrame function 69
ICMDecompressionSessionFlush function 70
ICMDecompressionSessionGetProperty function 71
ICMDecompressionSessionGetPropertyInfo function

72
ICMDecompressionSessionGetTypeID function 73
ICMDecompressionSessionOptionsCreate function

73
ICMDecompressionSessionOptionsCreateCopy

function 74
ICMDecompressionSessionOptionsGetProperty

function 74
ICMDecompressionSessionOptionsGetPropertyInfo

function 75
ICMDecompressionSessionOptionsGetTypeID

function 76
ICMDecompressionSessionOptionsRelease function

76
ICMDecompressionSessionOptionsRetain function

77
ICMDecompressionSessionOptionsSetProperty

function 77
ICMDecompressionSessionRelease function 78
ICMDecompressionSessionRetain function 79
ICMDecompressionSessionSetNonScheduledDisplay-

Direction function 79
ICMDecompressionSessionSetNonScheduledDisplayTime

function 80
ICMDecompressionSessionSetProperty function 81
ICMDecompressionTrackingCallbackRecord

structure 137
ICMEncodedFrameCreateMutable function 82
ICMEncodedFrameGetBufferSize function 82
ICMEncodedFrameGetDataPtr function 83
ICMEncodedFrameGetDataSize function 83
ICMEncodedFrameGetDecodeDuration function 84
ICMEncodedFrameGetDecodeNumber function 84
ICMEncodedFrameGetDecodeTimeStamp function 85
ICMEncodedFrameGetDisplayDuration function 85
ICMEncodedFrameGetDisplayOffset function 85
ICMEncodedFrameGetDisplayTimeStamp function 86
ICMEncodedFrameGetFrameType function 86
ICMEncodedFrameGetImageDescription function 87
ICMEncodedFrameGetMediaSampleFlags function 88
ICMEncodedFrameGetSimilarity function 88
ICMEncodedFrameGetSourceFrameRefCon function

88
ICMEncodedFrameGetTimeScale function 89
ICMEncodedFrameGetTypeID function 89
ICMEncodedFrameGetValidTimeFlags function 90

2490
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

ICMEncodedFrameRelease function 90
ICMEncodedFrameRetain function 91
ICMEncodedFrameSetDataSize function 91
ICMEncodedFrameSetDecodeDuration function 91
ICMEncodedFrameSetDecodeTimeStamp function 92
ICMEncodedFrameSetDisplayDuration function 92
ICMEncodedFrameSetDisplayTimeStamp function 93
ICMEncodedFrameSetFrameType function 93
ICMEncodedFrameSetFrameType Values 160
ICMEncodedFrameSetMediaSampleFlags function 94
ICMEncodedFrameSetSimilarity function 95
ICMEncodedFrameSetValidTimeFlags function 95
ICMFlushProc callback 132
ICMFlushUPP data type 137
icmFrameTimeHasDecodeTime constant 383
icmFrameTimeHasVirtualStartTimeAndDuration

constant 383
ICMGetPixelFormatInfo function 677
ICMImageDescriptionGetProperty function 96
ICMImageDescriptionGetPropertyInfo function 97
ICMImageDescriptionSetProperty function 97
ICMMultiPassStorageCallbacks structure 137
ICMMultiPassStorageCopyDataAtTimeStamp function

98
ICMMultiPassStorageCreateWithCallbacks function

99
ICMMultiPassStorageCreateWithTemporaryFile

function 99
ICMMultiPassStorageCreateWithTemporaryFile Values 160
ICMMultiPassStorageGetTimeStamp function 100
ICMMultiPassStorageGetTimeStamp Values 160
ICMMultiPassStorageGetTypeID function 101
ICMMultiPassStorageRelease function 101
ICMMultiPassStorageRetain function 102
ICMMultiPassStorageSetDataAtTimeStamp function

102
ICMPixelFormatInfo structure 744
ICMPixelFormatInfoPtr data type 744
ICMProgressProc callback 133
ICMProgressProc Values 140
ICMProgressUPP data type 138
ICMSequenceGetChainMember function 677
ICMSequenceGetInfo function 678
ICMSequenceLockBits function 679
ICMSequenceSetInfo function 679
ICMSequenceUnlockBits function 680
ICMSetPixelFormatInfo function 681
ICMShieldSequenceCursor function 681
identityMatrixType constant 1957
ImageCodecBandCompress function 867
ImageCodecBandDecompress function 868
ImageCodecBeginBand function 869
ImageCodecBeginPass function 870

ImageCodecBusy function 871
ImageCodecCancelTrigger function 872
ImageCodecCompleteFrame function 872
ImageCodecCreateStandardParameterDialog

function 873
ImageCodecDecodeBand function 874
ImageCodecDismissStandardParameterDialog

function 875
ImageCodecDisposeImageGWorld function 876
ImageCodecDisposeMemory function 876
ImageCodecDITLEvent function 877
ImageCodecDITLInstall function 878
ImageCodecDITLItem function 878
ImageCodecDITLRemove function 879
ImageCodecDITLValidateInput function 880
ImageCodecDrawBand function 880
ImageCodecDroppingFrame function 881
ImageCodecEffectBegin function 882
ImageCodecEffectCancel function 882
ImageCodecEffectConvertEffectSourceToFormat

function 883
ImageCodecEffectDisposeSMPTEFrame function 884
ImageCodecEffectGetSpeed function 884
ImageCodecEffectPrepareSMPTEFrame function 885
ImageCodecEffectRenderFrame function 885
ImageCodecEffectRenderSMPTEFrame function 886
ImageCodecEffectSetup function 887
ImageCodecEncodeFrame function 888
ImageCodecEndBand function 888
ImageCodecExtractAndCombineFields function 889
ImageCodecFlush function 891
ImageCodecFlushFrame function 892
ImageCodecGetBaseMPWorkFunction function 892
ImageCodecGetCodecInfo function 893
ImageCodecGetCompressedImageSize function 894
ImageCodecGetCompressionTime function 895
ImageCodecGetDecompressLatency function 896
ImageCodecGetDITLForSize function 897
ImageCodecGetMaxCompressionSize function 898
ImageCodecGetMaxCompressionSizeWithSources

function 899
ImageCodecGetParameterList function 900
ImageCodecGetParameterListHandle function 901
ImageCodecGetSettings function 901
ImageCodecGetSettingsAsText function 902
ImageCodecGetSimilarity function 902
ImageCodecGetSourceDataGammaLevel function 903
ImageCodecHitTestData function 904
ImageCodecHitTestDataWithFlags function 905
ImageCodecInitialize function 906
ImageCodecIsImageDescriptionEquivalent function

906

2491
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

ImageCodecIsStandardParameterDialogEvent
function 907

ImageCodecMergeFloatingImageOntoWindow function
908

ImageCodecMPDrawBandProc callback 932
ImageCodecMPDrawBandUPP data type 953
ImageCodecNewImageBufferMemory function 909
ImageCodecNewImageGWorld function 910
ImageCodecNewMemory function 911
ImageCodecPreCompress function 912
ImageCodecPreDecompress function 912
ImageCodecPreflight function 913
ImageCodecPrepareToCompressFrames function 914
ImageCodecProcessBetweenPasses function 915
ImageCodecQueueStarting function 916
ImageCodecQueueStopping function 916
ImageCodecRemoveFloatingImage function 917
ImageCodecRequestGammaLevel function 918
ImageCodecRequestSettings function 919
ImageCodecScheduleFrame function 920
ImageCodecSetSettings function 920
ImageCodecSetTimeBase function 921
ImageCodecSetTimeCode function 922
ImageCodecSourceChanged function 922
ImageCodecStandardParameterDialogDoAction

function 923
ImageCodecTimeTriggerProc callback 933
ImageCodecTimeTriggerUPP data type 953
ImageCodecTrimImage function 925
ImageCodecValidateParameters function 926
ImageCodecValidateParameters Values 963
ImageFieldSequence data type 745
ImageFieldSequenceBegin function 682
ImageFieldSequenceEnd function 683
ImageFieldSequenceExtractCombine function 683
ImageFieldSequenceExtractCombine Values 384
ImageSequenceDataSource data type 745
ImageSubCodecDecompressCapabilities structure

954
ImageSubCodecDecompressRecord structure 954
ImageSubCodecDecompressRecord Values 962
ImageTranscodeDisposeFrameData function 685
ImageTranscodeFrame function 685
ImageTranscoderBeginSequence function 103
ImageTranscoderComponent data type 139
ImageTranscoderConvert function 104
ImageTranscoderDisposeData function 105
ImageTranscoderEndSequence function 106
ImageTranscodeSequence data type 745
ImageTranscodeSequenceBegin function 686
ImageTranscodeSequenceEnd function 687
InitializeQTS function 1793
InsertEmptyMovieSegment function 1618

InsertEmptyTrackSegment function 1619
InsertMediaIntoTrack function 1620
InsertMovieSegment function 1622
InsertTrackSegment function 1623
InstrumentAboutInfo structure 1766
InstrumentInfoListHandle data type 1767
InstrumentInfoListPtr data type 1767
InvalidateMovieRegion function 241
InvalidateSprite function 1379
InvalidateSpriteWorld function 1380
InverseMatrix function 687
InvokeQTTrackPropertyListenerUPP function 1233
IsMovieDone function 242
IsScrapMovie function 1624
ITextAddString function 243
ITextGetString function 244
ITextRemoveString function 244
ITextRemoveString Values 357

K

k422YpCbCr10CodecType constant 411
k422YpCbCr16CodecType constant 411
k422YpCbCr8CodecType constant 411
k4444YpCbCrA8CodecType constant 411
k4444YpCbCrA8RCodecType constant 412
k444YpCbCr10CodecType constant 411
k444YpCbCr8CodecType constant 411
kCodecFrameTypeDifference constant 962
kCodecFrameTypeKey constant 962
kCodecFrameTypeUnknown constant 962
kComponentPropertyCacheFlagIsDynamic constant

385
kComponentPropertyCacheFlagNotPersistent

constant 385
kComponentPropertyCacheFlags constant 385
kComponentPropertyCacheSeed constant 385
kComponentPropertyClassPropertyInfo constant

385
kComponentPropertyInfoList constant 385
kConnectionActive constant 1959
kDataHCanRead 385, 846
kDataHCanRead constant 386, 846
kDataHCanStreamingWrite constant 386, 847
kDataHCanWrite constant 386, 847
kDataHSpecialRead constant 386, 846
kDataHSpecialReadFile constant 386, 847
kDataHSpecialWrite constant 386, 847
kEffectRawSource constant 963
kGenericMusicAllDefaults constant 1779
kGenericMusicDrumKnob constant 1779

2492
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kGenericMusicMiscLongFirstGMDrumHW constant
1779

kGenericMusicMiscLongFirstGMHW constant 1779
kGenericMusicMiscLongFirstUserHW constant 1779
kGenericMusicResAboutPICT constant 1781
kGenericMusicResBitsLongList constant 1780
kGenericMusicResDrumKnobDescriptionList

constant 1780
kGenericMusicResDrumList constant 1780
kGenericMusicResGMTranslation constant 1780
kGenericMusicResInstrumentKnobDescriptionList

constant 1780
kGenericMusicResInstrumentList constant 1780
kGenericMusicResKnobDescriptionList constant

1780
kGenericMusicResMiscLongList constant 1780
kGenericMusicResMiscStringList constant 1779
kGenericMusicResModifiableInstrumentHW

constant 1780
kGenericMusicResROMInstrumentData constant 1780
kICMCompressionFrameOptionsPropertyID_-

ForceKeyFrame constant 152
kICMCompressionFrameOptionsPropertyID_FrameType

constant 152
kICMCompressionSessionOptionsPropertyID_-

AllowAsyncCompletion constant 153
kICMCompressionSessionOptionsPropertyID_-

AllowFrameReordering constant 153
kICMCompressionSessionOptionsPropertyID_-

AllowFrameTimeChanges constant 153
kICMCompressionSessionOptionsPropertyID_-

AllowTemporalCompression constant 152
kICMCompressionSessionOptionsPropertyID_-

AverageDataRate constant 155
kICMCompressionSessionOptionsPropertyID_-

CleanAperture constant 156
kICMCompressionSessionOptionsPropertyID_ColorTable

constant 154
kICMCompressionSessionOptionsPropertyID_-

CompressorComponent constant 154
kICMCompressionSessionOptionsPropertyID_-

CompressorSettings constant 154
kICMCompressionSessionOptionsPropertyID_-

CPUTimeBudget constant 155
kICMCompressionSessionOptionsPropertyID_-

DataRateLimitCount constant 155
kICMCompressionSessionOptionsPropertyID_-

DataRateLimits constant 155
kICMCompressionSessionOptionsPropertyID_Depth

constant 154
kICMCompressionSessionOptionsPropertyID_-

DurationsNeeded constant 153

kICMCompressionSessionOptionsPropertyID_-
ExpectedFrameRate constant 156

kICMCompressionSessionOptionsPropertyID_FieldInfo
constant 156

kICMCompressionSessionOptionsPropertyID_-
MaxDataRateLimits constant 155

kICMCompressionSessionOptionsPropertyID_-
MaxFrameDelayCount constant 154

kICMCompressionSessionOptionsPropertyID_-
MaxFrameDelayTime constant 154

kICMCompressionSessionOptionsPropertyID_-
MaxKeyFrameInterval constant 153

kICMCompressionSessionOptionsPropertyID_-
MaxPartialSyncFrameInterval constant 153

kICMCompressionSessionOptionsPropertyID_-
MultiPassStorage constant 156

kICMCompressionSessionOptionsPropertyID_-
PixelAspectRatio constant 156

kICMCompressionSessionOptionsPropertyID_Quality
constant 154

kICMCompressionSessionOptionsPropertyID_-
ScalingMode constant 156

kICMCompressionSessionOptionsPropertyID_-
SourceFrameCount constant 156

kICMCompressionSessionOptionsPropertyID_-
WasCompressed constant 155

kICMCompressionSessionPropertyID_-
CompressorPixelBufferAttributes constant
157

kICMCompressionSessionPropertyID_ImageDescription
constant 157

kICMCompressionSessionPropertyID_PixelBufferPool
constant 157

kICMCompressionSessionPropertyID_TimeScale
constant 156

kICMDecompressionFrameOptionsPropertyID_-
DestinationPixelBuffer constant 157

kICMDecompressionSessionOptionsPropertyID_Accuracy
constant 157

kICMDecompressionSessionOptionsPropertyID_-
DecompressorComponent constant 157

kICMDecompressionSessionOptionsPropertyID_-
DisplayOrderRequired constant 157

kICMDecompressionSessionOptionsPropertyID_-
FieldMode constant 157

kICMDecompressionSessionOptionsPropertyID_-
MaxBufferCount constant 158

kICMDecompressionSessionOptionsPropertyID_-
OutputAheadTime constant 158

kICMDecompressionSessionPropertyID_-
NonScheduledDisplayDirection constant 158

kICMDecompressionSessionPropertyID_-
NonScheduledDisplayTime constant 158

2493
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kICMDecompressionSessionPropertyID_PixelBufferPool
constant 158

kICMDecompressionSessionPropertyID_-
PixelBufferPoolIsShared constant 158

kICMImageDescriptionPropertyID_ClassicTrackHeight
constant 159

kICMImageDescriptionPropertyID_ClassicTrackWidth
constant 159

kICMImageDescriptionPropertyID_CleanAperture
constant 158

kICMImageDescriptionPropertyID_DisplayHeight
constant 159

kICMImageDescriptionPropertyID_DisplayWidth
constant 159

kICMImageDescriptionPropertyID_EncodedHeight
constant 158

kICMImageDescriptionPropertyID_EncodedWidth
constant 158

kICMImageDescriptionPropertyID_FieldInfo
constant 159

kICMImageDescriptionPropertyID_GammaLevel
constant 159

kICMImageDescriptionPropertyID_NCLCColorInfo
constant 159

kICMImageDescriptionPropertyID_PixelAspectRatio
constant 158

kICMImageDescriptionPropertyID_-
ProductionDisplayHeight constant 159

kICMImageDescriptionPropertyID_-
ProductionDisplayWidth constant 159

kICMImageDescriptionPropertyID_RowBytes
constant 159

kICMPixelFormatIsIndexed constant 384
kICMPixelFormatIsPlanarMask constant 384
kICMPixelFormatIsSupportedByQD constant 384
kICMSequenceUserPreferredCodecs constant 384
kICMValidTime_DecodeDurationIsValid 161
kICMValidTime_DisplayDurationIsValid constant

162
kICMValidTime_DisplayTimeStampIsValid constant

162
kInstrumentMatchGMNumber 1781
kKnobBasic 1782
kKnobFixedPoint16 constant 1783
kKnobFixedPoint8 constant 1783
kKnobGroupStart constant 1783
kKnobInterruptUnsafe constant 1783
kKnobKeyrangeOverride constant 1783
kKnobReadOnly constant 1782
kKnobTypeBoolean constant 1783
kKnobTypeGroupName constant 1783
kKnobTypeHertz constant 1784
kKnobTypeInstrument constant 1784

kKnobTypeMilliseconds constant 1784
kKnobTypeNote constant 1783
kKnobTypeNumber constant 1783
kKnobTypePan constant 1783
kKnobTypePercentage constant 1784
kKnobTypeSetting constant 1784
kMCIESoundThumb constant 1226
kMediaPacketizerCanPackBalance constant 1958
kMediaPacketizerCanPackEditRate constant 1958
kMediaPacketizerCanPackGraphicsMode constant

1958
kMediaPacketizerCanPackLayer constant 1958
kMediaPacketizerCanPackVolume constant 1958
kMovieMediaBackgroundColor constant 370
kMovieMediaDefaultDataReferenceID constant 370
kMovieMediaPrerollTime constant 371
kMovieMediaSlaveGraphicsMode constant 370
kMovieMediaSlaveTime constant 370
kMusicPacketPortFound constant 1784
kMusicPacketPortLost constant 1784
KnobDescription structure 1767
kPickDontMix 1785
kQTAlphaMode constant 412, 751
kQTAlphaModePreMulColor constant 412, 752
kQTCCIR601VideoGammaLevel constant 752
kQTEnableExif constant 371
kQTParseTextHREFText constant 371
kQTPNGFilterPreference constant 1083
kQTPNGInterlaceStyle constant 1083
kQTPropertyClass_ICMCompressionSession

constant 156
kQTPropertyClass_ICMCompressionSessionOptions

constant 152
kQTPropertyClass_SampleTable 1278
kQTSAllStatisticsType constant 1959
kQTSDontGetDataStatisticsFlag 1960
kQTSGetUnitsStatisticsFlag constant 1960
kQTSInstantOnFlag_Enable constant 1961
kQTSMemAllocAllocatedInSystemMem constant 1962
kQTSShortStatisticsType constant 1959
kQTSStatisticsFixedDataFormat 1963
kQTSStatisticsFramesPerSecUnitsType constant

1963
kQTSStatisticsOSTypeDataFormat constant 1963
kQTTIFFCompressionMethod constant 1084
kQTTIFFCompression_PackBits constant 1084
kQTTIFFExifGPSUserDataPrefix constant 751
kQTTIFFExifUserDataPrefix constant 751
kQTTIFFLittleEndian constant 1084
kQTTIFFUserDataGeoAsciiParams constant 1085
kQTTIFFUserDataGeoDoubleParams constant 1085
kQTTIFFUserDataGeoKeyDirectory constant 1085
kQTTIFFUserDataIntergraphMatrix constant 1085

2494
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kQTTIFFUserDataModelPixelScale constant 1084
kQTTIFFUserDataModelTiepoint constant 1084
kQTTIFFUserDataModelTransformation constant

1084
kQTTIFFUserDataOrientation constant 1085
kQTTIFFUserDataPrefix constant 751
kQTTIFFUserDataPrimaryChromaticities constant

1085
kQTTIFFUserDataTransferFunction constant 1085
kQTTIFFUserDataTransferRange constant 1085
kQTTIFFUserDataWhitePoint constant 1085
kQTTIFFUserDataYCbCrPositioning constant 1085
kQTVRAllModes 2082
kQTVRBackBufferAlwaysRefresh 2075
kQTVRBackBufferAlwaysRefresh constant 2076
kQTVRBackBufferEveryIdle constant 2076
kQTVRBackBufferEveryUpdate constant 2076
kQTVRCube 2083
kQTVRDontLoopViewFrames 2079
kQTVRDown 2080
kQTVRDown constant 2080
kQTVRGetHotSpotTypeSelector 2080
kQTVRGetHotSpotTypeSelector constant 2082
kQTVRImagingCorrection 2078
kQTVRLeft constant 2080
kQTVRMinimumCache constant 2077
kQTVRMouseDownSelector constant 2082
kQTVRMouseEnterSelector constant 2081
kQTVRMouseLeaveSelector constant 2082
kQTVRMouseStillDownSelector constant 2082
kQTVRMouseUpSelector constant 2082
kQTVRMouseWithinSelector constant 2081
kQTVRQuarterRes constant 2077
kQTVRSetFieldOfViewSelector constant 2081
kQTVRSetPanAngleSelector constant 2081
kQTVRSetTiltAngleSelector constant 2081
kQTVRSetViewCenterSelector constant 2081
kQTVRStdCursorType constant 2083
kQTVRSuggestedCache constant 2077
kQTVRTriggerHotSpotSelector constant 2082
kQTVRUseDefaultCursor constant 2083
kRTPInfo_FormatString 1964
kRTPMPHasUserSettingsDialogCharacteristic 1964
kRTPMPRespectDurationFlag 1965
kRTPMPSyncSampleFlag constant 1966
kScreenFloodMethodAlpha constant 964
kScreenFloodMethodKeyColor constant 964
kScreenFloodMethodNone constant 963
kSetAtomicInstCallerGuarantees 1785
kSHExtendedChunkFlag_HasSampleCount constant

1967
kSoftSynthComponentSubType constant 408
kSorenson3CodecType constant 411

kSynthesizerConnectionFMS 1785
kSynthesizerConnectionFMS constant 1786
kSynthesizerConnectionMMgr constant 1786
kSynthesizerConnectionOMS constant 1786
kSynthesizerConnectionQT constant 1786
kSynthesizerDLS 1786
kSynthesizerDynamicChannel constant 1788
kSynthesizerDynamicVoice constant 1787
kSynthesizerGM constant 1788
kSynthesizerHardware constant 1788
kSynthesizerHasSamples constant 1787
kSynthesizerHogsSystemChannel constant 1788
kSynthesizerMicrotone constant 1787
kSynthesizerMixedDrums constant 1787
kSynthesizerOffline constant 1788
kSynthesizerSlowSetPart constant 1788
kSynthesizerSoftware constant 1788
kSynthesizerUsesMIDIPort constant 1787
kTargetChildMovieMovieName constant 371
kTargetChildMovieTrackIndex constant 371
kTargetCurrentQTEventParams constant 372
kTargetQD3DNamedObjectName constant 371
kTargetSpriteID constant 371
kTargetSpriteName constant 371
kTargetTrackIndex constant 371
kTargetTrackType constant 371
kTextEditState constant 406
kTextHyperTextColor constant 406
kTextHyperTextFace constant 406
kTextKeyEntry constant 406
kTextLength constant 406
kTextMouseDown constant 406
kTextRelativeScroll constant 406
kTextScroll constant 406
kTextSelection constant 406
kTextTextBox constant 406
kTuneDontClipNotes 1789

L

langIrishGaelic constant 439
langIrishGaelicScript constant 439
langSimpChinese constant 440
langTradChinese constant 440
LevelMeterInfo structure 1167
LevelMeterInfoPtr data type 1168
linearMatrixType constant 1958
linearTranslateMatrixType constant 1958
LoadMediaIntoRam function 245
LoadMovieIntoRam function 246
LoadTrackIntoRam function 247
Localization Codes 434

2495
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

loopTimeBase 358

M

MakeFilePreview function 688
MakeImageDescriptionForEffect function 689
MakeImageDescriptionForPixMap function 690
MakeMediaTimeTable function 1380
MakeThumbnailFromPicture function 691
MakeThumbnailFromPictureFile function 692
MakeThumbnailFromPixMap function 693
MakeTrackTimeTable function 1382
MapMatrix function 694
matrixErr constant 427
matrixFlagScale1x constant 964
matrixFlagScale2x constant 964
MCActionFilterProc callback 1223
MCActionFilterUPP data type 1224
MCActionFilterWithRefConProc callback 1223
MCActionFilterWithRefConUPP data type 1224
MCActivate function 1184
MCAddMovieSegment function 1185
MCAdjustCursor function 1186
MCAdjustCursor Values 1227
MCClear function 1187
MCClick function 1187
MCCopy function 1188
MCCut function 1189
MCDoAction function 1190
MCDraw function 1190
MCDrawBadge function 1191
MCEnableEditing function 1192
mcFlagSuppressMovieFrame constant 1226
mcFlagSuppressSpeakerButton constant 1227
mcFlagSuppressStepButtons constant 1226
mcFlagsUseWindowPalette constant 1227
MCGetClip function 1193
MCGetControllerBoundsRect function 1193
MCGetControllerBoundsRgn function 1194
MCGetControllerInfo function 1195
MCGetControllerPort function 1196
MCGetCurrentTime function 1196
MCGetDoActionsProc function 1197
MCGetIndMovie function 1198
MCGetInterfaceElement function 1198
MCGetMenuString function 1199
MCGetMenuString Values 1227
MCGetVisible function 1200
MCGetWindowRgn function 1201
MCIdle function 1202
MCInterfaceElement data type 1225
MCInvalidate function 1202

MCIsControllerAttached function 1203
MCIsEditingEnabled function 1204
MCIsPlayerEvent function 1204
MCKey function 1206
MCMovieChanged function 1206
MCNewAttachedController function 1207
MCPaste function 1208
MCPositionController function 1208
MCPositionController Values 1227
MCPtInController function 1209
MCRemoveAllMovies function 1210
MCRemoveAMovie function 1211
MCRemoveMovie function 1211
MCSetActionFilter function 1212
MCSetActionFilterWithRefCon function 1212
MCSetClip function 1213
MCSetControllerAttached function 1214
MCSetControllerBoundsRect function 1215
MCSetControllerCapabilities function 1215
MCSetControllerPort function 1216
MCSetDuration function 1217
MCSetIdleManager function 1218
MCSetMovie function 1218
MCSetUpEditMenu function 1219
MCSetVisible function 1220
MCTrimMovieSegment function 1220
MCUndo function 1221
Media Characteristics 1523
Media Identifiers 402, 1666
Media Task Flags 1172
Media3DGetCameraAngleAspect function 248
Media3DGetCameraData function 248
Media3DGetCameraRange function 248
Media3DGetCurrentGroup function 249
Media3DGetNamedObjectList function 249
Media3DGetRendererList function 249
Media3DGetViewObject function 250
Media3DRotateNamedObjectTo function 250
Media3DScaleNamedObjectTo function 251
Media3DSetCameraAngleAspect function 251
Media3DSetCameraData function 251
Media3DSetCameraRange function 252
Media3DTranslateNamedObjectTo function 252
MediaChangedNonPrimarySource function 1094
MediaCompare function 1094
MediaContainsDisplayOffsets function 1625
MediaCurrentMediaQueuedData function 1095
MediaDecodeTimeToSampleNum function 1625
MediaDisplayTimeToSampleNum function 1626
MediaDisposeTargetRefCon function 1096
MediaDoIdleActions function 1096
MediaEmptyAllPurgeableChunks function 1097
MediaEmptySampleCache function 1097

2496
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

MediaEnterEmptyEdit function 1098
MediaEQSpectrumBandsRecord structure 1168
MediaEQSpectrumBandsRecordPtr data type 1168
MediaFlushNonPrimarySourceData function 1098
MediaForceUpdate function 1099
MediaForceUpdate Values 1170
MediaGetActionsForQTEvent function 1099
MediaGetChunkManagementFlags function 1100
MediaGetClock function 1101
MediaGetDrawingRgn function 1101
MediaGetEffectiveSoundBalance function 1102
MediaGetEffectiveVolume function 1102
MediaGetErrorString function 1103
MediaGetGraphicsMode function 1104
MediaGetInvalidRegion function 1104
MediaGetMediaInfo function 1105
MediaGetMediaLoadState function 1105
MediaGetName function 1106
MediaGetNextBoundsChange function 1107
MediaGetNextStepTime function 1108
MediaGetOffscreenBufferSize function 1108
MediaGetPublicInfo function 1109
MediaGetPurgeableChunkMemoryAllowance function

1110
MediaGetSampleDataPointer function 1111
MediaGetSoundBalance function 1111
MediaGetSoundBassAndTreble function 1112
MediaGetSoundEqualizerBandLevels function 1113
MediaGetSoundEqualizerBands function 1113
MediaGetSoundLevelMeterInfo function 1114
MediaGetSoundLevelMeteringEnabled function 1114
MediaGetSoundOutputComponent function 1115
MediaGetSrcRgn function 1115
MediaGetTrackOpaque function 1116
MediaGetURLLink function 1117
MediaGetUserPreferredCodecs function 1118
MediaGetVideoParam function 1118
MediaGGetIdleManager function 1119
MediaGGetStatus function 1120
MediaGSetActiveSegment function 1120
MediaGSetIdleManager function 1121
MediaGSetVolume function 1122
MediaHandlerComponent data type 1661
MediaHasCharacteristic function 1122
MediaHitTestForTargetRefCon function 1123
MediaHitTestTargetRefCon function 1124
MediaHitTestTargetRefCon Values 1173
MediaIdle function 1125
MediaInitialize function 1127
MediaInvalidateRegion function 1128
MediaMakeMediaTimeTable function 1129
MediaMCIsPlayerEvent function 1130
MediaNavigateTargetRefCon function 1131

MediaNavigateTargetRefCon Values 1172
MediaPacketizerRequirements structure 1932
MediaPacketizerRequirements Values 1957
MediaPacketizerRequirementsPtr data type 1933
MediaPrePrerollBegin function 1131
MediaPrePrerollCancel function 1132
MediaPreroll function 1132
MediaPutMediaInfo function 1133
MediaQueueNonPrimarySourceData function 1134
MediaRefConGetProperty function 1135
MediaRefConSetProperty function 1136
MediaRefConSetProperty Values 1172
MediaReleaseSampleDataPointer function 1136
MediaResolveTargetRefCon function 1137
MediaSampleDescriptionB2N function 1138
MediaSampleDescriptionChanged function 1138
MediaSampleDescriptionN2B function 1139
mediaSampleNotSync constant 389, 1281
MediaSetActionsCallback function 1139
MediaSetActive function 1140
MediaSetChunkManagementFlags function 1141
MediaSetChunkManagementFlags Values 1171
MediaSetClip function 1141
MediaSetDimensions function 1142
MediaSetDoMCActionCallback function 1143
MediaSetGraphicsMode function 1143
MediaSetGWorld function 1144
MediaSetHandlerCapabilities function 1145
MediaSetHints function 1146
MediaSetMatrix function 1147
MediaSetMediaTimeScale function 1147
MediaSetMovieTimeScale function 1148
MediaSetNonPrimarySourceData function 1149
MediaSetPublicInfo function 1151
MediaSetPurgeableChunkMemoryAllowance function

1152
MediaSetRate function 1152
MediaSetScreenLock function 1153
MediaSetSoundBalance function 1154
MediaSetSoundBassAndTreble function 1154
MediaSetSoundEqualizerBands function 1155
MediaSetSoundLevelMeteringEnabled function 1156
MediaSetSoundLocalizationData function 1156
MediaSetSoundOutputComponent function 1157
MediaSetTrackInputMapReference function 1157
MediaSetUserPreferredCodecs function 1158
MediaSetVideoParam function 1159
MediaSetVideoParam Values 1171
MediaTargetRefConsEqual function 1160
MediaTimeBaseChanged function 1161
MediaTimeToSampleNum function 1627
MediaTrackEdited function 1161
MediaTrackPropertyAtomChanged function 1162

2497
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

MediaTrackReferencesChanged function 1162
MediaVideoOutputChanged function 1163
MIDIImportGetSettings function 464
MIDIImportSetSettings function 465
MIDIImportSetSettings Values 565
ModalFilterYDProc callback 1080
ModalFilterYDUPP data type 1081
Movie Controller Options 1225
MovieAudioExtractionBegin function 1383
MovieAudioExtractionEnd function 1384
MovieAudioExtractionFillBuffer function 1384
MovieAudioExtractionGetProperty function 1385
MovieAudioExtractionGetPropertyInfo function

1386
MovieAudioExtractionSetProperty function 1387
MovieEditState data type 1661
MovieEditStateRecord structure 1661
MovieExecuteWiredActions function 1388
MovieExecuteWiredActions Values 1522
MovieExecuteWiredActionsProc callback 1505
MovieExecuteWiredActionsUPP data type 1509
MovieExportAddDataSource function 466
MovieExportComponent data type 555
MovieExportDisposeGetDataAndPropertiesProcs

function 467
MovieExportDoUserDialog function 468
movieExportDuration 565
movieExportDuration constant 566
MovieExportFromProceduresToDataRef function 469
MovieExportGetAuxiliaryData function 470
MovieExportGetCreatorType function 470
MovieExportGetDataProc callback 551
MovieExportGetDataUPP data type 555
MovieExportGetFileNameExtension function 471
MovieExportGetPropertyProc callback 552
MovieExportGetPropertyUPP data type 556
MovieExportGetSettingsAsAtomContainer function

471
MovieExportGetShortFileTypeString function 472
MovieExportGetSourceMediaType function 473
movieExportHeight constant 566
MovieExportNewGetDataAndPropertiesProcs

function 473
MovieExportSetGetMoviePropertyProc function 475
MovieExportSetProgressProc function 476
MovieExportSetSampleDescription function 476
MovieExportSetSettingsFromAtomContainer

function 477
MovieExportToDataRef function 479
MovieExportToFile function 480
MovieExportToHandle function 481
MovieExportValidate function 482
movieExportVideoFilter constant 566

movieExportWidth constant 566
movieFileSpecValid 389, 1666
MovieImportComponent data type 556
MovieImportDataRef function 483
MovieImportDataRef Values 389, 566
MovieImportDoUserDialog function 484
MovieImportDoUserDialogDataRef function 485
MovieImportEstimateCompletionTime function 486
MovieImportFile function 486
MovieImportGetAuxiliaryDataType function 488
MovieImportGetDestinationMediaType function 489
MovieImportGetDontBlock function 489
MovieImportGetFileType function 490
MovieImportGetLoadState function 490
MovieImportGetMaxLoadedTime function 491
MovieImportGetMIMETypeList function 492
MovieImportGetSampleDescription function 492
MovieImportGetSettingsAsAtomContainer function

493
MovieImportHandle function 493
MovieImportIdle function 495
movieImportResultNeedIdles constant 390, 566
MovieImportSetAuxiliaryData function 495
MovieImportSetChunkSize function 496
MovieImportSetDimensions function 497
MovieImportSetDontBlock function 497
MovieImportSetDuration function 498
MovieImportSetFromScrap function 499
MovieImportSetIdleManager function 499
MovieImportSetMediaDataRef function 500
MovieImportSetMediaFile function 501
MovieImportSetNewMovieFlags function 501
MovieImportSetOffsetAndLimit function 502
MovieImportSetOffsetAndLimit64 function 503
MovieImportSetProgressProc function 503
MovieImportSetSampleDescription function 504
MovieImportSetSampleDuration function 505
MovieImportSetSettingsFromAtomContainer

function 505
MovieImportValidate function 506
MovieImportValidateDataRef function 507
MovieMediaGetChildDoMCActionCallback function

252
MovieMediaGetChildMovieDataReference function

253
MovieMediaGetCurrentMovieProperty function 254
MovieMediaGetCurrentMovieProperty Values 357
MovieMediaGetCurrentTrackProperty function 255
MovieMediaGetDoMCActionCallback function 255
MovieMediaLoadChildMovieFromDataReference

function 256
MovieMediaSetChildMovieDataReference function

257

2498
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

movieProgressClose constant 391
movieProgressOpen constant 390
MovieProgressProc Values 390
movieProgressUpdatePercent constant 391
MovieRgnCoverProc callback 1506
MovieRgnCoverUPP data type 1510
MovieSearchText function 1389
MovieSearchText Values 1523
MoviesTask function 257
MusicComponent data type 1768
MusicController data type 1769
MusicDerivedCloseResFile function (Deprecated in

Mac OS X v10.5) 1678
MusicDerivedMIDISend function (Deprecated in Mac

OS X v10.5) 1678
MusicDerivedOpenResFile function (Deprecated in

Mac OS X v10.5) 1679
MusicDerivedSetInstrument function (Deprecated in

Mac OS X v10.5) 1679
MusicDerivedSetKnob function (Deprecated in Mac OS

X v10.5) 1680
MusicDerivedSetMIDI function (Deprecated in Mac OS

X v10.5) 1681
MusicDerivedSetPart function (Deprecated in Mac OS

X v10.5) 1682
MusicDerivedSetPartInstrumentNumber function

(Deprecated in Mac OS X v10.5) 1682
MusicDerivedStorePartInstrument function

(Deprecated in Mac OS X v10.5) 1683
MusicFindTone function (Deprecated in Mac OS X v10.5)

1684
MusicGenericConfigure function (Deprecated in Mac

OS X v10.5) 1685
MusicGenericGetKnobList function (Deprecated in

Mac OS X v10.5) 1686
MusicGenericGetPart function (Deprecated in Mac OS

X v10.5) 1687
MusicGenericSetResourceNumbers function

(Deprecated in Mac OS X v10.5) 1687
MusicGetDescription function (Deprecated in Mac OS

X v10.5) 1688
MusicGetDeviceConnection function (Deprecated in

Mac OS X v10.5) 1689
MusicGetDrumKnobDescription function (Deprecated

in Mac OS X v10.5) 1689
MusicGetDrumNames function (Deprecated in Mac OS X

v10.5) 1690
MusicGetInfoText function (Deprecated in Mac OS X

v10.5) 1691
MusicGetInstrumentAboutInfo function (Deprecated

in Mac OS X v10.5) 1691
MusicGetInstrumentInfo function (Deprecated in Mac

OS X v10.5) 1692

MusicGetInstrumentInfo Values 1781
MusicGetInstrumentKnobDescription function

(Deprecated in Mac OS X v10.5) 1693
MusicGetInstrumentNames function (Deprecated in

Mac OS X v10.5) 1693
MusicGetKnob function (Deprecated in Mac OS X v10.5)

1694
MusicGetKnobDescription function (Deprecated in

Mac OS X v10.5) 1695
MusicGetKnobSettingStrings function (Deprecated

in Mac OS X v10.5) 1696
MusicGetMasterTune function (Deprecated in Mac OS

X v10.5) 1696
MusicGetMIDIPorts function (Deprecated in Mac OS X

v10.5) 1697
MusicGetMIDIProc function (Deprecated in Mac OS X

v10.5) 1698
MusicGetPart function (Deprecated in Mac OS X v10.5)

1698
MusicGetPartAtomicInstrument function (Deprecated

in Mac OS X v10.5) 1699
MusicGetPartController function (Deprecated in Mac

OS X v10.5) 1700
MusicGetPartInstrumentNumber function (Deprecated

in Mac OS X v10.5) 1701
MusicGetPartKnob function (Deprecated in Mac OS X

v10.5) 1701
MusicGetPartName function (Deprecated in Mac OS X

v10.5) 1702
MusicMediaGetIndexedTunePlayer function 1233
MusicMIDIPacket structure 1769
MusicMIDIPacket Values 1784
MusicMIDISendProc callback 1761
MusicMIDISendUPP data type 1769
MusicOfflineDataProc callback 1762
MusicOfflineDataUPP data type 1770
MusicPlayNote function (Deprecated in Mac OS X v10.5)

1702
MusicResetPart function (Deprecated in Mac OS X

v10.5) 1703
MusicSendMIDI function (Deprecated in Mac OS X v10.5)

1704
MusicSetKnob function (Deprecated in Mac OS X v10.5)

1705
MusicSetMasterTune function (Deprecated in Mac OS

X v10.5) 1705
MusicSetMIDIProc function (Deprecated in Mac OS X

v10.5) 1706
MusicSetOfflineTimeTo function (Deprecated in Mac

OS X v10.5) 1707
MusicSetPart function (Deprecated in Mac OS X v10.5)

1707

2499
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

MusicSetPartAtomicInstrument function (Deprecated
in Mac OS X v10.5) 1708

MusicSetPartAtomicInstrument Values 1781
MusicSetPartController function (Deprecated in Mac

OS X v10.5) 1709
MusicSetPartInstrumentNumber function (Deprecated

in Mac OS X v10.5) 1710
MusicSetPartInstrumentNumberInterruptSafe

function (Deprecated in Mac OS X v10.5) 1710
MusicSetPartKnob function (Deprecated in Mac OS X

v10.5) 1711
MusicSetPartName function (Deprecated in Mac OS X

v10.5) 1711
MusicSetPartSoundLocalization function

(Deprecated in Mac OS X v10.5) 1712
MusicStartOffline function (Deprecated in Mac OS X

v10.5) 1713
MusicStorePartInstrument function (Deprecated in

Mac OS X v10.5) 1714
MusicTask function (Deprecated in Mac OS X v10.5) 1714
MusicUseDeviceConnection function (Deprecated in

Mac OS X v10.5) 1715

N

NACopyrightDialog function (Deprecated in Mac OS X
v10.5) 1716

NADisposeNoteChannel function (Deprecated in Mac
OS X v10.5) 1717

NAFindNoteChannelTone function (Deprecated in Mac
OS X v10.5) 1717

NAGetController function (Deprecated in Mac OS X
v10.5) 1718

NAGetIndNoteChannel function (Deprecated in Mac OS
X v10.5) 1719

NAGetKnob function (Deprecated in Mac OS X v10.5) 1719
NAGetMIDIPorts function (Deprecated in Mac OS X

v10.5) 1720
NAGetNoteChannelInfo function (Deprecated in Mac

OS X v10.5) 1721
NAGetNoteRequest function (Deprecated in Mac OS X

v10.5) 1722
NAGetRegisteredMusicDevice function (Deprecated

in Mac OS X v10.5) 1722
NANewNoteChannel function (Deprecated in Mac OS X

v10.5) 1724
NANewNoteChannelFromAtomicInstrument function

(Deprecated in Mac OS X v10.5) 1724
NAPickArrangement function (Deprecated in Mac OS X

v10.5) 1725
NAPickEditInstrument function (Deprecated in Mac

OS X v10.5) 1726

NAPickInstrument function (Deprecated in Mac OS X
v10.5) 1728

NAPlayNote function (Deprecated in Mac OS X v10.5)
1729

NAPrerollNoteChannel function (Deprecated in Mac
OS X v10.5) 1730

NARegisterMusicDevice function (Deprecated in Mac
OS X v10.5) 1730

NAResetNoteChannel function (Deprecated in Mac OS
X v10.5) 1731

NASaveMusicConfiguration function (Deprecated in
Mac OS X v10.5) 1732

NASendMIDI function (Deprecated in Mac OS X v10.5)
1732

NASetAtomicInstrument function (Deprecated in Mac
OS X v10.5) 1733

NASetController function (Deprecated in Mac OS X
v10.5) 1734

NASetInstrumentNumber function (Deprecated in Mac
OS X v10.5) 1735

NASetInstrumentNumberInterruptSafe function
(Deprecated in Mac OS X v10.5) 1735

NASetKnob function (Deprecated in Mac OS X v10.5) 1736
NASetNoteChannelBalance function (Deprecated in

Mac OS X v10.5) 1737
NASetNoteChannelSoundLocalization function

(Deprecated in Mac OS X v10.5) 1738
NASetNoteChannelVolume function (Deprecated in Mac

OS X v10.5) 1738
NAStuffToneDescription function (Deprecated in Mac

OS X v10.5) 1739
NATask function (Deprecated in Mac OS X v10.5) 1740
NAUnregisterMusicDevice function (Deprecated in

Mac OS X v10.5) 1740
NAUnrollNoteChannel function (Deprecated in Mac OS

X v10.5) 1741
New Movie Properties 392
NewActionsUPP function 1390
NewCallBack function 258
NewCDataHandlerUPP function 824
NewCharDataHandlerUPP function 825
NewCommentHandlerUPP function 825
NewDataHCompletionUPP function 825
NewDoMCActionUPP function 1391
NewEndDocumentHandlerUPP function 826
NewEndElementHandlerUPP function 827
NewGetMovieUPP function 1391
NewICMAlignmentUPP function 106
NewICMCompletionUPP function 107
NewICMConvertDataFormatUPP function 107
NewICMCursorShieldedUPP function 108
NewICMDataUPP function 108
NewICMFlushUPP function 109

2500
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

NewICMMemoryDisposedUPP function 109
NewICMProgressUPP function 110
NewImageCodecDrawBandCompleteUPP function 927
NewImageCodecMPDrawBandUPP function 927
NewImageCodecTimeTriggerUPP function 928
NewImageGWorld function 694
NewMCActionFilterUPP function 1222
NewMCActionFilterWithRefConUPP function 1222
NewMovie function 259
NewMovieController function 1392
NewMovieController Values 392
NewMovieDrawingCompleteUPP function 1393
NewMovieEditState function 1628
NewMovieExecuteWiredActionsUPP function 1393
NewMovieExportGetDataUPP function 508
NewMovieExportGetPropertyUPP function 509
NewMovieExportStageReachedCallbackUPP function

509
NewMovieForDataRefFromHandle function 1394
NewMovieFromDataFork function 1395
NewMovieFromDataFork64 function 1396
NewMovieFromDataRef function 1397
NewMovieFromFile function 1398
NewMovieFromFile Values 1522
NewMovieFromHandle function 1400
NewMovieFromProperties function 260
NewMovieFromScrap function 1402
NewMovieFromStorageOffset function 1402
NewMovieFromUserProc function 1404
NewMoviePrePrerollCompleteUPP function 1405
NewMoviePreviewCallOutUPP function 1406
NewMovieProgressUPP function 1406
NewMovieRgnCoverUPP function 1407
NewMoviesErrorUPP function 1408
NewMovieTrack function 1628
NewMusicMIDISendUPP function (Deprecated in Mac OS

X v10.5) 1741
NewMusicOfflineDataUPP function (Deprecated in Mac

OS X v10.5) 1742
NewPrePrerollCompleteUPP function 1163
NewPreprocessInstructionHandlerUPP function 827
NewQDPixUPP function 110
NewQTBandwidthNotificationUPP function

(Deprecated in Mac OS X v10.4) 1234
NewQTCallBackUPP function 1408
NewQTEffectListFilterUPP function 1409
NewQTNextTaskNeededSoonerCallbackUPP function

1409
NewQTSModalFilterUPP function 1794
NewQTSNotificationUPP function 1794
NewQTSPanelFilterUPP function 1795
NewQTSyncTaskUPP function 1410
NewQTTrackPropertyListenerUPP function 1235

NewQTVRBackBufferImagingUPP function 1978
NewQTVREnteringNodeUPP function 1979
NewQTVRImagingCompleteUPP function 1980
NewQTVRInterceptUPP function 1980
NewQTVRLeavingNodeUPP function 1981
NewQTVRMouseOverHotSpotUPP function 1981
NewRTPMPDataReleaseUPP function 1795
NewRTPPBCallbackUPP function 1795
NewSCModalFilterUPP function 510
NewSCModalHookUPP function 510
NewSGAddFrameBottleUPP function 2101
NewSGCompressBottleUPP function 2101
NewSGCompressCompleteBottleUPP function 2102
NewSGDataUPP function 2102
NewSGDisplayBottleUPP function 2103
NewSGDisplayCompressBottleUPP function 2104
NewSGGrabBottleUPP function 2104
NewSGGrabCompleteBottleUPP function 2105
NewSGGrabCompressCompleteBottleUPP function

2105
NewSGModalFilterUPP function 2106
NewSGTransferFrameBottleUPP function 2106
NewSprite function 1410
NewSpriteWorld function 1411
NewStartDocumentHandlerUPP function 827
NewStartElementHandlerUPP function 828
NewStdPixUPP function 111
NewTextMediaUPP function 1413
NewTimeBase function 261
NewTrackEditState function 1630
NewTrackMedia function 1630
NewTrackTransferUPP function 1414
NewTuneCallBackUPP function (Deprecated in Mac OS

X v10.5) 1742
NewTunePlayCallBackUPP function (Deprecated in Mac

OS X v10.5) 1743
NewTweenerDataUPP function 1414
NewUserData function 1415
NewUserDataFromHandle function 1415
NewVdigIntUPP function 828
noDMAErr constant 428
noMoreKeyColorsErr constant 428
noRecordOfApp constant 427
NoteAllocator data type 1770
NoteChannel data type 1770
NoteRequest structure 1770
notExactMatrixErr constant 427
notExactSizeErr constant 428
notPatCopy constant 432
notPatOr constant 432
notPatXor constant 432
notSrcBic constant 431
notSrcCopy constant 431

2501
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

notSrcOr constant 431
notSrcXor constant 431

O

OpenADataHandler function 1631
OpenCPicParams structure 745
OpenMovieFile function 1416
OpenMovieStorage function 1417
OptionBits data type 1225

P

PasteHandleIntoMovie function 1633
PasteMovieSelection function 1634
patBic constant 432
patCopy constant 431
patOr constant 432
patXor constant 432
pdActionCompactSample constant 396
pdActionConvertSettingsToText constant 398
pdActionConvertSettingsToXML constant 398
pdActionConvertSettingsToXMLWithComments

constant 398
pdActionConvertXMLToSettings constant 398
pdActionCustomDisposeControl constant 396
pdActionCustomDoEditCommand constant 397
pdActionCustomGetEnableValue constant 397
pdActionCustomGetValue constant 397
pdActionCustomHandleEvent constant 397
pdActionCustomNewControl constant 396
pdActionCustomPositionControl constant 396
pdActionCustomSetEditCallout constant 397
pdActionCustomSetEditMenu constant 397
pdActionCustomSetFocus constant 397
pdActionCustomSetPreviewPicture constant 397
pdActionCustomSetSampleTime constant 397
pdActionCustomShowHideControl constant 396
pdActionDoEditCommand constant 396
pdActionFetchPreview constant 395
pdActionGetDialogSettings constant 395
pdActionGetNextSample constant 395
pdActionGetPreviousSample constant 396
pdActionGetSubPanelMenuValue constant 396
pdActionModelessCallback constant 395
pdActionRunInEventLoop constant 397
pdActionSetDialogSettings constant 395
pdActionSetEditCallout constant 396
pdActionSetPropertyComponent constant 398
pdActionSetSampleTime constant 396

pdOptionsEditCurrentEffectOnly constant 398
pdOptionsHidePreview constant 398
pdOptionsModalDialogBox constant 398
perspectiveMatrixType constant 1958
PlayMoviePreview function 262
PNG Properties 1082
pnotComponent data type 556
PrePrerollCompleteProc callback 1164
PrePrerollCompleteUPP data type 1169
PrePrerollMovie function 263
PrerollMovie function 264
PreviewEvent function 511
PreviewMakePreview function 511
PreviewMakePreviewReference function 512
PreviewShowData function 513
progressOpAddMovieSelection constant 391
progressOpCopy constant 391
progressOpCut constant 392
progressOpFlatten constant 391
progressOpImportMovie constant 392
progressOpInsertMovieSegment constant 391
progressOpInsertTrackSegment constant 391
progressOpLoadMediaIntoRam constant 392
progressOpLoadMovieIntoRam constant 392
progressOpLoadTrackIntoRam constant 392
progressOpPaste constant 391
PtInDSequenceData function 695
PtInMovie function 1634
PtInTrack function 1635
PutMovieForDataRefIntoHandle function 265
PutMovieIntoDataFork function 266
PutMovieIntoDataFork64 function 267
PutMovieIntoHandle function 268
PutMovieIntoStorage function 268
PutMovieIntoTypedHandle function 1636
PutMovieOnScrap function 1418
PutMovieOnScrap Values 1522
PutUserDataIntoHandle function 1419

Q

QDPixProc callback 134
QDPixUPP data type 139
QHdr structure 746
QHdrPtr data type 747
QTAddComponentPropertyListener function 111
QTAddMovieError function 1420
QTAddMoviePropertyListener function 1235
QTAddTrackPropertyListener function 1236
QTAtomSpec structure 1934
QTAtomSpecPtr data type 1934
QTAtomType data type 1510

2502
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTAudioContextCreateForAudioDevice function 269
QTAudioFrequencyLevels structure 1510
QTAudioVolumeLevels structure 1511
QTBandwidthNotificationProc callback 1276
QTBandwidthNotificationUPP data type 1276
QTBandwidthReference data type 1277
QTBandwidthRelease function (Deprecated in Mac OS

X v10.4) 1236
QTBandwidthRequest function (Deprecated in Mac OS

X v10.4) 1237
QTBandwidthRequestForTimeBase function

(Deprecated in Mac OS X v10.4) 1238
QTComponentPropertyListenerCollectionAddListener

function 113
QTComponentPropertyListenerCollectionContext

structure 139
QTComponentPropertyListenerCollectionCreate

function 114
QTComponentPropertyListenerCollectionHasListeners-

ForProperty function 114
QTComponentPropertyListenerCollectionIsEmpty

function 115
QTComponentPropertyListenerCollectionNotify-

Listeners function 116
QTComponentPropertyListenerCollectionRemove-

Listener function 117
QTCopyAtom function 1421
QTCopyAtomDataToHandle function 1421
QTCopyAtomDataToPtr function 1422
QTCopyMediaMetaData function 1239
QTCopyMovieMetaData function 1239
QTCopyTrackMetaData function 1240
QTCountChildrenOfType function 1424
QTCreateStandardParameterDialog function 1424
QTCreateUUID function 1426
QTCustomActionTargetPtr data type 1169
QTCustomActionTargetRecord structure 1169
QTDismissStandardParameterDialog function 1426
QTDisposeAtomContainer function 1427
QTDisposeTween function 1428
QTDoTween function 1428
QTDoTweenPtr function 1429
QTEffectListFilterProc callback 1506
QTEffectListFilterUPP data type 1511
QTEffectListOptions data type 1511
QTEqualUUIDs function 1430
QTErrorReplacementPtr data type 1511
QTErrorReplacementRecord structure 1512
QTFindChildByID function 1430
QTFindChildByIndex function 1431
QTFloatSingle data type 352
QTGetAccessKeys function 1432
QTGetAtomDataPtr function 1433

QTGetAtomParent function 1434
QTGetAtomTypeAndID function 1435
QTGetComponentProperty function 118
QTGetComponentPropertyInfo function 120
QTGetDataHandlerDirectoryDataReference function

1436
QTGetDataHandlerFullPathCFString function 1436
QTGetDataHandlerTargetNameCFString function

1437
QTGetDataReferenceDirectoryDataReference

function 1438
QTGetDataReferenceFullPathCFString function

1438
QTGetDataReferenceTargetNameCFString function

1439
QTGetDataRefMaxFileOffset function 1440
QTGetEffectsList function 1441
QTGetEffectsList Values 1517
QTGetEffectsListExtended function 1442
QTGetEffectSpeed function 1443
QTGetEffectSpeed Values 1517
QTGetFileNameExtension function 696
QTGetMIMETypeInfo function 1637
QTGetMIMETypeInfo Values 1665
QTGetMovieProperty function 1241
QTGetMoviePropertyInfo function 1241
QTGetMovieRestrictions function 1444
QTGetNextChildType function 1445
QTGetPixelFormatDepthForImageDescription

function 696
QTGetPixelSize function 697
QTGetPixMapHandleGammaLevel function 698
QTGetPixMapHandleRequestedGammaLevel function

698
QTGetPixMapHandleRowBytes function 699
QTGetPixMapPtrGammaLevel function 699
QTGetPixMapPtrRequestedGammaLevel function 700
QTGetPixMapPtrRowBytes function 700
QTGetSupportedRestrictions function 1445
QTGetTimeUntilNextTask function 270
QTGetTrackProperty function 1242
QTGetTrackPropertyInfo function 1243
QTGetWallClockTimeBase function 271
QTIdleManagerClose function 271
QTIdleManagerGetNextIdleTime function 272
QTIdleManagerNeedsAnIdle function 272
QTIdleManagerOpen function 273
QTIdleManagerSetNextIdleTime function 273
QTIdleManagerSetNextIdleTimeDelta function 274
QTIdleManagerSetNextIdleTimeNever function 275
QTIdleManagerSetNextIdleTimeNow function 275
QTIdleManagerSetParent function 276
QTInsertChild function 1446

2503
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTInsertChildren function 1447
QTInstallNextTaskNeededSoonerCallback function

277
QTIsStandardParameterDialogEvent function 1448
QTLockContainer function 1449
QTMetaDataAddItem function 1244
QTMetaDataGetItemProperty function 1246
QTMetaDataGetItemPropertyInfo function 1247
QTMetaDataGetItemValue function 1248
QTMetaDataGetNextItem function 1248
QTMetaDataGetProperty function 1250
QTMetaDataGetPropertyInfo function 1250
QTMetaDataRelease function 1251
QTMetaDataRemoveItem function 1252
QTMetaDataRemoveItemsWithKey function 1252
QTMetaDataRetain function 1253
QTMetaDataSetItem function 1254
QTMetaDataSetItemProperty function 1254
QTMetaDataSetProperty function 1255
QTMIDIComponent data type 1771
QTMIDIGetMIDIPorts function (Deprecated in Mac OS

X v10.5) 1743
QTMIDIPortListHandle data type 1771
QTMIDIPortListPtr data type 1771
QTMIDISendMIDI function (Deprecated in Mac OS X

v10.5) 1744
QTMIDIUseSendPort function (Deprecated in Mac OS X

v10.5) 1745
QTMLCreateMutex function 2361
QTMLDestroyMutex function 2362
qtmlDllEntryNotFoundErr constant 427
qtmlDllLoadErr constant 427
QTMLGrabMutex function 2362
QTMLMutex data type 2365
QTMLReturnMutex function 2363
QTMLTryGrabMutex function 2363
QTMLYieldCPU function 2364
QTMLYieldCPUTime function 2364
QTMLYieldCPUTime Values 2365
QTMovieNeedsTimeTable function 1450
QTNewAlias function 1451
QTNewAtomContainer function 1451
QTNewDataReferenceFromCFURL function 1452
QTNewDataReferenceFromFSRef function 1453
QTNewDataReferenceFromFSRefCFString function

1454
QTNewDataReferenceFromFSSpec function 1455
QTNewDataReferenceFromFullPathCFString function

1456
QTNewDataReferenceFromFullPathCFString Values 1521
QTNewDataReferenceFromURLCFString function 1457
QTNewDataReferenceWithDirectoryCFString

function 1458

QTNewGWorld function 701
QTNewGWorldFromPtr function 703
QTNewMoviePropertyElement structure 352
QTNewTween function 1459
QTNextChildAnyType function 1460
QTOpenGLTextureContextCreate function 121
qtParamErr constant 427
QTParameterValidationOptions data type 956
QTParseTextHREF function 277
QTPhotoDefineHuffmanTable function 928
QTPhotoDefineQuantizationTable function 929
QTPhotoSetRestartInterval function 930
QTPhotoSetSampling function 931
QTPixelBufferContextCreate function 122
QTRegisterAccessKey function 1461
QTRemoveAtom function 1461
QTRemoveChildren function 1462
QTRemoveComponentPropertyListener function 122
QTRemoveMoviePropertyListener function 1256
QTRemoveTrackPropertyListener function 1257
QTReplaceAtom function 1463
QTRestrictionSet data type 1512
QTRestrictionSetRecord structure 1512
QTRestrictionsGetIndClass function 1463
QTRestrictionsGetInfo function 1464
QTRestrictionsGetItem function 1465
QTRuntimeSpriteDescPtr data type 353
QTRuntimeSpriteDescStruct structure 353
QTSAllocBuffer function 1796
QTSAllocMemPtr function 1796
QTSampleTableAddSampleDescription function 1257
QTSampleTableAddSampleReferences function 1258
QTSampleTableCopySampleDescription function

1259
QTSampleTableCreateMutable function 1260
QTSampleTableCreateMutableCopy function 1261
QTSampleTableGetDataOffset function 1261
QTSampleTableGetDataSizePerSample function 1262
QTSampleTableGetDecodeDuration function 1262
QTSampleTableGetDisplayOffset function 1263
QTSampleTableGetNextAttributeChange function

1263
QTSampleTableGetNextAttributeChange Values 1279
QTSampleTableGetNumberOfSamples function 1265
QTSampleTableGetProperty function 1265
QTSampleTableGetPropertyInfo function 1266
QTSampleTableGetSampleDescriptionID function

1268
QTSampleTableGetSampleFlags function 1268
QTSampleTableGetSampleFlags Values 388, 1280
QTSampleTableGetTimeScale function 1269
QTSampleTableGetTypeID function 1269
QTSampleTableRelease function 1269

2504
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTSampleTableReplaceRange function 1270
QTSampleTableRetain function 1271
QTSampleTableSetProperty function 1271
QTSampleTableSetTimeScale function 1272
QTScheduledBandwidthPtr data type 1277
QTScheduledBandwidthRecord structure 1277
QTScheduledBandwidthReference data type 1278
QTScheduledBandwidthRelease function (Deprecated

in Mac OS X v10.4) 1273
QTScheduledBandwidthRequest function (Deprecated

in Mac OS X v10.4) 1273
QTSCopyMessage function 1797
QTSDisposePresentation function 1797
QTSDisposeStatHelper function 1798
QTSDisposeStream function 1798
QTSDuplicateMessage function 1799
QTSDupMessage function 1800
QTSetAtomData function 1465
QTSetAtomID function 1467
QTSetComponentProperty function 123
QTSetComponentProperty Values 384
QTSetMovieProperty function 1274
QTSetPixMapHandleGammaLevel function 704
QTSetPixMapHandleRequestedGammaLevel function

705
QTSetPixMapHandleRowBytes function 706
QTSetPixMapPtrGammaLevel function 706
QTSetPixMapPtrRequestedGammaLevel function 707
QTSetPixMapPtrRequestedGammaLevel Values 752
QTSetPixMapPtrRowBytes function 708
QTSetTrackProperty function 1275
QTSExportParams structure 1934
QTSFindMediaPacketizer function 1800
QTSFindMediaPacketizerForPayloadID function

1801
QTSFindMediaPacketizerForPayloadName function

1801
QTSFindMediaPacketizerForTrack function 1802
QTSFindReassemblerForPayloadID function 1803
QTSFindReassemblerForPayloadName function 1803
QTSFlattenMessage function 1804
QTSFreeMessage function 1805
QTSGetErrorString function 1805
QTSGetNetworkAppName function 1806
QTSGetOrMakeStatAtomForStream function 1806
QTSGetStreamPresentation function 1807
QTSInitializeMediaParams function 1808
QTSInsertStatistic function 1808
QTSInsertStatisticName function 1809
QTSInsertStatisticUnits function 1810
QTSInsertStatisticUnits Values 1962
QTSInstantOnPref structure 1935
QTSInstantOnPref Values 1961

QTSMediaGetIndStreamInfo function 1811
QTSMediaGetInfo function 1812
QTSMediaParams structure 1936
QTSMediaSetIndStreamInfo function 1813
QTSMediaSetInfo function 1814
QTSMediaSetInfo Values 1961
QTSMemPtr data type 1936
QTSMessageLength function 1814
QTSNewHandle function 1815
QTSNewPresentation function 1816
QTSNewPresentationFromData function 1816
QTSNewPresentationFromDataRef function 1817
QTSNewPresentationFromFile function 1817
QTSNewPresentationParams structure 1937
QTSNewPtr function 1818
QTSNewPtr Values 1961
QTSNewSourcer function 1819
QTSNewStatHelper function 1820
QTSNewStreamBuffer function 1821
QTSNoProxyPref structure 1938
QTSNotificationProc callback 1931
QTSNotificationUPP data type 1938
QTSoundDescriptionConvert function 278
QTSoundDescriptionCreate function 279
QTSoundDescriptionGetProperty function 280
QTSoundDescriptionGetPropertyInfo function 281
QTSoundDescriptionSetProperty function 282
QTSPrefsAddConnectionSetting function 1821
QTSPrefsAddProxySetting function 1822
QTSPrefsAddProxyUserInfo function 1823
QTSPrefsFindConnectionByType function 1823
QTSPrefsFindProxyByType function 1824
QTSPrefsFindProxyUserInfoByType function 1825
QTSPrefsGetActiveConnection function 1826
QTSPrefsGetActiveConnection Values 1960
QTSPrefsGetInstantOnSettings function 1827
QTSPrefsGetNoProxyURLs function 1827
QTSPrefsSetInstantOnSettings function 1827
QTSPrefsSetNoProxyURLs function 1828
QTSPresAddSourcer function 1829
QTSPresentation data type 1939
QTSPresentationRecord structure 1939
QTSPresExport function 1829
QTSPresGetActiveSegment function 1830
QTSPresGetClip function 1830
QTSPresGetDimensions function 1831
QTSPresGetEnable function 1832
QTSPresGetFlags function 1832
QTSPresGetFlags Values 1959
QTSPresGetGraphicsMode function 1833
QTSPresGetGWorld function 1834
QTSPresGetIndSourcer function 1834
QTSPresGetIndStream function 1835

2505
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTSPresGetInfo function 1836
QTSPresGetMatrix function 1838
QTSPresGetNotificationProc function 1838
QTSPresGetNumSourcers function 1839
QTSPresGetNumStreams function 1839
QTSPresGetPicture function 1840
QTSPresGetPlayHints function 1840
QTSPresGetPreferredRate function 1841
QTSPresGetPresenting function 1842
QTSPresGetSettings function 1842
QTSPresGetSettingsAsText function 1843
QTSPresGetTimeBase function 1844
QTSPresGetTimeScale function 1844
QTSPresGetVolumes function 1845
QTSPresHasCharacteristic function 1845
QTSPresIdle function 1846
QTSPresIdleParams structure 1939
QTSPresInvalidateRegion function 1847
QTSPresNewStream function 1847
QTSPresParams structure 1940
QTSPresPreroll function 1848
QTSPresPreroll64 function 1848
QTSPresPreview function 1849
QTSPresRemoveSourcer function 1850
QTSPresSetActiveSegment function 1850
QTSPresSetClip function 1851
QTSPresSetDimensions function 1852
QTSPresSetEnable function 1852
QTSPresSetFlags function 1853
QTSPresSetGraphicsMode function 1853
QTSPresSetGWorld function 1854
QTSPresSetInfo function 1855
QTSPresSetInfo Values 1960
QTSPresSetMatrix function 1856
QTSPresSetNotificationProc function 1856
QTSPresSetPlayHints function 1857
QTSPresSetPreferredRate function 1858
QTSPresSetPresenting function 1858
QTSPresSetSettings function 1859
QTSPresSettingsDialog function 1860
QTSPresSettingsDialogWithFilters function 1860
QTSPresSetVolumes function 1861
QTSPresSkipTo function 1862
QTSPresSkipTo64 function 1862
QTSPresStart function 1863
QTSPresStop function 1864
QTSProxyPref structure 1941
QTSReleaseMemPtr function 1864
QTSSetNetworkAppName function 1865
QTSSetNetworkAppName Values 1962
QTSSourcer data type 1941
QTSSourcerGetEnable function 1865
QTSSourcerGetInfo function 1866

QTSSourcerGetTimeScale function 1866
QTSSourcerIdle function 1867
QTSSourcerInitialize function 1867
QTSSourcerInitParams structure 1942
QTSSourcerSetEnable function 1868
QTSSourcerSetInfo function 1868
QTSSourcerSetTimeScale function 1869
QTSStatHelper data type 1942
QTSStatHelperGetNumStats function 1870
QTSStatHelperGetStats function 1870
QTSStatHelperNext function 1871
QTSStatHelperNextParams structure 1943
QTSStatHelperNextParams Values 1962
QTSStatHelperRecord structure 1944
QTSStatHelperResetIter function 1871
QTSStatisticsParams Values 1959
QTSStream data type 1944
QTSStreamBuffer structure 1944
QTSStreamBufferDataInfo function 1872
QTSStreamRecord structure 1946
QTStandardParameterDialogDoAction function 1467
QTSTransportPref structure 1946
QTSTransportPref Values 1959
QTSwapAtoms function 1469
QTSyncTaskProc callback 1507
QTSyncTaskUPP data type 1513
QTTextToNativeText function 282
QTTextToNativeText Values 357
QTTweener data type 1513
QTTweenerRecord structure 1513
QTUninstallNextTaskNeededSoonerCallback

function 283
QTUnlockContainer function 1469
QTUnregisterAccessKey function 1470
QTUnregisterAccessKey Values 1519
QTUpdateGWorld function 708
QTUUID structure 1514
QTVideoOutputBaseSetEchoPort function 2258
QTVideoOutputBegin function 2259
QTVideoOutputComponent data type 2347
QTVideoOutputCopyIndAudioOutputDeviceUID

function 2260
QTVideoOutputCustomConfigureDisplay function

2260
QTVideoOutputEnd function 2261
QTVideoOutputGetClientName function 2262
QTVideoOutputGetClock function 2262
QTVideoOutputGetCurrentClientName function 2263
QTVideoOutputGetDisplayMode function 2264
QTVideoOutputGetDisplayModeList function 2264
QTVideoOutputGetGWorld function 2265
QTVideoOutputGetGWorldParameters function 2266

2506
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTVideoOutputGetIndImageDecompressor function
2267

QTVideoOutputGetIndSoundOutput function 2267
QTVideoOutputRestoreState function 2268
QTVideoOutputSaveState function 2269
QTVideoOutputSetClientName function 2270
QTVideoOutputSetDisplayMode function 2270
QTVideoOutputSetEchoPort function 2271
QTVisualContextCopyImageForTime function 125
QTVisualContextGetAttribute function 125
QTVisualContextGetTypeID function 126
QTVisualContextIsNewImageAvailable function 126
QTVisualContextRelease function 127
QTVisualContextRetain function 128
QTVisualContextSetAttribute function 128
QTVisualContextSetImageAvailableCallback

function 129
QTVisualContextTask function 129
QTVRAnglesToCoord function 1982
QTVRAngularUnits data type 2069
QTVRAreaOfInterest structure 2069
QTVRBackBufferImagingProc callback 2065
QTVRBackBufferImagingUPP data type 2070
QTVRBeginUpdateStream function 1983
QTVRCallInterceptedProc function 1984
QTVRColumnToPan function 1985
QTVRControlSetting data type 2070
QTVRCoordToAngles function 1985
QTVRCursorRecord structure 2070
QTVRCursorRecord Values 2083
QTVREnableFrameAnimation function 1986
QTVREnableHotSpot function 1987
QTVREnableHotSpot Values 2078
QTVREnableTransition function 1988
QTVREnableViewAnimation function 1989
QTVREndUpdateStream function 1989
QTVREnteringNodeProc callback 2065
QTVREnteringNodeUPP data type 2071
QTVRFloatPoint structure 2071
QTVRGetAngularUnits function 1990
QTVRGetAnimationSetting function 1991
QTVRGetAvailableResolutions function 1992
QTVRGetBackBufferMemInfo function 1992
QTVRGetBackBufferSettings function 1994
QTVRGetConstraints function 1996
QTVRGetConstraintStatus function 1996
QTVRGetControlSetting function 1997
QTVRGetCurrentMouseMode function 1998
QTVRGetCurrentNodeID function 1999
QTVRGetCurrentViewDuration function 1999
QTVRGetFieldOfView function 2000
QTVRGetFrameAnimation function 2001
QTVRGetFrameRate function 2001

QTVRGetHotSpotRegion function 2002
QTVRGetHotSpotType function 2003
QTVRGetImagingProperty function 2004
QTVRGetInteractionProperty function 2005
QTVRGetMouseDownTracking function 2006
QTVRGetMouseOverTracking function 2006
QTVRGetNodeInfo function 2007
QTVRGetNodeType function 2008
QTVRGetPanAngle function 2008
QTVRGetQTVRInstance function 2009
QTVRGetQTVRTrack function 2010
QTVRGetTiltAngle function 2011
QTVRGetViewAnimation function 2012
QTVRGetViewCenter function 2013
QTVRGetViewCurrentTime function 2013
QTVRGetViewingLimits function 2014
QTVRGetViewParameter function 2015
QTVRGetViewRate function 2016
QTVRGetViewState function 2016
QTVRGetViewStateCount function 2017
QTVRGetVisible function 2018
QTVRGetVisibleHotSpots function 2018
QTVRGetVRWorld function 2019
QTVRGoToNodeID function 2020
QTVRGoToNodeID Values 2076
QTVRImagingCompleteProc callback 2066
QTVRImagingCompleteUPP data type 2072
QTVRImagingMode data type 2072
QTVRInstallInterceptProc function 2021
QTVRInstance data type 2072
QTVRInteractionNudge function 2022
QTVRInterceptProc callback 2066
QTVRInterceptRecord structure 2072
QTVRInterceptUPP data type 2074
QTVRLeavingNodeProc callback 2067
QTVRLeavingNodeUPP data type 2074
QTVRMouseDown function 2023
QTVRMouseEnter function 2025
QTVRMouseLeave function 2025
QTVRMouseOverHotSpotProc callback 2068
QTVRMouseOverHotSpotUPP data type 2074
QTVRMouseStillDown function 2026
QTVRMouseStillDownExtended function 2027
QTVRMouseUp function 2028
QTVRMouseUpExtended function 2029
QTVRMouseWithin function 2031
QTVRNudge function 2031
QTVRNudgeControl data type 2074
QTVRObjectAnimationSetting data type 2075
QTVRPanToColumn function 2032
QTVRProcSelector data type 2075
QTVRPtToAngles function 2033
QTVRPtToHotSpotID function 2034

2507
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

QTVRRefreshBackBuffer function 2035
QTVRReplaceCursor function 2035
QTVRRowToTilt function 2036
QTVRSetAngularUnits function 2037
QTVRSetAngularUnits Values 2077
QTVRSetAnimationSetting function 2038
QTVRSetBackBufferImagingProc function 2039
QTVRSetBackBufferPrefs function 2040
QTVRSetBackBufferPrefs Values 2077
QTVRSetConstraints function 2041
QTVRSetControlSetting function 2042
QTVRSetControlSetting Values 2083
QTVRSetEnteringNodeProc function 2043
QTVRSetFieldOfView function 2044
QTVRSetFrameRate function 2045
QTVRSetImagingProperty function 2046
QTVRSetInteractionProperty function 2047
QTVRSetInteractionProperty Values 2078
QTVRSetLeavingNodeProc function 2048
QTVRSetMouseDownTracking function 2049
QTVRSetMouseOverHotSpotProc function 2050
QTVRSetMouseOverTracking function 2051
QTVRSetPanAngle function 2051
QTVRSetPrescreenImagingCompleteProc function

2052
QTVRSetPrescreenImagingCompleteProc Values 2080
QTVRSetTiltAngle function 2054
QTVRSetTransitionProperty function 2055
QTVRSetTransitionProperty Values 2082
QTVRSetViewCenter function 2056
QTVRSetViewCurrentTime function 2056
QTVRSetViewParameter function 2057
QTVRSetViewRate function 2058
QTVRSetViewState function 2059
QTVRSetViewState Values 2076
QTVRSetVisible function 2059
QTVRShowDefaultView function 2060
QTVRTiltToRow function 2061
QTVRTriggerHotSpot function 2061
QTVRUpdate function 2063
QTVRViewStateType data type 2075
QTVRWrapAndConstrain function 2063
QTVRWrapAndConstrain Values 386, 2079
QuadToQuadMatrix function 710
QuickTime Preferences Dialog Options 393

R

RectMatrix function 710
RectPtr data type 2347
RegionCode data type 354
RemoveCallBackFromTimeBase function 284

RemoveImageDescriptionExtension function 711
RemoveMovieExecuteWiredActionsProc function

1471
RemoveMovieResource function 1471
RemoveSoundDescriptionExtension function 1472
RemoveUserData function 1472
RemoveUserDataText function 1473
ReplaceDSequenceImageDescription function 712
RotateMatrix function 712
RTPMediaPacketizer data type 1947
RTPMPDataReleaseProc callback 1931
RTPMPDataReleaseUPP data type 1947
RTPMPDoUserDialog function 1872
RTPMPFlush function 1873
RTPMPGetInfo function 1874
RTPMPGetMaxPacketDuration function 1875
RTPMPGetMaxPacketSize function 1875
RTPMPGetMediaType function 1876
RTPMPGetPacketBuilder function 1876
RTPMPGetSettings function 1877
RTPMPGetSettingsAsText function 1878
RTPMPGetSettingsIntoAtomContainerAtAtom

function 1878
RTPMPGetTimeBase function 1879
RTPMPGetTimeScale function 1879
RTPMPHasCharacteristic function 1880
RTPMPIdle function 1881
RTPMPIdle Values 1965
RTPMPInitialize function 1881
RTPMPInitialize Values 1965
RTPMPPreflightMedia function 1882
RTPMPReset function 1883
RTPMPSampleDataParams structure 1947
RTPMPSetInfo function 1884
RTPMPSetMaxPacketDuration function 1885
RTPMPSetMaxPacketSize function 1885
RTPMPSetMediaType function 1886
RTPMPSetPacketBuilder function 1887
RTPMPSetSampleData function 1887
RTPMPSetSettings function 1888
RTPMPSetSettingsFromAtomContainerAtAtom

function 1889
RTPMPSetTimeBase function 1890
RTPMPSetTimeScale function 1890
RTPPacketBuilder data type 1949
RTPPacketGroupRef data type 1949
RTPPacketRef data type 1949
RTPPacketRepeatedDataRef data type 1949
RTPPayloadSortRequest structure 1949
RTPPayloadSortRequestPtr data type 1950
RTPPBAddPacketLiteralData function 1891
RTPPBAddPacketRepeatedData function 1892
RTPPBAddPacketSampleData function 1893

2508
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

RTPPBAddPacketSampleData64 function 1894
RTPPBAddRepeatPacket function 1895
RTPPBBeginPacket function 1896
RTPPBBeginPacketGroup function 1897
RTPPBCallbackProc callback 1932
RTPPBCallbackUPP data type 1950
RTPPBEndPacket function 1898
RTPPBEndPacketGroup function 1899
RTPPBGetCallback function 1900
RTPPBGetInfo function 1901
RTPPBGetPacketSequenceNumber function 1901
RTPPBGetPacketTimeStampOffset function 1902
RTPPBGetSampleData function 1903
RTPPBReleaseRepeatedData function 1904
RTPPBSetCallback function 1904
RTPPBSetInfo function 1905
RTPPBSetPacketSequenceNumber function 1906
RTPPBSetPacketTimeStampOffset function 1906
RTPReassembler data type 1950
RTPRssmAdjustPacketParams function 1907
RTPRssmClearCachedPackets function 1908
RTPRssmComputeChunkSize function 1909
RTPRssmCopyDataToChunk function 1909
RTPRssmDecrChunkRefCount function 1910
RTPRssmFillPacketListParams function 1911
RTPRssmGetCapabilities function 1912
RTPRssmGetChunkAndIncrRefCount function 1912
RTPRssmGetExtChunkAndIncrRefCount function 1913
RTPRssmGetInfo function 1914
RTPRssmGetPayloadHeaderLength function 1915
RTPRssmGetStreamHandler function 1916
RTPRssmGetTimeScale function 1916
RTPRssmGetTimeScaleFromPacket function 1917
RTPRssmHandleNewPacket function 1918
RTPRssmHasCharacteristic function 1918
RTPRssmIncrChunkRefCount function 1919
RTPRssmInitialize function 1920
RTPRssmInitParams structure 1951
RTPRssmNewStreamHandler function 1920
RTPRssmPacket structure 1951
RTPRssmReleasePacketList function 1921
RTPRssmReset function 1922
RTPRssmSendChunkAndDecrRefCount function 1923
RTPRssmSendLostChunk function 1923
RTPRssmSendPacketList function 1924
RTPRssmSendPacketList Values 1966
RTPRssmSendStreamBufferRange function 1925
RTPRssmSendStreamHandlerChanged function 1925
RTPRssmSetCapabilities function 1926
RTPRssmSetCapabilities Values 1966
RTPRssmSetInfo function 1927
RTPRssmSetPayloadHeaderLength function 1928
RTPRssmSetSampleDescription function 1928

RTPRssmSetStreamHandler function 1929
RTPRssmSetTimeScale function 1930
RTPSendStreamBufferRangeParams structure 1953

S

SampleNumToMediaDecodeTime function 1638
SampleNumToMediaDisplayTime function 1638
SampleNumToMediaTime function 1639
SampleReference64Ptr data type 1662
SampleReference64Record structure 1662
SampleReferencePtr data type 1663
SampleReferenceRecord structure 1663
ScaleMatrix function 713
scaleMatrixType constant 1958
ScaleMovieSegment function 1640
ScaleTrackSegment function 1641
scaleTranslateMatrixType constant 1958
SCAsyncIdle function 514
SCAudioInvokeLegacyCodecOptionsDialog function

514
scAvailableCompressionListType constant 401, 570
scCodecManufacturerType constant 401, 570
scCodecSettingsType constant 401, 570
SCCompressImage function 514
SCCompressPicture function 515
SCCompressPictureFile function 516
SCCompressSequenceBegin function 517
SCCompressSequenceEnd function 518
SCCompressSequenceFrame function 518
SCCompressSequenceFrameAsync function 520
SCCopyCompressionSessionOptions function 521
scDataRateSettingsType constant 401, 570
SCDefaultPictFileSettings function 522
SCDefaultPictHandleSettings function 522
SCDefaultPixMapSettings function 523
scForceKeyValueType constant 401, 570
SCGetBestDeviceRect function 524
SCGetCompressFlags function 524
scGetCompression constant 572
SCGetCompressionExtended function 525
SCGetInfo function 526
SCGetSettingsAsAtomContainer function 527
SCGetSettingsAsText function 527
SCModalFilterProc callback 553
SCModalFilterUPP data type 556
SCModalHookProc callback 554
SCModalHookUPP data type 556
SCNewGWorld function 528
SCParams structure 557
SCParams Values 571
SCPositionDialog function 529

2509
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

SCPositionRect function 529
SCRequestImageSettings function 530
SCRequestSequenceSettings function 531
SCSetCompressFlags function 532
SCSetCompressFlags Values 571
SCSetInfo function 532
SCSetSettingsFromAtomContainer function 533
SCSetTestImagePictFile function 534
SCSetTestImagePictHandle function 535
SCSetTestImagePixMap function 536
scShowMotionSettings constant 572
scSoundChannelCountType constant 402, 571
scSoundCompressionType constant 402, 571
scSoundInputSampleRateType constant 402, 571
scSoundSampleRateChangeOK constant 401, 570
scSoundSampleRateType constant 402, 571
scSoundSampleSizeType constant 402, 571
scSoundVBRCompressionOK constant 401, 570
scSpatialSettingsType constant 401, 570
scTemporalSettingsType constant 401, 570
scVideoAllowFrameReorderingType constant 400,

569
scWindowOptionsType constant 401, 570
SelectMovieAlternates function 1642
seqGrabAlwaysUseTimeBase 2247
seqGrabAppendToFile 2248
seqGrabCanMoveWindowWhileRecording 2247
SeqGrabComponent data type 2236
SeqGrabExtendedFrameInfo structure 2237
SeqGrabExtendedFrameInfoPtr data type 2238
SeqGrabFrameInfo structure 2238
SeqGrabFrameInfoPtr data type 2239
SetAutoTrackAlternatesEnabled function 1642
SetCompressedPixMapInfo function 714
SetCSequenceDataRateParams function 715
SetCSequenceFlushProc function 716
SetCSequenceFrameNumber function 717
SetCSequenceKeyFrameRate function 718
SetCSequencePreferredPacketSize function 718
SetCSequencePrev function 719
SetCSequenceQuality function 720
SetDSequenceAccuracy function 721
SetDSequenceDataProc function 722
SetDSequenceFlags function 723
SetDSequenceMask function 724
SetDSequenceMatrix function 724
SetDSequenceMatte function 725
SetDSequenceNonScheduledDisplayDirection

function 726
SetDSequenceNonScheduledDisplayTime function

726
SetDSequenceSrcRect function 727
SetDSequenceTimeCode function 728

SetDSequenceTransferMode function 728
SetIdentityMatrix function 729
SetImageDescriptionCTable function 730
SetMediaDataHandler function 1643
SetMediaDataRef function 1474
SetMediaDataRefAttributes function 1475
SetMediaDataRefAttributes Values 1520
SetMediaDefaultDataRefIndex function 1643
SetMediaHandler function 1644
SetMediaInputMap function 1645
SetMediaLanguage function 1646
SetMediaPlayHints function 1475
SetMediaPreferredChunkSize function 1647
SetMediaPropertyAtom function 1476
SetMediaQuality function 1647
SetMediaSampleDescription function 1648
SetMediaShadowSync function 1649
SetMediaTimeScale function 1649
SetMovieActive function 284
SetMovieActiveSegment function 285
SetMovieAnchorDataRef function 1478
SetMovieAudioBalance function 1478
SetMovieAudioContext function 286
SetMovieAudioFrequencyMeteringNumBands function

1479
SetMovieAudioGain function 1480
SetMovieAudioMute function 1480
SetMovieAudioVolumeMeteringEnabled function

1481
SetMovieBox function 286
SetMovieClipRgn function 287
SetMovieColorTable function 1482
SetMovieCoverProcs function 1482
SetMovieDefaultDataRef function 1484
SetMovieDisplayClipRgn function 288
SetMovieDrawingCompleteProc function 289
SetMovieDrawingCompleteProc Values 358
SetMovieGWorld function 290
SetMovieLanguage function 1484
SetMovieMasterClock function 290
SetMovieMasterTimeBase function 291
SetMovieMatrix function 292
SetMoviePlayHints function 1485
SetMoviePosterTime function 293
SetMoviePreferredRate function 293
SetMoviePreferredVolume function 294
SetMoviePreviewMode function 295
SetMoviePreviewTime function 296
SetMovieProgressProc function 1486
SetMoviePropertyAtom function 1487
SetMovieRate function 296
SetMovieSelection function 297
SetMoviesErrorProc function 298

2510
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

SetMovieTime function 299
SetMovieTimeScale function 300
SetMovieTimeValue function 300
SetMovieVideoOutput function 301
SetMovieVisualBrightness function 1487
SetMovieVisualContext function 302
SetMovieVisualContrast function 1488
SetMovieVisualHue function 1489
SetMovieVisualSaturation function 1489
SetMovieVolume function 302
SetPosterBox function 1490
SetQuickTimePreference function 1491
SetQuickTimePreference Values 1516
SetSequenceProgressProc function 731
SetSpriteProperty function 1491
SetSpriteWorldClip function 1493
SetSpriteWorldFlags function 1494
SetSpriteWorldGraphicsMode function 1494
SetSpriteWorldMatrix function 1495
SetTimeBaseFlags function 303
SetTimeBaseMasterClock function 304
SetTimeBaseMasterTimeBase function 305
SetTimeBaseOffsetTimeBase function 306
SetTimeBaseRate function 306
SetTimeBaseStartTime function 307
SetTimeBaseStopTime function 307
SetTimeBaseTime function 308
SetTimeBaseValue function 309
SetTimeBaseZero function 309
SetTrackAlternate function 1650
SetTrackAudioGain function 1496
SetTrackAudioMute function 1496
SetTrackClipRgn function 310
SetTrackDimensions function 1650
SetTrackEnabled function 1651
SetTrackGWorld function 311
SetTrackLayer function 1652
SetTrackLoadSettings function 1497
SetTrackLoadSettings Values 1522
SetTrackMatrix function 1653
SetTrackMatte function 312
SetTrackOffset function 1653
SetTrackReference function 1654
SetTrackSoundLocalizationSettings function 1655
SetTrackUsage function 1656
SetTrackUsage Values 1666
SetTrackVolume function 1657
SetUserDataItem function 1498
SGAddExtendedFrameReference function 2107
SGAddExtendedMovieData function 2107
SGAddFrame function 2109
SGAddFrameBottleProc callback 2228
SGAddFrameBottleUPP data type 2239

SGAddFrameReference function 2110
SGAddMovieData function 2110
SGAddMovieData Values 2249
SGAddOutputDataRefToMedia function 2111
SGAlignChannelRect function 2112
SGAppendDeviceListToMenu function 2113
SGChangedSource function 2113
SGChannel data type 2239
SGChannelGetCodecSettings function 2114
SGChannelGetDataSourceName function 2115
SGChannelGetRequestedDataRate function 2115
SGChannelPutPicture function 2116
SGChannelSetCodecSettings function 2116
SGChannelSetDataSourceName function 2117
SGChannelSetRequestedDataRate function 2118
SGCompressBottleProc callback 2229
SGCompressBottleUPP data type 2240
SGCompressCompleteBottleProc callback 2230
SGCompressCompleteBottleUPP data type 2240
SGCompressFrame function 2118
SGCompressFrameComplete function 2119
SGCompressInfo structure 2240
SGDataProc callback 2230
SGDataUPP data type 2241
SGDeviceList data type 2241
SGDeviceListPtr data type 2241
SGDisplayBottleProc callback 2231
SGDisplayBottleUPP data type 2242
SGDisplayCompress function 2120
SGDisplayCompressBottleProc callback 2232
SGDisplayCompressBottleUPP data type 2242
SGDisplayFrame function 2121
SGDisposeChannel function 2121
SGDisposeDeviceList function 2122
SGDisposeOutput function 2123
sgFlagAllowNonRGBPixMaps 2249
SGGetAdditionalSoundRates function 2123
SGGetAlignmentProc function 2124
SGGetBufferInfo function 2125
SGGetChannelBounds function 2126
SGGetChannelClip function 2126
SGGetChannelDeviceAndInputNames function 2127
SGGetChannelDeviceList function 2128
SGGetChannelDeviceList Values 2249
SGGetChannelInfo function 2128
SGGetChannelMatrix function 2129
SGGetChannelMaxFrames function 2130
SGGetChannelPlayFlags function 2130
SGGetChannelRefCon function 2131
SGGetChannelSampleDescription function 2132
SGGetChannelSettings function 2132
SGGetChannelTimeBase function 2133
SGGetChannelTimeScale function 2134

2511
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

SGGetChannelUsage function 2135
SGGetChannelVolume function 2135
SGGetCompressBuffer function 2136
SGGetDataOutput function 2137
SGGetDataOutputStorageSpaceRemaining function

2137
SGGetDataOutputStorageSpaceRemaining64 function

2138
SGGetDataRate function 2139
SGGetDataRef function 2139
SGGetFlags function 2140
SGGetFrameRate function 2141
SGGetGWorld function 2142
SGGetIndChannel function 2142
SGGetInstrument function 2143
SGGetLastMovieResID function 2144
SGGetMaximumRecordTime function 2144
SGGetMode function 2145
SGGetMovie function 2145
SGGetNextExtendedFrameReference function 2146
SGGetNextFrameReference function 2147
SGGetOutputDataReference function 2147
SGGetOutputMaximumOffset function 2148
SGGetOutputNextOutput function 2149
SGGetPause function 2149
SGGetPause Values 2248
SGGetPreferredPacketSize function 2150
SGGetSettings function 2151
SGGetSoundInputDriver function 2151
SGGetSoundInputParameters function 2152
SGGetSoundInputRate function 2153
SGGetSoundRecordChunkSize function 2153
SGGetSrcVideoBounds function 2154
SGGetStorageSpaceRemaining function 2154
SGGetStorageSpaceRemaining64 function 2155
SGGetTextReturnToSpaceValue function 2156
SGGetTimeBase function 2156
SGGetTimeRemaining function 2157
SGGetUserVideoCompressorList function 2157
SGGetUseScreenBuffer function 2158
SGGetVideoBottlenecks function 2159
SGGetVideoCompressor function 2159
SGGetVideoCompressorType function 2161
SGGetVideoDigitizerComponent function 2161
SGGetVideoRect function 2162
SGGrabBottleProc callback 2233
SGGrabBottleUPP data type 2242
SGGrabCompleteBottleProc callback 2233
SGGrabCompleteBottleUPP data type 2242
SGGrabCompressComplete function 2163
SGGrabCompressCompleteBottleProc callback 2234
SGGrabCompressCompleteBottleUPP data type 2242
SGGrabFrame function 2163

SGGrabFrameComplete function 2164
SGGrabPict function 2165
SGGrabPict Values 2247
SGHandleUpdateEvent function 2166
SGIdle function 2166
SGInitChannel function 2167
SGInitialize function 2168
SGModalFilterProc callback 2235
SGModalFilterUPP data type 2243
SGNewChannel function 2169
SGNewChannelFromComponent function 2170
SGNewOutput function 2171
SGOutput data type 2243
SGOutputRecord structure 2243
SGPanelCanRun function 2172
SGPanelEvent function 2173
SGPanelGetDitl function 2174
SGPanelGetDITLForSize function 2175
SGPanelGetDITLForSize Values 402
SGPanelGetSettings function 2176
SGPanelGetTitle function 2177
SGPanelInstall function 2177
SGPanelItem function 2178
SGPanelRemove function 2179
SGPanelSetEventFilter function 2180
SGPanelSetGrabber function 2181
SGPanelSetResFile function 2182
SGPanelSetSettings function 2182
SGPanelValidateInput function 2183
SGPause function 2184
SGPrepare function 2185
SGRelease function 2186
SGSetAdditionalSoundRates function 2186
SGSetChannelBounds function 2187
SGSetChannelClip function 2188
SGSetChannelDevice function 2188
SGSetChannelDeviceInput function 2189
SGSetChannelMatrix function 2190
SGSetChannelMaxFrames function 2190
SGSetChannelOutput function 2191
SGSetChannelPlayFlags function 2192
SGSetChannelRefCon function 2192
SGSetChannelSettings function 2193
SGSetChannelSettingsStateChanging function 2194
SGSetChannelSettingsStateChanging Values 2249
SGSetChannelUsage function 2195
SGSetChannelVolume function 2195
SGSetCompressBuffer function 2196
SGSetDataOutput function 2197
SGSetDataProc function 2198
SGSetDataRef function 2199
SGSetFlags function 2200
SGSetFontName function 2200

2512
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

SGSetFontSize function 2201
SGSetFrameRate function 2202
SGSetGWorld function 2202
SGSetInstrument function 2204
SGSetJustification function 2204
SGSetMaximumRecordTime function 2205
SGSetOutputFlags function 2205
SGSetOutputMaximumOffset function 2206
SGSetOutputNextOutput function 2207
SGSetPreferredPacketSize function 2208
SGSetSettings function 2208
SGSetSettingsSummary function 2209
SGSetSoundInputDriver function 2210
SGSetSoundInputParameters function 2210
SGSetSoundInputRate function 2211
SGSetSoundRecordChunkSize function 2211
SGSetTextBackColor function 2212
SGSetTextForeColor function 2213
SGSetTextReturnToSpaceValue function 2213
SGSettingsDialog function 2214
SGSettingsDialog Values 2248
SGSetUserVideoCompressorList function 2215
SGSetUseScreenBuffer function 2216
SGSetVideoBottlenecks function 2217
SGSetVideoCompressor function 2218
SGSetVideoCompressorType function 2219
SGSetVideoDigitizerComponent function 2219
SGSetVideoRect function 2220
SGSortDeviceList function 2221
SGSoundInputDriverChanged function 2221
SGStartPreview function 2222
SGStartRecord function 2222
SGStop function 2223
SGTransferFrameBottleProc callback 2235
SGTransferFrameBottleUPP data type 2243
SGTransferFrameForCompress function 2223
SGUpdate function 2224
SGVideoDigitizerChanged function 2225
SGWriteExtendedMovieData function 2226
SGWriteMovieData function 2227
SGWriteSamples function 2227
SHChunkRecord structure 1954
SHExtendedChunkRecord structure 1955
SHExtendedChunkRecord Values 1966
ShowMovieInformation function 1499
ShowMoviePoster function 312
SHServerEditParameters structure 1956
SkewMatrix function 731
smCentralEuroRoman constant 440
SMPTEFlags data type 956
SMPTEFrameReference data type 957
SMPTEWipeType data type 957
smRSymbol constant 440

smSimpChinese constant 440
smTradChinese constant 440
SoundMediaType constant 403, 1667
Sprite data type 1514
Sprite Properties 387, 1519
SpriteHitTest function 1500
SpriteMediaCountImages function 313
SpriteMediaCountSprites function 314
SpriteMediaDisposeImage function 314
SpriteMediaDisposeSprite function 315
SpriteMediaGetActionVariable function 315
SpriteMediaGetActionVariableAsString function

316
SpriteMediaGetDisplayedSampleNumber function

317
SpriteMediaGetImageName function 317
SpriteMediaGetIndImageDescription function 318
SpriteMediaGetIndImageProperty function 319
SpriteMediaGetProperty function 319
SpriteMediaGetSpriteActionsForQTEvent function

320
SpriteMediaGetSpriteName function 321
SpriteMediaGetSpriteProperty function 322
SpriteMediaHitTestAllSprites function 323
SpriteMediaHitTestOneSprite function 324
SpriteMediaHitTestSprites function 324
SpriteMediaImageIDToIndex function 325
SpriteMediaImageIndexToID function 326
SpriteMediaNewImage function 326
SpriteMediaNewSprite function 327
SpriteMediaSetActionVariable function 328
SpriteMediaSetActionVariableToString function

328
SpriteMediaSetProperty function 329
SpriteMediaSetSpriteProperty function 330
SpriteMediaSpriteIDToIndex function 331
SpriteMediaSpriteIndexToID function 331
SpriteRecord structure 1515
SpriteWorld data type 1515
SpriteWorldHitTest function 1501
SpriteWorldHitTest Values 403
SpriteWorldIdle function 1502
SpriteWorldIdle Values 1522
SpriteWorldRecord structure 1515
srcBic constant 431
srcCopy constant 430
srcOr constant 431
srcXor constant 431
Standard Compression Constants 398, 567
StartMovie function 332
StdPix function 732
StdPix Values 748
StdPixProc callback 135

2513
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

StdPixUPP data type 140
StopMovie function 333
Str31 data type 1772
Streaming Transport Atoms 1964
Style data type 355
subOver constant 433
subPin constant 433
SubtractTime function 333
SynthesizerConnections structure 1772
SynthesizerDescription structure 1773

T

tc24HourMax constant 573
tcDropFrame constant 572
TCFrameNumberToTimeCode function 538
TCGetCurrentTimeCode function 538
TCGetDisplayOptions function 539
TCGetSourceRef function 540
TCGetTimeCodeAtTime function 540
TCGetTimeCodeFlags function 541
tcNegTimesOK constant 573
TCSetDisplayOptions function 542
TCSetSourceRef function 543
TCSetTimeCodeFlags function 543
TCSetTimeCodeFlags Values 572
TCTextOptions structure 558
TCTextOptionsPtr data type 559
TCTimeCodeToFrameNumber function 544
TCTimeCodeToString function 545
TEHandle data type 355
TEPtr data type 355
TerminateQTS function 1930
Text Properties 404
TextDescriptionHandle data type 355
TextDescriptionPtr data type 356
TextDisplayData structure 559
TextExportComponent data type 561
TextExportGetDisplayData function 546
TextExportGetSettings function 546
TextExportGetTimeFraction function 547
TextExportSetSettings function 548
TextExportSetSettings Values 565
TextExportSetTimeFraction function 548
TextMediaAddHiliteSample function 334
TextMediaAddTESample function 335
TextMediaAddTextSample function 337
TextMediaDrawRaw function 339
TextMediaFindNextText function 340
TextMediaFindNextText Values 356
TextMediaGetTextProperty function 341
TextMediaHiliteTextSample function 342

TextMediaRawIdle function 343
TextMediaRawSetup function 344
TextMediaSetTextProc function 345
TextMediaSetTextProperty function 345
TextMediaSetTextSampleData function 346
TextMediaType constant 403, 1667
TIFF Properties 1083
timeBaseAfterStopTime 358
TimeBaseStatus data type 356
TimeCodeDef structure 561
TimeCodeDef Values 572
TimeCodeDescriptionHandle data type 562
TimeCodeDescriptionPtr data type 563
TimeCodeRecord structure 563
ToneDescription Values 408
TrackEditState data type 1664
TrackEditStateRecord structure 1664
TrackTimeToMediaDisplayTime function 1658
TrackTimeToMediaTime function 1658
TransformFixedPoints function 734
TransformFixedRect function 734
TransformPoints function 735
TransformRect function 736
TransformRgn function 737
TranslateMatrix function 737
translateMatrixType constant 1957
transparent constant 434
TrimImage function 738
TuneCallBackProc callback 1762
TuneCallBackUPP data type 1776
TuneGetIndexedNoteChannel function (Deprecated in

Mac OS X v10.5) 1746
TuneGetNoteAllocator function (Deprecated in Mac

OS X v10.5) 1746
TuneGetPartMix function (Deprecated in Mac OS X

v10.5) 1747
TuneGetStatus function (Deprecated in Mac OS X v10.5)

1748
TuneGetTimeBase function (Deprecated in Mac OS X

v10.5) 1748
TuneGetTimeScale function (Deprecated in Mac OS X

v10.5) 1749
TuneGetVolume function (Deprecated in Mac OS X v10.5)

1749
TuneInstant function (Deprecated in Mac OS X v10.5)

1750
TunePlayCallBackProc callback 1763
TunePlayCallBackUPP data type 1776
TunePlayer data type 1776
TunePreroll function (Deprecated in Mac OS X v10.5)

1751
TuneQueue function (Deprecated in Mac OS X v10.5) 1751

2514
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

TuneSetBalance function (Deprecated in Mac OS X
v10.5) 1752

TuneSetHeader function (Deprecated in Mac OS X v10.5)
1753

TuneSetHeaderWithSize function (Deprecated in Mac
OS X v10.5) 1754

TuneSetNoteChannels function (Deprecated in Mac OS
X v10.5) 1755

TuneSetPartMix function (Deprecated in Mac OS X
v10.5) 1755

TuneSetPartMix Values 1788
TuneSetPartTranspose function (Deprecated in Mac

OS X v10.5) 1756
TuneSetSofter function (Deprecated in Mac OS X v10.5)

1757
TuneSetSoundLocalization function (Deprecated in

Mac OS X v10.5) 1758
TuneSetTimeScale function (Deprecated in Mac OS X

v10.5) 1758
TuneSetVolume function (Deprecated in Mac OS X v10.5)

1759
TuneStatus structure 1776
TuneStop function (Deprecated in Mac OS X v10.5) 1759
TuneTask function (Deprecated in Mac OS X v10.5) 1760
TuneUnroll function (Deprecated in Mac OS X v10.5)

1760
TweenerComponent data type 564
TweenerDataProc callback 1508
TweenerDataUPP data type 1516
TweenerDoTween function 549
TweenerInitialize function 550
TweenerReset function 551
TweenRecord structure 564

U

UnsignedFixMulDiv function 739
UpdateMovie function 347
UpdateMovieInStorage function 1503
UpdateMovieResource function 1503
UseMovieEditState function 1659
UseTrackEditState function 1660

V

VDAddKeyColor function 2272
VDCaptureStateChanging function 2272
VDClearClipRgn function 2273
VDCompressDone function 2273
VDCompressionListHandle data type 2347

VDCompressionListPtr data type 2348
VDCompressOneFrameAsync function 2274
VDDone function 2275
vdFlagCaptureAlwaysUseTimeBase 2358
VDGammaRecord structure 2348
VDGamRecPtr data type 2348
VDGetActiveSrcRect function 2276
VDGetBlackLevelValue function 2276
VDGetBrightness function 2277
VDGetClipState function 2278
VDGetCLUTInUse function 2278
VDGetCompressionTime function 2279
VDGetCompressionTypes function 2280
VDGetContrast function 2281
VDGetCurrentFlags function 2281
VDGetDataRate function 2282
VDGetDeviceNameAndFlags function 2283
VDGetDeviceNameAndFlags Values 2358
VDGetDigitizerInfo function 2284
VDGetDigitizerRect function 2285
VDGetDMADepths function 2285
VDGetFieldPreference function 2286
VDGetHue function 2287
VDGetImageDescription function 2288
VDGetInput function 2288
VDGetInputColorSpaceMode function 2289
VDGetInputFormat function 2289
VDGetInputGammaRecord function 2290
VDGetInputGammaValue function 2291
VDGetInputName function 2292
VDGetKeyColor function 2292
VDGetKeyColorRange function 2293
VDGetMaskandValue function 2294
VDGetMaskPixMap function 2295
VDGetMaxAuxBuffer function 2295
VDGetMaxSrcRect function 2296
VDGetNextKeyColor function 2296
VDGetNumberOfInputs function 2297
VDGetPlayThruDestination function 2298
VDGetPLLFilterType function 2299
VDGetPreferredImageDimensions function 2299
VDGetPreferredTimeScale function 2300
VDGetSaturation function 2300
VDGetSharpness function 2301
VDGetSoundInputDriver function 2302
VDGetSoundInputSource function 2302
VDGetTimeCode function 2303
VDGetUniqueIDs function 2304
VDGetVBlankRect function 2304
VDGetVideoDefaults function 2305
VDGetWhiteLevelValue function 2307
VDGrabOneFrame function 2307
VDGrabOneFrameAsync function 2308

2515
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

VdigBufferRecListHandle data type 2348
VdigBufferRecListPtr data type 2349
VdigType Values 2359
VDIIDCGetCSRData function 2309
VDIIDCGetDefaultFeatures function 2310
VDIIDCGetFeatures function 2310
VDIIDCGetFeaturesForSpecifier function 2311
VDIIDCSetCSRData function 2312
VDIIDCSetFeatures function 2313
VDPreflightDestination function 2314
VDPreflightGlobalRect function 2315
VDReleaseAsyncBuffers function 2316
VDReleaseCompressBuffer function 2316
VDResetCompressSequence function 2317
VDSelectUniqueIDs function 2317
VDSetBlackLevelValue function 2318
VDSetBrightness function 2318
VDSetClipRgn function 2319
VDSetClipState function 2320
VDSetCompression function 2320
VDSetCompression Values 379
VDSetCompressionOnOff function 2321
VDSetContrast function 2322
VDSetDataRate function 2323
VDSetDestinationPort function 2323
VDSetDigitizerRect function 2324
VDSetDigitizerUserInterrupt function 2324
VDSetFieldPreference function 2325
VDSetFieldPreference Values 2359
VDSetFrameRate function 2326
VDSetHue function 2326
VDSetInput function 2327
VDSetInputColorSpaceMode function 2328
VDSetInputGammaRecord function 2328
VDSetInputGammaValue function 2329
VDSetInputStandard function 2329
VDSetKeyColor function 2330
VDSetKeyColorRange function 2331
VDSetMasterBlendLevel function 2331
VDSetPlayThruDestination function 2332
VDSetPlayThruGlobalRect function 2333
VDSetPlayThruOnOff function 2334
VDSetPlayThruOnOff Values 2358
VDSetPLLFilterType function 2334
VDSetPreferredImageDimensions function 2335
VDSetPreferredPacketSize function 2335
VDSetSaturation function 2336
VDSetSharpness function 2337
VDSetTimeBase function 2337
VDSetupBuffers function 2338
VDSetWhiteLevelValue function 2338
vdTypeAlpha constant 2359
vdTypeBasic constant 2359

vdTypeMask constant 2359
VDUseSafeBuffers function 2339
VDUseThisCLUT function 2340
verChina constant 440
verFarEastGeneric constant 440
verGreece constant 440
verGreecePoly constant 441
verInternational constant 441
verIreland constant 439
verIrishGaelicScript constant 439
verMultilingual constant 441
verScriptGeneric constant 441
verSpain constant 441
verSpLatinAmerica constant 441
verTaiwan constant 440
Video Digitizer Capabilities 2350
VideoBottles structure 2244
VideoDigitizerComponent data type 2349
VideoDigitizerError data type 2349
VideoMediaGetCodecParameter function 348
VideoMediaGetStallCount function 349
VideoMediaGetStatistics function 349
VideoMediaResetStatistics function 350
VideoMediaSetCodecParameter function 351

X

XMLDoc data type 845
XMLDocRecord structure 846
XMLParseAddAttribute function 829
XMLParseAddAttributeAndValue function 830
XMLParseAddAttributeValueKind function 830
XMLParseAddElement function 831
XMLParseAddMultipleAttributes function 832
XMLParseAddMultipleAttributesAndValues function

833
XMLParseAddNameSpace function 833
XMLParseDataRef function 834
XMLParseDisposeXMLDoc function 835
XMLParseFile function 835
XMLParseGetDetailedParseError function 836
XMLParseSetCDataHandler function 836
XMLParseSetCharDataHandler function 837
XMLParseSetCommentHandler function 837
XMLParseSetEndDocumentHandler function 838
XMLParseSetEndElementHandler function 838
XMLParseSetEventParseRefCon function 839
XMLParseSetOffsetAndLimit function 839
XMLParseSetPreprocessInstructionHandler

function 840
XMLParseSetStartDocumentHandler function 841
XMLParseSetStartElementHandler function 841

2516
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	QuickTime Framework Reference
	Contents
	Introduction
	Part I: Managers
	Image Compression Manager Reference
	Overview
	Functions by Task
	Image Transcoder Support
	Managing an ICM Compression Session
	Using the OpenGL Texture Context
	Supporting Functions

	Functions
	DisposeICMAlignmentUPP
	DisposeICMCompletionUPP
	DisposeICMConvertDataFormatUPP
	DisposeICMCursorShieldedUPP
	DisposeICMDataUPP
	DisposeICMFlushUPP
	DisposeICMMemoryDisposedUPP
	DisposeICMProgressUPP
	DisposeQDPixUPP
	DisposeStdPixUPP
	ICMCompressionFrameOptionsCreate
	ICMCompressionFrameOptionsCreateCopy
	ICMCompressionFrameOptionsGetForceKeyFrame
	ICMCompressionFrameOptionsGetFrameType
	ICMCompressionFrameOptionsGetProperty
	ICMCompressionFrameOptionsGetPropertyInfo
	ICMCompressionFrameOptionsGetTypeID
	ICMCompressionFrameOptionsRelease
	ICMCompressionFrameOptionsRetain
	ICMCompressionFrameOptionsSetForceKeyFrame
	ICMCompressionFrameOptionsSetFrameType
	ICMCompressionFrameOptionsSetProperty
	ICMCompressionSessionBeginPass
	ICMCompressionSessionCompleteFrames
	ICMCompressionSessionCreate
	ICMCompressionSessionEncodeFrame
	ICMCompressionSessionEndPass
	ICMCompressionSessionGetImageDescription
	ICMCompressionSessionGetPixelBufferPool
	ICMCompressionSessionGetProperty
	ICMCompressionSessionGetPropertyInfo
	ICMCompressionSessionGetTimeScale
	ICMCompressionSessionGetTypeID
	ICMCompressionSessionOptionsCreate
	ICMCompressionSessionOptionsCreateCopy
	ICMCompressionSessionOptionsGetAllowFrameReordering
	ICMCompressionSessionOptionsGetAllowFrameTimeChanges
	ICMCompressionSessionOptionsGetAllowTemporalCompression
	ICMCompressionSessionOptionsGetDurationsNeeded
	ICMCompressionSessionOptionsGetMaxKeyFrameInterval
	ICMCompressionSessionOptionsGetProperty
	ICMCompressionSessionOptionsGetPropertyInfo
	ICMCompressionSessionOptionsGetTypeID
	ICMCompressionSessionOptionsRelease
	ICMCompressionSessionOptionsRetain
	ICMCompressionSessionOptionsSetAllowFrameReordering
	ICMCompressionSessionOptionsSetAllowFrameTimeChanges
	ICMCompressionSessionOptionsSetAllowTemporalCompression
	ICMCompressionSessionOptionsSetDurationsNeeded
	ICMCompressionSessionOptionsSetMaxKeyFrameInterval
	ICMCompressionSessionOptionsSetProperty
	ICMCompressionSessionProcessBetweenPasses
	ICMCompressionSessionRelease
	ICMCompressionSessionRetain
	ICMCompressionSessionSetProperty
	ICMCompressionSessionSupportsMultiPassEncoding
	ICMCompressorSessionDropFrame
	ICMCompressorSessionEmitEncodedFrame
	ICMCompressorSourceFrameGetDisplayNumber
	ICMCompressorSourceFrameGetDisplayTimeStampAndDuration
	ICMCompressorSourceFrameGetFrameOptions
	ICMCompressorSourceFrameGetPixelBuffer
	ICMCompressorSourceFrameGetTypeID
	ICMCompressorSourceFrameRelease
	ICMCompressorSourceFrameRetain
	ICMDecompressionFrameOptionsCreate
	ICMDecompressionFrameOptionsCreateCopy
	ICMDecompressionFrameOptionsGetProperty
	ICMDecompressionFrameOptionsGetPropertyInfo
	ICMDecompressionFrameOptionsGetTypeID
	ICMDecompressionFrameOptionsRelease
	ICMDecompressionFrameOptionsRetain
	ICMDecompressionFrameOptionsSetProperty
	ICMDecompressionSessionCreate
	ICMDecompressionSessionCreateForVisualContext
	ICMDecompressionSessionDecodeFrame
	ICMDecompressionSessionFlush
	ICMDecompressionSessionGetProperty
	ICMDecompressionSessionGetPropertyInfo
	ICMDecompressionSessionGetTypeID
	ICMDecompressionSessionOptionsCreate
	ICMDecompressionSessionOptionsCreateCopy
	ICMDecompressionSessionOptionsGetProperty
	ICMDecompressionSessionOptionsGetPropertyInfo
	ICMDecompressionSessionOptionsGetTypeID
	ICMDecompressionSessionOptionsRelease
	ICMDecompressionSessionOptionsRetain
	ICMDecompressionSessionOptionsSetProperty
	ICMDecompressionSessionRelease
	ICMDecompressionSessionRetain
	ICMDecompressionSessionSetNonScheduledDisplayDirection
	ICMDecompressionSessionSetNonScheduledDisplayTime
	ICMDecompressionSessionSetProperty
	ICMEncodedFrameCreateMutable
	ICMEncodedFrameGetBufferSize
	ICMEncodedFrameGetDataPtr
	ICMEncodedFrameGetDataSize
	ICMEncodedFrameGetDecodeDuration
	ICMEncodedFrameGetDecodeNumber
	ICMEncodedFrameGetDecodeTimeStamp
	ICMEncodedFrameGetDisplayDuration
	ICMEncodedFrameGetDisplayOffset
	ICMEncodedFrameGetDisplayTimeStamp
	ICMEncodedFrameGetFrameType
	ICMEncodedFrameGetImageDescription
	ICMEncodedFrameGetMediaSampleFlags
	ICMEncodedFrameGetSimilarity
	ICMEncodedFrameGetSourceFrameRefCon
	ICMEncodedFrameGetTimeScale
	ICMEncodedFrameGetTypeID
	ICMEncodedFrameGetValidTimeFlags
	ICMEncodedFrameRelease
	ICMEncodedFrameRetain
	ICMEncodedFrameSetDataSize
	ICMEncodedFrameSetDecodeDuration
	ICMEncodedFrameSetDecodeTimeStamp
	ICMEncodedFrameSetDisplayDuration
	ICMEncodedFrameSetDisplayTimeStamp
	ICMEncodedFrameSetFrameType
	ICMEncodedFrameSetMediaSampleFlags
	ICMEncodedFrameSetSimilarity
	ICMEncodedFrameSetValidTimeFlags
	ICMImageDescriptionGetProperty
	ICMImageDescriptionGetPropertyInfo
	ICMImageDescriptionSetProperty
	ICMMultiPassStorageCopyDataAtTimeStamp
	ICMMultiPassStorageCreateWithCallbacks
	ICMMultiPassStorageCreateWithTemporaryFile
	ICMMultiPassStorageGetTimeStamp
	ICMMultiPassStorageGetTypeID
	ICMMultiPassStorageRelease
	ICMMultiPassStorageRetain
	ICMMultiPassStorageSetDataAtTimeStamp
	ImageTranscoderBeginSequence
	ImageTranscoderConvert
	ImageTranscoderDisposeData
	ImageTranscoderEndSequence
	NewICMAlignmentUPP
	NewICMCompletionUPP
	NewICMConvertDataFormatUPP
	NewICMCursorShieldedUPP
	NewICMDataUPP
	NewICMFlushUPP
	NewICMMemoryDisposedUPP
	NewICMProgressUPP
	NewQDPixUPP
	NewStdPixUPP
	QTAddComponentPropertyListener
	QTComponentPropertyListenerCollectionAddListener
	QTComponentPropertyListenerCollectionCreate
	QTComponentPropertyListenerCollectionHasListenersForProperty
	QTComponentPropertyListenerCollectionIsEmpty
	QTComponentPropertyListenerCollectionNotifyListeners
	QTComponentPropertyListenerCollectionRemoveListener
	QTGetComponentProperty
	QTGetComponentPropertyInfo
	QTOpenGLTextureContextCreate
	QTPixelBufferContextCreate
	QTRemoveComponentPropertyListener
	QTSetComponentProperty
	QTVisualContextCopyImageForTime
	QTVisualContextGetAttribute
	QTVisualContextGetTypeID
	QTVisualContextIsNewImageAvailable
	QTVisualContextRelease
	QTVisualContextRetain
	QTVisualContextSetAttribute
	QTVisualContextSetImageAvailableCallback
	QTVisualContextTask

	Callbacks
	ICMAlignmentProc
	ICMCompletionProc
	ICMCursorShieldedProc
	ICMDataProc
	ICMFlushProc
	ICMProgressProc
	QDPixProc
	StdPixProc

	Data Types
	ICMAlignmentUPP
	ICMCompletionUPP
	ICMCursorShieldedUPP
	ICMDataUPP
	ICMDecompressionTrackingCallbackRecord
	ICMFlushUPP
	ICMMultiPassStorageCallbacks
	ICMProgressUPP
	ImageTranscoderComponent
	QDPixUPP
	QTComponentPropertyListenerCollectionContext
	StdPixUPP

	Constants
	ICMProgressProc Values
	ICM Property IDs
	ICMEncodedFrameSetFrameType Values
	ICMMultiPassStorageCreateWithTemporaryFile Values
	ICMMultiPassStorageGetTimeStamp Values
	kICMValidTime_DecodeDurationIsValid

	Movie Manager Reference
	Overview
	Functions by Task
	Controlling Movie Playback
	Creating and Disposing of Time Bases
	Determining Movie Creation and Modification Time
	Disabling Movies and Tracks
	Enhancing Movie Playback Performance
	Error Functions
	Generating Pictures From Movies
	High-Level Movie Editing Functions
	Initializing the Movie Toolbox
	Managing Movie Sprites
	Managing Sprite Images Outside a Movie
	Managing the Video Frame Playback Rate
	Movie Functions
	Movie Posters and Movie Previews
	Movie Toolbox Clock Support Functions
	Movies and Your Event Loop
	Preferred Movie Settings
	Saving Movies
	Text Media Handler Functions
	The Sound Description Structure
	Time Base Callback Functions
	Using the OpenGL Texture Context
	Working With Movie Spatial Characteristics
	Working With Movie Time
	Working With Progress and Cover Functions
	Working With Sound Descriptions
	Working With Sound Volume
	Working With The Idle Manager
	Working With Time Base Values
	Working With Times
	Working With User Data
	Working With Wired Sprites
	Supporting Functions

	Functions
	AbortPrePrerollMovie
	AddCallBackToTimeBase
	AddTime
	AttachTimeBaseToCurrentThread
	CallMeWhen
	CancelCallBack
	CheckQuickTimeRegistration
	ChooseMovieClock
	ClearMoviesStickyError
	ConvertTime
	ConvertTimeScale
	ConvertTimeToClockTime
	CreateMovieControl
	DetachTimeBaseFromCurrentThread
	DisposeCallBack
	DisposeMatte
	DisposeMovie
	DisposeTimeBase
	EnterMovies
	EnterMoviesOnThread
	ExecuteCallBack
	ExitMovies
	ExitMoviesOnThread
	FlashMediaDoButtonActions
	FlashMediaFrameLabelToMovieTime
	FlashMediaFrameNumberToMovieTime
	FlashMediaGetDisplayedFrameNumber
	FlashMediaGetFlashVariable
	FlashMediaGetRefConBounds
	FlashMediaGetRefConID
	FlashMediaGetSupportedSwfVersion
	FlashMediaIDToRefCon
	FlashMediaSetFlashVariable
	FlashMediaSetPan
	FlashMediaSetZoom
	FlashMediaSetZoomRect
	GetCallBackTimeBase
	GetCallBackType
	GetFirstCallBack
	GetMovieActive
	GetMovieActiveSegment
	GetMovieAudioContext
	GetMovieBoundsRgn
	GetMovieBox
	GetMovieClipRgn
	GetMovieCreationTime
	GetMovieDisplayBoundsRgn
	GetMovieDisplayClipRgn
	GetMovieDuration
	GetMovieGWorld
	GetMovieMatrix
	GetMovieModificationTime
	GetMovieNaturalBoundsRect
	GetMoviePict
	GetMoviePosterPict
	GetMoviePosterTime
	GetMoviePreferredRate
	GetMoviePreferredVolume
	GetMoviePreviewMode
	GetMoviePreviewTime
	GetMovieRate
	GetMovieRateChangeConstraints
	GetMovieSelection
	GetMoviesError
	GetMoviesStickyError
	GetMovieTime
	GetMovieTimeBase
	GetMovieTimeScale
	GetMovieUserData
	GetMovieVisualContext
	GetMovieVolume
	GetNextCallBack
	GetNextTrackForCompositing
	GetPrevTrackForCompositing
	GetTimeBaseEffectiveRate
	GetTimeBaseFlags
	GetTimeBaseMasterClock
	GetTimeBaseMasterOffsetTimeBase
	GetTimeBaseMasterTimeBase
	GetTimeBaseRate
	GetTimeBaseRateChangeStatus
	GetTimeBaseStartTime
	GetTimeBaseStatus
	GetTimeBaseStopTime
	GetTimeBaseThreadAttachState
	GetTimeBaseTime
	GetTrackBoundsRgn
	GetTrackClipRgn
	GetTrackDisplayBoundsRgn
	GetTrackMatte
	GetTrackMovieBoundsRgn
	GetTrackPict
	GoToBeginningOfMovie
	GoToEndOfMovie
	InvalidateMovieRegion
	IsMovieDone
	ITextAddString
	ITextGetString
	ITextRemoveString
	LoadMediaIntoRam
	LoadMovieIntoRam
	LoadTrackIntoRam
	Media3DGetCameraAngleAspect
	Media3DGetCameraData
	Media3DGetCameraRange
	Media3DGetCurrentGroup
	Media3DGetNamedObjectList
	Media3DGetRendererList
	Media3DGetViewObject
	Media3DRotateNamedObjectTo
	Media3DScaleNamedObjectTo
	Media3DSetCameraAngleAspect
	Media3DSetCameraData
	Media3DSetCameraRange
	Media3DTranslateNamedObjectTo
	MovieMediaGetChildDoMCActionCallback
	MovieMediaGetChildMovieDataReference
	MovieMediaGetCurrentMovieProperty
	MovieMediaGetCurrentTrackProperty
	MovieMediaGetDoMCActionCallback
	MovieMediaLoadChildMovieFromDataReference
	MovieMediaSetChildMovieDataReference
	MoviesTask
	NewCallBack
	NewMovie
	NewMovieFromProperties
	NewTimeBase
	PlayMoviePreview
	PrePrerollMovie
	PrerollMovie
	PutMovieForDataRefIntoHandle
	PutMovieIntoDataFork
	PutMovieIntoDataFork64
	PutMovieIntoHandle
	PutMovieIntoStorage
	QTAudioContextCreateForAudioDevice
	QTGetTimeUntilNextTask
	QTGetWallClockTimeBase
	QTIdleManagerClose
	QTIdleManagerGetNextIdleTime
	QTIdleManagerNeedsAnIdle
	QTIdleManagerOpen
	QTIdleManagerSetNextIdleTime
	QTIdleManagerSetNextIdleTimeDelta
	QTIdleManagerSetNextIdleTimeNever
	QTIdleManagerSetNextIdleTimeNow
	QTIdleManagerSetParent
	QTInstallNextTaskNeededSoonerCallback
	QTParseTextHREF
	QTSoundDescriptionConvert
	QTSoundDescriptionCreate
	QTSoundDescriptionGetProperty
	QTSoundDescriptionGetPropertyInfo
	QTSoundDescriptionSetProperty
	QTTextToNativeText
	QTUninstallNextTaskNeededSoonerCallback
	RemoveCallBackFromTimeBase
	SetMovieActive
	SetMovieActiveSegment
	SetMovieAudioContext
	SetMovieBox
	SetMovieClipRgn
	SetMovieDisplayClipRgn
	SetMovieDrawingCompleteProc
	SetMovieGWorld
	SetMovieMasterClock
	SetMovieMasterTimeBase
	SetMovieMatrix
	SetMoviePosterTime
	SetMoviePreferredRate
	SetMoviePreferredVolume
	SetMoviePreviewMode
	SetMoviePreviewTime
	SetMovieRate
	SetMovieSelection
	SetMoviesErrorProc
	SetMovieTime
	SetMovieTimeScale
	SetMovieTimeValue
	SetMovieVideoOutput
	SetMovieVisualContext
	SetMovieVolume
	SetTimeBaseFlags
	SetTimeBaseMasterClock
	SetTimeBaseMasterTimeBase
	SetTimeBaseOffsetTimeBase
	SetTimeBaseRate
	SetTimeBaseStartTime
	SetTimeBaseStopTime
	SetTimeBaseTime
	SetTimeBaseValue
	SetTimeBaseZero
	SetTrackClipRgn
	SetTrackGWorld
	SetTrackMatte
	ShowMoviePoster
	SpriteMediaCountImages
	SpriteMediaCountSprites
	SpriteMediaDisposeImage
	SpriteMediaDisposeSprite
	SpriteMediaGetActionVariable
	SpriteMediaGetActionVariableAsString
	SpriteMediaGetDisplayedSampleNumber
	SpriteMediaGetImageName
	SpriteMediaGetIndImageDescription
	SpriteMediaGetIndImageProperty
	SpriteMediaGetProperty
	SpriteMediaGetSpriteActionsForQTEvent
	SpriteMediaGetSpriteName
	SpriteMediaGetSpriteProperty
	SpriteMediaHitTestAllSprites
	SpriteMediaHitTestOneSprite
	SpriteMediaHitTestSprites
	SpriteMediaImageIDToIndex
	SpriteMediaImageIndexToID
	SpriteMediaNewImage
	SpriteMediaNewSprite
	SpriteMediaSetActionVariable
	SpriteMediaSetActionVariableToString
	SpriteMediaSetProperty
	SpriteMediaSetSpriteProperty
	SpriteMediaSpriteIDToIndex
	SpriteMediaSpriteIndexToID
	StartMovie
	StopMovie
	SubtractTime
	TextMediaAddHiliteSample
	TextMediaAddTESample
	TextMediaAddTextSample
	TextMediaDrawRaw
	TextMediaFindNextText
	TextMediaGetTextProperty
	TextMediaHiliteTextSample
	TextMediaRawIdle
	TextMediaRawSetup
	TextMediaSetTextProc
	TextMediaSetTextProperty
	TextMediaSetTextSampleData
	UpdateMovie
	VideoMediaGetCodecParameter
	VideoMediaGetStallCount
	VideoMediaGetStatistics
	VideoMediaResetStatistics
	VideoMediaSetCodecParameter

	Callbacks
	Data Types
	ControlPtr
	ControlRef
	QTFloatSingle
	QTNewMoviePropertyElement
	QTRuntimeSpriteDescPtr
	QTRuntimeSpriteDescStruct
	RegionCode
	Style
	TEHandle
	TEPtr
	TextDescriptionHandle
	TextDescriptionPtr
	TimeBaseStatus

	Constants
	TextMediaFindNextText Values
	QTTextToNativeText Values
	ITextRemoveString Values
	CreateMovieControl Values
	MovieMediaGetCurrentMovieProperty Values
	EnterMoviesOnThread Values
	loopTimeBase
	SetMovieDrawingCompleteProc Values
	timeBaseAfterStopTime

	Part II: Constants
	QuickTime Constants Reference
	Overview
	Constants
	Atom ID Codes
	FCompressImage Values
	Codec Flags
	VDSetCompression Values
	CodecInfo Values
	CreateMovieFile Values
	FlattenMovieData Values
	ICM Preferences and Flags
	ImageFieldSequenceExtractCombine Values
	QTSetComponentProperty Values
	kDataHCanRead
	QTVRWrapAndConstrain Values
	Sprite Properties
	QTSampleTableGetSampleFlags Values
	movieFileSpecValid
	MovieImportDataRef Values
	MovieProgressProc Values
	New Movie Properties
	NewMovieController Values
	QuickTime Preferences Dialog Options
	Standard Compression Constants
	SGPanelGetDITLForSize Values
	Media Identifiers
	SpriteWorldHitTest Values
	Text Properties
	ToneDescription Values
	Arithmetic and Logical Operator IDs
	Codec Identifiers
	Codec Properties
	Codec Type Constants
	Color Constants
	Color Modes
	Component Call Selectors
	Component Identifiers
	Component Property IDs and Flags
	Error Codes
	File Types and Creators
	Graphics Transfer Modes
	Localization Codes

	Part III: Other References
	Component Creation Reference for QuickTime
	Overview
	Functions by Task
	Compressing Image Sequences
	Compressing Still Images
	Configuring Movie Data Export Components
	Configuring Movie Data Import Components
	Creating a Compression Graphics World
	Creating Previews
	Displaying Previews
	Displaying the Standard Image-Compression Dialog Box
	Exporting Movie Data
	Exporting Text
	Getting Default Settings for an Image or a Sequence
	Handling Preview Events
	Importing MIDI Files
	Importing Movie Data
	Managing the Time
	Movie Functions
	Positioning Dialog Boxes and Rectangles
	Specifying a Test Image
	Tween Component Requirements
	Using Callback Functions
	Working With Image or Sequence Settings
	Working With The Idle Manager
	Working With the Timecode Media Handler
	Supporting Functions

	Functions
	ClockCallMeWhen
	ClockCancelCallBack
	ClockDisposeCallBack
	ClockGetRate
	ClockGetRateChangeConstraints
	ClockGetTime
	ClockNewCallBack
	ClockRateChanged
	ClockSetTimeBase
	ClockStartStopChanged
	ClockTimeChanged
	DisposeMovieExportGetDataUPP
	DisposeMovieExportGetPropertyUPP
	DisposeMovieExportStageReachedCallbackUPP
	DisposeSCModalFilterUPP
	DisposeSCModalHookUPP
	GraphicsImageImportGetSequenceEnabled
	GraphicsImageImportSetSequenceEnabled
	MIDIImportGetSettings
	MIDIImportSetSettings
	MovieExportAddDataSource
	MovieExportDisposeGetDataAndPropertiesProcs
	MovieExportDoUserDialog
	MovieExportFromProceduresToDataRef
	MovieExportGetAuxiliaryData
	MovieExportGetCreatorType
	MovieExportGetFileNameExtension
	MovieExportGetSettingsAsAtomContainer
	MovieExportGetShortFileTypeString
	MovieExportGetSourceMediaType
	MovieExportNewGetDataAndPropertiesProcs
	MovieExportSetGetMoviePropertyProc
	MovieExportSetProgressProc
	MovieExportSetSampleDescription
	MovieExportSetSettingsFromAtomContainer
	MovieExportToDataRef
	MovieExportToFile
	MovieExportToHandle
	MovieExportValidate
	MovieImportDataRef
	MovieImportDoUserDialog
	MovieImportDoUserDialogDataRef
	MovieImportEstimateCompletionTime
	MovieImportFile
	MovieImportGetAuxiliaryDataType
	MovieImportGetDestinationMediaType
	MovieImportGetDontBlock
	MovieImportGetFileType
	MovieImportGetLoadState
	MovieImportGetMaxLoadedTime
	MovieImportGetMIMETypeList
	MovieImportGetSampleDescription
	MovieImportGetSettingsAsAtomContainer
	MovieImportHandle
	MovieImportIdle
	MovieImportSetAuxiliaryData
	MovieImportSetChunkSize
	MovieImportSetDimensions
	MovieImportSetDontBlock
	MovieImportSetDuration
	MovieImportSetFromScrap
	MovieImportSetIdleManager
	MovieImportSetMediaDataRef
	MovieImportSetMediaFile
	MovieImportSetNewMovieFlags
	MovieImportSetOffsetAndLimit
	MovieImportSetOffsetAndLimit64
	MovieImportSetProgressProc
	MovieImportSetSampleDescription
	MovieImportSetSampleDuration
	MovieImportSetSettingsFromAtomContainer
	MovieImportValidate
	MovieImportValidateDataRef
	NewMovieExportGetDataUPP
	NewMovieExportGetPropertyUPP
	NewMovieExportStageReachedCallbackUPP
	NewSCModalFilterUPP
	NewSCModalHookUPP
	PreviewEvent
	PreviewMakePreview
	PreviewMakePreviewReference
	PreviewShowData
	SCAsyncIdle
	SCAudioInvokeLegacyCodecOptionsDialog
	SCCompressImage
	SCCompressPicture
	SCCompressPictureFile
	SCCompressSequenceBegin
	SCCompressSequenceEnd
	SCCompressSequenceFrame
	SCCompressSequenceFrameAsync
	SCCopyCompressionSessionOptions
	SCDefaultPictFileSettings
	SCDefaultPictHandleSettings
	SCDefaultPixMapSettings
	SCGetBestDeviceRect
	SCGetCompressFlags
	SCGetCompressionExtended
	SCGetInfo
	SCGetSettingsAsAtomContainer
	SCGetSettingsAsText
	SCNewGWorld
	SCPositionDialog
	SCPositionRect
	SCRequestImageSettings
	SCRequestSequenceSettings
	SCSetCompressFlags
	SCSetInfo
	SCSetSettingsFromAtomContainer
	SCSetTestImagePictFile
	SCSetTestImagePictHandle
	SCSetTestImagePixMap
	TCFrameNumberToTimeCode
	TCGetCurrentTimeCode
	TCGetDisplayOptions
	TCGetSourceRef
	TCGetTimeCodeAtTime
	TCGetTimeCodeFlags
	TCSetDisplayOptions
	TCSetSourceRef
	TCSetTimeCodeFlags
	TCTimeCodeToFrameNumber
	TCTimeCodeToString
	TextExportGetDisplayData
	TextExportGetSettings
	TextExportGetTimeFraction
	TextExportSetSettings
	TextExportSetTimeFraction
	TweenerDoTween
	TweenerInitialize
	TweenerReset

	Callbacks
	MovieExportGetDataProc
	MovieExportGetPropertyProc
	SCModalFilterProc
	SCModalHookProc

	Data Types
	GraphicImageMovieImportComponent
	HandlerError
	MovieExportComponent
	MovieExportGetDataUPP
	MovieExportGetPropertyUPP
	MovieImportComponent
	pnotComponent
	SCModalFilterUPP
	SCModalHookUPP
	SCParams
	TCTextOptions
	TCTextOptionsPtr
	TextDisplayData
	TextExportComponent
	TimeCodeDef
	TimeCodeDescriptionHandle
	TimeCodeDescriptionPtr
	TimeCodeRecord
	TweenerComponent
	TweenRecord

	Constants
	MIDIImportSetSettings Values
	TextExportSetSettings Values
	movieExportDuration
	MovieImportDataRef Values
	Standard Compression Constants
	SCSetCompressFlags Values
	SCParams Values
	TCSetTimeCodeFlags Values
	TimeCodeDef Values

	Compression and Decompression Reference for QuickTime
	Overview
	Functions by Task
	Aligning Windows
	Applying Matrix Transformations
	Changing Sequence-Compression Parameters
	Changing Sequence-Decompression Parameters
	Constraining Compressed Data
	Controlling Hardware Scaling
	Creating an Effect Sample Description
	Creating File Previews
	Getting Information About Compressed Data
	Getting Information About Compressor Components
	Image Compression Manager Utility Functions
	Image Transcoder Support
	Making Thumbnail Pictures
	Managing Matrices
	Obtaining a Graphics Importer Instance
	Working With Graphics Devices and Graphics Worlds
	Working With Image Descriptions
	Working With Pictures and PICT Files
	Working With Pixel Maps
	Working With Sequences
	Working With the StdPix Function
	Working With Video Fields
	Supporting Functions

	Functions
	AddFilePreview
	AddImageDescriptionExtension
	AlignScreenRect
	AlignWindow
	CDSequenceBusy
	CDSequenceChangedSourceData
	CDSequenceDisposeDataSource
	CDSequenceDisposeMemory
	CDSequenceEnd
	CDSequenceEquivalentImageDescription
	CDSequenceEquivalentImageDescriptionS
	CDSequenceFlush
	CDSequenceGetDataSource
	CDSequenceInvalidate
	CDSequenceNewDataSource
	CDSequenceNewMemory
	CDSequenceSetSourceData
	CDSequenceSetSourceDataQueue
	CDSequenceSetTimeBase
	CodecManagerVersion
	CompAdd
	CompCompare
	CompDiv
	CompFixMul
	CompMul
	CompMulDiv
	CompMulDivTrunc
	CompNeg
	CompressImage
	CompressPicture
	CompressPictureFile
	CompressSequenceBegin
	CompressSequenceFrame
	CompShift
	CompSquareRoot
	CompSub
	ConcatMatrix
	ConvertImage
	CopyMatrix
	CountImageDescriptionExtensionType
	DecompressImage
	DecompressSequenceBegin
	DecompressSequenceBeginS
	DecompressSequenceFrame
	DecompressSequenceFrameS
	DecompressSequenceFrameWhen
	DisposeCodecNameList
	DragAlignedGrayRgn
	DragAlignedWindow
	DrawPictureFile
	DrawTrimmedPicture
	DrawTrimmedPictureFile
	EqualMatrix
	FCompressImage
	FCompressPicture
	FCompressPictureFile
	FDecompressImage
	FindCodec
	FixExp2
	FixLog2
	FixMulDiv
	FixPow
	FracSinCos
	GDGetScale
	GDHasScale
	GDSetScale
	GetBestDeviceRect
	GetCodecInfo
	GetCodecNameList
	GetCompressedImageSize
	GetCompressedPixMapInfo
	GetCompressionTime
	GetCSequenceDataRateParams
	GetCSequenceFrameNumber
	GetCSequenceKeyFrameRate
	GetCSequenceMaxCompressionSize
	GetCSequencePrevBuffer
	GetDSequenceImageBuffer
	GetDSequenceMatrix
	GetDSequenceNonScheduledDisplayDirection
	GetDSequenceNonScheduledDisplayTime
	GetDSequenceScreenBuffer
	GetGraphicsImporterForDataRef
	GetGraphicsImporterForDataRefWithFlags
	GetGraphicsImporterForFile
	GetGraphicsImporterForFileWithFlags
	GetImageDescriptionCTable
	GetImageDescriptionExtension
	GetMatrixType
	GetMaxCompressionSize
	GetNextImageDescriptionExtensionType
	GetPictureFileHeader
	GetSimilarity
	HitTestDSequenceData
	ICMDecompressComplete
	ICMDecompressCompleteS
	ICMGetPixelFormatInfo
	ICMSequenceGetChainMember
	ICMSequenceGetInfo
	ICMSequenceLockBits
	ICMSequenceSetInfo
	ICMSequenceUnlockBits
	ICMSetPixelFormatInfo
	ICMShieldSequenceCursor
	ImageFieldSequenceBegin
	ImageFieldSequenceEnd
	ImageFieldSequenceExtractCombine
	ImageTranscodeDisposeFrameData
	ImageTranscodeFrame
	ImageTranscodeSequenceBegin
	ImageTranscodeSequenceEnd
	InverseMatrix
	MakeFilePreview
	MakeImageDescriptionForEffect
	MakeImageDescriptionForPixMap
	MakeThumbnailFromPicture
	MakeThumbnailFromPictureFile
	MakeThumbnailFromPixMap
	MapMatrix
	NewImageGWorld
	PtInDSequenceData
	QTGetFileNameExtension
	QTGetPixelFormatDepthForImageDescription
	QTGetPixelSize
	QTGetPixMapHandleGammaLevel
	QTGetPixMapHandleRequestedGammaLevel
	QTGetPixMapHandleRowBytes
	QTGetPixMapPtrGammaLevel
	QTGetPixMapPtrRequestedGammaLevel
	QTGetPixMapPtrRowBytes
	QTNewGWorld
	QTNewGWorldFromPtr
	QTSetPixMapHandleGammaLevel
	QTSetPixMapHandleRequestedGammaLevel
	QTSetPixMapHandleRowBytes
	QTSetPixMapPtrGammaLevel
	QTSetPixMapPtrRequestedGammaLevel
	QTSetPixMapPtrRowBytes
	QTUpdateGWorld
	QuadToQuadMatrix
	RectMatrix
	RemoveImageDescriptionExtension
	ReplaceDSequenceImageDescription
	RotateMatrix
	ScaleMatrix
	SetCompressedPixMapInfo
	SetCSequenceDataRateParams
	SetCSequenceFlushProc
	SetCSequenceFrameNumber
	SetCSequenceKeyFrameRate
	SetCSequencePreferredPacketSize
	SetCSequencePrev
	SetCSequenceQuality
	SetDSequenceAccuracy
	SetDSequenceDataProc
	SetDSequenceFlags
	SetDSequenceMask
	SetDSequenceMatrix
	SetDSequenceMatte
	SetDSequenceNonScheduledDisplayDirection
	SetDSequenceNonScheduledDisplayTime
	SetDSequenceSrcRect
	SetDSequenceTimeCode
	SetDSequenceTransferMode
	SetIdentityMatrix
	SetImageDescriptionCTable
	SetSequenceProgressProc
	SkewMatrix
	StdPix
	TransformFixedPoints
	TransformFixedRect
	TransformPoints
	TransformRect
	TransformRgn
	TranslateMatrix
	TrimImage
	UnsignedFixMulDiv

	Callbacks
	Data Types
	CodecComponent
	CodecNameSpecList
	CodecNameSpecListPtr
	ConstStrFileNameParam
	DataRateParams
	DataRateParamsPtr
	DecompressorComponent
	FixedRect
	Fract
	ICMPixelFormatInfo
	ICMPixelFormatInfoPtr
	ImageFieldSequence
	ImageSequenceDataSource
	ImageTranscodeSequence
	OpenCPicParams
	QHdr
	QHdrPtr

	Constants
	StdPix Values
	DSequence Flags
	FCompressImage Values
	Color Modes
	GetGraphicsImporterForFileWithFlags Values
	QTSetPixMapPtrRequestedGammaLevel Values

	Data Components Reference for QuickTime
	Overview
	Functions by Task
	Data Codec Functions
	Identifying Data References
	Managing Data Handler Components
	Reading Movie Data
	Selecting a Data Handler
	Using Data References to Access Media
	Working With The Idle Manager
	Writing Movie Data
	Supporting Functions

	Functions
	DataCodecBeginInterruptSafe
	DataCodecCompress
	DataCodecCompressPartial
	DataCodecDecompress
	DataCodecDecompressPartial
	DataCodecEndInterruptSafe
	DataCodecGetCompressBufferSize
	DataHAddMovie
	DataHAppend64
	DataHCanUseDataRef
	DataHCloseForRead
	DataHCloseForWrite
	DataHCompareDataRef
	DataHCreateFile
	DataHCreateFileWithFlags
	DataHDeleteFile
	DataHDoesBuffer
	DataHFinishData
	DataHFlushCache
	DataHFlushData
	DataHGetAvailableFileSize
	DataHGetCacheSizeLimit
	DataHGetData
	DataHGetDataAvailability
	DataHGetDataInBuffer
	DataHGetDataRate
	DataHGetDataRef
	DataHGetDataRefAsType
	DataHGetDataRefExtension
	DataHGetDataRefWithAnchor
	DataHGetDeviceIndex
	DataHGetFileName
	DataHGetFileSize
	DataHGetFileSize64
	DataHGetFileSizeAsync
	DataHGetFileTypeOrdering
	DataHGetFreeSpace
	DataHGetFreeSpace64
	DataHGetInfo
	DataHGetInfoFlags
	DataHGetMacOSFileType
	DataHGetMIMEType
	DataHGetMIMETypeAsync
	DataHGetMovie
	DataHGetMovieWithFlags
	DataHGetPreferredBlockSize
	DataHGetScheduleAheadTime
	DataHGetTemporaryDataRefCapabilities
	DataHGetVolumeList
	DataHIsStreamingDataHandler
	DataHOpenForRead
	DataHOpenForWrite
	DataHPlaybackHints
	DataHPlaybackHints64
	DataHPollRead
	DataHPreextend
	DataHPreextend64
	DataHPutData
	DataHReadAsync
	DataHRenameFile
	DataHResolveDataRef
	DataHScheduleData
	DataHScheduleData64
	DataHSetCacheSizeLimit
	DataHSetDataRef
	DataHSetDataRefExtension
	DataHSetDataRefWithAnchor
	DataHSetFileSize
	DataHSetFileSize64
	DataHSetIdleManager
	DataHSetMacOSFileType
	DataHSetMovieUsageFlags
	DataHSetTimeBase
	DataHSetTimeHints
	DataHTask
	DataHUpdateMovie
	DataHUseTemporaryDataRef
	DataHWrite
	DataHWrite64
	DisposeCDataHandlerUPP
	DisposeCharDataHandlerUPP
	DisposeCommentHandlerUPP
	DisposeDataHCompletionUPP
	DisposeEndDocumentHandlerUPP
	DisposeEndElementHandlerUPP
	DisposePreprocessInstructionHandlerUPP
	DisposeStartDocumentHandlerUPP
	DisposeStartElementHandlerUPP
	DisposeVdigIntUPP
	NewCDataHandlerUPP
	NewCharDataHandlerUPP
	NewCommentHandlerUPP
	NewDataHCompletionUPP
	NewEndDocumentHandlerUPP
	NewEndElementHandlerUPP
	NewPreprocessInstructionHandlerUPP
	NewStartDocumentHandlerUPP
	NewStartElementHandlerUPP
	NewVdigIntUPP
	XMLParseAddAttribute
	XMLParseAddAttributeAndValue
	XMLParseAddAttributeValueKind
	XMLParseAddElement
	XMLParseAddMultipleAttributes
	XMLParseAddMultipleAttributesAndValues
	XMLParseAddNameSpace
	XMLParseDataRef
	XMLParseDisposeXMLDoc
	XMLParseFile
	XMLParseGetDetailedParseError
	XMLParseSetCDataHandler
	XMLParseSetCharDataHandler
	XMLParseSetCommentHandler
	XMLParseSetEndDocumentHandler
	XMLParseSetEndElementHandler
	XMLParseSetEventParseRefCon
	XMLParseSetOffsetAndLimit
	XMLParseSetPreprocessInstructionHandler
	XMLParseSetStartDocumentHandler
	XMLParseSetStartElementHandler

	Callbacks
	DataHCompletionProc

	Data Types
	ConstFSSpecPtr
	DataCodecComponent
	DataHCompletionUPP
	DataHFileTypeOrderingHandle
	DataHFileTypeOrderingPtr
	DataHSchedulePtr
	DataHScheduleRecord
	DataHVolumeList
	DataHVolumeListPtr
	XMLDoc
	XMLDocRecord

	Constants
	kDataHCanRead
	DataHScheduleRecord Values
	DataHGetFileTypeOrdering Values
	DataHGetInfoFlags Values
	DataHSetMovieUsageFlags Values

	Image Codec Reference for QuickTime
	Overview
	Functions by Task
	Base Image Decompressor Functions
	Low-Level Effects Functions
	Vector Codec Component Functions
	Supporting Functions

	Functions
	CurveAddAtomToVectorStream
	CurveAddPathAtomToVectorStream
	CurveAddZeroAtomToVectorStream
	CurveCountPointsInPath
	CurveCreateVectorStream
	CurveGetAtomDataFromVectorStream
	CurveGetLength
	CurveGetNearestPathPoint
	CurveGetPathPoint
	CurveInsertPointIntoPath
	CurveLengthToPoint
	CurveNewPath
	CurvePathPointToLength
	CurveSetPathPoint
	DisposeImageCodecDrawBandCompleteUPP
	DisposeImageCodecMPDrawBandUPP
	DisposeImageCodecTimeTriggerUPP
	ImageCodecBandCompress
	ImageCodecBandDecompress
	ImageCodecBeginBand
	ImageCodecBeginPass
	ImageCodecBusy
	ImageCodecCancelTrigger
	ImageCodecCompleteFrame
	ImageCodecCreateStandardParameterDialog
	ImageCodecDecodeBand
	ImageCodecDismissStandardParameterDialog
	ImageCodecDisposeImageGWorld
	ImageCodecDisposeMemory
	ImageCodecDITLEvent
	ImageCodecDITLInstall
	ImageCodecDITLItem
	ImageCodecDITLRemove
	ImageCodecDITLValidateInput
	ImageCodecDrawBand
	ImageCodecDroppingFrame
	ImageCodecEffectBegin
	ImageCodecEffectCancel
	ImageCodecEffectConvertEffectSourceToFormat
	ImageCodecEffectDisposeSMPTEFrame
	ImageCodecEffectGetSpeed
	ImageCodecEffectPrepareSMPTEFrame
	ImageCodecEffectRenderFrame
	ImageCodecEffectRenderSMPTEFrame
	ImageCodecEffectSetup
	ImageCodecEncodeFrame
	ImageCodecEndBand
	ImageCodecExtractAndCombineFields
	ImageCodecFlush
	ImageCodecFlushFrame
	ImageCodecGetBaseMPWorkFunction
	ImageCodecGetCodecInfo
	ImageCodecGetCompressedImageSize
	ImageCodecGetCompressionTime
	ImageCodecGetDecompressLatency
	ImageCodecGetDITLForSize
	ImageCodecGetMaxCompressionSize
	ImageCodecGetMaxCompressionSizeWithSources
	ImageCodecGetParameterList
	ImageCodecGetParameterListHandle
	ImageCodecGetSettings
	ImageCodecGetSettingsAsText
	ImageCodecGetSimilarity
	ImageCodecGetSourceDataGammaLevel
	ImageCodecHitTestData
	ImageCodecHitTestDataWithFlags
	ImageCodecInitialize
	ImageCodecIsImageDescriptionEquivalent
	ImageCodecIsStandardParameterDialogEvent
	ImageCodecMergeFloatingImageOntoWindow
	ImageCodecNewImageBufferMemory
	ImageCodecNewImageGWorld
	ImageCodecNewMemory
	ImageCodecPreCompress
	ImageCodecPreDecompress
	ImageCodecPreflight
	ImageCodecPrepareToCompressFrames
	ImageCodecProcessBetweenPasses
	ImageCodecQueueStarting
	ImageCodecQueueStopping
	ImageCodecRemoveFloatingImage
	ImageCodecRequestGammaLevel
	ImageCodecRequestSettings
	ImageCodecScheduleFrame
	ImageCodecSetSettings
	ImageCodecSetTimeBase
	ImageCodecSetTimeCode
	ImageCodecSourceChanged
	ImageCodecStandardParameterDialogDoAction
	ImageCodecTrimImage
	ImageCodecValidateParameters
	NewImageCodecDrawBandCompleteUPP
	NewImageCodecMPDrawBandUPP
	NewImageCodecTimeTriggerUPP
	QTPhotoDefineHuffmanTable
	QTPhotoDefineQuantizationTable
	QTPhotoSetRestartInterval
	QTPhotoSetSampling

	Callbacks
	ComponentMPWorkFunctionProc
	ImageCodecMPDrawBandProc
	ImageCodecTimeTriggerProc

	Data Types
	CDSequenceDataSource
	CDSequenceDataSourcePtr
	CodecCompressParams
	CodecDecompressParams
	ComponentMPWorkFunctionUPP
	EffectsFrameParams
	EffectsFrameParamsPtr
	EffectSource
	EffectSourcePtr
	gxPaths
	gxPoint
	ImageCodecMPDrawBandUPP
	ImageCodecTimeTriggerUPP
	ImageSubCodecDecompressCapabilities
	ImageSubCodecDecompressRecord
	QTParameterValidationOptions
	SMPTEFlags
	SMPTEFrameReference
	SMPTEWipeType

	Constants
	Codec Properties
	ImageSubCodecDecompressRecord Values
	EffectSource Values
	ImageCodecValidateParameters Values
	CodecDecompressParams Values

	Import and Export Reference for QuickTime
	Overview
	Functions by Task
	Accessing a Graphics Exporter's Input Image
	Accessing Graphics Exporter Settings
	Drawing Imported Images
	Finding Out About Graphics Export Image Formats
	Getting and Setting Progress Procs
	Getting Image Characteristics
	Getting MIME Types
	Internal Graphics Export Routines
	Managing Graphics Importers
	Obtaining Graphics Exporter Settings
	Reading Graphics Exporter Input Data
	Restricting the Range of an Input Image's Source
	Saving Image Files
	Setting Drawing Parameters
	Specifying a Graphics Import Data Source
	Specifying Destinations for Output Images
	Specifying Sources for Graphics Exporter Input Images
	Working With Exif Files
	Writing Graphics Exporter Output Data
	Supporting Functions

	Functions
	GraphicsExportCanTranscode
	GraphicsExportCanUseCompressor
	GraphicsExportDoExport
	GraphicsExportDoStandaloneExport
	GraphicsExportDoTranscode
	GraphicsExportDoUseCompressor
	GraphicsExportDrawInputImage
	GraphicsExportGetColorSyncProfile
	GraphicsExportGetCompressionMethod
	GraphicsExportGetCompressionQuality
	GraphicsExportGetDefaultFileNameExtension
	GraphicsExportGetDefaultFileTypeAndCreator
	GraphicsExportGetDepth
	GraphicsExportGetDontRecompress
	GraphicsExportGetExifEnabled
	GraphicsExportGetInputCGBitmapContext
	GraphicsExportGetInputCGImage
	GraphicsExportGetInputDataReference
	GraphicsExportGetInputDataSize
	GraphicsExportGetInputFile
	GraphicsExportGetInputGraphicsImporter
	GraphicsExportGetInputGWorld
	GraphicsExportGetInputHandle
	GraphicsExportGetInputImageDepth
	GraphicsExportGetInputImageDescription
	GraphicsExportGetInputImageDimensions
	GraphicsExportGetInputOffsetAndLimit
	GraphicsExportGetInputPicture
	GraphicsExportGetInputPixmap
	GraphicsExportGetInputPtr
	GraphicsExportGetInterlaceStyle
	GraphicsExportGetMetaData
	GraphicsExportGetMIMETypeList
	GraphicsExportGetOutputDataReference
	GraphicsExportGetOutputFile
	GraphicsExportGetOutputFileTypeAndCreator
	GraphicsExportGetOutputHandle
	GraphicsExportGetOutputMark
	GraphicsExportGetOutputOffsetAndMaxSize
	GraphicsExportGetProgressProc
	GraphicsExportGetResolution
	GraphicsExportGetSettingsAsAtomContainer
	GraphicsExportGetSettingsAsText
	GraphicsExportGetTargetDataSize
	GraphicsExportGetThumbnailEnabled
	GraphicsExportMayExporterReadInputData
	GraphicsExportReadInputData
	GraphicsExportReadOutputData
	GraphicsExportRequestSettings
	GraphicsExportSetColorSyncProfile
	GraphicsExportSetCompressionMethod
	GraphicsExportSetCompressionQuality
	GraphicsExportSetDepth
	GraphicsExportSetDontRecompress
	GraphicsExportSetExifEnabled
	GraphicsExportSetInputCGBitmapContext
	GraphicsExportSetInputCGImage
	GraphicsExportSetInputDataReference
	GraphicsExportSetInputFile
	GraphicsExportSetInputGraphicsImporter
	GraphicsExportSetInputGWorld
	GraphicsExportSetInputHandle
	GraphicsExportSetInputOffsetAndLimit
	GraphicsExportSetInputPicture
	GraphicsExportSetInputPixmap
	GraphicsExportSetInputPtr
	GraphicsExportSetInterlaceStyle
	GraphicsExportSetMetaData
	GraphicsExportSetOutputDataReference
	GraphicsExportSetOutputFile
	GraphicsExportSetOutputFileTypeAndCreator
	GraphicsExportSetOutputHandle
	GraphicsExportSetOutputMark
	GraphicsExportSetOutputOffsetAndMaxSize
	GraphicsExportSetProgressProc
	GraphicsExportSetResolution
	GraphicsExportSetSettingsFromAtomContainer
	GraphicsExportSetTargetDataSize
	GraphicsExportSetThumbnailEnabled
	GraphicsExportWriteOutputData
	GraphicsImportCreateCGImage
	GraphicsImportDoesDrawAllPixels
	GraphicsImportDoExportImageFileDialog
	GraphicsImportDoExportImageFileToDataRefDialog
	GraphicsImportDraw
	GraphicsImportExportImageFile
	GraphicsImportExportImageFileToDataRef
	GraphicsImportGetAliasedDataReference
	GraphicsImportGetAsPicture
	GraphicsImportGetBaseDataOffsetAndSize64
	GraphicsImportGetBoundsRect
	GraphicsImportGetClip
	GraphicsImportGetColorSyncProfile
	GraphicsImportGetDataFile
	GraphicsImportGetDataHandle
	GraphicsImportGetDataOffsetAndSize
	GraphicsImportGetDataOffsetAndSize64
	GraphicsImportGetDataReference
	GraphicsImportGetDataReferenceOffsetAndLimit
	GraphicsImportGetDataReferenceOffsetAndLimit64
	GraphicsImportGetDefaultClip
	GraphicsImportGetDefaultGraphicsMode
	GraphicsImportGetDefaultMatrix
	GraphicsImportGetDefaultSourceRect
	GraphicsImportGetDestinationColorSyncProfileRef
	GraphicsImportGetDestRect
	GraphicsImportGetExportImageTypeList
	GraphicsImportGetExportSettingsAsAtomContainer
	GraphicsImportGetFlags
	GraphicsImportGetGenericColorSyncProfile
	GraphicsImportGetGraphicsMode
	GraphicsImportGetGWorld
	GraphicsImportGetImageCount
	GraphicsImportGetImageDescription
	GraphicsImportGetImageIndex
	GraphicsImportGetMatrix
	GraphicsImportGetMetaData
	GraphicsImportGetMIMETypeList
	GraphicsImportGetNaturalBounds
	GraphicsImportGetOverrideSourceColorSyncProfileRef
	GraphicsImportGetProgressProc
	GraphicsImportGetQuality
	GraphicsImportGetSourceRect
	GraphicsImportReadData
	GraphicsImportReadData64
	GraphicsImportSaveAsPicture
	GraphicsImportSaveAsPictureToDataRef
	GraphicsImportSaveAsQuickTimeImageFile
	GraphicsImportSaveAsQuickTimeImageFileToDataRef
	GraphicsImportSetBoundsRect
	GraphicsImportSetClip
	GraphicsImportSetDataFile
	GraphicsImportSetDataHandle
	GraphicsImportSetDataReference
	GraphicsImportSetDataReferenceOffsetAndLimit
	GraphicsImportSetDataReferenceOffsetAndLimit64
	GraphicsImportSetDestinationColorSyncProfileRef
	GraphicsImportSetDestRect
	GraphicsImportSetExportSettingsFromAtomContainer
	GraphicsImportSetFlags
	GraphicsImportSetGraphicsMode
	GraphicsImportSetGWorld
	GraphicsImportSetImageIndex
	GraphicsImportSetImageIndexToThumbnail
	GraphicsImportSetMatrix
	GraphicsImportSetOverrideSourceColorSyncProfileRef
	GraphicsImportSetProgressProc
	GraphicsImportSetQuality
	GraphicsImportSetSourceRect
	GraphicsImportValidate
	GraphicsImportWillUseColorMatching

	Callbacks
	ModalFilterYDProc

	Data Types
	GraphicsExportComponent
	GraphicsImportComponent
	ModalFilterYDUPP

	Constants
	GraphicsImportDoesDrawAllPixels Values
	Graphics Importer Flags
	GraphicsImportCreateCGImage Values
	PNG Properties
	TIFF Properties

	Media Types and Media Handlers Reference
	Overview
	Functions by Task
	General Data Management
	Managing Graphics Data
	Managing Media Chunks
	Managing Your Media Handler Component
	Sound Media Handler Functions
	Supporting Keyboard Focus
	Video Media Handler Functions
	Working With The Idle Manager
	Supporting Functions

	Functions
	CallComponentExecuteWiredAction
	DisposePrePrerollCompleteUPP
	MediaChangedNonPrimarySource
	MediaCompare
	MediaCurrentMediaQueuedData
	MediaDisposeTargetRefCon
	MediaDoIdleActions
	MediaEmptyAllPurgeableChunks
	MediaEmptySampleCache
	MediaEnterEmptyEdit
	MediaFlushNonPrimarySourceData
	MediaForceUpdate
	MediaGetActionsForQTEvent
	MediaGetChunkManagementFlags
	MediaGetClock
	MediaGetDrawingRgn
	MediaGetEffectiveSoundBalance
	MediaGetEffectiveVolume
	MediaGetErrorString
	MediaGetGraphicsMode
	MediaGetInvalidRegion
	MediaGetMediaInfo
	MediaGetMediaLoadState
	MediaGetName
	MediaGetNextBoundsChange
	MediaGetNextStepTime
	MediaGetOffscreenBufferSize
	MediaGetPublicInfo
	MediaGetPurgeableChunkMemoryAllowance
	MediaGetSampleDataPointer
	MediaGetSoundBalance
	MediaGetSoundBassAndTreble
	MediaGetSoundEqualizerBandLevels
	MediaGetSoundEqualizerBands
	MediaGetSoundLevelMeterInfo
	MediaGetSoundLevelMeteringEnabled
	MediaGetSoundOutputComponent
	MediaGetSrcRgn
	MediaGetTrackOpaque
	MediaGetURLLink
	MediaGetUserPreferredCodecs
	MediaGetVideoParam
	MediaGGetIdleManager
	MediaGGetStatus
	MediaGSetActiveSegment
	MediaGSetIdleManager
	MediaGSetVolume
	MediaHasCharacteristic
	MediaHitTestForTargetRefCon
	MediaHitTestTargetRefCon
	MediaIdle
	MediaInitialize
	MediaInvalidateRegion
	MediaMakeMediaTimeTable
	MediaMCIsPlayerEvent
	MediaNavigateTargetRefCon
	MediaPrePrerollBegin
	MediaPrePrerollCancel
	MediaPreroll
	MediaPutMediaInfo
	MediaQueueNonPrimarySourceData
	MediaRefConGetProperty
	MediaRefConSetProperty
	MediaReleaseSampleDataPointer
	MediaResolveTargetRefCon
	MediaSampleDescriptionB2N
	MediaSampleDescriptionChanged
	MediaSampleDescriptionN2B
	MediaSetActionsCallback
	MediaSetActive
	MediaSetChunkManagementFlags
	MediaSetClip
	MediaSetDimensions
	MediaSetDoMCActionCallback
	MediaSetGraphicsMode
	MediaSetGWorld
	MediaSetHandlerCapabilities
	MediaSetHints
	MediaSetMatrix
	MediaSetMediaTimeScale
	MediaSetMovieTimeScale
	MediaSetNonPrimarySourceData
	MediaSetPublicInfo
	MediaSetPurgeableChunkMemoryAllowance
	MediaSetRate
	MediaSetScreenLock
	MediaSetSoundBalance
	MediaSetSoundBassAndTreble
	MediaSetSoundEqualizerBands
	MediaSetSoundLevelMeteringEnabled
	MediaSetSoundLocalizationData
	MediaSetSoundOutputComponent
	MediaSetTrackInputMapReference
	MediaSetUserPreferredCodecs
	MediaSetVideoParam
	MediaTargetRefConsEqual
	MediaTimeBaseChanged
	MediaTrackEdited
	MediaTrackPropertyAtomChanged
	MediaTrackReferencesChanged
	MediaVideoOutputChanged
	NewPrePrerollCompleteUPP

	Callbacks
	PrePrerollCompleteProc

	Data Types
	GetMovieCompleteParams
	LevelMeterInfo
	LevelMeterInfoPtr
	MediaEQSpectrumBandsRecord
	MediaEQSpectrumBandsRecordPtr
	PrePrerollCompleteUPP
	QTCustomActionTargetPtr
	QTCustomActionTargetRecord

	Constants
	MediaForceUpdate Values
	Data Handler Flags
	MediaSetChunkManagementFlags Values
	MediaSetVideoParam Values
	MediaNavigateTargetRefCon Values
	MediaRefConSetProperty Values
	Media Task Flags
	MediaHitTestTargetRefCon Values

	Movie Controller Reference
	Overview
	Functions by Task
	Associating Movies With Controllers
	Customizing Event Processing
	Editing Movies With a Controller
	Getting and Setting Movie Controller Time
	Handling Movie Events
	Managing Controller Attributes
	Movie Controller Action Functions
	Working With The Idle Manager
	Supporting Functions

	Functions
	DisposeMCActionFilterUPP
	DisposeMCActionFilterWithRefConUPP
	HIMovieViewChangeAttributes
	HIMovieViewCreate
	HIMovieViewGetAttributes
	HIMovieViewGetControllerBarSize
	HIMovieViewGetMovie
	HIMovieViewGetMovieController
	HIMovieViewPause
	HIMovieViewPlay
	HIMovieViewSetMovie
	MCActivate
	MCAddMovieSegment
	MCAdjustCursor
	MCClear
	MCClick
	MCCopy
	MCCut
	MCDoAction
	MCDraw
	MCDrawBadge
	MCEnableEditing
	MCGetClip
	MCGetControllerBoundsRect
	MCGetControllerBoundsRgn
	MCGetControllerInfo
	MCGetControllerPort
	MCGetCurrentTime
	MCGetDoActionsProc
	MCGetIndMovie
	MCGetInterfaceElement
	MCGetMenuString
	MCGetVisible
	MCGetWindowRgn
	MCIdle
	MCInvalidate
	MCIsControllerAttached
	MCIsEditingEnabled
	MCIsPlayerEvent
	MCKey
	MCMovieChanged
	MCNewAttachedController
	MCPaste
	MCPositionController
	MCPtInController
	MCRemoveAllMovies
	MCRemoveAMovie
	MCRemoveMovie
	MCSetActionFilter
	MCSetActionFilterWithRefCon
	MCSetClip
	MCSetControllerAttached
	MCSetControllerBoundsRect
	MCSetControllerCapabilities
	MCSetControllerPort
	MCSetDuration
	MCSetIdleManager
	MCSetMovie
	MCSetUpEditMenu
	MCSetVisible
	MCTrimMovieSegment
	MCUndo
	NewMCActionFilterUPP
	NewMCActionFilterWithRefConUPP

	Callbacks
	MCActionFilterProc
	MCActionFilterWithRefConProc

	Data Types
	MCActionFilterUPP
	MCActionFilterWithRefConUPP
	MCInterfaceElement
	OptionBits

	Constants
	Movie Controller Options
	MCAdjustCursor Values
	MCGetMenuString Values
	MCPositionController Values

	QuickTime Movie Properties Reference
	Overview
	Functions by Task
	Working With QuickTime Metadata
	Working With QuickTime Sample Tables
	Supporting Functions

	Functions
	DisposeQTBandwidthNotificationUPP
	DisposeQTTrackPropertyListenerUPP
	InvokeQTTrackPropertyListenerUPP
	MusicMediaGetIndexedTunePlayer
	NewQTBandwidthNotificationUPP
	NewQTTrackPropertyListenerUPP
	QTAddMoviePropertyListener
	QTAddTrackPropertyListener
	QTBandwidthRelease
	QTBandwidthRequest
	QTBandwidthRequestForTimeBase
	QTCopyMediaMetaData
	QTCopyMovieMetaData
	QTCopyTrackMetaData
	QTGetMovieProperty
	QTGetMoviePropertyInfo
	QTGetTrackProperty
	QTGetTrackPropertyInfo
	QTMetaDataAddItem
	QTMetaDataGetItemProperty
	QTMetaDataGetItemPropertyInfo
	QTMetaDataGetItemValue
	QTMetaDataGetNextItem
	QTMetaDataGetProperty
	QTMetaDataGetPropertyInfo
	QTMetaDataRelease
	QTMetaDataRemoveItem
	QTMetaDataRemoveItemsWithKey
	QTMetaDataRetain
	QTMetaDataSetItem
	QTMetaDataSetItemProperty
	QTMetaDataSetProperty
	QTRemoveMoviePropertyListener
	QTRemoveTrackPropertyListener
	QTSampleTableAddSampleDescription
	QTSampleTableAddSampleReferences
	QTSampleTableCopySampleDescription
	QTSampleTableCreateMutable
	QTSampleTableCreateMutableCopy
	QTSampleTableGetDataOffset
	QTSampleTableGetDataSizePerSample
	QTSampleTableGetDecodeDuration
	QTSampleTableGetDisplayOffset
	QTSampleTableGetNextAttributeChange
	QTSampleTableGetNumberOfSamples
	QTSampleTableGetProperty
	QTSampleTableGetPropertyInfo
	QTSampleTableGetSampleDescriptionID
	QTSampleTableGetSampleFlags
	QTSampleTableGetTimeScale
	QTSampleTableGetTypeID
	QTSampleTableRelease
	QTSampleTableReplaceRange
	QTSampleTableRetain
	QTSampleTableSetProperty
	QTSampleTableSetTimeScale
	QTScheduledBandwidthRelease
	QTScheduledBandwidthRequest
	QTSetMovieProperty
	QTSetTrackProperty

	Callbacks
	QTBandwidthNotificationProc

	Data Types
	QTBandwidthNotificationUPP
	QTBandwidthReference
	QTScheduledBandwidthPtr
	QTScheduledBandwidthRecord
	QTScheduledBandwidthReference

	Constants
	kQTPropertyClass_SampleTable
	QTSampleTableGetNextAttributeChange Values
	QTSampleTableGetSampleFlags Values

	Movie Toolkit Reference
	Overview
	Functions by Task
	Associating Movies With Controllers
	Audio Conversion and Extraction
	Copying Existing Atoms
	Creating and Disposing of Atom Containers
	Creating and Manipulating Sprites
	Creating New Atoms
	Enhancing Movie Playback Performance
	Error Functions
	Finding and Adding Samples
	Finding Interesting Times
	High-Level Download Control
	High-Level Effects Functions
	High-Level Movie Editing Functions
	Low-Level Download Control
	Metering Sound Level and Frequency
	Modifying Atoms
	Movie Functions
	Movie Posters and Movie Previews
	Movies and Your Event Loop
	Registering and Unregistering Access Keys
	Removing Atoms From an Atom Container
	Retrieving Access Keys
	Retrieving Atoms and Atom Data
	Saving Movies
	Setting Sound Parameters
	Tween Component Requirements
	Using the Full Screen
	Working With Alternate Tracks
	Working With Data References
	Working With Media Handler Properties
	Working With Movie Restrictions
	Working With Movie Spatial Characteristics
	Working With Progress and Cover Functions
	Working With Sprite Worlds
	Working With User Data
	Supporting Functions

	Functions
	AddMediaDataRef
	AddMovieExecuteWiredActionsProc
	AddMovieResource
	AddMovieToStorage
	AddSoundDescriptionExtension
	AddUserData
	AddUserDataText
	AttachMovieToCurrentThread
	BeginFullScreen
	CanQuickTimeOpenDataRef
	CanQuickTimeOpenFile
	ClearMovieChanged
	CloseMovieFile
	CloseMovieStorage
	CopyMediaUserData
	CopyMovieUserData
	CopyTrackUserData
	CopyUserData
	CountUserDataType
	CreateMovieFile
	CreateMovieStorage
	CreateShortcutMovieFile
	DeleteMovieFile
	DeleteMovieStorage
	DetachMovieFromCurrentThread
	DisposeActionsUPP
	DisposeAllSprites
	DisposeDoMCActionUPP
	DisposeGetMovieUPP
	DisposeMovieController
	DisposeMovieDrawingCompleteUPP
	DisposeMovieExecuteWiredActionsUPP
	DisposeMoviePrePrerollCompleteUPP
	DisposeMoviePreviewCallOutUPP
	DisposeMovieProgressUPP
	DisposeMovieRgnCoverUPP
	DisposeMoviesErrorUPP
	DisposeQTCallBackUPP
	DisposeQTEffectListFilterUPP
	DisposeQTNextTaskNeededSoonerCallbackUPP
	DisposeQTSyncTaskUPP
	DisposeSprite
	DisposeSpriteWorld
	DisposeTextMediaUPP
	DisposeTrackTransferUPP
	DisposeTweenerDataUPP
	DisposeUserData
	EndFullScreen
	FlattenMovie
	FlattenMovieData
	FlattenMovieDataToDataRef
	GetMaxLoadedTimeInMovie
	GetMediaDataRef
	GetMediaDataRefCount
	GetMediaNextInterestingDecodeTime
	GetMediaNextInterestingDisplayTime
	GetMediaNextInterestingTime
	GetMediaPlayHints
	GetMediaPropertyAtom
	GetMovieAnchorDataRef
	GetMovieAudioBalance
	GetMovieAudioFrequencyLevels
	GetMovieAudioFrequencyMeteringBandFrequencies
	GetMovieAudioFrequencyMeteringNumBands
	GetMovieAudioGain
	GetMovieAudioMute
	GetMovieAudioVolumeLevels
	GetMovieAudioVolumeMeteringEnabled
	GetMovieColorTable
	GetMovieCoverProcs
	GetMovieDefaultDataRef
	GetMovieLoadState
	GetMovieNextInterestingTime
	GetMovieProgressProc
	GetMoviePropertyAtom
	GetMovieSegmentDisplayBoundsRgn
	GetMovieStatus
	GetMovieThreadAttachState
	GetMovieVisualBrightness
	GetMovieVisualContrast
	GetMovieVisualHue
	GetMovieVisualSaturation
	GetNextUserDataType
	GetPosterBox
	GetQuickTimePreference
	GetSoundDescriptionExtension
	GetSpriteProperty
	GetTrackAudioGain
	GetTrackAudioMute
	GetTrackLoadSettings
	GetTrackNextInterestingTime
	GetTrackSegmentDisplayBoundsRgn
	GetTrackStatus
	GetUserData
	GetUserDataItem
	GetUserDataText
	HasMovieChanged
	InvalidateSprite
	InvalidateSpriteWorld
	MakeMediaTimeTable
	MakeTrackTimeTable
	MovieAudioExtractionBegin
	MovieAudioExtractionEnd
	MovieAudioExtractionFillBuffer
	MovieAudioExtractionGetProperty
	MovieAudioExtractionGetPropertyInfo
	MovieAudioExtractionSetProperty
	MovieExecuteWiredActions
	MovieSearchText
	NewActionsUPP
	NewDoMCActionUPP
	NewGetMovieUPP
	NewMovieController
	NewMovieDrawingCompleteUPP
	NewMovieExecuteWiredActionsUPP
	NewMovieForDataRefFromHandle
	NewMovieFromDataFork
	NewMovieFromDataFork64
	NewMovieFromDataRef
	NewMovieFromFile
	NewMovieFromHandle
	NewMovieFromScrap
	NewMovieFromStorageOffset
	NewMovieFromUserProc
	NewMoviePrePrerollCompleteUPP
	NewMoviePreviewCallOutUPP
	NewMovieProgressUPP
	NewMovieRgnCoverUPP
	NewMoviesErrorUPP
	NewQTCallBackUPP
	NewQTEffectListFilterUPP
	NewQTNextTaskNeededSoonerCallbackUPP
	NewQTSyncTaskUPP
	NewSprite
	NewSpriteWorld
	NewTextMediaUPP
	NewTrackTransferUPP
	NewTweenerDataUPP
	NewUserData
	NewUserDataFromHandle
	OpenMovieFile
	OpenMovieStorage
	PutMovieOnScrap
	PutUserDataIntoHandle
	QTAddMovieError
	QTCopyAtom
	QTCopyAtomDataToHandle
	QTCopyAtomDataToPtr
	QTCountChildrenOfType
	QTCreateStandardParameterDialog
	QTCreateUUID
	QTDismissStandardParameterDialog
	QTDisposeAtomContainer
	QTDisposeTween
	QTDoTween
	QTDoTweenPtr
	QTEqualUUIDs
	QTFindChildByID
	QTFindChildByIndex
	QTGetAccessKeys
	QTGetAtomDataPtr
	QTGetAtomParent
	QTGetAtomTypeAndID
	QTGetDataHandlerDirectoryDataReference
	QTGetDataHandlerFullPathCFString
	QTGetDataHandlerTargetNameCFString
	QTGetDataReferenceDirectoryDataReference
	QTGetDataReferenceFullPathCFString
	QTGetDataReferenceTargetNameCFString
	QTGetDataRefMaxFileOffset
	QTGetEffectsList
	QTGetEffectsListExtended
	QTGetEffectSpeed
	QTGetMovieRestrictions
	QTGetNextChildType
	QTGetSupportedRestrictions
	QTInsertChild
	QTInsertChildren
	QTIsStandardParameterDialogEvent
	QTLockContainer
	QTMovieNeedsTimeTable
	QTNewAlias
	QTNewAtomContainer
	QTNewDataReferenceFromCFURL
	QTNewDataReferenceFromFSRef
	QTNewDataReferenceFromFSRefCFString
	QTNewDataReferenceFromFSSpec
	QTNewDataReferenceFromFullPathCFString
	QTNewDataReferenceFromURLCFString
	QTNewDataReferenceWithDirectoryCFString
	QTNewTween
	QTNextChildAnyType
	QTRegisterAccessKey
	QTRemoveAtom
	QTRemoveChildren
	QTReplaceAtom
	QTRestrictionsGetIndClass
	QTRestrictionsGetInfo
	QTRestrictionsGetItem
	QTSetAtomData
	QTSetAtomID
	QTStandardParameterDialogDoAction
	QTSwapAtoms
	QTUnlockContainer
	QTUnregisterAccessKey
	RemoveMovieExecuteWiredActionsProc
	RemoveMovieResource
	RemoveSoundDescriptionExtension
	RemoveUserData
	RemoveUserDataText
	SetMediaDataRef
	SetMediaDataRefAttributes
	SetMediaPlayHints
	SetMediaPropertyAtom
	SetMovieAnchorDataRef
	SetMovieAudioBalance
	SetMovieAudioFrequencyMeteringNumBands
	SetMovieAudioGain
	SetMovieAudioMute
	SetMovieAudioVolumeMeteringEnabled
	SetMovieColorTable
	SetMovieCoverProcs
	SetMovieDefaultDataRef
	SetMovieLanguage
	SetMoviePlayHints
	SetMovieProgressProc
	SetMoviePropertyAtom
	SetMovieVisualBrightness
	SetMovieVisualContrast
	SetMovieVisualHue
	SetMovieVisualSaturation
	SetPosterBox
	SetQuickTimePreference
	SetSpriteProperty
	SetSpriteWorldClip
	SetSpriteWorldFlags
	SetSpriteWorldGraphicsMode
	SetSpriteWorldMatrix
	SetTrackAudioGain
	SetTrackAudioMute
	SetTrackLoadSettings
	SetUserDataItem
	ShowMovieInformation
	SpriteHitTest
	SpriteWorldHitTest
	SpriteWorldIdle
	UpdateMovieInStorage
	UpdateMovieResource

	Callbacks
	GetMovieProc
	MovieExecuteWiredActionsProc
	MovieRgnCoverProc
	QTEffectListFilterProc
	QTSyncTaskProc
	TweenerDataProc

	Data Types
	FourCharCode
	FSSpecPtr
	GetMovieUPP
	MovieExecuteWiredActionsUPP
	MovieRgnCoverUPP
	QTAtomType
	QTAudioFrequencyLevels
	QTAudioVolumeLevels
	QTEffectListFilterUPP
	QTEffectListOptions
	QTErrorReplacementPtr
	QTErrorReplacementRecord
	QTRestrictionSet
	QTRestrictionSetRecord
	QTSyncTaskUPP
	QTTweener
	QTTweenerRecord
	QTUUID
	Sprite
	SpriteRecord
	SpriteWorld
	SpriteWorldRecord
	TweenerDataUPP

	Constants
	SetQuickTimePreference Values
	CreateMovieFile Values
	GetMediaDataRef Values
	QTGetEffectSpeed Values
	QTGetEffectsList Values
	Full Screen Flags
	Hint Flags
	QTUnregisterAccessKey Values
	Sprite Properties
	SetMediaDataRefAttributes Values
	CopyUserData Values
	CanQuickTimeOpenFile Values
	QTNewDataReferenceFromFullPathCFString Values
	SpriteWorldIdle Values
	MovieExecuteWiredActions Values
	NewMovieFromFile Values
	PutMovieOnScrap Values
	SetTrackLoadSettings Values
	MovieSearchText Values
	Media Characteristics

	QuickTime Movie Track and Media Reference
	Overview
	Functions by Task
	Adding Samples to Media Structures
	Creating Tracks and Media Structures
	Determining Movie Creation and Modification Time
	Disabling Movies and Tracks
	Editing Tracks
	Enhancing Movie Playback Performance
	Finding and Adding Samples
	High-Level Movie Editing Functions
	Locating a Movie's Tracks and Media Structures
	Low-Level Movie Editing Functions
	Manipulating Media Input Maps
	Movie Functions
	Movie Posters and Movie Previews
	Movies and Your Event Loop
	Selecting Media Handlers
	Undo for Movies
	Undo for Tracks
	Working With Alternate Tracks
	Working With Media Samples
	Working With Media Time
	Working With Movie Spatial Characteristics
	Working With QuickTime Sample Tables
	Working With Sound Volume
	Working With Track References
	Working With Track Sound
	Working With Track Time
	Working With User Data
	Supporting Functions

	Functions
	AddClonedTrackToMovie
	AddEmptyTrackToMovie
	AddMediaSample
	AddMediaSample2
	AddMediaSampleFromEncodedFrame
	AddMediaSampleReference
	AddMediaSampleReferences
	AddMediaSampleReferences64
	AddMovieSelection
	AddSampleTableToMedia
	AddTrackReference
	BeginMediaEdits
	ClearMovieSelection
	ConvertDataRefToMovieDataRef
	ConvertFileToMovieFile
	ConvertMovieToDataRef
	ConvertMovieToFile
	CopyMediaMutableSampleTable
	CopyMovieSelection
	CopyMovieSettings
	CopyTrackSettings
	CutMovieSelection
	DeleteMovieSegment
	DeleteTrackReference
	DeleteTrackSegment
	DisposeMovieEditState
	DisposeMovieTrack
	DisposeTrackEditState
	DisposeTrackMedia
	EndMediaEdits
	ExtendMediaDecodeDurationToDisplayEndTime
	GetDataHandler
	GetMediaAdvanceDecodeTime
	GetMediaCreationTime
	GetMediaDataHandler
	GetMediaDataHandlerDescription
	GetMediaDataSize
	GetMediaDataSize64
	GetMediaDataSizeTime64
	GetMediaDecodeDuration
	GetMediaDisplayDuration
	GetMediaDisplayEndTime
	GetMediaDisplayStartTime
	GetMediaDuration
	GetMediaHandler
	GetMediaHandlerDescription
	GetMediaInputMap
	GetMediaLanguage
	GetMediaModificationTime
	GetMediaPreferredChunkSize
	GetMediaQuality
	GetMediaSample
	GetMediaSample2
	GetMediaSampleCount
	GetMediaSampleDescription
	GetMediaSampleDescriptionCount
	GetMediaSampleReference
	GetMediaSampleReferences
	GetMediaSampleReferences64
	GetMediaShadowSync
	GetMediaSyncSampleCount
	GetMediaTimeScale
	GetMediaTrack
	GetMediaUserData
	GetMovieDataSize
	GetMovieDataSize64
	GetMovieImporterForDataRef
	GetMovieIndTrack
	GetMovieIndTrackType
	GetMovieTrack
	GetMovieTrackCount
	GetNextTrackReferenceType
	GetTrackAlternate
	GetTrackCreationTime
	GetTrackDataSize
	GetTrackDataSize64
	GetTrackDimensions
	GetTrackDisplayMatrix
	GetTrackDuration
	GetTrackEditRate
	GetTrackEditRate64
	GetTrackEnabled
	GetTrackID
	GetTrackLayer
	GetTrackMatrix
	GetTrackMedia
	GetTrackModificationTime
	GetTrackMovie
	GetTrackOffset
	GetTrackReference
	GetTrackReferenceCount
	GetTrackSoundLocalizationSettings
	GetTrackUsage
	GetTrackUserData
	GetTrackVolume
	InsertEmptyMovieSegment
	InsertEmptyTrackSegment
	InsertMediaIntoTrack
	InsertMovieSegment
	InsertTrackSegment
	IsScrapMovie
	MediaContainsDisplayOffsets
	MediaDecodeTimeToSampleNum
	MediaDisplayTimeToSampleNum
	MediaTimeToSampleNum
	NewMovieEditState
	NewMovieTrack
	NewTrackEditState
	NewTrackMedia
	OpenADataHandler
	PasteHandleIntoMovie
	PasteMovieSelection
	PtInMovie
	PtInTrack
	PutMovieIntoTypedHandle
	QTGetMIMETypeInfo
	SampleNumToMediaDecodeTime
	SampleNumToMediaDisplayTime
	SampleNumToMediaTime
	ScaleMovieSegment
	ScaleTrackSegment
	SelectMovieAlternates
	SetAutoTrackAlternatesEnabled
	SetMediaDataHandler
	SetMediaDefaultDataRefIndex
	SetMediaHandler
	SetMediaInputMap
	SetMediaLanguage
	SetMediaPreferredChunkSize
	SetMediaQuality
	SetMediaSampleDescription
	SetMediaShadowSync
	SetMediaTimeScale
	SetTrackAlternate
	SetTrackDimensions
	SetTrackEnabled
	SetTrackLayer
	SetTrackMatrix
	SetTrackOffset
	SetTrackReference
	SetTrackSoundLocalizationSettings
	SetTrackUsage
	SetTrackVolume
	TrackTimeToMediaDisplayTime
	TrackTimeToMediaTime
	UseMovieEditState
	UseTrackEditState

	Callbacks
	Data Types
	DataHandlerComponent
	MediaHandlerComponent
	MovieEditState
	MovieEditStateRecord
	SampleReference64Ptr
	SampleReference64Record
	SampleReferencePtr
	SampleReferenceRecord
	TrackEditState
	TrackEditStateRecord

	Constants
	GetMovieImporter Flags
	AddClonedTrackToMovie Values
	QTGetMIMETypeInfo Values
	GetMovieIndTrackType Values
	movieFileSpecValid
	SetTrackUsage Values
	Media Identifiers

	QuickTime Music Architecture Reference
	Overview
	Functions by Task
	Allocating and Using Note Channels
	Calling Generic Music Component Clients
	Managing Instruments and Parts
	Managing Synthesizers
	Managing the Generic Music Component
	MIDI Component Functions
	Miscellaneous Music Component Functions
	Note Allocator Configuration and Utilities
	Note Allocator Interface Tools
	Using the Tune Player
	Supporting Functions

	Functions
	DisposeMusicMIDISendUPP
	DisposeMusicOfflineDataUPP
	DisposeTuneCallBackUPP
	DisposeTunePlayCallBackUPP
	MusicDerivedCloseResFile
	MusicDerivedMIDISend
	MusicDerivedOpenResFile
	MusicDerivedSetInstrument
	MusicDerivedSetKnob
	MusicDerivedSetMIDI
	MusicDerivedSetPart
	MusicDerivedSetPartInstrumentNumber
	MusicDerivedStorePartInstrument
	MusicFindTone
	MusicGenericConfigure
	MusicGenericGetKnobList
	MusicGenericGetPart
	MusicGenericSetResourceNumbers
	MusicGetDescription
	MusicGetDeviceConnection
	MusicGetDrumKnobDescription
	MusicGetDrumNames
	MusicGetInfoText
	MusicGetInstrumentAboutInfo
	MusicGetInstrumentInfo
	MusicGetInstrumentKnobDescription
	MusicGetInstrumentNames
	MusicGetKnob
	MusicGetKnobDescription
	MusicGetKnobSettingStrings
	MusicGetMasterTune
	MusicGetMIDIPorts
	MusicGetMIDIProc
	MusicGetPart
	MusicGetPartAtomicInstrument
	MusicGetPartController
	MusicGetPartInstrumentNumber
	MusicGetPartKnob
	MusicGetPartName
	MusicPlayNote
	MusicResetPart
	MusicSendMIDI
	MusicSetKnob
	MusicSetMasterTune
	MusicSetMIDIProc
	MusicSetOfflineTimeTo
	MusicSetPart
	MusicSetPartAtomicInstrument
	MusicSetPartController
	MusicSetPartInstrumentNumber
	MusicSetPartInstrumentNumberInterruptSafe
	MusicSetPartKnob
	MusicSetPartName
	MusicSetPartSoundLocalization
	MusicStartOffline
	MusicStorePartInstrument
	MusicTask
	MusicUseDeviceConnection
	NACopyrightDialog
	NADisposeNoteChannel
	NAFindNoteChannelTone
	NAGetController
	NAGetIndNoteChannel
	NAGetKnob
	NAGetMIDIPorts
	NAGetNoteChannelInfo
	NAGetNoteRequest
	NAGetRegisteredMusicDevice
	NANewNoteChannel
	NANewNoteChannelFromAtomicInstrument
	NAPickArrangement
	NAPickEditInstrument
	NAPickInstrument
	NAPlayNote
	NAPrerollNoteChannel
	NARegisterMusicDevice
	NAResetNoteChannel
	NASaveMusicConfiguration
	NASendMIDI
	NASetAtomicInstrument
	NASetController
	NASetInstrumentNumber
	NASetInstrumentNumberInterruptSafe
	NASetKnob
	NASetNoteChannelBalance
	NASetNoteChannelSoundLocalization
	NASetNoteChannelVolume
	NAStuffToneDescription
	NATask
	NAUnregisterMusicDevice
	NAUnrollNoteChannel
	NewMusicMIDISendUPP
	NewMusicOfflineDataUPP
	NewTuneCallBackUPP
	NewTunePlayCallBackUPP
	QTMIDIGetMIDIPorts
	QTMIDISendMIDI
	QTMIDIUseSendPort
	TuneGetIndexedNoteChannel
	TuneGetNoteAllocator
	TuneGetPartMix
	TuneGetStatus
	TuneGetTimeBase
	TuneGetTimeScale
	TuneGetVolume
	TuneInstant
	TunePreroll
	TuneQueue
	TuneSetBalance
	TuneSetHeader
	TuneSetHeaderWithSize
	TuneSetNoteChannels
	TuneSetPartMix
	TuneSetPartTranspose
	TuneSetSofter
	TuneSetSoundLocalization
	TuneSetTimeScale
	TuneSetVolume
	TuneStop
	TuneTask
	TuneUnroll

	Callbacks
	MusicMIDISendProc
	MusicOfflineDataProc
	TuneCallBackProc
	TunePlayCallBackProc

	Data Types
	AtomicInstrument
	AtomicInstrumentPtr
	GCPart
	GenericKnobDescription
	GenericKnobDescriptionListHandle
	GenericKnobDescriptionListPtr
	InstrumentAboutInfo
	InstrumentInfoListHandle
	InstrumentInfoListPtr
	KnobDescription
	MusicComponent
	MusicController
	MusicMIDIPacket
	MusicMIDISendUPP
	MusicOfflineDataUPP
	NoteAllocator
	NoteChannel
	NoteRequest
	QTMIDIComponent
	QTMIDIPortListHandle
	QTMIDIPortListPtr
	Str31
	SynthesizerConnections
	SynthesizerDescription
	TuneCallBackUPP
	TunePlayCallBackUPP
	TunePlayer
	TuneStatus

	Constants
	Generic Music Constants
	MusicSetPartAtomicInstrument Values
	MusicGetInstrumentInfo Values
	kInstrumentMatchGMNumber
	kKnobBasic
	MusicMIDIPacket Values
	kPickDontMix
	kSetAtomicInstCallerGuarantees
	kSynthesizerConnectionFMS
	kSynthesizerDLS
	TuneSetPartMix Values
	kTuneDontClipNotes

	QuickTime Streaming Reference
	Overview
	Functions
	DisposeQTSModalFilterUPP
	DisposeQTSNotificationUPP
	DisposeQTSPanelFilterUPP
	DisposeRTPMPDataReleaseUPP
	DisposeRTPPBCallbackUPP
	InitializeQTS
	NewQTSModalFilterUPP
	NewQTSNotificationUPP
	NewQTSPanelFilterUPP
	NewRTPMPDataReleaseUPP
	NewRTPPBCallbackUPP
	QTSAllocBuffer
	QTSAllocMemPtr
	QTSCopyMessage
	QTSDisposePresentation
	QTSDisposeStatHelper
	QTSDisposeStream
	QTSDuplicateMessage
	QTSDupMessage
	QTSFindMediaPacketizer
	QTSFindMediaPacketizerForPayloadID
	QTSFindMediaPacketizerForPayloadName
	QTSFindMediaPacketizerForTrack
	QTSFindReassemblerForPayloadID
	QTSFindReassemblerForPayloadName
	QTSFlattenMessage
	QTSFreeMessage
	QTSGetErrorString
	QTSGetNetworkAppName
	QTSGetOrMakeStatAtomForStream
	QTSGetStreamPresentation
	QTSInitializeMediaParams
	QTSInsertStatistic
	QTSInsertStatisticName
	QTSInsertStatisticUnits
	QTSMediaGetIndStreamInfo
	QTSMediaGetInfo
	QTSMediaSetIndStreamInfo
	QTSMediaSetInfo
	QTSMessageLength
	QTSNewHandle
	QTSNewPresentation
	QTSNewPresentationFromData
	QTSNewPresentationFromDataRef
	QTSNewPresentationFromFile
	QTSNewPtr
	QTSNewSourcer
	QTSNewStatHelper
	QTSNewStreamBuffer
	QTSPrefsAddConnectionSetting
	QTSPrefsAddProxySetting
	QTSPrefsAddProxyUserInfo
	QTSPrefsFindConnectionByType
	QTSPrefsFindProxyByType
	QTSPrefsFindProxyUserInfoByType
	QTSPrefsGetActiveConnection
	QTSPrefsGetInstantOnSettings
	QTSPrefsGetNoProxyURLs
	QTSPrefsSetInstantOnSettings
	QTSPrefsSetNoProxyURLs
	QTSPresAddSourcer
	QTSPresExport
	QTSPresGetActiveSegment
	QTSPresGetClip
	QTSPresGetDimensions
	QTSPresGetEnable
	QTSPresGetFlags
	QTSPresGetGraphicsMode
	QTSPresGetGWorld
	QTSPresGetIndSourcer
	QTSPresGetIndStream
	QTSPresGetInfo
	QTSPresGetMatrix
	QTSPresGetNotificationProc
	QTSPresGetNumSourcers
	QTSPresGetNumStreams
	QTSPresGetPicture
	QTSPresGetPlayHints
	QTSPresGetPreferredRate
	QTSPresGetPresenting
	QTSPresGetSettings
	QTSPresGetSettingsAsText
	QTSPresGetTimeBase
	QTSPresGetTimeScale
	QTSPresGetVolumes
	QTSPresHasCharacteristic
	QTSPresIdle
	QTSPresInvalidateRegion
	QTSPresNewStream
	QTSPresPreroll
	QTSPresPreroll64
	QTSPresPreview
	QTSPresRemoveSourcer
	QTSPresSetActiveSegment
	QTSPresSetClip
	QTSPresSetDimensions
	QTSPresSetEnable
	QTSPresSetFlags
	QTSPresSetGraphicsMode
	QTSPresSetGWorld
	QTSPresSetInfo
	QTSPresSetMatrix
	QTSPresSetNotificationProc
	QTSPresSetPlayHints
	QTSPresSetPreferredRate
	QTSPresSetPresenting
	QTSPresSetSettings
	QTSPresSettingsDialog
	QTSPresSettingsDialogWithFilters
	QTSPresSetVolumes
	QTSPresSkipTo
	QTSPresSkipTo64
	QTSPresStart
	QTSPresStop
	QTSReleaseMemPtr
	QTSSetNetworkAppName
	QTSSourcerGetEnable
	QTSSourcerGetInfo
	QTSSourcerGetTimeScale
	QTSSourcerIdle
	QTSSourcerInitialize
	QTSSourcerSetEnable
	QTSSourcerSetInfo
	QTSSourcerSetTimeScale
	QTSStatHelperGetNumStats
	QTSStatHelperGetStats
	QTSStatHelperNext
	QTSStatHelperResetIter
	QTSStreamBufferDataInfo
	RTPMPDoUserDialog
	RTPMPFlush
	RTPMPGetInfo
	RTPMPGetMaxPacketDuration
	RTPMPGetMaxPacketSize
	RTPMPGetMediaType
	RTPMPGetPacketBuilder
	RTPMPGetSettings
	RTPMPGetSettingsAsText
	RTPMPGetSettingsIntoAtomContainerAtAtom
	RTPMPGetTimeBase
	RTPMPGetTimeScale
	RTPMPHasCharacteristic
	RTPMPIdle
	RTPMPInitialize
	RTPMPPreflightMedia
	RTPMPReset
	RTPMPSetInfo
	RTPMPSetMaxPacketDuration
	RTPMPSetMaxPacketSize
	RTPMPSetMediaType
	RTPMPSetPacketBuilder
	RTPMPSetSampleData
	RTPMPSetSettings
	RTPMPSetSettingsFromAtomContainerAtAtom
	RTPMPSetTimeBase
	RTPMPSetTimeScale
	RTPPBAddPacketLiteralData
	RTPPBAddPacketRepeatedData
	RTPPBAddPacketSampleData
	RTPPBAddPacketSampleData64
	RTPPBAddRepeatPacket
	RTPPBBeginPacket
	RTPPBBeginPacketGroup
	RTPPBEndPacket
	RTPPBEndPacketGroup
	RTPPBGetCallback
	RTPPBGetInfo
	RTPPBGetPacketSequenceNumber
	RTPPBGetPacketTimeStampOffset
	RTPPBGetSampleData
	RTPPBReleaseRepeatedData
	RTPPBSetCallback
	RTPPBSetInfo
	RTPPBSetPacketSequenceNumber
	RTPPBSetPacketTimeStampOffset
	RTPRssmAdjustPacketParams
	RTPRssmClearCachedPackets
	RTPRssmComputeChunkSize
	RTPRssmCopyDataToChunk
	RTPRssmDecrChunkRefCount
	RTPRssmFillPacketListParams
	RTPRssmGetCapabilities
	RTPRssmGetChunkAndIncrRefCount
	RTPRssmGetExtChunkAndIncrRefCount
	RTPRssmGetInfo
	RTPRssmGetPayloadHeaderLength
	RTPRssmGetStreamHandler
	RTPRssmGetTimeScale
	RTPRssmGetTimeScaleFromPacket
	RTPRssmHandleNewPacket
	RTPRssmHasCharacteristic
	RTPRssmIncrChunkRefCount
	RTPRssmInitialize
	RTPRssmNewStreamHandler
	RTPRssmReleasePacketList
	RTPRssmReset
	RTPRssmSendChunkAndDecrRefCount
	RTPRssmSendLostChunk
	RTPRssmSendPacketList
	RTPRssmSendStreamBufferRange
	RTPRssmSendStreamHandlerChanged
	RTPRssmSetCapabilities
	RTPRssmSetInfo
	RTPRssmSetPayloadHeaderLength
	RTPRssmSetSampleDescription
	RTPRssmSetStreamHandler
	RTPRssmSetTimeScale
	TerminateQTS

	Callbacks
	QTSNotificationProc
	RTPMPDataReleaseProc
	RTPPBCallbackProc

	Data Types
	MediaPacketizerRequirements
	MediaPacketizerRequirementsPtr
	QTAtomSpec
	QTAtomSpecPtr
	QTSExportParams
	QTSInstantOnPref
	QTSMediaParams
	QTSMemPtr
	QTSNewPresentationParams
	QTSNoProxyPref
	QTSNotificationUPP
	QTSPresentation
	QTSPresentationRecord
	QTSPresIdleParams
	QTSPresParams
	QTSProxyPref
	QTSSourcer
	QTSSourcerInitParams
	QTSStatHelper
	QTSStatHelperNextParams
	QTSStatHelperRecord
	QTSStream
	QTSStreamBuffer
	QTSStreamRecord
	QTSTransportPref
	RTPMediaPacketizer
	RTPMPDataReleaseUPP
	RTPMPSampleDataParams
	RTPPacketBuilder
	RTPPacketGroupRef
	RTPPacketRef
	RTPPacketRepeatedDataRef
	RTPPayloadSortRequest
	RTPPayloadSortRequestPtr
	RTPPBCallbackUPP
	RTPReassembler
	RTPRssmInitParams
	RTPRssmPacket
	RTPSendStreamBufferRangeParams
	SHChunkRecord
	SHExtendedChunkRecord
	SHServerEditParameters

	Constants
	MediaPacketizerRequirements Values
	QTSTransportPref Values
	QTSStatisticsParams Values
	QTSPresGetFlags Values
	QTSPrefsGetActiveConnection Values
	kQTSDontGetDataStatisticsFlag
	QTSPresSetInfo Values
	QTSInstantOnPref Values
	QTSMediaSetInfo Values
	QTSNewPtr Values
	QTSSetNetworkAppName Values
	QTSStatHelperNextParams Values
	QTSInsertStatisticUnits Values
	kQTSStatisticsFixedDataFormat
	Streaming Transport Atoms
	kRTPMPHasUserSettingsDialogCharacteristic
	kRTPInfo_FormatString
	RTPMPInitialize Values
	RTPMPIdle Values
	kRTPMPRespectDurationFlag
	RTPRssmSetCapabilities Values
	RTPRssmSendPacketList Values
	SHExtendedChunkRecord Values

	QuickTime Virtual Reality Reference
	Overview
	Functions by Task
	Accessing Image Buffers
	Converting Angles and Points
	Determining Viewing Limits and Constraints
	Getting Scene and Node Information
	Handling Events
	Intercepting QuickTime VR Manager Routines
	Managing Hot Spots
	Managing Imaging Characteristics
	Managing Object Nodes
	Managing QuickTime VR Movie Instances
	Managing QuickTime VR Movie Interactions
	Managing VR Memory
	Manipulating Viewing Angles and Zooming
	Supporting Functions

	Functions
	DisposeQTVRBackBufferImagingUPP
	DisposeQTVREnteringNodeUPP
	DisposeQTVRImagingCompleteUPP
	DisposeQTVRInterceptUPP
	DisposeQTVRLeavingNodeUPP
	DisposeQTVRMouseOverHotSpotUPP
	NewQTVRBackBufferImagingUPP
	NewQTVREnteringNodeUPP
	NewQTVRImagingCompleteUPP
	NewQTVRInterceptUPP
	NewQTVRLeavingNodeUPP
	NewQTVRMouseOverHotSpotUPP
	QTVRAnglesToCoord
	QTVRBeginUpdateStream
	QTVRCallInterceptedProc
	QTVRColumnToPan
	QTVRCoordToAngles
	QTVREnableFrameAnimation
	QTVREnableHotSpot
	QTVREnableTransition
	QTVREnableViewAnimation
	QTVREndUpdateStream
	QTVRGetAngularUnits
	QTVRGetAnimationSetting
	QTVRGetAvailableResolutions
	QTVRGetBackBufferMemInfo
	QTVRGetBackBufferSettings
	QTVRGetConstraints
	QTVRGetConstraintStatus
	QTVRGetControlSetting
	QTVRGetCurrentMouseMode
	QTVRGetCurrentNodeID
	QTVRGetCurrentViewDuration
	QTVRGetFieldOfView
	QTVRGetFrameAnimation
	QTVRGetFrameRate
	QTVRGetHotSpotRegion
	QTVRGetHotSpotType
	QTVRGetImagingProperty
	QTVRGetInteractionProperty
	QTVRGetMouseDownTracking
	QTVRGetMouseOverTracking
	QTVRGetNodeInfo
	QTVRGetNodeType
	QTVRGetPanAngle
	QTVRGetQTVRInstance
	QTVRGetQTVRTrack
	QTVRGetTiltAngle
	QTVRGetViewAnimation
	QTVRGetViewCenter
	QTVRGetViewCurrentTime
	QTVRGetViewingLimits
	QTVRGetViewParameter
	QTVRGetViewRate
	QTVRGetViewState
	QTVRGetViewStateCount
	QTVRGetVisible
	QTVRGetVisibleHotSpots
	QTVRGetVRWorld
	QTVRGoToNodeID
	QTVRInstallInterceptProc
	QTVRInteractionNudge
	QTVRMouseDown
	QTVRMouseEnter
	QTVRMouseLeave
	QTVRMouseStillDown
	QTVRMouseStillDownExtended
	QTVRMouseUp
	QTVRMouseUpExtended
	QTVRMouseWithin
	QTVRNudge
	QTVRPanToColumn
	QTVRPtToAngles
	QTVRPtToHotSpotID
	QTVRRefreshBackBuffer
	QTVRReplaceCursor
	QTVRRowToTilt
	QTVRSetAngularUnits
	QTVRSetAnimationSetting
	QTVRSetBackBufferImagingProc
	QTVRSetBackBufferPrefs
	QTVRSetConstraints
	QTVRSetControlSetting
	QTVRSetEnteringNodeProc
	QTVRSetFieldOfView
	QTVRSetFrameRate
	QTVRSetImagingProperty
	QTVRSetInteractionProperty
	QTVRSetLeavingNodeProc
	QTVRSetMouseDownTracking
	QTVRSetMouseOverHotSpotProc
	QTVRSetMouseOverTracking
	QTVRSetPanAngle
	QTVRSetPrescreenImagingCompleteProc
	QTVRSetTiltAngle
	QTVRSetTransitionProperty
	QTVRSetViewCenter
	QTVRSetViewCurrentTime
	QTVRSetViewParameter
	QTVRSetViewRate
	QTVRSetViewState
	QTVRSetVisible
	QTVRShowDefaultView
	QTVRTiltToRow
	QTVRTriggerHotSpot
	QTVRUpdate
	QTVRWrapAndConstrain

	Callbacks
	QTVRBackBufferImagingProc
	QTVREnteringNodeProc
	QTVRImagingCompleteProc
	QTVRInterceptProc
	QTVRLeavingNodeProc
	QTVRMouseOverHotSpotProc

	Data Types
	QTVRAngularUnits
	QTVRAreaOfInterest
	QTVRBackBufferImagingUPP
	QTVRControlSetting
	QTVRCursorRecord
	QTVREnteringNodeUPP
	QTVRFloatPoint
	QTVRImagingCompleteUPP
	QTVRImagingMode
	QTVRInstance
	QTVRInterceptRecord
	QTVRInterceptUPP
	QTVRLeavingNodeUPP
	QTVRMouseOverHotSpotUPP
	QTVRNudgeControl
	QTVRObjectAnimationSetting
	QTVRProcSelector
	QTVRViewStateType

	Constants
	kQTVRBackBufferAlwaysRefresh
	QTVRGoToNodeID Values
	QTVRSetViewState Values
	QTVRSetBackBufferPrefs Values
	QTVRSetAngularUnits Values
	QTVREnableHotSpot Values
	kQTVRImagingCorrection
	QTVRSetInteractionProperty Values
	kQTVRDontLoopViewFrames
	QTVRWrapAndConstrain Values
	QTVRSetPrescreenImagingCompleteProc Values
	kQTVRDown
	kQTVRGetHotSpotTypeSelector
	kQTVRAllModes
	QTVRSetTransitionProperty Values
	QTVRCursorRecord Values
	kQTVRCube
	QTVRSetControlSetting Values

	Sequence Grabber Reference for QuickTime
	Overview
	Functions by Task
	Configuration Functions for All Channel Components
	Configuration Functions for Video Channel Components
	Configuring Sequence Grabber Channel Components
	Configuring Sequence Grabber Components
	Controlling Sequence Grabber Channel Components
	Controlling Sequence Grabber Components
	Managing Your Panel Component
	Managing Your Panel's Settings
	Processing Your Panel's Events
	Text Channel Support
	Utility Functions for Sequence Grabber Channel Components
	Video Channel Callback Functions
	Working With Channel Characteristics
	Working With Channel Devices
	Working With Sequence Grabber Characteristics
	Working With Sequence Grabber Outputs
	Working With Sequence Grabber Settings
	Working With Sound Channels
	Working With Video Channels
	Supporting Functions

	Functions
	DisposeSGAddFrameBottleUPP
	DisposeSGCompressBottleUPP
	DisposeSGCompressCompleteBottleUPP
	DisposeSGDataUPP
	DisposeSGDisplayBottleUPP
	DisposeSGDisplayCompressBottleUPP
	DisposeSGGrabBottleUPP
	DisposeSGGrabCompleteBottleUPP
	DisposeSGGrabCompressCompleteBottleUPP
	DisposeSGModalFilterUPP
	DisposeSGTransferFrameBottleUPP
	NewSGAddFrameBottleUPP
	NewSGCompressBottleUPP
	NewSGCompressCompleteBottleUPP
	NewSGDataUPP
	NewSGDisplayBottleUPP
	NewSGDisplayCompressBottleUPP
	NewSGGrabBottleUPP
	NewSGGrabCompleteBottleUPP
	NewSGGrabCompressCompleteBottleUPP
	NewSGModalFilterUPP
	NewSGTransferFrameBottleUPP
	SGAddExtendedFrameReference
	SGAddExtendedMovieData
	SGAddFrame
	SGAddFrameReference
	SGAddMovieData
	SGAddOutputDataRefToMedia
	SGAlignChannelRect
	SGAppendDeviceListToMenu
	SGChangedSource
	SGChannelGetCodecSettings
	SGChannelGetDataSourceName
	SGChannelGetRequestedDataRate
	SGChannelPutPicture
	SGChannelSetCodecSettings
	SGChannelSetDataSourceName
	SGChannelSetRequestedDataRate
	SGCompressFrame
	SGCompressFrameComplete
	SGDisplayCompress
	SGDisplayFrame
	SGDisposeChannel
	SGDisposeDeviceList
	SGDisposeOutput
	SGGetAdditionalSoundRates
	SGGetAlignmentProc
	SGGetBufferInfo
	SGGetChannelBounds
	SGGetChannelClip
	SGGetChannelDeviceAndInputNames
	SGGetChannelDeviceList
	SGGetChannelInfo
	SGGetChannelMatrix
	SGGetChannelMaxFrames
	SGGetChannelPlayFlags
	SGGetChannelRefCon
	SGGetChannelSampleDescription
	SGGetChannelSettings
	SGGetChannelTimeBase
	SGGetChannelTimeScale
	SGGetChannelUsage
	SGGetChannelVolume
	SGGetCompressBuffer
	SGGetDataOutput
	SGGetDataOutputStorageSpaceRemaining
	SGGetDataOutputStorageSpaceRemaining64
	SGGetDataRate
	SGGetDataRef
	SGGetFlags
	SGGetFrameRate
	SGGetGWorld
	SGGetIndChannel
	SGGetInstrument
	SGGetLastMovieResID
	SGGetMaximumRecordTime
	SGGetMode
	SGGetMovie
	SGGetNextExtendedFrameReference
	SGGetNextFrameReference
	SGGetOutputDataReference
	SGGetOutputMaximumOffset
	SGGetOutputNextOutput
	SGGetPause
	SGGetPreferredPacketSize
	SGGetSettings
	SGGetSoundInputDriver
	SGGetSoundInputParameters
	SGGetSoundInputRate
	SGGetSoundRecordChunkSize
	SGGetSrcVideoBounds
	SGGetStorageSpaceRemaining
	SGGetStorageSpaceRemaining64
	SGGetTextReturnToSpaceValue
	SGGetTimeBase
	SGGetTimeRemaining
	SGGetUserVideoCompressorList
	SGGetUseScreenBuffer
	SGGetVideoBottlenecks
	SGGetVideoCompressor
	SGGetVideoCompressorType
	SGGetVideoDigitizerComponent
	SGGetVideoRect
	SGGrabCompressComplete
	SGGrabFrame
	SGGrabFrameComplete
	SGGrabPict
	SGHandleUpdateEvent
	SGIdle
	SGInitChannel
	SGInitialize
	SGNewChannel
	SGNewChannelFromComponent
	SGNewOutput
	SGPanelCanRun
	SGPanelEvent
	SGPanelGetDitl
	SGPanelGetDITLForSize
	SGPanelGetSettings
	SGPanelGetTitle
	SGPanelInstall
	SGPanelItem
	SGPanelRemove
	SGPanelSetEventFilter
	SGPanelSetGrabber
	SGPanelSetResFile
	SGPanelSetSettings
	SGPanelValidateInput
	SGPause
	SGPrepare
	SGRelease
	SGSetAdditionalSoundRates
	SGSetChannelBounds
	SGSetChannelClip
	SGSetChannelDevice
	SGSetChannelDeviceInput
	SGSetChannelMatrix
	SGSetChannelMaxFrames
	SGSetChannelOutput
	SGSetChannelPlayFlags
	SGSetChannelRefCon
	SGSetChannelSettings
	SGSetChannelSettingsStateChanging
	SGSetChannelUsage
	SGSetChannelVolume
	SGSetCompressBuffer
	SGSetDataOutput
	SGSetDataProc
	SGSetDataRef
	SGSetFlags
	SGSetFontName
	SGSetFontSize
	SGSetFrameRate
	SGSetGWorld
	SGSetInstrument
	SGSetJustification
	SGSetMaximumRecordTime
	SGSetOutputFlags
	SGSetOutputMaximumOffset
	SGSetOutputNextOutput
	SGSetPreferredPacketSize
	SGSetSettings
	SGSetSettingsSummary
	SGSetSoundInputDriver
	SGSetSoundInputParameters
	SGSetSoundInputRate
	SGSetSoundRecordChunkSize
	SGSetTextBackColor
	SGSetTextForeColor
	SGSetTextReturnToSpaceValue
	SGSettingsDialog
	SGSetUserVideoCompressorList
	SGSetUseScreenBuffer
	SGSetVideoBottlenecks
	SGSetVideoCompressor
	SGSetVideoCompressorType
	SGSetVideoDigitizerComponent
	SGSetVideoRect
	SGSortDeviceList
	SGSoundInputDriverChanged
	SGStartPreview
	SGStartRecord
	SGStop
	SGTransferFrameForCompress
	SGUpdate
	SGVideoDigitizerChanged
	SGWriteExtendedMovieData
	SGWriteMovieData
	SGWriteSamples

	Callbacks
	SGAddFrameBottleProc
	SGCompressBottleProc
	SGCompressCompleteBottleProc
	SGDataProc
	SGDisplayBottleProc
	SGDisplayCompressBottleProc
	SGGrabBottleProc
	SGGrabCompleteBottleProc
	SGGrabCompressCompleteBottleProc
	SGModalFilterProc
	SGTransferFrameBottleProc

	Data Types
	ConstComponentListPtr
	SeqGrabComponent
	SeqGrabExtendedFrameInfo
	SeqGrabExtendedFrameInfoPtr
	SeqGrabFrameInfo
	SeqGrabFrameInfoPtr
	SGAddFrameBottleUPP
	SGChannel
	SGCompressBottleUPP
	SGCompressCompleteBottleUPP
	SGCompressInfo
	SGDataUPP
	SGDeviceList
	SGDeviceListPtr
	SGDisplayBottleUPP
	SGDisplayCompressBottleUPP
	SGGrabBottleUPP
	SGGrabCompleteBottleUPP
	SGGrabCompressCompleteBottleUPP
	SGModalFilterUPP
	SGOutput
	SGOutputRecord
	SGTransferFrameBottleUPP
	VideoBottles

	Constants
	channelPlayAllData
	SGGrabPict Values
	seqGrabCanMoveWindowWhileRecording
	seqGrabAlwaysUseTimeBase
	SGSettingsDialog Values
	seqGrabAppendToFile
	SGGetPause Values
	SGAddMovieData Values
	SGGetChannelDeviceList Values
	sgFlagAllowNonRGBPixMaps
	SGSetChannelSettingsStateChanging Values

	Video Components Reference for QuickTime
	Overview
	Functions by Task
	Controlling Analog Video
	Controlling Color
	Controlling Compressed Source Devices
	Controlling Digitization
	Controlling the Video Output Display Mode
	Controlling Video Output
	Finding Components Associated With a Video Output
	Getting Information About Video Digitizer Components
	Registering the Name of Video Output Software
	Saving and Restoring Component Configurations
	Selecting an Input Source
	Selectively Displaying Video
	Setting Source Characteristics
	Setting Video Destinations
	Video Clipping
	Video Digitizer Utilities
	Supporting Functions

	Functions
	QTVideoOutputBaseSetEchoPort
	QTVideoOutputBegin
	QTVideoOutputCopyIndAudioOutputDeviceUID
	QTVideoOutputCustomConfigureDisplay
	QTVideoOutputEnd
	QTVideoOutputGetClientName
	QTVideoOutputGetClock
	QTVideoOutputGetCurrentClientName
	QTVideoOutputGetDisplayMode
	QTVideoOutputGetDisplayModeList
	QTVideoOutputGetGWorld
	QTVideoOutputGetGWorldParameters
	QTVideoOutputGetIndImageDecompressor
	QTVideoOutputGetIndSoundOutput
	QTVideoOutputRestoreState
	QTVideoOutputSaveState
	QTVideoOutputSetClientName
	QTVideoOutputSetDisplayMode
	QTVideoOutputSetEchoPort
	VDAddKeyColor
	VDCaptureStateChanging
	VDClearClipRgn
	VDCompressDone
	VDCompressOneFrameAsync
	VDDone
	VDGetActiveSrcRect
	VDGetBlackLevelValue
	VDGetBrightness
	VDGetClipState
	VDGetCLUTInUse
	VDGetCompressionTime
	VDGetCompressionTypes
	VDGetContrast
	VDGetCurrentFlags
	VDGetDataRate
	VDGetDeviceNameAndFlags
	VDGetDigitizerInfo
	VDGetDigitizerRect
	VDGetDMADepths
	VDGetFieldPreference
	VDGetHue
	VDGetImageDescription
	VDGetInput
	VDGetInputColorSpaceMode
	VDGetInputFormat
	VDGetInputGammaRecord
	VDGetInputGammaValue
	VDGetInputName
	VDGetKeyColor
	VDGetKeyColorRange
	VDGetMaskandValue
	VDGetMaskPixMap
	VDGetMaxAuxBuffer
	VDGetMaxSrcRect
	VDGetNextKeyColor
	VDGetNumberOfInputs
	VDGetPlayThruDestination
	VDGetPLLFilterType
	VDGetPreferredImageDimensions
	VDGetPreferredTimeScale
	VDGetSaturation
	VDGetSharpness
	VDGetSoundInputDriver
	VDGetSoundInputSource
	VDGetTimeCode
	VDGetUniqueIDs
	VDGetVBlankRect
	VDGetVideoDefaults
	VDGetWhiteLevelValue
	VDGrabOneFrame
	VDGrabOneFrameAsync
	VDIIDCGetCSRData
	VDIIDCGetDefaultFeatures
	VDIIDCGetFeatures
	VDIIDCGetFeaturesForSpecifier
	VDIIDCSetCSRData
	VDIIDCSetFeatures
	VDPreflightDestination
	VDPreflightGlobalRect
	VDReleaseAsyncBuffers
	VDReleaseCompressBuffer
	VDResetCompressSequence
	VDSelectUniqueIDs
	VDSetBlackLevelValue
	VDSetBrightness
	VDSetClipRgn
	VDSetClipState
	VDSetCompression
	VDSetCompressionOnOff
	VDSetContrast
	VDSetDataRate
	VDSetDestinationPort
	VDSetDigitizerRect
	VDSetDigitizerUserInterrupt
	VDSetFieldPreference
	VDSetFrameRate
	VDSetHue
	VDSetInput
	VDSetInputColorSpaceMode
	VDSetInputGammaRecord
	VDSetInputGammaValue
	VDSetInputStandard
	VDSetKeyColor
	VDSetKeyColorRange
	VDSetMasterBlendLevel
	VDSetPlayThruDestination
	VDSetPlayThruGlobalRect
	VDSetPlayThruOnOff
	VDSetPLLFilterType
	VDSetPreferredImageDimensions
	VDSetPreferredPacketSize
	VDSetSaturation
	VDSetSharpness
	VDSetTimeBase
	VDSetupBuffers
	VDSetWhiteLevelValue
	VDUseSafeBuffers
	VDUseThisCLUT

	Callbacks
	Data Types
	DigitizerInfo
	GrafPort
	GrafPtr
	QTVideoOutputComponent
	RectPtr
	VDCompressionListHandle
	VDCompressionListPtr
	VDGammaRecord
	VDGamRecPtr
	VdigBufferRecListHandle
	VdigBufferRecListPtr
	VideoDigitizerComponent
	VideoDigitizerError

	Constants
	compositeIn
	Video Digitizer Capabilities
	currentIn
	VDGetDeviceNameAndFlags Values
	vdFlagCaptureAlwaysUseTimeBase
	VDSetPlayThruOnOff Values
	VdigType Values
	VDSetFieldPreference Values

	Windows API Reference for QuickTime
	Overview
	Functions
	QTMLCreateMutex
	QTMLDestroyMutex
	QTMLGrabMutex
	QTMLReturnMutex
	QTMLTryGrabMutex
	QTMLYieldCPU
	QTMLYieldCPUTime

	Callbacks
	Data Types
	QTMLMutex

	Constants
	QTMLYieldCPUTime Values

	QuickTime Atoms and Resources Reference
	Overview

	QuickTime Atoms
	Atoms

	QuickTime Public Resources
	Resources
	'atms'
	'avvc'
	'avvd'
	'cdci'
	'cdec'
	'cpix'
	'dlle'
	'mcfg'
	'mgrp'
	'mime'[resource]
	'pcki'
	'qter'
	'rsmi'
	'skcr'
	'skgr'
	'snd '
	'src#'
	'stg#'
	'stgp'
	'stri'
	'strn'
	'sttg'
	'thga'
	'thn#'
	'thnd'
	'thng'
	'thnr'

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

