
Apple Cryptographic Service Provider
Functional Specification



2005-03-10


Apple Computer, Inc.
© 2005 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.
The Apple logo is a trademark of Apple
Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.
No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac, Mac OS, and
QuickTime are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Times is a trademark of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.
THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.
Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 3

Apple Cryptographic Service Provider Functional Specification
March 10, 2005

1. Introduction

This document describes, at a very high level, the capabilities of the Apple CSP (known
herein as “AppleCSP”) for Mac OS X. These capabilities are described in terms of key types
and formats and supported algorithms.

This document also introduces some nomenclature which is used to describe various attributes
of CSSM keys. Terms defined here are shown in bold both in their definition and usage.

2. Key Types and Formats
In general, the AppleCSP allows the creation and use of keys in either reference or raw type.
For purposes of this document, a key’s type is defined by the value of its
CSSM_KEYHEADER::BlobType field. A reference key has a type equal to
CSSM_KEYBLOB_REFERENCE. A raw key has a type equal to
CSSM_KEYBLOB_RAW. When keys are generated, the caller can specify one of the two
blob types via the *KeyAttr flags in the API call (e.g., PublicKeyAttr in
CSSM_GenerateKeyPair()).

The CDSA specs allow a number of formats for each type. A key’s format is defined by the
CSSM_KEYHEADER::CSSM_KEYBLOB_FORMAT field. Generally in the AppleCSP,
when generating a key, the caller can either specify a particular format, or else let the CSP
determine the default format for the given algorithm and key type by specifying
CSSM_KEYBLOB_RAW_FORMAT_NONE for the format. (A key’s class is one of
{Public,Private,Symmetric}. All reference keys have format
CSSM_KEYBLOB_REF_FORMAT_INTEGER.

The following tables define the supported formats for raw keys of specified class and
algorithm.

Symmetric keys (all supported algorithms):
 Format = CSSM_KEYBLOB_RAW_FORMAT_OCTET_STRING

Asymmetric keys:

• RSA public keys:
CSSM_KEYBLOB_RAW_FORMAT_PKCS1 (default, BSAFE compatible)
CSSM_KEYBLOB_RAW_FORMAT_X509 (openssl compatible)

• RSA private keys:

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 (openssl compatible)
CSSM_KEYBLOB_RAW_FORMAT_PKCS8 (default, BSAFE compatible)

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 4

• DSA public keys:
CSSM_KEYBLOB_RAW_FORMAT_X509 (default, openssl compatible)
CSSM_KEYBLOB_RAW_FORMAT_FIPS186 (BSAFE compatible)

• DSA private keys:

CSSM_KEYBLOB_RAW_FORMAT_FIPS186 (default, BSAFE compatible)
CSSM_KEYBLOB_RAW_FORMAT_PKCS8 (SMIME compatible)
CSSM_KEYBLOB_RAW_FORMAT_OPENSSL (openssl compatible)

• Diffie-Hellman public keys:

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 (default)
CSSM_KEYBLOB_RAW_FORMAT_X509 (i.e., SubjectPublicKeyInfo)

• Diffie-Hellman private keys:

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 (default)
CSSM_KEYBLOB_RAW_FORMAT_PKCS8 (PKCS8, X9.42 parameters)

• FEE private and public keys:

CSSM_KEYBLOB_RAW_FORMAT_NONE (default, DER encoded)
CSSM_KEYBLOB_RAW_FORMAT_ OCTET_STRING (native, raw bytes)

In order to generate a key with a format other than the default format described above, you
have to add an appropriate attribute to the key generate context via
CSSM_UpdateContextAttributes(). To specify a non-default format when generating public
keys, use CSSM_ATTRIBUTE_PUBLIC_KEY_FORMAT. To specify a non-default format
when generating private keys, use CSSM_ATTRIBUTE_PRIVATE_KEY_FORMAT.

Note that any key which is generated by the CSP, in any legal type and format, can be used in
any call which accepts that key class and algorithm. E.g., whenever an RSA public key is
called for, the app may pass in a raw or reference key.; if passing in a raw key, it can be in any
format in the above table.

Also note that if performance is of interest, the use of raw RSA and DSA keys is deprecated.
Better performance is obtained using reference keys. There is no such advantage for
symmetric keys.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 5

3. Key Generation

The following tables list the supported algorithms for the specified key generation functions:

CSSM_GenerateKey

 Algorithm Key size in bytes
 CSSM_ALGID_DES 8
 CSSM_ALGID_3DES_3KEY 24
 CSSM_ALGID_RC2 1..128
 CSSM_ALGID_RC4 1..512
 CSSM_ALGID_RC5 1..255
 CSSM_ALGID_SHA1HMAC (for MAC only) 20..256
 CSSM_ALGID_MD5HMAC (for MAC only) 0..2048
 CSSM_ALGID_AES 128, 192, 256
 CSSM_ALGID_ASC 1..64
 CSSM_ALGID_BLOWFISH 4..56
 CSSM_ALGID_CAST 5..16

CSSM_GenerateKeyPair

 Algorithm Key size in bits
 CSSM_ALGID_RSA >= 512; key size mod 16 == 0
 CSSM_ALGID_DSA >= 512
 CSSM_ALGID_FEE See below
 CSSM_ALGID_DH 512 <= keySize <= 2048

 FEE Key Generation

FEE keys can only be generated in a limited number of discrete sizes. Additionally,
two parameters may optionally be specified when generating FEE key pairs. These
parameters define the elliptic curve upon which subsequent elliptic algebra is
performed. The parameters are known as “prime type” and “curve type”. (A discussion
of the significance of these parameters is outside the scope of this document.) These
parameters, both of which have default values for any given (legal) key size, can be
specified as additional attributes in the key generation context passed to
CSSM_GenerateKeyPair. The attribute types and values can be found in
<Security/cssmapple.h>. The prime type is specified via attribute type
CSSM_ATTRIBUTE_FEE_PRIME_TYPE; the curve type is specified via attribute
type CSSM_ATTRIBUTE_FEE_CURVE_TYPE.

A complete list of legal key sizes and curve parameters follows. The default curve
each key size with multiple sets of curve parameters is shown; when specifying key
size, prime type, and curve parameters, only enough info to unambiguously identify
the curve is needed.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 6

Key Size (bits) Prime Type Curve Type

 31 Mersenne Montgomery
 31 Mersenne Weierstrass (default)
 127 Mersenne Montgomery
 128 FEE Weierstrass
 161 FEE Weierstrass (default)
 161 General Weierstrass
 192 General Weierstrass

Diffie-Hellman Key Generation
Diffie-Hellman (D-H) key pair generation involves either the specification or the
generation of D-H algorithm parameters. The contents and meaning of these algorithm
parameters is beyond the scope of this document; suffice it to say the D-H algorithm
parameters are encapsulated in an opaque blob in the form of a CSSM_DATA. This
parameter blob can be passed into the CSP at CSSM_CSP_CreateKeyGenContext
time (via the Params argument); it can be calculated explicitly by the CSP via
CSSM_GenerateAlgorithmParameters, which returns the calculated parameters to the
caller (as well as adding the calculated parameters to the key generation context), or it
can be implicitly calculated by the CSP at D-H key generation time if no parameters
have been specified in the context. For two parties to perform D-H key exchange, they
must use the same D-H algorithm parameters. Distribution of D-H parameters, in the
clear and in public, does not compromise the security of the D-H key exchange
mechanism in any way and is in fact very common. Calculation of D-H algorithm
parameters is a rather time-consuming process - it takes about 90 seconds on an 800
MHz G4 to calculate algorithm parameters for 1024-bit D-H keys - so systems which
perform D-H key exchange typically do not calculate these parameters very often -
certainly not once for each key pair.

CSSM_DeriveKey
 Supported Key Derivation algorithms (AlgorithmID):

 CSSM_ALGID_PKCS5_PBKDF2
 CSSM_ALGID_DH
 CSSM_ALGID_PKCS12_PBE_ENCR
 CSSM_ALGID_PKCS12_PBE_MAC

CSSM_ALGID_PKCS5_PBKDF1_MD5
CSSM_ALGID_PKCS5_PBKDF1_MD2
CSSM_ALGID_PKCS5_PBKDF1_SHA1
CSSM_ALGID_PBE_OPENSSL_MD5

Derived key algorithm (DeriveKeyType)
The legal key algorithms and sizes are the same as those shown for
CSSM_GenerateKey, above.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 7

CSSM_DeriveKey parameters

Parameters for key derivation algorithm-specific. The following is a description of the
algorithm-specific parameters for each key derivation algorithm.

o CSSM_ALGID_PKCS5_PBKDF1_MD5
o CSSM_ALGID_PKCS5_PBKDF1_MD2
o CSSM_ALGID_PKCS5_PBKDF1_SHA1
o CSSM_ALGID_PBE_OPENSSL_MD5

The first three algorithms implement the algorithm defined in PKCS5 version
1.5. The OPENSSL_MD5 algorithm implements a derivation algorithm first
implemented in openssl, it’s the “native” Openssl key wrapping algorithm,
since deprecated but still in widespread use.

These take an initialization vector in the Params argument. Password is
obtained either from the incoming CSSM_CRYPTO_DATA.Seed, or from a
Secure Passphrase key in the context (see “Secure Passphrases, below). Salt
and iteration count are passed in directly; both are required.

o CSSM_ALGID_PKCS12_PBE_ENCR
o CSSM_ALGID_PKCS12_PBE_MAC

These algorithms implement the key derivation algorithm defined in PKCS12.
There are slightly different “flavors” for deriving MAC key and encryption
keys, hence the two ALGID values. These take an initialization vector in the
Params argument. Password is obtained either from the incoming
CSSM_CRYPTO_DATA.Seed, or from a Secure Passphrase key in the context
(see “Secure Passphrases, below). Salt and iteration count are passed in
directly; salt is optional, iteration count is required. The passphrase is
expressed in UTF8 format. The CSP converts this to Unicode per the PKCS12
specification prior to key derivation.

o CSSM_ALGID_DH

Diffie Hellman key derivation requires the presence of a private key, passed
into CSSM_DeriveKey as BaseKey. A public key is also required; this can be
passed either as a CSSM_ATTRIBUTE_PUBLIC_KEY attribute (manually
added to the key derivation context) or directly in the Param data, as a raw
(unformatted) PKCS3-style Diffie-Hellman key.

o CSSM_ALGID_PKCS5_PBKDF2

This algorithm implements key derivation as defined in PKCS5 version 2. It
takes its parameters in the form of a CSSM_PKCS5_PBKDF2_PARAMS, a

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 8

pointer to which is placed in the Param.Data field. Param.Length must be set to
sizeof(CSSM_PKCS5_PBKDF2_PARAMS).

The CSSM_PKCS5_PBKDF2_PARAMS .PseudoRandomFunction field must
currently be set to CSSM_PKCS5_PRF_HMAC_SHA1. This algorithm does
not have any CSMS_KEY as an input, so the BaseKey argument of
CSSM_CSP_CreateDeriveKeyContext is NULL.

Secure Passphrases

Key Derivation algorithms which require a passphrase can obtain the passphrase data
from a special CSSM_KEY called a Secure Passphrase Key. From the point of view of
the CSP being described here, this is simply any key – passed into CSSM_DeriveKey
via the BaseKey argument - with algorithm
CSSM_ALGID_SECURE_PASSPHRASE. Such a key – which is created elsewhere –
contains user-specific passphrase data in UTF8 form. In fact this is currently actually
only used in securityd’s private instance of the AppleCSP; securityd creates and
maintains these Secure Passphrase keys on behalf of the CSPDL, hence on behalf of
applications. This mechanism allows for the existence of persistent passphrase objects,
the contents of which never appear in the application’s address space. Applications
using the AppleCSP directly have no reason to use Secure Passphrase keys.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 9

4. Cryptographic Operations

Symmetric Encryption/Decryption

 Note “PKCS5/7 padding” means that either PKCS5 or PKCS7 padding may be specified.

The two are identical for 8-byte block ciphers.

 Algorithm Modes (CSSM_ALGMODE_xxx) Notes
CSSM_ALGID_DES CBCPadIV8 Requires PKCS5/7 padding
 Requires an 8-byte IV

 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

CSSM_ALGID_3DES_3KEY_EDE
 CBCPadIV8 Requires PKCS5/7 padding

 Requires an 8-byte IV
 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

CSSM_ALGID_AES CBCPadIV8 Requires PKCS7 padding
 Requires a block-sized IV

 CBC_IV8 Requires a block-sized IV
 ECBPad Requires PKCS7 padding
 ECB
 NOTE: AES allows block sizes of 16, 24, and 32 bytes. The default is 16 bytes.
 The application can specify other block sizes via a

 CSSM_ATTRIBUTE_BLOCK_SIZE attribute in the symmetric context.
 NOTE: the AES implementation has been heavily optimized for the case of 16-byte

keys and blocks.

CSSM_ALGID_RC2 CBCPadIV8 Requires PKCS5/7 padding
 Requires an 8-byte IV

 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

CSSM_ALGID_RC4 NONE No options

CSSM_ALGID_RC5 CBCPadIV8 Requires PKCS5/7 padding
 Requires an 8-byte IV

 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 10

CSSM_ALGID_BLOWFISH CBCPadIV8 Requires PKCS5/7 padding
 Requires an 8-byte IV

 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

CSSM_ALGID_CAST CBCPadIV8 Requires PKCS5/7 padding
 Requires an 8-byte IV

 CBC_IV8 Requires an 8-byte IV
 ECBPad Requires PKCS5/7 padding
 ECB

Asymmetric Encryption/Decryption

Encryption algorithm Required key algorithm
CSSM_ALGID_RSA CSSM_ALGID_RSA
CSSM_ALGID_FEED CSSM_ALGID_FEE
CSSM_ALGID_FEEDExp CSSM_ALGID_FEE

The FEE encryption algorithms do not require (or accept) the specification of a mode or of a
padding specification. They implement a custom padding algorithm.

The RSA algorithm allows for an optional mode and padding (mode and padding are
independent). Padding can be CSSM_PADDING_NONE or CSSM_PADDING_PKCS1.
Specifying CSSM_PADDING_NONE is not recommended unless the programmer really
knows what they are doing; note that with CSSM_PADDING_NONE, the input size for both
encrypting and decrypting must be exactly the same as the key size.

RSA Encryption provides a “blinding” option to defend against timing attacks, in which the
attacker attempts to glean information about a server’s private key by getting the server to
encrypt or decrypot various pieces of attacker-chosen data and measuring the time it takes for
the server to do so. Enabling RSA blinding adds a pseudorandom amount of “noisy” time to a
private key operationm preventing an attacker from knowing anything about the server’s
private key. The Blinding option, normally disabled, is enabled by adding a
CSSM_ATTRIBUTE_RSA_BLINDING attribute, data type uint32, to the encryption context.
A non zero value for the attribute’s value turns on RSA blinding.

RSA encryption and decryption also allow an optional mode argument (which must be
manually added to the asymmetric context via CSSM_UpdateContextAttributes()). These
optional modes are CSSM_ALGMODE_PUBLIC_KEY and
CSSM_ALGMODE_PRIVATE_KEY. Normally, RSA encryption is performed with a public
key; RSA decryption is performed with a private key. In the absence a mode attribute
specifying otherwise, these operations will fail with a
CSSMERR_CSP_INVALID_KEY_CLASS error if performed with the improper key class. It

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 11

is possible to perform RSA encryption with a private key by specifying
CSSM_ALGMODE_PRIVATE_KEY, and RSA decryption using a public key by specifying
CSSM_ALGMODE_PUBLIC_KEY. (These operations actually constitute the "raw" RSA
signature operations.)

Digital signature and verify

The following algorithms are supported, shown with the required key type.

Signature algorithm Required key algorithm
CSSM_ALGID_SHA1WithRSA CSSM_ALGID_RSA
CSSM_ALGID_MD5WithRSA CSSM_ALGID_RSA
CSSM_ALGID_MD2WithRSA CSSM_ALGID_RSA
CSSM_ALGID_SHA256WithRSA CSSM_ALGID_RSA
CSSM_ALGID_SHA384WithRSA CSSM_ALGID_RSA
CSSM_ALGID_512WithRSA CSSM_ALGID_RSA
CSSM_ALGID_RSA (raw; see note) CSSM_ALGID_RSA
CSSM_ALGID_SHA1WithDSA CSSM_ALGID_DSA
CSSM_ALGID_DSA (raw) CSSM_ALGID_DSA
CSSM_ALGID_FEE_MD5 CSSM_ALGID_FEE
CSSM_ALGID_FEE_SHA1 CSSM_ALGID_FEE
CSSM_ALGID_SHA1WithECDSA CSSM_ALGID_FEE
CSSM_ALGID_FEE (raw) CSSM_ALGID_FEE
CSSM_ALGID_ECDSA (raw) CSSM_ALGID_FEE

Note: “Raw” sign and verify is used to sign or verify a digest which is calculated by the app
separately from the sign/verify operation. Raw RSA sign and verify require the specification
of the digest algorithm at Sign/Verify time. This is done via the “DigestAlgorithm” to the
CSSM_SignData and CSSM_VerifyData functions.

Digest
 CSSM_ALGID_MD2 Outsize = 16 bytes
 CSSM_ALGID_MD5 Outsize = 16 bytes
 CSSM_ALGID_SHA1 Outsize = 20 bytes
 CSSM_ALGID_SHA256 Outsize = 32 bytes
 CSSM_ALGID_SHA384 Outsize = 48 bytes
 CSSM_ALGID_SHA512 Outsize = 64 bytes

The latter three algorithms are variants of a generic class of digest algorithm
colloquially known as SHA2.

MAC
 CSSM_ALGID_SHA1HMAC Outsize = 20 bytes
 CSSM_ALGID_MD5HMAC Outsize = 16 bytes
 CSSM_ALGID_SHA1HMAC_LEGACY Outsize = 20 bytes

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 12

The CSSM_ALGID_SHA1HMAC_LEGACY algorithm is backwards compatible
with the SHA1HMAC algorithm from the Cheetah implementation of the CSP. This
implementation, in the BSAFE library, was actually faulty in that it produced different
results for the same data input if updates were performed on different boundaries.
Unfortunately, Cheetah keychains are not usable unless we can verify their MACs
with this legacy algorithm. Obviously future use of this algorithm to actually generate
MAC values is deprecated.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 13

Wrap/Unwrap key

A Key Wrap operation is essentially the encrypting of the KeyData field of one key (the
Unwrapped Key) with another key (the Wrapping Key) and placing the result in a new
CSSM_KEY struct (the Wrapped Key). There are many ways to do this, with many
encryption algorithms and many formats of the wrapped key. The encryption algorithm is
specified by the application in the incoming encryption context. The format of the wrapped
key can optionally be specified by adding a
CSSM_ATTRIBUTE_WRAPPED_KEY_FORMAT attribute to the encryption context. In the
absence of such a format specification the CSP will pick a default format appropriate to the
type of keys being used as described below.

A rule of thumb is that you can wrap any key with any other key, but certainly not all formats
work with all keys. You should probably make a serious attempt to fully understand what’s
going on and what all the various options and parameters mean before attempting to use any
of this.

A special form of Key Wrapping is called Null Wrap. No encryption is involved; this converts
a reference key to a raw key. In this case the application passes in a symmetric encryption
context with no key and an AlgorithmID of CSSM_ALGID_NONE.

The Wrapped Key Formats supported by the CSP are described here:

• CSSM_KEYBLOB_WRAPPED_FORMAT_PKCS7

Only valid for wrapping symmetric keys. See PKCS7.

• CSSM_KEYBLOB_WRAPPED_FORMAT_PKCS8

Only valid for wrapping private asymmetric keys. See PKCS8.

• CSSM_KEYBLOB_WRAPPED_FORMAT_OPENSSL

Only valid for wrapping private asymmetric keys. Implements Openssl’s legacy key
wrapping format, currently deprecated in favor of PKCS8 but still in widespread use.

• CSSM_KEYBLOB_WRAPPED_FORMAT_APPLE_CUSTOM

Apple-custom format used for encrypting keychain items. The wrapping key can not
be an AES key (or any other key whose algorithm requires an initialization vector of
larger than 8 bytes).

If no WRAPPED_KEY_FORMAT attribute is found in the incoming context, the default
format is calculated based on the incoming Unwrapped Key as follows:

• Wrapped Key is symmetric: default format = PKCS7

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 14

• Wrapped Key is a public asymmetric: default format = APPLE_CUSTOM
• Wrapped Key is FEE Private asymmetric: default format = APPLE_CUSTOM
• Wrapped key is other Private asymmetric: default format = PKCS8

Another optional attribute during a WrapKey operation specifies the format of the raw key
just prior to encrypting it (or in the case of a NULL wrap, the format of the raw key to be
returned). This differs from the Wrapped Key Format. Depending on whether the Unwrapped
Key is a Private, Public, or Symmetric, this attribute type is
CSSM_ATTRIBUTE_{PRIVATE,PUBLIC,SESSION}_KEY_FORMAT, respectively. If
this attribute is not specified then the following default values for blob format are used:

• Wrapped Format = PKCS8 : blob format is PKCS8 for RSA keys, FIPS186 for
DSA keys, default format for other private keys.

• Wrapped Format = OPENSSL : blob format is PKCS1 for RSA keys, OPENSSL

for DSA keys, default format for all other keys.

Performing a CSSM_UnwrapKey follows most of the above rules and regulations; an Unwrap
Key operation consists of decrypting the key material of a Wrapped Key with another key
called the Unwrapping Key, and placing the result in a third key called, you guessed it, the
Unwrapped Key. The wrap format of the Wrapped Key must be valid and present in the
Wrapped Key’s KeyHeader.BlobFormat. No defaults, no guessing; this has to be accurate.

A Null Unwrap is used to convert a raw (not wrapped, not encrypted) key into a reference
key. It uses a symmetric encryption context no key and an AlgorithmID of
CSSM_ALGID_NONE.

Pseudo Random Number Generation (CSSM_GenerateRandom())

The CSP supports one PRNG algorithm, ALGID_APPLE_YARROW. This algorithm uses a
version of Yarrow, originally written by Counterpane Labs, modified for the OS X platform.
Specifying a seed in the cryptographic context is optional; if present, the seed data is added to
the current entropy pool but does not fully specify the state of the Yarrow PRNG. (This
operation, in which seed data is added to the entropy pool, is only possible when the current
process is running as root.) Note that specifying the same seed in multiple calls to
(CSSM_CSP_CreateRandomGenContext(), CSSM_GenerateRandom()) will not result in the
generation of repeatable pseudorandom numbers.

2005-03-10 |  2005 Apple Computer, Inc. All Rights Reserved 15

Revision History

Version Date Changes
 0.1 4/18/00 Initial distribution.
 0.2 5/16/00 Updated for alpha release of CSP.
 0.3 7/13/00 Added CSSM_ALGID_3DES key generation and derivation.
 Added CSSM_ALGID_3DES_3KEY_EDE encrypt/decrypt.
 Removed CSSM_ALGMODE_ECB modes from feedback ciphers.
 Cleaned up IV specification.
 Added ALGID_APPLE_YARROW PRNG.
 0.4 10/25/00 Added AES symmetric encryption.
 0.5 4/26/01 Added ASC; added signature algorithms; modified modes for

symmetric encryption algorithms
 0.6 9/5/01 Added CSSM_ALGID_SHA1HMAC_LEGACY
 Added raw DSA, FEE, and ECDSA signatures
 0.7 4/30/02 Added Diffie-Hellman Key gen and DeriveKey
 Added CDSA_PADDING_NONE option for RSA
 Added CSSM_ALGMODE_{PUBLIC,PRIVATE}_KEY for RSA
 0.8 1/12/05 Bring up to date for Tiger.
 Added many new key formats.
 Added MD2, SHA256, SHA384, SHA512, CAST, BLOWFISH.
 Added many key derivation algorithms.
 Expanded Key wrap/unwrap discussion.
 0.8 3/10/05 Added SHA-2 signature algorithms.

