
What's New in QuickTime 6.4 For Mac OS X
QuickTime

2003-09-01

Apple Inc.
© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, iTunes, Mac, Mac OS, Macintosh,
QuickDraw, QuickTime, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 What’s New in QuickTime 6.4 For Mac OS X 5

Documentation and Other Resources 5
Installing QuickTime 6.4 5

Hardware Requirements 5
Updating Earlier Versions 6

Overview 6
QuickTime 6 In Perspective 6
New Features of QuickTime 6.4 6
Summary of QuickTime 6 Versions 7

Using Gestalt to Get the QuickTime Version 8
A New Approach To Data References 8

New Data Reference Functions 9
Threaded Programming and QuickTime 12

Getting Ready to Use QuickTime from a Thread 13
User Interface Limited to the Main Thread 13
Error Handling 13
Using QuickTime From a Thread 13
Cleaning Up 14
Backward Compatibility 15
Thread Safety Issues 15

New Graphics Functions 16
New Graphics Importer Support for ColorSync 19
New AV Startup Synchronization Functions 19

How Startup Synchronization Works 20
Processing Events 20
New Component Properties Functions 21

UI Examples with QuickTime Dialogs as Sheets 22
New Movie Property Functions 23
New IIDC Digitizer Functions 23

IIDC Atoms 24
New Sound Function 27
New Offset TimeBase Functions 27
Changes to Text Drawing 27
Encoding Text Changes 28
New Release of QuickTime for Java 28

Goals 28
Hierarchy For All New Packages 28
Migrating Existing Code to the New Classes 29
SDK Examples That Work with JDK 1.4.1 29
Packages Not Supported in this Release 30
The quicktime.app.view Package 31

3
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Migrating Old QTJava Code to New QTJava Code 32
QuickTime 6.4 API Reference 33

Functions 33
Callbacks 86
Data Structures 89
VDIIDC Call Selectors 100

4
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Welcome to QuickTime 6.4 for Mac OS X.

This document provides details of some of the new features, changes, and enhanced capabilities that are
available at the API level in QuickTime 6.4. It also includes some code snippets that illustrate how developers
can take advantage of these new features and it fully documents the new QuickTime functions, data structures,
and callbacks.

If you are a QuickTime API-level developer, content author, multimedia producer or Webmaster who is
currently working with QuickTime, you should read this document.

Documentation and Other Resources

This document is intended to provide QuickTime developers with detailed information to support their
programming and development efforts. It is designed to supplement the information provided in Inside
QuickTime: API Reference and the suite of QuickTime documentation available online, in HTML and PDF, at
http://developer.apple.com/documentation/QuickTime/QuickTime.html.

Updates to the QuickTime technical documentation website are provided on a regular basis. Developers can
also subscribe to various mailing lists for the latest news and information. To sign up for any of Apple’s
Developer Programs, go to http://developer.apple.com/membership/index.html.

Installing QuickTime 6.4

QuickTime 6.4 is available as a standalone download for Mac OS X version 10.2.5 and later. It is also included
as a part of Mac OS X version 10.3 The download site is www.apple.com/quicktime/download/.

Macintosh users can also use the Software Update mechanism in Mac OS X to update QuickTime 6.0, 6.0.1,
6.0.2, 6.1, 6.1.1, 6.2, or 6.3 to QuickTime 6.4.

Hardware Requirements

QuickTime 6.4 requires the following minimum hardware configuration:

 ■ Mac OS X version 10.2.5 or later

 ■ PowerPC G3 or better running at 400 MHz or higher

 ■ At least 128 MB of RAM

Documentation and Other Resources 5
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/documentation/QuickTime/QuickTime.html
http://developer.apple.com/membership/index.html

Updating Earlier Versions

QuickTime 6.4 replaces and updates various point releases of QuickTime 6 for Mac OS X.

Important: A Mac OS 9 version is not included in QuickTime 6.4. QuickTime 6.0.3 was the last Mac OS 9
version available to QuickTime users.

The QuickTime 6.4 system software, including the QuickTime Player application, is a free upgrade for QuickTime
6 users. No new Pro key is required; QuickTime 6 Pro keys will unlock the Pro features of QuickTime 6.4.

Overview

The QuickTime API comprises more than 2500 functions that provide services to applications. These services
include audio and video capture and playback, movie editing, composition, and streaming, still image display,
audio-visual interactivity, and so on. The API also supports a wide range of standards-based formats. It is
dedicated to extending the reach of application developers by letting them invoke the full range of QuickTime
capabilities.

The QuickTime API is not static, however. It evolves to adopt new idioms, new data structures, and new ways
of doing things––all of which continually make the API more convenient for developers to use in their
applications.

This document is written for developers who use QuickTime on the Mac OS X platform and who want to
learn about new ways of programming with QuickTime 6.4.

QuickTime 6 In Perspective

QuickTime 6, introduced in 2002, represented a major advance in Apple technology. Because QuickTime 6
supports ISO-compliant MPEG-4 video and audio, both encode and decode, you can create and play back
MPEG-4 video and audio content and use Advanced Audio Coding (AAC).

In subsequent releases of QuickTime 6, additional support was provided for 3GPP authoring, playback, and
delivery. These releases also built on Apple’s support of MPEG-4 as the standard for digital media streaming
on the Internet and extended it with support for standards for mobile Internet streaming.

New Features of QuickTime 6.4

QuickTime 6.4 now adds significant new functionality to QuickTime. The following new features are discussed
in the rest of this document:

 ■ “A New Approach To Data References” (page 8) describes how you can now manipulate
QuickTime media via data references—opening and flattening movies, exporting graphics images, and
so on.

 ■ “Threaded Programming and QuickTime” (page 12) tells how QuickTime 6.4 supports execution
of background tasks on multiple threads in a preemptive multitasking environment. This new technology
makes it possible to offload many tasks from your program's main thread.

6 Overview
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ “New Graphics Functions” (page 16) explains how you can now use QuickTime to read and write
image files while using Core Graphics to draw and manage images.

 ■ “New Graphics Importer Support for ColorSync” (page 19) introduces new graphics importer
functions that provide support for ColorSync on Mac OS X.

 ■ “New AV Startup Synchronization Functions” (page 19) describes new functions that improve
audio-visual startup synchronization.

 ■ “Processing Events” (page 20) gives some guidelines for handling QuickTime events on the current
Mac OS X platform.

 ■ “New Component Properties Functions” (page 21) provides details of QuickTime’s new Component
Properties API, which let you configure QuickTime processes such as export and recompression without
using the QuickTime user interface.

 ■ “New Movie Property Functions” (page 23) describes five movie property functions that are similar in
purpose to the component functions described in the previous section.

 ■ “New IIDC Digitizer Functions” (page 23) introduces new APIs to communicate with video digitizers that
have a subtype of vdSubtypeIIDC. These digitizers support new IEEE-1394-based digital cameras and
webcams that have Instrumentation and Industrial Control (IIDC) features.

 ■ “New Sound Function” (page 27) describes a new sound function that identifies the audio device
used by a video output component.

 ■ “New Offset TimeBase Functions” (page 27) lists two offset timebase functions that help custom
media handlers implement media latency.

 ■ “Changes to Text Drawing” (page 27) explains how QuickTime now uses the ATSUI text drawing
engine instead of TextEdit.

 ■ “Encoding Text Changes” (page 28) describes changes to QuickTime’s internal behavior for encoding
text.

 ■ “New Release of QuickTime for Java” (page 28) discusses QuickTime for Java 1.4.1, which
provides new Java functionality for both Mac OS X and Windows.

“QuickTime 6.4 API Reference” (page 33) provides interface details for all the functions, data structures, and
callbacks that are new in QuickTime 6.4.

Summary of QuickTime 6 Versions

The following table summarizes the different point releases of QuickTime 6.

FeaturesMac OS
9

WindowsMac OS XQuickTime
version

MPEG-4 and lots more.xxx6

Bug fix for QuickTime 6. Last version for all three
platforms.

xxx6.01

Bug fixes to address security issues. Mac OS 9 only.x6.03

Improved MPEG-4 video, full-screen modes, wired
actions.

xx6.1

Overview 7
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

FeaturesMac OS
9

WindowsMac OS XQuickTime
version

Support for iTunes 4, enhanced AAC codec, limited
DRM.

x6.2

Improved AAC codec, 3GPP support, which includes
AMR codec.

xx6.3

New data reference functions, true multithreading,
new graphics functions, component and movie
property access, other API additions.

x6.4 for Mac OS X

Using Gestalt to Get the QuickTime Version

As always, the standard way for Apple developers to determine which version of QuickTime is installed is by
calling the Macintosh Toolbox Gestalt function.

The following code snippet demonstrates how you can check the version of QuickTime that is installed––in
this case, QuickTime 6.4. The number 0x06408000 tests for the shipping version of QuickTime 6.4 but fails
on prerelease versions.

 /* check the version of QuickTime installed */
 long version;
 OSErr result;
 result = Gestalt(gestaltQuickTime, &version);
 if ((result == noErr) && (version >= 0x06408000))
 {
 /* we have version 6.4! */
 }

A New Approach To Data References

The abstraction of a data reference is central to manipulating media in QuickTime. In the past, QuickTime
relied on a specialized set of functions for dealing with files and another specialized set of functions that
were less rich for dealing with data references. In QuickTime 6.4, this has changed.

With QuickTime 6.4, you can do anything to QuickTime media via a data reference. For example, you can use
data references to open movies, flatten movie files, export graphics images, and so on. As file systems change,
and as developers invent new ways to refer to media, the QuickTime API offers an abstraction that will grow
to meet new needs.

The new data reference functions let you create data references from different forms of file specifications,
such as full paths, URLs, and even FSSpec structures. This process is illustrated in “Data Reference Example
Code” (page 10).

QuickTime 6.4 also provides a set of functions that allow you to import, export, create, and flatten media files
that are specified by data reference. The following code samples illustrate the use of data references for these
operations:

8 Using Gestalt to Get the QuickTime Version
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ Opening a new movie from media specified by data ref, using the existing QuickTime function
NewMovieFromDataRef (page 13) (page 10).

 ■ Instantiating a graphics importer for an image specified by a data reference, using
GetGraphicsImporterForDataRefWithFlags (page 21) (page 16).

 ■ Exporting a movie to a location specified by a data reference, using ConvertMovieToDataRef (page
13) (page 10).

 ■ Flattening media data to a location specified by a data reference, using FlattenMovieDataToDataRef
(page 13) (page 10).

 ■ Exporting a graphic image to a location specified by a data reference, using
GraphicsExportSetOutputDataReference (page 21) (page 16).

You can create a data reference for practically any data format and location, using the functions listed in the
next section.

New Data Reference Functions

A number of data reference utility functions are new in QuickTime 6.4.

Seven new functions create new data references from various file specifications, pathnames, and URLs:

 ■ QTNewDataReferenceFromFSRef (page 72) creates an alias data reference from a file specification.

 ■ QTNewDataReferenceFromFSRefCFString (page 72) creates an alias data reference from a file
reference pointing to a directory and a file name.

 ■ QTNewDataReferenceFromFSSpec (page 73) creates an alias data reference from a file specification
of type FSSpec.

 ■ QTNewDataReferenceWithDirectoryCFString (page 76) creates an alias data reference from another
alias data reference pointing to the parent directory and a CFString that contains the file name.

 ■ QTNewDataReferenceFromFullPathCFString (page 74) creates an alias data reference from a
CFString that represents the full pathname of a file.

 ■ QTNewDataReferenceFromCFURL (page 71) creates a URL data reference from a CFURL.

 ■ QTNewDataReferenceFromURLCFString (page 75) creates a URL data reference from a CFString
that represents a URL string.

Three functions return information about data references:

 ■ QTGetDataReferenceDirectoryDataReference (page 67) returns a new data reference for a parent
directory.

 ■ QTGetDataReferenceTargetNameCFString (page 69) returns the name of the target of a data
reference as a CFString.

 ■ QTGetDataReferenceFullPathCFString (page 68) returns the full pathname of the target of the
data reference as a CFString.

Three functions return information about the storage location associated with a data handler:

A New Approach To Data References 9
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ QTGetDataHandlerDirectoryDataReference (page 65) returns a new data reference to the parent
directory of the storage location associated with a data handler instance.

 ■ QTGetDataHandlerTargetNameCFString (page 66) returns the name of the storage location associated
with a data handler.

 ■ QTGetDataHandlerFullPathCFString (page 66) returns the full pathname of the storage location
associated with a data handler.

Six functions support data references for imported graphic images:

 ■ GraphicsImportDoExportImageFileToDataRefDialog (page 47) presents a dialog box that lets
the user save an imported image in a foreign file format.

 ■ GraphicsImportExportImageFileToDataRef (page 48) saves an imported image in a foreign file
format.

 ■ GraphicsImportSaveAsPictureToDataRef (page 51) creates a storage location that contains a
QuickDraw picture for an imported image.

 ■ GraphicsImportSaveAsQuickTimeImageFileToDataRef (page 51) creates a storage location that
contains a QuickTime image of an imported image.

 ■ MovieImportDoUserDialogDataRef (page 53) requests that a movie import component display its
user dialog box.

 ■ MovieImportSetMediaDataRef (page 54) specifies a storage location that is to receive imported
movie data.

Two functions perform data reference conversions on movies:

 ■ ConvertMovieToDataRef (page 37) converts a specified movie (or a single track within a movie) into
a specified file format and stores it in a specified storage location.

 ■ ConvertDataRefToMovieDataRef (page 35) converts a piece of data in a storage location to a movie
file format and stores it in another storage location, supporting a user settings dialog box for import
operations.

Data Reference Example Code

The following code snippets show how you can read and write movies using various data references derived
from file paths and URLs.

Movie movieFromPath(CFStringRef path, BOOL allowQTUserInteraction)
{
 Movie qtMovie = NULL;
 Handle dataRef = NULL;
 OSType dataRefType;
 OSErr err;

 err = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);

 if (NULL != dataRef) {
 err = NewMovieFromDataRef(&qtMovie,
 (allowQTUserInteraction ? 0 :
 newMovieDontAskUnresolvedDataRefs),

10 A New Approach To Data References
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 NULL, dataRef, dataRefType);
 DisposeHandle(dataRef);
 }
 return qtMovie;
}

// From Cocoa URLs

Movie movieFromURL(NSURL *url, BOOL allowQTUserInteraction)
{
 Movie qtMovie = NULL;
 Handle dataRef = NULL;
 OSType dataRefType;
 OSErr err;

 err = QTNewDataReferenceFromCFURL((CFURLRef)url, 0, &dataRef,
 &dataRefType);
 if (NULL != dataRef) {
 err = NewMovieFromDataRef(&qtMovie,
 (allowQTUserInteraction ? 0 :
 newMovieDontAskUnresolvedDataRefs),
 NULL, dataRef, dataRefType);
 DisposeHandle(dataRef);
 }
 return qtMovie;
}
// Writing to movie files
// Save with dependencies to a file

void writeMovieToFile(Movie qtMovie, CFStringRef path)
{
 Handle dataRef = NULL;
 OSType dataRefType;
 DataHandler dataHandler;

 err = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 err = CreateMovieStorage(dataRef, dataRefType, kHFCarbonCreatorCode,
 kScriptTag,
 createMovieFileDeleteCurFile, &dataHandler, NULL);
 AddMovieToStorage(qtMovie, dataHandler);
 CloseComponent(dataHandler);
 DisposeHandle(dataRef);
}

// Cocoa variant of the above using NSData

- (void) writeMovie:(Movie)qtMovie toFile:(NSString *)path
{
 Handle publicMovieHndl;
 NSData *movieData;

 publicMovieHndl = NewHandle(0);
 PutMovieIntoHandle(qtMovie, publicMovieHndl);
 HLock(publicMovieHndl);
 movieData = [NSData dataWithBytes:*publicMovieHndl
 length:GetHandleSize(publicMovieHndl)];
 DisposeHandle(publicMovieHndl);

A New Approach To Data References 11
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 [movieData writeToFile:path atomically:YES];

 // set file attributes via NSFileManager
}

void writeFlattenedMovieToFile(Movie qtMovie, CFStringRef path)
{
 Handle dataRef = NULL;
 OSType dataRefType;

 err = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 err = FlattenMovieDataToDataRef(qtMovie, flattenAddMovieToDataFork,
 dataRef, dataRefType, kHFSCreatorCode,
 smSystemScript, createMovieFileDeleteCurFile);
 DisposeHandle(dataRef);
}

The following code illustrates how you can export a movie to a WAV file.

- (void) writeSoundMovieAsWAVEFile (Movie theMovie, NSString *path)
 {
 Handle dataRef = NULL;
 OSType dataRefType;
 DataHandler dataHandler;

 err = QTNewDataReferenceFromFullPathCFString((CFStringRef)path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);

 // use the default progress procedure, if any
 SetMovieProgressProc(theMovie, (MovieProgressUPP)-1L, 0);
 // export the movie into a file
 ConvertMovieToDataRef(theMovie, // the movie to convert
 NIL, // all tracks in the movie
 dataRef, // the output data reference
 dataRefType, // the data ref type
 kQTFileTypeWave, // the output file type
 kHFSCreatorCode, // the output file creator
 0L, // no flags
 NIL); // no specific component

 DisposeHandle(dataRef);
}

Threaded Programming and QuickTime

QuickTime 6.4 introduces several new features that support execution of background tasks on multiple
threads in a preemptive multitasking environment. This makes it possible to offload many tasks from your
program's main thread to forestall blocking the user interface. Typical thread-safe tasks include importing
still images or image sequences, exporting movies, and rendering to the offscreen graphics world a movie
that is not currently being played.

12 Threaded Programming and QuickTime
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

The new threading features allow a degree of concurrent tasking in QuickTime that was not previously
possible. In the past, QuickTime could be used on separate threads only by serializing access to the QuickTime
API, either by the application itself or through the use of a cooperative threading manager such as the Carbon
Thread Manager. While serializing allowed QuickTime to be used safely on multiple threads, it did not support
concurrent QuickTime operations; if one thread was executing a QuickTime function, other threads needing
to call QuickTime were blocked.

Getting Ready to Use QuickTime from a Thread

To use QuickTime in the background on a preemptive thread, make a call to EnterMoviesOnThread (page
39) from the thread before calling any other QuickTime functions from that thread. It is important that you
call EnterMovies on your main thread before spawning any threads that call EnterMoviesOnThread.

EnterMoviesOnThread initializes QuickTime with an environment that is private to the thread. Calls to
GetMoviesError or MoviesTask(null), for example, will not obtain errors or task movies in other threads.

User Interface Limited to the Main Thread

Currently, only the main thread can access the user interface. You can play movies or open user dialogs only
from the main thread.

To perform an export operation that requires a user dialog, for example, you need to first execute the dialog
on the main thread. You can then perform the actual export operation on a separate thread without tying
up the user interface. You can pass the information returned by the dialog to another thread by passing an
atom container, using functions that get settings as atom containers and set settings from atom containers.

Error Handling

Calling EnterMoviesOnThread indicates that QuickTime should perform additional thread-safety checks
on components opened and operations performed on the thread. If you call a function that requires use of
a non-thread-safe component, or requires access to the user interface, or performs another thread-unsafe
operation, QuickTime returns a distinguished error (componentNotThreadSafeErr = -2098).

Not all QuickTime components are thread-safe, so your code should be designed to detect threading error
messages and transfer necessary tasks to the main thread. For example, you might spawn a thread to import
a list of image files. The thread would import all the image files that have thread-safe importer components
and return a list of any unhandled cases to the main thread, which could then import any remaining image
files in the foreground.

From the main thread, your application can call CSSetComponentsThreadMode, passing it
kCSAcceptThreadSafeComponentsOnlyMode, to see if opening a movie or other QuickTime object will
succeed when attempted from a preemptive thread. You can do this only with Mac OS X version 10.3 or later.

Using QuickTime From a Thread

It is important that you use multiple threads to perform tasks on different movies. Do not use multiple threads
to act on the same movie concurrently.

Threaded Programming and QuickTime 13
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

You can work on a given movie in separate threads sequentially, for example to perform an export in the
background after playing a movie in the foreground, by passing a data reference from one thread to another
when you are through operating on the movie in the first thread.

QuickTime 6.4 includes the following functions that you can use to associate movies and time bases with
threads:

 ■ AttachMovieToCurrentThread (page 33) attaches a movie to the current thread.

 ■ AttachTimeBaseToCurrentThread (page 33) attaches a time base to the current thread.

 ■ DetachMovieFromCurrentThread (page 39) detaches a movie from the current thread.

 ■ DetachTimeBaseFromCurrentThread (page 39) detaches a time base from the current thread.

 ■ GetMovieThreadAttachState (page 42) determines whether a given movie is attached to a thread.

 ■ GetTimeBaseThreadAttachState (page 44) determines whether a given time base is attached to a
thread.

You can open movies in separate threads from the same source file, but each thread creates its own movie
from the file. You can, however, play one movie while exporting the other, for example, which allows your
application to behave as if it could concurrently process the same movie on different threads. This currently
works with movies whose data is accessed from files, but not with movies accessed from a URL. The URL data
handler is not currently thread-safe, so it is not possible to work with separate movies from the same URL in
different threads.

Similarly, a thread-safe component type can be used by multiple threads at the same time, but each thread
must instantiate its own instance of the component. Do not call a single component instance from multiple
threads.

Many QuickTime functions that expect a component instance as a parameter also accept a component in
that parameter. This ambiguity should generally be avoided when using different instances of the same
component from multiple threads.

Cleaning Up

When your thread is done working with QuickTime, call ExitMoviesOnThread (page 40) prior to closing
the thread. Failure to do so may cause a memory leak, because resources allocated by EnterMoviesOnThread
for the private QuickTime environment may fail to be released.

You may call EnterMoviesOnThread multiple times, which allows libraries to use this function without
needing to know if their host thread has already done so. Subsequent calls do little more than increment a
counter. To prevent memory leaks, one call to ExitMoviesOnThread should be made for each call to
EnterMoviesOnThread.

Never call ExitMoviesOnThread without a prior call to EnterMoviesOnThread. Calls may be nested, but
each instance of ExitMoviesOnThread must be balanced by a prior call to EnterMoviesOnThread.

14 Threaded Programming and QuickTime
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Backward Compatibility

Because QuickTime did not previously support concurrent use from multiple threads, programs that already
use QuickTime in preemptive threads may, accidentally or intentionally, make use of formerly global QuickTime
states and data structures. For example, in older versions of QuickTime a call to MoviesTask(null) gives
processor time to all movies in any thread. Similarly, an error handling routine in one thread might successfully
detect errors in another.

While this kind of cross-thread interaction is more likely to do harm than good, the possibility exists that
existing applications may rely on it. Consequently, if a thread makes calls to QuickTime without calling
EnterMoviesOnThread, the thread shares QuickTime’s state and data structures on the main thread and
any other threads that have not called EnterMoviesOnThread.

It is strongly recomended that you transition existing code away from any dependance on QuickTime states
and data structures across threads as quickly as possible. When writing new code, threads that call QuickTime
should use EnterMoviesOnThread to create private, thread-specific versions of the QuickTime environment.

Thread Safety Issues

For developers who are not familiar with QuickTime’s existing API, it’s possible to assume––largely because
Mac OS X is multithreaded––that QuickTime is thread-safe. This is not the case. Your application can’t call
QuickTime from arbitrary threads.

However, in some cases and with great care, in QuickTime 6.4 you are able to perform a few operations on
secondary threads. The key point is that you can’t do it willy-nilly. If you need to use QuickTime on secondary
threads, in limited cases, it is now possible.

The rules for new threads that call QuickTime are as follows:

 ■ Call CSSetComponentsThreadMode(kCSAcceptThreadSafeComponentsOnlyMode) early on. This
will instruct the Component Manager not to open non-thread-safe components from this thread.

 ■ If you get componentNotThreadSafeErr from a QuickTime API call, the main thread must do the work
instead.

Component developers should make their components thread-safe and set the new component flag
cmThreadSafe.

The following parts of Mac OS X are newly thread-safe:

 ■ QuickDraw

 ■ the Component Manager

 ■ the Alias Manager

 ■ the Memory Manager (MemError is now per-thread.)

The following are not thread-safe:

 ■ the Resource Manager

 ■ Component RefCons for shared globals

Threaded Programming and QuickTime 15
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

In summary, you should unblock your user interface by moving slow QuickTime processing to other threads,
cope with dynamic discovery of non-thread-safe media, and make your components thread-safe.

New Graphics Functions

QuickTime’s graphics import components now have the ability to provide Mac OS X Core Graphics CGImage
images. As a result, you can now specify a CGImage as the source for an image export operation. With
QuickTime 6.4, you can combine the use of QuickTime to read and write image files with the use of Core
Graphics to draw or manage images.

QuickTime 6.4 includes five new functions for working with Core Graphics:

 ■ GraphicsImportCreateCGImage (page 46) imports an image as a Core Graphics CGImage.

 ■ GraphicsExportSetInputCGImage (page 46) specifies a Core Graphics CGImage as the source for a
graphics export operation.

 ■ GraphicsExportGetInputCGImage (page 45) determines which Core Graphics CGImage is the source
for a graphics export operation.

 ■ GraphicsExportSetInputCGBitmapContext (page 45) sets the CGBitmapContext that the graphics
exporter will use as its input image.

 ■ GraphicsExportGetInputCGBitmapContext (page 44) retrieves the CGBitmapContext that the
graphics exporter is using as its input image.

The following sample code illustrates how to use existing graphics importer functions with the new Core
Graphics functions and data reference utilities:

// Open a still image from a file
OpenGraphicsImportComponentimageFromPath(CFStringRef path)
{
 ComponentResult result;
 GraphicsImportComponent grip = NULL;

 result = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 if (NULL != dataRef) {
 GetGraphicsImporterForDataRefWithFlags(dataRef, dataRefType,
 &grip, 0);
 DisposeHandle(dataRef);
 }
 return grip;
}

// Export a still image to a file

OSStatus exportImageToPNGFile(GraphicsImportComponent imageGrip,
 CFStringRef path)
{
 Handle dataRef = NULL;
 OSType dataRefType;
 GraphicsExportComponent graphicsExporter;
 unsigned long sizeWritten;
 ComponentResult result;

16 New Graphics Functions
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 result = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 result = OpenADefaultComponent(GraphicsExporterComponentType,
 kQTFileTypePNG, &graphicsExporter);
 result = GraphicsExportSetInputGraphicsImporter(graphicsExporter,
 imageGrip);
 result = GraphicsExportSetOutputDataReference(graphicsExporter,
 dataRef, dataRefType);
 result = GraphicsExportDoExport(graphicsExporter, &sizeWritten);
 CloseComponent(graphicsExporter);
 DisposeHandle(dataRef);
 return result;
}
// Drawing movies and images in windows and offscreen buffers

void playMovieToWindow(Movie qtMovie, Rect *movieBounds, WindowRef window)
{
 Rect qdRect;
 CGrafPtr windowPort;
 OSErr err;

 SetMovieBox(qtMovie, movieBounds);
 windowPort = GetWindowPort(window);
 SetMovieGWorld(qtMovie, windowPort, NULL);

 // set the movie's rate to start it playing
}

void setMovieToRenderToOffscreenBuffer(Movie qtMovie, unsigned long
 pixelFormat,CGSize outputSize, void *buffer, size_t bytesPerRow)
{
 Rect qdRect;
 GWorldPtr gWorld = NULL;
 OSErr err;

 SetRect(&qdRect, 0, 0, outputSize.width, outputSize.height);
 err = NewGWorldFromPtr(&gWorld, pixelFormat, &qdRect, NULL, NULL, 0,
 buffer, bytesPerRow);
 SetMovieGWorld(qtMovie, gWorld, NULL);

 // set the movie's rate to start it playing
}

void drawImageToOffscreenBuffer(GraphicsImportComponent grip, unsigned long
 pixelFormat, CGSize outputSize, void *buffer, size_t bytesPerRow)
{
 Rect qdRect;
 GWorldPtr gWorld = NULL;
 OSErr err;

 SetRect(&qdRect, 0, 0, outputSize.width, outputSize.height);
 err = NewGWorldFromPtr(&gWorld, pixelFormat, &qdRect, NULL, NULL, 0,
 buffer, bytesPerRow);
 GraphicsImportSetGWorld(grip, gWorld, NULL);
 GraphicsImportDraw(grip);
}

New Graphics Functions 17
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

OSStatus drawMovieImageToCGContext(Movie qtMovie, CGContextRef ctx,
 CGRect drawRect)
{
 TimeValue movieTime;
 PicHandle picHndl;
 CGDataProviderRef dataProvider;
 QDPictRef pictDataRef;
 OSStatus result;

 movieTime = GetMovieTime(qtMovie, NULL);
 picHndl = GetMoviePict(qtMovie, movieTime);
 HLock((Handle)picHndl);
 dataProvider = CGDataProviderCreateWithData (NULL, *picHndl,
 GetHandleSize((Handle)picHndl), NULL);
 pictDataRef = QDPictCreateWithProvider(dataProvider);
 result = QDPictDrawToCGContext(ctx, drawRect, pictDataRef);
 QDPictRelease(pictDataRef);
 CGDataProviderRelease(dataProvider);
 KillPicture(picHndl);
 return result;
}

// Combining Graphics importers/exporters with Core Graphics

CGImageRef getCGImageFromPath(CFStringRef path)
{
 CGImageRef imageRef = NULL;
 Handle dataRef = NULL;
 OSType dataRefType;
 GraphicsImportComponent gi;
 ComponentResult result;

 result = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 if (NULL != dataRef) {
 GetGraphicsImporterForDataRefWithFlags(dataRef, dataRefType, &gi, 0);
 result = GraphicsImportCreateCGImage(gi, &imageRef, 0);
 DisposeHandle(dataRef);
 CloseComponent(gi);
 }
 return CGImageRef;
}

OSStatus exportCGImageToPNGFile(CGImageRef imageRef, CFStringRef path)
{
 Handle dataRef = NULL;
 OSType dataRefType;
 GraphicsExportComponent graphicsExporter;
 unsigned long sizeWritten;
 ComponentResult result;

 result = QTNewDataReferenceFromFullPathCFString(path,
 kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);
 result = OpenADefaultComponent(GraphicsExporterComponentType,
 kQTFileTypePNG, &graphicsExporter);
 result = GraphicsExportSetInputCGImage(graphicsExporter, imageRef);
 result = GraphicsExportSetOutputDataReference(graphicsExporter,
 dataRef, dataRefType);

18 New Graphics Functions
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 result = GraphicsExportDoExport(graphicsExporter, &sizeWritten);
 CloseComponent(graphicsExporter);
 DisposeHandle(dataRef);
 return result;
}

New Graphics Importer Support for ColorSync

QuickTime 6.4 introduces new graphics importer functions that provide support for ColorSync. These six
functions are implemented only in Mac OS X:

 ■ GraphicsImportWillUseColorMatching (page 53) asks whether the QuickTime function
GraphicsImportDraw will use color matching if called with the current importer settings.

 ■ GraphicsImportGetGenericColorSyncProfile (page 49) retrieves the generic colorsync profile
for a graphics importer component.

 ■ GraphicsImportSetDestinationColorSyncProfileRef (page 52) sets the ColorSync profile for
a graphics importer component.

 ■ GraphicsImportGetDestinationColorSyncProfileRef (page 49) retrieves a ColorSync profile
from a graphics importer component.

 ■ GraphicsImportSetOverrideSourceColorSyncProfileRef (page 52) sets the override ColorSync
profile for a graphics importer component.

 ■ GraphicsImportGetOverrideSourceColorSyncProfileRef (page 50) retrieves the override
ColorSync profile for a graphics importer component.

The functions make ColorSync matching the default behavior for naive applications that use graphics importers,
that is, for image files with embedded ColorSync profiles and for image files with CMYK image data, with or
without embedded ColorSync profiles.

An opt-out flag is provided for applications that call ColorSync directly.
GraphicsImportGetGenericColorSyncProfile (page 49) substitutes a generic profile in place of an
embedded profile when the opt-out flag is not set.

Note that this is a format-specific importer change; third-party importers must revise their applications in
order to get this behavior. Applications can override the embedded image profile and can set the destination
profile to be matched. If no destination profile is set, a generic profile is used.

The Photoshop graphics importer and graphics exporter now support embedded ColorSync profiles. ColorSync
matching also works for CMYK and 16-bit-per-channel QTIF files.

New AV Startup Synchronization Functions

QuickTime 6.4 introduces five new functions and one new flag that deal with audio-visual startup
synchronization issues.

New Graphics Importer Support for ColorSync 19
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

The advantage of these new functions is that now QuickTime can be sample-accurate when starting a movie
that contains both a video and an audio track. This means that hardware implementations can specify an
edge to start a time base, if they provide their own clock, which could represent their vSync. This approach
can be used for recording and eliminating the long first frame duration that occurs in the current QuickTime
implementation.

Five functions new in QuickTime 6.4 are the following:

 ■ ClockGetTimeForRateChange (page 34) obtains the current time according to a specific clock,
preferred time, and safe increment duration.

 ■ ClockGetRateChangeConstraints (page 34) lets you obtains a minimum delay and maximum delay
that a clock could introduce during rate change.

 ■ GetTimeBaseRateChangeStatus (page 43) lets a time base client find out about the last rate change
status of its time base.

 ■ TimeBaseStatus flags. New flags are returned by GetTimeBaseRateChangeStatus (page 43) when
the clock is waiting for a future time to start moving while its rate is nonzero.

 ■ GetMovieRateChangeConstraints (page 41) returns the minimum and maximum delay you can get
when the movie rate changes.

 ■ ConvertTimeToClockTime (page 38) converts a time record expressed in a time base to the clock
time. This function was added in an earlier release of QuickTime and is now public, since
GetTimeBaseRateChangeStatus, which is new, returns parameters expressed in clock time.

How Startup Synchronization Works

A time base may run at a nonzero rate, but the time will not move until a specific clock value is reached in
order to make sure that each track can see the start time of the movie in the future.

When the rate changes to nonzero, the time base synchronizes its time with the current clock time by
calculating an offset. It then tells the clock what it has done in order to reschedule any pending callbacks.
An extra delay is added in this offset so that the time base time can be frozen to the current time until the
delay is reached. The clock will ask the time base about this offset to properly adjust any atTime callback
until the offset is reached.

The synchronization point between the time base and a clock is accomplished using the new functions listed
in the previous section. Hardware developers should be able to take advantage of them in their applications.

Processing Events

The current and future evolution of the Mac OS is shifting some of the ways that events are handled by
QuickTime. Here are some advisories:

 ■ QuickTime’s movie controller function MCIsPlayerEvent requires user events such as mouse clicks
and keypresses to be passed to movies via the classic Event Manager EventRecord. However, with the
advent of Carbon events, the EventRecord is no longer in common use. Use MCClick and MCKey
instead.

20 Processing Events
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ MCIsPlayerEvent was able to take advantage of classic null events in order to provide movies with
sufficient processing time to render video frames and to perform other tasks. However, null events are
delivered only to applications that implement classic event loops which call WaitNextEvent; modern
applications using Carbon or Cocoa do not implement event loops in the classic fashion. Use MCIdle
instead.

 ■ Instead of implementing the details of passing user events and of idling movies yourself, Apple
recommends the use of higher level modules that take care of the details for you. For Carbon applications,
use the Carbon Movie Control. For Cocoa applications, use NSMovieView. Both of these modules provide
support for displaying and playing back the complete range of QuickTime media and also support
copy-and-paste editing.

New Component Properties Functions

QuickTime-based applications increasingly require that media capture, import, export, and compression
operations be configured from custom user interfaces or configured automatically, without user intervention.

One of the changes in QuickTime 6.4 is the ability to use a new Component Properties API so that you can
configure QuickTime processes such as export and recompression without using the QuickTime user interface.
You can then customize the user interface to fit your application’s needs.

The following eleven new functions in QuickTime 6.4 help you work with component properties:

 ■ QTGetComponentPropertyInfo (page 64) returns information about the properties of a component.

 ■ QTGetComponentProperty (page 63) returns the value of a specific component property.

 ■ QTSetComponentProperty (page 78) sets the value of a specific component property.

 ■ QTAddComponentPropertyListener (page 55) installs a callback to monitor a component property.

 ■ QTRemoveComponentPropertyListener (page 76) removes a component property monitoring
callback.

 ■ QTComponentPropertyListenerCollectionCreate (page 58) creates a collection of component
property monitors.

 ■ QTComponentPropertyListenerCollectionAddListener (page 56) adds a listener callback for a
specified property class and ID to a property listener collection.

 ■ QTComponentPropertyListenerCollectionRemoveListener (page 62) removes a listener callback
with a specified property class and ID from a property listener collection.

 ■ QTComponentPropertyListenerCollectionNotifyListeners (page 60) calls all listener callbacks
in a component property listener collection registered for a specified property class and ID.

 ■ QTComponentPropertyListenerCollectionHasListenersForProperty (page 58) determines if
there are any listeners in a component property listener collection registered for a specified property
class and ID.

 ■ QTComponentPropertyListenerCollectionIsEmpty (page 59) determines if a listener collection
is empty.

To date, the Component Manager has defined all component selectors that are standard across multiple
types of components, whether these selectors are required or optional.

New Component Properties Functions 21
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

The goal is for developers to adopt these new component properties functions. In so doing, common properties
can be defined directly, and it will be possible to configure all exporters by means of the same set of properties.
This means richer scripting and greater opportunities for custom user interfaces.

The Component Manager defines new optional standard selectors for component properties which can be
implemented by all components, regardless of type, that are written to work with the component properties
mechanism.Existing components can adopt these new functions on their own schedule. The Component
Manager allows callers to discover safely whether components implement the new selectors and perform
operations according to existing mechanisms if the new support is unavailable.

UI Examples with QuickTime Dialogs as Sheets

The following code shows how to use an effect and standard compression dialog as a sheet.

- (QTAtomContainer) getEffectSettingsFromSheetOnWindow:(NSWindow *)parentWindow
{
 QTAtomContainer fxList = NULL;
 long minSrcs = 2;
 long maxSrcs = 2;
 QTEffectListOptions lOpts = 0;
 QTEffectListOptions dOpts = pdOptionsDisplayAsSheet;
 QTParameterDialog paramDlg;
 QTEventLoopDescriptionRecord eld;
 QTAtomContainer fxDesc = nil;
 OSErr myErr;

 myErr = QTGetEffectsList (&fxList, minSrcs, maxSrcs, lOpts);
 myErr = QTNewAtomContainer (&fxDesc);
 myErr = QTCreateStandardParameterDialog (fxList, fxDesc,
 dOpts, ¶mDlg);

 eld.recordSize = sizeof(eld);
 eld.windowRefKind = kEffectParentWindowCarbon;
 eld.parentWindow = [parentWindow windowRef];
 eld.eventTarget = NULL;

 QTStandardParameterDialogDoAction(paramDlg, pdActionRunInEventLoop, &eld);

 QTDismissStandardParameterDialog(gParamDlg);
 return fxList;
}

- (NSData *) getCustomAudioCompressionSettingsFromSheetOnWindow:(NSWindow
*)parentWindow
{
 ComponentInstance ci;
 Handle settingsHndl = NULL;
 ComponentResult result = noErr;
 SCWindowSettings windowSettings;
 NSData *settingsAsData = nil;

 ci = OpenDefaultComponent(StandardCompressionType,
 StandardCompressionSubTypeSound);

 // Tell the standard compression component to show the settings panel
 // as a sheet

22 New Component Properties Functions
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 windowSettings.size = sizeof(SCWindowSettings);
 windowSettings.windowRefKind = scWindowRefKindCarbon;
 windowSettings.parentWindow = [parentWindow windowRef];
 (void)SCSetInfo(ci, scWindowOptionsType, &windowSettings);

 // Get compression settings from the user.
 result = SCRequestImageSettings(ci);

 // Get the settings back from the standard compression component
 result = SCGetInfo(ci, scSettingsStateType, &settingsHndl);
 if (NULL != settingsHndl) {
 HLock(settingsHndl);
 settingsAsData = [NSData dataWithBytes:*settingsHndl
 length:GetHandleSize(settingsHndl)];
 DisposeHandle(settingsHndl);
 }

 CloseComponent(ci);
 return settingsAsData;
}

New Movie Property Functions

QuickTime 6.4 includes five movie property functions that are similar in purpose to the component functions
described in “New Component Properties Functions” (page 21):

 ■ QTGetMoviePropertyInfo (page 70) returns information about the properties of a movie.

 ■ QTGetMovieProperty (page 69) returns the value of a specific movie property.

 ■ QTSetMovieProperty (page 79) sets the value of a specific movie property.

 ■ QTAddMoviePropertyListener (page 56) installs a callback to monitor a movie property.

 ■ QTRemoveMoviePropertyListener (page 78) removes a movie property monitoring callback.

New IIDC Digitizer Functions

Many IEEE-1394-based digital cameras and webcams now support Instrumentation and Industrial Control
(IIDC) features that can be accessed by software.

QuickTime 6.4 includes six new functions to communicate with video digitizers that have a subtype of
vdSubtypeIIDC ('iidc'):

 ■ VDIIDCGetFeatures (page 83) places atoms in a QuickTime atom container that specify the current
capabilities of a camera and the state of its IIDC features.

 ■ VDIIDCGetFeaturesForSpecifier (page 83) places atoms in a QuickTime atom container that specify
the current state of a single camera IIDC feature or group of features.

 ■ VDIIDCSetFeatures (page 86) changes the state of a camera’s IIDC features.

New Movie Property Functions 23
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ VDIIDCGetDefaultFeatures (page 82) places atoms in a QuickTime atom container that specify the
default capabilities and default state of a camera’s IIDC features.

 ■ VDIIDCGetCSRData (page 81) reads a camera’s CSR registers directly.

 ■ VDIIDCSetCSRData (page 85) writes to a camera’s CSR registers directly.

Several data structures that support these functions are new in QuickTime 6.4:

 ■ VDIIDCFeatureAtomTypeAndID (page 91) provides content for the
vdIIDCAtomTypeFeatureAtomTypeAndID atom type, discussed in “Type And ID Atoms” (page
25). It contains general information about an IIDC feature and specifies the atom that holds that feature’s
current settings.

 ■ The VDIIDCFeatureSettings (page 93) structure provides content for the
vdIIDCAtomTypeFeatureSettings atom type, discussed in “IIDC Settings Atoms” (page 25).
It contains the VDIIDCFeatureCapabilities and VDIIDCFeatureState structures, which are used
to describe various IIDC camera features.

 ■ VDIIDCFeatureCapabilities (page 92) provides IIDC feature capabilities information for the
VDIIDCFeatureSettings structure.

 ■ VDIIDCFeatureState (page 94) provides IIDC feature state information for the
VDIIDCFeatureSettings structure.

 ■ VDIIDCTriggerSettings (page 98) provides content for the vdIIDCAtomTypeTriggerSettings
atom type. It contains the VDIIDCTriggerCapabilities and VDIIDCTriggerState structures, which
contain information about a camera’s trigger capabilities and state.

 ■ VDIIDCTriggerCapabilities (page 96) provides trigger capabilities information for the
VDIIDCTriggerSettings structure.

 ■ VDIIDCTriggerState (page 98) provides trigger state information for the VDIIDCTriggerSettings
structure.

 ■ VDIIDCFocusPointSettings (page 95) provides content for the
vdIIDCAtomTypeFocusPointSettings atom type. It contains focus point data.

 ■ VDIIDCLightingHintSettings (page 95) provides content for the
vdIIDCAtomTypeLightingHintSettings atom type. It contains lighting hint data.

IIDC Atoms

The information about IIDC features that a camera might support is contained in a hierarchy of new big-endian
QuickTime atom types:

 ■ At the top level, the QuickTime atom container passed into VDIIDCSetFeatures or returned by
VDIIDCGetFeatures,VDIIDCGetDefaultFeatures, orVDIIDCGetFeaturesForSpecifier contains
a set of atoms of type vdIIDCAtomTypeFeature, one for each feature of the camera being interrogated.

 ■ Each atom of type vdIIDCAtomTypeFeature contains one atom of type
vdIIDCAtomTypeFeatureAtomTypeAndID. This atom contains a data structure of type
VDIIDCFeatureAtomTypeAndID (page 91), which conveys general information about the feature and
specifies the type and ID of the atom that conveys that feature’s current settings.

24 New IIDC Digitizer Functions
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ■ Each atom of type vdIIDCAtomTypeFeature also contains a Settings atom. This may be an atom of
type vdIIDCAtomTypeFeatureSettings, vdIIDCAtomTypeTriggerSettings,
vdIIDCAtomTypeFocusPointSettings, orvdIIDCAtomTypeLightingHintSettings, each of which
stores a particular class of camera settings.

Details of the new atom types are given in the next sections. To determine the number of features in a
particular atom container, you can use this code:

SInt16 featureCount = QTCountChildrenOfType(container,
 kParentAtomIsContainer, vdIIDCAtomTypeFeature);

IIDC Feature Atoms

The top-level atoms in the IIDC atom hierarchy are Feature atoms, of type vdIIDCAtomTypeFeature, the
value of which is 'feat'. Zero or more of these atoms are present in the atom container that is passed to
theVDIIDCSetFeatures function and returned by theVDIIDCGetFeatures,VDIIDCGetDefaultFeatures,
and VDIIDCGetFeaturesForSpecifier functions.

Each Feature atom is a container for atoms that convey information about one IIDC feature of the camera
being interrogated or set.

Each Feature atom has two child atoms. The first is a Type and ID atom, of type
vdIIDCAtomTypeFeatureAtomTypeAndID, described in the next section. The Type and ID atom identifies
a second child atom of the vdIIDCAtomTypeFeature atom, which contains the feature’s current or default
setting information. These atoms are described in “IIDC Settings Atoms” (page 25)below.

Type And ID Atoms

Each feature atom contains one Type and ID atom, of type vdIIDCAtomTypeFeatureAtomTypeAndID
('t&id'). Its ID is 1. The contents of this atom is a VDIIDCFeatureAtomTypeAndID (page 91) data structure.
This structure contains the type of the feature, a type that identifies the general category of the feature
(image control, color control, mechanics, or triggering), the feature’s human-readable name, and the type
and ID of the Settings atom that contains the feature’s settings.

IIDC Settings Atoms

Most IIDC features can be expressed by VDIIDCFeatureSettings (page 93) data structures. Three, however,
require VDIIDCTriggerSettings (page 98), VDIIDCFocusPointSettings (page 95), or
VDIIDCLightingHintSettings (page 95) data structures, as shown in the following listing:

vdIIDCFeatureHue = 'hue ', // Uses VDIIDCFeatureSettings
vdIIDCFeatureSaturation = 'satu', // Uses VDIIDCFeatureSettings
vdIIDCFeatureSharpness = 'shrp', // Uses VDIIDCFeatureSettings
vdIIDCFeatureBrightness = 'brit', // Uses VDIIDCFeatureSettings
vdIIDCFeatureGain = 'gain', // Uses VDIIDCFeatureSettings
vdIIDCFeatureIris = 'iris', // Uses VDIIDCFeatureSettings
vdIIDCFeatureShutter = 'shtr', // Uses VDIIDCFeatureSettings
vdIIDCFeatureExposure = 'xpsr', // Uses VDIIDCFeatureSettings
vdIIDCFeatureWhiteBalanceU = 'whbu', // Uses VDIIDCFeatureSettings
vdIIDCFeatureWhiteBalanceV = 'whbv', // Uses VDIIDCFeatureSettings
vdIIDCFeatureGamma = 'gmma', // Uses VDIIDCFeatureSettings
vdIIDCFeatureTemperature = 'temp', // Uses VDIIDCFeatureSettings
vdIIDCFeatureZoom = 'zoom', // Uses VDIIDCFeatureSettings

New IIDC Digitizer Functions 25
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

vdIIDCFeatureFocus = 'fcus', // Uses VDIIDCFeatureSettings
vdIIDCFeaturePan = 'pan ', // Uses VDIIDCFeatureSettings
vdIIDCFeatureTilt = 'tilt', // Uses VDIIDCFeatureSettings
vdIIDCFeatureOpticalFilter = 'opft', // Uses VDIIDCFeatureSettings
vdIIDCFeatureTrigger = 'trgr', // Uses VDIIDCTriggerSettings
vdIIDCFeatureCaptureSize = 'cpsz', // Undefined settings
vdIIDCFeatureCaptureQuality = 'cpql', // Undefined settings
vdIIDCFeatureFocusPoint = 'fpnt', // Uses VDIIDCFocusPointSettings
vdIIDCFeatureEdgeEnhancement = 'eden' // Uses VDIIDCFeatureSettings
vdIIDCFeatureLightingHint = 'lhnt' // Uses VDIIDCLightingHintSetting

The types and IDs of the Settings atoms that contain these data structures are the following:

// Atom type and ID that contains the VDIIDCFeatureSettings struct
vdIIDCAtomTypeFeatureSettings = 'fstg',
vdIIDCAtomIDFeatureSettings = 1

// Atom type and ID that contains the VDIIDCTriggerSettings struct
vdIIDCAtomTypeTriggerSettings = 'tstg',
vdIIDCAtomIDTriggerSettings = 1

// Atom type and ID that contains the VDIIDCFocusPointSettings struct
vdIIDCAtomTypeFocusPointSettings = 'fpst',
vdIIDCAtomIDFocusPointSettings = 1

// Atom type and ID that contains the VDIIDCLightingHintSetting struct
vdIIDCAtomTypeLightingHintSettings = 'lhst',
vdIIDCAtomIDLightingHintSettings = 1

A Typical IIDC Atom Hierarchy

To take a specific example, suppose you called VDIIDCGetFeatures, passing an instance of a video digitizer
of subtype vdSubTypeIIDC. You might receive back a QuickTime atom container in which you find the
following atoms:

vdIIDCAtomTypeFeature = 'feat'

 vdIIDCAtomTypeFeatureAtomTypeAndID = 't&id'
 vdIIDCAtomIDFeatureAtomTypeAndID = 1
 feature = vdIIDCFeatureShutter // shutter feature
 atomType = vdIIDCAtomTypeFeatureSettings
 atomID = 1

 vdIIDCAtomTypeFeatureSettings = 'fstg'
 vdIIDCAtomIDFeatureSettings = 1

vdIIDCAtomTypeFeature = 'feat'

 vdIIDCAtomTypeFeatureAtomTypeAndID = 't&id'
 vdIIDCAtomIDFeatureAtomTypeAndID = 1
 feature = vdIIDCFeatureFocus // focus feature
 atomType = vdIIDCAtomTypeFeatureSettings
 atomID = 1

 vdIIDCAtomTypeFeatureSettings = 'fstg'
 vdIIDCAtomIDFeatureSettings = 1

26 New IIDC Digitizer Functions
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

vdIIDCAtomTypeFeature = 'feat'

 vdIIDCAtomTypeFeatureAtomTypeAndID = 't&id'
 vdIIDCAtomIDFeatureAtomTypeAndID = 1
 feature = vdIIDCFeatureTrigger // trigger feature
 atomType = vdIIDCAtomTypeTriggerSettings
 atomID = 1

 vdIIDCAtomTypeTriggerSettings = 'tstg'
 vdIIDCAtomIDFTriggerSettings = 1

In this example, the VDIIDCGetFeatures function tells you that the camera served by the video digitizer
component passed to it reports on three IIDC functions: shutter, focus, and trigger. Data on the shutter and
focus features can be retrieved from VDIIDCFeatureSettings structures in
vdIIDCAtomTypeFeatureSettings atoms. Data on the trigger feature can be retrieved from a
VDIIDCTriggerSettings structure in a vdIIDCAtomTypeTriggerSettings atom.

New Sound Function

QuickTime 6.4 includes a new sound function to identify the audio device used by a video output component.
It is QTVideoOutputCopyIndAudioOutputDeviceUID (page 80).

New Offset TimeBase Functions

QuickTime 6.4 includes two offset timebase functions, so custom media handlers can implement media
latency.

The new functions are SetTimeBaseOffsetTimeBase (page 81) and
GetTimeBaseMasterOffsetTimeBase (page 42).

Changes to Text Drawing

In QuickTime 6.4, text drawing now uses the ATSUI text drawing engine instead of TextEdit. This facilitates
the vertical drawing of text––for example, tx3g for Japanese rendering of vertical text. Internally, this means
that content authors should be aware of the subtle differences in text rendering, in that all text is now
converted to Unicode to be drawn by ATSUI. ATSUI may position characters slightly differently than TextEdit
because QuickDraw is no longer used. The outline and shadow styles are no longer supported.

ATSUI is used only on the Macintosh platform. The corresponding drawing engine for Windows is Uniscribe.

New Sound Function 27
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Encoding Text Changes

With QuickTime 6.4, the internal behavior for encoding text has changed. All text is now converted to Unicode
(if it is not already in Unicode) instead of 8-bit ASCII. This ensures better rendering of Unicode characters.

New Release of QuickTime for Java

The release of QuickTime 6.4 includes QuickTime for Java 1.4.1, discussed in this section. The Software
Development Kit (SDK) is included in Mac OS X version 10.3. You can download it from
http://developer.apple.com/sdk/index.html.

Goals

The goal of this release is to provide QuickTime for Java developers with a new version of QTJava that works
with both JDK 1.3 and JDK 1.4.1 on Mac OS X. The current version of QTJava supports JDK 1.4.1, but only on
Windows. The intent of this release is to provide a minimal set of functionality across all platforms.

QuickTime for Java 1.4.1 supports this goal by introducing a new quicktime.app.view package, adding
other packages, and deprecating some existing packages. But note that all classes that are directly bound
to the underlying QuickTime API, including all quicktime.std packages, remain the same and are supported.
Developers will still have access to all the QuickTime features through Java using these bindings.

Because many features of QTJava are already available in standard Java, this refinement and simplification
of the QTJava architecture has become necessary.

Hierarchy For All New Packages

This section describes the new packages and interfaces in QuickTime for Java 1.4.1, including the
quicktime.app.view package, its class hierarchy and its interface hierarchy.

Package Hierarchies

quicktime.app.time
quicktime.app.view

Class Hierarchy

class java.lang.Object
 class quicktime.app.view. GraphicsImporterDrawer (implements
 quicktime.app.view.Presentable)
 class quicktime.app.view. MoviePlayer (implements
 quicktime.app.view.DrawingNotifier,
 quicktime.app.view.Presentable,
 quicktime.app.time. Timeable
 class quicktime.app.view. QTFactory
 class quicktime.app.view. QTImageProducer (implements

28 Encoding Text Changes
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 java.awt.image.ImageProducer)
 class quicktime.app.time. Tasking (implements
 quicktime.app.time.Taskable)
 class quicktime.app.time. TaskAllMovies
 class quicktime.app.time. TaskThread (implements
 java.lang.Runnable)

Interface Hierarchy

interface quicktime.app.view. QTComponent
interface quicktime.app.view. QTJComponent
interface quicktime.app.time. Timeable

Migrating Existing Code to the New Classes

To take advantage of the new functionality in QuickTime for Java 1.4.1, developers will need to migrate their
code to use the new classes and interfaces. This means rewriting existing application code.

New sample code, however, is listed below. It illustrates the usage of the new QTJava classes and methods.
These new classes are backward compatible, so that you can use the same new classes on the Java 1.3 and
1.4.1 virtual machines.

SDK Examples That Work with JDK 1.4.1

The following SDK examples, accompanying this release, will work with JDK 1.4.1 and QuickTime for Java
1.4.1. You can build and compile these examples in Xcode on Mac OS X version 10.3:

AddTextMovie
PlaySound
TimeCallbackDemo
Applets
CustomMedia
KeyboardController
PlayTune
TimeCode
AudioBroadcaster
DetachedController
ImageFile
MovieCallbacks¸
SoundMemRecord
ImageProducing
MovieTextFinder
QTVector
SoundMeter
VRInteraction
ImportExport
Music
QTtoJavaImage
SoundRecord
CreatePictFile
DukeMovie
JavaDrawing
PlayMovie

New Release of QuickTime for Java 29
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

The following SDK examples will not work with JDK 1.4.1 and QuickTime for Java 1.4.1. This is because these
examples use presenters, compositing, or sprites, which are not supported.

JavaSprites
GroupDrawing
BouncingSprites
DraggingSprites
CurvesDemo
GraphicsExport
MediaPresenter
SlideShow
DraggingSpritesApplet
DrawableBroadcaster
WiredSprites
ImageCompositing
QTButtonDemo
QTEffects
Transitions
TextDemo

The following SDK examples are not yet implemented in QuickTime for Java 1.4.1:

SGCapture
TimeSlaving
SGCapture2Disk

Packages Not Supported in this Release

The following packages are not supported in QuickTime for Java 1.4.1:

quicktime.app.actions
quicktime.app.anim
quicktime.app.audio
quicktime.app.display
quicktime.app.event
quicktime.app.image
quicktime.app.players
quicktime.app.sg
quicktime.app.spaces
quicktime.app.ui

This means that such capabilities as compositing, animation with sprites and a sprite world, and the usage
of spaces and controllers are not supported using the new classes in QuickTime for Java 1.4.1.

Although sequence grabbing is currently not supported in QuickTime for Java 1.4.1, it may be provided in
future releases.

For developers, note that the QTDrawable interfaces, as well as QTCanvas and JQTCanvas, are not supported
in QuickTime for Java 1.4.1. These interfaces and classes were part of the quicktime.app.display package
and dealt with displaying QuickTime content in a Java AWT or Swing frame.

Note that quicktime.app.time is still supported, including classes such as TaskThread, Tasking,
TaskAllMovies, and the Timeable interface.

30 New Release of QuickTime for Java
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

The quicktime.app.view Package

The new quicktime.app.view package now deals with issues of display and the content that QuickTime
can draw into Java. The underlying implementation is hidden: QTJava now provides a Java AWT or Java Swing
component, based on what you want to use it for. This means that you won't need to access QTCanvas or
subclass the component and add your own functionality as you want and draw into it. The component will
already be constructed for you when you want to display a movie, an image, or a movie with a controller.

This new package includes the following classes:

 ■ QTFactory (which has been moved from the quicktime.app package)

 ■ QTImageProducer (moved from the quicktime.app.image package)

 ■ MoviePlayer (moved from the quicktime.app.players package)

 ■ GraphicsImporterDrawer (moved from the quicktime.app.image package)

The package also includes two new interfaces:

 ■ QTComponent

 ■ QTJComponent

The methods for these new interfaces and classes in the quicktime.app.view package are described in
the Javadoc documentation accompanying QuickTime for Java 1.4.1.

The QTFactory class includes two new factory methods in addition to those already supported. These
methods are

 ■ makeQTComponent

 ■ makeQTJComponent

Developers can use these new methods to create either QTComponent or QTJComponent objects. For
example, you can use the makeQTComponent factory method, passing it a movie object, and it will return
an instance of a QTComponent interface. Then, if you want, you can directly use this component, which is a
regular AWT component, and add it to a Frame and display it.

QTComponent and QTJComponent provide you with interfaces to set and get the existing movie or image,
whichever is displayed in the component. You pass in null as a parameter in order to remove an existing
image or movie controller.

QTComponent has three set and get methods:

 ■ setMovie and getMovie

 ■ setMovieController and getMovieController

 ■ setImage and getImage

The QTComponent and QTJComponent interfaces are implemented by the underlying component classes.

You can create a QTComponent object with an existing movie or image in it, and if you want to change the
movie or image displayed, you can use the set methods to change the movie or image displayed in the
component. If you just want to remove it, while cleaning up, you can pass in a null parameter.

New Release of QuickTime for Java 31
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

To create a movie controller, you need to pass in a movie first. You create a movie object, pass it in to a movie
controller, and create a movie controller object. Then you take this movie controller object and pass it to the
makeQTComponent QuickTime factory method. This will return a Java AWT component with a movie and a
controller attached and visible. This will be a regular QuickTime movie with a controller attached to it.

You use the makeQTJComponent method to create a QTJComponent, which is a Swing component. To
display a movie inside a Swing component, you use the QTFactory.makeQTJComponent method.

Migrating Old QTJava Code to New QTJava Code

The following example illustrate some ways that you can migrate existing QuickTime for Java code—for
example, code that uses QTCanvas—to the new classes and methods supported in release 1.4.1.

// Old Code :

// Movie Example Using QTCanvas :
// create movie from QTFile

QTFile qtfile = new QTFile (moviePath);
Movie mov = Movie.fromFile(qtfile);
MovieController mc = new MovieController(mov);
QTPlayer qtp = new QTPlayer(mc);

// create canvas and set the client
QTCanvas qtc = new QTCanvas ();
frame.add(qtc);
qtc.setClient(qtp, true);

frame.show();

// New Code :

// Movie Example Using QTFactory methods :
// create movie from QTFile
QTFile qtfile = new QTFile (moviePath);
Movie mov = Movie.fromFile(qtfile);
MovieController mc = new MovieController(mov);

// create component using factory methods
QTComponent movComp = QTFactory.makeQTComponent(mc);
frame.add((Component)movComp);
frame.show();

// Swing Example :

// Old Code :
// create movie from QTFile
QTFile qtfile = new QTFile (moviePath);
Movie mov = Movie.fromFile(qtfile);
MoviePlayer movPlayer = new MoviePlayer(mov);

// create JQTCanvas and set client
JQTCanvas jcanvas = new JQTCanvas();
jframe.getConentPane().add(jcanvas);
jcanvas.setClient(movPlayer, true);

32 New Release of QuickTime for Java
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

jframe.show();

// New Code :

// create movie from QTFile
QTFile qtfile = new QTFile (moviePath);
Movie mov = Movie.fromFile(qtfile);
MoviePlayer movPlayer = new MoviePlayer(mov);

// create component using factory methods
QTJComponent movComponent = QTFactory.makeQTJComponent(movPlayer);
jframe.getConentPane().add((JComponent)movComponent);

jframe.show();

QuickTime 6.4 API Reference

Functions

The functions new to the QuickTime 6.4 API are documented alphabetically in this section.

AttachMovieToCurrentThread
Attaches a movie to the current thread.

OSErr AttachMovieToCurrentThread (Movie m);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

AttachTimeBaseToCurrentThread
Attaches a time base to the current thread.

OSErr AttachTimeBaseToCurrentThread (TimeBase tb);

QuickTime 6.4 API Reference 33
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
tb

A time base.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

ClockGetRateChangeConstraints
Obtains minimum and maximum delays that a clock could introduce during a rate change.

ComponentResult ClockGetRateChangeConstraints (
 ComponentInstance aClock,
 TimeRecord *minimum,
 TimeRecord *maximum);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from OpenComponent.

minimum
A pointer to a TimeRecord structure that the clock will update with the minimum delay introduced
during a rate change. You can pass NIL if you do not want to receive this information.

maximum
A pointer to a TimeRecord structure that the clock will update with the maximum delay introduced
during a rate change. You can pass NIL if you do not want to receive this information.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns
badComponentSelector if the component does not support the call.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

ClockGetTimeForRateChange
Obtains the current rate change time according to a specific clock, a preferred time, and a safe increment
duration.

34 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

ComponentResult ClockGetTimesForRateChange (
 ComponentInstance aClock,
 Fixed fromRate,
 Fixed toRate,
 TimeRecord *currentTime,
 TimeRecord *preferredTime,
 TimeRecord *safeIncrementForPreferredTime);

Parameters
aClock

Specifies the clock for the operation. Applications obtain this identifier from OpenComponent.

fromRate
The clock rate you are starting from.

toRate
The clock rate you are going to.

currentTime
A pointer to a TimeRecord structure that the clock will update with the current rate change time.
You can pass NIL if you do not want to receive this information.

preferredTime
A pointer to a TimeRecord structure that the clock will update with the next clock time at which the
clock would prefer dependent time bases to perform the rate change. You can pass NIL if you do not
want to receive this information.

safeIncrementForPreferredTime
A pointer to a TimeRecord structure that the clock will update with the increment between preferred
times for the rate change. If this increment is nonzero, multiples of it may be added to the
preferredTime value to calculate future preferred times. You can pass NIL if you do not want to
receive this information.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The preferredTime parameter indicates a better choice than the current time to have a rate transition
fromRate to toRate. But the clock cannot expect the interesting time to be the one used when the rate
changes. The safeIncrementForPreferredTime indicates that the preferred time can be incremented
by this value (and any multiple of it) and still be safe to use.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

ConvertDataRefToMovieDataRef
Converts a piece of data in a storage location to a movie file format and stores it in another storage location,
supporting a user settings dialog box for import operations.

OSErr ConvertDataRefToMovieDataRef (
 Handle inputDataRef,
 OSType inputDataRefType,
 Handle outputDataRef,

QuickTime 6.4 API Reference 35
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 OSType outputDataRefType,
 OSType creator,
 long flags,
 ComponentInstance userComp,
 MovieProgressUPP proc,
 long refCon);

Parameters
inputDataRef

A data reference that specifies the storage location of the source data.

inputDataRefType
The type of the input data reference.

outputDataRef
A data reference that specified the storage location to receive the converted data.

outputDataRefType
The type of the output data reference.

creator
The creator type of the output storage location.

flags
Flags that control the operation of the dialog box.

createMovieFileDeleteCurFile

Indicates whether to delete an existing file. If you set this flag to 1, the Movie Toolbox deletes
the file (if it exists) before converting the new movie file. If you set this flag to 0 and the file
specified by the inputDataRef and outputDataRef parameters already exists, the Movie
Toolbox uses the existing file. In this case, the toolbox ensures that the file has both data.

movieToFileOnlyExport

If this bit is set and the showUserSettingsDialog bit is set, the Save As dialog box restricts
the user to those file formats that are supported by movie data export components.

movieFileSpecValid

If this bit is set and the showUserSettingsDialog bit is set, the name of the outputDataRef
parameter is used as the default name of the exported file in the Save As dialog box.

showUserSettingsDialog

Controls whether the user settings dialog box for the specified import operation can appear.
Set this flag to 1 to display the user settings dialog box.

userComp
An instance of a component to be used for converting the movie data.

proc
A progress callback function; see MovieProgressProc in the QuickTime API Reference.

refCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

36 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
This function converts a piece of data in a storage location into a movie and stores into another storage
location. Both the input and the output storage locations are specified through data references. If the storage
location is on a local file system, the file will have the specified creator. If specified as such in the flags, the
function displays a dialog box that lets the user to choose the output file and the export type. If an export
component (or its instance) is specified in userComp, it will be used for the conversion operation.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

ConvertMovieToDataRef
Converts a specified movie (or a single track within a movie) into a specified file format and stores it in a
specified storage location.

OSErr ConvertMovieToDataRef (
 Movie theMovie,
 Track onlyTrack,
 Handle dataRef,
 OSType dataRefType,
 OSType fileType,
 OSType creator,
 long flags,
 ComponentInstance userComp);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

onlyTrack
The track in the source movie, if you want to convert only a single track.

dataRef
A data reference that specifies the storage location to receive the converted movie data.

dataRefType
The type of data reference. This function currently supports only alias data references.

fileType
The Mac OS file type of the storage location, which determines the export format.

creator
The creator type of the storage location.

QuickTime 6.4 API Reference 37
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

flags
Flags (see below)that control the operation of the dialog box.

showUserSettingsDialog

If this bit is set, the Save As dialog box will be displayed to allow the user to choose the type
of file to export to, as well as the file name to export to.

movieToFileOnlyExport

If this bit is set and the showUserSettingsDialog bit is set, the Save As dialog box restricts
the user to those file formats that are supported by movie data export components.

movieFileSpecValid

If this bit is set and the showUserSettingsDialog bit is set, the name field of the dataRef
parameter is used as the default name of the exported file in the Save As dialog box.

userComp
An instance of the component to be used for converting the movie data.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
If the storage location is on a local file system, the file will have the specified file type and the creator. If
specified as such in the flags, the function displays a dialog box that lets the user choose the output file and
the export type. If an export component (or its instance) is specified in the userComp parameter, it will be
used to perform the conversion operation.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

ConvertTimeToClockTime
Converts a time record in a time base to clock time.

void ConvertTimeToClockTime (TimeRecord *time);

Parameters
time

The TimeRecord structure to be converted. It must contain a valid time base; otherwise it remains
untouched.

Discussion
The result of this call has no meaning it the time base rate is 0.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

38 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

DetachMovieFromCurrentThread
Detaches a movie from the current thread.

OSErr DetachMovieFromCurrentThread (Movie m);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

DetachTimeBaseFromCurrentThread
Detaches a time base from the current thread.

OSErr DetachTimeBaseFromCurrentThread (TimeBase tb);

Parameters
tb

A time base.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

EnterMoviesOnThread
Indicates that the client will be using QuickTime on the current thread.

OSErr EnterMoviesOnThread (UInt32 inFlags);

QuickTime 6.4 API Reference 39
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
inFlags

Flags indicating how the executing thread will be using QuickTime. Setting the thread mode is a
convenience provided by this function. Pass 0 for the default options.

kQTEnterMoviesFlagDontSetComponentsThreadMode

Public state. Value is 1L << 0. By default, this function sets the current Component Manager
thread mode according to kCSAcceptThreadSafeComponentsOnlyMode. By setting the
kQTEnterMoviesFlagDontSetComponentThreadMode flag, no change to the thread mode
will be made, leaving it as it was before the call to this function.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. This function returns
an appropriate operating system or QuickTime error if the operation couldn't be completed. This might occur
because a second call on the thread was made that used incompatible flags (for example, the first call required
a shared state but a subsequent call required a private state).

Discussion
This function is analogous to EnterMovies. It initializes QuickTime and prepares QuickTime for calls from
its thread. Unlike EnterMovies, this function allows the client to indicate if its access to QuickTime requires
sharing of QuickTime state with the main thread. The default is to maintain a private state.

Your application should call this function on threads you create. Calling it on the main thread should be done
if QuickTime will be used from the main thread.

If a client doesn't call this function on a spawned preemptive thread and then makes a QuickTime call
(including EnterMovies), the global QuickTime state will be shared with the main (or application) thread.
This behavior ensures compatibility with current applications accessing QuickTime from multiple threads.

The first call to this function will change the components thread mode unless the
kQTEnterMoviesFlagDontSetComponentsThreadMode flag is passed. All subsequent calls will leave the
components thread mode unaffected.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

ExitMoviesOnThread
Indicates to QuickTime that the client will no longer be using QuickTime on the current thread.

OSErr ExitMoviesOnThread (void);

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns an appropriate
operating system or QuickTime error if the operation couldn't be completed. This might occur because a
previous call to EnterMoviesOnThread was not made.

40 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
This function should be called before exiting from a spawned thread that uses QuickTime. It undoes the
setup performed by EnterMoviesOnThread. Each call to EnterMoviesOnThread should be matched with
a call to this function. This function should not be called on a thread without a previous call to
EnterMoviesOnThread.

After the last call to this function is made on a thread, subsequent calls to QuickTime functions without calling
EnterMoviesOnThread first will result in threads sharing the main thread’s state just as though the application
didn’t use EnterMoviesOnThread or this function. This behavior ensures compatibility. Thus callers should
bracket all QuickTime calls on secondary threads between an initial call to EnterMoviesOnThread and final
call to this function.

If you do not call this function, certain cleanup may not occur, potentially causing resource leaks.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

GetMovieRateChangeConstraints
Returns the minimum and maximum delay you can get when a movie’s rate is changed.

void GetMovieRateChangeConstraints (
 Movie theMovie,
 TimeRecord *minimumDelay,
 TimeRecord *maximumDelay);

Parameters
theMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

minimumDelay
A pointer to a TimeRecord structure. The function updates this structure to contain the minimum
delay when a rate change happens.

maximumDelay
A pointer to a TimeRecord structure. The function updates this structure to contain the maximum
delay when a rate change happens.

Discussion
If the time base master clock of the movie is changed, this function must be called again to reflect the current
constraints.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

QuickTime 6.4 API Reference 41
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

GetMovieThreadAttachState
Determines whether a given movie is attached to a thread.

OSErr GetMovieThreadAttachState (
 Movie m,
 Boolean *outAttachedToCurrentThread,
 Boolean *outAttachedToAnyThread);

Parameters
m

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

outAttachedToCurrentThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to the current thread, FALSE
otherwise.

outAttachedToAnyThread
A pointer to a Boolean that on exit is TRUE if the movie is attached to any thread, FALSE otherwise.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

GetTimeBaseMasterOffsetTimeBase
Allows an offset time base to retrieve the master time base it is attached to.

TimeBase GetTimeBaseMasterOffsetTimeBase (TimeBase
tb);

Parameters
tb

An offset time base.

Return Value
The master time base for the offset time base passed in tb. Returns NIL if tb does not contain an offset time
base.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

42 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

GetTimeBaseRateChangeStatus
Lets a time base client determine the time base’s last rate change status.

void GetTimeBaseRateChangeStatus (
 TimeBase tb,
 TimeScale scale,
 Fixed *rateChangedTo,
 TimeBaseStatus *flags,
 TimeRecord *rateChangeTimeBaseTime,
 TimeRecord *rateChangeClockTime,
 TimeRecord *currentClockTime);

Parameters
tb

A pointer to a TimeBaseRecord structure.

scale
The scale to use for the returned time values. Pass 0 to retrieve the time in the preferred time scale
of the time base.

rateChangedTo
The rate value changed to. Clients may pass NIL if they do not want to receive this information.

flags
A pointer to a flag that will be returned when the clock is waiting for a future time to start moving
while its rate is nonzero. When set, the unpinned time will return a negative value telling how far you
are from the real start time. Clients may pass NIL if they do not want to receive this information.

rateChangeTimeBaseTime

The time base time when the rate changed. Clients may pass NIL if they do not want to receive
this information.

rateChangeClockTime

The clock time when the rate changed. Clients may pass NIL if they do not want to receive
this information.

currentClockTime

The current clock time value. Clients may pass NIL if they do not want to receive this
information.

timeBaseRateChanging

The clock is waiting for a future time to start moving while its rate is nonzero. When set, the
unpinned time will return a negative value telling how far you are from the real start time.

rateChangeTimeBaseTime
The time base time when the rate changed. Clients may pass NIL if they do not want to receive this
information.

rateChangeClockTime
The clock time when the rate changed. Clients may pass NIL if they do not want to receive this
information.

QuickTime 6.4 API Reference 43
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

currentClockTime
The current clock time value. Clients may pass NIL if they do not want to receive this information.

Discussion
When the flag timeBaseRateChanging is returned, the amount of time left before the time base ticks is
equal to (rateChangeClockTime - currentClockTime).

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

GetTimeBaseThreadAttachState
Determines whether a given time base is attached to a thread.

OSErr GetTimeBaseThreadAttachState (
 TimeBase inTimeBase,
 Boolean *outAttachedToCurrentThread,
 Boolean *outAttachedToAnyThread);

Parameters
inTimeBase

A time base.

outAttachedToCurrentThread
A pointer to a Boolean that on exit is TRUE if the time base is attached to the current thread, FALSE
otherwise.

outAttachedToAnyThread
A pointer to a Boolean that on exit is TRUE if the time base is attached to any thread, FALSE otherwise.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

GraphicsExportGetInputCGBitmapContext
Retrieves the CGBitmapContext that the graphics exporter is using as its input image.

ComponentResult GraphicsExportGetInputCGBitmapContext
(
 GraphicsExportComponent ci,
 CGContextRef *bitmapContextRef);

44 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

bitmapContextRef
A reference to the Core Graphics context.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsExportGetInputCGImage
Determines which Core Graphics CGImage is the source for a graphics export operation.

ComponentResult GraphicsExportGetInputCGImage (
 GraphicsExportComponent ci,
 CGImageRef *imageRef);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

imageRef
A reference to a Core Graphics image.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsExportSetInputCGBitmapContext
Sets the CGBitmapContext that the graphics exporter will use as its input image.

ComponentResult GraphicsExportSetInputCGBitmapContext
(
 GraphicsExportComponent ci,
 CGContextRef bitmapContextRef);

QuickTime 6.4 API Reference 45
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

bitmapContextRef
A reference to the Core Graphics context.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsExportSetInputCGImage
Specifies a Core Graphics CGImage as the source for a graphics export operation.

ComponentResult GraphicsExportSetInputCGImage(
 GraphicsExportComponent ci,
 CGImageRef imageRef);

Parameters
ci

The component instance that identifies your connection to the graphics exporter component.

imageRef
A reference to a CG image.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportCreateCGImage
Imports an image as a Core Graphics CGImage.

ComponentResult GraphicsImportCreateCGImage (
 GraphicsImportComponent ci,
 CGImageRef *imageRefOut,
 UInt32 flags);

46 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

imageRefOut
A reference to the CG image to be created.

flags
A flag that determines the settings to use.

kGraphicsImportCreateCGImageUsingCurrentSettings

Use the current settings.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportDoExportImageFileToDataRefDialog
Presents a dialog box that lets the user save an imported image in a foreign file format.

ComponentResult GraphicsImportDoExportImageFileToDataRefDialog
(
 GraphicsImportComponent ci,
 Handle inDefaultDataRef,
 OSType inDefaultDataRefType,
 CFStringRef prompt,
 ModalFilterYDUPP filterProc,
 OSType *outExportedType,
 Handle *outExportedDataRef,
 OSType *outExportedDataRefType);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

inDefaultDataRef
A data reference that specifies the default export location.

inDefaultDataRefType
The type of the data reference that specifies the default export location.

prompt
A reference to a CFString that contains the prompt text string for the dialog.

filterProc
A modal filter function; see ModalFilterYDProc in the QuickTime API Reference.

outExportedType
A pointer to an OSType entity where the type of the exported file will be returned.

QuickTime 6.4 API Reference 47
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

outExportedDataRef
A pointer to an handle where the data reference to the exported file will be returned.

outExportedDataRefType
A pointer to an OSType entity where the type of the data reference that points to the exported file
will be returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function presents a file dialog that lets the user to specify a file to which the exported data goes and a
format into which image data is exported. By using data references, a long file name or Unicode file name
can be used as a default file name as well as the name of the file into which the export data goes. This function
is equivalent to GraphicsImportDoExportImageFileDialog.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportExportImageFileToDataRef
Saves an imported image in a foreign file format.

ComponentResult GraphicsImportExportImageFileToDataRef
(
 GraphicsImportComponent ci,
 OSType fileType,
 OSType fileCreator,
 Handle dataRef,
 OSType dataRefType);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

fileType
The Mac OS file type for the new file, which determines the file format.

fileCreator
The creator type of the new file.

dataRef
A data reference that specifies a storage location to which the image is to be exported.

dataRefType
The type of the data reference.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

48 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
This function exports the imported image as a foreign file format specified by fileType. The exported data
will be saved into a storage location specified by a data reference. You can use data reference functions to
create a data reference for a file that has long or Unicode file name. This function is equivalent to
GraphicsImportExportImageFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportGetDestinationColorSyncProfileRef
Retrieves a ColorSync profile from a graphics importer component.

GraphicsImportGetDestinationColorSyncProfileRef (
 GraphicsImportComponent ci,
 CMProfileRef *destinationProfileRef);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

destinationProfileRef
On return, a pointer to an opaque struct containing a ColorSync profile.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportGetGenericColorSyncProfile
Retrieves the generic colorsync profile for a graphics importer component.

GraphicsImportGetGenericColorSyncProfile (
 GraphicsImportComponent ci,
 OSType pixelFormat,
 void *reservedSetToNULL,
 UInt32 flags,
 Handle *genericColorSyncProfileOut);

QuickTime 6.4 API Reference 49
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

pixelFormat
See “Pixel Formats” in the QuickTime API Reference.

reservedSetToNULL
Pass NIL.

flags
Currently not used.

genericColorSyncProfileOut
A handle to the the generic colorsync profile for the graphics importer.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportGetOverrideSourceColorSyncProfileRef
Retrieves the override ColorSync profile for a graphics importer component.

ComponentResult GraphicsImportGetOverrideSourceColorSyncProfileRef
(
 GraphicsImportComponent ci,
 CMProfileRef *outOverrideSourceProfileRef);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

outOverrideSourceProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

50 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

GraphicsImportSaveAsPictureToDataRef
Creates a storage location that contains a QuickDraw picture for an imported image.

ComponentResult GraphicsImportSaveAsPictureToDataRef
(
 GraphicsImportComponent ci,
 Handle dataRef,
 OSType dataRefType);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location to which the picture is to be saved.

dataRefType
The type of the data reference.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function saves the imported image as a QuickDraw picture into a storage location specified through a
data reference. You can use Data Reference Utilities to create a data reference for a file that has long or
Unicode file name. This function is equivalent to GraphicsImporterSaveAsPictureFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportSaveAsQuickTimeImageFileToDataRef
Creates a storage location that contains a QuickTime image of an imported image.

ComponentResult GraphicsImportSaveAsQuickTimeImageFileToDataRef
(
 GraphicsImportComponent ci,
 Handle dataRef,
 OSType dataRefType);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location to which the picture is to be saved.

dataRefType
The type of the data reference.

QuickTime 6.4 API Reference 51
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function saves the imported image as a QuickTime image into a storage location specified through a
data reference. You can use data reference functions to create a data reference for a file that has long or
Unicode file name. This function is equivalent to GraphicsImportSaveAsQuickTimeImageFile.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportSetDestinationColorSyncProfileRef
Sets the ColorSync profile for a graphics importer component.

ComponentResult GraphicsImportSetDestinationColorSyncProfileRef
(
 GraphicsImportComponent ci,
 CMProfileRef newDestinationProfileRef);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

newDestinationProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportSetOverrideSourceColorSyncProfileRef
Sets the override ColorSync profile for a graphics importer component.

ComponentResult GraphicsImportSetOverrideSourceColorSyncProfileRef
(
 GraphicsImportComponent ci,
 CMProfileRef newOverrideSourceProfileRef);

52 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

newOverrideSourceProfileRef
A pointer to an opaque struct containing a ColorSync profile.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

GraphicsImportWillUseColorMatching
Asks whether GraphicsImportDraw will use color matching if called with the current importer settings.

ComponentResult GraphicsImportWillUseColorMatching
(
 GraphicsImportComponent ci,
 Boolean *outWillMatch);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

outWillMatch
On return, a pointer to a Boolean set to TRUE if the graphics importer will use color matching, FALSE
otherwise.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

MovieImportDoUserDialogDataRef
Requests that a movie import component display its user dialog box.

ComponentResult MovieImportDoUserDialogDataRef (
 MovieImportComponent ci,
 Handle dataRef,

QuickTime 6.4 API Reference 53
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 OSType dataRefType,
 Boolean *canceled);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location that contains the data to import.

dataRefType
The type of the data reference.

canceled
A pointer to a Boolean entity that is set to TRUE if the user cancels the export operation.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
This function brings up the option dialog for the import component. The data reference specified the storage
location that contains the data to import.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

MovieImportSetMediaDataRef
Specifies a storage location that is to receive imported movie data.

ComponentResult MovieImportSetMediaDataRef (
 MovieImportComponent ci,
 Handle dataRef,
 OSType dataRefType);

Parameters
ci

The component instance that identifies your connection to the graphics importer component.

dataRef
A data reference that specifies a storage location that receives the imported data.

dataRefType
The type of the data reference.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
By calling this function you can specify a storage location that receives some imported movie data.

54 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

QTAddComponentPropertyListener
Installs a callback to monitor a component property.

ComponentResult QTAddComponentPropertyListener (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inDispatchProc,
 void *inUserData);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inDispatchProc
A Universal Procedure Pointer to a QTComponentPropertyListenerProc (page 88) callback.

inUserData
A pointer to user data that will be passed to the callback. You may pass NULL in this parameter.

QuickTime 6.4 API Reference 55
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTAddMoviePropertyListener
Installs a callback to monitor a movie property.

OSErr QTAddMoviePropertyListener (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTMoviePropertyListenerUPP inListenerProc,
 void *inUserData);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTMoviePropertyListenerProc (page 88) callback.

inUserData
A pointer to user data that will be passed to the callback.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTComponentPropertyListenerCollectionAddListener
Adds a listener callback for a specified property class and ID to a property listener collection.

56 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

OSStatus QTComponentPropertyListenerCollectionAddListener
(
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inListenerProc,
 const void *inListenerProcRefCon);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inListenerProc
A QTComponentPropertyListenerProc (page 88) callback.

inListenerProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 6.4 API Reference 57
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

QTComponentPropertyListenerCollectionCreate
Creates a collection of component property monitors.

OSStatus QTComponentPropertyListenerCollectionCreate
(
 CFAllocatorRef inAllocator,
 const QTComponentPropertyListenerCollectionContext *inContext,
 QTComponentPropertyListenersRef *outCollection
);

Parameters
inAllocator

A pointer to the allocator used to create the collection and its contents. You can pass NIL.

inContext
A pointer to a QTComponentPropertyInfo (page 89) data structure. You can pass NIL if no structure
exists. A copy of the contents of the structure is made; therefore you can pass a pointer to a structure
on the stack.

outCollection
On return, a pointer to the new empty listener collection.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Platform Considerations

This function can be used to create a collection for use with
ComponentPropertyListenerCollectionAddListener,
ComponentPropertyListenerCollectionRemoveListener,
ComponentPropertyListenerCollectionNotifyListeners,
ComponentPropertyListenerCollectionIsEmpty, and
ComponentPropertyListenerCollectionHasListenersForProperty.

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionHasListenersForProperty
Determines if there are any listeners in a component property listener collection registered for a specified
property class and ID.

Boolean QTComponentPropertyListenerCollectionHasListenersForProperty
(
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID);

58 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

Return Value
Returns TRUE if there are any listeners in the listener collection registered for the specified property class
and ID, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionIsEmpty
Determines if a listener collection is empty.

Boolean QTComponentPropertyListenerCollectionIsEmpty
(
 QTComponentPropertyListenersRef inCollection);

QuickTime 6.4 API Reference 59
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

Return Value
Returns TRUE if the collection is empty, FALSE otherwise.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTComponentPropertyListenerCollectionNotifyListeners
Calls all listener callbacks in a component property listener collection registered for a specified property class
and ID.

OSStatus QTComponentPropertyListenerCollectionNotifyListeners
(
 QTComponentPropertyListenersRef inCollection,
 ComponentInstance inNotifier,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 const void *inFilterProcRefCon,
 UInt32 inFlags);

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inNotifier
The caller’s component instance.

60 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inFilterProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs. You may pass NIL.

inFlags
Currently not used.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
If the filterProcUPP field in the QTComponentPropertyListenerCollectionContext data structure
that was passed to QTComponentPropertyListenerCollectionCreate is not NIL, the
QTComponentPropertyListenerFilterProc callback it points to will be called before each call to a
registered listener that matches the specified property class and ID passed to this function. If the filter function
return FALSE, that listener callback will not be called. This lets a component change the calling semantics
(for example, to call another thread) or use a different listener callback signature.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 6.4 API Reference 61
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

QTComponentPropertyListenerCollectionRemoveListener
Removes a listener callback with a specified property class and ID from a property listener collection.

OSStatus QTComponentPropertyListenerCollectionRemoveListener
(
 QTComponentPropertyListenersRef inCollection,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inListenerProc,
 const void *inListenerProcRefCon)

Parameters
inCollection

A property listener collection created by a previous call to
QTComponentPropertyListenerCollectionCreate.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inListenerProc
The QTComponentPropertyListenerProc (page 88) callback to be removed.

inListenerProcRefCon
A reference constant to be passed to your callback. Use this parameter to point to a data structure
containing any information your function needs.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

62 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
ImageCompression.h

QTGetComponentProperty
Returns the value of a specific component property.

ComponentResult QTGetComponentProperty (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ComponentValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

QuickTime 6.4 API Reference 63
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTGetComponentPropertyInfo
Returns information about the properties of a component.

ComponentResult QTGetComponentPropertyInfo (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ComponentValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

outPropType
A pointer to memory allocated to hold the property type on return. This pointer may be NULL.

64 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return. This pointer may be
NULL.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTGetDataHandlerDirectoryDataReference
Returns a new data reference to the parent directory of the storage location associated with a data handler
instance.

OSErr QTGetDataHandlerDirectoryDataReference (
 DataHandler dh,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
dh

A data handler component instance that is associated with a file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL.

Discussion
This function creates a new data reference that points at the parent directory of the storage location associated
to the data handler instance.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

QuickTime 6.4 API Reference 65
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

QTGetDataHandlerFullPathCFString
Returns the full pathname of the storage location associated with a data handler.

OSErr QTGetDataHandlerFullPathCFString (
 DataHandler dh,
 QTPathStyle style,
 CFStringRef *outPath);

Parameters
dh

A data handler component instance that is associated with a file.

style
A constant that identifies the syntax of the pathname.

kQTNativeDefaultPathStyle

The default pathname syntax of the platform.

kQTPOSIXPathStyle

Used on Unix-based systems where pathname components are delimited by slashes.

kQTHFSPathStyle

The Macintosh HFS file system syntax where the delimiters are colons.

kQTWindowsPathStyle

The Windows pathname syntax that uses backslashes as component delimiters.

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
outPath is NIL.

Discussion
This function creates a new CFString that represents the full pathname of the storage location associated
with the data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetDataHandlerTargetNameCFString
Returns the name of the storage location associated with a data handler.

66 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

OSErr QTGetDataHandlerTargetNameCFString (
 DataHandler dh,
 CFStringRef *fileName);

Parameters
dh

A data handler component instance that is associated with a file.

fileName
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
fileName is NIL.

Discussion
This function creates a new CFString that represents the name of the storage location associated with the
data handler passed in dh.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetDataReferenceDirectoryDataReference
Returns a new data reference for a parent directory.

OSErr QTGetDataReferenceDirectoryDataReference (
 Handle dataRef,
 OSType dataRefType,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL.

QuickTime 6.4 API Reference 67
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
This function returns a new data reference that points to the parent directory of the storage location specified
by the data reference passed in dataRef. The new data reference returned will have the same type as
dataRefType.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetDataReferenceFullPathCFString
Returns the full pathname of the target of the data reference as a CFString.

OSErr QTGetDataReferenceFullPathCFString (
 Handle dataRef,
 OSType dataRefType,
 QTPathStyle pathStyle,
 CFStringRef *outPath);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to the directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

pathStyle
A constant that identifies the syntax of the pathname.

kQTNativeDefaultPathStyle

The default pathname syntax of the platform.

kQTPOSIXPathStyle

Used on Unix-based systems where pathname components are delimited by slashes.

kQTHFSPathStyle

The Macintosh HFS file system syntax where the delimiters are colons.

kQTWindowsPathStyle

The Windows pathname syntax that uses backslashes as component delimiters.

outPath
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the full pathname of the target pointed to by the
input data reference, which must be an alias data reference.

68 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetDataReferenceTargetNameCFString
Returns the name of the target of a data reference as a CFString.

OSErr QTGetDataReferenceTargetNameCFString (
 Handle dataRef,
 OSType dataRefType,
 CFStringRef *name);

Parameters
dataRef

An alias data reference to which you want a new data reference that points to its directory.

dataRefType
The type the input data reference; must be AliasDataHandlerSubType.

name
A pointer to a CFStringRef entity where a reference to the newly created CFStringwill be returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters was NIL or the value of dataRefType is not AliasDataHandlerSubType.

Discussion
This function creates a new CFString that represents the name of the target pointed to by the input data
reference, which must be an alias data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetMovieProperty
Returns the value of a specific movie property.

OSErr QTGetMovieProperty (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,

QuickTime 6.4 API Reference 69
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 QTPropertyValuePtr outPropValueAddress,
 ByteCount *outPropValueSizeUsed);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

outPropValueSizeUsed
On return, the actual size of the value written to the buffer.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTGetMoviePropertyInfo
Returns information about the properties of a movie.

OSErr QTGetMoviePropertyInfo (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTPropertyValueType *outPropType,
 ByteCount *outPropValueSize,
 UInt32 *outPropertyFlags);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

70 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

outPropType
A pointer to memory allocated to hold the property type on return.

outPropValueSize
A pointer to memory allocated to hold the size of the property value on return.

outPropertyFlags
A pointer to memory allocated to hold property flags on return.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTNewDataReferenceFromCFURL
Creates a URL data reference from a CFURL.

OSErr QTNewDataReferenceFromCFURL (
 CFURLRef url,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
url

A reference to a Core Foundation struct that represents the URL to which you want a URL data
reference. These structs contain two parts: the string and a base URL, which may be empty. With a
relative URL, the string alone does not fully specify the address; with an absolute URL it does.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

QuickTime 6.4 API Reference 71
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

QTNewDataReferenceFromFSRef
Creates an alias data reference from a file specification.

OSErr QTNewDataReferenceFromFSRef (
 const FSSpec *fsspec,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
fsspec

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct a file specification for a file to which you want the new alias
data reference to point. Then you can pass the reference to other Movie Toolbox functions that take a data
reference. To construct a file specification, the file must already exist. To create an alias data reference for a
file that does not exist yet, such as a new file to be created by a Movie Toolbox function, call
QTNewDataReferenceFromFSRefCFString.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTNewDataReferenceFromFSRefCFString
Creates an alias data reference from a file reference pointing to a directory and a file name.

OSErr QTNewDataReferenceFromFSRefCFString (
 const FSRef *directoryRef,
 CFStringRef fileName,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

72 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
directoryRef

A pointer to an opaque file specification that specifies the directory of the newly created alias data
reference.

fileName
A reference to a CFString that specifies the name of the file.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
This function is useful for creating an alias data reference to a file that does not exist yet. Note that you cannot
construct an FSRef for a nonexistent file. You can use File Manager functions to construct an FSRef for the
directory. Depending on where your file name comes from, you may already have it in a form of CFString,
or you may have to call CFString functions to create a new CFString for the file name. Then you can pass
the new alias data reference to other Movie Toolbox functions that take a data reference. If you already have
an FSRef for the file you want, you can call QTNewDataReferenceFromFSRef instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTNewDataReferenceFromFSSpec
Creates an alias data reference from a file specification of type FSSpec.

OSErr QTNewDataReferenceFromFSSpec (
 const FSSpec *fsspec,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
fsspec

A pointer to an opaque file system reference.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

QuickTime 6.4 API Reference 73
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You can use File Manager functions to construct an FSSpec structure to specify a file. Then you can pass the
new alias data reference to other Movie Toolbox functions that take a data reference. Because of the limitations
of its data structure, an FSSpecmay not work for a file with long or Unicode file names. Generally, you should
use either QTNewDataReferenceFromFSRef or QTNewDataReferenceFromFSRefCFString instead.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTNewDataReferenceFromFullPathCFString
Creates an alias data reference from a CFString that represents the full pathname of a file.

OSErr QTNewDataReferenceFromFullPathCFString (
 CFStringRef filePath,
 QTPathStyle pathStyle,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
filePath

A CFString that represents the full pathname of a file.

pathStyle
A constant that identifies the syntax of the pathname.

kQTNativeDefaultPathStyle

The default pathname syntax of the platform.

kQTPOSIXPathStyle

Used on Unix-based systems where pathname components are delimited by slashes.

kQTHFSPathStyle

The Macintosh HFS file system syntax where the delimiters are colons.

kQTWindowsPathStyle

The Windows pathname syntax that uses backslashes as component delimiters.

flags
Currently not used; pass 0.

74 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
You need to specify the syntax of the pathname as one of the QTPathStyle constants. The new alias data
reference created can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTNewDataReferenceFromURLCFString
Creates a URL data reference from a CFString that represents a URL string.

OSErr QTNewDataReferenceFromURLCFString (
 CFStringRef urlString,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
urlString

A CFString that represents a URL string.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns paramErr if
either of the output parameters is NIL

Discussion
The new URL data reference returned can be passed to other Movie Toolbox calls that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

QuickTime 6.4 API Reference 75
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Declared In
Movies.h

QTNewDataReferenceWithDirectoryCFString
Creates an alias data reference from another alias data reference pointing to the parent directory and a
CFString that contains the file name.

OSErr QTNewDataReferenceWithDirectoryCFString (
 Handle inDataRef,
 OSType inDataRefType,
 CFStringRef targetName,
 UInt32 flags,
 Handle *outDataRef,
 OSType *outDataRefType);

Parameters
inDataRef

An alias data reference pointing to the parent directory.

inDataRefType
The type of the parent directory data reference; it must be AliasDataHandlerSubType.

targetName
A reference to a CFString containing the file name.

flags
Currently not used; pass 0.

outDataRef
A pointer to a handle in which the newly created alias data reference is returned.

outDataRefType
A pointer to memory in which the OSType of the newly created data reference is returned.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
In conjunction with QTGetDataReferenceDirectoryDataReference, this function is useful to construct
an alias data reference to a file in the same directory as the one you already have a data reference for. Then
you can pass the new alias data reference to other Movie Toolbox functions that take a data reference.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTRemoveComponentPropertyListener
Removes a component property monitoring callback.

76 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

ComponentResult QTRemoveComponentPropertyListener (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inDispatchProc,
 void *inUserData); /* can be
NULL */

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inDispatchProc
A Universal Procedure Pointer to a QTComponentPropertyListenerProc (page 88) callback.

inUserData
User data to be passed to the callback.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QuickTime 6.4 API Reference 77
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

QTRemoveMoviePropertyListener
Removes a movie property monitoring callback.

OSErr QTRemoveMoviePropertyListener (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 QTMoviePropertyListenerUPP inListenerProc,
 void *inUserData);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inListenerProc
A Universal Procedure Pointer to a QTMoviePropertyListenerProc (page 88) callback.

inUserData
User data to be passed to the callback.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTSetComponentProperty
Sets the value of a specific component property.

ComponentResult QTSetComponentProperty (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstComponentValuePtr inPropValueAddress);

Parameters
inComponent

A component instance, which you can get by calling OpenComponent or OpenDefaultComponent.

78 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: ImageCompression.h

Declared In
ImageCompression.h

QTSetMovieProperty
Sets the value of a specific movie property.

OSErr QTSetMovieProperty (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 ByteCount inPropValueSize,
 ConstQTPropertyValuePtr inPropValueAddress);

QuickTime 6.4 API Reference 79
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inPropValueSize
The size of the buffer allocated to hold the property value.

outPropValueAddress
A pointer to the buffer allocated to hold the property value.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

QTVideoOutputCopyIndAudioOutputDeviceUID
Identifies the audio device being used by a video output component.

OSErr QTVideoOutputCopyIndAudioOutputDeviceUID (
 QTVideoOutputComponent vo,
 long index,
 CFStringRef *audioDeviceUID);

Parameters
vo

Video output component whose audio output is being asked about.

index
Which of video output component’s audio outputs is being asked about.

audioDeviceUID
Returned unique identifier for the audio device. If the UID is NIL, the movie is playing to the default
device.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error. Returns
badComponentInstance if vo is not a valid ComponentInstance. Returns badComponentSelector if vo
doesn't support this function. Returns paramErr if audioDeviceUID is NIL, or if there is no device with the
passed index.

Discussion
The returned audioDeviceUID has already been retained for the caller, using standard Core Foundation
copy semantics.

80 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

SetTimeBaseOffsetTimeBase
Attaches an offset time base to another time base.

OSErr SetTimeBaseOffsetTimeBase (
 TimeBase masterOffsetTimeBase,
 TimeBase offsetTimeBase,
 const TimeRecord *offsetZero);

Parameters
masterOffsetTimeBase

The time base to which the offset time base is to be attached. A NIL value can be passed when the
offset time base has already be set but a new offset value is needed.

offsetTimeBase
The offset time base to be attached.

offsetZero
A pointer to a TimeRecord value set to the offset between the master time base and the offset time
base. Passing a negative value means the offset time base will start sooner.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: Movies.h

Declared In
Movies.h

VDIIDCGetCSRData
Reads a camera’s CSR registers directly.

VideoDigitizerError VDIIDCGetCSRData (
 VideoDigitizerComponent ci,
 Boolean offsetFromUnitBase,
 UInt32 offset,
 UInt32* data);

QuickTime 6.4 API Reference 81
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

offsetFromUnitBase
Pass TRUE if the offset is relative to the initial unit space (FFFF Fxxx xxxx), FALSE if the offset is
relative to the initial register space (FFFF F000 0000).

offset
Offset in bytes of the value to read.

data
Location to store the value (of type UInt32) that was read.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
You might want to read a camera’s registers directly if you’re querying the state of a feature not accessed
by VDIIDCGetFeatures or if some camera-specific information must be accessed.

Special Considerations

The initial release of the QuickTime IIDC Digitizer improperly used a value of FFFF 0000 0000 for the start
of the register space. If using the QuickTime IIDC Digitizer and 0x00020100 == GetComponentVersion(),
you must add 0xF000 0000 to the offset when accessing the register space.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

VDIIDCGetDefaultFeatures
Places atoms in a QuickTime atom container that specify the default capabilities and default state of a camera’s
IIDC features.

VideoDigitizerError VDIIDCGetDefaultFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer *container);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature whose default is known. See “IIDC Feature
Atoms” (page 25). The container may be empty if defaults cannot be determined.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

82 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
The digitizer will create the QuickTime atom container, and it is the responsibility of the client to delete it if
the routine does not return an error.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

VDIIDCGetFeatures
Places atoms in a QuickTime atom container that specify the current capabilities of a camera and the state
of its IIDC features.

VideoDigitizerError VDIIDCGetFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer *container);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature. See “IIDC Feature Atoms” (page 25). If the
camera has not implemented any IIDC features the container returns empty.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The digitizer creates the container, and it is the responsibility of the client to ultimately delete it if the routine
does not return an error. Since the values that this function retrieves might change underneath the client,
they should not be cached but should be retrieved each time they are needed.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

VDIIDCGetFeaturesForSpecifier
Places atoms in a QuickTime atom container that specify the current state of a single camera IIDC feature or
group of features.

QuickTime 6.4 API Reference 83
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

VideoDigitizerError VDIIDCGetFeaturesForSpecifier (
 VideoDigitizerComponent ci,
 OSType specifier,
 QTAtomContainer *container);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

specifier
The feature or group of features to be retrieved:

// IIDC feature types
 vdIIDCFeatureHue = 'hue ',
 vdIIDCFeatureSaturation = 'satu',
 vdIIDCFeatureSharpness = 'shrp',
 vdIIDCFeatureBrightness = 'brit',
 vdIIDCFeatureGain = 'gain',
 vdIIDCFeatureIris = 'iris',
 vdIIDCFeatureShutter = 'shtr',
 vdIIDCFeatureExposure = 'xpsr',
 vdIIDCFeatureWhiteBalanceU = 'whbu',
 vdIIDCFeatureWhiteBalanceV = 'whbv',
 vdIIDCFeatureGamma = 'gmma',
 vdIIDCFeatureTemperature = 'temp',
 vdIIDCFeatureZoom = 'zoom',
 vdIIDCFeatureFocus = 'fcus',
 vdIIDCFeaturePan = 'pan ',
 vdIIDCFeatureTilt = 'tilt',
 vdIIDCFeatureOpticalFilter = 'opft',
 vdIIDCFeatureTrigger = 'trgr',
 vdIIDCFeatureCaptureSize = 'cpsz',
 vdIIDCFeatureCaptureQuality = 'cpql',
 vdIIDCFeatureFocusPoint = 'fpnt',
 vdIIDCFeatureEdgeEnhancement = 'eden'
 vdIIDCFeatureLightingHint = 'lhnt'

// IIDC group types
 vdIIDCGroupImage = 'imag',
 vdIIDCGroupColor = 'colr',
 vdIIDCGroupMechanics = 'mech',
 vdIIDCGroupTrigger = 'trig'

container
Upon return, a pointer to a QuickTime atom container containing atoms of type
vdIIDCAtomTypeFeature for each IIDC camera feature corresponding to the specifier. See “IIDC
Feature Atoms” (page 25). If the camera has not implemented any of the specified features the
container returns empty.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
The digitizer creates the container, and it is the responsibility of the client to ultimately delete it if the routine
does not return an error. Since the values that this function retrieves might change underneath the client,
they should not be cached but should be retrieved each time they are needed.

84 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

VDIIDCSetCSRData
Writes to a camera’s CSR registers directly.

VideoDigitizerError VDIIDCSetCSRData (
 VideoDigitizerComponent ci,
 Boolean offsetFromUnitBase,
 UInt32 offset,
 UInt32* data);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

offsetFromUnitBase
Pass TRUE if the offset is relative to the initial unit space (FFFF Fxxx xxxx), FALSE if the offset is
relative to the initial register space (FFFF F000 0000).

offset
Offset in bytes of the value to set.

data
Location of the value (of type UInt32) to write.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
You might want to write to a camera’s registers directly if you’re setting the state of a feature not accessed
by VDIIDCSetFeatures or if some camera-specific information must be set.

Special Considerations

The initial release of the QuickTime IIDC Digitizer improperly used a value of FFFF 0000 0000 for the start
of the register space. If using the QuickTime IIDC Digitizer and 0x00020100 == GetComponentVersion(),
you must add 0xF000 0000 to the offset when accessing the register space.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

QuickTime 6.4 API Reference 85
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

VDIIDCSetFeatures
Changes the state of a camera’s IIDC features.

VideoDigitizerError VDIIDCSetFeatures (
 VideoDigitizerComponent ci,
 QTAtomContainer *container);

Parameters
ci

The component instance that identifies your connection to a video digitizer component. The digitizer’s
subtype must be vdSubtypeIIDC ('iidc').

container
A pointer to a QuickTime atom container populated with atoms of type vdIIDCAtomTypeFeature;
see “IIDC Feature Atoms” (page 25). The container may have one or many atoms in it. An empty
container will cause the function to have no effect.

Return Value
See “Error Codes” in the QuickTime API Reference. Returns noErr if there is no error.

Discussion
It is the responsibility of the client to provide the QuickTime atom container and delete it after use.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Declared In
QuickTimeComponents.h

Callbacks

The callback functions new to the QuickTime 6.4 API are documented alphabetically in this section.

QTComponentPropertyListenerFilterProc
Supports QTComponentPropertyListenerCollectionNotifyListeners (page 60).

typedef Boolean (*QTComponentPropertyListenerFilterProcPtr)
(QTComponentPropertyListenersRef
inCollection, const QTComponentPropertyListenerCollectionContext
*inCollectionContext, ComponentInstance inNotifier, ComponentPropertyClass
inPropClass, ComponentPropertyID inPropID, QTComponentPropertyListenerUPP
inListenerCallbackProc,
const void *inListenerProcRefCon, const void *inFilterProcRefCon);

// Declaration of a typical application-defined function
Boolean MyQTComponentPropertyListenerFilterProc (
 QTComponentPropertyListenersRef inCollection,
 const QTComponentPropertyListenerCollectionContext
 *inCollectionContext,
 ComponentInstance inNotifier,

86 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 QTComponentPropertyListenerUPP inListenerCallbackProc,
 const void *inListenerProcRefCon,
 const void *inFilterProcRefCon);

Parameters
inCollection

The property listener reference that was returned by a previous call to
QTComponentPropertyListenerCollectionCreate.

inCollectionContext
A pointer to a QTComponentPropertyInfo (page 89) structure.

inNotifier
An instance of the notifying component.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inListenerCallbackProc
A QTComponentPropertyListenerProc (page 88) callback.

inListenerProcRefCon
A reference constant to be passed to your QTComponentPropertyListenerProc callback. Use this
parameter to point to a data structure containing any information your callback needs.

inFilterProcRefCon
A reference constant to be passed to the callback specified in the filterProcUPP field of the
QTComponentPropertyListenerCollectionContext structure pointed to by the
inCollectionContext parameter. Use this parameter to point to a data structure containing any
information your callback needs.

QuickTime 6.4 API Reference 87
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

QTComponentPropertyListenerProc
Supports QTAddComponentPropertyListener (page 55) and
QTRemoveComponentPropertyListener (page 76).

typedef void (*QTComponentPropertyListenerProcPtr)
(ComponentInstance inComponent, ComponentPropertyClass inPropClass,
ComponentPropertyID inPropID, void *inUserData);

// Declaration of a typical application-defined function
void MyQTComponentPropertyListenerProc (
 ComponentInstance inComponent,
 ComponentPropertyClass inPropClass,
 ComponentPropertyID inPropID,
 void *inUserData);

Parameters
inComponent

A reference to the component for this operation.

inPropClass
A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

inPropID
A value of type OSType that specifies a property ID.

inUserData
A pointer to data that QuickTime will pass to your callback.

QTMoviePropertyListenerProc
Supports QTAddMoviePropertyListener (page 56) and QTRemoveMoviePropertyListener (page 78).

typedef void (*QTMoviePropertyListenerProcPtr) (Movie
inMovie, QTPropertyClass inPropClass, QTPropertyID inPropID, void
*inUserData);

88 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

// Declaration of a typical application-defined function
void MyQTMoviePropertyListenerProc (
 Movie inMovie,
 QTPropertyClass inPropClass,
 QTPropertyID inPropID,
 void *inUserData);

Parameters
inMovie

The movie for this operation. Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

inPropClass
A property class.

inPropID
A property ID.

inUserData
A pointer to data for your callback.

Data Structures

The data structures new to the QuickTime 6.4 API are documented alphabetically in this section.

QTComponentPropertyInfo
Stores information for component property functions.

struct ComponentPropertyInfo {
 ComponentPropertyClass propClass;
 ComponentPropertyID propID;
 ComponentValueType propType;
 ByteCount propSize;
 UInt32 propFlags;
};

QuickTime 6.4 API Reference 89
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Fields
propClass

A value of type OSType that specifies a property class:

kComponentPropertyClassPropertyInfo ('pnfo')

A QTComponentPropertyInfo (page 89) structure that defines a property information class.

kComponentPropertyInfoList ('list')

An array of QTComponentPropertyInfo structures, one for each property.

kComponentPropertyCacheSeed ('seed')

A component property cache seed value.

kComponentPropertyExtendedInfo ('meta')

A CFDictionary with extended property information.

kComponentPropertyCacheFlags ('flgs')

One of the following two flags:

kComponentPropertyCacheFlagNotPersistent

Property metadata should not be saved in persistent cache.

kComponentPropertyCacheFlagIsDynamic

Property metadata should not be cached at all.

propID
A value of type OSType that specifies a property ID.

propType
The type of the property.

propSize
The size of the property in bytes.

propFlags
Component property flags.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: QTAddComponentPropertyListener,
QTComponentPropertyListenerCollectionAddListener,
QTComponentPropertyListenerCollectionHasListenersForProperty,
QTComponentPropertyListenerCollectionNotifyListeners,
QTComponentPropertyListenerCollectionRemoveListener, QTGetComponentProperty,
QTGetComponentPropertyInfo, QTRemoveComponentPropertyListener,
QTSetComponentProperty, QTComponentPropertyListenerFilterProc,
QTComponentPropertyListenerProc

90 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

QTComponentPropertyListenerCollectionContext
Provides context information for a QTComponentPropertyListenerFilterProc callback.

struct QTComponentPropertyListenerCollectionContext
{
 UInt32 version;
 QTComponentPropertyListenerFilterUPP filterProcUPP;
 void *filterProcData;
};

Fields
version

The version of this callback.

filterProcUPP
A Universal Procedure Pointer to a QTComponentPropertyListenerFilterProc (page 86) callback.

filterProcData
A pointer to data for the callback.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated function: QTComponentPropertyListenerCollectionNotifyListeners

VDIIDCFeatureAtomTypeAndID
Provides content for the vdIIDCAtomTypeFeatureAtomTypeAndID atom type. See “Type And ID
Atoms” (page 25).

struct VDIIDCFeatureAtomTypeAndID {
 OSType feature;
 OSType group;
 Str255 name;
 QTAtomType atomType;
 QTAtomID atomID;
};

Fields
feature

Type of the feature (see Discussion below).

group
Group that categorizes the feature (see Discussion below).

name
Name of the feature.

atomType
Atom type that contains the feature’s settings. See “IIDC Settings Atoms” (page 25).

atomID
Atom ID of the atom that contains the feature’s settings.

QuickTime 6.4 API Reference 91
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Discussion
The following are the possible values for the feature and group parameters:

// IIDC Feature OSTypes
 vdIIDCFeatureHue = 'hue ', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureSaturation = 'satu', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureSharpness = 'shrp', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureBrightness = 'brit', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureGain = 'gain', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureIris = 'iris', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureShutter = 'shtr', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureExposure = 'xpsr', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureWhiteBalanceU = 'whbu', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureWhiteBalanceV = 'whbv', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureGamma = 'gmma', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureTemperature = 'temp', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureZoom = 'zoom', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureFocus = 'fcus', // Uses VDIIDCFeatureSettings
 vdIIDCFeaturePan = 'pan ', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureTilt = 'tilt', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureOpticalFilter = 'opft', // Uses VDIIDCFeatureSettings
 vdIIDCFeatureTrigger = 'trgr', // Uses VDIIDCTriggerSettings
 vdIIDCFeatureCaptureSize = 'cpsz', // Undefined settings
 vdIIDCFeatureCaptureQuality = 'cpql', // Undefined settings
 vdIIDCFeatureFocusPoint = 'fpnt', // Use VDIIDCFocusPointSettings
 vdIIDCFeatureEdgeEnhancement = 'eden' // Uses VDIIDCFeatureSettings
 vdIIDCFeatureLightingHint = 'lhnt' // Use VDIIDCLightingHintSettings

// IIDC Group OSTypes that features are categorized into
 vdIIDCGroupImage = 'imag', // Related to image control
 vdIIDCGroupColor = 'colr', // Related to color control
 vdIIDCGroupMechanics = 'mech', // Related to mechanics
 vdIIDCGroupTrigger = 'trig' // Related to trigger

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier

VDIIDCFeatureCapabilities
Provides IIDC feature capabilities information to the VDIIDCFeatureSettings (page 93) data structure.

struct VDIIDCFeatureCapabilities {
 UInt32 flags;
 UInt16 rawMinimum;
 UInt16 rawMaximum;
 QTFloatSingle absoluteMinimum;
 QTFloatSingle absoluteMaximum;
};

92 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Fields
flags

Flags that determine characteristics of a given feature.

vdIIDCFeatureFlagOn

Set if feature can be turned on.

vdIIDCFeatureFlagOff

Set if the feature can be turned off.

vdIIDCFeatureFlagManual

Set if the feature can be put into manual mode.

vdIIDCFeatureFlagAuto

Set if the feature can be put into automatic mode.

vdIIDCFeatureFlagTune

Set if the feature can be tuned. When tuned, a feature drops into automatic mode until it
stabilizes and then it reverts to manual mode.

vdIIDCFeatureFlagRawControl

Set if the feature’s value can be specified in raw values. Raw values are unitless and their
meaning can vary from camera to camera.

vdIIDCFeatureFlagAbsoluteControl

Set if the feature’s value can be specified in absolute units. Absolute values are expressed in
engineering units, such as dB or degrees.

rawMinimum
Raw minimum value.

rawMaximum
Raw maximum value.

absoluteMinimum
Absolute minimum value.

absoluteMaximum
Absolute maximum value.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier

VDIIDCFeatureSettings
Provides content for the vdIIDCAtomTypeFeatureSettings atom type. See “IIDC Feature Atoms” (page
25).

QuickTime 6.4 API Reference 93
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

struct VDIIDCFeatureSettings {
 VDIIDCFeatureCapabilities capabilities;
 VDIIDCFeatureState state;
};

Fields
capabilities

A VDIIDCFeatureCapabilities (page 92) data structure that describes a camera’s feature
capabilities.

state
A VDIIDCFeatureState (page 94) data structure that describes a camera’s current feature state.

Discussion
This data structure can be used to hold data for the following IIDC features: vdIIDCFeatureHue,
vdIIDCFeatureSaturation, vdIIDCFeatureSharpness, vdIIDCFeatureBrightness,
vdIIDCFeatureGain, vdIIDCFeatureIris. vdIIDCFeatureShutter, vdIIDCFeatureExposure,
vdIIDCFeatureWhiteBalanceU, vdIIDCFeatureWhiteBalanceV, vdIIDCFeatureGamma,
vdIIDCFeatureTemperature, vdIIDCFeatureZoom, vdIIDCFeatureFocus, vdIIDCFeaturePan,
vdIIDCFeatureTilt, vdIIDCFeatureOpticalFilter, vdIIDCFeatureEdgeEnhancment

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures (uses only the state field)

VDIIDCFeatureState
Provides IIDC feature state information for the VDIIDCFeatureSettings (page 93) data structure.

struct VDIIDCFeatureState {
 UInt32 flags;
 QTFloatSingle value;
};

Fields
flags

Feature flags.

value
Feature value.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

94 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures

VDIIDCFocusPointSettings
Provides focus point data for the vdIIDCAtomTypeFocusPointSettings atom type. See “IIDC Settings
Atoms” (page 25).

struct VDIIDCFocusPointSettings {
 Point focusPoint;
};

Fields
focusPoint

A focus point value relative to the rectangle returned by SGGetSrcVideoBounds. When using this
data structure to set the focus point, the focus point must be within the rectangle specified by
SGSetVideoRect.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures

Special Considerations

The focus point feature is not part of the IIDC 1394-based Digital Camera Specification.

VDIIDCLightingHintSettings
Provides lighting hint data for the vdIIDCAtomTypeLightingHintSettings atom type. See “IIDC Settings
Atoms” (page 25).

struct VDIIDCLightingHintSettings {
 UInt32 capabilityFlags;
 UInt32 stateFlags;
};

QuickTime 6.4 API Reference 95
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Fields
capabilityFlags

Flags that specify particular lighting hint capabilities. This field is ignored by the VDIIDCSetFeatures
function:

vdIIDCLightingHintNormal

Set if the camera supports the normal light hint.

vdIIDCLightingHintLow

Set if the camera supports the low light hint.

stateFlags
Flags that specify particular lighting hint states:

vdIIDCLightingHintNormal

Set if the camera is using or should be using the normal light hint.

vdIIDCLightingHintLow

Set if the camera is using or should be using the low light hint.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures

Special Considerations

The lighting hint feature is not part of the IIDC 1394-based Digital Camera Specification.

VDIIDCTriggerCapabilities
Provides IIDC trigger capability information for the VDIIDCTriggerSettings (page 98) data structure.

struct VDIIDCTriggerCapabilities {
 UInt32 flags;
 QTFloatSingle absoluteMinimum;
 QTFloatSingle absoluteMaximum;
};

96 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Fields
flags

Flags that specify particular trigger capabilities:

vdIIDCTriggerFlagOn

Set if the trigger can be turned on.

vdIIDCTriggerFlagOff

Set if the trigger can be turned off.

vdIIDCTriggerFlagActiveHigh

Set if the trigger can be active high.

vdIIDCTriggerFlagActiveLow

Set if the trigger can be active low.

vdIIDCTriggerFlagMode0

Set if the trigger can operate in mode 0. In mode 0, the camera starts integrating light at the
active edge of the external trigger. The integration time is controlled by the shutter feature.

vdIIDCTriggerFlagMode1

Set if the trigger can operate in mode 1. In mode 1, the camera starts integrating light at the
active edge of the external trigger. The integration time is equal to the time the trigger is
active.

vdIIDCTriggerFlagMode2

Set if the trigger can operate in mode 2. In mode 2, the camera starts integrating light at the
active edge of the external trigger. Integration continues until the nth active edge, where n
is greater than or equal to 2.

vdIIDCTriggerFlagMode3

Set if the trigger can operate in mode 3. In mode 3, the camera starts integrating light at the
active edge of the internal trigger. The trigger’s cycle time is n times the cycle time of the
fastest frame rate, where n is greater than or equal to 1. Integration time is controlled by the
shutter feature.

vdIIDCTriggerFlagRawControl

Set if the trigger’s value can be specified in unitless terms.

vdIIDCTriggerFlagAbsoluteControl

Set if the trigger’s value can be specified in absolute (engineering) units of time.

absoluteMinimum
The minimum trigger value when vdIIDCTriggerFlagAbsoluteControl is set.

absoluteMaximum
The maximum trigger value when vdIIDCTriggerFlagAbsoluteControl is set.

Discussion
This data structure is ignored by the VDIIDCSetFeatures (page 86) function.

Version Notes
Introduced in QuickTime 6.4.

QuickTime 6.4 API Reference 97
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier,

VDIIDCTriggerSettings
Provides trigger data for the vdIIDCAtomTypetriggerSettings atom type. See “IIDC Settings Atoms” (page
25).

struct VDIIDCTriggerSettings {
 VDIIDCTriggerCapabilities capabilities;
 VDIIDCTriggerState state;
};

Fields
capabilities

A VDIIDCTriggerCapabilities (page 96) data structure.

state
A VDIIDCTriggerState (page 98) data structure.

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures

VDIIDCTriggerState
Provides IIDC trigger state information for the VDIIDCTriggerSettings (page 98) data structure.

struct VDIIDCTriggerState {
 UInt32 flags;
 UInt16 mode2TransitionCount;
 UInt16 mode3FrameRateMultiplier;
 QTFloatSingle absoluteValue;
};

98 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Fields
flags

Flags that specify current or default trigger settings (depending on whether VDIIDCGetFeatures,
VDIIDCSetFeatures, or VDIIDCGetDefaultFeatures was originally called):

vdIIDCTriggerFlagOn

Set if the trigger is or should be turned on.

vdIIDCTriggerFlagOff

Set if the trigger is or should be turned off.

vdIIDCTriggerFlagActiveHigh

Set if the trigger is or should be active high.

vdIIDCTriggerFlagActiveLow

Set if the trigger is or should be active low.

vdIIDCTriggerFlagMode0

Set if the trigger is or should operate in mode 0. In mode 0, the camera starts integrating light
at the active edge of the external trigger. The integration time is controlled by the shutter
feature.

vdIIDCTriggerFlagMode1

Set if the trigger is or should operate in mode 1. In mode 1, the camera starts integrating light
at the active edge of the external trigger. The integration time is equal to the time the trigger
is active.

vdIIDCTriggerFlagMode2

Set if the trigger is or should operate in mode 2. In mode 2, the camera starts integrating light
at the active edge of the external trigger. Integration continues until the nth active edge,
where n is greater than or equal to 2.

vdIIDCTriggerFlagMode3

Set if the trigger is or should operate in mode 3. In mode 3, the camera starts integrating light
at the active edge of the internal trigger. The trigger’s cycle time is n times the cycle time of
the fastest frame rate, where n is greater than or equal to 1. Integration time is controlled by
the shutter feature.

vdIIDCTriggerFlagRawControl

Set if the trigger’s value is or should be specified in unitless terms.

vdIIDCTriggerFlagAbsoluteControl

Set if the trigger’s value is or should be specified in absolute (engineering) units of time.

mode2TransitionCount
When mode 2 is set, the current or default number of transitions.

mode3FrameRateMultiplier
When mode 3 is set, the current or default frame rate multiplier.

absoluteValue
When using absolute units, the QTFloatSingle representation of the value in either
mode2TransitionCount (if mode 2 is set) or mode3FrameRateMultiplier (if mode 3 is set).

QuickTime 6.4 API Reference 99
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

Version Notes
Introduced in QuickTime 6.4.

Availability
Carbon status: Supported; C interface file: QuickTimeComponents.h

Platform Considerations

Associated functions: VDIIDCGetDefaultFeatures, VDIIDCGetFeatures,
VDIIDCGetFeaturesForSpecifier, VDIIDCSetFeatures

VDIIDC Call Selectors

The following selectors apply to VDIIDC component calls:

 kVDIIDCGetFeaturesSelect = 0x0200,
 kVDIIDCSetFeaturesSelect = 0x0201,
 kVDIIDCGetDefaultFeaturesSelect = 0x0202,
 kVDIIDCGetCSRDataSelect = 0x0203,
 kVDIIDCSetCSRDataSelect = 0x0204,
 kVDIIDCGetFeaturesForSpecifierSelect = 0x0205

100 QuickTime 6.4 API Reference
2003-09-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

What’s New in QuickTime 6.4 For Mac OS X

	What's New in QuickTime 6.4 For Mac OS X
	Contents
	What’s New in QuickTime 6.4 For Mac OS X
	Documentation and Other Resources
	Installing QuickTime 6.4
	Hardware Requirements
	Updating Earlier Versions

	Overview
	QuickTime 6 In Perspective
	New Features of QuickTime 6.4
	Summary of QuickTime 6 Versions

	Using Gestalt to Get the QuickTime Version
	A New Approach To Data References
	New Data Reference Functions
	Data Reference Example Code

	Threaded Programming and QuickTime
	Getting Ready to Use QuickTime from a Thread
	User Interface Limited to the Main Thread
	Error Handling
	Using QuickTime From a Thread
	Cleaning Up
	Backward Compatibility
	Thread Safety Issues

	New Graphics Functions
	New Graphics Importer Support for ColorSync
	New AV Startup Synchronization Functions
	How Startup Synchronization Works

	Processing Events
	New Component Properties Functions
	UI Examples with QuickTime Dialogs as Sheets

	New Movie Property Functions
	New IIDC Digitizer Functions
	IIDC Atoms
	IIDC Feature Atoms
	Type And ID Atoms
	IIDC Settings Atoms
	A Typical IIDC Atom Hierarchy

	New Sound Function
	New Offset TimeBase Functions
	Changes to Text Drawing
	Encoding Text Changes
	New Release of QuickTime for Java
	Goals
	Hierarchy For All New Packages
	Package Hierarchies
	Class Hierarchy
	Interface Hierarchy

	Migrating Existing Code to the New Classes
	SDK Examples That Work with JDK 1.4.1
	Packages Not Supported in this Release
	The quicktime.app.view Package
	Migrating Old QTJava Code to New QTJava Code

	QuickTime 6.4 API Reference
	Functions
	AttachMovieToCurrentThread
	AttachTimeBaseToCurrentThread
	ClockGetRateChangeConstraints
	ClockGetTimeForRateChange
	ConvertDataRefToMovieDataRef
	ConvertMovieToDataRef
	ConvertTimeToClockTime
	DetachMovieFromCurrentThread
	DetachTimeBaseFromCurrentThread
	EnterMoviesOnThread
	ExitMoviesOnThread
	GetMovieRateChangeConstraints
	GetMovieThreadAttachState
	GetTimeBaseMasterOffsetTimeBase
	GetTimeBaseRateChangeStatus
	GetTimeBaseThreadAttachState
	GraphicsExportGetInputCGBitmapContext
	GraphicsExportGetInputCGImage
	GraphicsExportSetInputCGBitmapContext
	GraphicsExportSetInputCGImage
	GraphicsImportCreateCGImage
	GraphicsImportDoExportImageFileToDataRefDialog
	GraphicsImportExportImageFileToDataRef
	GraphicsImportGetDestinationColorSyncProfileRef
	GraphicsImportGetGenericColorSyncProfile
	GraphicsImportGetOverrideSourceColorSyncProfileRef
	GraphicsImportSaveAsPictureToDataRef
	GraphicsImportSaveAsQuickTimeImageFileToDataRef
	GraphicsImportSetDestinationColorSyncProfileRef
	GraphicsImportSetOverrideSourceColorSyncProfileRef
	GraphicsImportWillUseColorMatching
	MovieImportDoUserDialogDataRef
	MovieImportSetMediaDataRef
	QTAddComponentPropertyListener
	QTAddMoviePropertyListener
	QTComponentPropertyListenerCollectionAddListener
	QTComponentPropertyListenerCollectionCreate
	QTComponentPropertyListenerCollectionHasListenersForProperty
	QTComponentPropertyListenerCollectionIsEmpty
	QTComponentPropertyListenerCollectionNotifyListeners
	QTComponentPropertyListenerCollectionRemoveListener
	QTGetComponentProperty
	QTGetComponentPropertyInfo
	QTGetDataHandlerDirectoryDataReference
	QTGetDataHandlerFullPathCFString
	QTGetDataHandlerTargetNameCFString
	QTGetDataReferenceDirectoryDataReference
	QTGetDataReferenceFullPathCFString
	QTGetDataReferenceTargetNameCFString
	QTGetMovieProperty
	QTGetMoviePropertyInfo
	QTNewDataReferenceFromCFURL
	QTNewDataReferenceFromFSRef
	QTNewDataReferenceFromFSRefCFString
	QTNewDataReferenceFromFSSpec
	QTNewDataReferenceFromFullPathCFString
	QTNewDataReferenceFromURLCFString
	QTNewDataReferenceWithDirectoryCFString
	QTRemoveComponentPropertyListener
	QTRemoveMoviePropertyListener
	QTSetComponentProperty
	QTSetMovieProperty
	QTVideoOutputCopyIndAudioOutputDeviceUID
	SetTimeBaseOffsetTimeBase
	VDIIDCGetCSRData
	VDIIDCGetDefaultFeatures
	VDIIDCGetFeatures
	VDIIDCGetFeaturesForSpecifier
	VDIIDCSetCSRData
	VDIIDCSetFeatures

	Callbacks
	QTComponentPropertyListenerFilterProc
	QTComponentPropertyListenerProc
	QTMoviePropertyListenerProc

	Data Structures
	QTComponentPropertyInfo
	QTComponentPropertyListenerCollectionContext
	VDIIDCFeatureAtomTypeAndID
	VDIIDCFeatureCapabilities
	VDIIDCFeatureSettings
	VDIIDCFeatureState
	VDIIDCFocusPointSettings
	VDIIDCLightingHintSettings
	VDIIDCTriggerCapabilities
	VDIIDCTriggerSettings
	VDIIDCTriggerState

	VDIIDC Call Selectors

