
Code Signing Guide
Security

2008-11-19

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Keychain, Logic, Mac,
Mac OS, Safari, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 5

Organization of This Document 5
See Also 5

Chapter 1 About Code Signing 7

The Benefits Of Signing Code 7
Digital Signatures and Signed Code 8
Code Requirements 9
The Role of Trust in Code Signing 10

Chapter 2 Procedures 11

Obtaining a Signing Identity 11
Adding an Info.plist to Single-File Tools 14
Signing Your Code 15

What to Sign 15
When to Sign 16
Using the codesign Utility 16

Shipping and Updating Your Product 18

Chapter 3 Code Signing Requirement Language 19

Language Syntax 19
Evaluation of Requirements 20
Constants 20

String Constants 20
Integer Constants 20
Hash Constants 21

Variables 21
Logical Operators 21
Comparison Operations 21

Equality 22
Inequality 23
Existence 23

Constraints 23
Identifier 23
Info 23
Certificate 24
Trusted 26
Entitlement 26

3
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Code Directory Hash 26
Requirement Sets 27

Document Revision History 29

4
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Code signing is a technology introduced in Mac OS X v10.5 that ensures the integrity of code and allows the
system to recognize updated versions of code as the same program as the original. Once you have signed
your code, any change in the code that you did not intend—whether introduced accidently or by hackers—can
be detected by the system. On the other hand, your signature on an updated version of your program tells
the system to treat the new version exactly as it treated the old, so that users are not bothered with obscure
dialogs asking them to give permission to the keychain or some other system component to interact with
your code.

Signing code is fast, requires few resources, and increases the size of your deliverable by less than 1%.
Signatures do not alter how your code runs and are ignored by Mac OS X versions prior to Mac OS X v10.5;
therefore, there is no reason not to sign your code. However, there are a few things you need to know before
you begin. This document explains the terminology and concepts you need to know and gives you a few
straightforward procedures you can follow to sign your code.

Because the system will expect all code to be signed, any code that is not signed will not behave in the same
manner as the majority of the programs on the user’s system. In particular, the user is likely to be bothered
with additional dialog boxes and prompts for unsigned code that they don’t see with signed code, and
unsigned code might not work as expected with some system components, such as parental controls. It is
highly recommended that you sign all code intended for use with Mac OS X v10.5 or later.

Therefore, if you are delivering, or intend to deliver, code that might ever be run on Mac OS X v10.5 or later,
you should read this document.

Organization of This Document

This document includes the following chapters:

 ■ “About Code Signing” (page 7) describes the benefits of signing code and introduces some of the basic
concepts you need to understand in order to carry out the code signing process.

 ■ “Procedures” (page 11) gives procedures and examples for the code signing process. It covers what you
need to do before you begin to sign code, how to sign code, and how to ship the code you signed.

 ■ “Code Signing Requirement Language” (page 19) describes the source code used to specify requirements
used to evaluate code signatures.

See Also

For an introduction to certificates, identities, and other basic security concepts, see Security Overview.

The utilities used to sign code are described in the manual pages for codesign(1) and csreq(1).

Organization of This Document 5
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

6 See Also
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Code signing is a technique that can be used to ensure the integrity of code, allow the system to
unambiguously determine the source (developer) of the code, and allow any application to determine the
purposes for which the developer intended the code to be used. The code signing solution on Mac OS X is
intended to be completely managed by the developer. This means that it is up to you to create or purchase
and maintain signing certificates, sign your code, specify the meaning of the signature, and distribute the
signed code in a way that that is convenient for users. Although the code signing system will carry out policy
checks based on a code signature, it is up to the caller to make policy decisions based on the results of those
checks. When it is the operating system that makes the policy checks, whether your code will be allowed to
run in a given situation depends on whether you signed the code and on the requirements you included in
the signature.

This chapter describes the benefits of signing code and introduces some of the basic concepts you need to
understand in order to carry out the code signing process.

The Benefits Of Signing Code

When code is signed, it is possible to determine reliably whether that code has been modified by someone
other than the signer, no matter whether the modification was intentional (by a hacker, for example) or
accidental (as when a file gets corrupted). In addition, by adding a code signature, a developer can ensure
that updates to a program are valid and can be treated by the system as the same program as the previous
version.

For example, suppose the user gives the SurfWriter application permission to access a keychain item. Each
time SurfWriter attempts to access the keychain, the keychain must determine whether this is the same
application as the one to which the user gave permission. If the application is signed, the keychain (in Mac
OS X v10.5 and later) can determine this with certainty. If the developer of SurfWriter updates the program
and signs the new version of SurfWriter with the same unique identifier as the old version, keychain will
recognize the update as the same application and will give it access without requesting verification from the
user. On the other hand, if SurfWriter is corrupted or hacked, keychain will detect the change and will refuse
access.

Similarly, if you use Parental Controls (in Mac OS X v10.5 or later) to prevent your child from running a specific
game, and that game has been signed by its manufacturer, your child cannot circumvent the control by
renaming or moving files on the disk. Parental Controls can use the signature to unambiguously identify the
game regardless of its name, location, or version number.

All sorts of code can be signed, including tools, applications, scripts, libraries, plug-ins, and other “code-like”
data.

Code signing can be seen as having three distinct purposes. It can be used to:

 ■ ensure the integrity of the code; that is, that it has not been altered

 ■ identify the code as coming from a specific source (the developer or signer)

The Benefits Of Signing Code 7
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

About Code Signing

 ■ determine whether the code is trustworthy for a specific purpose (for example, to access a keychain
item).

To enable signed code to fulfill all of these purposes, a code signature consists of three parts:

 ■ A unique identifier, which can be used to identify the code or to determine to which groups or categories
the code belongs. This identifier can be derived from the contents of the Info.plist for the program,
or can be provided explicitly by the signer.

 ■ A seal, which is a collection of checksums or hashes of the various parts of the program, such as the
identifier, the Info.plist, the main executable, the resource files, and so on. The seal can be used to
detect alterations to the code and to the program identifier.

 ■ A digital signature, which signs the seal to guarantee its integrity. The signature includes information
that can be used to determine who signed the code and whether the signature is valid.

For more discussion of digital signatures, see the following section, “Digital Signatures and Signed Code.”

To learn more about how the code signature is used to determine the code’s trustworthiness for a specific
purpose, see “Code Requirements” (page 9).

Note that code signing deals primarily with running code. Although it can be used to ensure the integrity of
stored code (on disk, for example), that's a secondary use.

In order to fully appreciate the uses of code signing, it is important to be aware of some things that signing
code cannot do:

 ■ It can’t guarantee that the code is free of security vulnerabilities.

 ■ It can’t guarantee that a program will not load unsafe or altered code—such as untrusted plug-ins—during
execution.

 ■ It is not a digital rights management (DRM) or copy protection technology. Although the system could
determine that a copy of your program had not been properly signed by you, or that its copy protection
had been hacked, thus making the signature invalid, there is nothing to prevent the user from running
the program anyway.

Digital Signatures and Signed Code

A digital signature uses public key cryptography to ensure the integrity of data. Like traditional signatures
written with ink on paper, they can be used to identify and authenticate the signer of the data. However,
digital signatures go beyond traditional signatures in that they can also ensure that the data itself has not
been altered. This is like designing a check in such a way that if someone alters the amount of the sum written
on the check, an “Invalid” watermark becomes visible on the face of the check.

To create a digital signature, the signer generates a message digest of the data and then uses a private key
to sign the digest. The signer must have a valid digital certificate containing the public key that corresponds
to the private key. The combination of a certificate and related private key is called an identity. The signature
includes the signed digest and information about the signer’s digital certificate. The certificate includes the
public key and the algorithm needed to verify the signature.

8 Digital Signatures and Signed Code
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

About Code Signing

To verify that the signed document has not been altered, the recipient uses the algorithm to create their
own message digest and applies the public key to the signed digest. If the two digests prove identical, then
the message cannot have been altered and must have been sent by the owner of the public key.

To ensure that the person who provided the signature is not only the same person who provided the data
but is also who they say they are, the certificate is also signed—in this case by the certification authority who
issued the certificate. Digital certificates are described in Security Concepts.

Signed code uses several digital signatures:

 ■ If the code is universal, the object code for each architecture is signed separately

 ■ Various components of the application bundle (such as the Info.plist file, if there is one) are also
signed

Code Requirements

It is up to the system or program that is launching or loading signed code to decide whether to verify the
signature and, if it does, to determine how to evaluate the results of that verification. The criteria used to
evaluate a code signature are called code requirements. The signer can specify requirements when signing
the code; such requirements are referred to as internal requirements. A verifier can read any internal
requirements before deciding how to treat signed code. However, it is up to the verifier to decide what
requirements to use. For example, Safari could require a plug-in to be signed by Apple in order to be loaded
regardless of whether that plug-in’s signature included internal requirements.

One major purpose of code signatures is to allow the verifier to identify the code (such as a program, plug-in,
or script) to determine whether it is the same code the verifier has seen before. The criteria used to make
this determination are referred to as the code’s designated requirement. For example, the designated
requirement for Apple Mail might be "was signed by Apple and the identifier is com.apple.Mail".

To see how this works in practice, assume the user has granted permission to the Apple Mail application to
access a keychain item. The keychain uses Mail’s designated requirement to identify it: the keychain records
the identifier (com.apple.Mail) and the signer of the application (Apple) to identify the program allowed to
access the keychain item. Whenever Mail attempts to access this keychain item, the keychain looks at Mail’s
signature to make sure that the program has not been corrupted, that the identifier is com.apple.Mail, and
that the program was signed by Apple. If everything checks out, the keychain gives Mail access to the keychain
item. When Apple issues a new version of Mail, the new version includes a signature, signed by Apple, that
identifies the application as com.apple.Mail. Therefore, when the user installs the new version of Mail and it
attempts to access the keychain item, the keychain recognizes the updated version as the same program
and does not prompt the user for verification.

The program identifier or the entire designated requirement can be specified by the signer, or can be inferred
by the codesign utility at the time of signing. In the absence of an explicitly specified designated requirement,
the codesign utility typically builds a designated requirement from the name of the program found in its
Info.plist file and the chain of signatures securing the code signature.

Architecturally, a code requirement is a script, written in a dedicated language, that describes conditions
(restrictions) the code must satisfy to be acceptable for some purpose. It is up to you whether to specify
internal requirements when you sign code.

Code Requirements 9
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

About Code Signing

Note that validation of signed code against a set of requirements is performed only when the system or some
other program needs to determine whether it’s all right to trust that code. The Finder, for example, might
run a program that has an invalid code identifier as long as there is no reason to check the identifier. Even
if that code requests access to a keychain item and the keychain checks the identifier, the only consequence
of the identifier being invalid is that the keychain will refuse access to the keychain item; the process will be
permitted to continue running.

The Role of Trust in Code Signing

Trust is determined by policy. A security trust policy determines whether a particular code identity (assuming
it is valid) should be accepted for allowing something, such as access to a resource or service. Each Mac OS
X component has its own policy, and makes this determination separately. Thus it makes no sense to ask
whether the code signing system trusts a particular signature. Instead, it is more meaningful to ask whether
a specific subsystem of Mac OS X trusts the signature. Therefore, in general, in order for an application that
is signed to be trusted for a particular purpose it must have been signed either by an identity whose root
certificate is already trusted by default on Mac OS X or by one that has previously been designated by the
caller as being trusted.

Note that many parts of Mac OS X do not care about the identity of the signer—they care only whether the
signer has changed since the last time the signature was checked. They use the code signature’s designated
requirement for this purpose. The keychain system and parental controls are examples of this use of signatures.
Self-signed identities and home-made certificate authorities (CAs) work for this purpose as well as commercial
signing certificates.

Other parts of Mac OS X constrain acceptable signatures to only those drawn from certificate authorities
(root certificates) that are trusted anchors on the system performing the validation. For those checks, the
nature of the identity used matters. The Application Firewall is one example of this type of policy. Self-signed
identities and self-created CAs do not work for this unless the validating system has been told to trust them
for code signing purposes.

10 The Role of Trust in Code Signing
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

About Code Signing

This chapter gives procedures and examples for the code signing process. It covers what you need to do
before you begin to sign code, how to sign code, and how to ship the code you signed.

Obtaining a Signing Identity

To sign code, you need a code signing digital identity, which is a private cryptographic key plus a digital
certificate. The digital certificate must have a usage extension that enables it to be used for signing and it
must contain the public key that corresponds to the private key. You can use multiple signing identities if
you wish, such as one to be used for beta seeds and one for final, released products. However, most
organizations use only one.

You can obtain a signing identity from a certificate authority, such as VeriSign, RSA, or Thawte. If your company
already has a code-signing-capable identity that you use to sign code on other systems, you can use it with
codesign as well. Apple uses the industry-standard form and format of code signing digital certificates.
Some companies are certificate issuing authorities; in this case, you need to contact your IT department to
find out how to get a signing certificate issued by your company. However, if the only reason you need a
certificate is for a signing identity to use with Mac OS X, you can create your own identity by using the
Certificate Assistant, which is provided as part of the Keychain Access application.

Before proceeding to obtain a signing identity and sign your code, consider the following points:

 ■ A self-signed certificate created with the Certificate Assistant is not recognized by users’ operating
systems as a valid certificate for any purpose other than validating the designated requirement of your
signed code. Because a self-signed certificate has not been signed by a recognized root certificate
authority, the user can only verify that two versions of your application came from the same source; they
cannot verify that your company is the true source of the code. For more information about root
authorities, see Security Concepts.

 ■ Depending on your company’s internal policies, you might have to involve your company’s Build and
Integration, Legal, and Marketing departments in decisions about what sort of signing identity to use
and how to obtain it. You should start this process well in advance of the time you need to actually sign
the code for distribution to customers.

 ■ Any signed version of your code that gets into the hands of users will appear to have been endorsed by
your company for use. Therefore, you might not want to use your “final” signing identity to sign code
that is still in development.

 ■ A signing identity, no matter how obtained, is completely compromised if it is ever out of the physical
control of whoever is authorized to sign the code. That means that the signing identity’s private key
must never, under any circumstances, be given to end users, and should be restricted to one or a small
number of trusted persons within your company. Before obtaining a signing identity and proceeding
to sign code, you must determine who within your company will possess the identity, who can use it,
and how it will be kept safe. For example, if the identity must be used by more than one person, you
can keep it in the keychain of a secure computer and give the password of the keychain only to authorized
users, or you can put the identity on a smart card to which only authorized users have the PIN.

Obtaining a Signing Identity 11
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

 ■ A self-signed certificate created by the Certificate Assistant is adequate for internal testing and
development, regardless of what procedures you put in place to sign released products.

To use the Certificate Assistant to create a signing identity, use the following procedure:

1. Open Applications > Utilities > Keychain Access.

2. From the Keychain Access menu, choose Certificate Assistant > Create a Certificate.

3. Fill in a name for the certificate. This name appears in the Keychain Access utility as the name of the
certificate.

4. Choose Self Signed Root from the Type popup menu.

12 Obtaining a Signing Identity
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

5. Check the Let me override defaults checkbox. Click Continue.

6. Specify a serial number for the certificate. Any number will do as long as you have no other certificate
with the same name and serial number.

Obtaining a Signing Identity 13
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

7. Choose Code Signing from the Certificate Type popup menu. Click Continue.

8. Fill in the information for the certificate. Click Continue.

9. Accept the defaults for the rest of the dialogs.

Adding an Info.plist to Single-File Tools

As discussed in “Code Requirements” (page 9), the system often uses the Info.plist file of an application
bundle to determine the code’s designated requirement. Although single-file tools don’t normally have an
Info.plist, you can add one. To do so, use the following procedure:

1. Add an Info.plist file to your project (including adding it to your source control).

2. Make sure the Info.plist file has the following keys:

 ■ CFBundleIdentifier

 ■ CFBundleName

14 Adding an Info.plist to Single-File Tools
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

3. The value for CFBundleIdentifier must be unique; it is used as the default unique name of your
program for Code Signing purposes. To ensure uniqueness, you can include your company’s name in
the value. The usual form for this identifier is a hierarchical name in reverse DNS notation, starting with
the company name, followed by the organization in the company, and ending with the product name.
For example, the identifier for the codesign tool is com.apple.security.codesign.

4. The value for CFBundleName shows up in system dialogs as the name of your program, so it should
correspond to your marketing name for the product.

5. Add the following arguments to your link command:

-sectcreate __TEXT __info_plist Info.plist_path

where Info.plist_path is the path to the Info.plist file in your project.

In Xcode, use the OTHER_LDFLAGS build variable.

For example, here are the contents of the Info.plist file of the codesign tool.:

<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.security.codesign</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>codesign</string>
 <key>CFBundleVersion</key>
 <string>0.3</string>
</dict>
</plist>

Signing Your Code

You use the codesign command-line tool to sign your code. This section discusses what to sign and gives
some examples of the use of codesign. See the codesign(1) manual page for a complete description of
its use.

What to Sign

You should sign every program in your product, including applications, tools, hidden helper tools, utilities
and so forth. Signing an application bundle covers its resources, but not its subcomponents such as tools
and sub-bundles. Each of these must be signed independently.

If your application consists of a big UI part with one or more little helper tools that try to present a single
face to the user, you can make them indistinguishable to code signing by giving them all the exact same
code signing identifier. (You can do that by making sure that they all have the same CFBundleIdentifier
value in their Info.plist, or by using the -i option in the codesign utility, to assign the same identifier.)

Signing Your Code 15
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

In that case, all your program components have access to the same keychain items and validate as the same
program. Do this only if the programs involved are truly meant to form a single entity, with no distinctions
made.

A universal binary (bundle or tool) automatically has individual signatures applied to each architecture
component. These are independent, and usually only the native architecture on the end user's system is
verified.

In the case of installer packages (.pkg and .mpkg bundles), everything is implicitly signed: The CPIO archive
containing the payload, the CPIO archive containing install scripts, and the bill of materials (BOM) each have
a hash recorded in the XAR header, and that header in turn is signed. Therefore, if you modify an install script
(for example) after the package has been signed, the signature will be invalid.

You may also want to sign your plugins and libraries. Although this is not currently required, it will be in the
future, and there is no disadvantage to having signatures on these components.

Depending on the situation, codesign may add to your Mach-O executable file, add extended attributes to
it, or create new files in your bundle's Contents directory. None of your other files is modified.

When to Sign

You can run codesign at any time on any system running Mac OS X v10.5 or later, provided you have access
to the signing identity. You can run it from a shell script phase in Xcode if you like, or as a step in your Makefile
scripts, or anywhere else you find suitable. Signing is typically done as part of the product mastering process,
after quality assurance work has been done. Avoid signing pre-final copies of your product so that no one
can mistake a leaked or accidentally released incomplete version of your product for the real thing.

Your final signing must be done after you are done building your product, including any post-processing
and assembly of bundle resources. Code signing detects any change to your program after signing, so if you
make any changes at all after signing, your code will be rejected when an attempt is made to verify it. Sign
your code before you package the product for delivery.

Because each architecture component is signed independently, it is all right to perform universal-binary
operations (such as running the lipo command) on signed programs. The result will still be validly signed
as long as you make no other changes.

Using the codesign Utility

The codesign command is fully described in the codesign(1) manual page. This section provides some
examples of common uses of the command. Note that your signing identity must be in a keychain for these
commands to work.

Signing Code

To sign the code located at code-path, using the signing identity identity, use the following command:

codesign -s identity code-path ...

Signing identities are discussed in “Obtaining a Signing Identity” (page 11).

16 Signing Your Code
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

As is typical of Unix-style commands, this command gives no confirmation of success. To get some feedback,
include the -v option:

codesign -s -v identity code-path ...

The identity can be named with any (case sensitive) substring of the certificate's common name attribute,
as long as it's unique throughout your keychains.

Use the -r option to specify an internal requirement. With this option you can specify a text file containing
the requirements, a precompiled requirements binary, or the actual requirement text prefixed with an equal
sign (=). For example, to add an internal requirement that all libraries be signed by Apple, you could use the
following option:

-r="library => anchor apple"

The code requirement language is described in “Code Signing Requirement Language” (page 19).

If you have built your own certificate hierarchy (perhaps using Certificate Assistant—see “Obtaining a Signing
Identity” (page 11)), and want to use your certificate’s anchor to form a designated requirement for your
program, you could use the following command:

codesign -s signing-identity -r="designated => anchor /my/anchor/cert and identifier
com.mycorp.myprog"

Note that the requirement source language accepts either an SHA1 hash of a certificate (for example
H"abcd....") or a path to the DER encoded certificate in a file. It does not currently accept a reference to
the certificate in a keychain, so you have to export the certificate before executing this command.

You can also use the csreq utility to write the requirements out to a file, and then use the path to that file
as the input value for the -r option in the codesign utility. See the manual page for csreq(1) for more
information on that utility.

Here are some other samples of requirements:

 ■ anchor apple –the code is signed by Apple

 ■ anchor trusted –the anchor is trusted (for code signing) by the system

 ■ certificate leaf = /path/to/cert –the leaf (signing) certificate is the one specified

 ■ certificate leaf = /path/to/cert and identifier "com.mycorp.myprog" –the leaf
certificate and program identifier are as specified

 ■ info[mykey] = myvalue – the Info.plist key mykey exists and has the value myvalue

Except for the explicit anchor trusted requirement, the system does not consult its trust settings database
when verifying a code requirement. Therefore, as long as you don’t add this designated requirement to your
code signature, the anchor certificate you use for signing your code does not have to be introduced to the
user’s system for validation to succeed.

Verifying Code

To verify the signature on a signed binary, use the -v option with no other options:

codesign -v code-path ...

Signing Your Code 17
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

This checks that the code binaries at code-path are actually signed, that the signature is valid, that all the
sealed components are unaltered, and that the whole thing passes some basic consistency checks. It does
not by default check that the code satisfies any requirements except its own designated requirement. To
check a particular requirement, use the -R option. For example, to check that the Apple Mail application is
identified as Mail, signed by Apple, and secured with Apple’s root signing certificate, you could use the
following command:

codesign -v -R="identifier com.apple.mail and anchor apple" /Applications/Mail.app

Note that, unlike the -r option, the -R option takes only a single requirement rather than a requirements
collection (no => tags). Add one or more additional -v options to get details on the validation process.

If you pass a number rather than a path to the verify option, codesign takes the number to be the process
ID (pid) of a running process, and performs dynamic validation instead.

Getting Information About Code Signatures

To get information about a code signature, use the -d option. For example, to output the code signature’s
internal requirements to standard out, use the following command:

codesign -d -r- code-path

Note that this option does not verify the signature.

Shipping and Updating Your Product

The only thing that matters to the code signing system is that the signed code installed on the user’s system
identical to the code that you signed. It does not matter how you package, deliver, or install your product
as long as you don’t introduce any changes into the product. Compression, encoding, encrypting, and even
binary patching the code are all right as long as you end up with exactly what you started with. You can use
any installer you like, as long as it doesn't write anything into the product as it installs it. Drag-installs are
fine as well.

When you have qualified a new version of your product, sign it just as you signed the previous version, with
the same identifier and the same designated requirement. The user’s system will consider the new version
of your product to be the same program as the previous version. In particular, the keychain will not distinguish
older and newer versions of your program as long as both were signed and the unique Identifier hasn't
changed.

You can take a partial-update approach to revising your code on the user’s system. To do so, sign the new
version as usual, then calculate the differences between the new and the old signed versions, and transmit
the differences. Because the differences include the new signature data, the result of installing the changes
on the end-user's system will be the newly signed version. You cannot patch a signed application in the field.
If you do so, the system will notice that the application has changed and will invalidate the signature, and
there is no way to re-validate or resign the application in the field.

18 Shipping and Updating Your Product
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Procedures

When you use the codesign command to sign a block of code, you can specify internal requirements; that
is, the criteria that you recommend should be used to evaluate the code signature. It is up to the verifier to
decide whether to apply the internal requirements or some other set of requirements when deciding how
to treat the signed code. You use the code requirement language described in this chapter when specifying
requirements to the codesign or csreq command (see the manual pages for codesign(1) and csreq(1)).

This chapter describes the requirement language source code. You can compile a set of requirements and
save them in binary form using the csreq command. You can provide requirements to the codesign
command either as source code or as a binary file. Both the codesign and csreq commands can convert
a binary requirement set to text. Although there is some flexibility in the source code syntax (for example,
quotes can always be used around string constants but are not always required), conversion from binary to
text always uses the same form:

 ■ Parentheses are placed (usually only) where required to clarify operator precedence.

 ■ String constants are quoted (usually only) where needed.

 ■ Whether originally specified as constants or through file paths, certificate hashes are always returned as
hash constants.

 ■ Comments in the original source are not preserved in the reconstructed text.

Language Syntax

Some basic features of the language syntax are:

 ■ Expressions use conventional infix notation (that is, the operator is placed between the two entities
being acted on; for example quantity < constant).

 ■ Keywords are reserved, but can be quoted to be included as part of ordinary strings.

 ■ Comments are allowed in C, Objective C, and C++.

 ■ Unquoted whitespace is allowed between tokens, but strings containing whitespace must be quoted.

 ■ Line endings have no special meaning and are treated as whitespace.

Language Syntax 19
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

Evaluation of Requirements

A requirement constitutes an expression without side effects. Each requirement can have any number of
subexpressions, each of which is evaluated with a Boolean (succeed-fail) result. There is no defined order of
evaluation. The subexpressions are combined using logical operators in the expression to yield an overall
Boolean result for the expression. Depending on the operators used, an expression can succeed even if some
subexpressions fail. For example, the expression

anchor apple or anchor = "/var/db/yourcorporateanchor.cert"

succeeds if either subexpression succeeds—that is, if the code was signed either by Apple or by your
company—even though one of the subexpressions is sure to fail.

If an error occurs during evaluation, on the other hand, evaluation stops immediately and the codesign or
csreq command returns with a result code indicating the reason for failure.

Constants

This section describes the use of string, integer, hash-value, and binary constants in the code signing
requirement language.

String Constants

String constants must be enclosed by double quotes (" ") unless the string contains only letters, digits, and
periods (.), in which case the quotes are optional. Absolute file paths, which start with a slash, do not require
quotes unless they contain spaces. For example:

com.apple.mail //no quotes are required
"com.apple.mail" //quotes are optional
"My Company's signing identity" //requires quotes for spaces and apostrophe
/Volumes/myCA/root.crt //no quotes are required
"/Volumes/my CA/root.crt" //space requires quotes
"/Volumes/my_CA/root.crt" //underscore requires quotes

It’s never incorrect to enclose the string in quotes—if in doubt, use quotes.

Use a backslash to “escape” any character. For example:

"one \" embedded quote" //one " embedded quote
"one \\ embedded backslash" //one \ embedded backslash

There is nothing special about the single quote character (').

Integer Constants

Integer constants are written as decimal constants are in C. The language does not allow radix prefixes (such
as 0x) or leading plus or minus (+ or -) signs.

20 Evaluation of Requirements
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

Hash Constants

Hash values are written either as a hexadecimal number in quotes preceded by an H, or as a path to a file
containing a binary certificate. If you use the first form, the number must include the exact number of digits
in the hash value. A SHA-1 hash (the only kind currently supported) requires exactly 40 digits; for example:

H"0123456789ABCDEFFEDCBA98765432100A2BC5DA"

You can use either uppercase or lowercase letters (A..F or a..f) in the hexadecimal numbers.

If you specify a file path, the compiler reads the binary certificate and calculates the hash for you. The compiled
version of the requirement code includes only the hash; the certificate file and the path are not retained. If
you convert the requirement back to text, you get the hexadecimal hash constant. The file path must point
to a file containing an X.509 DER encoded certificate. No container forms (PKCS7, PKCS12) are allowed, nor
is the OpenSSL "PEM" form supported.

Variables

There are currently no variables in the requirement language.

Logical Operators

The requirement language includes the following logical operators, in order of decreasing precedence:

 ■ ! (negation)

 ■ and (logical AND)

 ■ or (logical OR)

These operators can be used to combine subexpressions into more complex expressions. The negation
operator (!) is a unary prefix operator. The others are infix operators. Parentheses can be used to override
the precedence of the operators.

Because the language is free of side effects, evaluation order of subexpressions is unspecified.

Comparison Operations

The requirement language includes the following comparison operators:

 ■ = (equals)

 ■ < (less than)

 ■ > (greater than)

 ■ <= (less than or equal to)

Variables 21
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

 ■ >= (greater than or equal to)

 ■ exists (value is present)

The value-present (exists) operator is a unary suffix operator. The others are infix operators.

There are no operators for non-matches (not equal to, not greater than, and so on). Use the negation operator
(!) together with the comparison operators to make non-match comparisons.

Equality

All equality operations compare some value to a constant. The value and constant must be of the same type:
a string matches a string constant, a data value matches a hexadecimal constant. The equality operation
evaluates to true if the value exists and is equal to the constant. String matching uses the same matching
rules as CFString (see CFString Reference).

In match expressions (see “Info” (page 23), “Part of a Certificate” (page 25), and “Entitlement” (page 26)),
substrings of string constants can be matched by using the * wildcard character:

 ■ value = *constant* is true if the value exists and any substring of the value matches the constant;
for example:

 ❏ thunderbolt = *under*

 ❏ thunderbolt = *thunder*

 ❏ thunderbolt = *bolt*

 ■ value = constant* is true if the value exists and begins with the constant; for example:

 ❏ thunderbolt = thunder*

 ❏ thunderbolt = thun*

 ■ value = *constant is true if the value exists and ends with the constant; for example:

 ❏ thunderbolt = *bolt

 ❏ thunderbolt = *underbolt

If the constant is written with quotation marks, the asterisks must be outside the quotes. An asterisk inside
the quotation marks is taken literally. For example:

 ■ "ten thunderbolts" = "ten thunder"* is true

 ■ "ten thunder*bolts" = "ten thunder*"* is true

 ■ "ten thunderbolts" = "ten thunder*" is false

22 Comparison Operations
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

Inequality

Inequality operations compare some value to a constant. The value and constant must be of the same type:
a string matches a string constant, a data value matches a hexadecimal constant. String comparisons use
the same matching rules as CFStringwith the kCFCompareNumerically option flag; for example, "17.4"
is greater than "7.4".

Existence

The existence operator tests whether the value exists. It evaluates to false only if the value does not exist
at all or is exactly the Boolean value false. An empty string and the number 0 are considered to exist.

Constraints

Several keywords in the requirement language are used to require that specific certificates be present or
other conditions be met.

Identifier

The expression

identifier = constant

succeeds if the unique identifier string embedded in the code signature is exactly equal to constant. The
equal sign is optional in identifier expressions. Signing identifiers can be tested only for exact equality; the
wildcard character (*) can not be used with the identifier constraint, nor can identifiers be tested for inequality.

Info

The expression

info [key]match expression

succeeds if the value associated with the top-level key in the code’s info.plist file matchesmatchexpression,
where match expression can include any of the operators listed in “Logical Operators” (page 21) and
“Comparison Operations” (page 21). For example:

info [CFBundleShortVersionString] < "17.4"

or

info [MySpecialMarker] exists

You must specify key as a string constant.

Constraints 23
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

If the value of the specified key is a string, the match is applied to it directly. If the value is an array, it must
be an array of strings and the match is made to each in turn, succeeding if any of them matches. Substrings
of string constants can be matched by using any match expression (see “Comparison Operations” (page 21)).

If the code has no info.plist file, or the info.plist does not contain the specified key, this expression
evaluates to false without returning an error.

Certificate

Certificate constraints refer to certificates in the certificate chain used to validate the signature. Most uses of
the certificate keyword accept an integer that indicates the position of the certificate in the chain: positive
integers count from the anchor (0) toward the leaf. Negative integers count backward from the signing
certificate (-1). For example, certificate 1 indicates the certificate that was directly signed by the anchor,
and certificate -2 is the intermediate certificate that was used to sign the leaf (that is, the signing
certificate). Note that this convention is the same as that used for array indexing in the Perl and Ruby
programming languages:

LeafSecond IntermediateFirst intermediateAnchor

certificate 3certificate 2certificate 1certificate 0

certificate -1certificate -2certificate -3certificate -4

Other keywords include:

 ■ certificate root—the anchor certificate; same as certificate 0

 ■ anchor—same as certificate root

 ■ certificate leaf—the signing certificate; same as certificate -1

Note: The short form cert is allowed for the keyword certificate.

If there is no certificate at the specified position, the constraint evaluates to false without returning an
error.

If the code was signed using an ad-hoc signature, there are no certificates at all and all certificate constraints
evaluate to false. (An ad-hoc signature is created by signing with the pseudo-identity - (a dash). An ad-hoc
signature does not use or record a cryptographic identity, and thus identifies exactly and only the one program
being signed.)

If the code was signed by a self-signed certificate, then the leaf and root refer to the same single certificate.

Whole Certificate

To require a particular certificate to be present in the certificate chain, use the form

certificate position = hash

or one of the equivalent forms discussed above, such as anchor = hash. Hash constants are described in
“Hash Constants” (page 21).

24 Constraints
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

For Apple’s own code, signed by Apple, you can use the short form

anchor apple

For code signed by Apple, including code signed using a signing certificate issued by Apple to other
developers, use the form

anchor apple generic

Part of a Certificate

To match a well-defined element of a certificate, use the form

certificate position[element]match expression

where match expression can include the * wildcard character and any of the operators listed in “Logical
Operators” (page 21) and “Comparison Operations” (page 21). The currently supported elements are as
follows:

Note: Case is significant in element names.

CommentsMeaningElement name

Shown in Keychain Access utilitySubject common nameSubject.CN

Subject country nameSubject.C

Subject descriptionSubject.D

Subject localitySubject.L

Usually company or organizationSubject organizationSubject.O

Subject organizational unitSubject.OU

Subject street addressSubject.STREET

Certificate Field by OID

To check for the existence of any certificate field identified by its X.509 object identifier (OID), use the form

certificate position [field.OID] exists

The object identifier must be written in numeric form (x.y.z...) and can be the OID of a certificate extension
or of a conventional element of a certificate as defined by the CSSM standard (see Chapter 31 in Common
Security: CDSA and CSSM, version 2 (with corrigenda) by the Open Group (http://www.opengroup.org/securi-
ty/cdsa.htm)).

Constraints 25
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

Trusted

The expression

certificate position trusted

succeeds if the certificate specified by position is marked trusted for the code signing certificate policy in the
system’s Trust Settings database. The position argument is an integer or keyword that indicates the position
of the certificate in the chain; see the discussion under “Certificate” (page 24).

The expression

anchor trusted

succeeds if any certificate in the signature’s certificate chain is marked trusted for the code signing certificate
policy in the system’s Trust Settings database, provided that no certificate closer to the leaf certificate is
explicitly untrusted.

Thus, using the trusted keyword with a certificate position checks only the specified certificate, while using
it with the anchor keyword checks all the certificates, giving precedence to the trust setting found closest
to the leaf.

Important: The syntax anchor trusted is not a synonym for certificate anchor trusted. Whereas
the former checks all certificates in the signature, the latter checks only the anchor certificate.

Certificates can have per-user trust settings and system-wide trust settings, and trust settings apply to specific
policies. The trusted keyword in the code signing requirement language causes trust to be checked for the
specified certificate or certificates for the user performing the validation. If there are no settings for that user,
then the system settings are used. In all cases, only the trust settings for the code-signing policy are checked.
Policies and trust are discussed in Certificate, Key, and Trust Services Programming Guide.

Important: If you do not include an expression using the trusted keyword in your code signing requirement,
then the verifier does not check the trust status of the certificates in the code signature at all.

Entitlement

The expression

entitlement [key] match expression

succeeds if the value associated with the specified key in the signature’s embedded entitlement dictionary
matches match expression, where match expression can include the * wildcard character and any of the
operators listed in “Logical Operators” (page 21) and “Comparison Operations” (page 21). You must specify
key as a string constant. The entitlement dictionary is included in signatures for certain platforms.

Code Directory Hash

The expression

26 Constraints
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

cdhash hash-constant

computes a SHA-1 hash of the program’s CodeDirectory resource and succeeds if the value of this hash
exactly equals the specified hash constant.

The CodeDirectory resource is the master directory of the contents of the program. It consists of a versioned
header followed by an array of hashes. This array consists of a set of optional special hashes for other resources,
plus a vector of hashes for pages of the main executable. The CodeSignature and CodeDirectory resources
together make up the signature of the code.

You can use the codesign utility with (at least) three levels of verbosity to obtain the hash constant of a
program’s CodeDirectory resource:

 $ codesign -dvvv /bin/ls
 ...
 CodeDirectory v=20001 size=257 flags=0x0(none) hashes=8+2 location=embedded
 CDHash=4bccbc576205de37914a3023cae7e737a0b6a802
 ...

Because the code directory changes whenever the program changes in a nontrivial way, this test can be used
to unambiguously identify one specific version of a program. When the operating system signs an otherwise
unsigned program (so that the keychain or Parental Controls can recognize the program, for example), it
uses this requirement.

Requirement Sets

A requirement set is a collection of distinct requirements, each indexed (tagged) with a type code. The
expression

tag => requirement

applies requirement to the type of code indicated by tag, where possible tags are

 ■ host—this requirement is applied to the direct host of this code module; each code module in the
hosting path can have its own host requirement, where the hosting path is the chain of code signing
hosts starting with the most specific code known to be running, and ending with the root of trust (the
kernel)

 ■ guest—this requirement is applied to each code module that is hosted by this code module

 ■ library—this requirement is applied to all libraries mounted by the signed code

 ■ designated—this is an explicitly specified designated requirement for the signed code; if there is no
explicitly specified designated requirement for the code, then there is no designated internal
requirement

The primary use of requirement sets is to represent the internal requirements of the signed code. For example:

 codesign -r='host => anchor apple and identifier com.apple.perl designated
 => anchor /my/root and identifier com.bar.foo'

Requirement Sets 27
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

sets the internal requirements of some code, having a host requirement of anchor apple and identifier
com.apple.perl (“I'm a Perl script and I want to be run by Apple's Perl interpreter”) and an explicit designated
requirement of anchor /my/root and identifier com.bar.foo. Note that this command sets no
guest or library requirements.

You can also put the requirement set in a file and point to the file:

 codesign -r myrequirements.rqset

where the file myrequirements.rqset might contain:

 //internal requirements
 host => anchor apple and identifier com.apple.perl //require Apple's Perl
 interpreter
 designated => anchor /my/root and identifier com.bar.foo

28 Requirement Sets
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Code Signing Requirement Language

This table describes the changes to Code Signing Guide.

NotesDate

Added a chapter describing the code signing requirement language.2008-11-19

New document that explains why you should sign your code and provides code
signing procedures.

2007-05-15

29
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

30
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Code Signing Guide
	Contents
	Introduction
	About Code Signing
	The Benefits Of Signing Code
	Digital Signatures and Signed Code
	Code Requirements
	The Role of Trust in Code Signing

	Procedures
	Obtaining a Signing Identity
	Adding an Info.plist to Single-File Tools
	Signing Your Code
	What to Sign
	When to Sign
	Using the codesign Utility
	Signing Code
	Verifying Code
	Getting Information About Code Signatures

	Shipping and Updating Your Product

	Code Signing Requirement Language
	Language Syntax
	Evaluation of Requirements
	Constants
	String Constants
	Integer Constants
	Hash Constants

	Variables
	Logical Operators
	Comparison Operations
	Equality
	Inequality
	Existence

	Constraints
	Identifier
	Info
	Certificate
	Whole Certificate
	Part of a Certificate
	Certificate Field by OID

	Trusted
	Entitlement
	Code Directory Hash

	Requirement Sets

	Revision History

