
Authorization Plug-in Reference
Security > Authorization

2007-05-15

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Authorization Plug-in Reference 7

Overview 7
Organization of This Document 7
See Also 7
About Authorization Plug-ins 8

Functions 10
DidDeactivate 10
GetArguments 10
GetContextValue 11
GetHintValue 12
GetSessionID 13
RequestInterrupt 14
SetContextValue 15
SetHintValue 16
SetResult 17

Callbacks by Task 18
Initializing a Plug-in 18
Authorization Plug-in Interface Functions 18

Callbacks 18
AuthorizationPluginCreate 18
MechanismCreate 20
MechanismDeactivate 21
MechanismDestroy 21
MechanismInvoke 22
PluginDestroy 23

Data Types 23
AuthorizationValue 23
AuthorizationValueVector 24
AuthorizationMechanismID 24
AuthorizationPluginRef 24
AuthorizationMechanismRef 24
AuthorizationEngineRef 25
AuthorizationSessionId 25
AuthorizationResult 25
AuthorizationCallbacks 26
AuthorizationPluginInterface 27

Constants 27
Authorization Context Flags 27
Authorization Result 28
Plug-in Interface Version 28
Authorization Engine Interface Version 29

3
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Result Codes 29

Document Revision History 31

Index 33

4
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Authorization Plug-in Reference 7

Listing 1 Plug-in entry in policy database 8

5
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

6
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

LISTINGS

Framework: Security/Security.h

Declared in AuthorizationPlugin.h

Overview

The Authorization Plug-in API enables you to create plug-ins that can participate in authorization decisions.

Authorization Plug-ins are available starting in Mac OS X v10.4.

You should read this document if you need to extend Mac OS X authorization services to perform authorizations
in a new way or to implement a new policy that is too complex to be implemented entirely with the
authorization policy database.

Organization of This Document

This document consists of an introduction and a reference to the authorization plug-in API. It contains the
following sections:

 ■ “About Authorization Plug-ins” (page 8) gives a brief introduction to the purpose and use of authorization
plug-ins and gives basic instructions for installing one.

 ■ “Authorization Plug-in Functions” (page 10) describes the functions that your plug-in can call to
communicate with the authorization engine. You use these functions to set and get data and to report
the status of your plug-in.

 ■ “Functions Implemented By the Plug-in” (page 18) describes the functions that must be implemented
by your plug-in. These functions are called by the authorization engine in order to install the plug-in,
implement and execute the plug-in’s authorization mechanisms, and deactivate or remove the plug-in.

 ■ “Authorization Plug-in Data Types” (page 23) describes the structures and other data types defined in
AuthorizationPlugin.h.

 ■ “Authorization Plug-in Constants” (page 27) describes the constants defined inAuthorizationPlugin.h.

 ■ “Authorization Plug-in Result Codes” (page 29) lists the result codes used by authorization plug-ins.

See Also

For more information about Mac OS X authorization services, see the following documents:

Overview 7
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

 ■ Authorization Services Programming Guide, which describes authorization services and several
components of authorization services, such as the authorization policy data base and the Security Server.
This document also provides some sample code.

 ■ Authorization Services Reference, which describes the Authorization Services API.

About Authorization Plug-ins

To install an authorization plug-in, you write the plug-in using the API described in this document, install
the bundle in /System/Library/CoreServices/SecurityAgentPlugins, and use the
AuthorizationRightSet function to add an entry to the authorization policy database that references
the plug-in. The authorization policy database contains a set of rules that the Security Server uses to authorize
rights for a user. Most of the rules directly specify the criteria to allow or deny access; however, some reference
external code (referred to as authorizationmechanisms) that define the behavior. The authorization database
is described in The Policy Database section of Authorization Services Programming Guide. To invoke a plug-in,
you pass the name of the database entry that references that plug-in in the rights parameter of the
AuthorizationCopyRights function.

A typical use for authorization plug-ins is to implement policies that are not included in the standard
authorization configuration. For example, you could write a plug-in that authorizes a user to send a fax by
requiring a personal identification number (PIN) for a specific fax machine.

Important: If your plug-in displays a window before the user has logged in, you must set the
KHIWindowBitCanBeVisibleWithoutLogin flag on the window. SeeAuthorizationPluginCreate (page
18) for more information on setting this flag.

A plug-in’s main entry point must be the function AuthorizationPluginCreate (page 18), which exchanges
the plug-in’s interface (AuthorizationPluginInterface (page 27)) and the authorization interface of
the Security Server (AuthorizationCallbacks (page 26)).

When you add a policy to the authorization policy database, it can refer to any number of plug-ins. Each
plug-in includes one or more authorization mechanisms, where a mechanism is a code module that performs
one step in the authorization process.

For example, if you wrote a policy for sending faxes that required users to select the fax machine they wanted
to use and enter a PIN for that machine, you might name the policy com.ifoo.ifax.send. To implement
the policy, you could write a plug-in called SendFaxPlugin that contains two mechanisms:
SelectFaxMachine and GetUserPIN. You would add your plug-in code to the folder
/System/Library/CoreServices/SecurityAgentPlugins as a bundle calledSendFaxPlugin.bundle
and you would use the AuthorizationRightSet function to add the lines shown in Listing 1 to the
authorization policy database:

Listing 1 Plug-in entry in policy database

<key>com.ifoo.ifax.send</key>
 <dict>
 <key>class</key>
 <string>evaluate-mechanisms</string>
 <key>comment</key>
 <string>Rule to evaluate whether user has right to
 use a specific fax machine.
 </string>

8 Overview
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

 <key>mechanisms</key>
 <array>
 <string>SendFaxPlugin:SelectFaxMachine</string>
 <string>SendFaxPlugin:GetUserPIN</string>
 </array>
 </dict>

Notice that each plug-in is identified by the name of the plug-in, a colon, and the name of the mechanism;
for example SendFaxPlugin:SelectFaxMachinewhere SelectFaxMachine is a mechanism in the plug-in
SendFaxPlugin.The keys used in the dictionary entry are listed in the files AuthorizationTags.h and
AuthorizationTagsPriv.h. (Note that AuthorizationTagsPriv.h is not part of the public API. Apple
reserves the right to change this file or its contents with future releases.)

The Security Server loads plug-ins into a separate process—a plug-in host—to isolate the process of
authorization from the client. There are two plug-in hosts:

 ■ One runs as an anonymous user and can be used to communicate with the user, for example to ask for
a password.

 ■ One runs with root privileges to perform privileged operations.

In this document, the portion of the Security Server that deals with authorization and authentication, together
with the plug-in hosts, is referred to as the authorization engine.

To have a specific mechanism run with root privileges, add a comma and the word privileged to the
mechanism name; for example:

<string>SendFaxPlugin:ChangeUserPIN,privileged</string>

Important: Authorization plug-ins that put up a GUI or otherwise connect to the window server cannot run
as privileged. Note that running GUI code as root is a bad idea in general, because GUI code links in many
libraries, any of which could contain security vulnerabilities.

When the authorization engine needs an authorization decision based on a policy that belongs to the plug-in,
the authorization engine calls each mechanism belonging to that policy in turn, in the order they are listed
in the policy database. For each mechanism, the authorization engine calls the plug-in’s
MechanismInvoke (page 22) function, passing the plug-in name:mechanism name for that mechanism.

The mechanism calls the SetResult (page 17) function to report the authorization decision. The authorization
engine does not consider the authorization complete and approved until all the mechanisms have returned
a positive (kAuthorizationResultAllow) authorization decision, one of the mechanisms has returned a
negative (kAuthorizationResultDeny) decision, the maximum number of retries has been reached
(kAuthorizationResultUndefined), or the user has canceled the attempt
(kAuthorizationResultUserCanceled).

Mechanisms in the authorization can communicate auxiliary information by setting and getting hints and
context data. Hints are data values for use during authorization; for example, you can use a hint to pass an
intermediate value from one mechanism to a subsequent mechanism. They are not preserved as part of the
authorization result. Context data is information that can be useful to an application, such as a user name
entered by the user during the authorization process. Context data can be added, read, or modified by each
mechanism in the authorization and is preserved by the Security Server. Context data can also be made
available to the authorization client after authorization is complete. See SetHintValue (page 16) and
SetContextValue (page 15) for more information on hints and context data.

Overview 9
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

When the authorization plug-in sets context data, it tags the data with a flag that specifies whether the
information should be returned to the authorization client upon request (by using the
AuthorizationCopyInfo function) or whether it’s restricted to the mechanisms involved in the authorization.

Functions

Your authorization plug-in communicates with the authorization engine through the engine’s callback
functions. These functions are declared in the AuthorizationCallbacks (page 26) structure passed to
your plug-in through the AuthorizationPluginCreate (page 18) function.

DidDeactivate
Report the successful deactivation of an authorization mechanism.

OSStatus (*DidDeactivate)(
 AuthorizationEngineRef inEngine,
);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
You must call this function after deactivating your authorization mechanism in response to a call to your
MechanismDeactivate (page 21) function. The authorization engine waits for confirmation that all
mechanisms have deactivated before continuing.

The authorization engine sends you the entry point to the DidDeactivate function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

GetArguments
Read the arguments for this authorization mechanism from the authorization policy database. Authorization
policy database arguments have not yet been implemented.

10 Functions
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

OSStatus (*GetArguments)(
 AuthorizationEngineRef inEngine,
 const AuthorizationValueVector **outArguments);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

outValue
On input, allocate a pointer to an AuthorizationValueVector structure. On output, the structure
contains the number of arguments and a pointer to the data. Because your
AuthorizationValueVector structure does not own the data, you must not deallocate the structure
or the data pointed to by the structure.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
The authorization policy database might contain arguments for each authentication mechanism. You can
use this function to retrieve these arguments.

Important: As of Mac OS X v 10.4, this feature has not been implemented.

The authorization engine sends you the entry point to the GetArguments function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Availability
This function is available in Mac OS X v10.4 and later; however, the database does not yet support arguments.

Declared In
AuthorizationPlugin.h

GetContextValue
Read a value collected during authorization.

OSStatus (*GetContextValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 AuthorizationContextFlags *outContextFlags,
 const AuthorizationValue **outValue);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

inKey
A key indicating which value you want to retrieve. This key must correspond to one you specified
when you used the SetContextValue (page 15) function to store a context value.

outContextFlags
On output points to a flag that indicates whether this value is available to the authorization client.

Functions 11
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

outValue
On input, allocate a pointer to an AuthorizationValue structure. On output, the structure contains
the size of the data and a pointer to the data. Because your AuthorizationValue structure does
not own the data, you must not deallocate the structure or the data pointed to by the structure.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
Your plug-in authorization mechanism might collect data such as the user name and other authentication
information during evaluation of authorization. You can use the SetContextValue (page 15) function to
have the Security Server store this data and the GetContextValue function to retrieve it.

The authorization engine sends you the entry point to the GetContextValue function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Do not call this function after you have called the SetResult (page 17) function. If you do so, the data
retrieved by the GetContextValue function might not reflect the current value even though the function
returns the errAuthorizationSuccess result code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

GetHintValue
Read a value stored by the plug-in authorization mechanism.

OSStatus (*GetHintValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 const AuthorizationValue **outValue);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

inKey
A key indicating which value you want to retrieve. This key must correspond to one you specified
when you used the GetHintValue (page 12) function to store a hint value.

outValue
On input, allocate a pointer to an AuthorizationValue structure. On output, the structure contains
the size of the data and a pointer to the data. Because your AuthorizationValue structure does
not own the data, you must not deallocate the structure or the data pointed to by the structure.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

12 Functions
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Discussion
Your plug-in authorization mechanism can save and retrieve auxiliary information—called hints—for use by
subsequent mechanisms that are part of the same authorization. You use the SetHintValue (page 16)
function to have the Security Server store this data and the GetHintValue function to retrieve it. Hints are
not preserved as part of the authorization result; once all mechanisms have approved the authorization or
any mechanism has denied it, the security engine disposes of the hints.

The authorization engine sends you the entry point to the GetHintValue function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Do not call this function after you have called the SetResult (page 17) function. If you do so, the data
retrieved by the GetHintValue function might not reflect the current value even though the function returns
the errAuthorizationSuccess result code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

GetSessionID
Read the session ID.

OSStatus (*GetSessionID)(
 AuthorizationEngineRef inEngine,
 AuthorizationSessionId *outSessionId);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

outSessionId
On output, points to the session ID.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
The session ID is a unique value provided by the authorization engine for a given authorization session.
Normally, all the mechanisms in your plug-in are called in turn for a given authorization session and there is
no need to ask for the session ID. However, if you were to launch an authorization daemon (for example)
that caches data from different authorization sessions and then uses that data later, you might need to keep
track of which session a given data item came from. The session ID is available for your use if you wish to
implement such a system.

The authorization engine sends you the entry point to the GetSessionID function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Availability
Available in Mac OS X v10.4 and later.

Functions 13
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Declared In
AuthorizationPlugin.h

RequestInterrupt
Request the authorization engine to interrupt the currently active authorization mechanism.

OSStatus (*RequestInterrupt)(
 AuthorizationEngineRef inEngine,
);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
When you call this function, the security engine calls the MechanismDeactivate (page 21) function for
your plug-in’s currently-active mechanism; that is, the mechanism that was last invoked and that has not yet
called the SetResult (page 17) function to report its result. Your mechanism should then stop any active
processing and call the DidDeactivate (page 10) function. When all mechanisms are inactive (that is, they
have called either SetResult or DidDeactivate), the authorization engine calls the
MechanismInvoke (page 22) function for the mechanism that called RequestInterrupt so that it can
resume the authorization process from that point. After all mechanisms have called SetResult, the
authorization engine calls each mechanism’s MechanismDestroy (page 21) function.

If your mechanism spins off a separate process or UI thread, that thread can call the RequestInterrupt
function to reinvoke the mechanism, even if that mechanism has already called the SetResult (page 17)
function. For example, if your plug-in implements a smart card authentication method, reading and evaluating
the card might take several minutes to perform. Therefore, in order to avoid blocking other processing while
the card is being evaluated, you might spin off a UI thread to interact with the user and then return from
MechanismInvoke (page 22). When the card has been read, the UI thread calls the SetResult function
with a value of kAuthorizationResultAllow and changes the UI to request the user’s PIN. The authorization
engine calls the next mechanism, which verifies the PIN. If the user pulls out the card before the verification
is complete, the UI thread can call RequestInterrupt. The authorization engine then calls the active
mechanism’s MechanismDeactivate (page 21) function, causing it to terminate the PIN verification and
call DidDeactivate (page 10). Then the authorization engine calls your UI mechanism’s
MechanismInvoke (page 22) function again. Your UI can then prompt the user to reinsert the card.

To understand this sequence better, suppose your plug-in contains three mechanisms: A, B, and C. Mechanism
A has called SetResult (page 17) and has no active processes. Mechanism B has called SetResult, but
still has a UI thread running. Mechanism C is running and has not yet called SetResult. The user clicks
Cancel or otherwise interrupts the UI thread, causing the UI thread to call the RequestInterrupt function.
The following sequence of events occurs:

1. The authorization engine calls mechanism C’s MechanismDeactivate (page 21) function.

2. Mechanism C stops active processing and calls the DidDeactivate (page 10) function.

14 Functions
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

3. The authorization engine calls mechanism B’s MechanismInvoke (page 22) function (because mechanism
B is the one that called RequestInterrupt).

4. Mechanism B updates the UI and calls the SetResult (page 17) function with the value
kAuthorizationResultAllow.

5. The authorization engine calls mechanism C’s MechanismInvoke function.

6. Mechanism C completes processing and calls SetResult with kAuthorizationResultAllow.

7. The authorization engine calls the MechanismDestroy (page 21) function of each mechanism in turn
(A, B, then C).

The authorization engine sends you the entry point to the RequestInterrupt function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

SetContextValue
Store data collected during authorization as a key-value pair.

OSStatus (*SetContextValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 AuthorizationContextFlags inContextFlags,
 const AuthorizationValue *inValue);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

inKey
A key identifying the value you are storing. For standard values such as user names, use the keys listed
in DirectoryService/DirServicesConst.h. If you need to define a new key, use reverse domain
notation (such as com.apple.ifoo) and make sure the key is unique. For example, you can use your
company name as a prefix for the key name.

inContextFlags
A flag that indicates whether this value should be available to the authorization client.

inValue
A pointer to an AuthorizationValue structure that contains the size of the context data and a
pointer to the data. Both the structure and the data are copied to the context maintained by the
Security Server.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Functions 15
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Discussion
Your plug-in authorization mechanism collects data such as the user name and other authentication
information during evaluation of authorization. You can use this function to have the Security Server store
this data and the GetContextValue (page 11) function to retrieve it.

When you store this context data, you flag it to indicate whether the authorization client can obtain the value
with the AuthorizationCopyInfo function. If data is set to be extractable
(kAuthorizationContextFlagExtractable), it is possible for the authorization client to use the
AuthorizationCopyInfo function to obtain the value. If data is marked as volatile
(kAuthorizationContextFlagVolatile), the value is not available to the client. In any case, sensitive
data such as a user’s password is not provided to the client.

The authorization engine sends you the entry point to the SetContextValue function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Do not call this function after you have called the SetResult (page 17) function. If you do so, the function
does not set the context data, even though the function returns the errAuthorizationSuccess result
code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

SetHintValue
Store data needed during authorization as a key-value pair.

OSStatus (*SetHintValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 const AuthorizationValue *inValue);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

inKey
A key identifying the value you are storing. For standard values such as a time stamp, use the keys
listed in DirectoryService/DirServicesConst.h. If you need to define a new key, make sure
the key is unique. For example, you can use your company name as a prefix for the key name.

inValue
A pointer to an AuthorizationValue structure that contains the size of the data and a pointer to
the data. Both the structure and the data are copied to storage maintained by the authorization
engine.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

16 Functions
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Discussion
Your plug-in authorization mechanism can save and retrieve auxiliary information—called hints—for use by
subsequent mechanisms that are part of the same authorization. You use the SetHintValue function to
have the Security Server store this data and the GetHintValue (page 12) function to retrieve it. Hints are
not preserved as part of the authorization result; once all mechanisms have approved the authorization or
any mechanism has denied it, the security engine disposes of the hints.

The authorization engine sends you the entry point to the SetHintValue function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Do not call this function after you have called the SetResult (page 17) function. If you do so, the function
does not set the hint data, even though the function returns the errAuthorizationSuccess result code.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

SetResult
Return the result of an authorization operation.

OSStatus (*SetResult)(
 AuthorizationEngineRef inEngine,
 AuthorizationResult inResult
);

Parameters
inEngine

An opaque handle that is passed to your plug-in when the authorization engine calls your
MechanismCreate (page 20) function.

inResult
The result of the authorization attempt. See “Authorization Result” (page 28) for possible values.

Return Value
A result code. Possible results are errAuthorizationSuccess (no error) and errAuthorizationInternal
(Security Server internal error).

Discussion
When an application calls the AuthorizationCopyRights function to request a specific authorization
right, the Security Agent looks for that right in the authorization policy database. If that right corresponds
to your plug-in, the authorization engine calls the MechanismInvoke (page 22) function for each mechanism
listed in the policy database for your plug-in.

When the authorization engine calls your MechanismInvoke (page 22) function, your plug-in should invoke
the specified mechanism to attempt an authorization operation. You use the SetResult function to return
the results of this operation. If the mechanism returns kAuthorizationResultAllow, then the authorization
engine calls the next mechanism (if any) specified in the authorization policy database for the policy. If any
of the mechanisms report a result other than kAuthorizationResultAllow, the authorization attempt
fails. If all of the mechanisms report results of kAuthorizationResultAllow, the authorization is considered
to have succeeded.

Functions 17
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Note that you can spin off a separate process and return from MechanismInvoke (page 22) before calling
SetResult. For example, you might do so to avoid blocking the Security Server if your mechanism takes a
significant amount of time to complete or if you want to be able to cancel the operation by calling the
RequestInterrupt (page 14) function (if, for example, the user has clicked Cancel).In that case, your
separate process must call the SetResult function to report the result; the authorization engine does not
call the next mechanism until you do so.

The authorization engine sends you the entry point to the SetResult function in an
AuthorizationCallbacks structure when you call the AuthorizationPluginCreate (page 18) function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

Callbacks by Task

Initializing a Plug-in

AuthorizationPluginCreate (page 18)
Initializes the plug-in and exchanges interfaces with the authorization engine.

Authorization Plug-in Interface Functions
You must declare and implement the functions referred to in the AuthorizationPluginInterface
structure that you pass to the authorization engine with the AuthorizationPluginCreate (page 18)
function.

PluginDestroy (page 23)
Notifies the plug-in that it is about to be unloaded.

MechanismCreate (page 20)
Create an authorization mechanism.

MechanismInvoke (page 22)
Invoke an authorization mechanism to perform an authorization operation.

MechanismDeactivate (page 21)
Deactivate an authorization mechanism.

MechanismDestroy (page 21)
Destroy an authorization mechanism.

Callbacks

AuthorizationPluginCreate
Initializes the plug-in and exchanges interfaces with the authorization engine.

18 Callbacks by Task
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

OSStatus AuthorizationPluginCreate (
 const AuthorizationCallbacks *callbacks,
 AuthorizationPluginRef *outPlugin,
 const AuthorizationPluginInterface **outPluginInterface
);

Parameters
callbacks

A pointer to a structure containing entry points to the Security Server. The functions in this interface
are described in “Calling the Authorization Engine” (page 10).

outPlugin
On input, a pointer that you can assign, on output, to a reference value that you define. The
authorization engine passes this reference back to you in any subsequent calls to your functions
outPluginInterface->MechanismCreate (MechanismCreate (page 20)) and
outPluginInterface->PluginDestroy (MechanismDestroy (page 21)) so that you can identify
the instance of the plug-in affected.

outPluginInterface
On input, a pointer that you assign, on output, to a structure containing entry points in the plug-in.
This structure remains valid until the authorization engine calls
outPluginInterface->PluginDestroy.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
This function is the main entry point to the plug-in. The authorization engine calls this function only once.
The plug-in receives a structure (AuthorizationCallbacks (page 26)) containing the entry points to the
Security Server’s functions (described in “Calling the Authorization Engine” (page 10)) and returns a structure
(AuthorizationPluginInterface (page 27)) containing the entry points to all of the plug-in’s routines
(“Authorization Plug-in Interface Functions” (page 18)). Both of these structures contain version numbers.
The authorization engine matches the version of its interface to the version in your plug-in’s
AuthorizationPluginInterface structure in order to ensure that older plug-ins will continue to function
correctly after the Security Server is updated.

If your plug-in is running in Mac OS X v10.5 or later and displays a window before the user has logged in,
you must set the KHIWindowBitCanBeVisibleWithoutLogin flag on the window.

For Cocoa, the NSWindow method to do this is:

- (void)setCanBecomeVisibleWithoutLogin:(BOOL)flag;

This method is available in Mac OS X v10.5 and later; see NSWindow Class Reference.

For Carbon, you set the KHIWindowBitCanBeVisibleWithoutLogin attribute directly; seeWindowManager
Reference. This attribute is also supported by IBCarbonRuntime and when archiving a window.

Important: Authorization plug-ins that put up a GUI or otherwise connect to the window server cannot run
as privileged. Note that running GUI code as root is a bad idea in general, because GUI code links in many
libraries, any of which could contain security vulnerabilities.

Availability
Available in Mac OS X v10.4 and later.

Callbacks 19
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Declared In
AuthorizationPlugin.h

MechanismCreate
Create an authorization mechanism.

OSStatus (*MechanismCreate)(
 AuthorizationPluginRef inPlugin,
 AuthorizationEngineRef inEngine,
 AuthorizationMechanismId mechanismId,
 AuthorizationMechanismRef *outMechanism
);

You would declare your function like this if you were to name it MyMechanismCreate:

OSStatus MyMechanismCreate (
 AuthorizationPluginRef inPlugin,
 AuthorizationEngineRef inEngine,
 AuthorizationMechanismId mechanismId,
 AuthorizationMechanismRef *outMechanism
);

Parameters
inPlugin

The authorization plug-in reference you assigned to the plug-in in the
AuthorizationPluginCreate (page 18) function.

inEngine
An opaque handle that you must pass back to the authorization engine when you call one of the
engine’s callback functions.

mechanismID
The mechanism ID specified in the authorization policy database is passed to the plug-in so that the
plug-in can create the appropriate mechanism.

outMechanism
On output, points to an authorization mechanism reference that you define. The authorization engine
includes this reference when it calls your plug-in so that you can identify which instance of a mechanism
to invoke, deactivate, or destroy.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
A given authorization plug-in can implement any number of authorization mechanisms, distinguished by
their mechanism names in the authorization policy database. For an example, see Listing 1 (page 8).

When the authorization engine calls your MechanismCreate function, you should create a mechanism of
the type specified by the mechanismID parameter and return an authorization mechanism reference.
Subsequently, the authorization engine can call your MechanismInvoke (page 22) function to perform an
authorization, or can direct you to deactivate or destroy the mechanism instance by calling your
MechanismDeactivate (page 21) or MechanismDestroy (page 21) functions.

20 Callbacks
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

MechanismDeactivate
Deactivate an authorization mechanism.

OSStatus (*MechanismDeactivate)(
 AuthorizationMechanismRef inMechanism
);

You would declare your function like this if you were to name it MyMechanismDeactivate:

OSStatus MyMechanismDeactivate (
 AuthorizationMechanismRef inMechanism
);

Parameters
inMechanism

An authorization mechanism reference that you returned when your MechanismCreate (page 20)
function was called to create the mechanism.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
The authorization engine calls the MechanismDeactivate function of each active mechanism when you
call the RequestInterrupt (page 14) function. To deactivate your mechanism, you must stop any processing
that is currently underway; for example, you should terminate any threads or UI processes that you initiated.

After you have terminated all processing, you must call the DidDeactivate (page 10) function; the
authorization engine waits for you to call this function before it resumes operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

MechanismDestroy
Destroy an authorization mechanism.

OSStatus (*MechanismDestroy)(
 AuthorizationMechanismRef inMechanism
);

You would declare your function like this if you were to name it MyMechanismDestroy:

OSStatus MyMechanismDeactivate (

Callbacks 21
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

 AuthorizationMechanismRef inMechanism
);

Parameters
inMechanism

An authorization mechanism reference that you returned when your MechanismCreate (page 20)
function was called to create the mechanism.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
When the authorization engine calls your MechanismDestroy function, you must release all resources owned
by your mechanism and do any other cleanup necessary (such as deleting temporary files).

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

MechanismInvoke
Invoke an authorization mechanism to perform an authorization operation.

OSStatus (*MechanismInvoke)(
 AuthorizationMechanismRef inMechanism
);

You would declare your function like this if you were to name it MyMechanismInvoke:

OSStatus MyMechanismInvoke (
 AuthorizationMechanismRef inMechanism
);

Parameters
inMechanism

An authorization mechanism reference that you returned when your MechanismCreate (page 20)
function was called to create the mechanism.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
When the authorization engine calls your MechanismInvoke function, you should perform the authorization
operation indicated by the mechanism reference. You can use the functions GetArguments (page 10),
GetContextValue (page 11), and GetHintValue (page 12) to get more information, if any, about the
authorization.

Availability
Available in Mac OS X v10.4 and later.

22 Callbacks
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Declared In
AuthorizationPlugin.h

PluginDestroy
Notifies the plug-in that it is about to be unloaded.

OSStatus (*PluginDestroy)(
 AuthorizationPluginRef inPlugin
);

You would declare your function like this if you were to name it MyPluginDestroy:

OSStatus MyPluginDestroy (
 AuthorizationPluginRef inPlugin
);

Parameters
inPlugin

The authorization plug-in reference you assigned to the plug-in in the
AuthorizationPluginCreate (page 18) function.

Return Value
A result code. Return errAuthorizationSuccess (no error) if the function completes successfully and
errAuthorizationInternal (Security Server internal error) if any error occurs.

Discussion
When this function is called, your plug-in should release any resources it is holding and do any other cleanup
necessary (such as deleting temporary files) before it is unloaded.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

Data Types

AuthorizationValue
Used to pass data between the authorization engine and the plug-in mechanism.

typedef struct AuthorizationValue {
 UInt32 length;
 void *data;
} AuthorizationValue;

Availability
Available in Mac OS X v10.4 and later.

Data Types 23
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Declared In
AuthorizationPlugin.h

AuthorizationValueVector
Used to pass arguments from the authorization policy database to the authorization mechanism.

typedef struct AuthorizationValueVector {
 UInt32 count;
 AuthorizationValue *values;
} AuthorizationValueVector;

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationMechanismID
The mechanism ID specified in the authorization policy database is passed to the plug-in to create the
appropriate mechanism.

typedef const AuthorizationString AuthorizationMechanismId;

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationPluginRef
Handle passed by the plug-in to the authorization engine when the plug-in is initiated.

typedef void *AuthorizationPluginRef;

Discussion
Your AuthorizationPluginCreate (page 18) function assigns this value and returns it to the authorization
engine. The authorization engine passes this reference back to you in any subsequent calls to your
MechanismCreate (page 20) and PluginDestroy (page 23) functions.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationMechanismRef
Handle passed by the plug-in to the authorization engine when creating an instance of a mechanism.

24 Data Types
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

typedef void *AuthorizationMechanismRef;

Discussion
Your MechanismCreate (page 20) function assigns this value and returns it to the authorization engine.
The authorization engine passes this reference back to you in any subsequent calls to your
MechanismInvoke (page 22), MechanismDeactivate (page 21), and MechanismDestroy (page 21)
functions.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationEngineRef
Handle passed from the authorization engine to an instance of a mechanism in a plug-in.

typedef struct __OpaqueAuthorizationEngine *AuthorizationEngineRef;

Discussion
The authorization engine passes one of these opaque handles to your plug-in when it calls your
MechanismCreate (page 20) function. Your mechanism must pass this handle back to the authorization
engine when you call one of the engine’s callback functions (see “Calling the Authorization Engine” (page
10)).

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationSessionId
A unique value for an authorization session, provided by the authorization engine.

typedef void *AuthorizationSessionId;

Discussion
You can call the GetSessionID (page 13) function to retrieve the authorization session ID.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationResult
The data type for the result of an authorization evaluation.

Data Types 25
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

typedef UInt32 AuthorizationResult;

Discussion
The permissible values for an authorization result are enumerated in “Authorization Result” (page 28).

Availability
Available in Mac OS X v10.4 and later.

Declared In
AuthorizationPlugin.h

AuthorizationCallbacks
The interface implemented by the Security Server.

typedef struct AuthorizationCallbacks {
 UInt32 version;
 OSStatus (*SetResult)(
 AuthorizationEngineRef inEngine,
 AuthorizationResult inResult);
 OSStatus (*RequestInterrupt)(
 AuthorizationEngineRef inEngine);
 OSStatus (*DidDeactivate)(
 AuthorizationEngineRef inEngine);
 OSStatus (*GetContextValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 AuthorizationContextFlags *outContextFlags,
 const AuthorizationValue **outValue);
 OSStatus (*SetContextValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 AuthorizationContextFlags inContextFlags,
 const AuthorizationValue *inValue);
 OSStatus (*GetHintValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 const AuthorizationValue **outValue);
 OSStatus (*SetHintValue)(
 AuthorizationEngineRef inEngine,
 AuthorizationString inKey,
 const AuthorizationValue *inValue);
 OSStatus (*GetArguments)(
 AuthorizationEngineRef inEngine,
 const AuthorizationValueVector **outArguments);
 OSStatus (*GetSessionId)(
 AuthorizationEngineRef inEngine,
 AuthorizationSessionId *outSessionId);
} AuthorizationCallbacks;

Discussion
This structure is passed to your plug-in through the AuthorizationPluginCreate (page 18) function.
The functions defined by this structure are described in “Calling the Authorization Engine” (page 10).

Availability
Available in Mac OS X v10.4 and later.

26 Data Types
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

Declared In
AuthorizationPlugin.h

AuthorizationPluginInterface
The interface that must be implemented by your plug-in.

typedef struct AuthorizationPluginInterface
 UInt32 version;
 OSStatus (*PluginDestroy)(
 AuthorizationPluginRef inPlugin);
 OSStatus (*MechanismCreate)(
 AuthorizationPluginRef inPlugin,
 AuthorizationEngineRef inEngine,
 AuthorizationMechanismId mechanismId,
 AuthorizationMechanismRef *outMechanism);
 OSStatus (*MechanismInvoke)(
 AuthorizationMechanismRef inMechanism);
 OSStatus (*MechanismDeactivate)(
 AuthorizationMechanismRef inMechanism);
 OSStatus (*MechanismDestroy)(
 AuthorizationMechanismRef inMechanism);
} AuthorizationPluginInterface;

Discussion
Your plug-in passes this interface to the authorization engine through the
AuthorizationPluginCreate (page 18) function. The functions defined by this structure are described
in “Functions Implemented By the Plug-in” (page 18).

Constants

Authorization Context Flags
Defines flags that specify whether authentication data should be made available to the authorization client.

typedef UInt32 AuthorizationContextFlags;
enum {
 kAuthorizationContextFlagExtractable = (1 << 0),
 kAuthorizationContextFlagVolatile = (1 << 1),
 kAuthorizationContextFlagSticky = (1 << 2)
};

Constants
kAuthorizationContextFlagExtractable

It is possible for the authorization client to use the AuthorizationCopyInfo function to obtain the
value.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

Constants 27
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

kAuthorizationContextFlagVolatile
The value is not saved for the authorization client.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

kAuthorizationContextFlagSticky
This data persists through an interrupted or failed evaluation.

This flag can be used to propagate an error condition from a downstream plug-in to an upstream
one. It is not remembered in the authorization reference (see Authorization Services C Reference.

Available in Mac OS X v10.5 and later.

Declared in AuthorizationPlugin.h.

Authorization Result
The result of an authorization evaluation.

enum {
 kAuthorizationResultAllow,
 kAuthorizationResultDeny,
 kAuthorizationResultUndefined,
 kAuthorizationResultUserCanceled,
};

Constants
kAuthorizationResultAllow

The authorization operation succeeded and authorization should be granted.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

kAuthorizationResultDeny
The authorization operation succeeded and authorization should be denied.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

kAuthorizationResultUndefined
The authorization operation failed and should not be retried for this session.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

kAuthorizationResultUserCanceled
The user has requested that the authorization evaluation be terminated.

Available in Mac OS X v10.4 and later.

Declared in AuthorizationPlugin.h.

Plug-in Interface Version
The version of the interface implemented by the plug-in.

28 Constants
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

enum {
 kAuthorizationPluginInterfaceVersion = 0
};

Discussion
The plug-in interface is defined by the AuthorizationPluginInterface (page 27) structure and described
in “Functions Implemented By the Plug-in” (page 18).

Authorization Engine Interface Version
The version of the interface implemented by the authorization engine.

enum {
 kAuthorizationCallbacksVersion = 0
};

Discussion
The authorization engine interface is defined by the AuthorizationCallbacks (page 26) structure and
described in “Calling the Authorization Engine” (page 10).

Result Codes

The result codes used by authorization plug-ins are listed in the table below.

DescriptionValueResult Code

The operation completed successfully.0errAuthorizationSuccess

Available in Mac OS X v10.0 and later.

An unrecognized internal error occurred.-60008errAuthorizationInternal

Available in Mac OS X v10.0 and later.

Result Codes 29
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

30 Result Codes
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Authorization Plug-in Reference

This table describes the changes to Authorization Plug-in Reference.

NotesDate

Added the Sticky authorization context flag to the Constants section; added a
note about tagging windows that can be visible before login.

2007-05-15

New document that describes the interface for creating plug-ins that can
participate in authorization decisions.

2005-04-29

New document that describes the interface for creating plug-ins that can
participate in authorization decisions.

31
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

32
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Authorization Context Flags 27
Authorization Engine Interface Version 29
Authorization Result 28
AuthorizationCallbacks structure 26
AuthorizationEngineRef structure 25
AuthorizationMechanismID data type 24
AuthorizationMechanismRef data type 24
AuthorizationPluginCreate callback 18
AuthorizationPluginInterface structure 27
AuthorizationPluginRef data type 24
AuthorizationResult data type 25
AuthorizationSessionId data type 25
AuthorizationValue structure 23
AuthorizationValueVector structure 24

D

DidDeactivate function 10

E

errAuthorizationInternal constant 29
errAuthorizationSuccess constant 29

G

GetArguments function 10
GetContextValue function 11
GetHintValue function 12
GetSessionID function 13

K

kAuthorizationContextFlagExtractable constant
27

kAuthorizationContextFlagSticky constant 28
kAuthorizationContextFlagVolatile constant 28
kAuthorizationResultAllow constant 28
kAuthorizationResultDeny constant 28
kAuthorizationResultUndefined constant 28
kAuthorizationResultUserCanceled constant 28

M

MechanismCreate callback 20
MechanismDeactivate callback 21
MechanismDestroy callback 21
MechanismInvoke callback 22

P

Plug-in Interface Version 28
PluginDestroy callback 23

R

RequestInterrupt function 14

S

SetContextValue function 15
SetHintValue function 16
SetResult function 17

33
2007-05-15 | © 2004, 2007 Apple Inc. All Rights Reserved.

Index

	Authorization Plug-in Reference
	Contents
	Listings
	Authorization Plug-in Reference
	Overview
	Organization of This Document
	See Also
	About Authorization Plug-ins

	Functions
	DidDeactivate
	GetArguments
	GetContextValue
	GetHintValue
	GetSessionID
	RequestInterrupt
	SetContextValue
	SetHintValue
	SetResult

	Callbacks by Task
	Initializing a Plug-in
	Authorization Plug-in Interface Functions

	Callbacks
	AuthorizationPluginCreate
	MechanismCreate
	MechanismDeactivate
	MechanismDestroy
	MechanismInvoke
	PluginDestroy

	Data Types
	AuthorizationValue
	AuthorizationValueVector
	AuthorizationMechanismID
	AuthorizationPluginRef
	AuthorizationMechanismRef
	AuthorizationEngineRef
	AuthorizationSessionId
	AuthorizationResult
	AuthorizationCallbacks
	AuthorizationPluginInterface

	Constants
	Authorization Context Flags
	Authorization Result
	Plug-in Interface Version
	Authorization Engine Interface Version

	Result Codes

	Revision History
	Index
	A
	D
	E
	G
	K
	M
	P
	R
	S

