
Apple Trust Policy Module
Functional Specification

2005-01-25

Apple Computer, Inc.
© 2005 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.
The Apple logo is a trademark of Apple
Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.
No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac, Mac OS, and
QuickTime are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Times is a trademark of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.
THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.
Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 3

Apple Trust Policy Module Functional Specification
January 25, 2005

1.0 Scope

This document describes the functions of the Apple Trust Policy Module (“the TP”) for the
Mac OS X platform.

2.0 Functional Specification

The TP’s functional description mainly describes the behavior of the
CSSM_TP_CertGroupVerify function, which is currently the primary (possibly the only)
function currently used by other Apple software. The function’s API is defined here and
the mechanics of the trust policies it implements are described.

The CSSM_TP_CertGroupConstruct function is also supported; its use can easily be
inferred from the following discussion, as it is merely a subset of the CertGroupVerify
function (without the policy enforcement).

2.1 The CSSM_TP_CertGroupVerify function

This function basically performs two tasks. First it takes an unordered group of certificates
(“certs”) and an optional list of open DB handles, and attempts to create a valid, ordered cert
chain starting from the first cert passed in and terminating at a either a root cert or a cert which is
verifiable by one of a set of optional Anchor Certs specified by the caller. The list of DBs passed
in will be searched for any certs needed to complete the chain. Certiicates may also optionally be
fetched from the net while creating the ordered list of certificates if so enabled (see section 2.1,
“CSSM_TP_CertGroupVerify Calling syntax”). The resulting ordered cert chain is optionally
passed back to the caller. The description of an “ordered cert chain” can be found in section 2.3.

Second, this function performs enforcement of one of a number of Trust Policies (“Policies”).
Details of these policies are found in section 2.4. The enforcement of the policy is performed on
the ordered cert chain constructed as described above.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 4

2.1 CSSM_TP_CertGroupVerify Calling syntax

CSSM_RETURN CSSM_TP_CertGroupVerify (

CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_CERTGROUP *CertGroupToBeVerified,
const CSSM_TP_VERIFY_CONTEXT *VerifyContext,
CSSM_TP_VERIFY_CONTEXT_RESULT_PTR VerifyContextResult);

Arguments are as follows:

Three handles - to an open TP, CL, and CSP. The CSP must be capable of dealing with the
signature algorithms used by the certs. The CL must be an X.509-savvy CL. It’s up to the
calling app to sort this out. Currently the standard AppleCSP and AppleX509CL will suffice.

CertGroupToBeVerified contains an unordered array of raw certs in the form of a
CSSM_CERTGROUP_PTR. The first cert of this list is the subject cert (leaf or end entity)
which is eventually to be verified. The other certs can be in any order and may not even have any
relevance to the cert chain being constructed. They may also be invalid certs. (If the first cert is
invalid, the function will return CSSM_TP_INVALID_CERTIFICATE.) The contents of
CertGroupToBeVerified must be:

CertType must be CSSM_CERT_X_509{v1,v2,v3}
CertEncoding must be CSSM_CERT_ENCODING{DER,BER}
NumCerts is the number of certs
CertList is an array of CSSM_DATAs, each containing one DER or
 BER encoded cert
CertGroupType must be CSSM_CERTGROUP_DATA

VerifyContext contains several fields, starting with
CSSM_TP_CALLERAUTH_CONTEXT_PTR Cred, which in turn has the following interesting
fields:

 CSSM_TP_POLICY_INFO Policy
Policy.NumberOfPolicyIds specifies the number of policies and must be zero or

one.
Policy.PolicyIds contains an optional array of Policy OID fields (if present, the

size of the array must be one). The Policy OIDs are defined in
<Security/oidsalg.h> and are discussed below in section 2.4, “Trust Policies”.
The FieldValue field in the PolicyField is optional, on a per-policy basis; the
values are described below.

Policy.PolicyControl is currently unused.

NumberOfAnchorCerts and AnchorCerts are an optional array of “known trusted
certs” which may anchor a cert chain. If no anchors are presented here, there is no
way this function can return CSSM_OK.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 5

DBList must be present (this field is a pointer). It must contain {0,NULL} if no DL/DB
list is to be searched. (This is required because the TP_CertGroupConstruct function
interface, a public function which is called by the implementation of
TP_CertGroupVerify, contains this as a required field.) If a valid DLDB list is
specified, that list is searched for certs to complete the cert chain.

CallerCredentials must be NULL.

VerifyTime is an optional pointer to a CSSM-formatted time string indicating the time at

which the cert chain is to be evaluated. If the pointer is NULL, the cert chain is
evaluated “now”.

All other CSSM_TP_CALLERAUTH_CONTEXT fields are ignored.

VerifyContext->ActionData.Data contains an optional pointer to a
CSSM_APPLE_TP_ACTION_DATA struct. Currently the only field defined for this struct
is a word of flags called CSSM_APPLE_TP_ACTION_FLAGS, defined in
<Security/cssmapple.h>. The bits in this word specify options which apply to all policies’
they are defined as follows:

CSSM_TP_ACTION_ALLOW_EXPIRED: when set, indicates that certs’ “not after” fields

are to be ignored.

CSSM_TP_ACTION_LEAF_IS_CA: when set, indicates that the leaf cert is known to be a

CA. Normally this situation results in a policy verification error if the leafd cert contains
a BasicConstraints extension with the CA bit set. This flag allows verification of such a
cert as leaf.

CSSM_TP_ACTION_FETCH_CERT_FROM_NET: when set, enabled the TP to attempt to

find issuer certs from the net. When so enabled, this occurs if a cert appears in a cert
chain, and no issuer is found locally (in the incoming certs or in the optional DBList), and
the cert has an IssuerAltName extension with a URI component.

CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT: when set, indicates that root certs’ “not

after” fields are to be ignored.

CSSM_TP_ACTION_REQUIRE_REV_PER_CERT: when set, then some positive

revocation check must be successfully be performed for each certificate except for roots.
See section 2.4.2 for information on revocation policies.

VerifyContextResult, if non-NULL, on return contains the result of the operation in the form of
an ordered cert chain along with detailed per-certificate status information allowing the caller to
determine exactly where in the cert chain errors might have occurred. This info is returned
regardless of the outcome of policy verification. If caller specifies a NULL VerifyContextResult
pointer, no evidence will be returned The contents are as follows:

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 6

NumberOfEvidences = 3

Evidence[0] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_HEADER
Evidence[0] .Evidence: ptr to CSSM_TP_APPLE_EVIDENCE_HEADER

This header currently contains one field, Version, with a value of
CSSM_TP_APPLE_EVIDENCE_VERSION (0). This struct and all of its
contents must be freed by the caller using the standard app-level memory
callback.

Evidence[1] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_CERTGROUP
Evidence[1] .Evidence: ptr to CSSM_CERTGROUP

This field contains the resulting cert group in the same format as the
CSSM_CERTGROUP passed in as CertGroupToBeVerified. This struct
and all of its contents must be freed by the caller using the standard app-
level memory callback.

Evidence[2] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_CERT_INFO
Evidence[1] .Evidence: ptr to CSSM_TP_APPLE_EVIDENCE_INFO

The evidence pointer refers to an array of
CSSM_TP_APPLE_EVIDENCE_INFOs which is the same size (in
elements) as the certs in Evidence[1].Evidence. There is a one-to-one
correspondence between the elements of the
CSSM_TP_APPLE_EVIDENCE_INFO and the certs in the cert group in
Evidence[1].Evidence. See <Security/cssmapple.h> for a description of
the contents of this struct. It provides for an arbitrary number of
CSSM_RETURN codes to be assigned to a given cert via the StatusCodes
field. The StatusCodes field, as well as the
CSSM_TP_APPLE_EVIDENCE_INFO array itself, must be freed by the
caller using the standard app-level memory callback.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 7

2.2 CSSM_TP_CertGroupVerify Return Values

CSSM_OK : Cert chain verified all the way back to an Anchor cert and (optional) policy
enforcement succeeded. Note that in this case, depending on the requested policy, a root cert may
or may not have been in the incoming CertGroup or in one of the open Dbs. The root cert was
definitely in the list of AnchorCerts.

CSSMERR_TP_INVALID_ANCHOR_CERT: In this case, the cert chain was validated back
to a self-signed (root) cert found in either incoming cert group or in one of the DBs in DBList,
but that root cert was not found in the AnchorCert list.

CSSMERR_TP_NOT_TRUSTED: No root cert found, and the last cert in the chain was not
verifiable by any certs in AnchorCerts.

CSSMERR_TP_VERIFICATION_FAILURE: A root cert was found which did not self-
verify.

CSSMERR_TP_VERIFY_ACTION_FAILED: The requested policy verification failed

CSSMERR_TP_INVALID_CERTIFICATE: Bad leaf certificate.

CSSMERR_TP_CERT_EXPIRED and CSSMERR_TP_CERT_NOT_VALID_YET: One
of the certificates in the chain has expired or is not yet valid.

CSSMERR_TP_INVALID_REQUEST_INPUTS : no incoming VerifyContext.

Other policy-specific return values may also be returned; see section 2.4.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 8

2.3 Ordered Cert Chain Construction

When attempting to construct an ordered cert chain, the first thing the TP does is to match a
cert’s issuer name to another cert’s subject name. The order of the constructed cert chain is such
that cert[0] is the end entity, or leaf, cert; thus; for each cert n in the chain, the issuer of cert[n] is
the same as the subject of cert[n+1]. The exception to this is when a root cert is found. A root
cert has identical values for subject and issuer. Subject and Issuer names are normalized, per
RFC 3280, section 4.1.2.4, prior to the construction of an ordered cert chain. (Normalizing
involves munging of printable strings to upper case and removing leading, trailing, and
redundant whitespace.) Issuer certs can come from the incoming cert group, or a DLDBList, or
from the network (the latter two are optional).

Also, for each cert n in the chain, the public key of cert[n+1] must successfully perform a
signature verification of the tbsCertificate portion of cert[n]. Again, a root cert is different; a root
cert must successfully perform signature verification on itself. Signature verification is used to
resolve ambiguities in the subject/issuer chain, as for example when more than one cert with a
matching subject name is found for a given cert’s issuer.

Additionally, the “not before” and “not after” fields of each cert in the chain must be valid. The
CSSM_TP_ALLOW_EXPIRE actionData flag can be used to ignore the (unfortunately)
common case of expired certs. When this option is specified, the “not after” field of all certs is
ignored.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 9

2.4 Trust Policies

Trust policy verification involves parsing and evaluating the extensions in the cert chain. The
default policy does not do this.

The policy OIDs, defined in <Security/oidsalg.h>, are as follows:

AppleBasic: CSSMOID_APPLE_X509_BASIC
iSign: CSSMOID_APPLE_ISIGN
SSL: CSSMOID_APPLE_TP_SSL
S/MIME: CSSMOID_APPLE_TP_SMIME
EAP: CSSMOID_APPLE_TP_EAP
CodeSigning: CSSMOID_APPLE_TP_CODE_SIGN
IPsec: CSSMOID_APPLE_TP_IP_SEC
IChat: CSSMOID_APPLE_TP_ICHAT
CRL: CSSMOID_APPLE_TP_REVOCATION_CRL
OCSP: CSSMOID_APPLE_TP_REVOCATION_OCSP

Refer to RFC 3280 for descriptions of the various cert extensions discussed below.

Some policies allow for additional parameters to be specified in the VerifyContext->Cred-
>Policy.PolicyIds->FieldValue.Data field. This optionally points to a policy-specific struct (see
policy descriptions, below).

See section 2.4.2 for discussion of the CRL and OCSP policies.

2.4.1 Certificate Extensions

The requirements for some common extensions extensions are as follows. In all cases, a failure
of the policy enforcement results in a CSSMERR_TP_VERIFY_ACTION_FAILED error as
well as error-specific information being associated with the errant cert in the (optionally)
returned CSSM_TP_APPLE_EVIDENCE_INFO array.

Critical flag

All policies: If an extension is found which the TP does not understand and which is flagged
“critical”, the policy check fails.

Basic Constraints

Required in all but root and leaf cert. Optional in root, with a default cA of true if not present.
Optional in leaf with a default cA of false.

cA (either explicitly or by default if not present) must be false for leaf certs, true for all
others. App can override the failure resulting from this bit being set for the leaf cert by
asserting CSSM_TP_ACTION_LEAF_IS_CA.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 10

PathLengthConstraint, if present (it’s optional) is always enforced per RFC 3280.

Note: RFC 3280 says that CA certs MUST contain BasicConstraints extensions and that the
extension MUST be flagged critical. In the real world this is not feasible. Verisign has
intermediate certs with a BasicConstraints flagged not critical, and some RSA root certs
(which are CA by default) do not contain this extension at all. Thus the critical flag in
BasicConstraints is ignored by the TP and root certs do not have to have a BasicConstraints
extension at all.

Authority Key Identifier
iSign: Optional, but illegal for root. If present, must not be critical.
All: see below for Key Identifier chain validation.

Subject Key Identifier
iSign: If present, must not be critical.
All: see below for Key Identifier chain validation.

Key Usage

iSign: Required for all except root and leaf. Key Usage for leaf must have digitalSignature bit
set. Exception: a leaf cert without a Key Usage extension is legal if a netscape-cert-type
extension is present with the Object Signing bit set.

CodeSigning: optional; if present in leaf, usage must have digitalSignature bit set.
All others: optional. Usage bits ignored for leaf cert. (Note: this does not guarantee that the

leaf cert can be used for any intended purpose, as the CL will generate rather rigorous
KeyUsage values based on this field and the Extended Key Usage field when extracting a
key, and the CSP will enforce those usage bits.)

All: If present in non-leaf, must have keyCertSign bit set.

Extended key usage

iSign: if present in leaf, must have one usage, CSSMOID_ExtendedUseCodeSigning.
Otherwise: ignored at this point; may be checked on per-policy basis (see below).

Authority Key Identifier Subject Key Identifier linkage
For all policies, if these (optional) fields are present, they are verified in sequence in a
manner similar to the way in which the subject/issuer chain is verified. The keyIdentifier
component of the Authority Key Identifier is used in chain verification. In this case, though,
if either field is absent (i.e., Authority Key ID for cert[n] or Subject Key ID for cert[n+1] is
missing, the verification doesn’t fail; it’s skipped for that step. The raw value of the encoded
keyIdentifier from the Authority Key ID is compared to the raw encoded Subject Key ID.

2.4.1 Policy-specific checks

AppleBasic
iSign

No further policy-specific processing.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 11

SSL
EAP
IPsec

These three policies currently behave identically. They take an optional pointer to a policy-
specific struct, CSSM_APPLE_TP_SSL_OPTIONS, in VerifyContext->Cred-
>Policy.PolicyIds->FieldValue.Data. The fields in this struct are:

Version: must be CSSM_APPLE_TP_SSL_OPTS_VERSION

ServerName, ServerNameLen: optionally specifies the domain name of the server
associated with the leaf cert. See below.

Flags: currently only one bit is defined, CSSM_APPLE_TP_SSL_CLIENT which when
set tells the TP that the leaf cert belongs to a client, not a server. This is used when
evaluating Extended Key Use extensions (see below).

If the ServerName and ServerNameLen fields are present (the TP acts as if they are not
present if the entire CSSM_APPLE_TP_SSL_OPTIONS is absent), they express the domain
name of a host, in ASCII, like “store.apple.com”. Various components in the leaf certificate
are compared against this string to enforce the match of “expected host name” (passed in by
the app) and “found host name” (in the cert). Refer to RFC 2818, section 3.1 for detailed info
on this comparison. The TP implements this section of the RFC to the letter, including proper
handling of IP-address formatted host name (“17.254.3.41”) and wildcards in commonName
fields (“*.apple.com”). A failure of this hostname checking results in a return value of
CSSMERR_APPLETP_HOSTNAME_MISMATCH from CSSM_TP_CertGroupVerify().

The TP then examines the leaf cert for an Extended Key Use extension. If there is an EKU
extension, then at least one appropriate EKU OID value must be present: either an
CSSMOID_ExtendedKeyUsageAny, or else CSSMOID_ServerAuth (if the leaf cert belongs
to a server) or CSSMOID_ClientAuth (if the leaf cert belongs to a client). A failure of this
EKU checking results in a return value of CSSMERR_TP_VERIFY_ACTION_FAILED
from CSSM_TP_CertGroupVerify(). The leaf cert is flagged with a
CSSMERR_APPLETP_SSL_BAD_EXT_KEY_USE status.

S/MIME

This takes an optional pointer to a policy-specific struct,
CSSM_APPLE_TP_SMIME_OPTIONS, in VerifyContext->Cred->Policy.PolicyIds-
>FieldValue.Data. The fields in this struct are:

Version: must CSSM_APPLE_TP_SMIME_OPTS_VERSION

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 12

SenderEmail, SenderEmailLen: optionally specifies the email addresss of associated
with the leaf cert. The TP uses this to enforce section 3 of RFC 2632 to the letter.

IntendedKeyUsage: used to express what the cert (actually, the associated key) is to be
used for. The TP uses this to enforce section 4.2.1.3 of RFC 3280 when evaluating a
KeyUsage extension.

NOTE: Although RFC 2632 says that a KeyUsage extension (in an S/MIME context) MUST
be marked critical, this is not enforced by the TP due to the prevalence of nonconforming
certificates.

Subsequent to emailAddress processing, the TP then examines the leaf cert for an Extended
Key Use extension. If there is an EKU extension, then at least one appropriate EKU OID
value must be present: either a CSSMOID_ExtendedKeyUsageAny, or
CSSMOID_EmailProtection. A failure of this EKU checking results in a return value of
CSSMERR_APPLETP_SMIME_BAD_EXT_KEY_USE from
CSSM_TP_CertGroupVerify(). The leaf cert being flagged with the same status.

iChat

This cert policy is intended to be used with two disparate types of certificates. One is the
.mac cert vended by Apple, and which is currently intended to be used only for iChat.
Depending on the extensions in the cert, these certs can be used for iChat signing, iChat
encyrption, or both. The contents of these certs has been defined elsewhere in multiple
places. Refer to whatever is the currently accepted documentation for these certs.

The other type of cert which is verifiable by this policy is the generic cert which is usable in
Windows AIM clients. Lacking any published spec for these certs, it has been determined
that these certs contain two crucial fields:

• an EmailProtection Extended Key Usage OID, and
• a netscape-cert-type extension with the SMIME bit (0x2000) set

This policy takes an optional pointer to policy-specific struct,
CSSM_APPLE_TP_SMIME_OPTIONS, in VerifyContext->Cred->Policy.PolicyIds-
>FieldValue.Data. The fields in this struct are:

Version: must CSSM_APPLE_TP_SMIME_OPTS_VERSION

SenderEmail, SenderEmailLen: optionally specifies the iChat “handle” of associated
with the leaf cert. See below.

IntendedKeyUsage: optionally used to specify a required ExtendedKeyUse OID. See
below.

If the application has not specified an iChat handle in the incoming

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 13

CSSM_APPLE_TP_SMIME_OPTIONS, skip this section and proceed to the
section below entitled ExtendedKeyUse verification. In this case the cert is
expected to conform to the generic AIM format, not the Apple-specific iChat
format.

If the application has specified an iChat handle in the incoming
CSSM_APPLE_TP_SMIME_OPTIONS, then the leaf certificate is examined for
the presence fields which match the handle specified by the app. This is non trivial.

First the Apple iChat format is checked, in which the commonName component of
SubjectName contains the .mac user name (e.g., “dmitch”) and the
OrganizationUnit component contains the domain in the app-specified handle (e.g.
“mac.com” but it can be anything). The incoming handle has the whole thing –
“dmitch@mac.com” – and the TP breaks this into components and does the
comparisons in a case insensitive manner. (Note this differs from the name
matching for email addresses in S/MIME certs, in which the domain (“mac.com”)
is case insensitive, but the name (“dmitch) is case sensitive.) The handle passed in
by the app is in UTF8 format. The components in the cert can be in any encoding
(T61String, BMPString, IA5String, UTF8String, etc.). In addition, the
OrganizationName component of the SubjectName must contain the string “Apple
Computer, Inc.”. The entire SubjectName is searched until all three components
(name, component, “Apple Computer, Inc.”) are found. If they are found then
henceforth this cert is presumed to be an Apple-issued iChat cert.

If the search described in the previous paragraph fails then a literal match for the
incoming handle is sought, first in the SubjectAltName extension (name type
RFC822Name), then in the SubjectName (component EmailAddress). All string
comparisons are case-insensitive for both name and domain portions if the handle.
If a match is found then this portion of the evaluation succeeds and the cert is
presumed to be a generic AIM cert (not an Apple iChat cert). Proceed to
ExtendedKeyUse evaluation.

If, at the end of the search described in the previous two paragraphs, no matching
email addresses are found, one of two error codes is returned:

• If at least one email address was found in the cert, but no email address was

found which matches the email address provided by the app,
CSSMERR_APPLETP_SMIME_EMAIL_ADDRS_NOT_FOUND is returned.

• If no email addresses are found in the cert,
CSSMERR_APPLETP_SMIME_NO_EMAIL_ADDRS is returned.

Note that if the app did not specify an email address in the incoming
CSSM_APPLE_TP_SMIME_OPTIONS, neither of these error codes will be
returned; email address checking is skipped.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 14

ExtendedKeyUse verification in the iChat policy

Evaluation of the ExtendedKeyUse (EKU) extension depends on the type of cert –
generic AIM, or Apple iChat (see above description on verification of iChat
handle). An EKU extension contains a list of allowable uses, each of which is
expressed as an OID.

Generic AIM certs must contain either an EmailProtection OID or an
ExtendedKeyUseAny OID. These are not mutually exclusive and other EKU OIDs
may appear as well.

Apple iChat certs must contain at least one of three EKU OIDs:

• CSSMOID_ExtendedKeyUsageAny
• CSSMOID_APPLE_EKU_ICHAT_SIGNING
• CSSMOID_APPLE_EKU_ICHAT_ENCRYPTION

The app can require the presence of either or both of the last two EKU OIDs by
asserting appropriate bits in the
CSSM_APPLE_TP_SMIME_OPTIONS.IntendedUsage field. These bits are
defined in <Security/certextensions.h>, along with the typedef for CE_KeyUsage.
These bits are normally used in the KeyUsage extension (which is in fact checked
for S/MIME cert evaluation, which shares this data structure). Here only two bits
are legal:

• CE_KU_DigitalSignature. If this bit is set then the cert must contain an
ICHAT_SIGNING EKU OID.

• CE_KU_DataEncipherment. If this bit is set then the cert must contain an
ICHAT_ENCRYPTION EKU OID.

If the app does not provide an IntendedUsage value (i.e., it’s zero) then any of the 3
possible EKU OIDs will suffice for the satisfaction of the ExtendedKeyUse
verification.

A failure of the extended key use extension verification results in a
CSSMERR_APPLETP_SMIME_BAD_EXT_KEY_USE error.

Note that if the app specifies a nonzero IntendedUsage value, but the cert being
evaluated is a generic AIM cert, the IntendedUsage field will be ignored since the
generic AIM cert does not contain indicators as to what it is intended to be used for.

CodeSigning

Certificate chains used in Apple Code Signing consist of exactly three certificates:
the Apple Root Certificate (ARC), an intermediate certificate, and end entity (leaf)

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 15

certificate. If there are not 3 certificates in the chain being evaluated,
CSSMERR_APPLETP_CS_BAD_CERT_CHAIN_LENGTH is returned. The
intermediate cert must have a BasicConstraints extension; if it doesn’t,
CSSMERR_APPLETP_CS_NO_BASIC_CONSTRAINTS is returned. That
BasicConstraints must have PathLengthConstraint of zero. If it doesn’t,
CSSMERR_APPLETP_CS_BAD_PATH_LENGTH is returned. A value of zero
for the PathLengthConstraint field indicates that no more intermediate certificates
are allowed in the cert chain; the next certificate must be the leaf.

The single intermediate certificate must have an ExtendedKeyUse extension; if it
doesn’t, CSSMERR_APPLETP_CS_NO_EXTENDED_KEY_USAGE is returned.
That extension must be marked critical; and that extension must have exactly one of
two values: appleCodeSigning, or appleCodeSigningDevelopment. The presence of
the latter value is considered an exception condition and will result in a
CSSMERR_APPLETP_CODE_SIGN_DEVELOPMENT being returned. If the
EKU extension does not have exactly one value present,
CSSMERR_APPLETP_INVALID_EXTENDED_KEY_USAGE is returned.

2.4.2 Revocation policies

Revocation Policies refer to those policies implemented by the TP which (optionally)
check whether the certificates in a given cert chain have been revoked by their issuer.
There are currently two revocation policies: Certificate Revocation List (CRL) and
Online Certificate Status Protocol (OCSP). Both of these policies optionally involve
fetching items from the Internet during the verification of a cert; both involve caching of
said items both in the TP (in-memory, on a per-process basis) and elsewhere in the
system (on disk, in a cache shared by all users); both involve per-user preferences set at
the User Interface level (by the Keychain Access application); both have somewhat
“special case” status in the implementation of the TP’s main “customer” code, the
SecTrust layer. None of these issues will be discussed here expect for brief mentions as to
the options, at the TP API, associated with network access and caching.

The two policies are almost, but not totally, independent. Either, both, or neither of the
two policies can be enabled for a given cert chain verification. However there is one bit
in the top-level CSSM_APPLE_TP_ACTION_DATA, the REQUIRE_REV_PER_CERT
bit, which when set, results in the following interdependency between the CRL and
OCSP policies: for each cert in the cert chain being verified, a positive confirmation of a
cert’s revocation status must be obtained by either the CRL or OCSP policy, even if
either or both policies are configured to not require positive confirmation per cert. (A
“positive confirmation” means that a definitive “this cert has not been revoked” status has
been obtained, not just a “I couldn’t contact the server” status, which may or may not be
an error on a per-policy basis.)

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 16

Asserting the REQUIRE_REV_PER_CERT bit does not cause either revocation policy to
be executed if the caller has not told the TP to execute the policy; for example, suppose
the caller has enabled CRL checking but not OCSP, and the CRL policy is configured to
not actually fail if no CRL can be obtained for a given cert. In this case, if
REQUIRE_REV_PER_CERT is set, the verification returns
CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK.

CRL policy

The CRL policy attempts to locate a current CRL for each cert, to cryptographically verify the
CRL and each cert in the chain that verifies it, perform CRL verification of each of those certs,
and finally to determine if the CRL lists the target cert in question as being revoked. CRLs can
come from a number of places. The TP searches for them in the following places, listed in the
order in which they are searched:

• The caller can explicitly provide them in CSSM_TP_VERIFY_CONTEXT.Crls
• The caller can provide them in a DLDB list, in

CSSM_TP_CALLERAUTH_CONTEXT.DBList
• A process-wide memory-resident cache
• A system-wide disk-resident cache
• They can be obtained from the net, if so enabled (by the FETCH_CRL_FROM_NET bit,

see below) and the cert contains a CrlDistributionPoints extension with the URL
specified FullName form (not in relative form)

The CRL policy takes an optional pointer to a policy-specific struct,
CSSM_APPLE_TP_CRL_OPTIONS, in VerifyContext->Cred->Policy.PolicyIds-
>FieldValue.Data. The fields in this struct are:

Version: must be CSSM_APPLE_TP_CRL_OPTS_VERSION

CrlFlags: See below.

crlStore: currently unused.

The values for the bits in CrlFlags is as follows. Note that the behavior of the CRL policy
if no CSSM_APPLE_TP_CRL_OPTIONS is present is such that all of these bits are
assumed to be zero.

CSSM_TP_ACTION_REQUIRE_CRL_PER_CERT

If set, a valid CRL must be located for each cert. If not, the verification will fail
with the reason for the most recent CRL attempt failed (typically,
CSSMERR_APPLETP_CRL_NOT_FOUND, but it could be a verification failure
for the most recent CRL fetched).

CSSM_TP_ACTION_FETCH_CRL_FROM_NET

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 17

If set, the TP will attempt to fetch CRLs from the internet if the cert contains a
CrlDistributionPoints extension with the URL specified FullName form. (Note
this will not occur if a CRL is found for a particular cert in cache or in a caller-
provided location).

CSSM_TP_ACTION_CRL_SUFFICIENT
If set, then revocation checking by other policies (OCSP for now) is not
performed for certs which have been positively verified by CRL checking,
regardless of the configuration of the other revocation policies. The caller sets this
to indicate “If CRL checking is successful for a given cert, that’s good enough for
me; don’t bother with other revocation checking.”

CSSM_TP_ACTION_REQUIRE_CRL_IF_PRESENT
This is identical to the REQUIRE_CRL_PER_CERT bit except it only applies to
certs which have a CrlDistributionPoints extension. It basically means “if the
issuer says this cert has a CRL then you must get positive CRL verification,
otherwise tolerate the inability to find a CRL for the cert.”

OCSP policy

OCSP is a more real-time policy than CRL; the basic intent is that a server which is
authorized by the issuer of a cert being verified is to be queried at the time the cert is
being verified; the server (actually called a “responder” in this context) will give a
response indicating the revocation status of the cert. Of course it’s not quite that simple;
responses from OCSP servers are cached for performance reasons and to guard against
situations when, e.g., your laptop is not connected to the network.

OCSP responses (the things that come from a responder indicating the revocation status
of the cert being verified) are themselves cryptographically signed; the TP verifies an
OCSP response before it’s used. (The in-memory OCSP cache contains OCSP responses
which are verified once and then explicitly trusted. These responses’ thisUpdate and
nextUpdate times are still honored as usual.) Each cert in the cert chain used to verify an
OCSP response is in turn subjected to OCSP verification.

The OCSP policy takes an optional pointer to a policy-specific struct,
CSSM_APPLE_TP_OCSP_OPTIONS, in VerifyContext->Cred->Policy.PolicyIds-
>FieldValue.Data. This struct is currently defined in <Security/cssmapplePriv.h>. The fields in
this struct are:

Version: must be CSSM_APPLE_TP_OCSP_OPTS_VERSION

Flags: See below.

LocalResponder: Optional URI of a local OCSP responder to use instead of any possible
responder indicated in certs.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 18

LocalResponderCert: Optional certificate associated with LocalResponder, to provide
intergrity checking of the connection to LocalResponder.

The values for the bits in Flags is as follows. Note that the behavior of the OCSP policy if
no CSSM_APPLE_TP_OCSP_OPTIONS is present is such that all of these bits are
assumed to be zero.

CSSM_TP_ACTION_REQUIRE_OCSP_PER_CERT

If set, a valid OCSP response must be located for each cert. If not, the verification
will fail with the reason for the most recent OCSP attempt failed (typically,
CSSMERR_APPLETP_OCSP_UNAVAILABLE, but it could be a verification
failure for the most recent OCSP response obtained).

CSSM_TP_ACTION_OCSP_REQUIRE_IF_RESP_PRESENT
This is identical to the REQUIRE_OCSP_PER_CERT bit except it only applies to
certs which have an AuthorityInfoAccess extension with an id-ad-ocsp URI. It
basically means “if the issuer says it provides OCSP for this cert, then you must
get positive OCSP verification, otherwise tolerate the inability to find an OCSP
responder (or response) for the cert.”

CSSM_TP_ACTION_OCSP_DISABLE_NET
If set, no network transactions will be attempted in order to perform OCSP
verification. The default is that the network will be used.

CSSM_TP_ACTION_OCSP_CACHE_READ_DISABLE
CSSM_TP_ACTION_OCSP_CACHE_WRITE_DISABLE

The control the use of local cache (both memory and disk resident). The default is
that OCSP responses will be written to cache and can be fetched from cache.
Either reading from or writing to cache can be disabled.

CSSM_TP_ACTION_OCSP_SUFFICIENT

If set, then revocation checking by other policies (CRL for now) is not performed
for certs which have been positively verified by OCSP, regardless of the
configuration of the other revocation policies. The caller sets this to indicate “If
OCSP is successful for a given cert, that’s good enough for me; don’t bother with
other revocation checking.”

CSSM_TP_OCSP_GEN_NONCE
CSSM_TP_OCSP_REQUIRE_RESP_NONCE

These control the generation of nonces in client-side OCSP requests, and whether
servers must reply with nonces in their responses. Default is false for both.

2005-01-25 | 2005 Apple Computer, Inc. All Rights Reserved 19

3.0 Revision History

Rev Date Change
0.1 5/6/99 Creation.
0.2 5/7/99 Added CSSM_TP_VERIFY_ACTION_FAIL return code.
 Added this Appendix.
0.3 …. Changed description of defaults for basicConstraints.cA.
 Added CSSM_TP_INVALID_CERTIFICATE return code.
 Clarified description of fully successful return.
0.4 7/28/99 Fixed misc. typos.

Changed Default policy to AppleBasic
Added CSSM_TP_CERT_EXPIRED.
Added description of verifying root cert against known root

certs.
Added Netscape exception to iSign’s Key Usage requirements.
Added section 4.2, description of Embedded Root Certs.
Removed second paragraph in 1.0 containing cynical disclaimer

 regarding policy changes.
0.9 8/20/01 Update for Mac OS X.
0.91 10/18/01 Fixed some typos.
1.00 8/14/02 Major revision to CSSM_TP_CertGroupVerify description.
 Minor updates of per-policy extension parsing.
1.1 1/25/05 Major update for Tiger.
 Several new policies.
 New description of revocation policies.

